id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
1,187
def _parameterization_dir(param,maxlen): """ Returns the directory name for the given parameterization string as follows: - If the parameterization is longer than maxlen characters, then return the SHA-1 hex digest. - Otherwise, return the parameterization unchanged. """ if len(param) > maxlen: return sha1(param.encode()).hexdigest() return param
def _parameterization_dir(param, maxlen): """ Returns the directory name for the given parameterization string as follows: - If the parameterization is longer than maxlen characters, then return the SHA-1 hex digest. - Otherwise, return the parameterization unchanged. """ if len(param) > maxlen: return sha1(param.encode()).hexdigest() return param
58,042
def install_software(topology: Topology, version: str, device_filter_string: str = None, sync: bool = False) -> InstallSoftwareCommandResult: """ Install the given software version onto the device. Download the software first with pan-os-platform-download-software :param topology: `Topology` instance !no-auto-argument :param device_filter_string: String to filter to only install to specific devices or serial numbers :param version: software version to upgrade to, ex. 9.1.2 :param sync: If provided, runs the download synchronously - make sure 'execution-timeout' is increased. """ if sync == "false": sync = False result: InstallSoftwareCommandResult = UniversalCommand.install_software(topology, version, device_filter_str=device_filter_string, sync=sync) return result
def install_software(topology: Topology, version: str, device_filter_string: str = None, sync: bool = False) -> InstallSoftwareCommandResult: """ Install the given software version onto the device. Download the software first with pan-os-platform-download-software :param topology: `Topology` instance !no-auto-argument :param device_filter_string: String to filter to only install to specific devices or serial numbers :param version: software version to upgrade to, ex. 9.1.2 :param sync: If provided, runs the download synchronously - make sure 'execution-timeout' is increased. """ if sync == "false": sync = False return UniversalCommand.install_software(topology, version, device_filter_str=device_filter_string, sync=_sync)
30,409
def check_base_branch(pr_num): print_color('Starting to fetch the base branch of PR num {}'.format(pr_num), LOG_COLORS.GREEN) base_branch = get_base_branch(pr_num) print_color('Finished to fetch the base branch of PR num {}'.format(pr_num), LOG_COLORS.GREEN) if base_branch == 'master': print_error("You cannot merge into master when creating an external PR.") sys.exit(1) else: print_color('Base branch of PR num {} is not master - Great!'.format(pr_num), LOG_COLORS.GREEN) sys.exit(0)
def check_base_branch(pr_num): print_color(f'Fetching the base branch of pull request #{pr_num}', LOG_COLORS.NATIVE) base_branch = get_base_branch(pr_num) print_color('Finished to fetch the base branch of PR num {}'.format(pr_num), LOG_COLORS.GREEN) if base_branch == 'master': print_error("You cannot merge into master when creating an external PR.") sys.exit(1) else: print_color('Base branch of PR num {} is not master - Great!'.format(pr_num), LOG_COLORS.GREEN) sys.exit(0)
13,893
def main(args=None): parser = create_argument_parser() cli_options = parser.parse_args(args=args) # load the config cfg_name = find_config_name(cli_options) cfg_options = {} if cfg_name is not None: with io.open(cfg_name, encoding='UTF-8') as cfg_file: cfg_options = parse_config_into_dict( parse_config_file(cfg_file, filename=cfg_name)) options_dict = merge_options_and_set_defaults( [cfg_options, cli_options.__dict__]) options = Options(**options_dict) configure_logging(logger, logging.DEBUG if options.verbose else logging.INFO) if cli_options.version: logger.info( "gcovr {version}\n" "\n" "{copyright}", version=__version__, copyright=COPYRIGHT) sys.exit(0) if options.html_title == '': logger.error( "an empty --html_title= is not allowed.") sys.exit(1) if options.html_medium_threshold == 0: logger.error( "value of --html-medium-threshold= should not be zero.") sys.exit(1) if options.html_medium_threshold > options.html_high_threshold: logger.error( "value of --html-medium-threshold={} should be\n" "lower than or equal to the value of --html-high-threshold={}.", options.html_medium_threshold, options.html_high_threshold) sys.exit(1) if options.html_tab_size < 1: logger.error( "value of --html-tab-size= should be greater 0.") sys.exit(1) potential_html_output = ( (options.html and options.html.value) or (options.html_details and options.html_details.value) or (options.output and options.output.value)) if options.html_details and not potential_html_output: logger.error( "a named output must be given, if the option --html-details\n" "is used.") sys.exit(1) if options.html_self_contained is False and not potential_html_output: logger.error( "can only disable --html-self-contained when a named output is given.") sys.exit(1) if options.objdir is not None: if not options.objdir: logger.error( "empty --object-directory option.\n" "\tThis option specifies the path to the object file " "directory of your project.\n" "\tThis option cannot be an empty string.") sys.exit(1) tmp = options.objdir.replace('/', os.sep).replace('\\', os.sep) while os.sep + os.sep in tmp: tmp = tmp.replace(os.sep + os.sep, os.sep) if normpath(options.objdir) != tmp: logger.warning( "relative referencing in --object-directory.\n" "\tthis could cause strange errors when gcovr attempts to\n" "\tidentify the original gcc working directory.") if not os.path.exists(normpath(options.objdir)): logger.error( "Bad --object-directory option.\n" "\tThe specified directory does not exist.") sys.exit(1) options.starting_dir = os.path.abspath(os.getcwd()) if not options.root: logger.error( "empty --root option.\n" "\tRoot specifies the path to the root " "directory of your project.\n" "\tThis option cannot be an empty string.") sys.exit(1) options.root_dir = os.path.abspath(options.root) # # Setup filters # # The root filter isn't technically a filter, # but is used to turn absolute paths into relative paths options.root_filter = re.compile('^' + re.escape(options.root_dir + os.sep)) if options.exclude_dirs is not None: options.exclude_dirs = [ f.build_filter() for f in options.exclude_dirs] options.exclude = [f.build_filter() for f in options.exclude] options.filter = [f.build_filter() for f in options.filter] if not options.filter: options.filter = [DirectoryPrefixFilter(options.root_dir)] options.gcov_exclude = [ f.build_filter() for f in options.gcov_exclude] options.gcov_filter = [f.build_filter() for f in options.gcov_filter] if not options.gcov_filter: options.gcov_filter = [AlwaysMatchFilter()] # Output the filters for debugging for name, filters in [ ('--root', [options.root_filter]), ('--filter', options.filter), ('--exclude', options.exclude), ('--gcov-filter', options.gcov_filter), ('--gcov-exclude', options.gcov_exclude), ('--exclude-directories', options.exclude_dirs), ]: logger.debug(f'Filters for {name}: ({len(filters)})') for f in filters: logger.debug(f'- {f}') if options.exclude_lines_by_pattern: try: re.compile(options.exclude_lines_by_pattern) except re.error as e: logger.error( "--exclude-lines-by-pattern: " "Invalid regular expression: {}, error: {}", repr(options.exclude_lines_by_pattern), e) sys.exit(1) covdata = dict() if options.add_tracefile: collect_coverage_from_tracefiles(covdata, options) else: collect_coverage_from_gcov(covdata, options) logger.debug(f"Gathered coveraged data for {len(covdata)} files") # Print reports error_occurred = print_reports(covdata, options) if error_occurred: logger.error( "Error occurred while printing reports" ) sys.exit(7) if options.fail_under_line > 0.0 or options.fail_under_branch > 0.0: fail_under(covdata, options.fail_under_line, options.fail_under_branch)
def main(args=None): parser = create_argument_parser() cli_options = parser.parse_args(args=args) # load the config cfg_name = find_config_name(cli_options) cfg_options = {} if cfg_name is not None: with io.open(cfg_name, encoding='UTF-8') as cfg_file: cfg_options = parse_config_into_dict( parse_config_file(cfg_file, filename=cfg_name)) options_dict = merge_options_and_set_defaults( [cfg_options, cli_options.__dict__]) options = Options(**options_dict) configure_logging(logger, logging.DEBUG if options.verbose else logging.INFO) if cli_options.version: logger.info( "gcovr {version}\n" "\n" "{copyright}", version=__version__, copyright=COPYRIGHT) sys.exit(0) if options.html_title == '': logger.error( "an empty --html_title= is not allowed.") sys.exit(1) if options.html_medium_threshold == 0: logger.error( "value of --html-medium-threshold= should not be zero.") sys.exit(1) if options.html_medium_threshold > options.html_high_threshold: logger.error( "value of --html-medium-threshold={} should be\n" "lower than or equal to the value of --html-high-threshold={}.", options.html_medium_threshold, options.html_high_threshold) sys.exit(1) if options.html_tab_size < 1: logger.error( "value of --html-tab-size= should be greater 0.") sys.exit(1) potential_html_output = ( (options.html and options.html.value) or (options.html_details and options.html_details.value) or (options.output and options.output.value)) if options.html_details and not potential_html_output: logger.error( "a named output must be given, if the option --html-details\n" "is used.") sys.exit(1) if options.html_self_contained is False and not potential_html_output: logger.error( "can only disable --html-self-contained when a named output is given.") sys.exit(1) if options.objdir is not None: if not options.objdir: logger.error( "empty --object-directory option.\n" "\tThis option specifies the path to the object file " "directory of your project.\n" "\tThis option cannot be an empty string.") sys.exit(1) tmp = options.objdir.replace('/', os.sep).replace('\\', os.sep) while os.sep + os.sep in tmp: tmp = tmp.replace(os.sep + os.sep, os.sep) if normpath(options.objdir) != tmp: logger.warning( "relative referencing in --object-directory.\n" "\tthis could cause strange errors when gcovr attempts to\n" "\tidentify the original gcc working directory.") if not os.path.exists(normpath(options.objdir)): logger.error( "Bad --object-directory option.\n" "\tThe specified directory does not exist.") sys.exit(1) options.starting_dir = os.path.abspath(os.getcwd()) if not options.root: logger.error( "empty --root option.\n" "\tRoot specifies the path to the root " "directory of your project.\n" "\tThis option cannot be an empty string.") sys.exit(1) options.root_dir = os.path.abspath(options.root) # # Setup filters # # The root filter isn't technically a filter, # but is used to turn absolute paths into relative paths options.root_filter = re.compile('^' + re.escape(options.root_dir + os.sep)) if options.exclude_dirs is not None: options.exclude_dirs = [ f.build_filter() for f in options.exclude_dirs] options.exclude = [f.build_filter() for f in options.exclude] options.filter = [f.build_filter() for f in options.filter] if not options.filter: options.filter = [DirectoryPrefixFilter(options.root_dir)] options.gcov_exclude = [ f.build_filter() for f in options.gcov_exclude] options.gcov_filter = [f.build_filter() for f in options.gcov_filter] if not options.gcov_filter: options.gcov_filter = [AlwaysMatchFilter()] # Output the filters for debugging for name, filters in [ ('--root', [options.root_filter]), ('--filter', options.filter), ('--exclude', options.exclude), ('--gcov-filter', options.gcov_filter), ('--gcov-exclude', options.gcov_exclude), ('--exclude-directories', options.exclude_dirs), ]: logger.debug(f'Filters for {name}: ({len(filters)})') for f in filters: logger.debug(f" - {f}") if options.exclude_lines_by_pattern: try: re.compile(options.exclude_lines_by_pattern) except re.error as e: logger.error( "--exclude-lines-by-pattern: " "Invalid regular expression: {}, error: {}", repr(options.exclude_lines_by_pattern), e) sys.exit(1) covdata = dict() if options.add_tracefile: collect_coverage_from_tracefiles(covdata, options) else: collect_coverage_from_gcov(covdata, options) logger.debug(f"Gathered coveraged data for {len(covdata)} files") # Print reports error_occurred = print_reports(covdata, options) if error_occurred: logger.error( "Error occurred while printing reports" ) sys.exit(7) if options.fail_under_line > 0.0 or options.fail_under_branch > 0.0: fail_under(covdata, options.fail_under_line, options.fail_under_branch)
32,331
def saas_security_get_events_command(client: Client, args: Dict) -> Union[str, CommandResults]: """ Fetches events from the saas-security queue and return them to the war-room. in case should_push_events is set to True, they will be also sent to XSIAM. """ limit = arg_to_number(args.get('limit')) or 100 validate_limit(limit=limit) should_push_events = argToBoolean(args.get('should_push_events')) if events := fetch_events(client=client, max_fetch=limit): if should_push_events: send_events_to_xsiam(events=events, vendor='PaloAltoNetworks', product='SaasSecurity') return CommandResults( readable_output=tableToMarkdown( 'SaaS Security Logs', events, headers=['log_type', 'item_type', 'item_name', 'timestamp', 'serial'], headerTransform=underscoreToCamelCase, removeNull=True ), raw_response=events, outputs=events, outputs_key_field=['timestamp', 'log_type, item_name, item_type'], outputs_prefix='SaasSecurity.Event' ) return 'No events were found.'
def saas_security_get_events_command(client: Client, args: Dict) -> Union[str, CommandResults]: """ Fetches events from the saas-security queue and return them to the war-room. in case should_push_events is set to True, they will be also sent to XSIAM. """ limit = arg_to_number(args.get('limit')) or 100 validate_limit(limit) should_push_events = argToBoolean(args.get('should_push_events')) if events := fetch_events(client=client, max_fetch=limit): if should_push_events: send_events_to_xsiam(events=events, vendor='PaloAltoNetworks', product='SaasSecurity') return CommandResults( readable_output=tableToMarkdown( 'SaaS Security Logs', events, headers=['log_type', 'item_type', 'item_name', 'timestamp', 'serial'], headerTransform=underscoreToCamelCase, removeNull=True ), raw_response=events, outputs=events, outputs_key_field=['timestamp', 'log_type, item_name, item_type'], outputs_prefix='SaasSecurity.Event' ) return 'No events were found.'
4,131
def approx_pi(n: cython.int=10000000): val: cython.double = 0. k: cython.int for k in range(1, n + 1): val += recip_square(k) return (6 * val) ** .5
def approx_pi(n: cython.int=10000000): val: float = 0. k: cython.int for k in range(1, n + 1): val += recip_square(k) return (6 * val) ** .5
56,838
def _get_account_confirmation_template_params(commcare_user, message_token, url_name): url = absolute_reverse(url_name, args=[commcare_user.domain, message_token]) name = "" if commcare_user.first_name or commcare_user.last_name: name = " ".join([commcare_user.first_name, commcare_user.last_name]) return { 'name': name, 'domain': commcare_user.domain, 'username': commcare_user.raw_username, 'url': url, 'url_prefix': get_static_url_prefix(), 'hq_name': commcare_hq_names()['commcare_hq_names']['COMMCARE_HQ_NAME'] }
def _get_account_confirmation_template_params(commcare_user, message_token, url_name): url = absolute_reverse(url_name, args=[commcare_user.domain, message_token]) return { 'name': commcare_user.full_name, 'domain': commcare_user.domain, 'username': commcare_user.raw_username, 'url': url, 'url_prefix': get_static_url_prefix(), 'hq_name': commcare_hq_names()['commcare_hq_names']['COMMCARE_HQ_NAME'] }
46,398
def which( command: str, *, return_bool: bool = False, raise_error: bool = False, raise_msg: str = None, env: str = None ) -> Union[bool, None, str]: r"""Test to see if a command is available. Returns ------- str or None By default, returns command path if command found or `None` if not. Environment is $PATH or `os.pathsep`-separated `env`, less any None values. bool When `return_bool=True`, returns whether or not found. Raises ------ ModuleNotFoundError When `raises_error=True` and command not found. Raises generic message plus any `raise_msg`. """ if env is None: lenv = {"PATH": os.environ.get("PATH", "") + os.pathsep + os.path.dirname(sys.executable)} else: lenv = {"PATH": os.pathsep.join([os.path.abspath(x) for x in env.split(os.pathsep) if x != ""])} lenv = {k: v for k, v in lenv.items() if v is not None} ans = shutil.which(command, mode=os.F_OK | os.X_OK, path=lenv["PATH"]) if raise_error and ans is None: raise ModuleNotFoundError( f"Command '{command}' not found in envvar PATH.{' ' + raise_msg if raise_msg else ''}" ) if return_bool: return bool(ans) else: return ans
def which( command: str, *, return_bool: bool = False, raise_error: bool = False, raise_msg: str = None, env: str = None ) -> Union[bool, None, str]: r"""Test to see if a command is available. Returns ------- str or None By default, returns command path if command found or `None` if not. Environment is $PATH or `os.pathsep`-separated `env`, less any None values. bool When `return_bool=True`, returns whether or not found. Raises ------ ModuleNotFoundError When `raises_error=True` and command not found. Raises generic message plus any `raise_msg`. """ if env is None: lenv = {"PATH": os.pathsep + os.environ.get("PATH", "") + os.pathsep + os.path.dirname(sys.executable)} else: lenv = {"PATH": os.pathsep.join([os.path.abspath(x) for x in env.split(os.pathsep) if x != ""])} lenv = {k: v for k, v in lenv.items() if v is not None} ans = shutil.which(command, mode=os.F_OK | os.X_OK, path=lenv["PATH"]) if raise_error and ans is None: raise ModuleNotFoundError( f"Command '{command}' not found in envvar PATH.{' ' + raise_msg if raise_msg else ''}" ) if return_bool: return bool(ans) else: return ans
7,132
def test_guess_spatial_dimensions(): im1 = np.zeros((5, 5)) im2 = np.zeros((5, 5, 5)) im3 = np.zeros((5, 5, 3)) im4 = np.zeros((5, 5, 5, 3)) im5 = np.zeros((5,)) testing.assert_equal(guess_spatial_dimensions(im1), 2) testing.assert_equal(guess_spatial_dimensions(im2), 3) testing.assert_equal(guess_spatial_dimensions(im3), None) testing.assert_equal(guess_spatial_dimensions(im4), 3) with testing.raises(ValueError): guess_spatial_dimensions(im5)
def test_guess_spatial_dimensions(): im1 = np.zeros((5, 5)) im2 = np.zeros((5, 5, 5)) im3 = np.zeros((5, 5, 3)) im4 = np.zeros((5, 5, 5, 3)) im5 = np.zeros((5,)) testing.assert_equal(guess_spatial_dimensions(im1), 2) testing.assert_equal(guess_spatial_dimensions(im2), 3) testing.assert_equal(guess_spatial_dimensions(im3), None) testing.assert_equal(_guess_spatial_dimensions(im4), 3) with testing.raises(ValueError): guess_spatial_dimensions(im5)
41,719
def test_ignite_pruning_handler(): # type: () -> None def update(engine, batch): # type: (Engine, Iterable) -> None pass trainer = Engine(update) # The pruner is activated. study = optuna.create_study(pruner=DeterministicPruner(True)) trial = create_running_trial(study, 1.0) handler = optuna.integration.IgnitePruningHandler(trial, 'accuracy', trainer) with patch.object(trainer, 'state', epoch=Mock(return_value=1), metrics={'accuracy': 1}): with pytest.raises(optuna.structs.TrialPruned): handler(trainer) # # The pruner is not activated. study = optuna.create_study(pruner=DeterministicPruner(False)) trial = create_running_trial(study, 1.0) handler = optuna.integration.IgnitePruningHandler(trial, 'accuracy', trainer) with patch.object(trainer, 'state', epoch=Mock(return_value=1), metrics={'accuracy': 1}): handler(trainer)
def test_ignite_pruning_handler(): # type: () -> None def update(engine, batch): # type: (Engine, Iterable) -> None pass trainer = Engine(update) # The pruner is activated. study = optuna.create_study(pruner=DeterministicPruner(True)) trial = create_running_trial(study, 1.0) handler = optuna.integration.IgnitePruningHandler(trial, 'accuracy', trainer) with patch.object(trainer, 'state', epoch=Mock(return_value=1), metrics={'accuracy': 1}): with pytest.raises(optuna.structs.TrialPruned): handler(trainer) # The pruner is not activated. study = optuna.create_study(pruner=DeterministicPruner(False)) trial = create_running_trial(study, 1.0) handler = optuna.integration.IgnitePruningHandler(trial, 'accuracy', trainer) with patch.object(trainer, 'state', epoch=Mock(return_value=1), metrics={'accuracy': 1}): handler(trainer)
38,877
def evaluate_from_args(args: argparse.Namespace) -> Dict[str, Any]: common_logging.FILE_FRIENDLY_LOGGING = args.file_friendly_logging # Disable some of the more verbose logging statements logging.getLogger("allennlp.common.params").disabled = True logging.getLogger("allennlp.nn.initializers").disabled = True logging.getLogger("allennlp.modules.token_embedders.embedding").setLevel(logging.INFO) # Load from archive archive = load_archive( args.archive_file, weights_file=args.weights_file, cuda_device=args.cuda_device, overrides=args.overrides, ) config = deepcopy(archive.config) prepare_environment(config) model = archive.model model.eval() # Load the evaluation data dataset_reader = archive.validation_dataset_reader # split files evaluation_data_path_list = args.input_file.split(":") if args.output_file is not None: output_file_list = args.output_file.split(":") assert len(output_file_list) == len( evaluation_data_path_list ), "number of output path must be equal number of dataset " if args.predictions_output_file is not None: predictions_output_file_list = args.predictions_output_file.split(":") assert len(predictions_output_file_list) == len( evaluation_data_path_list ), "number of predictions_output_file path must be equal number of dataset " # output file output_file_path = None predictions_output_file_path = None for index in range(len(evaluation_data_path_list)): config = deepcopy(archive.config) evaluation_data_path = evaluation_data_path_list[index] if args.output_file is not None: output_file_path = output_file_list[index] if args.predictions_output_file is not None: predictions_output_file_path = predictions_output_file_list[index] logger.info("Reading evaluation data from %s", evaluation_data_path) data_loader_params = config.get("validation_data_loader", None) if data_loader_params is None: data_loader_params = config.get("data_loader") if args.batch_size: data_loader_params["batch_size"] = args.batch_size data_loader = DataLoader.from_params( params=data_loader_params, reader=dataset_reader, data_path=evaluation_data_path ) embedding_sources = ( json.loads(args.embedding_sources_mapping) if args.embedding_sources_mapping else {} ) if args.extend_vocab: logger.info("Vocabulary is being extended with test instances.") model.vocab.extend_from_instances(instances=data_loader.iter_instances()) model.extend_embedder_vocab(embedding_sources) data_loader.index_with(model.vocab) metrics = evaluate( model, data_loader, args.cuda_device, args.batch_weight_key, output_file=output_file_path, predictions_output_file=predictions_output_file_path, ) logger.info("Finished evaluating.") return metrics
def evaluate_from_args(args: argparse.Namespace) -> Dict[str, Any]: common_logging.FILE_FRIENDLY_LOGGING = args.file_friendly_logging # Disable some of the more verbose logging statements logging.getLogger("allennlp.common.params").disabled = True logging.getLogger("allennlp.nn.initializers").disabled = True logging.getLogger("allennlp.modules.token_embedders.embedding").setLevel(logging.INFO) # Load from archive archive = load_archive( args.archive_file, weights_file=args.weights_file, cuda_device=args.cuda_device, overrides=args.overrides, ) config = deepcopy(archive.config) prepare_environment(config) model = archive.model model.eval() # Load the evaluation data dataset_reader = archive.validation_dataset_reader # split files evaluation_data_path_list = args.input_file.split(":") if args.output_file is not None: output_file_list = args.output_file.split(":") assert len(output_file_list) == len( evaluation_data_path_list ), "number of output path must be equal number of dataset " if args.predictions_output_file is not None: predictions_output_file_list = args.predictions_output_file.split(":") assert len(predictions_output_file_list) == len( evaluation_data_path_list ), "The number of `predictions_output_file` paths must be equal to the number of datasets being evaluated. " # output file output_file_path = None predictions_output_file_path = None for index in range(len(evaluation_data_path_list)): config = deepcopy(archive.config) evaluation_data_path = evaluation_data_path_list[index] if args.output_file is not None: output_file_path = output_file_list[index] if args.predictions_output_file is not None: predictions_output_file_path = predictions_output_file_list[index] logger.info("Reading evaluation data from %s", evaluation_data_path) data_loader_params = config.get("validation_data_loader", None) if data_loader_params is None: data_loader_params = config.get("data_loader") if args.batch_size: data_loader_params["batch_size"] = args.batch_size data_loader = DataLoader.from_params( params=data_loader_params, reader=dataset_reader, data_path=evaluation_data_path ) embedding_sources = ( json.loads(args.embedding_sources_mapping) if args.embedding_sources_mapping else {} ) if args.extend_vocab: logger.info("Vocabulary is being extended with test instances.") model.vocab.extend_from_instances(instances=data_loader.iter_instances()) model.extend_embedder_vocab(embedding_sources) data_loader.index_with(model.vocab) metrics = evaluate( model, data_loader, args.cuda_device, args.batch_weight_key, output_file=output_file_path, predictions_output_file=predictions_output_file_path, ) logger.info("Finished evaluating.") return metrics
7,545
def get_pkg_data_path(*path, package=None): """Make path from source-included data directories. Parameters ---------- *path : str Name/location of the desired data file/directory. May be a tuple of strings -- for ``os.path`` intelligent path joining. package : str, optional, keyword only If specified, look for a file relative to the given package, rather than the default of looking relative to the calling module's package. Returns ------- path : str Name/location of the desired data file/directory. """ if package is None: module = find_current_module(1, finddiff=['astropy.utils.data', 'contextlib']) if module is None: # not called from inside an astropy package. So just pass name # through return os.path.join(*path) if not hasattr(module, '__package__') or not module.__package__: # The __package__ attribute may be missing or set to None; see # PEP-366, also astropy issue #1256 if '.' in module.__name__: package = module.__name__.rpartition('.')[0] else: package = module.__name__ else: package = module.__package__ else: module = resolve_name(package) rootpkgname = package.partition('.')[0] rootpkg = resolve_name(rootpkgname) module_path = os.path.dirname(module.__file__) path = os.path.join(module_path, *path) root_dir = os.path.dirname(rootpkg.__file__) if not _is_inside(path, root_dir): raise RuntimeError(f"attempted to get a local data file outside " f"of the {rootpkgname} tree.") return path
def get_pkg_data_path(*path, package=None): """Make path from source-included data directories. Parameters ---------- *path : str Name/location of the desired data file/directory. May be a tuple of strings for ``os.path`` joining. package : str, optional, keyword only If specified, look for a file relative to the given package, rather than the default of looking relative to the calling module's package. Returns ------- path : str Name/location of the desired data file/directory. """ if package is None: module = find_current_module(1, finddiff=['astropy.utils.data', 'contextlib']) if module is None: # not called from inside an astropy package. So just pass name # through return os.path.join(*path) if not hasattr(module, '__package__') or not module.__package__: # The __package__ attribute may be missing or set to None; see # PEP-366, also astropy issue #1256 if '.' in module.__name__: package = module.__name__.rpartition('.')[0] else: package = module.__name__ else: package = module.__package__ else: module = resolve_name(package) rootpkgname = package.partition('.')[0] rootpkg = resolve_name(rootpkgname) module_path = os.path.dirname(module.__file__) path = os.path.join(module_path, *path) root_dir = os.path.dirname(rootpkg.__file__) if not _is_inside(path, root_dir): raise RuntimeError(f"attempted to get a local data file outside " f"of the {rootpkgname} tree.") return path
58,117
def generate_dbotscore(response: Dict) -> List: """Creates CommandResult object based on the contents of 'response' argument and provides DBotScore objects. Parameters ---------- response : dict Object returned by ANYRUN API call in 'get_report' function. Returns ------- List A list of CommandResults objects. """ data = response.get('data', {}) analysis = data.get('analysis', {}) main_object = analysis.get('content', {}).get('mainObject', {}) submission_type = main_object.get('type') submission_type = 'hash' if submission_type in {'file', 'download'} else submission_type threat_text = analysis.get('scores', {}).get('verdict', {}).get('threatLevelText', '').casefold() reputation_map = { "shared": Common.DBotScore.NONE, "unknown": Common.DBotScore.NONE, "whitelisted": Common.DBotScore.GOOD, "malicious": Common.DBotScore.BAD, "suspicious": Common.DBotScore.SUSPICIOUS } returned_data = [] main_entity = None main_entity_type = None # Add the hash or URL first if submission_type == 'hash': hashes = main_object.get('hashes', {}) info = main_object.get('info', {}) file_type = info.get('file') exif = info.get('exif', {}) main_entity = hashes.get('sha256') or hashes.get('sha1') or hashes.get('md5') main_entity_type = FeedIndicatorType.File dbot_score = Common.DBotScore( indicator=hashes.get('sha256') or hashes.get('sha1') or hashes.get('md5'), indicator_type=DBotScoreType.FILE, integration_name='ANYRUN', score=THREAT_TEXT_TO_DBOTSCORE.get(threat_text) or Common.DBotScore.NONE ) returned_data.append(CommandResults( indicator=Common.File( dbot_score=dbot_score, md5=hashes.get('md5'), sha1=hashes.get('sha1'), sha256=hashes.get('sha256'), file_type=file_type, associated_file_names=exif.get('OriginalFileName') ) )) else: main_entity = main_object.get('url') main_entity_type = FeedIndicatorType.URL url_outputs = { 'Data': main_object.get('url') } dbot_score = Common.DBotScore( indicator=main_object.get('url'), indicator_type=DBotScoreType.URL, integration_name='ANYRUN', score=THREAT_TEXT_TO_DBOTSCORE.get(threat_text) or Common.DBotScore.NONE ) if dbot_score.score >= 2: url_outputs['Malicious'] = { 'Vendor': 'ANYRUN', 'Description': threat_text } returned_data.append(CommandResults( outputs_prefix='URL', outputs_key_field=['Data'], outputs=url_outputs, indicator=Common.URL( url=main_object.get('url'), dbot_score=dbot_score, ) )) # Check if network information is available in the report if 'network' in data: network_data = data.get('network') # Then add all the network-related indicators - 'connections' if 'connections' in network_data: connections = network_data.get('connections') for current_connection in connections: reputation = current_connection.get('Reputation') if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_connection.get('IP'), indicator_type=DBotScoreType.IP, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_connection.get('IP'), entity_b_type=FeedIndicatorType.IP, brand="ANYRUN" )] ip_indicator = Common.IP( ip=current_connection.get('IP'), asn=current_connection.get('ASN'), port=current_connection.get('Port'), geo_country=current_connection.get('Country'), dbot_score=current_dbot_score, relationships=relationships ) if current_connection.get('IP') not in [ x.indicator.ip for x in returned_data if isinstance(x.indicator, Common.IP) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_connection.get('IP')}", [{ "Description": f"This IP was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=ip_indicator, relationships=relationships )) # Then add all the network-related indicators - 'dnsRequests' if 'dnsRequests' in network_data: for current_dnsRequests in network_data.get('dnsRequests'): reputation = current_dnsRequests.get('Reputation') if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_dnsRequests.get('Domain'), indicator_type=DBotScoreType.DOMAIN, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_dnsRequests.get('Domain'), entity_b_type=FeedIndicatorType.Domain, brand="ANYRUN" )] if "IP" in current_dnsRequests: for ip in current_dnsRequests.get('IP', []): relationships.append( EntityRelationship( name=EntityRelationship.Relationships.RESOLVES_TO, entity_a=current_dnsRequests.get('Domain'), entity_a_type=FeedIndicatorType.Domain, entity_b=ip, entity_b_type=FeedIndicatorType.IP ) ) domain_ip_dbot_score = Common.DBotScore( indicator=ip, indicator_type=DBotScoreType.IP, integration_name="ANYRUN", score=Common.DBotScore.NONE ) domain_ip_indicator = Common.IP( ip=ip, dbot_score=domain_ip_dbot_score ) returned_data.append(CommandResults( indicator=domain_ip_indicator, readable_output=tableToMarkdown( f"{ip}", [{ "Description": f"This IP was resovled from {current_dnsRequests.get('Domain')}" }] ) )) domain_indicator = Common.Domain( domain=current_dnsRequests.get('Domain'), dbot_score=current_dbot_score, relationships=relationships ) if current_dnsRequests.get('Domain') not in [ x.indicator.domain for x in returned_data if isinstance(x.indicator, Common.Domain) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_dnsRequests.get('Domain')}", [{ "Description": f"This domain was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=domain_indicator, relationships=relationships )) # Then add all the network-related indicators - 'httpRequests' if 'httpRequests' in network_data: for current_httpRequests in network_data.get('httpRequests'): reputation = current_httpRequests['Reputation'] if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_httpRequests.get('URL'), indicator_type=DBotScoreType.URL, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_httpRequests.get('URL'), entity_b_type=FeedIndicatorType.URL, brand="ANYRUN" )] url_indicator = Common.URL( url=current_httpRequests.get('URL'), geo_country=current_httpRequests.get('Country'), port=current_httpRequests.get('Port'), dbot_score=current_dbot_score, relationships=relationships ) if current_httpRequests.get('URL') not in [ x.indicator.url for x in returned_data if isinstance(x.indicator, Common.URL) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_httpRequests.get('URL')}", [{ "Description": f"This URL was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=url_indicator, relationships=relationships )) if 'mitre' in data: mitre_data = data.get('mitre') for item in mitre_data: relationships = [EntityRelationship( name=EntityRelationship.Relationships.RELATED_TO, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=item.get('name'), entity_b_type='Attack Pattern' )] attack_indicator = Common.AttackPattern( stix_id=None, value=item.get('name'), mitre_id=item.get('id') ) returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{item.get('name')}", [{ "Description": f"This Attack Pattern was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=attack_indicator, relationships=relationships )) return returned_data
def generate_dbotscore(response: Dict) -> List: """Creates CommandResult object based on the contents of 'response' argument and provides DBotScore objects. Parameters ---------- response : dict Object returned by ANYRUN API call in 'get_report' function. Returns ------- List A list of CommandResults objects. """ data = response.get('data', {}) analysis = data.get('analysis', {}) main_object = analysis.get('content', {}).get('mainObject', {}) submission_type = main_object.get('type') submission_type = 'hash' if submission_type in {'file', 'download'} else submission_type threat_text = analysis.get('scores', {}).get('verdict', {}).get('threatLevelText', '').casefold() reputation_map = { "shared": Common.DBotScore.NONE, "unknown": Common.DBotScore.NONE, "whitelisted": Common.DBotScore.GOOD, "malicious": Common.DBotScore.BAD, "suspicious": Common.DBotScore.SUSPICIOUS } returned_data = [] main_entity = None main_entity_type = None # Add the hash or URL first if submission_type == 'hash': hashes = main_object.get('hashes', {}) info = main_object.get('info', {}) file_type = info.get('file') exif = info.get('exif', {}) main_entity = hashes.get('sha256') or hashes.get('sha1') or hashes.get('md5') main_entity_type = FeedIndicatorType.File dbot_score = Common.DBotScore( indicator=hashes.get('sha256') or hashes.get('sha1') or hashes.get('md5'), indicator_type=DBotScoreType.FILE, integration_name='ANYRUN', score=THREAT_TEXT_TO_DBOTSCORE.get(threat_text) or Common.DBotScore.NONE, reliability=params.get('reliability') ) returned_data.append(CommandResults( indicator=Common.File( dbot_score=dbot_score, md5=hashes.get('md5'), sha1=hashes.get('sha1'), sha256=hashes.get('sha256'), file_type=file_type, associated_file_names=exif.get('OriginalFileName') ) )) else: main_entity = main_object.get('url') main_entity_type = FeedIndicatorType.URL url_outputs = { 'Data': main_object.get('url') } dbot_score = Common.DBotScore( indicator=main_object.get('url'), indicator_type=DBotScoreType.URL, integration_name='ANYRUN', score=THREAT_TEXT_TO_DBOTSCORE.get(threat_text) or Common.DBotScore.NONE ) if dbot_score.score >= 2: url_outputs['Malicious'] = { 'Vendor': 'ANYRUN', 'Description': threat_text } returned_data.append(CommandResults( outputs_prefix='URL', outputs_key_field=['Data'], outputs=url_outputs, indicator=Common.URL( url=main_object.get('url'), dbot_score=dbot_score, ) )) # Check if network information is available in the report if 'network' in data: network_data = data.get('network') # Then add all the network-related indicators - 'connections' if 'connections' in network_data: connections = network_data.get('connections') for current_connection in connections: reputation = current_connection.get('Reputation') if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_connection.get('IP'), indicator_type=DBotScoreType.IP, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_connection.get('IP'), entity_b_type=FeedIndicatorType.IP, brand="ANYRUN" )] ip_indicator = Common.IP( ip=current_connection.get('IP'), asn=current_connection.get('ASN'), port=current_connection.get('Port'), geo_country=current_connection.get('Country'), dbot_score=current_dbot_score, relationships=relationships ) if current_connection.get('IP') not in [ x.indicator.ip for x in returned_data if isinstance(x.indicator, Common.IP) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_connection.get('IP')}", [{ "Description": f"This IP was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=ip_indicator, relationships=relationships )) # Then add all the network-related indicators - 'dnsRequests' if 'dnsRequests' in network_data: for current_dnsRequests in network_data.get('dnsRequests'): reputation = current_dnsRequests.get('Reputation') if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_dnsRequests.get('Domain'), indicator_type=DBotScoreType.DOMAIN, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_dnsRequests.get('Domain'), entity_b_type=FeedIndicatorType.Domain, brand="ANYRUN" )] if "IP" in current_dnsRequests: for ip in current_dnsRequests.get('IP', []): relationships.append( EntityRelationship( name=EntityRelationship.Relationships.RESOLVES_TO, entity_a=current_dnsRequests.get('Domain'), entity_a_type=FeedIndicatorType.Domain, entity_b=ip, entity_b_type=FeedIndicatorType.IP ) ) domain_ip_dbot_score = Common.DBotScore( indicator=ip, indicator_type=DBotScoreType.IP, integration_name="ANYRUN", score=Common.DBotScore.NONE ) domain_ip_indicator = Common.IP( ip=ip, dbot_score=domain_ip_dbot_score ) returned_data.append(CommandResults( indicator=domain_ip_indicator, readable_output=tableToMarkdown( f"{ip}", [{ "Description": f"This IP was resovled from {current_dnsRequests.get('Domain')}" }] ) )) domain_indicator = Common.Domain( domain=current_dnsRequests.get('Domain'), dbot_score=current_dbot_score, relationships=relationships ) if current_dnsRequests.get('Domain') not in [ x.indicator.domain for x in returned_data if isinstance(x.indicator, Common.Domain) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_dnsRequests.get('Domain')}", [{ "Description": f"This domain was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=domain_indicator, relationships=relationships )) # Then add all the network-related indicators - 'httpRequests' if 'httpRequests' in network_data: for current_httpRequests in network_data.get('httpRequests'): reputation = current_httpRequests['Reputation'] if reputation in reputation_map.keys(): current_dbot_score = Common.DBotScore( indicator=current_httpRequests.get('URL'), indicator_type=DBotScoreType.URL, integration_name='ANYRUN', score=reputation_map[reputation] ) relationships = [EntityRelationship( name=EntityRelationship.Relationships.COMMUNICATED_WITH, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=current_httpRequests.get('URL'), entity_b_type=FeedIndicatorType.URL, brand="ANYRUN" )] url_indicator = Common.URL( url=current_httpRequests.get('URL'), geo_country=current_httpRequests.get('Country'), port=current_httpRequests.get('Port'), dbot_score=current_dbot_score, relationships=relationships ) if current_httpRequests.get('URL') not in [ x.indicator.url for x in returned_data if isinstance(x.indicator, Common.URL) ]: returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{current_httpRequests.get('URL')}", [{ "Description": f"This URL was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=url_indicator, relationships=relationships )) if 'mitre' in data: mitre_data = data.get('mitre') for item in mitre_data: relationships = [EntityRelationship( name=EntityRelationship.Relationships.RELATED_TO, entity_a=main_entity, entity_a_type=main_entity_type, entity_b=item.get('name'), entity_b_type='Attack Pattern' )] attack_indicator = Common.AttackPattern( stix_id=None, value=item.get('name'), mitre_id=item.get('id') ) returned_data.append(CommandResults( readable_output=tableToMarkdown( f"{item.get('name')}", [{ "Description": f"This Attack Pattern was observed after detonation of {main_entity} in ANYRUN" }] ), indicator=attack_indicator, relationships=relationships )) return returned_data
34,508
def _write_core_yaml( training_data_path: Path, output_path: Path, source_path: Path ) -> None: from rasa.core.training.story_reader.yaml_story_reader import KEY_ACTIVE_LOOP reader = MarkdownStoryReader() writer = YAMLStoryWriter() loop = asyncio.get_event_loop() steps = loop.run_until_complete(reader.read_from_file(training_data_path)) if YAMLStoryWriter.stories_contain_loops(steps): print_warning( f"Training data file '{source_path}' contains forms. " f"'form' key will be converted to '{KEY_ACTIVE_LOOP}' key. " f"Please note that in order for these stories to work you still " f"need the 'FormPolicy' to be active. However the 'FormPolicy' is " f"deprecated, please consider switching to the new 'RulePolicy', " f"you can find the documentation here: {DOCS_URL_RULES}." ) writer.dump(output_path, steps) print_success(f"Converted Core file: '{source_path}' >> '{output_path}'.")
def _write_core_yaml( training_data_path: Path, output_path: Path, source_path: Path ) -> None: from rasa.core.training.story_reader.yaml_story_reader import KEY_ACTIVE_LOOP reader = MarkdownStoryReader() writer = YAMLStoryWriter() loop = asyncio.get_event_loop() steps = loop.run_until_complete(reader.read_from_file(training_data_path)) if YAMLStoryWriter.stories_contain_loops(steps): print_warning( f"Training data file '{source_path}' contains forms. " f"Any 'form' events will be converted to '{KEY_ACTIVE_LOOP}' events. " f"Please note that in order for these stories to work you still " f"need the 'FormPolicy' to be active. However the 'FormPolicy' is " f"deprecated, please consider switching to the new 'RulePolicy', " f"you can find the documentation here: {DOCS_URL_RULES}." ) writer.dump(output_path, steps) print_success(f"Converted Core file: '{source_path}' >> '{output_path}'.")
51,414
def makeARGB(data, lut=None, levels=None, scale=None, useRGBA=False): """ Convert an array of values into an ARGB array suitable for building QImages, OpenGL textures, etc. Returns the ARGB array (unsigned byte) and a boolean indicating whether there is alpha channel data. This is a two stage process: 1) Rescale the data based on the values in the *levels* argument (min, max). 2) Determine the final output by passing the rescaled values through a lookup table. Both stages are optional. ============== ================================================================================== **Arguments:** data numpy array of int/float types. If levels List [min, max]; optionally rescale data before converting through the lookup table. The data is rescaled such that min->0 and max->*scale*:: rescaled = (clip(data, min, max) - min) * (*scale* / (max - min)) It is also possible to use a 2D (N,2) array of values for levels. In this case, it is assumed that each pair of min,max values in the levels array should be applied to a different subset of the input data (for example, the input data may already have RGB values and the levels are used to independently scale each channel). The use of this feature requires that levels.shape[0] == data.shape[-1]. scale The maximum value to which data will be rescaled before being passed through the lookup table (or returned if there is no lookup table). By default this will be set to the length of the lookup table, or 255 if no lookup table is provided. lut Optional lookup table (array with dtype=ubyte). Values in data will be converted to color by indexing directly from lut. The output data shape will be input.shape + lut.shape[1:]. Lookup tables can be built using ColorMap or GradientWidget. useRGBA If True, the data is returned in RGBA order (useful for building OpenGL textures). The default is False, which returns in ARGB order for use with QImage (Note that 'ARGB' is a term used by the Qt documentation; the *actual* order is BGRA). ============== ================================================================================== """ profile = debug.Profiler() if data.ndim not in (2, 3): raise TypeError("data must be 2D or 3D") if data.ndim == 3 and data.shape[2] > 4: raise TypeError("data.shape[2] must be <= 4") if lut is not None and not isinstance(lut, np.ndarray): lut = np.array(lut) if levels is None: # automatically decide levels based on data dtype if data.dtype.kind == 'u': levels = np.array([0, 2**(data.itemsize*8)-1]) elif data.dtype.kind == 'i': s = 2**(data.itemsize*8 - 1) levels = np.array([-s, s-1]) elif data.dtype.kind == 'b': levels = np.array([0,1]) else: raise Exception('levels argument is required for float input types') if not isinstance(levels, np.ndarray): levels = np.array(levels) levels = levels.astype(np.float) if levels.ndim == 1: if levels.shape[0] != 2: raise Exception('levels argument must have length 2') elif levels.ndim == 2: if lut is not None and lut.ndim > 1: raise Exception('Cannot make ARGB data when both levels and lut have ndim > 2') if levels.shape != (data.shape[-1], 2): raise Exception('levels must have shape (data.shape[-1], 2)') else: raise Exception("levels argument must be 1D or 2D (got shape=%s)." % repr(levels.shape)) profile() # Decide on maximum scaled value if scale is None: if lut is not None: scale = lut.shape[0] else: scale = 255. # Decide on the dtype we want after scaling if lut is None: dtype = np.ubyte else: dtype = np.min_scalar_type(lut.shape[0]-1) # awkward, but fastest numpy native nan evaluation # nanMask = None if data.ndim == 2 and data.dtype.kind == 'f' and np.isnan(data.min()): nanMask = np.isnan(data) # Apply levels if given if levels is not None: if isinstance(levels, np.ndarray) and levels.ndim == 2: # we are going to rescale each channel independently if levels.shape[0] != data.shape[-1]: raise Exception("When rescaling multi-channel data, there must be the same number of levels as channels (data.shape[-1] == levels.shape[0])") newData = np.empty(data.shape, dtype=int) for i in range(data.shape[-1]): minVal, maxVal = levels[i] if minVal == maxVal: maxVal = np.nextafter(maxVal, 2*maxVal) rng = maxVal-minVal rng = 1 if rng == 0 else rng newData[...,i] = rescaleData(data[...,i], scale / rng, minVal, dtype=dtype) data = newData else: # Apply level scaling unless it would have no effect on the data minVal, maxVal = levels if minVal != 0 or maxVal != scale: if minVal == maxVal: maxVal = np.nextafter(maxVal, 2*maxVal) data = rescaleData(data, scale/(maxVal-minVal), minVal, dtype=dtype) profile() # apply LUT if given if lut is not None: data = applyLookupTable(data, lut) else: if data.dtype is not np.ubyte: data = np.clip(data, 0, 255).astype(np.ubyte) profile() # this will be the final image array imgData = np.empty(data.shape[:2]+(4,), dtype=np.ubyte) profile() # decide channel order if useRGBA: order = [0,1,2,3] # array comes out RGBA else: order = [2,1,0,3] # for some reason, the colors line up as BGR in the final image. # copy data into image array if data.ndim == 2: # This is tempting: # imgData[..., :3] = data[..., np.newaxis] # ..but it turns out this is faster: for i in range(3): imgData[..., i] = data elif data.shape[2] == 1: for i in range(3): imgData[..., i] = data[..., 0] else: for i in range(0, data.shape[2]): imgData[..., i] = data[..., order[i]] profile() # add opaque alpha channel if needed if data.ndim == 2 or data.shape[2] == 3: alpha = False imgData[..., 3] = 255 else: alpha = True # apply nan mask through alpha channel if nanMask is not None: alpha = True imgData[nanMask, 3] = 0 profile() return imgData, alpha
def makeARGB(data, lut=None, levels=None, scale=None, useRGBA=False): """ Convert an array of values into an ARGB array suitable for building QImages, OpenGL textures, etc. Returns the ARGB array (unsigned byte) and a boolean indicating whether there is alpha channel data. This is a two stage process: 1) Rescale the data based on the values in the *levels* argument (min, max). 2) Determine the final output by passing the rescaled values through a lookup table. Both stages are optional. ============== ================================================================================== **Arguments:** data numpy array of int/float types. If levels List [min, max]; optionally rescale data before converting through the lookup table. The data is rescaled such that min->0 and max->*scale*:: rescaled = (clip(data, min, max) - min) * (*scale* / (max - min)) It is also possible to use a 2D (N,2) array of values for levels. In this case, it is assumed that each pair of min,max values in the levels array should be applied to a different subset of the input data (for example, the input data may already have RGB values and the levels are used to independently scale each channel). The use of this feature requires that levels.shape[0] == data.shape[-1]. scale The maximum value to which data will be rescaled before being passed through the lookup table (or returned if there is no lookup table). By default this will be set to the length of the lookup table, or 255 if no lookup table is provided. lut Optional lookup table (array with dtype=ubyte). Values in data will be converted to color by indexing directly from lut. The output data shape will be input.shape + lut.shape[1:]. Lookup tables can be built using ColorMap or GradientWidget. useRGBA If True, the data is returned in RGBA order (useful for building OpenGL textures). The default is False, which returns in ARGB order for use with QImage (Note that 'ARGB' is a term used by the Qt documentation; the *actual* order is BGRA). ============== ================================================================================== """ profile = debug.Profiler() if data.ndim not in (2, 3): raise TypeError("data must be 2D or 3D") if data.ndim == 3 and data.shape[2] > 4: raise TypeError("data.shape[2] must be <= 4") if lut is not None and not isinstance(lut, np.ndarray): lut = np.array(lut) if levels is None: # automatically decide levels based on data dtype if data.dtype.kind == 'u': levels = np.array([0, 2**(data.itemsize*8)-1]) elif data.dtype.kind == 'i': s = 2**(data.itemsize*8 - 1) levels = np.array([-s, s-1]) elif data.dtype.kind == 'b': levels = np.array([0,1]) else: raise Exception('levels argument is required for float input types') if not isinstance(levels, np.ndarray): levels = np.array(levels) levels = levels.astype(np.float) if levels.ndim == 1: if levels.shape[0] != 2: raise Exception('levels argument must have length 2') elif levels.ndim == 2: if lut is not None and lut.ndim > 1: raise Exception('Cannot make ARGB data when both levels and lut have ndim > 2') if levels.shape != (data.shape[-1], 2): raise Exception('levels must have shape (data.shape[-1], 2)') else: raise Exception("levels argument must be 1D or 2D (got shape=%s)." % repr(levels.shape)) profile() # Decide on maximum scaled value if scale is None: if lut is not None: scale = lut.shape[0] else: scale = 255. # Decide on the dtype we want after scaling if lut is None: dtype = np.ubyte else: dtype = np.min_scalar_type(lut.shape[0]-1) # awkward, but fastest numpy native nan evaluation # nanMask = None if data.dtype.kind == 'f' and np.isnan(data.min()): nanMask = np.isnan(data) if data.ndim > 2: nanMask = np.any(nanMask, axis=-1) nanMask = np.isnan(data) # Apply levels if given if levels is not None: if isinstance(levels, np.ndarray) and levels.ndim == 2: # we are going to rescale each channel independently if levels.shape[0] != data.shape[-1]: raise Exception("When rescaling multi-channel data, there must be the same number of levels as channels (data.shape[-1] == levels.shape[0])") newData = np.empty(data.shape, dtype=int) for i in range(data.shape[-1]): minVal, maxVal = levels[i] if minVal == maxVal: maxVal = np.nextafter(maxVal, 2*maxVal) rng = maxVal-minVal rng = 1 if rng == 0 else rng newData[...,i] = rescaleData(data[...,i], scale / rng, minVal, dtype=dtype) data = newData else: # Apply level scaling unless it would have no effect on the data minVal, maxVal = levels if minVal != 0 or maxVal != scale: if minVal == maxVal: maxVal = np.nextafter(maxVal, 2*maxVal) data = rescaleData(data, scale/(maxVal-minVal), minVal, dtype=dtype) profile() # apply LUT if given if lut is not None: data = applyLookupTable(data, lut) else: if data.dtype is not np.ubyte: data = np.clip(data, 0, 255).astype(np.ubyte) profile() # this will be the final image array imgData = np.empty(data.shape[:2]+(4,), dtype=np.ubyte) profile() # decide channel order if useRGBA: order = [0,1,2,3] # array comes out RGBA else: order = [2,1,0,3] # for some reason, the colors line up as BGR in the final image. # copy data into image array if data.ndim == 2: # This is tempting: # imgData[..., :3] = data[..., np.newaxis] # ..but it turns out this is faster: for i in range(3): imgData[..., i] = data elif data.shape[2] == 1: for i in range(3): imgData[..., i] = data[..., 0] else: for i in range(0, data.shape[2]): imgData[..., i] = data[..., order[i]] profile() # add opaque alpha channel if needed if data.ndim == 2 or data.shape[2] == 3: alpha = False imgData[..., 3] = 255 else: alpha = True # apply nan mask through alpha channel if nanMask is not None: alpha = True imgData[nanMask, 3] = 0 profile() return imgData, alpha
12,304
def photon_scattering_amplitude(evolver, c_ops, tlist, indices, psi, psit): """ Compute the scattering amplitude for a system emitting into multiple waveguides. Parameters ---------- evolver : :class:Propagator Propagator c_ops : list list of collapse operators for each waveguide; these are assumed to include spontaneous decay rates, e.g. :math:`\\sigma = \\sqrt \\gamma \\cdot a` tlist : array_like Times at which emissions can happen. indices : list-like List of (list of emission times indices) for each waveguide. psi : Qobj State at the start of the evolution psit : Qobj State at the end of the evolution. """ # Extract the full list of taus taus = [] for i, tau_wg in enumerate(indices): for t_idx in tau_wg: taus.append((tlist[t_idx], i)) taus.sort(key=lambda tup: tup[0]) # sort taus by time tq = tlist[0] # Compute Prod Ueff(tq, tq-1) for tau in taus: tprev = tq tq, q = tau psi = c_ops[q] * evolver(tq, tprev) * psi psi = evolver(tlist[-1], tq) * psi return psit.overlap(psi)
def photon_scattering_amplitude(propagator, c_ops, tlist, indices, psi, psit): """ Compute the scattering amplitude for a system emitting into multiple waveguides. Parameters ---------- evolver : :class:Propagator Propagator c_ops : list list of collapse operators for each waveguide; these are assumed to include spontaneous decay rates, e.g. :math:`\\sigma = \\sqrt \\gamma \\cdot a` tlist : array_like Times at which emissions can happen. indices : list-like List of (list of emission times indices) for each waveguide. psi : Qobj State at the start of the evolution psit : Qobj State at the end of the evolution. """ # Extract the full list of taus taus = [] for i, tau_wg in enumerate(indices): for t_idx in tau_wg: taus.append((tlist[t_idx], i)) taus.sort(key=lambda tup: tup[0]) # sort taus by time tq = tlist[0] # Compute Prod Ueff(tq, tq-1) for tau in taus: tprev = tq tq, q = tau psi = c_ops[q] * evolver(tq, tprev) * psi psi = evolver(tlist[-1], tq) * psi return psit.overlap(psi)
46,960
def check_task(task: str) -> Tuple[Dict, Any]: """ Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and default models if they exist. Args: task (:obj:`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - :obj:`"feature-extraction"` - :obj:`"sentiment-analysis"` - :obj:`"ner"` - :obj:`"question-answering"` - :obj:`"fill-mask"` - :obj:`"summarization"` - :obj:`"translation_xx_to_yy"` - :obj:`"translation"` - :obj:`"text-generation"` - :obj:`"conversation"` Returns: (task_defaults:obj:`dict`, task_options: (:obj:`tuple`, None)) The actual dictionnary required to initialize the pipeline and some extra task options for parametrized tasks like "translation_XX_to_YY" """ if task in SUPPORTED_TASKS: targeted_task = SUPPORTED_TASKS[task] return targeted_task, None if task.startswith("translation"): tokens = task.split("_") if len(tokens) == 4 and tokens[0] == "translation" and tokens[2] == "to": targeted_task = SUPPORTED_TASKS["translation"] return targeted_task, (tokens[1], tokens[3]) raise KeyError("Invalid translation task {}, use 'translation_XX_to_YY' format".format(task)) raise KeyError( "Unknown task {}, available tasks are {}".format(task, list(SUPPORTED_TASKS.keys()) + ["translation_XX_to_YY"]) )
def check_task(task: str) -> Tuple[Dict, Any]: """ Checks an incoming task string, to validate it's correct and return the default Pipeline and Model classes, and default models if they exist. Args: task (:obj:`str`): The task defining which pipeline will be returned. Currently accepted tasks are: - :obj:`"feature-extraction"` - :obj:`"sentiment-analysis"` - :obj:`"ner"` - :obj:`"question-answering"` - :obj:`"fill-mask"` - :obj:`"summarization"` - :obj:`"translation_xx_to_yy"` - :obj:`"translation"` - :obj:`"text-generation"` - :obj:`"conversational"` Returns: (task_defaults:obj:`dict`, task_options: (:obj:`tuple`, None)) The actual dictionnary required to initialize the pipeline and some extra task options for parametrized tasks like "translation_XX_to_YY" """ if task in SUPPORTED_TASKS: targeted_task = SUPPORTED_TASKS[task] return targeted_task, None if task.startswith("translation"): tokens = task.split("_") if len(tokens) == 4 and tokens[0] == "translation" and tokens[2] == "to": targeted_task = SUPPORTED_TASKS["translation"] return targeted_task, (tokens[1], tokens[3]) raise KeyError("Invalid translation task {}, use 'translation_XX_to_YY' format".format(task)) raise KeyError( "Unknown task {}, available tasks are {}".format(task, list(SUPPORTED_TASKS.keys()) + ["translation_XX_to_YY"]) )
508
def ucr_has_field(ucr: ReportConfiguration, field): for column in ucr.report_columns: if column.column_id == field: return True return False
def ucr_has_field(ucr: ReportConfiguration, field): return any(c.column_id == field for c in ucr.report_columns)
30,096
def test_save_signatures_to_location_1_stdout(): # save to sigfile sig2 = utils.get_test_data('2.fa.sig') ss2 = sourmash.load_one_signature(sig2, ksize=31) sig47 = utils.get_test_data('47.fa.sig') ss47 = sourmash.load_one_signature(sig47, ksize=31) output_capture = io.StringIO() with contextlib.redirect_stdout(output_capture): with sourmash_args.SaveSignaturesToLocation("-") as save_sig: save_sig.add(ss2) save_sig.add(ss47) output = output_capture.getvalue() saved = list(sourmash.signature.load_signatures(output)) assert ss2 in saved assert ss47 in saved assert len(saved) == 2
def test_save_signatures_to_location_1_stdout(): # save to stdout sig2 = utils.get_test_data('2.fa.sig') ss2 = sourmash.load_one_signature(sig2, ksize=31) sig47 = utils.get_test_data('47.fa.sig') ss47 = sourmash.load_one_signature(sig47, ksize=31) output_capture = io.StringIO() with contextlib.redirect_stdout(output_capture): with sourmash_args.SaveSignaturesToLocation("-") as save_sig: save_sig.add(ss2) save_sig.add(ss47) output = output_capture.getvalue() saved = list(sourmash.signature.load_signatures(output)) assert ss2 in saved assert ss47 in saved assert len(saved) == 2
51,073
def _setup_entities(hass: HomeAssistant, entry: ConfigEntry, device_ids: list): """Set up Tuya Fan.""" device_manager = hass.data[DOMAIN][entry.entry_id][TUYA_DEVICE_MANAGER] entities = [] for device_id in device_ids: device = device_manager.device_map[device_id] if device is None: continue entities.append(TuyaHaFan(device, device_manager)) hass.data[DOMAIN][entry.entry_id][TUYA_HA_DEVICES].add(device_id) return entities
def _setup_entities( hass: HomeAssistant, entry: ConfigEntry, device_ids: list[str] ) -> list[Entity]: """Set up Tuya Fan.""" device_manager = hass.data[DOMAIN][entry.entry_id][TUYA_DEVICE_MANAGER] entities = [] for device_id in device_ids: device = device_manager.device_map[device_id] if device is None: continue entities.append(TuyaHaFan(device, device_manager)) hass.data[DOMAIN][entry.entry_id][TUYA_HA_DEVICES].add(device_id) return entities
57,490
def test_get_caller_module_name_error(): with mock.patch('inspect.getmodule', return_value=None): with pytest.raises(LookupError, match='Could not find caller module'): get_caller_module_name()
def test_get_caller_module_name_error(mocker): mocker.patch('inspect.getmodule', return_value=None) with pytest.raises(LookupError, match='Could not find caller module'): get_caller_module_name()
27,738
def determine_setup( inifile: Optional[str], args: Sequence[str], rootdir_cmd_arg: Optional[str] = None, config: Optional["Config"] = None, ) -> Tuple[Path, Optional[Path], Dict[str, Union[str, List[str]]]]: rootdir = None dirs = get_dirs_from_args(args) if inifile: inipath_ = Path(inifile).resolve() inipath = inipath_ # type: Optional[Path] inicfg = load_config_dict_from_file(inipath_) or {} if rootdir_cmd_arg is None: rootdir = get_common_ancestor(dirs) else: ancestor = get_common_ancestor(dirs) rootdir, inipath, inicfg = locate_config([ancestor]) if rootdir is None and rootdir_cmd_arg is None: for possible_rootdir in itertools.chain( (ancestor,), reversed(ancestor.parents) ): if (possible_rootdir / "setup.py").exists(): rootdir = possible_rootdir break else: if dirs != [ancestor]: rootdir, inipath, inicfg = locate_config(dirs) if rootdir is None: if config is not None: cwd = config.invocation_params.dir else: cwd = Path.cwd() rootdir = get_common_ancestor([cwd, ancestor]) is_fs_root = os.path.splitdrive(str(rootdir))[1] == "/" if is_fs_root: rootdir = ancestor if rootdir_cmd_arg: rootdir = Path(os.path.expandvars(rootdir_cmd_arg)).resolve() if not rootdir.is_dir(): raise UsageError( "Directory '{}' not found. Check your '--rootdir' option.".format( rootdir ) ) assert rootdir is not None return rootdir, inipath, inicfg or {}
def determine_setup( inifile: Optional[str], args: Sequence[str], rootdir_cmd_arg: Optional[str] = None, config: Optional["Config"] = None, ) -> Tuple[Path, Optional[Path], Dict[str, Union[str, List[str]]]]: rootdir = None dirs = get_dirs_from_args(args) if inifile: inipath_ = Path(inifile).absolute() inipath = inipath_ # type: Optional[Path] inicfg = load_config_dict_from_file(inipath_) or {} if rootdir_cmd_arg is None: rootdir = get_common_ancestor(dirs) else: ancestor = get_common_ancestor(dirs) rootdir, inipath, inicfg = locate_config([ancestor]) if rootdir is None and rootdir_cmd_arg is None: for possible_rootdir in itertools.chain( (ancestor,), reversed(ancestor.parents) ): if (possible_rootdir / "setup.py").exists(): rootdir = possible_rootdir break else: if dirs != [ancestor]: rootdir, inipath, inicfg = locate_config(dirs) if rootdir is None: if config is not None: cwd = config.invocation_params.dir else: cwd = Path.cwd() rootdir = get_common_ancestor([cwd, ancestor]) is_fs_root = os.path.splitdrive(str(rootdir))[1] == "/" if is_fs_root: rootdir = ancestor if rootdir_cmd_arg: rootdir = Path(os.path.expandvars(rootdir_cmd_arg)).resolve() if not rootdir.is_dir(): raise UsageError( "Directory '{}' not found. Check your '--rootdir' option.".format( rootdir ) ) assert rootdir is not None return rootdir, inipath, inicfg or {}
749
def get_data_independent_estimation_quantities(design_matrix, regularization_matrix=None): Q = compute_unscaled_posterior_precision(design_matrix, regularization_matrix) unscaled_posterior_covariance = covariance_from_precision(Q) # TODO: evaluate whether using the explicit inverse leads to numerical instability pseudoInv = np.einsum('...ij, ...kj->...ik', unscaled_posterior_covariance, design_matrix) # pseudoInv = np.linalg.solve(S, np.swapaxes(design_matrix, -1, -2)) degrees_of_freedom = compute_degrees_of_freedom(design_matrix, pseudoInv) return unscaled_posterior_covariance, pseudoInv, degrees_of_freedom
def get_data_independent_estimation_quantities(design_matrix, regularization_matrix=None): Q = compute_unscaled_posterior_precision(design_matrix, regularization_matrix) unscaled_posterior_covariance = covariance_from_precision(Q) # TODO: evaluate whether using the explicit inverse leads to numerical instability pseudo_inv = np.einsum('...ij, ...kj->...ik', unscaled_posterior_covariance, design_matrix) # pseudoInv = np.linalg.solve(S, np.swapaxes(design_matrix, -1, -2)) degrees_of_freedom = compute_degrees_of_freedom(design_matrix, pseudoInv) return unscaled_posterior_covariance, pseudoInv, degrees_of_freedom
30,053
def validate_transaction_params( transaction: TxParams, latest_block: BlockData, generated_gas_price: Wei ) -> TxParams: # gas price strategy explicitly set: if ( generated_gas_price is not None and 'gasPrice' not in transaction and 'maxPriorityFeePerGas' not in transaction ): transaction = assoc(transaction, 'gasPrice', hex(generated_gas_price)) # legacy and 1559 tx variables used: if "gasPrice" in transaction and ( "maxFeePerGas" in transaction or "maxPriorityFeePerGas" in transaction ): raise TransactionTypeMismatch() # 1559 - canonical tx: elif 'maxFeePerGas' in transaction and 'maxPriorityFeePerGas' in transaction: if int(str(transaction["maxFeePerGas"]), 16) < int( str(transaction["maxPriorityFeePerGas"]), 16 ): raise InvalidTransaction("maxFeePerGas must be >= maxPriorityFeePerGas") # 1559 - no max fee: elif 'maxFeePerGas' not in transaction and 'maxPriorityFeePerGas' in transaction: base_fee = latest_block['baseFeePerGas'] priority_fee = int(str(transaction['maxPriorityFeePerGas']), 16) max_fee_per_gas = priority_fee + 2 * base_fee transaction = assoc(transaction, 'maxFeePerGas', hex(max_fee_per_gas)) # 1559 - no priority fee: elif 'maxFeePerGas' in transaction and 'maxPriorityFeePerGas' not in transaction: raise InvalidTransaction( "maxPriorityFeePerGas must be defined in a 1559 transaction." ) # should be a fully formed (legacy or 1559) tx or no fee values were specified return transaction
def validate_transaction_params( transaction: TxParams, latest_block: BlockData, generated_gas_price: Wei ) -> TxParams: # gas price strategy explicitly set: if ( generated_gas_price is not None and 'gasPrice' not in transaction and all(_ not in transaction for _ in ('maxFeePerGas', 'maxPriorityFeePerGas')) ): transaction = assoc(transaction, 'gasPrice', hex(generated_gas_price)) # legacy and 1559 tx variables used: if "gasPrice" in transaction and ( "maxFeePerGas" in transaction or "maxPriorityFeePerGas" in transaction ): raise TransactionTypeMismatch() # 1559 - canonical tx: elif 'maxFeePerGas' in transaction and 'maxPriorityFeePerGas' in transaction: if int(str(transaction["maxFeePerGas"]), 16) < int( str(transaction["maxPriorityFeePerGas"]), 16 ): raise InvalidTransaction("maxFeePerGas must be >= maxPriorityFeePerGas") # 1559 - no max fee: elif 'maxFeePerGas' not in transaction and 'maxPriorityFeePerGas' in transaction: base_fee = latest_block['baseFeePerGas'] priority_fee = int(str(transaction['maxPriorityFeePerGas']), 16) max_fee_per_gas = priority_fee + 2 * base_fee transaction = assoc(transaction, 'maxFeePerGas', hex(max_fee_per_gas)) # 1559 - no priority fee: elif 'maxFeePerGas' in transaction and 'maxPriorityFeePerGas' not in transaction: raise InvalidTransaction( "maxPriorityFeePerGas must be defined in a 1559 transaction." ) # should be a fully formed (legacy or 1559) tx or no fee values were specified return transaction
31,318
def get_domain_details(client: Client, **args) -> CommandResults: domain = args.get("domain") uri = f"/domain/{domain}" response = client._http_request("GET", uri) md = "" current_dns = response["current_dns"] del response["current_dns"] md = tableToMarkdown(f"Details for {domain}", response) for record_type, record_values in current_dns.items(): # If a record type has multiple values, this will output the last item in MD temp_values = {} for x in record_values["values"]: temp_values.update(**x) record_values.update(temp_values) del record_values["values"] md += tableToMarkdown(f"DNS {record_type} Records for {domain}", record_values) results = CommandResults( outputs_prefix="SecurityTrails", outputs_key_field=f"SecurityTrails.domain_details.{domain}", outputs={domain: {"domain_details": response}}, readable_output=md, ) return results
def get_domain_details(client: Client, **args) -> CommandResults: domain = args.get("domain") uri = f"/domain/{domain}" response = client._http_request("GET", uri) md = "" current_dns = response["current_dns"] del response["current_dns"] md = tableToMarkdown(f"Details for {domain}", response) for record_type, record_values in current_dns.items(): # If a record type has multiple values, this will output the last item in MD temp_values = {} for x in record_values["values"]: temp_values.update(**x) record_values.update(temp_values) del record_values["values"] md += tableToMarkdown(f"/n DNS {record_type} Records for {domain}", record_values) results = CommandResults( outputs_prefix="SecurityTrails", outputs_key_field=f"SecurityTrails.domain_details.{domain}", outputs={domain: {"domain_details": response}}, readable_output=md, ) return results
42,622
def get_airdrop_data(name: str, data_dir: Path) -> Tuple[Iterator, TextIO]: airdrops_dir = data_dir / 'airdrops' airdrops_dir.mkdir(parents=True, exist_ok=True) filename = airdrops_dir / f'{name}.csv' if not filename.is_file(): # if not cached, get it from the gist try: request = requests.get(url=AIRDROPS[name][0], timeout=DEFAULT_TIMEOUT_TUPLE) except requests.exceptions.RequestException as e: raise RemoteError(f'Airdrops Gist request failed due to {str(e)}') from e try: content = request.content.decode('utf-8') # Here 20900 is the size of the smallest CSV file we track if not csv.Sniffer().has_header(content) or len(request.content) < 20900: raise csv.Error with open(filename, 'w') as f: f.write(content) except OSError as e: raise WriteError(f'Failed to save {filename} to disk') from e except csv.Error as e: log.debug(f'airdrop file {filename} contains invalid data {content}') raise InvalidData(f'File {filename} contains invalid information. Check logs.') from e # Verify the CSV file csvfile = open(filename, 'r') iterator = csv.reader(csvfile) next(iterator) # skip header return iterator, csvfile
def get_airdrop_data(name: str, data_dir: Path) -> Tuple[Iterator, TextIO]: airdrops_dir = data_dir / 'airdrops' airdrops_dir.mkdir(parents=True, exist_ok=True) filename = airdrops_dir / f'{name}.csv' if not filename.is_file(): # if not cached, get it from the gist try: request = requests.get(url=AIRDROPS[name][0], timeout=DEFAULT_TIMEOUT_TUPLE) except requests.exceptions.RequestException as e: raise RemoteError(f'Airdrops Gist request failed due to {str(e)}') from e try: content = request.content.decode('utf-8') # Here 20900 is the size of the smallest CSV file we track if not csv.Sniffer().has_header(content) or len(request.content) < 20900: raise csv.Error with open(filename, 'w') as f: f.write(content) except OSError as e: raise WriteError(f'Failed to write {filename} to disk due to {str(e)}') from e except csv.Error as e: log.debug(f'airdrop file {filename} contains invalid data {content}') raise InvalidData(f'File {filename} contains invalid information. Check logs.') from e # Verify the CSV file csvfile = open(filename, 'r') iterator = csv.reader(csvfile) next(iterator) # skip header return iterator, csvfile
35,971
def delete_nodes( pks, verbosity=0, dry_run=False, force=False, create_forward=True, call_calc_forward=False, call_work_forward=False ): """ Delete nodes by a list of pks. This command will delete not only the specified nodes, but also the ones that are linked to these and should be also deleted in order to keep a consistent provenance according to the rules explained in the concepts section of the documentation. In summary: 1. If a DATA node is deleted, any process nodes linked to it will also be deleted. 2. If a CALC node is deleted, any incoming WORK node (callers) will be deleted as well whereas any incoming DATA node (inputs) will be kept. Outgoing DATA nodes (outputs) will be deleted by default but this can be disabled. 3. If a WORK node is deleted, any incoming WORK node (callers) will be deleted as well, but all DATA nodes will be kept. Outgoing WORK or CALC nodes will be kept by default, but deletion of either of both kind of connected nodes can be enabled. These rules are 'recursive', so if a CALC node is deleted, then its output DATA nodes will be deleted as well, and then any CALC node that may have those as inputs, and so on. :param pks: a list of the PKs of the nodes to delete :param bool force: do not ask for confirmation to delete nodes. :param int verbosity: 0 prints nothing, 1 prints just sums and total, 2 prints individual nodes. :param bool create_forward: This will delete all output data created by any deleted calculation. :param bool call_calc_forward: This will also delete all calculations called by any workflow that is going to be deleted. Note that when you delete a workflow, also all parent workflows are deleted (recursively). Therefore, setting this flag to True may delete calculations that are 'unrelated' to what has been chosen to be deleted, just because they are connected at some point in the upwards provenance. Use with care, and it is advisable to never combine it with force. :param bool call_work_forward: This will also delete all calculations called by any workflow that is going to be deleted. The same disclaimer as forward_calcs applies here as well. :param bool dry_run: Do not delete, a dry run, with statistics printed according to verbosity levels. :param bool force: Do not ask for confirmation to delete nodes. """ # pylint: disable=too-many-arguments,too-many-branches,too-many-locals,too-many-statements from aiida.backends.utils import delete_nodes_and_connections from aiida.common import exceptions from aiida.common.links import LinkType from aiida.orm import Node, QueryBuilder, load_node starting_pks = [] for pk in pks: try: load_node(pk) except exceptions.NotExistent: echo.echo_warning('warning: node with pk<{}> does not exist, skipping'.format(pk)) else: starting_pks.append(pk) # An empty set might be problematic for the queries done below. if not starting_pks: if verbosity: echo.echo('Nothing to delete') return follow_upwards = [] follow_upwards.append(LinkType.CREATE.value) follow_upwards.append(LinkType.RETURN.value) follow_upwards.append(LinkType.CALL_CALC.value) follow_upwards.append(LinkType.CALL_WORK.value) follow_downwards = [] follow_downwards.append(LinkType.INPUT_CALC.value) follow_downwards.append(LinkType.INPUT_WORK.value) if create_forward: follow_downwards.append(LinkType.CREATE.value) if call_calc_forward: follow_downwards.append(LinkType.CALL_CALC.value) if call_work_forward: follow_downwards.append(LinkType.CALL_WORK.value) links_upwards = {'type': {'in': follow_upwards}} links_downwards = {'type': {'in': follow_downwards}} operational_set = set().union(set(starting_pks)) accumulator_set = set().union(set(starting_pks)) while operational_set: new_pks_set = set() query_nodes = QueryBuilder() query_nodes.append(Node, filters={'id': {'in': operational_set}}, tag='sources') query_nodes.append( Node, filters={'id': { '!in': accumulator_set }}, edge_filters=links_downwards, with_incoming='sources', project='id' ) new_pks_set = new_pks_set.union(set(i for i, in query_nodes.iterall())) query_nodes = QueryBuilder() query_nodes.append(Node, filters={'id': {'in': operational_set}}, tag='sources') query_nodes.append( Node, filters={'id': { '!in': accumulator_set }}, edge_filters=links_upwards, with_outgoing='sources', project='id' ) new_pks_set = new_pks_set.union(set(i for i, in query_nodes.iterall())) operational_set = new_pks_set.difference(accumulator_set) accumulator_set = new_pks_set.union(accumulator_set) pks_set_to_delete = accumulator_set if verbosity > 0: echo.echo( 'I {} delete {} node{}'.format( 'would' if dry_run else 'will', len(pks_set_to_delete), 's' if len(pks_set_to_delete) > 1 else '' ) ) if verbosity > 1: builder = QueryBuilder().append( Node, filters={'id': { 'in': pks_set_to_delete }}, project=('uuid', 'id', 'node_type', 'label') ) echo.echo('The nodes I {} delete:'.format('would' if dry_run else 'will')) for uuid, pk, type_string, label in builder.iterall(): try: short_type_string = type_string.split('.')[-2] except IndexError: short_type_string = type_string echo.echo(' {} {} {} {}'.format(uuid, pk, short_type_string, label)) if dry_run: if verbosity > 0: echo.echo('\nThis was a dry run, exiting without deleting anything') return # Asking for user confirmation here if force: pass else: echo.echo_warning('YOU ARE ABOUT TO DELETE {} NODES! THIS CANNOT BE UNDONE!'.format(len(pks_set_to_delete))) if not click.confirm('Shall I continue?'): echo.echo('Exiting without deleting') return # Recover the list of folders to delete before actually deleting the nodes. I will delete the folders only later, # so that if there is a problem during the deletion of the nodes in the DB, I don't delete the folders repositories = [load_node(pk)._repository for pk in pks_set_to_delete] # pylint: disable=protected-access if verbosity > 0: echo.echo('I am starting node deletion.') delete_nodes_and_connections(pks_set_to_delete) if verbosity > 0: echo.echo('I have finished node deletion and I am starting folder deletion.') # If we are here, we managed to delete the entries from the DB. # I can now delete the folders for repository in repositories: repository.erase(force=True) if verbosity > 0: echo.echo('I have finished folder deletion. Deletion completed.')
def delete_nodes( pks, verbosity=0, dry_run=False, force=False, create_forward=True, call_calc_forward=False, call_work_forward=False ): """ Delete nodes by a list of pks. This command will delete not only the specified nodes, but also the ones that are linked to these and should be also deleted in order to keep a consistent provenance according to the rules explained in the concepts section of the documentation. In summary: 1. If a DATA node is deleted, any process nodes linked to it will also be deleted. 2. If a CALC node is deleted, any incoming WORK node (callers) will be deleted as well whereas any incoming DATA node (inputs) will be kept. Outgoing DATA nodes (outputs) will be deleted by default but this can be disabled. 3. If a WORK node is deleted, any incoming WORK node (callers) will be deleted as well, but all DATA nodes will be kept. Outgoing WORK or CALC nodes will be kept by default, but deletion of either of both kind of connected nodes can be enabled. These rules are 'recursive', so if a CALC node is deleted, then its output DATA nodes will be deleted as well, and then any CALC node that may have those as inputs, and so on. :param pks: a list of the PKs of the nodes to delete :param bool force: do not ask for confirmation to delete nodes. :param int verbosity: 0 prints nothing, 1 prints just sums and total, 2 prints individual nodes. :param bool create_forward: This will delete all output data created by any deleted calculation. :param bool call_calc_forward: This will also delete all calculations called by any workflow that is going to be deleted. Note that when you delete a workflow, also all parent workflows are deleted (recursively). Therefore, setting this flag to True may delete calculations that are 'unrelated' to what has been chosen to be deleted, just because they are connected at some point in the upwards provenance. Use with care, and it is advisable to never combine it with force. :param bool call_work_forward: This will also delete all calculations called by any workflow that is going to be deleted. The same disclaimer as forward_calcs applies here as well. :param bool dry_run: Do not delete, a dry run, with statistics printed according to verbosity levels. :param bool force: Do not ask for confirmation to delete nodes. """ # pylint: disable=too-many-arguments,too-many-branches,too-many-locals,too-many-statements from aiida.backends.utils import delete_nodes_and_connections from aiida.common import exceptions from aiida.common.links import LinkType from aiida.orm import Node, QueryBuilder, load_node starting_pks = [] for pk in pks: try: load_node(pk) except exceptions.NotExistent: echo.echo_warning('warning: node with pk<{}> does not exist, skipping'.format(pk)) else: starting_pks.append(pk) # An empty set might be problematic for the queries done below. if not starting_pks: if verbosity: echo.echo('Nothing to delete') return follow_upwards = [] follow_upwards.append(LinkType.CREATE.value) follow_upwards.append(LinkType.RETURN.value) follow_upwards.append(LinkType.CALL_CALC.value) follow_upwards.append(LinkType.CALL_WORK.value) follow_downwards = [] follow_downwards.append(LinkType.INPUT_CALC.value) follow_downwards.append(LinkType.INPUT_WORK.value) if create_forward: follow_downwards.append(LinkType.CREATE.value) if call_calc_forward: follow_downwards.append(LinkType.CALL_CALC.value) if call_work_forward: follow_downwards.append(LinkType.CALL_WORK.value) links_upwards = {'type': {'in': follow_upwards}} links_downwards = {'type': {'in': follow_downwards}} operational_set = set().union(set(starting_pks)) accumulator_set = set().union(set(starting_pks)) while operational_set: new_pks_set = set() query_nodes = QueryBuilder() query_nodes.append(Node, filters={'id': {'in': operational_set}}, tag='sources') query_nodes.append( Node, filters={'id': { '!in': accumulator_set }}, edge_filters=links_downwards, with_incoming='sources', project='id' ) new_pks_set = new_pks_set.union(set(i for i, in query_nodes.iterall())) query_nodes = QueryBuilder() query_nodes.append(Node, filters={'id': {'in': operational_set}}, tag='sources') query_nodes.append( Node, filters={'id': { '!in': accumulator_set }}, edge_filters=links_upwards, with_outgoing='sources', project='id' ) new_pks_set = new_pks_set.union(set(i for i, in query_nodes.iterall())) operational_set = new_pks_set.difference(accumulator_set) accumulator_set = new_pks_set.union(accumulator_set) pks_set_to_delete = accumulator_set if verbosity > 0: echo.echo( 'I {} delete {} node{}'.format( 'would' if dry_run else 'will', len(pks_set_to_delete), 's' if len(pks_set_to_delete) > 1 else '' ) ) if verbosity > 1: builder = QueryBuilder().append( Node, filters={'id': { 'in': pks_set_to_delete }}, project=('uuid', 'id', 'node_type', 'label') ) echo.echo('The nodes I {} delete:'.format('would' if dry_run else 'will')) for uuid, pk, type_string, label in builder.iterall(): try: short_type_string = type_string.split('.')[-2] except IndexError: short_type_string = type_string echo.echo(' {} {} {} {}'.format(uuid, pk, short_type_string, label)) if dry_run: if verbosity > 0: echo.echo('\nThis was a dry run, exiting without deleting anything') return # Asking for user confirmation here if force: pass else: echo.echo_warning('YOU ARE ABOUT TO DELETE {} NODES! THIS CANNOT BE UNDONE!'.format(len(pks_set_to_delete))) if not click.confirm('Shall I continue?'): echo.echo('Exiting without deleting') return # Recover the list of folders to delete before actually deleting the nodes. I will delete the folders only later, # so that if there is a problem during the deletion of the nodes in the DB, I don't delete the folders repositories = [load_node(pk)._repository for pk in pks_set_to_delete] # pylint: disable=protected-access if verbosity > 0: echo.echo('I am starting node deletion.') delete_nodes_and_connections(pks_set_to_delete) if verbosity > 0: echo.echo('I have finished node deletion and I am starting folder deletion.') # If we are here, we managed to delete the entries from the DB. # I can now delete the folders for repository in repositories: repository.erase(force=True) if verbosity > 0: echo.echo('Deletion completed.')
58,935
def juggle_file(fn, dbc=None, layout=None): env = os.environ.copy() env["BASEDIR"] = BASEDIR if dbc: env["DBC_NAME"] = dbc pj = os.getenv("PLOTJUGGLER_PATH", "plotjuggler") if layout is not None: subprocess.call(f'{pj} --plugin_folders {os.path.join(juggle_dir, "bin")} -d {fn} -l {layout}', shell=True, env=env, cwd=juggle_dir) else: subprocess.call(f'{pj} --plugin_folders {os.path.join(juggle_dir, "bin")} -d {fn}', shell=True, env=env, cwd=juggle_dir)
def juggle_file(fn, dbc=None, layout=None): env = os.environ.copy() env["BASEDIR"] = BASEDIR if dbc: env["DBC_NAME"] = dbc pj = os.getenv("PLOTJUGGLER_PATH", "plotjuggler") extra_args = "" if layout is not None: extra_args += f'-l {layout}' subprocess.call(f'{pj} --plugin_folders {os.path.join(juggle_dir, "bin")} -d {fn} {extra_args}', shell=True, env=env, cwd=juggle_dir)
57,392
def get_dependency_tree(step_inputs: List[CWLObjectType]) -> Dict[str, List[str]]: """Get the dependency tree in the form of adjacency list.""" adjacency = {} # adjacency list of the dependency tree for step_input in step_inputs: vertex_in = get_step_id(step_input["source"]) vertex_out = get_step_id(step_input["id"]) if vertex_in not in adjacency: adjacency[vertex_in] = [vertex_out] elif vertex_out not in adjacency[vertex_in]: adjacency[vertex_in].append(vertex_out) if vertex_out not in adjacency: adjacency[vertex_out] = [] return adjacency
def get_dependency_tree(step_inputs: List[CWLObjectType]) -> Dict[str, List[str]]: """Get the dependency tree in the form of adjacency list.""" adjacency = {} # adjacency list of the dependency tree for step_input in step_inputs: vertex_in = get_step_id(cast(str, step_input["source"])) vertex_out = get_step_id(cast(str, step_input["id"])) if vertex_in not in adjacency: adjacency[vertex_in] = [vertex_out] elif vertex_out not in adjacency[vertex_in]: adjacency[vertex_in].append(vertex_out) if vertex_out not in adjacency: adjacency[vertex_out] = [] return adjacency
789
def test_near_roi(): streamlines = [np.array([[0., 0., 0.9], [1.9, 0., 0.], [3, 2., 2.]]), np.array([[0.1, 0., 0], [0, 1., 1.], [0, 2., 2.]]), np.array([[2, 2, 2], [3, 3, 3]])] mask = np.zeros((4, 4, 4), dtype=bool) mask[0, 0, 0] = True mask[1, 0, 0] = True npt.assert_array_equal(near_roi(streamlines, np.eye(4), mask, tol=1), np.array([True, True, False])) npt.assert_array_equal(near_roi(streamlines, np.eye(4), mask), np.array([False, True, False])) # test for handling of various forms of null streamlines # including a streamline from previous test because near_roi / tol # can't handle completely empty streamline collections streamlinesNULL = [np.array([[0., 0., 0.9], [1.9, 0., 0.], [3, 2., 2.]]), np.array([[], [], []]).T, np.array([]), []] npt.assert_array_equal(near_roi(streamlinesNULL, np.eye(4), mask, tol=1), np.array([True, False, False, False])) npt.assert_array_equal(near_roi(streamlinesNULL, np.eye(4), mask), np.array([False, False, False, False])) # If there is an affine, we need to use it: affine = np.eye(4) affine[:, 3] = [-1, 100, -20, 1] # Transform the streamlines: x_streamlines = [sl + affine[:3, 3] for sl in streamlines[-3:]] npt.assert_array_equal(near_roi(x_streamlines, affine, mask, tol=1), np.array([True, True, False])) npt.assert_array_equal(near_roi(x_streamlines, affine, mask, tol=None), np.array([False, True, False])) # Test for use of the 'all' mode: npt.assert_array_equal(near_roi(x_streamlines, affine, mask, tol=None, mode='all'), np.array([False, False, False])) mask[0, 1, 1] = True mask[0, 2, 2] = True # Test for use of the 'all' mode, also testing that setting the tolerance # to a very small number gets overridden: with warnings.catch_warnings(): warnings.simplefilter("ignore") npt.assert_array_equal(near_roi(x_streamlines, affine, mask, tol=0.1, mode='all'), np.array([False, True, False])) mask[2, 2, 2] = True mask[3, 3, 3] = True npt.assert_array_equal(near_roi(x_streamlines, affine, mask, tol=None, mode='all'), np.array([False, True, True])) # Test for use of endpoints as selection criteria: mask = np.zeros((4, 4, 4), dtype=bool) mask[0, 1, 1] = True mask[3, 2, 2] = True npt.assert_array_equal(near_roi(streamlines, np.eye(4), mask, tol=0.87, mode="either_end"), np.array([True, False, False])) npt.assert_array_equal(near_roi(streamlines, np.eye(4), mask, tol=0.87, mode="both_end"), np.array([False, False, False])) mask[0, 0, 0] = True mask[0, 2, 2] = True npt.assert_array_equal(near_roi(streamlines, np.eye(4), mask, mode="both_end"), np.array([False, True, False])) # Test with a generator input: def generate_sl(streamlines): for sl in streamlines: yield sl npt.assert_array_equal(near_roi(generate_sl(streamlines), np.eye(4), mask, mode="both_end"), np.array([False, True, False]))
def test_near_roi(): streamlines = [np.array([[0., 0., 0.9], [1.9, 0., 0.], [3, 2., 2.]]), np.array([[0.1, 0., 0], [0, 1., 1.], [0, 2., 2.]]), np.array([[2, 2, 2], [3, 3, 3]])] mask = np.zeros((4, 4, 4), dtype=bool) mask[0, 0, 0] = True mask[1, 0, 0] = True npt.assert_array_equal(near_roi(streamlines, np.eye(4), mask, tol=1), np.array([True, True, False])) npt.assert_array_equal(near_roi(streamlines, np.eye(4), mask), np.array([False, True, False])) # test for handling of various forms of null streamlines # including a streamline from previous test because near_roi / tol # can't handle completely empty streamline collections streamlines_null = [np.array([[0., 0., 0.9], [1.9, 0., 0.], [3, 2., 2.]]), np.array([[], [], []]).T, np.array([]), []] npt.assert_array_equal(near_roi(streamlinesNULL, np.eye(4), mask, tol=1), np.array([True, False, False, False])) npt.assert_array_equal(near_roi(streamlinesNULL, np.eye(4), mask), np.array([False, False, False, False])) # If there is an affine, we need to use it: affine = np.eye(4) affine[:, 3] = [-1, 100, -20, 1] # Transform the streamlines: x_streamlines = [sl + affine[:3, 3] for sl in streamlines[-3:]] npt.assert_array_equal(near_roi(x_streamlines, affine, mask, tol=1), np.array([True, True, False])) npt.assert_array_equal(near_roi(x_streamlines, affine, mask, tol=None), np.array([False, True, False])) # Test for use of the 'all' mode: npt.assert_array_equal(near_roi(x_streamlines, affine, mask, tol=None, mode='all'), np.array([False, False, False])) mask[0, 1, 1] = True mask[0, 2, 2] = True # Test for use of the 'all' mode, also testing that setting the tolerance # to a very small number gets overridden: with warnings.catch_warnings(): warnings.simplefilter("ignore") npt.assert_array_equal(near_roi(x_streamlines, affine, mask, tol=0.1, mode='all'), np.array([False, True, False])) mask[2, 2, 2] = True mask[3, 3, 3] = True npt.assert_array_equal(near_roi(x_streamlines, affine, mask, tol=None, mode='all'), np.array([False, True, True])) # Test for use of endpoints as selection criteria: mask = np.zeros((4, 4, 4), dtype=bool) mask[0, 1, 1] = True mask[3, 2, 2] = True npt.assert_array_equal(near_roi(streamlines, np.eye(4), mask, tol=0.87, mode="either_end"), np.array([True, False, False])) npt.assert_array_equal(near_roi(streamlines, np.eye(4), mask, tol=0.87, mode="both_end"), np.array([False, False, False])) mask[0, 0, 0] = True mask[0, 2, 2] = True npt.assert_array_equal(near_roi(streamlines, np.eye(4), mask, mode="both_end"), np.array([False, True, False])) # Test with a generator input: def generate_sl(streamlines): for sl in streamlines: yield sl npt.assert_array_equal(near_roi(generate_sl(streamlines), np.eye(4), mask, mode="both_end"), np.array([False, True, False]))
31,353
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ ''' EXECUTION ''' #LOG('command is %s' % (demisto.command(), )) demisto.debug(f'Command being called is {demisto.command()}') try: LOG('Command being called is {command}'.format(command=demisto.command())) if demisto.command() == 'Picus-GetAccessToken': getAccessToken() elif demisto.command() == 'Picus-Vector-Compare': # Makes a comparison of the given vector's results token = getAccessToken() demisto.results(vectorCompare(token)) elif demisto.command() == 'Picus-Attack-Result-List': # Returns the list of the attack results\nhave optional parameters for pagination and filtration token = getAccessToken() demisto.results(attackResultList(token)) elif demisto.command() == 'Picus-Specific-Threats-Results': # Returns the list of the attack results of a single threat\nhave optional token = getAccessToken() demisto.results(specificThreatsResults(token)) elif demisto.command() == 'Picus-Peer-List': # Returns the peer list with current statuses token = getAccessToken() demisto.results(peerList(token)) elif demisto.command() == 'Picus-EMail-Peer-List': # Returns the E-Mail peer list with current statuses token = getAccessToken() demisto.results(eMailPeerList(token)) elif demisto.command() == 'Picus-Attack-All-Vectors': # Schedules given attack on all possible vectors token = getAccessToken() demisto.results(attackAllVectors(token)) elif demisto.command() == 'Picus-Attack-Single': # Schedules a single attack on requested vector token = getAccessToken() demisto.results(attackSingle(token)) elif demisto.command() == 'Picus-Trigger-Update': # Triggers the update mechanism manually, returns if the update-command is taken successfully token = getAccessToken() demisto.results(triggerUpdate(token)) elif demisto.command() == 'Picus-Version': # Returns the current version and the update time config token = getAccessToken() demisto.results(version(token)) elif demisto.command() == 'Picus-Threat-List': # Returns the list of the threats\nhave optional parameters for pagination and filtration token = getAccessToken() demisto.results(threatList(token)) elif demisto.command() == 'Picus-Mitigation-List': # Returns the list of the mitigations of threats\nhave optional parameters for pagination and filtration, this route may not be used associated with your license token = getAccessToken() demisto.results(mitigationList(token)) elif demisto.command() == 'Picus-Mitre-Matrix': # Returns the mitre matrix metadata\ntakes no parameters token = getAccessToken() demisto.results(mitreMatrix(token)) elif demisto.command() == 'Picus-Sigma-Rules-List': # Returns the list of the sigma rules of scenario actions\nhave optional parameters for pagination and filtration, this route may not be used associated with your license token = getAccessToken() demisto.results(sigmaRulesList(token)) elif demisto.command() == 'Picus-Vector-List': # Returns the list of the vectors all disabled and enabled ones\nhave optional parameters for pagination token = getAccessToken() demisto.results(vectorList(token)) elif demisto.command() == 'test-module': demisto.results(test_module()) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
def main() -> None: """main function, parses params and runs command functions :return: :rtype: """ ''' EXECUTION ''' #LOG('command is %s' % (demisto.command(), )) demisto.debug(f'Command being called is {demisto.command()}') try: LOG('Command being called is {command}'.format(command=demisto.command())) if demisto.command() == 'Picus-GetAccessToken': getAccessToken() elif demisto.command() == 'Picus-Vector-Compare': # Makes a comparison of the given vector's results token = getAccessToken() demisto.results(vectorCompare(token)) elif demisto.command() == 'Picus-Attack-Result-List': # Returns the list of the attack results\nhave optional parameters for pagination and filtration token = getAccessToken() demisto.results(attackResultList(token)) elif demisto.command() == 'Picus-Specific-Threats-Results': # Returns the list of the attack results of a single threat\nhave optional token = getAccessToken() demisto.results(specificThreatsResults(token)) elif demisto.command() == 'Picus-Peer-List': # Returns the peer list with current statuses token = getAccessToken() demisto.results(peerList(token)) elif demisto.command() == 'Picus-EMail-Peer-List': # Returns the E-Mail peer list with current statuses token = getAccessToken() demisto.results(eMailPeerList(token)) elif demisto.command() == 'Picus-Attack-All-Vectors': # Schedules given attack on all possible vectors token = getAccessToken() demisto.results(attackAllVectors(token)) elif demisto.command() == 'Picus-Attack-Single': # Schedules a single attack on requested vector token = getAccessToken() demisto.results(attackSingle(token)) elif demisto.command() == 'Picus-Trigger-Update': # Triggers the update mechanism manually, returns if the update-command is taken successfully token = getAccessToken() demisto.results(triggerUpdate(token)) elif demisto.command() == 'Picus-Version': # Returns the current version and the update time config token = getAccessToken() demisto.results(version(token)) elif demisto.command() == 'Picus-Threat-List': # Returns the list of the threats\nhave optional parameters for pagination and filtration token = getAccessToken() demisto.results(threatList(token)) elif demisto.command() == 'picus-mitigation-list': # Returns the list of the mitigations of threats\nhave optional parameters for pagination and filtration, this route may not be used associated with your license token = getAccessToken() demisto.results(mitigationList(token)) elif demisto.command() == 'Picus-Mitre-Matrix': # Returns the mitre matrix metadata\ntakes no parameters token = getAccessToken() demisto.results(mitreMatrix(token)) elif demisto.command() == 'Picus-Sigma-Rules-List': # Returns the list of the sigma rules of scenario actions\nhave optional parameters for pagination and filtration, this route may not be used associated with your license token = getAccessToken() demisto.results(sigmaRulesList(token)) elif demisto.command() == 'Picus-Vector-List': # Returns the list of the vectors all disabled and enabled ones\nhave optional parameters for pagination token = getAccessToken() demisto.results(vectorList(token)) elif demisto.command() == 'test-module': demisto.results(test_module()) # Log exceptions and return errors except Exception as e: demisto.error(traceback.format_exc()) # print the traceback return_error(f'Failed to execute {demisto.command()} command.\nError:\n{str(e)}')
16,188
def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the available Repetier Server sensors.""" if discovery_info is None: return sensor_map = { "bed_temperature": RepetierTempSensor, "extruder_temperature": RepetierTempSensor, "chamber_temperature": RepetierTempSensor, "current_state": RepetierSensor, "current_job": RepetierJobSensor, "job_end": RepetierJobEndSensor, "job_start": RepetierJobStartSensor, } entities = [] for info in discovery_info: printer_name = info["printer_name"] api = hass.data[REPETIER_API][printer_name] printer_id = info["printer_id"] sensor_type = info["sensor_type"] temp_id = info["temp_id"] description = SENSOR_TYPES[sensor_type] name = f"{info['name']}{description.name}" if temp_id is not None: _LOGGER.debug("%s Temp_id: %s", sensor_type, temp_id) name = f"{name}{temp_id}" sensor_class = sensor_map[sensor_type] entity = sensor_class(api, temp_id, name, printer_id, description) entities.append(entity) add_entities(entities, True)
def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the available Repetier Server sensors.""" if discovery_info is None: return sensor_map = { "bed_temperature": RepetierTempSensor, "extruder_temperature": RepetierTempSensor, "chamber_temperature": RepetierTempSensor, "current_state": RepetierSensor, "current_job": RepetierJobSensor, "job_end": RepetierJobEndSensor, "job_start": RepetierJobStartSensor, } entities = [] for info in discovery_info: printer_name = info["printer_name"] api = hass.data[REPETIER_API][printer_name] printer_id = info["printer_id"] sensor_type = info["sensor_type"] temp_id = info["temp_id"] description = SENSOR_TYPES[sensor_type] name = f"{info['name']}{description.name or ''}" if temp_id is not None: _LOGGER.debug("%s Temp_id: %s", sensor_type, temp_id) name = f"{name}{temp_id}" sensor_class = sensor_map[sensor_type] entity = sensor_class(api, temp_id, name, printer_id, description) entities.append(entity) add_entities(entities, True)
40,499
def run_stage(sessions, stage, tavern_box, test_block_config): """Run one stage from the test Args: sessions (dict): List of relevant 'session' objects used for this test stage (dict): specification of stage to be run tavern_box (box.Box): Box object containing format variables to be used in test test_block_config (dict): available variables for test """ name = stage["name"] r = get_request_type(stage, test_block_config, sessions) tavern_box.update(request_vars=r.request_vars) expected = get_expected(stage, test_block_config, sessions) delay(stage, "before", test_block_config["variables"]) logger.info("Running stage : %s", name) response = r.run() verifiers = get_verifiers(stage, test_block_config, sessions, expected) for v in verifiers: saved = v.verify(response) test_block_config["variables"].update(saved) tavern_box.pop("request_vars") delay(stage, "after", test_block_config["variables"])
def run_stage(sessions, stage, tavern_box, test_block_config): """Run one stage from the test Args: sessions (dict): Dictionary of relevant 'session' objects used for this test stage (dict): specification of stage to be run tavern_box (box.Box): Box object containing format variables to be used in test test_block_config (dict): available variables for test """ name = stage["name"] r = get_request_type(stage, test_block_config, sessions) tavern_box.update(request_vars=r.request_vars) expected = get_expected(stage, test_block_config, sessions) delay(stage, "before", test_block_config["variables"]) logger.info("Running stage : %s", name) response = r.run() verifiers = get_verifiers(stage, test_block_config, sessions, expected) for v in verifiers: saved = v.verify(response) test_block_config["variables"].update(saved) tavern_box.pop("request_vars") delay(stage, "after", test_block_config["variables"])
5,717
def kmeans2(data, k, iter=10, thresh=1e-5, minit='random', missing='warn', check_finite=True, seed=None): """ Classify a set of observations into k clusters using the k-means algorithm. The algorithm attempts to minimize the Euclidean distance between observations and centroids. Several initialization methods are included. Parameters ---------- data : ndarray A 'M' by 'N' array of 'M' observations in 'N' dimensions or a length 'M' array of 'M' 1-D observations. k : int or ndarray The number of clusters to form as well as the number of centroids to generate. If `minit` initialization string is 'matrix', or if a ndarray is given instead, it is interpreted as initial cluster to use instead. iter : int, optional Number of iterations of the k-means algorithm to run. Note that this differs in meaning from the iters parameter to the kmeans function. thresh : float, optional (not used yet) minit : str, optional Method for initialization. Available methods are 'random', 'points', '++' and 'matrix': 'random': generate k centroids from a Gaussian with mean and variance estimated from the data. 'points': choose k observations (rows) at random from data for the initial centroids. '++': choose k observations accordingly to the kmeans++ method (careful seeding) 'matrix': interpret the k parameter as a k by M (or length k array for 1-D data) array of initial centroids. missing : str, optional Method to deal with empty clusters. Available methods are 'warn' and 'raise': 'warn': give a warning and continue. 'raise': raise an ClusterError and terminate the algorithm. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional Seed for initializing the pseudo-random number generator. If `seed` is None (or `numpy.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. The default is None. Returns ------- centroid : ndarray A 'k' by 'N' array of centroids found at the last iteration of k-means. label : ndarray label[i] is the code or index of the centroid the ith observation is closest to. See Also -------- kmeans References ---------- .. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007. Examples -------- >>> from scipy.cluster.vq import kmeans2 >>> import matplotlib.pyplot as plt Create z, an array with shape (100, 2) containing a mixture of samples from three multivariate normal distributions. >>> rng = np.random.default_rng() >>> a = rng.multivariate_normal([0, 6], [[2, 1], [1, 1.5]], size=45) >>> b = rng.multivariate_normal([2, 0], [[1, -1], [-1, 3]], size=30) >>> c = rng.multivariate_normal([6, 4], [[5, 0], [0, 1.2]], size=25) >>> z = np.concatenate((a, b, c)) >>> rng.shuffle(z) Compute three clusters. >>> centroid, label = kmeans2(z, 3, minit='points') >>> centroid array([[ 2.22274463, -0.61666946], # may vary [ 0.54069047, 5.86541444], [ 6.73846769, 4.01991898]]) How many points are in each cluster? >>> counts = np.bincount(label) >>> counts array([29, 51, 20]) # may vary Plot the clusters. >>> w0 = z[label == 0] >>> w1 = z[label == 1] >>> w2 = z[label == 2] >>> plt.plot(w0[:, 0], w0[:, 1], 'o', alpha=0.5, label='cluster 0') >>> plt.plot(w1[:, 0], w1[:, 1], 'd', alpha=0.5, label='cluster 1') >>> plt.plot(w2[:, 0], w2[:, 1], 's', alpha=0.5, label='cluster 2') >>> plt.plot(centroid[:, 0], centroid[:, 1], 'k*', label='centroids') >>> plt.axis('equal') >>> plt.legend(shadow=True) >>> plt.show() """ if int(iter) < 1: raise ValueError("Invalid iter (%s), " "must be a positive integer." % iter) try: miss_meth = _valid_miss_meth[missing] except KeyError as e: raise ValueError("Unknown missing method %r" % (missing,)) from e data = _asarray_validated(data, check_finite=check_finite) if data.ndim == 1: d = 1 elif data.ndim == 2: d = data.shape[1] else: raise ValueError("Input of rank > 2 is not supported.") if data.size < 1: raise ValueError("Empty input is not supported.") # If k is not a single value, it should be compatible with data's shape if minit == 'matrix' or not np.isscalar(k): code_book = np.array(k, copy=True) if data.ndim != code_book.ndim: raise ValueError("k array doesn't match data rank") nc = len(code_book) if data.ndim > 1 and code_book.shape[1] != d: raise ValueError("k array doesn't match data dimension") else: nc = int(k) if nc < 1: raise ValueError("Cannot ask kmeans2 for %d clusters" " (k was %s)" % (nc, k)) elif nc != k: warnings.warn("k was not an integer, was converted.") try: init_meth = _valid_init_meth[minit] except KeyError as e: raise ValueError("Unknown init method %r" % (minit,)) from e else: rng = check_random_state(seed) code_book = init_meth(data, k, rng) for i in range(iter): # Compute the nearest neighbor for each obs using the current code book label = vq(data, code_book)[0] # Update the code book by computing centroids new_code_book, has_members = _vq.update_cluster_means(data, label, nc) if not has_members.all(): miss_meth() # Set the empty clusters to their previous positions new_code_book[~has_members] = code_book[~has_members] code_book = new_code_book return code_book, label
def kmeans2(data, k, iter=10, thresh=1e-5, minit='random', missing='warn', check_finite=True, *, seed=None): """ Classify a set of observations into k clusters using the k-means algorithm. The algorithm attempts to minimize the Euclidean distance between observations and centroids. Several initialization methods are included. Parameters ---------- data : ndarray A 'M' by 'N' array of 'M' observations in 'N' dimensions or a length 'M' array of 'M' 1-D observations. k : int or ndarray The number of clusters to form as well as the number of centroids to generate. If `minit` initialization string is 'matrix', or if a ndarray is given instead, it is interpreted as initial cluster to use instead. iter : int, optional Number of iterations of the k-means algorithm to run. Note that this differs in meaning from the iters parameter to the kmeans function. thresh : float, optional (not used yet) minit : str, optional Method for initialization. Available methods are 'random', 'points', '++' and 'matrix': 'random': generate k centroids from a Gaussian with mean and variance estimated from the data. 'points': choose k observations (rows) at random from data for the initial centroids. '++': choose k observations accordingly to the kmeans++ method (careful seeding) 'matrix': interpret the k parameter as a k by M (or length k array for 1-D data) array of initial centroids. missing : str, optional Method to deal with empty clusters. Available methods are 'warn' and 'raise': 'warn': give a warning and continue. 'raise': raise an ClusterError and terminate the algorithm. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default: True seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional Seed for initializing the pseudo-random number generator. If `seed` is None (or `numpy.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. The default is None. Returns ------- centroid : ndarray A 'k' by 'N' array of centroids found at the last iteration of k-means. label : ndarray label[i] is the code or index of the centroid the ith observation is closest to. See Also -------- kmeans References ---------- .. [1] D. Arthur and S. Vassilvitskii, "k-means++: the advantages of careful seeding", Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007. Examples -------- >>> from scipy.cluster.vq import kmeans2 >>> import matplotlib.pyplot as plt Create z, an array with shape (100, 2) containing a mixture of samples from three multivariate normal distributions. >>> rng = np.random.default_rng() >>> a = rng.multivariate_normal([0, 6], [[2, 1], [1, 1.5]], size=45) >>> b = rng.multivariate_normal([2, 0], [[1, -1], [-1, 3]], size=30) >>> c = rng.multivariate_normal([6, 4], [[5, 0], [0, 1.2]], size=25) >>> z = np.concatenate((a, b, c)) >>> rng.shuffle(z) Compute three clusters. >>> centroid, label = kmeans2(z, 3, minit='points') >>> centroid array([[ 2.22274463, -0.61666946], # may vary [ 0.54069047, 5.86541444], [ 6.73846769, 4.01991898]]) How many points are in each cluster? >>> counts = np.bincount(label) >>> counts array([29, 51, 20]) # may vary Plot the clusters. >>> w0 = z[label == 0] >>> w1 = z[label == 1] >>> w2 = z[label == 2] >>> plt.plot(w0[:, 0], w0[:, 1], 'o', alpha=0.5, label='cluster 0') >>> plt.plot(w1[:, 0], w1[:, 1], 'd', alpha=0.5, label='cluster 1') >>> plt.plot(w2[:, 0], w2[:, 1], 's', alpha=0.5, label='cluster 2') >>> plt.plot(centroid[:, 0], centroid[:, 1], 'k*', label='centroids') >>> plt.axis('equal') >>> plt.legend(shadow=True) >>> plt.show() """ if int(iter) < 1: raise ValueError("Invalid iter (%s), " "must be a positive integer." % iter) try: miss_meth = _valid_miss_meth[missing] except KeyError as e: raise ValueError("Unknown missing method %r" % (missing,)) from e data = _asarray_validated(data, check_finite=check_finite) if data.ndim == 1: d = 1 elif data.ndim == 2: d = data.shape[1] else: raise ValueError("Input of rank > 2 is not supported.") if data.size < 1: raise ValueError("Empty input is not supported.") # If k is not a single value, it should be compatible with data's shape if minit == 'matrix' or not np.isscalar(k): code_book = np.array(k, copy=True) if data.ndim != code_book.ndim: raise ValueError("k array doesn't match data rank") nc = len(code_book) if data.ndim > 1 and code_book.shape[1] != d: raise ValueError("k array doesn't match data dimension") else: nc = int(k) if nc < 1: raise ValueError("Cannot ask kmeans2 for %d clusters" " (k was %s)" % (nc, k)) elif nc != k: warnings.warn("k was not an integer, was converted.") try: init_meth = _valid_init_meth[minit] except KeyError as e: raise ValueError("Unknown init method %r" % (minit,)) from e else: rng = check_random_state(seed) code_book = init_meth(data, k, rng) for i in range(iter): # Compute the nearest neighbor for each obs using the current code book label = vq(data, code_book)[0] # Update the code book by computing centroids new_code_book, has_members = _vq.update_cluster_means(data, label, nc) if not has_members.all(): miss_meth() # Set the empty clusters to their previous positions new_code_book[~has_members] = code_book[~has_members] code_book = new_code_book return code_book, label
39,532
def split_markdown_front_matter(lines: str) -> Tuple[str, str]: r""" Split text into markdown front matter and the markdown body Return ("", text) for text with non existing front matter >>> text='''--- ... title: DUMMY-SECURITY-2019-001 ... description: Incorrect access control. ... cves: [CVE-2042-1337] ... --- ... # Markdown starts here ... ''' >>> split_markdown_front_matter(text) ('title: DUMMY-SECURITY-2019-001\ndescription: Incorrect access control.\ncves: [CVE-2042-1337]', '# Markdown starts here\n') """ fmlines = [] mdlines = [] splitter = mdlines lines = lines.replace("\r\n", "\n") for index, line in enumerate(lines.split("\n")): if index == 0 and line.strip().startswith("---"): splitter = fmlines elif line.strip().startswith("---"): splitter = mdlines else: splitter.append(line) return "\n".join(fmlines), "\n".join(mdlines)
def split_markdown_front_matter(lines: str) -> Tuple[str, str]: """ Split text into markdown front matter and the markdown body Return ("", text) for text with non existing front matter >>> text='''--- ... title: DUMMY-SECURITY-2019-001 ... description: Incorrect access control. ... cves: [CVE-2042-1337] ... --- ... # Markdown starts here ... ''' >>> split_markdown_front_matter(text) ('title: DUMMY-SECURITY-2019-001\ndescription: Incorrect access control.\ncves: [CVE-2042-1337]', '# Markdown starts here\n') """ fmlines = [] mdlines = [] splitter = mdlines lines = lines.replace("\r\n", "\n") for index, line in enumerate(lines.split("\n")): if index == 0 and line.strip().startswith("---"): splitter = fmlines elif line.strip().startswith("---"): splitter = mdlines else: splitter.append(line) return "\n".join(fmlines), "\n".join(mdlines)
45,704
def forecast( vil, velocity, timesteps, rainrate=None, n_cascade_levels=8, extrap_method="semilagrangian", ar_order=2, ar_window_radius=50, r_vil_window_radius=3, fft_method="numpy", apply_rainrate_mask=True, num_workers=1, extrap_kwargs=None, filter_kwargs=None, measure_time=False, ): """Generate a nowcast by using the autoregressive nowcasting using VIL (ANVIL) method. ANVIL is built on top of an extrapolation-based nowcast. The key features are: 1) Growth and decay: implemented by using a cascade decomposition and a multiscale autoregressive integrated ARI(p,1) model. Instead of the original time series, the ARI model is applied to the differenced one corresponding to time derivatives. 2) Originally designed for using integrated liquid (VIL) as the input data. In this case, the rain rate (R) is obtained from VIL via an empirical relation. This implementation is more general so that the input can be any two-dimensional precipitation field. 3) The parameters of the ARI model and the R(VIL) relation are allowed to be spatially variable. The estimation is done using a moving window. Parameters ---------- vil: array_like Array of shape (ar_order+2,m,n) containing the input fields ordered by timestamp from oldest to newest. The inputs are expected to contain VIL or rain rate. The time steps between the inputs are assumed to be regular. velocity: array_like Array of shape (2,m,n) containing the x- and y-components of the advection field. The velocities are assumed to represent one time step between the inputs. All values are required to be finite. timesteps: int or list Number of time steps to forecast or a list of time steps for which the forecasts are computed (relative to the input time step). The elements of the list are required to be in ascending order. rainrate: array_like Array of shape (m,n) containing the most recently observed rain rate field. If set to None, no R(VIL) conversion is done and the outputs are in the same units as the inputs. n_cascade_levels: int, optional The number of cascade levels to use. extrap_method: str, optional Name of the extrapolation method to use. See the documentation of pysteps.extrapolation.interface. ar_order: int, optional The order of the autoregressive model to use. The recommended values are 1 or 2. Using a higher-order model is strongly discouraged because the stationarity of the AR process cannot be guaranteed. ar_window_radius: int, optional The radius of the window to use for determining the parameters of the autoregressive model. Set to None to disable localization. r_vil_window_radius: int, optional The radius of the window to use for determining the R(VIL) relation. Applicable if rainrate is not None. fft_method: str, optional A string defining the FFT method to use (see utils.fft.get_method). Defaults to 'numpy' for compatibility reasons. If pyFFTW is installed, the recommended method is 'pyfftw'. apply_rainrate_mask: bool Apply mask to prevent producing precipitation to areas where it was not originally observed. Defaults to True. Disabling this may improve some verification metrics but increases the number of false alarms. Applicable if rainrate is None. num_workers: int, optional The number of workers to use for parallel computation. Applicable if dask is installed or pyFFTW is used for computing the FFT. When num_workers>1, it is advisable to disable OpenMP by setting the environment variable OMP_NUM_THREADS to 1. This avoids slowdown caused by too many simultaneous threads. extrap_kwargs: dict, optional Optional dictionary containing keyword arguments for the extrapolation method. See the documentation of pysteps.extrapolation. filter_kwargs: dict, optional Optional dictionary containing keyword arguments for the filter method. See the documentation of pysteps.cascade.bandpass_filters.py. measure_time: bool, optional If True, measure, print and return the computation time. Returns ------- out: ndarray A three-dimensional array of shape (num_timesteps,m,n) containing a time series of forecast precipitation fields. The time series starts from t0+timestep, where timestep is taken from the input VIL/rain rate fields. If measure_time is True, the return value is a three-element tuple containing the nowcast array, the initialization time of the nowcast generator and the time used in the main loop (seconds). References ---------- :cite:`PCLH2020` """ _check_inputs(vil, rainrate, velocity, timesteps, ar_order) if extrap_kwargs is None: extrap_kwargs = dict() else: extrap_kwargs = extrap_kwargs.copy() if filter_kwargs is None: filter_kwargs = dict() print("Computing ANVIL nowcast:") print("------------------------") print("") print("Inputs:") print("-------") print("input dimensions: %dx%d" % (vil.shape[1], vil.shape[2])) print("") print("Methods:") print("--------") print("extrapolation: %s" % extrap_method) print("FFT: %s" % fft_method) print("") print("Parameters:") print("-----------") if isinstance(timesteps, int): print("number of time steps: %d" % timesteps) else: print("time steps: %s" % timesteps) print("parallel threads: %d" % num_workers) print("number of cascade levels: %d" % n_cascade_levels) print("order of the ARI(p,1) model: %d" % ar_order) if type(ar_window_radius) == int: print("ARI(p,1) window radius: %d" % ar_window_radius) else: print("ARI(p,1) window radius: none") print("R(VIL) window radius: %d" % r_vil_window_radius) if measure_time: starttime_init = time.time() m, n = vil.shape[1:] vil = vil.copy() if rainrate is None and apply_rainrate_mask: rainrate_mask = vil[-1, :] < 0.1 if rainrate is not None: # determine the coefficients fields of the relation R=a*VIL+b by # localized linear regression r_vil_a, r_vil_b = _r_vil_regression(vil[-1, :], rainrate, r_vil_window_radius) # transform the input fields to Lagrangian coordinates by extrapolation extrapolator = extrapolation.get_method(extrap_method) res = list() def worker(vil, i): return ( i, extrapolator( vil[i, :], velocity, vil.shape[0] - 1 - i, allow_nonfinite_values=True, **extrap_kwargs, )[-1], ) for i in range(vil.shape[0] - 1): if not DASK_IMPORTED or num_workers == 1: vil[i, :, :] = worker(vil, i)[1] else: res.append(dask.delayed(worker)(vil, i)) if DASK_IMPORTED and num_workers > 1: num_workers_ = len(res) if num_workers > len(res) else num_workers vil_e = dask.compute(*res, num_workers=num_workers_) for i in range(len(vil_e)): vil[vil_e[i][0], :] = vil_e[i][1] # compute the final mask as the intersection of the masks of the advected # fields mask = np.isfinite(vil[0, :]) for i in range(1, vil.shape[0]): mask = np.logical_and(mask, np.isfinite(vil[i, :])) if rainrate is None and apply_rainrate_mask: rainrate_mask = np.logical_and(rainrate_mask, mask) # apply cascade decomposition to the advected input fields bp_filter_method = cascade.get_method("gaussian") bp_filter = bp_filter_method((m, n), n_cascade_levels, **filter_kwargs) fft = utils.get_method(fft_method, shape=vil.shape[1:], n_threads=num_workers) decomp_method, recomp_method = cascade.get_method("fft") vil_dec = np.empty((n_cascade_levels, vil.shape[0], m, n)) for i in range(vil.shape[0]): vil_ = vil[i, :].copy() vil_[~np.isfinite(vil_)] = 0.0 vil_dec_i = decomp_method(vil_, bp_filter, fft_method=fft) for j in range(n_cascade_levels): vil_dec[j, i, :] = vil_dec_i["cascade_levels"][j, :] # compute time-lagged correlation coefficients for the cascade levels of # the advected and differenced input fields gamma = np.empty((n_cascade_levels, ar_order, m, n)) for i in range(n_cascade_levels): vil_diff = np.diff(vil_dec[i, :], axis=0) vil_diff[~np.isfinite(vil_diff)] = 0.0 for j in range(ar_order): gamma[i, j, :] = _moving_window_corrcoef( vil_diff[-1, :], vil_diff[-(j + 2), :], ar_window_radius ) if ar_order == 2: # if the order of the ARI model is 2, adjust the correlation coefficients # so that the resulting process is stationary for i in range(n_cascade_levels): gamma[i, 1, :] = autoregression.adjust_lag2_corrcoef2( gamma[i, 0, :], gamma[i, 1, :] ) # estimate the parameters of the ARI models phi = [] for i in range(n_cascade_levels): if ar_order > 2: phi_ = autoregression.estimate_ar_params_yw_localized(gamma[i, :], d=1) elif ar_order == 2: phi_ = _estimate_ar2_params(gamma[i, :]) else: phi_ = _estimate_ar1_params(gamma[i, :]) phi.append(phi_) vil_dec = vil_dec[:, -(ar_order + 1) :, :] if measure_time: init_time = time.time() - starttime_init print("Starting nowcast computation.") if measure_time: starttime_mainloop = time.time() r_f = [] if isinstance(timesteps, int): timesteps = range(timesteps + 1) timestep_type = "int" else: original_timesteps = [0] + list(timesteps) timesteps = nowcast_utils.binned_timesteps(original_timesteps) timestep_type = "list" if rainrate is not None: r_f_prev = r_vil_a * vil[-1, :] + r_vil_b else: r_f_prev = vil[-1, :] extrap_kwargs["return_displacement"] = True dp = None t_nowcast = 0 t_prev = 0.0 for t in range(len(timesteps)): if timestep_type == "list": subtimesteps = [original_timesteps[t_] for t_ in timesteps[t]] else: subtimesteps = [t] if len(subtimesteps) > 1 or t > 0: nowcast_time_step = True else: nowcast_time_step = False if nowcast_time_step: print( "Computing nowcast for time step %d... " % (t_nowcast + 1), end="", flush=True, ) t_nowcast += 1 if measure_time: starttime = time.time() # iterate the ARI models for each cascade level for i in range(n_cascade_levels): vil_dec[i, :] = autoregression.iterate_ar_model(vil_dec[i, :], phi[i]) # recompose the cascade to obtain the forecast field vil_dec_dict = {} vil_dec_dict["cascade_levels"] = vil_dec[:, -1, :] vil_dec_dict["domain"] = "spatial" vil_dec_dict["normalized"] = False vil_f = recomp_method(vil_dec_dict) vil_f[~mask] = np.nan if rainrate is not None: # convert VIL to rain rate r_f_new = r_vil_a * vil_f + r_vil_b else: r_f_new = vil_f if apply_rainrate_mask: r_f_new[rainrate_mask] = 0.0 r_f_new[r_f_new < 0.0] = 0.0 # advect the recomposed field to obtain the forecast for the current # time step (or subtimesteps if non-integer time steps are given) for t_sub in subtimesteps: if t_sub > 0: t_diff_prev_int = t_sub - int(t_sub) if t_diff_prev_int > 0.0: r_f_ip = ( 1.0 - t_diff_prev_int ) * r_f_prev + t_diff_prev_int * r_f_new else: r_f_ip = r_f_prev t_diff_prev = t_sub - t_prev extrap_kwargs["displacement_prev"] = dp r_f_ep, dp = extrapolator( r_f_ip, velocity, [t_diff_prev], allow_nonfinite_values=True, **extrap_kwargs, ) r_f.append(r_f_ep[0]) t_prev = t_sub # advect the forecast field by one time step if no subtimesteps in the # current interval were found if len(subtimesteps) == 0: t_diff_prev = t + 1 - t_prev extrap_kwargs["displacement_prev"] = dp _, dp = extrapolator( None, velocity, [t_diff_prev], allow_nonfinite_values=True, **extrap_kwargs, ) t_prev = t + 1 r_f_prev = r_f_new if nowcast_time_step: if measure_time: print("%.2f seconds." % (time.time() - starttime)) else: print("done.") if measure_time: mainloop_time = time.time() - starttime_mainloop if measure_time: return np.stack(r_f), init_time, mainloop_time else: return np.stack(r_f)
def forecast( vil, velocity, timesteps, rainrate=None, n_cascade_levels=8, extrap_method="semilagrangian", ar_order=2, ar_window_radius=50, r_vil_window_radius=3, fft_method="numpy", apply_rainrate_mask=True, num_workers=1, extrap_kwargs=None, filter_kwargs=None, measure_time=False, ): """Generate a nowcast by using the autoregressive nowcasting using VIL (ANVIL) method. ANVIL is built on top of an extrapolation-based nowcast. The key features are: 1) Growth and decay: implemented by using a cascade decomposition and a multiscale autoregressive integrated ARI(p,1) model. Instead of the original time series, the ARI model is applied to the differenced one corresponding to time derivatives. 2) Originally designed for using integrated liquid (VIL) as the input data. In this case, the rain rate (R) is obtained from VIL via an empirical relation. This implementation is more general so that the input can be any two-dimensional precipitation field. 3) The parameters of the ARI model and the R(VIL) relation are allowed to be spatially variable. The estimation is done using a moving window. Parameters ---------- vil: array_like Array of shape (ar_order+2,m,n) containing the input fields ordered by timestamp from oldest to newest. The inputs are expected to contain VIL or rain rate. The time steps between the inputs are assumed to be regular. velocity: array_like Array of shape (2,m,n) containing the x- and y-components of the advection field. The velocities are assumed to represent one time step between the inputs. All values are required to be finite. timesteps: int or list Number of time steps to forecast or a list of time steps for which the forecasts are computed (relative to the input time step). The elements of the list are required to be in ascending order. rainrate: array_like Array of shape (m,n) containing the most recently observed rain rate field. If set to None, no R(VIL) conversion is done and the outputs are in the same units as the inputs. n_cascade_levels: int, optional The number of cascade levels to use. extrap_method: str, optional Name of the extrapolation method to use. See the documentation of pysteps.extrapolation.interface. ar_order: int, optional The order of the autoregressive model to use. The recommended values are 1 or 2. Using a higher-order model is strongly discouraged because the stationarity of the AR process cannot be guaranteed. ar_window_radius: int, optional The radius of the window to use for determining the parameters of the autoregressive model. Set to None to disable localization. r_vil_window_radius: int, optional The radius of the window to use for determining the R(VIL) relation. Applicable if rainrate is not None. fft_method: str, optional A string defining the FFT method to use (see utils.fft.get_method). Defaults to 'numpy' for compatibility reasons. If pyFFTW is installed, the recommended method is 'pyfftw'. apply_rainrate_mask: bool Apply mask to prevent producing precipitation to areas where it was not originally observed. Defaults to True. Disabling this may improve some verification metrics but increases the number of false alarms. Applicable if rainrate is None. num_workers: int, optional The number of workers to use for parallel computation. Applicable if dask is installed or pyFFTW is used for computing the FFT. When num_workers>1, it is advisable to disable OpenMP by setting the environment variable OMP_NUM_THREADS to 1. This avoids slowdown caused by too many simultaneous threads. extrap_kwargs: dict, optional Optional dictionary containing keyword arguments for the extrapolation method. See the documentation of pysteps.extrapolation. filter_kwargs: dict, optional Optional dictionary containing keyword arguments for the filter method. See the documentation of pysteps.cascade.bandpass_filters.py. measure_time: bool, optional If True, measure, print and return the computation time. Returns ------- out: ndarray A three-dimensional array of shape (num_timesteps,m,n) containing a time series of forecast precipitation fields. The time series starts from t0+timestep, where timestep is taken from the input VIL/rain rate fields. If measure_time is True, the return value is a three-element tuple containing the nowcast array, the initialization time of the nowcast generator and the time used in the main loop (seconds). References ---------- :cite:`PCLH2020` """ _check_inputs(vil, rainrate, velocity, timesteps, ar_order) if extrap_kwargs is None: extrap_kwargs = dict() else: extrap_kwargs = extrap_kwargs.copy() if filter_kwargs is None: filter_kwargs = dict() print("Computing ANVIL nowcast:") print("------------------------") print("") print("Inputs:") print("-------") print("input dimensions: %dx%d" % (vil.shape[1], vil.shape[2])) print("") print("Methods:") print("--------") print("extrapolation: %s" % extrap_method) print("FFT: %s" % fft_method) print("") print("Parameters:") print("-----------") if isinstance(timesteps, int): print("number of time steps: %d" % timesteps) else: print("time steps: %s" % timesteps) print("parallel threads: %d" % num_workers) print("number of cascade levels: %d" % n_cascade_levels) print("order of the ARI(p,1) model: %d" % ar_order) if type(ar_window_radius) == int: print("ARI(p,1) window radius: %d" % ar_window_radius) else: print("ARI(p,1) window radius: none") print("R(VIL) window radius: %d" % r_vil_window_radius) if measure_time: starttime_init = time.time() m, n = vil.shape[1:] vil = vil.copy() if rainrate is None and apply_rainrate_mask: rainrate_mask = vil[-1, :] < 0.1 if rainrate is not None: # determine the coefficients fields of the relation R=a*VIL+b by # localized linear regression r_vil_a, r_vil_b = _r_vil_regression(vil[-1, :], rainrate, r_vil_window_radius) # transform the input fields to Lagrangian coordinates by extrapolation extrapolator = extrapolation.get_method(extrap_method) res = list() def worker(vil, i): return ( i, extrapolator( vil[i, :], velocity, vil.shape[0] - 1 - i, allow_nonfinite_values=True, **extrap_kwargs, )[-1], ) for i in range(vil.shape[0] - 1): if not DASK_IMPORTED or num_workers == 1: vil[i, :, :] = worker(vil, i)[1] else: res.append(dask.delayed(worker)(vil, i)) if DASK_IMPORTED and num_workers > 1: num_workers_ = len(res) if num_workers > len(res) else num_workers vil_e = dask.compute(*res, num_workers=num_workers_) for i in range(len(vil_e)): vil[vil_e[i][0], :] = vil_e[i][1] # compute the final mask as the intersection of the masks of the advected # fields mask = np.isfinite(vil[0, :]) for i in range(1, vil.shape[0]): mask = np.logical_and(mask, np.isfinite(vil[i, :])) if rainrate is None and apply_rainrate_mask: rainrate_mask = np.logical_and(rainrate_mask, mask) # apply cascade decomposition to the advected input fields bp_filter_method = cascade.get_method("gaussian") bp_filter = bp_filter_method((m, n), n_cascade_levels, **filter_kwargs) fft = utils.get_method(fft_method, shape=vil.shape[1:], n_threads=num_workers) decomp_method, recomp_method = cascade.get_method("fft") vil_dec = np.empty((n_cascade_levels, vil.shape[0], m, n)) for i in range(vil.shape[0]): vil_ = vil[i, :].copy() vil_[~np.isfinite(vil_)] = 0.0 vil_dec_i = decomp_method(vil_, bp_filter, fft_method=fft) for j in range(n_cascade_levels): vil_dec[j, i, :] = vil_dec_i["cascade_levels"][j, :] # compute time-lagged correlation coefficients for the cascade levels of # the advected and differenced input fields gamma = np.empty((n_cascade_levels, ar_order, m, n)) for i in range(n_cascade_levels): vil_diff = np.diff(vil_dec[i, :], axis=0) vil_diff[~np.isfinite(vil_diff)] = 0.0 for j in range(ar_order): gamma[i, j, :] = _moving_window_corrcoef( vil_diff[-1, :], vil_diff[-(j + 2), :], ar_window_radius ) if ar_order == 2: # if the order of the ARI model is 2, adjust the correlation coefficients # so that the resulting process is stationary for i in range(n_cascade_levels): gamma[i, 1, :] = autoregression.adjust_lag2_corrcoef2( gamma[i, 0, :], gamma[i, 1, :] ) # estimate the parameters of the ARI models phi = [] for i in range(n_cascade_levels): if ar_order > 2: phi_ = autoregression.estimate_ar_params_yw_localized(gamma[i, :], d=1) elif ar_order == 2: phi_ = _estimate_ar2_params(gamma[i, :]) else: phi_ = _estimate_ar1_params(gamma[i, :]) phi.append(phi_) vil_dec = vil_dec[:, -(ar_order + 1) :, :] if measure_time: init_time = time.time() - starttime_init print("Starting nowcast computation.") if measure_time: starttime_mainloop = time.time() r_f = [] if isinstance(timesteps, int): timesteps = range(timesteps + 1) timestep_type = "int" else: original_timesteps = [0] + list(timesteps) timesteps = nowcast_utils.binned_timesteps(original_timesteps) timestep_type = "list" if rainrate is not None: r_f_prev = r_vil_a * vil[-1, :] + r_vil_b else: r_f_prev = vil[-1, :] extrap_kwargs["return_displacement"] = True dp = None t_nowcast = 0 t_prev = 0.0 for t in range(len(timesteps)): if timestep_type == "list": subtimesteps = [original_timesteps[t_] for t_ in timesteps[t]] else: subtimesteps = [t] if subtimesteps and t > 0: nowcast_time_step = True else: nowcast_time_step = False if nowcast_time_step: print( "Computing nowcast for time step %d... " % (t_nowcast + 1), end="", flush=True, ) t_nowcast += 1 if measure_time: starttime = time.time() # iterate the ARI models for each cascade level for i in range(n_cascade_levels): vil_dec[i, :] = autoregression.iterate_ar_model(vil_dec[i, :], phi[i]) # recompose the cascade to obtain the forecast field vil_dec_dict = {} vil_dec_dict["cascade_levels"] = vil_dec[:, -1, :] vil_dec_dict["domain"] = "spatial" vil_dec_dict["normalized"] = False vil_f = recomp_method(vil_dec_dict) vil_f[~mask] = np.nan if rainrate is not None: # convert VIL to rain rate r_f_new = r_vil_a * vil_f + r_vil_b else: r_f_new = vil_f if apply_rainrate_mask: r_f_new[rainrate_mask] = 0.0 r_f_new[r_f_new < 0.0] = 0.0 # advect the recomposed field to obtain the forecast for the current # time step (or subtimesteps if non-integer time steps are given) for t_sub in subtimesteps: if t_sub > 0: t_diff_prev_int = t_sub - int(t_sub) if t_diff_prev_int > 0.0: r_f_ip = ( 1.0 - t_diff_prev_int ) * r_f_prev + t_diff_prev_int * r_f_new else: r_f_ip = r_f_prev t_diff_prev = t_sub - t_prev extrap_kwargs["displacement_prev"] = dp r_f_ep, dp = extrapolator( r_f_ip, velocity, [t_diff_prev], allow_nonfinite_values=True, **extrap_kwargs, ) r_f.append(r_f_ep[0]) t_prev = t_sub # advect the forecast field by one time step if no subtimesteps in the # current interval were found if len(subtimesteps) == 0: t_diff_prev = t + 1 - t_prev extrap_kwargs["displacement_prev"] = dp _, dp = extrapolator( None, velocity, [t_diff_prev], allow_nonfinite_values=True, **extrap_kwargs, ) t_prev = t + 1 r_f_prev = r_f_new if nowcast_time_step: if measure_time: print("%.2f seconds." % (time.time() - starttime)) else: print("done.") if measure_time: mainloop_time = time.time() - starttime_mainloop if measure_time: return np.stack(r_f), init_time, mainloop_time else: return np.stack(r_f)
5,011
def _get_packed_offsets(wd_list, total, sep, mode="fixed"): r""" Horizontally pack boxes specified by their ``(width, xdescent)`` pair. (For simplicity of the description, the terminology used here assumes a horizontal layout, but the function works equally for a vertical layout.) *xdescent* is analogous to the usual descent, but along the x-direction; it is currently ignored. There are three packing *mode*\s: - 'fixed': The elements are packed tight to the left with a spacing of *sep* in between. If *total* is *None* the returned total will be the right edge of the last box. A non-*None* total will be passed unchecked to the output. In particular this means that right edge of the last box may be further to the right than the returned total. - 'expand': Distribute the boxes with equal spacing so that the left edge of the first box is at 0, and the right edge of the last box is at *total*. The parameter *sep* is ignored in this mode. A total of *None* is accepted and considered equal to 1. The total is returned unchanged (except for the conversion *None* to 1). If the total is smaller than the sum of the widths, the laid out boxes will overlap. - 'equal': If *total* is given, the total space is divided in N equal ranges and each box is left-aligned within its subspace. Otherwise (*total* is *None*), *sep* must be provided and each box is left-aligned in its subspace of width ``(max(widths) + sep)``. The total width is then calculated to be ``N * (max(widths) + sep)``. Parameters ---------- wd_list : list of (float, float) (width, xdescent) of boxes to be packed. total : float or None Intended total length. *None* if not used. sep : float Spacing between boxes. mode : {'fixed', 'expand', 'equal'} The packing mode. Returns ------- total : float The total width needed to accommodate the laid out boxes. offsets : array of float The left offsets of the boxes. """ w_list, d_list = zip(*wd_list) # d_list is currently not used. _api.check_in_list(["fixed", "expand", "equal"], mode=mode) if mode == "fixed": offsets_ = np.cumsum([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] if total is None: total = offsets_[-1] - sep return total, offsets elif mode == "expand": # This is a bit of a hack to avoid a TypeError when *total* # is None and used in conjugation with tight layout. if total is None: total = 1 if len(w_list) > 1: sep = (total - sum(w_list)) / (len(w_list) - 1) else: sep = 0 offsets_ = np.cumsum([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] return total, offsets elif mode == "equal": maxh = max(w_list) if total is None: if sep is None: raise ValueError("total and sep cannot both be None when " "using layout mode 'equal'") total = (maxh + sep) * len(w_list) else: sep = total / len(w_list) - maxh offsets = (maxh + sep) * np.arange(len(w_list)) return total, offsets
def _get_packed_offsets(wd_list, total, sep, mode="fixed"): r""" Distibute boxes within a given *total* space. (For simplicity of the description, the terminology used here assumes a horizontal layout, but the function works equally for a vertical layout.) *xdescent* is analogous to the usual descent, but along the x-direction; it is currently ignored. There are three packing *mode*\s: - 'fixed': The elements are packed tight to the left with a spacing of *sep* in between. If *total* is *None* the returned total will be the right edge of the last box. A non-*None* total will be passed unchecked to the output. In particular this means that right edge of the last box may be further to the right than the returned total. - 'expand': Distribute the boxes with equal spacing so that the left edge of the first box is at 0, and the right edge of the last box is at *total*. The parameter *sep* is ignored in this mode. A total of *None* is accepted and considered equal to 1. The total is returned unchanged (except for the conversion *None* to 1). If the total is smaller than the sum of the widths, the laid out boxes will overlap. - 'equal': If *total* is given, the total space is divided in N equal ranges and each box is left-aligned within its subspace. Otherwise (*total* is *None*), *sep* must be provided and each box is left-aligned in its subspace of width ``(max(widths) + sep)``. The total width is then calculated to be ``N * (max(widths) + sep)``. Parameters ---------- wd_list : list of (float, float) (width, xdescent) of boxes to be packed. total : float or None Intended total length. *None* if not used. sep : float Spacing between boxes. mode : {'fixed', 'expand', 'equal'} The packing mode. Returns ------- total : float The total width needed to accommodate the laid out boxes. offsets : array of float The left offsets of the boxes. """ w_list, d_list = zip(*wd_list) # d_list is currently not used. _api.check_in_list(["fixed", "expand", "equal"], mode=mode) if mode == "fixed": offsets_ = np.cumsum([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] if total is None: total = offsets_[-1] - sep return total, offsets elif mode == "expand": # This is a bit of a hack to avoid a TypeError when *total* # is None and used in conjugation with tight layout. if total is None: total = 1 if len(w_list) > 1: sep = (total - sum(w_list)) / (len(w_list) - 1) else: sep = 0 offsets_ = np.cumsum([0] + [w + sep for w in w_list]) offsets = offsets_[:-1] return total, offsets elif mode == "equal": maxh = max(w_list) if total is None: if sep is None: raise ValueError("total and sep cannot both be None when " "using layout mode 'equal'") total = (maxh + sep) * len(w_list) else: sep = total / len(w_list) - maxh offsets = (maxh + sep) * np.arange(len(w_list)) return total, offsets
28,599
def plot_pair( data, group="posterior", var_names: Optional[List[str]] = None, filter_vars: Optional[str] = None, coords=None, marginals=False, figsize=None, textsize=None, kind: Union[str, List[str]] = "scatter", gridsize="auto", contour: Optional[bool] = None, plot_kwargs=None, fill_last=False, divergences=False, colorbar=False, labeller=None, ax=None, divergences_kwargs=None, scatter_kwargs=None, kde_kwargs=None, hexbin_kwargs=None, backend=None, backend_kwargs=None, marginal_kwargs=None, point_estimate=None, point_estimate_kwargs=None, point_estimate_marker_kwargs=None, reference_values=None, reference_values_kwargs=None, show=None, ): """ Plot a scatter, kde and/or hexbin matrix with (optional) marginals on the diagonal. Parameters ---------- data: obj Any object that can be converted to an :class:`az.InferenceData` object refer to documentation of :func:`az.convert_to_dataset` for details group: str, optional Specifies which InferenceData group should be plotted. Defaults to 'posterior'. var_names: list of variable names, optional Variables to be plotted, if None all variable are plotted. Prefix the variables by ``~`` when you want to exclude them from the plot. filter_vars: {None, "like", "regex"}, optional, default=None If ``None`` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la ``pandas.filter``. coords: mapping, optional Coordinates of var_names to be plotted. Passed to `Dataset.sel` marginals: bool, optional If True pairplot will include marginal distributions for every variable figsize: figure size tuple If None, size is (8 + numvars, 8 + numvars) textsize: int Text size for labels. If None it will be autoscaled based on figsize. kind : str or List[str] Type of plot to display (scatter, kde and/or hexbin) gridsize: int or (int, int), optional Only works for kind=hexbin. The number of hexagons in the x-direction. The corresponding number of hexagons in the y-direction is chosen such that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the x-direction and the y-direction. contour : bool, optional, deprecated, Defaults to True. If True plot the 2D KDE using contours, otherwise plot a smooth 2D KDE. Defaults to True. **Note:** this default is implemented in the body of the code, not in argument processing. fill_last : bool If True fill the last contour of the 2D KDE plot. Defaults to True. divergences: Boolean If True divergences will be plotted in a different color, only if group is either 'prior' or 'posterior'. colorbar: bool If True a colorbar will be included as part of the plot (Defaults to False). Only works when kind=hexbin labeller : labeller instance, optional Class providing the method `make_label_vert` to generate the labels in the plot. Read the :ref:`label_guide` for more details and usage examples. ax: axes, optional Matplotlib axes or bokeh figures. divergences_kwargs: dicts, optional Additional keywords passed to ``ax.scatter`` for divergences scatter_kwargs: Additional keywords passed to ``ax.plot`` when using scatter kind kde_kwargs: dict, optional Additional keywords passed to :func:`az.plot_kde` when using kde kind hexbin_kwargs: dict, optional Additional keywords passed to ``ax.hexbin`` when using hexbin kind backend: str, optional Select plotting backend {"matplotlib","bokeh"}. Default "matplotlib". backend_kwargs: bool, optional These are kwargs specific to the backend being used. For additional documentation check the plotting method of the backend. marginal_kwargs: dict, optional Additional keywords passed to :func:`az.plot_dist`, modifying the marginal distributions plotted in the diagonal. point_estimate: str, optional Select point estimate from 'mean', 'mode' or 'median'. The point estimate will be plotted using a scatter marker and vertical/horizontal lines. point_estimate_kwargs: dict, optional Additional keywords passed to ``ax.vline``, ``ax.hline`` (matplotlib) or ``ax.square``, ``Span`` (bokeh) point_estimate_marker_kwargs: dict, optional Additional keywords passed to ax.scatter in point estimate plot. Not available in bokeh reference_values: dict, optional Reference values for the plotted variables. The Reference values will be plotted using a scatter marker reference_values_kwargs: dict, optional Additional keywords passed to ``ax.plot`` or ``ax.circle`` in reference values plot show: bool, optional Call backend show function. Returns ------- axes: matplotlib axes or bokeh figures Examples -------- KDE Pair Plot .. plot:: :context: close-figs >>> import arviz as az >>> centered = az.load_arviz_data('centered_eight') >>> coords = {'school': ['Choate', 'Deerfield']} >>> az.plot_pair(centered, >>> var_names=['theta', 'mu', 'tau'], >>> kind='kde', >>> coords=coords, >>> divergences=True, >>> textsize=18) Hexbin pair plot .. plot:: :context: close-figs >>> az.plot_pair(centered, >>> var_names=['theta', 'mu'], >>> coords=coords, >>> textsize=18, >>> kind='hexbin') Pair plot showing divergences and select variables with regular expressions .. plot:: :context: close-figs >>> az.plot_pair(centered, ... var_names=['^t', 'mu'], ... filter_vars="regex", ... coords=coords, ... divergences=True, ... textsize=18) """ valid_kinds = ["scatter", "kde", "hexbin"] kind_boolean: Union[bool, List[bool]] if isinstance(kind, str): kind_boolean = kind in valid_kinds else: kind_boolean = [kind[i] in valid_kinds for i in range(len(kind))] if not np.all(kind_boolean): raise ValueError((f"Plot type {kind} not recognized." "Plot type must be in {valid_kinds}")) if fill_last or contour: warnings.warn( "fill_last and contour will be deprecated. Please use kde_kwargs", UserWarning, ) if plot_kwargs: warnings.warn( "plot_kwargs will be deprecated." " Please use scatter_kwargs, kde_kwargs and/or hexbin_kwargs", UserWarning, ) if coords is None: coords = {} if labeller is None: labeller = BaseLabeller() # Get posterior draws and combine chains dataset = convert_to_dataset(data, group=group) var_names = _var_names(var_names, dataset, filter_vars) plotters = list( xarray_var_iter(get_coords(dataset, coords), var_names=var_names, combined=True) ) flat_var_names = [ labeller.make_label_vert(var_name, sel, isel) for var_name, sel, isel, _ in plotters ] divergent_data = None diverging_mask = None # Assigning divergence group based on group param if group == "posterior": divergent_group = "sample_stats" elif group == "prior": divergent_group = "sample_stats_prior" else: divergences = False # Get diverging draws and combine chains if divergences: if hasattr(data, divergent_group) and hasattr(getattr(data, divergent_group), "diverging"): divergent_data = convert_to_dataset(data, group=divergent_group) _, diverging_mask = xarray_to_ndarray( divergent_data, var_names=("diverging",), combined=True ) diverging_mask = np.squeeze(diverging_mask) else: divergences = False warnings.warn( "Divergences data not found, plotting without divergences. " "Make sure the sample method provides divergences data and " "that it is present in the `diverging` field of `sample_stats` " "or `sample_stats_prior` or set divergences=False", UserWarning, ) if gridsize == "auto": gridsize = int(dataset.dims["draw"] ** 0.35) numvars = len(flat_var_names) if numvars < 2: raise ValueError("Number of variables to be plotted must be 2 or greater.") pairplot_kwargs = dict( ax=ax, plotters=plotters, numvars=numvars, figsize=figsize, textsize=textsize, kind=kind, scatter_kwargs=scatter_kwargs, kde_kwargs=kde_kwargs, hexbin_kwargs=hexbin_kwargs, gridsize=gridsize, colorbar=colorbar, divergences=divergences, diverging_mask=diverging_mask, divergences_kwargs=divergences_kwargs, flat_var_names=flat_var_names, backend_kwargs=backend_kwargs, marginal_kwargs=marginal_kwargs, show=show, marginals=marginals, point_estimate=point_estimate, point_estimate_kwargs=point_estimate_kwargs, point_estimate_marker_kwargs=point_estimate_marker_kwargs, reference_values=reference_values, reference_values_kwargs=reference_values_kwargs, ) if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() # TODO: Add backend kwargs plot = get_plotting_function("plot_pair", "pairplot", backend) ax = plot(**pairplot_kwargs) return ax
def plot_pair( data, group="posterior", var_names: Optional[List[str]] = None, filter_vars: Optional[str] = None, coords=None, marginals=False, figsize=None, textsize=None, kind: Union[str, List[str]] = "scatter", gridsize="auto", contour: Optional[bool] = None, plot_kwargs=None, fill_last=False, divergences=False, colorbar=False, labeller=None, ax=None, divergences_kwargs=None, scatter_kwargs=None, kde_kwargs=None, hexbin_kwargs=None, backend=None, backend_kwargs=None, marginal_kwargs=None, point_estimate=None, point_estimate_kwargs=None, point_estimate_marker_kwargs=None, reference_values=None, reference_values_kwargs=None, show=None, ): """ Plot a scatter, kde and/or hexbin matrix with (optional) marginals on the diagonal. Parameters ---------- data: obj Any object that can be converted to an :class:`az.InferenceData` object refer to documentation of :func:`az.convert_to_dataset` for details group: str, optional Specifies which InferenceData group should be plotted. Defaults to 'posterior'. var_names: list of variable names, optional Variables to be plotted, if None all variable are plotted. Prefix the variables by ``~`` when you want to exclude them from the plot. filter_vars: {None, "like", "regex"}, optional, default=None If ``None`` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la ``pandas.filter``. coords: mapping, optional Coordinates of var_names to be plotted. Passed to `Dataset.sel` marginals: bool, optional If True pairplot will include marginal distributions for every variable figsize: figure size tuple If None, size is (8 + numvars, 8 + numvars) textsize: int Text size for labels. If None it will be autoscaled based on figsize. kind : str or List[str] Type of plot to display (scatter, kde and/or hexbin) gridsize: int or (int, int), optional Only works for kind=hexbin. The number of hexagons in the x-direction. The corresponding number of hexagons in the y-direction is chosen such that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the x-direction and the y-direction. contour : bool, optional, deprecated, Defaults to True. If True plot the 2D KDE using contours, otherwise plot a smooth 2D KDE. Defaults to True. **Note:** this default is implemented in the body of the code, not in argument processing. fill_last : bool If True fill the last contour of the 2D KDE plot. Defaults to True. divergences: Boolean If True divergences will be plotted in a different color, only if group is either 'prior' or 'posterior'. colorbar: bool If True a colorbar will be included as part of the plot (Defaults to False). Only works when kind=hexbin labeller : labeller instance, optional Class providing the method `make_label_vert` to generate the labels in the plot. Read the :ref:`label_guide` for more details and usage examples. ax: axes, optional Matplotlib axes or bokeh figures. divergences_kwargs: dicts, optional Additional keywords passed to ``ax.scatter`` for divergences scatter_kwargs: Additional keywords passed to :meth:`matplotlib.axes.Axes.plot` when using scatter kind kde_kwargs: dict, optional Additional keywords passed to :func:`az.plot_kde` when using kde kind hexbin_kwargs: dict, optional Additional keywords passed to ``ax.hexbin`` when using hexbin kind backend: str, optional Select plotting backend {"matplotlib","bokeh"}. Default "matplotlib". backend_kwargs: bool, optional These are kwargs specific to the backend being used. For additional documentation check the plotting method of the backend. marginal_kwargs: dict, optional Additional keywords passed to :func:`az.plot_dist`, modifying the marginal distributions plotted in the diagonal. point_estimate: str, optional Select point estimate from 'mean', 'mode' or 'median'. The point estimate will be plotted using a scatter marker and vertical/horizontal lines. point_estimate_kwargs: dict, optional Additional keywords passed to ``ax.vline``, ``ax.hline`` (matplotlib) or ``ax.square``, ``Span`` (bokeh) point_estimate_marker_kwargs: dict, optional Additional keywords passed to ax.scatter in point estimate plot. Not available in bokeh reference_values: dict, optional Reference values for the plotted variables. The Reference values will be plotted using a scatter marker reference_values_kwargs: dict, optional Additional keywords passed to ``ax.plot`` or ``ax.circle`` in reference values plot show: bool, optional Call backend show function. Returns ------- axes: matplotlib axes or bokeh figures Examples -------- KDE Pair Plot .. plot:: :context: close-figs >>> import arviz as az >>> centered = az.load_arviz_data('centered_eight') >>> coords = {'school': ['Choate', 'Deerfield']} >>> az.plot_pair(centered, >>> var_names=['theta', 'mu', 'tau'], >>> kind='kde', >>> coords=coords, >>> divergences=True, >>> textsize=18) Hexbin pair plot .. plot:: :context: close-figs >>> az.plot_pair(centered, >>> var_names=['theta', 'mu'], >>> coords=coords, >>> textsize=18, >>> kind='hexbin') Pair plot showing divergences and select variables with regular expressions .. plot:: :context: close-figs >>> az.plot_pair(centered, ... var_names=['^t', 'mu'], ... filter_vars="regex", ... coords=coords, ... divergences=True, ... textsize=18) """ valid_kinds = ["scatter", "kde", "hexbin"] kind_boolean: Union[bool, List[bool]] if isinstance(kind, str): kind_boolean = kind in valid_kinds else: kind_boolean = [kind[i] in valid_kinds for i in range(len(kind))] if not np.all(kind_boolean): raise ValueError((f"Plot type {kind} not recognized." "Plot type must be in {valid_kinds}")) if fill_last or contour: warnings.warn( "fill_last and contour will be deprecated. Please use kde_kwargs", UserWarning, ) if plot_kwargs: warnings.warn( "plot_kwargs will be deprecated." " Please use scatter_kwargs, kde_kwargs and/or hexbin_kwargs", UserWarning, ) if coords is None: coords = {} if labeller is None: labeller = BaseLabeller() # Get posterior draws and combine chains dataset = convert_to_dataset(data, group=group) var_names = _var_names(var_names, dataset, filter_vars) plotters = list( xarray_var_iter(get_coords(dataset, coords), var_names=var_names, combined=True) ) flat_var_names = [ labeller.make_label_vert(var_name, sel, isel) for var_name, sel, isel, _ in plotters ] divergent_data = None diverging_mask = None # Assigning divergence group based on group param if group == "posterior": divergent_group = "sample_stats" elif group == "prior": divergent_group = "sample_stats_prior" else: divergences = False # Get diverging draws and combine chains if divergences: if hasattr(data, divergent_group) and hasattr(getattr(data, divergent_group), "diverging"): divergent_data = convert_to_dataset(data, group=divergent_group) _, diverging_mask = xarray_to_ndarray( divergent_data, var_names=("diverging",), combined=True ) diverging_mask = np.squeeze(diverging_mask) else: divergences = False warnings.warn( "Divergences data not found, plotting without divergences. " "Make sure the sample method provides divergences data and " "that it is present in the `diverging` field of `sample_stats` " "or `sample_stats_prior` or set divergences=False", UserWarning, ) if gridsize == "auto": gridsize = int(dataset.dims["draw"] ** 0.35) numvars = len(flat_var_names) if numvars < 2: raise ValueError("Number of variables to be plotted must be 2 or greater.") pairplot_kwargs = dict( ax=ax, plotters=plotters, numvars=numvars, figsize=figsize, textsize=textsize, kind=kind, scatter_kwargs=scatter_kwargs, kde_kwargs=kde_kwargs, hexbin_kwargs=hexbin_kwargs, gridsize=gridsize, colorbar=colorbar, divergences=divergences, diverging_mask=diverging_mask, divergences_kwargs=divergences_kwargs, flat_var_names=flat_var_names, backend_kwargs=backend_kwargs, marginal_kwargs=marginal_kwargs, show=show, marginals=marginals, point_estimate=point_estimate, point_estimate_kwargs=point_estimate_kwargs, point_estimate_marker_kwargs=point_estimate_marker_kwargs, reference_values=reference_values, reference_values_kwargs=reference_values_kwargs, ) if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() # TODO: Add backend kwargs plot = get_plotting_function("plot_pair", "pairplot", backend) ax = plot(**pairplot_kwargs) return ax
21,551
def main(args, environ): mode = args[1] if len(args) > 1 else "run" desired_uid = int(environ.get("UID", "991")) desired_gid = int(environ.get("GID", "991")) synapse_worker = environ.get("SYNAPSE_WORKER", "synapse.app.homeserver") if (desired_uid == os.getuid()) and (desired_gid == os.getgid()): ownership = None else: ownership = "{}:{}".format(desired_uid, desired_gid) if ownership is None: log("Will not perform chmod/gosu as UserID already matches request") # In generate mode, generate a configuration and missing keys, then exit if mode == "generate": return run_generate_config(environ, ownership) if mode == "migrate_config": # generate a config based on environment vars. config_dir = environ.get("SYNAPSE_CONFIG_DIR", "/data") config_path = environ.get( "SYNAPSE_CONFIG_PATH", config_dir + "/homeserver.yaml" ) return generate_config_from_template( config_dir, config_path, environ, ownership ) if mode != "run": error("Unknown execution mode '%s'" % (mode,)) args = args[2:] if "-m" not in args: args = ["-m", synapse_worker] + args jemallocpath = f"/usr/lib/{platform.machine()}-linux-gnu/libjemalloc.so.2" if os.path.isfile(jemallocpath): environ["LD_PRELOAD"] = jemallocpath else: log(f"Could not find {jemallocpath}, will not use") # if there are no config files passed to synapse, try adding the default file if not any(p.startswith("--config-path") or p.startswith("-c") for p in args): config_dir = environ.get("SYNAPSE_CONFIG_DIR", "/data") config_path = environ.get( "SYNAPSE_CONFIG_PATH", config_dir + "/homeserver.yaml" ) if not os.path.exists(config_path): if "SYNAPSE_SERVER_NAME" in environ: error( """\ Config file '%s' does not exist. The synapse docker image no longer supports generating a config file on-the-fly based on environment variables. You can migrate to a static config file by running with 'migrate_config'. See the README for more details. """ % (config_path,) ) error( "Config file '%s' does not exist. You should either create a new " "config file by running with the `generate` argument (and then edit " "the resulting file before restarting) or specify the path to an " "existing config file with the SYNAPSE_CONFIG_PATH variable." % (config_path,) ) args += ["--config-path", config_path] log("Starting synapse with args " + " ".join(args)) args = ["python"] + args if ownership is not None: args = ["gosu", ownership] + args os.execve("/usr/sbin/gosu", args, environ) else: os.execve("/usr/local/bin/python", args, environ)
def main(args, environ): mode = args[1] if len(args) > 1 else "run" desired_uid = int(environ.get("UID", "991")) desired_gid = int(environ.get("GID", "991")) synapse_worker = environ.get("SYNAPSE_WORKER", "synapse.app.homeserver") if (desired_uid == os.getuid()) and (desired_gid == os.getgid()): ownership = None else: ownership = "{}:{}".format(desired_uid, desired_gid) if ownership is None: log("Will not perform chmod/gosu as UserID already matches request") # In generate mode, generate a configuration and missing keys, then exit if mode == "generate": return run_generate_config(environ, ownership) if mode == "migrate_config": # generate a config based on environment vars. config_dir = environ.get("SYNAPSE_CONFIG_DIR", "/data") config_path = environ.get( "SYNAPSE_CONFIG_PATH", config_dir + "/homeserver.yaml" ) return generate_config_from_template( config_dir, config_path, environ, ownership ) if mode != "run": error("Unknown execution mode '%s'" % (mode,)) args = args[2:] if "-m" not in args: args = ["-m", synapse_worker] + args jemallocpath = "/usr/lib/%s-linux-gnu/libjemalloc.so.2" % (platform.machine(),) if os.path.isfile(jemallocpath): environ["LD_PRELOAD"] = jemallocpath else: log(f"Could not find {jemallocpath}, will not use") # if there are no config files passed to synapse, try adding the default file if not any(p.startswith("--config-path") or p.startswith("-c") for p in args): config_dir = environ.get("SYNAPSE_CONFIG_DIR", "/data") config_path = environ.get( "SYNAPSE_CONFIG_PATH", config_dir + "/homeserver.yaml" ) if not os.path.exists(config_path): if "SYNAPSE_SERVER_NAME" in environ: error( """\ Config file '%s' does not exist. The synapse docker image no longer supports generating a config file on-the-fly based on environment variables. You can migrate to a static config file by running with 'migrate_config'. See the README for more details. """ % (config_path,) ) error( "Config file '%s' does not exist. You should either create a new " "config file by running with the `generate` argument (and then edit " "the resulting file before restarting) or specify the path to an " "existing config file with the SYNAPSE_CONFIG_PATH variable." % (config_path,) ) args += ["--config-path", config_path] log("Starting synapse with args " + " ".join(args)) args = ["python"] + args if ownership is not None: args = ["gosu", ownership] + args os.execve("/usr/sbin/gosu", args, environ) else: os.execve("/usr/local/bin/python", args, environ)
12,200
def configure_parser_run(sub_parsers): help = "Run an executable in a conda environment. [Experimental]" descr = help + dedent(""" Use '--' (double dash) to separate CLI flags for 'conda run' from CLI flags sent to the process being launched. Example usage: $ conda create -y -n my-python-2-env python=2 $ conda run -n my-python-2-env python --version """) epilog = dedent(""" """) p = sub_parsers.add_parser( 'run', description=descr, help=help, epilog=epilog, ) add_parser_prefix(p) p.add_argument( "-v", "--verbose", action=NullCountAction, help="Use once for info, twice for debug, three times for trace.", dest="verbosity", default=NULL, ) p.add_argument( "--dev", action=NullCountAction, help="Sets `CONDA_EXE` to `python -m conda`, assuming the CWD contains " "the root of conda development sources. This is mainly for use " "during tests where we test new conda source against old Python " "versions.", dest="dev", default=NULL, ) p.add_argument( "--debug-wrapper-scripts", action=NullCountAction, help="When this is set, where implemented, the shell wrapper scripts" "will echo to stderr a lot of debugging information.", dest="debug_wrapper_scripts", default=NULL, ) p.add_argument( "--cwd", help="Current working directory for command to run in. Defaults to cwd", default=os.getcwd() ) p.add_argument( "--no-capture-output", help="Don't capture stdout/stdout", action=NullCountAction, default=NULL, ) p.add_argument( 'executable_call', nargs=REMAINDER, help="Executable name, with additional arguments to be passed to the executable " "on invocation.", ) p.set_defaults(func='.main_run.execute')
def configure_parser_run(sub_parsers): help = "Run an executable in a conda environment. [Experimental]" descr = help + dedent(""" Use '--' (double dash) to separate CLI flags for 'conda run' from CLI flags sent to the process being launched. Example usage: $ conda create -y -n my-python-2-env python=2 $ conda run -n my-python-2-env python --version """) epilog = dedent(""" """) p = sub_parsers.add_parser( 'run', description=descr, help=help, epilog=epilog, ) add_parser_prefix(p) p.add_argument( "-v", "--verbose", action=NullCountAction, help="Use once for info, twice for debug, three times for trace.", dest="verbosity", default=NULL, ) p.add_argument( "--dev", action=NullCountAction, help="Sets `CONDA_EXE` to `python -m conda`, assuming the CWD contains " "the root of conda development sources. This is mainly for use " "during tests where we test new conda source against old Python " "versions.", dest="dev", default=NULL, ) p.add_argument( "--debug-wrapper-scripts", action=NullCountAction, help="When this is set, where implemented, the shell wrapper scripts" "will echo to stderr a lot of debugging information.", dest="debug_wrapper_scripts", default=NULL, ) p.add_argument( "--cwd", help="Current working directory for command to run in. Defaults to cwd", default=os.getcwd() ) p.add_argument( "--no-capture-output", help="Don't capture stdout/stderr", action=NullCountAction, default=NULL, ) p.add_argument( 'executable_call', nargs=REMAINDER, help="Executable name, with additional arguments to be passed to the executable " "on invocation.", ) p.set_defaults(func='.main_run.execute')
31,029
def main() -> None: try: api_key = demisto.params().get('apikey') verify = not demisto.params().get('insecure', False) proxy = demisto.params().get('proxy', False) headers = { 'Authorization': f'Bearer {api_key}' } client = Client(headers, verify, proxy) if demisto.command() == 'CloudConvert-import': return_results(import_command(client, demisto.args())) elif demisto.command() == 'CloudConvert-convert': return_results(convert_command(client, demisto.args())) elif demisto.command() == 'CloudConvert-checkstatus': return_results(check_status_command(client, demisto.args())) elif demisto.command() == 'CloudConvert-export': return_results(export_command(client, demisto.args())) elif demisto.command() == 'test-module': return_results(test_module(client)) except Exception as e: err_msg = 'Task id not found or expired' if 'No query results for model' in str(e) else \ ('No more conversion minutes for today for this user' if 'Payment Required' in str(e) else str(e)) return_error(f'Failed to execute {demisto.command()} command. Error: {err_msg}')
def main() -> None: try: api_key = demisto.params().get('apikey') verify = not demisto.params().get('insecure', False) proxy = demisto.params().get('proxy', False) headers = { 'Authorization': f'Bearer {api_key}' } client = Client(headers, verify, proxy) if demisto.command() == 'CloudConvert-import': return_results(import_command(client, demisto.args())) elif demisto.command() == 'CloudConvert-convert': return_results(convert_command(client, demisto.args())) elif demisto.command() == 'CloudConvert-checkstatus': return_results(check_status_command(client, demisto.args())) elif demisto.command() == 'CloudConvert-export': return_results(export_command(client, demisto.args())) elif demisto.command() == 'test-module': return_results(test_module(client)) except Exception as e: err_msg = 'Task id not found or expired' if 'No query results for model' in str(e) else \ ('No more conversion minutes for today for this user' if 'Payment Required' in str(e) else str(e)) return_error(f'Failed to execute {demisto.command()} command. Error: {err_msg}', error=traceback.format_exc())
40,115
def get_imphash(file_object): ''' Generates and returns the md5 import hash of file_object. The imports are sorted before the hex is generated so the order of imports does not matter. :param file_object: The FileObject of which the imphash shall be computed ''' if _is_elf_file(file_object): try: with _suppress_stdout(): functions = normalize_lief_items(lief.parse(file_object.file_path).imported_functions) return md5(','.join(sorted(functions)).encode()).hexdigest() except Exception: logging.error('Could not compute imphash for {}'.format(file_object.file_path), exc_info=True) return None
def get_imphash(file_object): ''' Generates and returns the md5 hash of the imported functions of an ELF file represented by `file_object`. The imports are sorted before the hex is generated so the order of imports does not matter. :param file_object: The FileObject of which the imphash shall be computed ''' if _is_elf_file(file_object): try: with _suppress_stdout(): functions = normalize_lief_items(lief.parse(file_object.file_path).imported_functions) return md5(','.join(sorted(functions)).encode()).hexdigest() except Exception: logging.error('Could not compute imphash for {}'.format(file_object.file_path), exc_info=True) return None
20,491
def remove_social_googleplus(env): """On v13, this field has been removed, but it was put on certain places on the website, and they remain unaltered due to the noupdate=1 flag or being a COW (created on write) view, so we directly remove that part from the view if we find the exact HTML expected code that is on the definition. This is done for avoiding side effects, and it means that if you have altered somehow that part, you will need to remove it manually. """ for key, code in [ ( "website.footer_custom", ' <a t-if="website.social_googleplus" t-att-href="website.social_googleplus"' ' class="btn btn-sm btn-link" rel="publisher"><i class="fa fa-2x fa-google-plus-square"/></a>\n' ), ( "website.footer_default", ' <a t-att-href="website.social_googleplus" t-if="website.social_googleplus" ' 'rel="publisher"><i class="fa fa-google-plus-square"/></a>\n' ), ( "website_blog.opt_blog_rc_follow_us", ' <a t-att-href="website.social_googleplus" t-if="website.social_googleplus" ' 'aria-label="Google Plus" title="Google Plus"><i class="fa fa-google-plus-square"/></a>\n' ), ( "website_mass_mailing.social_links", ' <t t-if="website.social_googleplus">\n' ' <a t-att-href="website.social_googleplus" style="margin-left:10px" ' 'aria-label="Google Plus" title="Google Plus">\n' ' <span class="fa fa-google-plus"/>\n' ' </a>\n' ' </t>\n' ), ]: views = env["ir.ui.view"].search([("key", "=", key)]) for view in views: arch = view.arch.replace(code, "") if arch != view.arch: view.arch = arch
def remove_social_googleplus(env): """On v13, this field has been removed, but it was put on certain places on the website, and they remain unaltered due to the noupdate=1 flag or being a COW (created on write) view, so we directly remove that part from the view if we find the exact HTML expected code that is on the definition. This is done for avoiding side effects, and it means that if you have altered somehow that part, you will need to remove it manually. """ for key, code in [ ( "website.footer_custom", ' <a t-if="website.social_googleplus" t-att-href="website.social_googleplus"' ' class="btn btn-sm btn-link" rel="publisher"><i class="fa fa-2x fa-google-plus-square"/></a>\n' ), ( "website.footer_default", ' <a t-att-href="website.social_googleplus" t-if="website.social_googleplus" ' 'rel="publisher"><i class="fa fa-google-plus-square"/></a>\n' ), ( "website_blog.opt_blog_rc_follow_us", ' <a t-att-href="website.social_googleplus" t-if="website.social_googleplus" ' 'aria-label="Google Plus" title="Google Plus"><i class="fa fa-google-plus-square"/></a>\n' ), ( "website_mass_mailing.social_links", ' <t t-if="website.social_googleplus">\n' ' <a t-att-href="website.social_googleplus" style="margin-left:10px" ' 'aria-label="Google Plus" title="Google Plus">\n' ' <span class="fa fa-google-plus"/>\n' ' </a>\n' ' </t>\n' ), ]: views = env["ir.ui.view"].search([("key", "=", key)]) for view in views: arch = view.arch.replace(code, "") if arch != view.arch: view.arch = arch
6,495
def add_data(employee_map, att_map, holiday_map, filters, default_holiday_list, leave_list=None): record = [] emp_att_map = {} for emp in employee_map: emp_det = employee_map.get(emp) if not emp_det or emp not in att_map: continue row = [] if filters.group_by: row += [" "] row += [emp, emp_det.employee_name] emp_status_map = [] to_date = getdate(filters["to_date"]) from_date =getdate(filters["from_date"]) keys = get_days_columns(to_date, from_date, get_att_map_key=True) status_map = get_attendance_status_abbr_map() total_p = total_a = total_l = total_h = total_um= 0.0 for day in keys: attendance_detail = att_map.get(emp).get(day) emp_holiday_list = emp_det.holiday_list if emp_det.holiday_list else default_holiday_list status = None status = get_status(attendance_detail, holiday_map, emp_holiday_list, day) leave_abbr_map = get_leave_type_abbr() abbr = "" if status: abbr = get_abbr(status, status_map, leave_abbr_map, attendance_detail) emp_status_map.append(abbr) if filters.summarized_view: count = get_totals(status, status_map, attendance_detail) total_p += count[0]; total_l += count[1]; total_a += count[2]; total_h += count[3]; total_um += count[4] if not filters.summarized_view: row += emp_status_map if filters.summarized_view: row += [total_p, total_l, total_a, total_h, total_um] conditions, filters = get_conditions(filters) if not filters.get("employee"): filters.update({"employee": emp}) conditions += " and employee = %(employee)s" elif not filters.get("employee") == emp: filters.update({"employee": emp}) if filters.summarized_view: get_leave_type_and_total_leave_taken(row, conditions, filters, emp, leave_list=leave_list) get_late_entry_and_earl_exit_count(row, conditions, filters) emp_att_map[emp] = emp_status_map record.append(row) return record, emp_att_map
def add_data(employee_map, att_map, holiday_map, filters, default_holiday_list, leave_list=None): record = [] emp_att_map = {} for emp in employee_map: emp_det = employee_map.get(emp) if not emp_det or emp not in att_map: continue row = [] if filters.group_by: row += [" "] row += [emp, emp_det.employee_name] emp_status_map = [] to_date = getdate(filters["to_date"]) from_date =getdate(filters["from_date"]) keys = get_days_columns(to_date, from_date, get_att_map_key=True) status_map = get_attendance_status_abbr_map() total_p = total_a = total_l = total_h = total_um= 0.0 for day in keys: attendance_detail = att_map.get(emp).get(day) emp_holiday_list = emp_det.holiday_list if emp_det.holiday_list else default_holiday_list status = get_status(attendance_detail, holiday_map, emp_holiday_list, day) leave_abbr_map = get_leave_type_abbr() abbr = "" if status: abbr = get_abbr(status, status_map, leave_abbr_map, attendance_detail) emp_status_map.append(abbr) if filters.summarized_view: count = get_totals(status, status_map, attendance_detail) total_p += count[0]; total_l += count[1]; total_a += count[2]; total_h += count[3]; total_um += count[4] if not filters.summarized_view: row += emp_status_map if filters.summarized_view: row += [total_p, total_l, total_a, total_h, total_um] conditions, filters = get_conditions(filters) if not filters.get("employee"): filters.update({"employee": emp}) conditions += " and employee = %(employee)s" elif not filters.get("employee") == emp: filters.update({"employee": emp}) if filters.summarized_view: get_leave_type_and_total_leave_taken(row, conditions, filters, emp, leave_list=leave_list) get_late_entry_and_earl_exit_count(row, conditions, filters) emp_att_map[emp] = emp_status_map record.append(row) return record, emp_att_map
26,940
def get_id_collation_args(): """Get SQLAlchemy args to use for COLLATION""" collation = conf.get('core', 'sql_engine_collation_for_ids', fallback=None) if collation: return {'collation': collation} else: # Automatically use utf8mb3_general_ci collation for mysql # This is backwards-compatible. All our IDS are ASCII anyway so even if # we migrate from previously installed database with different collation and we end up mixture of # COLLATIONS, it's not a problem whatsoever (and we keep it small enough so that our indexes # for MYSQL will not exceed the maximum index size. # # See https://github.com/apache/airflow/pull/17603#issuecomment-901121618. # # We cannot use session/dialect as at this point we are trying to determine the right connection # parameters, so we use the connection conn = conf.get('core', 'sql_alchemy_conn', fallback='') if conn.startswith('mysql'): return {'collation': 'utf8mb3_general_ci'} return {}
def get_id_collation_args(): """Get SQLAlchemy args to use for COLLATION""" collation = conf.get('core', 'sql_engine_collation_for_ids', fallback=None) if collation: return {'collation': collation} else: # Automatically use utf8mb3_general_ci collation for mysql # This is backwards-compatible. All our IDS are ASCII anyway so even if # we migrate from previously installed database with different collation and we end up mixture of # COLLATIONS, it's not a problem whatsoever (and we keep it small enough so that our indexes # for MYSQL will not exceed the maximum index size. # # See https://github.com/apache/airflow/pull/17603#issuecomment-901121618. # # We cannot use session/dialect as at this point we are trying to determine the right connection # parameters, so we use the connection conn = conf.get('core', 'sql_alchemy_conn', fallback='') if conn.startswith('mysql') or conn.startswith('mariadb'): return {'collation': 'utf8mb3_general_ci'} return {}
6,388
def delete_appointments(): doc_list = frappe.get_list('Appointment',filters={'scheduled_time':datetime.datetime.min,'customer_phone_number':'8088'}) for doc in doc_list: doc.delete()
def delete_appointments(): doc_list = frappe.get_list('Appointment', filters={'scheduled_time': datetime.datetime.min, 'customer_phone_number': '8088'}) for doc in doc_list: doc.delete()
41,238
def transformer(cls_or_func: Any) -> Any: """Decorator to verify API and append logging functionality to transformer functions & classes. A transformer is a callable that takes as inputs a cirq.AbstractCircuit and cirq.TransformerContext, and returns another cirq.AbstractCircuit without modifying the input circuit. A transformer could be a function, for example: >>> @cirq.transformer >>> def convert_to_cz( >>> circuit: cirq.AbstractCircuit, context: cirq.TransformerContext >>> ) -> cirq.Circuit: >>> ... Or it could be a class that implements `__call__` with the same API, for example: >>> @cirq.transformer >>> class ConvertToSqrtISwaps: >>> def __init__(self): >>> ... >>> def __call__( >>> self, circuit: cirq.Circuit, context: cirq.TransformerContext >>> ) -> cirq.Circuit: >>> ... Args: cls_or_func: The callable class or function to be decorated. Returns: Decorated class / function which includes additional logging boilerplate. """ if isinstance(cls_or_func, type): cls = cls_or_func method = cls.__call__ @functools.wraps(method) def method_with_logging(self, circuit, context): return _transform_and_log( lambda circuit, context: method(self, circuit, context), cls.__name__, circuit, context, ) setattr(cls, '__call__', method_with_logging) return cls else: assert callable(cls_or_func) func = cls_or_func @functools.wraps(func) def func_with_logging(circuit, context): return _transform_and_log(func, func.__name__, circuit, context) return func_with_logging
def transformer(cls_or_func: Any) -> Any: """Decorator to verify API and append logging functionality to transformer functions & classes. A transformer is a callable that takes as inputs a cirq.AbstractCircuit and `cirq.TransformerContext`, and returns another `cirq.AbstractCircuit` without modifying the input circuit. A transformer could be a function, for example: >>> @cirq.transformer >>> def convert_to_cz( >>> circuit: cirq.AbstractCircuit, context: cirq.TransformerContext >>> ) -> cirq.Circuit: >>> ... Or it could be a class that implements `__call__` with the same API, for example: >>> @cirq.transformer >>> class ConvertToSqrtISwaps: >>> def __init__(self): >>> ... >>> def __call__( >>> self, circuit: cirq.Circuit, context: cirq.TransformerContext >>> ) -> cirq.Circuit: >>> ... Args: cls_or_func: The callable class or function to be decorated. Returns: Decorated class / function which includes additional logging boilerplate. """ if isinstance(cls_or_func, type): cls = cls_or_func method = cls.__call__ @functools.wraps(method) def method_with_logging(self, circuit, context): return _transform_and_log( lambda circuit, context: method(self, circuit, context), cls.__name__, circuit, context, ) setattr(cls, '__call__', method_with_logging) return cls else: assert callable(cls_or_func) func = cls_or_func @functools.wraps(func) def func_with_logging(circuit, context): return _transform_and_log(func, func.__name__, circuit, context) return func_with_logging
6,975
def validate_google_sheets_url(url): if six.PY2: from urlparse import urlparse elif six.PY3: from urllib.parse import urlparse u = urlparse(url) if u.scheme != "https" or u.netloc != "docs.google.com" or "/spreadsheets/" not in u.path: frappe.throw( _('"{0}" is not a valid Google Sheets URL').format(url), title=_("Invalid URL"), )
def validate_google_sheets_url(url): from six.moves.urllib.parse import urlparse u = urlparse(url) if u.scheme != "https" or u.netloc != "docs.google.com" or "/spreadsheets/" not in u.path: frappe.throw( _('"{0}" is not a valid Google Sheets URL').format(url), title=_("Invalid URL"), )
58,842
def preconfigure_modules(compiler, settings): """Returns a list of modules buildable in given environment and settings. For each module in MODULES list, this function checks if the module can be built in the current environment and reports it. Returns a list of module names available. """ nvcc_path = build.get_nvcc_path() hipcc_path = build.get_hipcc_path() summary = [ '', '************************************************************', '* CuPy Configuration Summary *', '************************************************************', '', 'Build Environment:', ' Include directories: {}'.format(str(settings['include_dirs'])), ' Library directories: {}'.format(str(settings['library_dirs'])), ' nvcc command : {}'.format( nvcc_path if nvcc_path else '(not found)'), ' hipcc command : {}'.format( hipcc_path if hipcc_path else '(not found)'), '', 'Environment Variables:', ] for key in ['CFLAGS', 'LDFLAGS', 'LIBRARY_PATH', 'CUDA_PATH', 'NVTOOLSEXT_PATH', 'NVCC', 'HIPCC', 'ROCM_HOME']: summary += [' {:<16}: {}'.format(key, os.environ.get(key, '(none)'))] summary += [ '', 'Modules:', ] ret = [] for module in MODULES: installed = False status = 'No' errmsg = [] if module['name'] == 'cutensor': cutensor_path = os.environ.get('CUTENSOR_PATH', '') inc_path = os.path.join(cutensor_path, 'include') if os.path.exists(inc_path): settings['include_dirs'].append(inc_path) cuda_version = build.get_cuda_version() cuda_major = str(cuda_version // 1000) cuda_major_minor = cuda_major + '.' + \ str((cuda_version // 10) % 100) for cuda_ver in (cuda_major_minor, cuda_major): lib_path = os.path.join(cutensor_path, 'lib', cuda_ver) if os.path.exists(lib_path): settings['library_dirs'].append(lib_path) break if module['name'] == 'cugraph': cusparselt_path = os.environ.get('CUGRAPH_PATH', '') for i in 'include', 'include/cugraph': inc_path = os.path.join(cusparselt_path, i) if os.path.exists(inc_path): settings['include_dirs'].append(inc_path) lib_path = os.path.join(cusparselt_path, 'lib') if os.path.exists(lib_path): settings['library_dirs'].append(lib_path) print('') print('-------- Configuring Module: {} --------'.format( module['name'])) sys.stdout.flush() if not check_library( compiler, includes=module['include'], include_dirs=settings['include_dirs'], define_macros=settings['define_macros'], extra_compile_args=settings['extra_compile_args']): errmsg = ['Include files not found: %s' % module['include'], 'Check your CFLAGS environment variable.'] elif not check_library( compiler, libraries=module['libraries'], library_dirs=settings['library_dirs'], define_macros=settings['define_macros'], extra_compile_args=settings['extra_compile_args']): errmsg = ['Cannot link libraries: %s' % module['libraries'], 'Check your LDFLAGS environment variable.'] elif ('check_method' in module and not module['check_method'](compiler, settings)): # Fail on per-library condition check (version requirements etc.) installed = True errmsg = ['The library is installed but not supported.'] elif (module['name'] in ('thrust', 'cub', 'random') and (nvcc_path is None and hipcc_path is None)): installed = True cmd = 'nvcc' if not use_hip else 'hipcc' errmsg = ['{} command could not be found in PATH.'.format(cmd), 'Check your PATH environment variable.'] else: installed = True status = 'Yes' ret.append(module['name']) if installed and 'version_method' in module: status += ' (version {})'.format(module['version_method'](True)) summary += [ ' {:<10}: {}'.format(module['name'], status) ] # If error message exists... if len(errmsg) != 0: summary += [' -> {}'.format(m) for m in errmsg] # Skip checking other modules when CUDA is unavailable. if module['name'] == 'cuda': break # Get a list of the CC of the devices connected to this node if not use_hip: build.check_compute_capabilities(compiler, settings) if len(ret) != len(MODULES): if 'cuda' in ret: lines = [ 'WARNING: Some modules could not be configured.', 'CuPy will be installed without these modules.', ] else: lines = [ 'ERROR: CUDA could not be found on your system.', ] summary += [ '', ] + lines + [ 'Please refer to the Installation Guide for details:', 'https://docs.cupy.dev/en/stable/install.html', '', ] summary += [ '************************************************************', '', ] print('\n'.join(summary)) return ret, settings
def preconfigure_modules(compiler, settings): """Returns a list of modules buildable in given environment and settings. For each module in MODULES list, this function checks if the module can be built in the current environment and reports it. Returns a list of module names available. """ nvcc_path = build.get_nvcc_path() hipcc_path = build.get_hipcc_path() summary = [ '', '************************************************************', '* CuPy Configuration Summary *', '************************************************************', '', 'Build Environment:', ' Include directories: {}'.format(str(settings['include_dirs'])), ' Library directories: {}'.format(str(settings['library_dirs'])), ' nvcc command : {}'.format( nvcc_path if nvcc_path else '(not found)'), ' hipcc command : {}'.format( hipcc_path if hipcc_path else '(not found)'), '', 'Environment Variables:', ] for key in ['CFLAGS', 'LDFLAGS', 'LIBRARY_PATH', 'CUDA_PATH', 'NVTOOLSEXT_PATH', 'NVCC', 'HIPCC', 'ROCM_HOME']: summary += [' {:<16}: {}'.format(key, os.environ.get(key, '(none)'))] summary += [ '', 'Modules:', ] ret = [] for module in MODULES: installed = False status = 'No' errmsg = [] if module['name'] == 'cutensor': cutensor_path = os.environ.get('CUTENSOR_PATH', '') inc_path = os.path.join(cutensor_path, 'include') if os.path.exists(inc_path): settings['include_dirs'].append(inc_path) cuda_version = build.get_cuda_version() cuda_major = str(cuda_version // 1000) cuda_major_minor = cuda_major + '.' + \ str((cuda_version // 10) % 100) for cuda_ver in (cuda_major_minor, cuda_major): lib_path = os.path.join(cutensor_path, 'lib', cuda_ver) if os.path.exists(lib_path): settings['library_dirs'].append(lib_path) break if module['name'] == 'cugraph': cugraph_path = os.environ.get('CUGRAPH_PATH', '') for i in 'include', 'include/cugraph': inc_path = os.path.join(cugraph_path, i) if os.path.exists(inc_path): settings['include_dirs'].append(inc_path) lib_path = os.path.join(cugraph_path, 'lib') if os.path.exists(lib_path): settings['library_dirs'].append(lib_path) print('') print('-------- Configuring Module: {} --------'.format( module['name'])) sys.stdout.flush() if not check_library( compiler, includes=module['include'], include_dirs=settings['include_dirs'], define_macros=settings['define_macros'], extra_compile_args=settings['extra_compile_args']): errmsg = ['Include files not found: %s' % module['include'], 'Check your CFLAGS environment variable.'] elif not check_library( compiler, libraries=module['libraries'], library_dirs=settings['library_dirs'], define_macros=settings['define_macros'], extra_compile_args=settings['extra_compile_args']): errmsg = ['Cannot link libraries: %s' % module['libraries'], 'Check your LDFLAGS environment variable.'] elif ('check_method' in module and not module['check_method'](compiler, settings)): # Fail on per-library condition check (version requirements etc.) installed = True errmsg = ['The library is installed but not supported.'] elif (module['name'] in ('thrust', 'cub', 'random') and (nvcc_path is None and hipcc_path is None)): installed = True cmd = 'nvcc' if not use_hip else 'hipcc' errmsg = ['{} command could not be found in PATH.'.format(cmd), 'Check your PATH environment variable.'] else: installed = True status = 'Yes' ret.append(module['name']) if installed and 'version_method' in module: status += ' (version {})'.format(module['version_method'](True)) summary += [ ' {:<10}: {}'.format(module['name'], status) ] # If error message exists... if len(errmsg) != 0: summary += [' -> {}'.format(m) for m in errmsg] # Skip checking other modules when CUDA is unavailable. if module['name'] == 'cuda': break # Get a list of the CC of the devices connected to this node if not use_hip: build.check_compute_capabilities(compiler, settings) if len(ret) != len(MODULES): if 'cuda' in ret: lines = [ 'WARNING: Some modules could not be configured.', 'CuPy will be installed without these modules.', ] else: lines = [ 'ERROR: CUDA could not be found on your system.', ] summary += [ '', ] + lines + [ 'Please refer to the Installation Guide for details:', 'https://docs.cupy.dev/en/stable/install.html', '', ] summary += [ '************************************************************', '', ] print('\n'.join(summary)) return ret, settings
38,518
def test_half_space_interior_point_convex_3d(): # Find interior point in convex domain made of half spaces in 3d. n = np.array([[1, -1, 0, 0, 0, 0], [0, 0, 1, -1, 0, 0], [0, 0, 0, 0, 1, -1]]) x0 = np.array([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1]]) pts = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) pt = half_space.half_space_interior_point(n, x0, pts).reshape((-1, 1)) # Verify that the computed point is on the same side of the all normal # vectors as a point known to be in the interior. known_pt = np.array([1.0 / 2.0, 1.0 / 2.0, 1.0 / 2.0]).reshape((-1, 1)) assert np.all( np.sign(np.sum(n * (pt - x0), axis=0)) == np.sign(np.sum(n * (known_pt - x0), axis=0)) )
def test_half_space_interior_point_convex_3d(): # Find interior point in convex domain made of half spaces in 3d. n = np.array([[1, -1, 0, 0, 0, 0], [0, 0, 1, -1, 0, 0], [0, 0, 0, 0, 1, -1]]) x0 = np.array([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1]]) pts = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) pt = half_space.half_space_interior_point(n, x0, pts).reshape((-1, 1)) # Verify that the computed point is on the same side of all the normal # vectors as a point known to be in the interior. known_pt = np.array([1.0 / 2.0, 1.0 / 2.0, 1.0 / 2.0]).reshape((-1, 1)) assert np.all( np.sign(np.sum(n * (pt - x0), axis=0)) == np.sign(np.sum(n * (known_pt - x0), axis=0)) )
31,432
def xsoar_store_list_command(args: Dict[str, Any]) -> CommandResults: namespace = args.get('namespace', 'default') data = demisto.getIntegrationContext().get(namespace) if not data: if namespace == 'default': return_error(f"Namespace: <default> empty!") else: return_error(f"Namespace: <{namespace}> not found!") data = [key for key in demisto.getIntegrationContext().get(namespace)] number_of_keys = len(data) r_data = "\n".join(data) return CommandResults( readable_output=f"{number_of_keys} key(s) found: \n {r_data}", outputs_prefix=f"XSOAR.Store.{namespace}", outputs={"keys": data}, raw_response=data )
def xsoar_store_list_command(args: Dict[str, Any]) -> CommandResults: namespace = args.get('namespace', 'default') data = demisto.getIntegrationContext().get(namespace) if not data: if namespace == 'default': return_error(f"Namespace: <default> empty!") else: return_error(f"Namespace: <{namespace}> not found!") data = [key for key in demisto.getIntegrationContext().get(namespace, [])] number_of_keys = len(data) r_data = "\n".join(data) return CommandResults( readable_output=f"{number_of_keys} key(s) found: \n {r_data}", outputs_prefix=f"XSOAR.Store.{namespace}", outputs={"keys": data}, raw_response=data )
38,677
def git_clone(url, targetdir=None): '''Clone a git repository from a URL. :arg url: The URL to clone from. :arg targetdir: The directory where the repository will cloned to. If :class:`None`, a new directory will be created with the repository name as if ``git clone {url}`` was issued. ''' if not git_repo_exists(url): raise ReframeError('git repository does not exist') targetdir = targetdir or '' run_command('git clone %s %s' % (url, targetdir), check=True)
def git_clone(url, targetdir=None): '''Clone a git repository from a URL. :arg url: The URL to clone from. :arg targetdir: The directory where the repository will be cloned to. If :class:`None`, a new directory will be created with the repository name as if ``git clone {url}`` was issued. ''' if not git_repo_exists(url): raise ReframeError('git repository does not exist') targetdir = targetdir or '' run_command('git clone %s %s' % (url, targetdir), check=True)
6,987
def make_notification_logs(doc, users): from frappe.social.doctype.energy_point_settings.energy_point_settings import is_energy_point_enabled for user in users: username = frappe.db.exists("User", {"email": user, "enabled": 1}) if username: if is_notifications_enabled(user): if doc.type == 'Energy Point' and not is_energy_point_enabled(): return _doc = frappe.new_doc('Notification Log') _doc.update(doc) _doc.for_user = username if _doc.for_user != _doc.from_user or doc.type == "Energy Point" or doc.type == "Alert": _doc.insert(ignore_permissions=True)
def make_notification_logs(doc, users): from frappe.social.doctype.energy_point_settings.energy_point_settings import is_energy_point_enabled for user in users: username = frappe.db.get_value("User", {"email": user, "enabled": 1}) if username: if is_notifications_enabled(user): if doc.type == 'Energy Point' and not is_energy_point_enabled(): return _doc = frappe.new_doc('Notification Log') _doc.update(doc) _doc.for_user = username if _doc.for_user != _doc.from_user or doc.type == "Energy Point" or doc.type == "Alert": _doc.insert(ignore_permissions=True)
30,152
def fetch_production(zone_key='NL', session=None, target_datetime=None, logger=logging.getLogger(__name__), energieopwek_nl=True): if target_datetime is None: target_datetime = arrow.utcnow() r = session or requests.session() consumptions = ENTSOE.fetch_consumption(zone_key=zone_key, session=r, target_datetime=target_datetime, logger=logger) if not consumptions: return for c in consumptions: del c['source'] df_consumptions = pd.DataFrame.from_dict(consumptions).set_index( 'datetime') # NL has exchanges with BE, DE, NO, GB, DK-DK1 exchanges = [] for exchange_key in ['BE', 'DE', 'GB']: zone_1, zone_2 = sorted([exchange_key, zone_key]) exchange = ENTSOE.fetch_exchange(zone_key1=zone_1, zone_key2=zone_2, session=r, target_datetime=target_datetime, logger=logger) if not exchange: return exchanges.extend(exchange or []) # add NO data, fetch once for every hour # This introduces an error, because it doesn't use the average power flow # during the hour, but rather only the value during the first minute of the # hour! zone_1, zone_2 = sorted(['NO', zone_key]) exchange_NO = [statnett.fetch_exchange(zone_key1=zone_1, zone_key2=zone_2, session=r, target_datetime=dt.datetime, logger=logger) for dt in arrow.Arrow.range( 'hour', arrow.get(min([e['datetime'] for e in exchanges])).replace(minute=0), arrow.get(max([e['datetime'] for e in exchanges])).replace(minute=0))] exchanges.extend(exchange_NO) # add DK1 data zone_1, zone_2 = sorted(['DK-DK1', zone_key]) df_dk = pd.DataFrame(DK.fetch_exchange(zone_key1=zone_1, zone_key2=zone_2, session=r, target_datetime=target_datetime, logger=logger)) # Because other exchanges and consumption data is only available per hour # we floor the timpstamp to hour and group by hour with averaging of netFlow df_dk['datetime'] = df_dk['datetime'].dt.floor('H') exchange_DK = df_dk.groupby(['datetime']).aggregate({'netFlow' : 'mean', 'sortedZoneKeys': 'max', 'source' : 'max'}).reset_index() # because averaging with high precision numbers leads to rounding errors exchange_DK = exchange_DK.round({'netFlow': 3}) exchanges.extend(exchange_DK.to_dict(orient='records')) # We want to know the net-imports into NL, so if NL is in zone_1 we need # to flip the direction of the flow. E.g. 100MW for NL->DE means 100MW # export to DE and needs to become -100MW for import to NL. for e in exchanges: if(e['sortedZoneKeys'].startswith('NL->')): e['NL_import'] = -1 * e['netFlow'] else: e['NL_import'] = e['netFlow'] del e['source'] del e['netFlow'] df_exchanges = pd.DataFrame.from_dict(exchanges).set_index('datetime') # Sum all exchanges to NL imports df_exchanges = df_exchanges.groupby('datetime').sum() # Fill missing values by propagating the value forward df_consumptions_with_exchanges = df_consumptions.join(df_exchanges).fillna( method='ffill', limit=3) # Limit to 3 x 15min # Load = Generation + netImports # => Generation = Load - netImports df_total_generations = (df_consumptions_with_exchanges['consumption'] - df_consumptions_with_exchanges['NL_import']) # Fetch all production # The energieopwek_nl parser is backwards compatible with ENTSOE parser. # Because of data quality issues we switch to using energieopwek, but if # data quality of ENTSOE improves we can switch back to using a single # source. productions_ENTSOE = ENTSOE.fetch_production(zone_key=zone_key, session=r, target_datetime=target_datetime, logger=logger) if energieopwek_nl: productions_eopwek = fetch_production_energieopwek_nl(session=r, target_datetime=target_datetime, logger=logger) # For every production value we look up the corresponding ENTSOE # values and copy the nuclear, gas, coal, biomass and unknown production. productions = [] for p in productions_eopwek: entsoe_value = next((pe for pe in productions_ENTSOE if pe["datetime"] == p["datetime"]), None) if entsoe_value: p["production"]["nuclear"] = entsoe_value["production"]["nuclear"] p["production"]["gas"] = entsoe_value["production"]["gas"] p["production"]["coal"] = entsoe_value["production"]["coal"] p["production"]["biomass"] = entsoe_value["production"]["biomass"] p["production"]["unknown"] = entsoe_value["production"]["unknown"] productions.append(p) else: productions = productions_ENTSOE if not productions: return # Flatten production dictionaries (we ignore storage) for p in productions: # if for some reason theré's no unknown value if not 'unknown' in p['production']: p['production']['unknown'] = 0 Z = sum([x or 0 for x in p['production'].values()]) # Only calculate the difference if the datetime exists # If total ENTSOE reported production (Z) is less than total generation # (calculated from consumption and imports), then there must be some # unknown production missing, so we add the difference. # The difference can actually be negative, because consumption is based # on TSO network load, but locally generated electricity may never leave # the DSO network and be substantial (e.g. Solar). if p['datetime'] in df_total_generations and Z < df_total_generations[p['datetime']]: p['production']['unknown'] = round(( df_total_generations[p['datetime']] - Z + p['production']['unknown']), 3) # Filter invalid # We should probably add logging to this return [p for p in productions if p['production']['unknown'] > 0]
def fetch_production(zone_key='NL', session=None, target_datetime=None, logger=logging.getLogger(__name__), energieopwek_nl=True): if target_datetime is None: target_datetime = arrow.utcnow() r = session or requests.session() consumptions = ENTSOE.fetch_consumption(zone_key=zone_key, session=r, target_datetime=target_datetime, logger=logger) if not consumptions: return for c in consumptions: del c['source'] df_consumptions = pd.DataFrame.from_dict(consumptions).set_index( 'datetime') # NL has exchanges with BE, DE, NO, GB, DK-DK1 exchanges = [] for exchange_key in ['BE', 'DE', 'GB']: zone_1, zone_2 = sorted([exchange_key, zone_key]) exchange = ENTSOE.fetch_exchange(zone_key1=zone_1, zone_key2=zone_2, session=r, target_datetime=target_datetime, logger=logger) if not exchange: return exchanges.extend(exchange or []) # add NO data, fetch once for every hour # This introduces an error, because it doesn't use the average power flow # during the hour, but rather only the value during the first minute of the # hour! zone_1, zone_2 = sorted(['NO', zone_key]) exchange_NO = [statnett.fetch_exchange(zone_key1=zone_1, zone_key2=zone_2, session=r, target_datetime=dt.datetime, logger=logger) for dt in arrow.Arrow.range( 'hour', arrow.get(min([e['datetime'] for e in exchanges])).replace(minute=0), arrow.get(max([e['datetime'] for e in exchanges])).replace(minute=0))] exchanges.extend(exchange_NO) # add DK1 data zone_1, zone_2 = sorted(['DK-DK1', zone_key]) df_dk = pd.DataFrame(DK.fetch_exchange(zone_key1=zone_1, zone_key2=zone_2, session=r, target_datetime=target_datetime, logger=logger)) # Because other exchanges and consumption data is only available per hour # we floor the timpstamp to hour and group by hour with averaging of netFlow df_dk['datetime'] = df_dk['datetime'].dt.floor('H') exchange_DK = df_dk.groupby(['datetime']).aggregate({'netFlow' : 'mean', 'sortedZoneKeys': 'max', 'source' : 'max'}).reset_index() # because averaging with high precision numbers leads to rounding errors exchange_DK = exchange_DK.round({'netFlow': 3}) exchanges.extend(exchange_DK.to_dict(orient='records')) # We want to know the net-imports into NL, so if NL is in zone_1 we need # to flip the direction of the flow. E.g. 100MW for NL->DE means 100MW # export to DE and needs to become -100MW for import to NL. for e in exchanges: if(e['sortedZoneKeys'].startswith('NL->')): e['NL_import'] = -1 * e['netFlow'] else: e['NL_import'] = e['netFlow'] del e['source'] del e['netFlow'] df_exchanges = pd.DataFrame.from_dict(exchanges).set_index('datetime') # Sum all exchanges to NL imports df_exchanges = df_exchanges.groupby('datetime').sum() # Fill missing values by propagating the value forward df_consumptions_with_exchanges = df_consumptions.join(df_exchanges).fillna( method='ffill', limit=3) # Limit to 3 x 15min # Load = Generation + netImports # => Generation = Load - netImports df_total_generations = (df_consumptions_with_exchanges['consumption'] - df_consumptions_with_exchanges['NL_import']) # Fetch all production # The energieopwek_nl parser is backwards compatible with ENTSOE parser. # Because of data quality issues we switch to using energieopwek, but if # data quality of ENTSOE improves we can switch back to using a single # source. productions_ENTSOE = ENTSOE.fetch_production(zone_key=zone_key, session=r, target_datetime=target_datetime, logger=logger) if energieopwek_nl: productions_eopwek = fetch_production_energieopwek_nl(session=r, target_datetime=target_datetime, logger=logger) # For every production value we look up the corresponding ENTSOE # values and copy the nuclear, gas, coal, biomass and unknown production. productions = [] for p in productions_eopwek: entsoe_value = next((pe for pe in productions_ENTSOE if pe["datetime"] == p["datetime"]), None) if entsoe_value: p["production"]["nuclear"] = entsoe_value["production"]["nuclear"] p["production"]["gas"] = entsoe_value["production"]["gas"] p["production"]["coal"] = entsoe_value["production"]["coal"] p["production"]["biomass"] = entsoe_value["production"]["biomass"] p["production"]["unknown"] = entsoe_value["production"]["unknown"] productions.append(p) else: productions = productions_ENTSOE if not productions: return # Flatten production dictionaries (we ignore storage) for p in productions: # if for some reason theré's no unknown value if not 'unknown' in p['production'] or p['production']['unknown'] == None: p['production']['unknown'] = 0 Z = sum([x or 0 for x in p['production'].values()]) # Only calculate the difference if the datetime exists # If total ENTSOE reported production (Z) is less than total generation # (calculated from consumption and imports), then there must be some # unknown production missing, so we add the difference. # The difference can actually be negative, because consumption is based # on TSO network load, but locally generated electricity may never leave # the DSO network and be substantial (e.g. Solar). if p['datetime'] in df_total_generations and Z < df_total_generations[p['datetime']]: p['production']['unknown'] = round(( df_total_generations[p['datetime']] - Z + p['production']['unknown']), 3) # Filter invalid # We should probably add logging to this return [p for p in productions if p['production']['unknown'] > 0]
49,758
def get_options(argv=None): """ Convert options into commands. Return commands, message """ parser = argparse.ArgumentParser(usage="spyder [options] files") parser.add_argument( '--new-instance', action='store_true', default=False, help="Run a new instance of Spyder, even if the single " "instance mode has been turned on (default)" ) parser.add_argument( '--defaults', dest="reset_to_defaults", action='store_true', default=False, help="Reset configuration settings to defaults" ) parser.add_argument( '--reset', dest="reset_config_files", action='store_true', default=False, help="Remove all configuration files!" ) parser.add_argument( '--optimize', action='store_true', default=False, help="Optimize Spyder bytecode (this may require " "administrative privileges)" ) parser.add_argument( '-w', '--workdir', dest="working_directory", default=None, help="Default working directory" ) parser.add_argument( '--hide-console', action='store_true', default=False, help="Hide parent console window (Windows)" ) parser.add_argument( '--show-console', action='store_true', default=False, help="(Deprecated) Does nothing, now the default behavior " "is to show the console" ) parser.add_argument( '--multithread', dest="multithreaded", action='store_true', default=False, help="Internal console is executed in another thread " "(separate from main application thread)" ) parser.add_argument( '--profile', action='store_true', default=False, help="Profile mode (internal test, not related " "with Python profiling)" ) parser.add_argument( '--window-title', type=str, default=None, help="String to show in the main window title" ) parser.add_argument( '-p', '--project', default=None, type=str, dest="project", help="Path that contains an Spyder project" ) parser.add_argument( '--opengl', default=None, dest="opengl_implementation", choices=['software', 'desktop', 'gles'], help="OpenGL implementation to pass to Qt" ) parser.add_argument( '--paths', action='store_true', default=False, help="Show all Spyder configuration paths" ) parser.add_argument( '--debug-info', default=None, dest="debug_info", choices=['minimal', 'verbose'], help=("Level of internal debugging info to give. " "'minimal' only logs a small amount of " "confirmation messages and 'verbose' logs a " "lot of detailed information.") ) parser.add_argument( '--debug-output', default='terminal', dest="debug_output", choices=['terminal', 'file'], help=("Print internal debugging info to the terminal and a file in " "the configuration directory or to the terminal and a file " "called spyder-debug.log in the current working directory. " "Default is 'terminal'.") ) parser.add_argument( '--filter-log', default='', help="Comma-separated module name hierarchies whose log " "messages should be shown. e.g., " "spyder.plugins.completion,spyder.plugins.editor" ) parser.add_argument( '--safe-mode', dest="safe_mode", action='store_true', default=False, help="Start Spyder with a clean configuration directory" ) parser.add_argument( '--offline', dest="offline", action='store_true', default=False, help="Disable all web engine and download functionality." ) parser.add_argument( '--report-segfault', dest="report_segfault", action='store_true', default=False, help="Report segmentation fault to Github." ) parser.add_argument( '--conf-dir', type=str, dest="conf_dir", default=None, help="Choose a configuration directory to use for Spyder." ) parser.add_argument('files', nargs='*') options = parser.parse_args(argv) args = options.files return options, args
def get_options(argv=None): """ Convert options into commands. Return commands, message """ parser = argparse.ArgumentParser(usage="spyder [options] files") parser.add_argument( '--new-instance', action='store_true', default=False, help="Run a new instance of Spyder, even if the single " "instance mode has been turned on (default)" ) parser.add_argument( '--defaults', dest="reset_to_defaults", action='store_true', default=False, help="Reset configuration settings to defaults" ) parser.add_argument( '--reset', dest="reset_config_files", action='store_true', default=False, help="Remove all configuration files!" ) parser.add_argument( '--optimize', action='store_true', default=False, help="Optimize Spyder bytecode (this may require " "administrative privileges)" ) parser.add_argument( '-w', '--workdir', dest="working_directory", default=None, help="Default working directory" ) parser.add_argument( '--hide-console', action='store_true', default=False, help="Hide parent console window (Windows)" ) parser.add_argument( '--show-console', action='store_true', default=False, help="(Deprecated) Does nothing, now the default behavior " "is to show the console" ) parser.add_argument( '--multithread', dest="multithreaded", action='store_true', default=False, help="Internal console is executed in another thread " "(separate from main application thread)" ) parser.add_argument( '--profile', action='store_true', default=False, help="Profile mode (internal test, not related " "with Python profiling)" ) parser.add_argument( '--window-title', type=str, default=None, help="String to show in the main window title" ) parser.add_argument( '-p', '--project', default=None, type=str, dest="project", help="Path that contains an Spyder project" ) parser.add_argument( '--opengl', default=None, dest="opengl_implementation", choices=['software', 'desktop', 'gles'], help="OpenGL implementation to pass to Qt" ) parser.add_argument( '--paths', action='store_true', default=False, help="Show all Spyder configuration paths" ) parser.add_argument( '--debug-info', default=None, dest="debug_info", choices=['minimal', 'verbose'], help=("Level of internal debugging info to give. " "'minimal' only logs a small amount of " "confirmation messages and 'verbose' logs a " "lot of detailed information.") ) parser.add_argument( '--debug-output', default='terminal', dest="debug_output", choices=['terminal', 'file'], help=("Print internal debugging info to the terminal and a file in " "the configuration directory or to the terminal and a file " "called spyder-debug.log in the current working directory. " "Default is 'terminal'.") ) parser.add_argument( '--filter-log', default='', help="Comma-separated module name hierarchies whose log " "messages should be shown. e.g., " "spyder.plugins.completion,spyder.plugins.editor" ) parser.add_argument( '--safe-mode', dest="safe_mode", action='store_true', default=False, help="Start Spyder with a clean configuration directory" ) parser.add_argument( '--offline', dest="offline", action='store_true', default=False, help="Disable the usage of web widgets in Spyder (e.g. the Help and " "Online help panes)." ) parser.add_argument( '--report-segfault', dest="report_segfault", action='store_true', default=False, help="Report segmentation fault to Github." ) parser.add_argument( '--conf-dir', type=str, dest="conf_dir", default=None, help="Choose a configuration directory to use for Spyder." ) parser.add_argument('files', nargs='*') options = parser.parse_args(argv) args = options.files return options, args
41,907
def _get_contour_plot(study: Study, params: Optional[List[str]] = None) -> "go.Figure": layout = go.Layout(title="Contour Plot") trials = [trial for trial in study.trials if trial.state == TrialState.COMPLETE] if len(trials) == 0: _logger.warning("Your study does not have any completed trials.") return go.Figure(data=[], layout=layout) all_params = {p_name for t in trials for p_name in t.params.keys()} if params is None: sorted_params = sorted(list(all_params)) elif len(params) <= 1: _logger.warning("The length of params must be greater than 1.") return go.Figure(data=[], layout=layout) else: for input_p_name in params: if input_p_name not in all_params: raise ValueError("Parameter {} does not exist in your study.".format(input_p_name)) sorted_params = sorted(list(set(params))) padding_ratio = 0.05 param_values_range = {} update_category_axes = {} for p_name in sorted_params: values = [t.params[p_name] for t in trials if p_name in t.params] min_value = min(values) max_value = max(values) if _is_log_scale(trials, p_name): padding = (math.log10(max_value) - math.log10(min_value)) * padding_ratio min_value = math.pow(10, math.log10(min_value) - padding) max_value = math.pow(10, math.log10(max_value) + padding) elif _is_categorical(trials, p_name): update_category_axes[p_name] = any([str(v).isnumeric() for v in set(values)]) else: padding = (max_value - min_value) * padding_ratio min_value = min_value - padding max_value = max_value + padding param_values_range[p_name] = (min_value, max_value) if len(sorted_params) == 2: x_param = sorted_params[0] y_param = sorted_params[1] sub_plots = _generate_contour_subplot( trials, x_param, y_param, study.direction, param_values_range ) figure = go.Figure(data=sub_plots, layout=layout) figure.update_xaxes(title_text=x_param, range=param_values_range[x_param]) figure.update_yaxes(title_text=y_param, range=param_values_range[y_param]) if _is_categorical(trials, x_param) and update_category_axes[x_param]: figure.update_xaxes(type="category") if _is_categorical(trials, y_param) and update_category_axes[y_param]: figure.update_yaxes(type="category") if _is_log_scale(trials, x_param): log_range = [math.log10(p) for p in param_values_range[x_param]] figure.update_xaxes(range=log_range, type="log") if _is_log_scale(trials, y_param): log_range = [math.log10(p) for p in param_values_range[y_param]] figure.update_yaxes(range=log_range, type="log") else: figure = make_subplots( rows=len(sorted_params), cols=len(sorted_params), shared_xaxes=True, shared_yaxes=True ) figure.update_layout(layout) showscale = True # showscale option only needs to be specified once for x_i, x_param in enumerate(sorted_params): for y_i, y_param in enumerate(sorted_params): if x_param == y_param: figure.add_trace(go.Scatter(), row=y_i + 1, col=x_i + 1) else: sub_plots = _generate_contour_subplot( trials, x_param, y_param, study.direction, param_values_range ) contour = sub_plots[0] scatter = sub_plots[1] contour.update(showscale=showscale) # showscale's default is True if showscale: showscale = False figure.add_trace(contour, row=y_i + 1, col=x_i + 1) figure.add_trace(scatter, row=y_i + 1, col=x_i + 1) figure.update_xaxes(range=param_values_range[x_param], row=y_i + 1, col=x_i + 1) figure.update_yaxes(range=param_values_range[y_param], row=y_i + 1, col=x_i + 1) if _is_categorical(trials, x_param) and update_category_axes[x_param]: figure.update_xaxes(type="category", row=y_i + 1, col=x_i + 1) if _is_categorical(trials, y_param) and update_category_axes[y_param]: figure.update_yaxes(type="category", row=y_i + 1, col=x_i + 1) if _is_log_scale(trials, x_param): log_range = [math.log10(p) for p in param_values_range[x_param]] figure.update_xaxes(range=log_range, type="log", row=y_i + 1, col=x_i + 1) if _is_log_scale(trials, y_param): log_range = [math.log10(p) for p in param_values_range[y_param]] figure.update_yaxes(range=log_range, type="log", row=y_i + 1, col=x_i + 1) if x_i == 0: figure.update_yaxes(title_text=y_param, row=y_i + 1, col=x_i + 1) if y_i == len(sorted_params) - 1: figure.update_xaxes(title_text=x_param, row=y_i + 1, col=x_i + 1) return figure
def _get_contour_plot(study: Study, params: Optional[List[str]] = None) -> "go.Figure": layout = go.Layout(title="Contour Plot") trials = [trial for trial in study.trials if trial.state == TrialState.COMPLETE] if len(trials) == 0: _logger.warning("Your study does not have any completed trials.") return go.Figure(data=[], layout=layout) all_params = {p_name for t in trials for p_name in t.params.keys()} if params is None: sorted_params = sorted(list(all_params)) elif len(params) <= 1: _logger.warning("The length of params must be greater than 1.") return go.Figure(data=[], layout=layout) else: for input_p_name in params: if input_p_name not in all_params: raise ValueError("Parameter {} does not exist in your study.".format(input_p_name)) sorted_params = sorted(list(set(params))) padding_ratio = 0.05 param_values_range = {} update_category_axes = {} for p_name in sorted_params: values = [t.params[p_name] for t in trials if p_name in t.params] min_value = min(values) max_value = max(values) if _is_log_scale(trials, p_name): padding = (math.log10(max_value) - math.log10(min_value)) * padding_ratio min_value = math.pow(10, math.log10(min_value) - padding) max_value = math.pow(10, math.log10(max_value) + padding) elif _is_categorical(trials, p_name): update_category_axes[p_name] = any([str(v).isnumeric() for v in set(values)]) else: padding = (max_value - min_value) * padding_ratio min_value = min_value - padding max_value = max_value + padding param_values_range[p_name] = (min_value, max_value) if len(sorted_params) == 2: x_param = sorted_params[0] y_param = sorted_params[1] sub_plots = _generate_contour_subplot( trials, x_param, y_param, study.direction, param_values_range ) figure = go.Figure(data=sub_plots, layout=layout) figure.update_xaxes(title_text=x_param, range=param_values_range[x_param]) figure.update_yaxes(title_text=y_param, range=param_values_range[y_param]) if _is_categorical(trials, x_param) and update_category_axes[x_param]: figure.update_xaxes(type="category") if _is_categorical(trials, y_param) and update_category_axes[y_param]: figure.update_yaxes(type="category") if _is_log_scale(trials, x_param): log_range = [math.log10(p) for p in param_values_range[x_param]] figure.update_xaxes(range=log_range, type="log") if _is_log_scale(trials, y_param): log_range = [math.log10(p) for p in param_values_range[y_param]] figure.update_yaxes(range=log_range, type="log") else: figure = make_subplots( rows=len(sorted_params), cols=len(sorted_params), shared_xaxes=True, shared_yaxes=True ) figure.update_layout(layout) showscale = True # showscale option only needs to be specified once for x_i, x_param in enumerate(sorted_params): for y_i, y_param in enumerate(sorted_params): if x_param == y_param: figure.add_trace(go.Scatter(), row=y_i + 1, col=x_i + 1) else: sub_plots = _generate_contour_subplot( trials, x_param, y_param, study.direction, param_values_range ) contour = sub_plots[0] scatter = sub_plots[1] contour.update(showscale=showscale) # showscale's default is True if showscale: showscale = False figure.add_trace(contour, row=y_i + 1, col=x_i + 1) figure.add_trace(scatter, row=y_i + 1, col=x_i + 1) figure.update_xaxes(range=param_values_range[x_param], row=y_i + 1, col=x_i + 1) figure.update_yaxes(range=param_values_range[y_param], row=y_i + 1, col=x_i + 1) if update_category_axes.get(x_param, False): figure.update_xaxes(type="category", row=y_i + 1, col=x_i + 1) if _is_categorical(trials, y_param) and update_category_axes[y_param]: figure.update_yaxes(type="category", row=y_i + 1, col=x_i + 1) if _is_log_scale(trials, x_param): log_range = [math.log10(p) for p in param_values_range[x_param]] figure.update_xaxes(range=log_range, type="log", row=y_i + 1, col=x_i + 1) if _is_log_scale(trials, y_param): log_range = [math.log10(p) for p in param_values_range[y_param]] figure.update_yaxes(range=log_range, type="log", row=y_i + 1, col=x_i + 1) if x_i == 0: figure.update_yaxes(title_text=y_param, row=y_i + 1, col=x_i + 1) if y_i == len(sorted_params) - 1: figure.update_xaxes(title_text=x_param, row=y_i + 1, col=x_i + 1) return figure
58,023
def get_jobs(topology: Topology, device_filter_string: str = None, status: str = None, job_type: str = None, id: int = None) -> List[ShowJobsAllResultData]: """ Get all the jobs from the devices in the environment, or a single job when ID is specified. Jobs are sorted by the most recent queued and are returned in a way that's consumable by Generic Polling. :param topology: `Topology` instance !no-auto-argument :param device_filter_string: String to filter to only show specific hostnames or serial numbers. :param status: Filter returned jobs by status :param job_type: Filter returned jobs by type :param id: Filter by ID """ if id: id = int(id) result: List[ShowJobsAllResultData] = UniversalCommand.show_jobs( topology, device_filter_string, job_type=job_type, status=status, id=id ) return result
def get_jobs(topology: Topology, device_filter_string: str = None, status: str = None, job_type: str = None, id: int = None) -> List[ShowJobsAllResultData]: """ Get all the jobs from the devices in the environment, or a single job when ID is specified. Jobs are sorted by the most recent queued and are returned in a way that's consumable by Generic Polling. :param topology: `Topology` instance !no-auto-argument :param device_filter_string: String to filter to only show specific hostnames or serial numbers. :param status: Filter returned jobs by status :param job_type: Filter returned jobs by type :param id: Filter by ID """ _id = arg_to_number(id) return UniversalCommand.show_jobs( topology, device_filter_string, job_type=job_type, status=status, id=_id )
43,174
def double_radius_node_labeling(g, src, dst): r"""Double Radius Node Labeling, as introduced in `Link Prediction Based on Graph Neural Networks <https://arxiv.org/abs/1802.09691>`__. This function computes the double radius node labeling for each node to mark nodes' different roles in an enclosing subgraph, given a target link. The node labels of source :math:`s` and destination :math:`t` are set to 1 and those of unreachable nodes from source or destination are set to 0. The labels of other nodes :math:`l` are defined according to the following hash function: :math:`l = 1 + min(d_s, d_t) + (d//2)[(d//2) + (d%2) - 1]` where :math:`d_s` and :math:`d_t` denote the shortest distance to the source and the target, respectively. :math:`d = d_s + d_t`. Parameters ---------- g : DGLGraph The input graph. src : int The source node id of the target link. dst : int The destination node id of the target link. Returns ------- Tensor The double radius node labeling Tensor of shape :math:`(N,)`, where :math:`N` is the number of nodes in the input graph. Example ------- >>> import dgl >>> g = dgl.graph(([0,0,0,0,1,1,2,4], [1,2,3,6,3,4,4,5])) >>> dgl.double_radius_node_labeling(g, 0, 1) tensor([1, 1, 3, 2, 3, 7, 0]) """ adj = g.adj(scipy_fmt='csr') src, dst = (dst, src) if src > dst else (src, dst) idx = list(range(src)) + list(range(src + 1, adj.shape[0])) adj_wo_src = adj[idx, :][:, idx] idx = list(range(dst)) + list(range(dst + 1, adj.shape[0])) adj_wo_dst = adj[idx, :][:, idx] # distance to the source node ds = sparse.csgraph.shortest_path(adj_wo_dst, directed=False, unweighted=True, indices=src) ds = np.insert(ds, dst, 0, axis=0) # distance to the destination node dt = sparse.csgraph.shortest_path(adj_wo_src, directed=False, unweighted=True, indices=dst-1) dt = np.insert(dt, src, 0, axis=0) d = ds + dt # suppress invalid value (nan) warnings with np.errstate(invalid='ignore'): z = 1 + np.stack([ds, dt]).min(axis=0) + d//2 * (d//2 + d%2 -1) z[src] = 1 z[dst] = 1 z[np.isnan(z)] = 0 # unreachable nodes return F.tensor(z, F.int64)
def double_radius_node_labeling(g, src, dst): r"""Double Radius Node Labeling, as introduced in `Link Prediction Based on Graph Neural Networks <https://arxiv.org/abs/1802.09691>`__. This function computes the double radius node labeling for each node to mark nodes' different roles in an enclosing subgraph, given a target link. The node labels of source :math:`s` and destination :math:`t` are set to 1 and those of unreachable nodes from source or destination are set to 0. The labels of other nodes :math:`l` are defined according to the following hash function: :math:`l = 1 + min(d_s, d_t) + (d//2)[(d//2) + (d%2) - 1]` where :math:`d_s` and :math:`d_t` denote the shortest distance to the source and the target, respectively. :math:`d = d_s + d_t`. Parameters ---------- g : DGLGraph The input graph. src : int The source node ID of the target link. dst : int The destination node id of the target link. Returns ------- Tensor The double radius node labeling Tensor of shape :math:`(N,)`, where :math:`N` is the number of nodes in the input graph. Example ------- >>> import dgl >>> g = dgl.graph(([0,0,0,0,1,1,2,4], [1,2,3,6,3,4,4,5])) >>> dgl.double_radius_node_labeling(g, 0, 1) tensor([1, 1, 3, 2, 3, 7, 0]) """ adj = g.adj(scipy_fmt='csr') src, dst = (dst, src) if src > dst else (src, dst) idx = list(range(src)) + list(range(src + 1, adj.shape[0])) adj_wo_src = adj[idx, :][:, idx] idx = list(range(dst)) + list(range(dst + 1, adj.shape[0])) adj_wo_dst = adj[idx, :][:, idx] # distance to the source node ds = sparse.csgraph.shortest_path(adj_wo_dst, directed=False, unweighted=True, indices=src) ds = np.insert(ds, dst, 0, axis=0) # distance to the destination node dt = sparse.csgraph.shortest_path(adj_wo_src, directed=False, unweighted=True, indices=dst-1) dt = np.insert(dt, src, 0, axis=0) d = ds + dt # suppress invalid value (nan) warnings with np.errstate(invalid='ignore'): z = 1 + np.stack([ds, dt]).min(axis=0) + d//2 * (d//2 + d%2 -1) z[src] = 1 z[dst] = 1 z[np.isnan(z)] = 0 # unreachable nodes return F.tensor(z, F.int64)
49,116
def is_convex(f, *syms, domain=S.Reals): r"""Determines the convexity of the function passed in the argument. Parameters ========== f : :py:class:`~.Expr` The concerned function. syms : Tuple of :py:class:`~.Symbol` The variables with respect to which the convexity is to be determined. domain : :py:class:`~.Interval`, optional The domain over which the convexity of the function has to be checked. If unspecified, S.Reals will be the default domain. Returns ======= bool The method returns ``True`` if the function is convex otherwise it returns ``False``. Raises ====== NotImplementedError The check for the convexity of multivariate functions is not implemented yet. Notes ===== To determine concavity of a function pass `-f` as the concerned function. To determine logarithmic convexity of a function pass `\log(f)` as concerned function. To determine logartihmic concavity of a function pass `-\log(f)` as concerned function. Currently, convexity check of multivariate functions is not handled. Examples ======== >>> from sympy import is_convex, symbols, exp, oo, Interval >>> x = symbols('x') >>> is_convex(exp(x), x) True >>> is_convex(x**3, x, domain = Interval(-1, oo)) False >>> is_convex(1/x**2, x, domain=Interval.open(0, oo)) True References ========== .. [1] https://en.wikipedia.org/wiki/Convex_function .. [2] http://www.ifp.illinois.edu/~angelia/L3_convfunc.pdf .. [3] https://en.wikipedia.org/wiki/Logarithmically_convex_function .. [4] https://en.wikipedia.org/wiki/Logarithmically_concave_function .. [5] https://en.wikipedia.org/wiki/Concave_function """ if len(syms) > 1: raise NotImplementedError( "The check for the convexity of multivariate functions is not implemented yet.") from sympy.solvers.inequalities import solve_univariate_inequality f = _sympify(f) var = syms[0] s = singularities(f, var) for ele in s: if ele in domain: return False condition = f.diff(var, 2) < 0 if solve_univariate_inequality(condition, var, False, domain): return False return True
def is_convex(f, *syms, domain=S.Reals): r"""Determines the convexity of the function passed in the argument. Parameters ========== f : :py:class:`~.Expr` The concerned function. syms : Tuple of :py:class:`~.Symbol` The variables with respect to which the convexity is to be determined. domain : :py:class:`~.Interval`, optional The domain over which the convexity of the function has to be checked. If unspecified, S.Reals will be the default domain. Returns ======= bool The method returns ``True`` if the function is convex otherwise it returns ``False``. Raises ====== NotImplementedError The check for the convexity of multivariate functions is not implemented yet. Notes ===== To determine concavity of a function pass `-f` as the concerned function. To determine logarithmic convexity of a function pass `\log(f)` as concerned function. To determine logartihmic concavity of a function pass `-\log(f)` as concerned function. Currently, convexity check of multivariate functions is not handled. Examples ======== >>> from sympy import is_convex, symbols, exp, oo, Interval >>> x = symbols('x') >>> is_convex(exp(x), x) True >>> is_convex(x**3, x, domain = Interval(-1, oo)) False >>> is_convex(1/x**2, x, domain=Interval.open(0, oo)) True References ========== .. [1] https://en.wikipedia.org/wiki/Convex_function .. [2] http://www.ifp.illinois.edu/~angelia/L3_convfunc.pdf .. [3] https://en.wikipedia.org/wiki/Logarithmically_convex_function .. [4] https://en.wikipedia.org/wiki/Logarithmically_concave_function .. [5] https://en.wikipedia.org/wiki/Concave_function """ if len(syms) > 1: raise NotImplementedError( "The check for the convexity of multivariate functions is not implemented yet.") from sympy.solvers.inequalities import solve_univariate_inequality f = _sympify(f) var = syms[0] if any(s in domain for s in singularities(f, var)): return False condition = f.diff(var, 2) < 0 if solve_univariate_inequality(condition, var, False, domain): return False return True
4,283
def write_meas_info(fid, info, data_type=None, reset_range=True): """Write measurement info into a file id (from a fif file). Parameters ---------- fid : file Open file descriptor. info : instance of Info The measurement info structure. data_type : int The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT), 5 (FIFFT_DOUBLE), or 16 (FIFFT_DAU_PACK16) for raw data. reset_range : bool If True, info['chs'][k]['range'] will be set to unity. Notes ----- Tags are written in a particular order for compatibility with maxfilter. """ info._check_consistency() _check_dates(info) # Measurement info start_block(fid, FIFF.FIFFB_MEAS_INFO) # Add measurement id if info['meas_id'] is not None: write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id']) for event in info['events']: start_block(fid, FIFF.FIFFB_EVENTS) if event.get('channels') is not None: write_int(fid, FIFF.FIFF_EVENT_CHANNELS, event['channels']) if event.get('list') is not None: write_int(fid, FIFF.FIFF_EVENT_LIST, event['list']) end_block(fid, FIFF.FIFFB_EVENTS) # HPI Result for hpi_result in info['hpi_results']: start_block(fid, FIFF.FIFFB_HPI_RESULT) write_dig_points(fid, hpi_result['dig_points']) if 'order' in hpi_result: write_int(fid, FIFF.FIFF_HPI_DIGITIZATION_ORDER, hpi_result['order']) if 'used' in hpi_result: write_int(fid, FIFF.FIFF_HPI_COILS_USED, hpi_result['used']) if 'moments' in hpi_result: write_float_matrix(fid, FIFF.FIFF_HPI_COIL_MOMENTS, hpi_result['moments']) if 'goodness' in hpi_result: write_float(fid, FIFF.FIFF_HPI_FIT_GOODNESS, hpi_result['goodness']) if 'good_limit' in hpi_result: write_float(fid, FIFF.FIFF_HPI_FIT_GOOD_LIMIT, hpi_result['good_limit']) if 'dist_limit' in hpi_result: write_float(fid, FIFF.FIFF_HPI_FIT_DIST_LIMIT, hpi_result['dist_limit']) if 'accept' in hpi_result: write_int(fid, FIFF.FIFF_HPI_FIT_ACCEPT, hpi_result['accept']) if 'coord_trans' in hpi_result: write_coord_trans(fid, hpi_result['coord_trans']) end_block(fid, FIFF.FIFFB_HPI_RESULT) # HPI Measurement for hpi_meas in info['hpi_meas']: start_block(fid, FIFF.FIFFB_HPI_MEAS) if hpi_meas.get('creator') is not None: write_string(fid, FIFF.FIFF_CREATOR, hpi_meas['creator']) if hpi_meas.get('sfreq') is not None: write_float(fid, FIFF.FIFF_SFREQ, hpi_meas['sfreq']) if hpi_meas.get('nchan') is not None: write_int(fid, FIFF.FIFF_NCHAN, hpi_meas['nchan']) if hpi_meas.get('nave') is not None: write_int(fid, FIFF.FIFF_NAVE, hpi_meas['nave']) if hpi_meas.get('ncoil') is not None: write_int(fid, FIFF.FIFF_HPI_NCOIL, hpi_meas['ncoil']) if hpi_meas.get('first_samp') is not None: write_int(fid, FIFF.FIFF_FIRST_SAMPLE, hpi_meas['first_samp']) if hpi_meas.get('last_samp') is not None: write_int(fid, FIFF.FIFF_LAST_SAMPLE, hpi_meas['last_samp']) for hpi_coil in hpi_meas['hpi_coils']: start_block(fid, FIFF.FIFFB_HPI_COIL) if hpi_coil.get('number') is not None: write_int(fid, FIFF.FIFF_HPI_COIL_NO, hpi_coil['number']) if hpi_coil.get('epoch') is not None: write_float_matrix(fid, FIFF.FIFF_EPOCH, hpi_coil['epoch']) if hpi_coil.get('slopes') is not None: write_float(fid, FIFF.FIFF_HPI_SLOPES, hpi_coil['slopes']) if hpi_coil.get('corr_coeff') is not None: write_float(fid, FIFF.FIFF_HPI_CORR_COEFF, hpi_coil['corr_coeff']) if hpi_coil.get('coil_freq') is not None: write_float(fid, FIFF.FIFF_HPI_COIL_FREQ, hpi_coil['coil_freq']) end_block(fid, FIFF.FIFFB_HPI_COIL) end_block(fid, FIFF.FIFFB_HPI_MEAS) # Polhemus data write_dig_points(fid, info['dig'], block=True) # megacq parameters if info['acq_pars'] is not None or info['acq_stim'] is not None: start_block(fid, FIFF.FIFFB_DACQ_PARS) if info['acq_pars'] is not None: write_string(fid, FIFF.FIFF_DACQ_PARS, info['acq_pars']) if info['acq_stim'] is not None: write_string(fid, FIFF.FIFF_DACQ_STIM, info['acq_stim']) end_block(fid, FIFF.FIFFB_DACQ_PARS) # Coordinate transformations if the HPI result block was not there if info['dev_head_t'] is not None: write_coord_trans(fid, info['dev_head_t']) if info['ctf_head_t'] is not None: write_coord_trans(fid, info['ctf_head_t']) if info['dev_ctf_t'] is not None: write_coord_trans(fid, info['dev_ctf_t']) # Projectors rename_map = _make_rename_map(info['chs']) _write_proj(fid, info['projs'], rename=rename_map) # Bad channels if len(info['bads']) > 0: bads = _rename_list(info['bads'].copy(), rename_map) start_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS) write_name_list(fid, FIFF.FIFF_MNE_CH_NAME_LIST, bads) end_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS) # General if info.get('experimenter') is not None: write_string(fid, FIFF.FIFF_EXPERIMENTER, info['experimenter']) if info.get('description') is not None: write_string(fid, FIFF.FIFF_DESCRIPTION, info['description']) if info.get('proj_id') is not None: write_int(fid, FIFF.FIFF_PROJ_ID, info['proj_id']) if info.get('proj_name') is not None: write_string(fid, FIFF.FIFF_PROJ_NAME, info['proj_name']) if info.get('meas_date') is not None: write_int(fid, FIFF.FIFF_MEAS_DATE, _dt_to_stamp(info['meas_date'])) if info.get('utc_offset') is not None: write_string(fid, FIFF.FIFF_UTC_OFFSET, info['utc_offset']) write_int(fid, FIFF.FIFF_NCHAN, info['nchan']) write_float(fid, FIFF.FIFF_SFREQ, info['sfreq']) if info['lowpass'] is not None: write_float(fid, FIFF.FIFF_LOWPASS, info['lowpass']) if info['highpass'] is not None: write_float(fid, FIFF.FIFF_HIGHPASS, info['highpass']) if info.get('line_freq') is not None: write_float(fid, FIFF.FIFF_LINE_FREQ, info['line_freq']) if info.get('gantry_angle') is not None: write_float(fid, FIFF.FIFF_GANTRY_ANGLE, info['gantry_angle']) if data_type is not None: write_int(fid, FIFF.FIFF_DATA_PACK, data_type) if info.get('custom_ref_applied'): write_int(fid, FIFF.FIFF_MNE_CUSTOM_REF, info['custom_ref_applied']) if info.get('xplotter_layout'): write_string(fid, FIFF.FIFF_XPLOTTER_LAYOUT, info['xplotter_layout']) # Channel information _write_ch_infos(fid, info['chs'], reset_range, rename_map) # Subject information if info.get('subject_info') is not None: start_block(fid, FIFF.FIFFB_SUBJECT) si = info['subject_info'] if si.get('id') is not None: write_int(fid, FIFF.FIFF_SUBJ_ID, si['id']) if si.get('his_id') is not None: write_string(fid, FIFF.FIFF_SUBJ_HIS_ID, si['his_id']) if si.get('last_name') is not None: write_string(fid, FIFF.FIFF_SUBJ_LAST_NAME, si['last_name']) if si.get('first_name') is not None: write_string(fid, FIFF.FIFF_SUBJ_FIRST_NAME, si['first_name']) if si.get('middle_name') is not None: write_string(fid, FIFF.FIFF_SUBJ_MIDDLE_NAME, si['middle_name']) if si.get('birthday') is not None: write_julian(fid, FIFF.FIFF_SUBJ_BIRTH_DAY, si['birthday']) if si.get('sex') is not None: write_int(fid, FIFF.FIFF_SUBJ_SEX, si['sex']) if si.get('hand') is not None: write_int(fid, FIFF.FIFF_SUBJ_HAND, si['hand']) if si.get('weight') is not None: write_float(fid, FIFF.FIFF_SUBJ_WEIGHT, si['weight']) if si.get('height') is not None: write_float(fid, FIFF.FIFF_SUBJ_HEIGHT, si['height']) end_block(fid, FIFF.FIFFB_SUBJECT) del si if info.get('device_info') is not None: start_block(fid, FIFF.FIFFB_DEVICE) di = info['device_info'] write_string(fid, FIFF.FIFF_DEVICE_TYPE, di['type']) for key in ('model', 'serial', 'site'): if di.get(key) is not None: write_string(fid, getattr(FIFF, 'FIFF_DEVICE_' + key.upper()), di[key]) end_block(fid, FIFF.FIFFB_DEVICE) del di if info.get('helium_info') is not None: start_block(fid, FIFF.FIFFB_HELIUM) hi = info['helium_info'] if hi.get('he_level_raw') is not None: write_float(fid, FIFF.FIFF_HE_LEVEL_RAW, hi['he_level_raw']) if hi.get('helium_level') is not None: write_float(fid, FIFF.FIFF_HELIUM_LEVEL, hi['helium_level']) if hi.get('orig_file_guid') is not None: write_string(fid, FIFF.FIFF_ORIG_FILE_GUID, hi['orig_file_guid']) write_int(fid, FIFF.FIFF_MEAS_DATE, hi['meas_date']) end_block(fid, FIFF.FIFFB_HELIUM) del hi if info.get('hpi_subsystem') is not None: hs = info['hpi_subsystem'] start_block(fid, FIFF.FIFFB_HPI_SUBSYSTEM) if hs.get('ncoil') is not None: write_int(fid, FIFF.FIFF_HPI_NCOIL, hs['ncoil']) if hs.get('event_channel') is not None: write_string(fid, FIFF.FIFF_EVENT_CHANNEL, hs['event_channel']) if hs.get('hpi_coils') is not None: for coil in hs['hpi_coils']: start_block(fid, FIFF.FIFFB_HPI_COIL) if coil.get('event_bits') is not None: write_int(fid, FIFF.FIFF_EVENT_BITS, coil['event_bits']) end_block(fid, FIFF.FIFFB_HPI_COIL) end_block(fid, FIFF.FIFFB_HPI_SUBSYSTEM) del hs # CTF compensation info comps = info['comps'] if rename_map: comps = deepcopy(comps) _rename_comps(comps, rename_map) write_ctf_comp(fid, comps) # KIT system ID if info.get('kit_system_id') is not None: write_int(fid, FIFF.FIFF_MNE_KIT_SYSTEM_ID, info['kit_system_id']) end_block(fid, FIFF.FIFFB_MEAS_INFO) # Processing history _write_proc_history(fid, info)
def write_meas_info(fid, info, data_type=None, reset_range=True): """Write measurement info into a file id (from a fif file). Parameters ---------- fid : file Open file descriptor. info : instance of Info The measurement info structure. data_type : int The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT), 5 (FIFFT_DOUBLE), or 16 (FIFFT_DAU_PACK16) for raw data. reset_range : bool If True, info['chs'][k]['range'] will be set to unity. Notes ----- Tags are written in a particular order for compatibility with maxfilter. """ info._check_consistency() _check_dates(info) # Measurement info start_block(fid, FIFF.FIFFB_MEAS_INFO) # Add measurement id if info['meas_id'] is not None: write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id']) for event in info['events']: start_block(fid, FIFF.FIFFB_EVENTS) if event.get('channels') is not None: write_int(fid, FIFF.FIFF_EVENT_CHANNELS, event['channels']) if event.get('list') is not None: write_int(fid, FIFF.FIFF_EVENT_LIST, event['list']) end_block(fid, FIFF.FIFFB_EVENTS) # HPI Result for hpi_result in info['hpi_results']: start_block(fid, FIFF.FIFFB_HPI_RESULT) write_dig_points(fid, hpi_result['dig_points']) if 'order' in hpi_result: write_int(fid, FIFF.FIFF_HPI_DIGITIZATION_ORDER, hpi_result['order']) if 'used' in hpi_result: write_int(fid, FIFF.FIFF_HPI_COILS_USED, hpi_result['used']) if 'moments' in hpi_result: write_float_matrix(fid, FIFF.FIFF_HPI_COIL_MOMENTS, hpi_result['moments']) if 'goodness' in hpi_result: write_float(fid, FIFF.FIFF_HPI_FIT_GOODNESS, hpi_result['goodness']) if 'good_limit' in hpi_result: write_float(fid, FIFF.FIFF_HPI_FIT_GOOD_LIMIT, hpi_result['good_limit']) if 'dist_limit' in hpi_result: write_float(fid, FIFF.FIFF_HPI_FIT_DIST_LIMIT, hpi_result['dist_limit']) if 'accept' in hpi_result: write_int(fid, FIFF.FIFF_HPI_FIT_ACCEPT, hpi_result['accept']) if 'coord_trans' in hpi_result: write_coord_trans(fid, hpi_result['coord_trans']) end_block(fid, FIFF.FIFFB_HPI_RESULT) # HPI Measurement for hpi_meas in info['hpi_meas']: start_block(fid, FIFF.FIFFB_HPI_MEAS) if hpi_meas.get('creator') is not None: write_string(fid, FIFF.FIFF_CREATOR, hpi_meas['creator']) if hpi_meas.get('sfreq') is not None: write_float(fid, FIFF.FIFF_SFREQ, hpi_meas['sfreq']) if hpi_meas.get('nchan') is not None: write_int(fid, FIFF.FIFF_NCHAN, hpi_meas['nchan']) if hpi_meas.get('nave') is not None: write_int(fid, FIFF.FIFF_NAVE, hpi_meas['nave']) if hpi_meas.get('ncoil') is not None: write_int(fid, FIFF.FIFF_HPI_NCOIL, hpi_meas['ncoil']) if hpi_meas.get('first_samp') is not None: write_int(fid, FIFF.FIFF_FIRST_SAMPLE, hpi_meas['first_samp']) if hpi_meas.get('last_samp') is not None: write_int(fid, FIFF.FIFF_LAST_SAMPLE, hpi_meas['last_samp']) for hpi_coil in hpi_meas['hpi_coils']: start_block(fid, FIFF.FIFFB_HPI_COIL) if hpi_coil.get('number') is not None: write_int(fid, FIFF.FIFF_HPI_COIL_NO, hpi_coil['number']) if hpi_coil.get('epoch') is not None: write_float_matrix(fid, FIFF.FIFF_EPOCH, hpi_coil['epoch']) if hpi_coil.get('slopes') is not None: write_float(fid, FIFF.FIFF_HPI_SLOPES, hpi_coil['slopes']) if hpi_coil.get('corr_coeff') is not None: write_float(fid, FIFF.FIFF_HPI_CORR_COEFF, hpi_coil['corr_coeff']) if hpi_coil.get('coil_freq') is not None: write_float(fid, FIFF.FIFF_HPI_COIL_FREQ, hpi_coil['coil_freq']) end_block(fid, FIFF.FIFFB_HPI_COIL) end_block(fid, FIFF.FIFFB_HPI_MEAS) # Polhemus data write_dig_points(fid, info['dig'], block=True) # megacq parameters if info['acq_pars'] is not None or info['acq_stim'] is not None: start_block(fid, FIFF.FIFFB_DACQ_PARS) if info['acq_pars'] is not None: write_string(fid, FIFF.FIFF_DACQ_PARS, info['acq_pars']) if info['acq_stim'] is not None: write_string(fid, FIFF.FIFF_DACQ_STIM, info['acq_stim']) end_block(fid, FIFF.FIFFB_DACQ_PARS) # Coordinate transformations if the HPI result block was not there if info['dev_head_t'] is not None: write_coord_trans(fid, info['dev_head_t']) if info['ctf_head_t'] is not None: write_coord_trans(fid, info['ctf_head_t']) if info['dev_ctf_t'] is not None: write_coord_trans(fid, info['dev_ctf_t']) # Projectors ch_names_mapping = _make_ch_names_mapping(info['chs']) _write_proj(fid, info['projs'], rename=rename_map) # Bad channels if len(info['bads']) > 0: bads = _rename_list(info['bads'].copy(), rename_map) start_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS) write_name_list(fid, FIFF.FIFF_MNE_CH_NAME_LIST, bads) end_block(fid, FIFF.FIFFB_MNE_BAD_CHANNELS) # General if info.get('experimenter') is not None: write_string(fid, FIFF.FIFF_EXPERIMENTER, info['experimenter']) if info.get('description') is not None: write_string(fid, FIFF.FIFF_DESCRIPTION, info['description']) if info.get('proj_id') is not None: write_int(fid, FIFF.FIFF_PROJ_ID, info['proj_id']) if info.get('proj_name') is not None: write_string(fid, FIFF.FIFF_PROJ_NAME, info['proj_name']) if info.get('meas_date') is not None: write_int(fid, FIFF.FIFF_MEAS_DATE, _dt_to_stamp(info['meas_date'])) if info.get('utc_offset') is not None: write_string(fid, FIFF.FIFF_UTC_OFFSET, info['utc_offset']) write_int(fid, FIFF.FIFF_NCHAN, info['nchan']) write_float(fid, FIFF.FIFF_SFREQ, info['sfreq']) if info['lowpass'] is not None: write_float(fid, FIFF.FIFF_LOWPASS, info['lowpass']) if info['highpass'] is not None: write_float(fid, FIFF.FIFF_HIGHPASS, info['highpass']) if info.get('line_freq') is not None: write_float(fid, FIFF.FIFF_LINE_FREQ, info['line_freq']) if info.get('gantry_angle') is not None: write_float(fid, FIFF.FIFF_GANTRY_ANGLE, info['gantry_angle']) if data_type is not None: write_int(fid, FIFF.FIFF_DATA_PACK, data_type) if info.get('custom_ref_applied'): write_int(fid, FIFF.FIFF_MNE_CUSTOM_REF, info['custom_ref_applied']) if info.get('xplotter_layout'): write_string(fid, FIFF.FIFF_XPLOTTER_LAYOUT, info['xplotter_layout']) # Channel information _write_ch_infos(fid, info['chs'], reset_range, rename_map) # Subject information if info.get('subject_info') is not None: start_block(fid, FIFF.FIFFB_SUBJECT) si = info['subject_info'] if si.get('id') is not None: write_int(fid, FIFF.FIFF_SUBJ_ID, si['id']) if si.get('his_id') is not None: write_string(fid, FIFF.FIFF_SUBJ_HIS_ID, si['his_id']) if si.get('last_name') is not None: write_string(fid, FIFF.FIFF_SUBJ_LAST_NAME, si['last_name']) if si.get('first_name') is not None: write_string(fid, FIFF.FIFF_SUBJ_FIRST_NAME, si['first_name']) if si.get('middle_name') is not None: write_string(fid, FIFF.FIFF_SUBJ_MIDDLE_NAME, si['middle_name']) if si.get('birthday') is not None: write_julian(fid, FIFF.FIFF_SUBJ_BIRTH_DAY, si['birthday']) if si.get('sex') is not None: write_int(fid, FIFF.FIFF_SUBJ_SEX, si['sex']) if si.get('hand') is not None: write_int(fid, FIFF.FIFF_SUBJ_HAND, si['hand']) if si.get('weight') is not None: write_float(fid, FIFF.FIFF_SUBJ_WEIGHT, si['weight']) if si.get('height') is not None: write_float(fid, FIFF.FIFF_SUBJ_HEIGHT, si['height']) end_block(fid, FIFF.FIFFB_SUBJECT) del si if info.get('device_info') is not None: start_block(fid, FIFF.FIFFB_DEVICE) di = info['device_info'] write_string(fid, FIFF.FIFF_DEVICE_TYPE, di['type']) for key in ('model', 'serial', 'site'): if di.get(key) is not None: write_string(fid, getattr(FIFF, 'FIFF_DEVICE_' + key.upper()), di[key]) end_block(fid, FIFF.FIFFB_DEVICE) del di if info.get('helium_info') is not None: start_block(fid, FIFF.FIFFB_HELIUM) hi = info['helium_info'] if hi.get('he_level_raw') is not None: write_float(fid, FIFF.FIFF_HE_LEVEL_RAW, hi['he_level_raw']) if hi.get('helium_level') is not None: write_float(fid, FIFF.FIFF_HELIUM_LEVEL, hi['helium_level']) if hi.get('orig_file_guid') is not None: write_string(fid, FIFF.FIFF_ORIG_FILE_GUID, hi['orig_file_guid']) write_int(fid, FIFF.FIFF_MEAS_DATE, hi['meas_date']) end_block(fid, FIFF.FIFFB_HELIUM) del hi if info.get('hpi_subsystem') is not None: hs = info['hpi_subsystem'] start_block(fid, FIFF.FIFFB_HPI_SUBSYSTEM) if hs.get('ncoil') is not None: write_int(fid, FIFF.FIFF_HPI_NCOIL, hs['ncoil']) if hs.get('event_channel') is not None: write_string(fid, FIFF.FIFF_EVENT_CHANNEL, hs['event_channel']) if hs.get('hpi_coils') is not None: for coil in hs['hpi_coils']: start_block(fid, FIFF.FIFFB_HPI_COIL) if coil.get('event_bits') is not None: write_int(fid, FIFF.FIFF_EVENT_BITS, coil['event_bits']) end_block(fid, FIFF.FIFFB_HPI_COIL) end_block(fid, FIFF.FIFFB_HPI_SUBSYSTEM) del hs # CTF compensation info comps = info['comps'] if rename_map: comps = deepcopy(comps) _rename_comps(comps, rename_map) write_ctf_comp(fid, comps) # KIT system ID if info.get('kit_system_id') is not None: write_int(fid, FIFF.FIFF_MNE_KIT_SYSTEM_ID, info['kit_system_id']) end_block(fid, FIFF.FIFFB_MEAS_INFO) # Processing history _write_proc_history(fid, info)
35,890
def drive(cfg, model_path=None, use_joystick=False, model_type=None, camera_type='single', meta=[]): """ Construct a working robotic vehicle from many parts. Each part runs as a job in the Vehicle loop, calling either it's run or run_threaded method depending on the constructor flag `threaded`. All parts are updated one after another at the framerate given in cfg.DRIVE_LOOP_HZ assuming each part finishes processing in a timely manner. Parts may have named outputs and inputs. The framework handles passing named outputs to parts requesting the same named input. """ logger.info(f'PID: {os.getpid()}') if cfg.DONKEY_GYM: #the simulator will use cuda and then we usually run out of resources #if we also try to use cuda. so disable for donkey_gym. os.environ["CUDA_VISIBLE_DEVICES"]="-1" if model_type is None: if cfg.TRAIN_LOCALIZER: model_type = "localizer" elif cfg.TRAIN_BEHAVIORS: model_type = "behavior" else: model_type = cfg.DEFAULT_MODEL_TYPE #Initialize car V = dk.vehicle.Vehicle() #Initialize logging before anything else to allow console logging if cfg.HAVE_CONSOLE_LOGGING: logger.setLevel(logging.getLevelName(cfg.LOGGING_LEVEL)) ch = logging.StreamHandler() ch.setFormatter(logging.Formatter(cfg.LOGGING_FORMAT)) logger.addHandler(ch) if cfg.HAVE_MQTT_TELEMETRY: from donkeycar.parts.telemetry import MqttTelemetry tel = MqttTelemetry(cfg) if cfg.HAVE_ODOM: if cfg.ENCODER_TYPE == "GPIO": from donkeycar.parts.encoder import RotaryEncoder enc = RotaryEncoder(mm_per_tick=0.306096, pin = cfg.ODOM_PIN, debug = cfg.ODOM_DEBUG) V.add(enc, inputs=['throttle'], outputs=['enc/speed'], threaded=True) elif cfg.ENCODER_TYPE == "arduino": from donkeycar.parts.encoder import ArduinoEncoder enc = ArduinoEncoder() V.add(enc, outputs=['enc/speed'], threaded=True) else: print("No supported encoder found") logger.info("cfg.CAMERA_TYPE %s"%cfg.CAMERA_TYPE) if camera_type == "stereo": if cfg.CAMERA_TYPE == "WEBCAM": from donkeycar.parts.camera import Webcam camA = Webcam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, iCam = 0) camB = Webcam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, iCam = 1) elif cfg.CAMERA_TYPE == "CVCAM": from donkeycar.parts.cv import CvCam camA = CvCam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, iCam = 0) camB = CvCam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, iCam = 1) else: raise(Exception("Unsupported camera type: %s" % cfg.CAMERA_TYPE)) V.add(camA, outputs=['cam/image_array_a'], threaded=True) V.add(camB, outputs=['cam/image_array_b'], threaded=True) from donkeycar.parts.image import StereoPair V.add(StereoPair(), inputs=['cam/image_array_a', 'cam/image_array_b'], outputs=['cam/image_array']) elif cfg.CAMERA_TYPE == "D435": from donkeycar.parts.realsense435i import RealSense435i cam = RealSense435i( enable_rgb=cfg.REALSENSE_D435_RGB, enable_depth=cfg.REALSENSE_D435_DEPTH, enable_imu=cfg.REALSENSE_D435_IMU, device_id=cfg.REALSENSE_D435_ID) V.add(cam, inputs=[], outputs=['cam/image_array', 'cam/depth_array', 'imu/acl_x', 'imu/acl_y', 'imu/acl_z', 'imu/gyr_x', 'imu/gyr_y', 'imu/gyr_z'], threaded=True) else: if cfg.DONKEY_GYM: from donkeycar.parts.dgym import DonkeyGymEnv inputs = [] outputs = ['cam/image_array'] threaded = True if cfg.DONKEY_GYM: from donkeycar.parts.dgym import DonkeyGymEnv #rbx cam = DonkeyGymEnv(cfg.DONKEY_SIM_PATH, host=cfg.SIM_HOST, env_name=cfg.DONKEY_GYM_ENV_NAME, conf=cfg.GYM_CONF, record_location=cfg.SIM_RECORD_LOCATION, record_gyroaccel=cfg.SIM_RECORD_GYROACCEL, record_velocity=cfg.SIM_RECORD_VELOCITY, record_lidar=cfg.SIM_RECORD_LIDAR, delay=cfg.SIM_ARTIFICIAL_LATENCY) threaded = True inputs = ['angle', 'throttle'] elif cfg.CAMERA_TYPE == "PICAM": from donkeycar.parts.camera import PiCamera cam = PiCamera(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, framerate=cfg.CAMERA_FRAMERATE, vflip=cfg.CAMERA_VFLIP, hflip=cfg.CAMERA_HFLIP) elif cfg.CAMERA_TYPE == "WEBCAM": from donkeycar.parts.camera import Webcam cam = Webcam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH) elif cfg.CAMERA_TYPE == "CVCAM": from donkeycar.parts.cv import CvCam cam = CvCam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH) elif cfg.CAMERA_TYPE == "CSIC": from donkeycar.parts.camera import CSICamera cam = CSICamera(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, framerate=cfg.CAMERA_FRAMERATE, gstreamer_flip=cfg.CSIC_CAM_GSTREAMER_FLIP_PARM) elif cfg.CAMERA_TYPE == "V4L": from donkeycar.parts.camera import V4LCamera cam = V4LCamera(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, framerate=cfg.CAMERA_FRAMERATE) elif cfg.CAMERA_TYPE == "MOCK": from donkeycar.parts.camera import MockCamera cam = MockCamera(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH) elif cfg.CAMERA_TYPE == "IMAGE_LIST": from donkeycar.parts.camera import ImageListCamera cam = ImageListCamera(path_mask=cfg.PATH_MASK) elif cfg.CAMERA_TYPE == "LEOPARD": from donkeycar.parts.leopard_imaging import LICamera cam = LICamera(width=cfg.IMAGE_W, height=cfg.IMAGE_H, fps=cfg.CAMERA_FRAMERATE) else: raise(Exception("Unkown camera type: %s" % cfg.CAMERA_TYPE)) # add lidar if cfg.USE_LIDAR: from donkeycar.parts.lidar import RPLidar if cfg.LIDAR_TYPE == 'RP': print("adding RP lidar part") lidar = RPLidar(lower_limit = cfg.LIDAR_LOWER_LIMIT, upper_limit = cfg.LIDAR_UPPER_LIMIT) V.add(lidar, inputs=[],outputs=['lidar/dist_array'], threaded=True) if cfg.LIDAR_TYPE == 'YD': print("YD Lidar not yet supported") # Donkey gym part will output position information if it is configured if cfg.DONKEY_GYM: if cfg.SIM_RECORD_LOCATION: outputs += ['pos/pos_x', 'pos/pos_y', 'pos/pos_z', 'pos/speed', 'pos/cte'] if cfg.SIM_RECORD_GYROACCEL: outputs += ['gyro/gyro_x', 'gyro/gyro_y', 'gyro/gyro_z', 'accel/accel_x', 'accel/accel_y', 'accel/accel_z'] if cfg.SIM_RECORD_VELOCITY: outputs += ['vel/vel_x', 'vel/vel_y', 'vel/vel_z'] if cfg.SIM_RECORD_LIDAR: outputs += ['lidar/dist_array'] V.add(cam, inputs=inputs, outputs=outputs, threaded=threaded) #This web controller will create a web server that is capable #of managing steering, throttle, and modes, and more. ctr = LocalWebController(port=cfg.WEB_CONTROL_PORT, mode=cfg.WEB_INIT_MODE) V.add(ctr, inputs=['cam/image_array', 'tub/num_records'], outputs=['user/angle', 'user/throttle', 'user/mode', 'recording'], threaded=True) if use_joystick or cfg.USE_JOYSTICK_AS_DEFAULT: #modify max_throttle closer to 1.0 to have more power #modify steering_scale lower than 1.0 to have less responsive steering if cfg.CONTROLLER_TYPE == "pigpio_rc": # an RC controllers read by GPIO pins. They typically don't have buttons from donkeycar.parts.controller import RCReceiver ctr = RCReceiver(cfg) V.add(ctr, inputs=['cam/image_array'], outputs=['user/angle', 'user/throttle', 'recording'],threaded=False) else: if cfg.CONTROLLER_TYPE == "custom": #custom controller created with `donkey createjs` command from my_joystick import MyJoystickController ctr = MyJoystickController( throttle_dir=cfg.JOYSTICK_THROTTLE_DIR, throttle_scale=cfg.JOYSTICK_MAX_THROTTLE, steering_scale=cfg.JOYSTICK_STEERING_SCALE, auto_record_on_throttle=cfg.AUTO_RECORD_ON_THROTTLE) ctr.set_deadzone(cfg.JOYSTICK_DEADZONE) elif cfg.CONTROLLER_TYPE == "MM1": from donkeycar.parts.robohat import RoboHATController ctr = RoboHATController(cfg) else: from donkeycar.parts.controller import get_js_controller ctr = get_js_controller(cfg) if cfg.USE_NETWORKED_JS: from donkeycar.parts.controller import JoyStickSub netwkJs = JoyStickSub(cfg.NETWORK_JS_SERVER_IP) V.add(netwkJs, threaded=True) ctr.js = netwkJs V.add(ctr, inputs=['cam/image_array'], outputs=['user/angle', 'user/throttle', 'user/mode', 'recording'],threaded=True) #this throttle filter will allow one tap back for esc reverse th_filter = ThrottleFilter() V.add(th_filter, inputs=['user/throttle'], outputs=['user/throttle']) #See if we should even run the pilot module. #This is only needed because the part run_condition only accepts boolean class PilotCondition: def run(self, mode): if mode == 'user': return False else: return True V.add(PilotCondition(), inputs=['user/mode'], outputs=['run_pilot']) class LedConditionLogic: def __init__(self, cfg): self.cfg = cfg def run(self, mode, recording, recording_alert, behavior_state, model_file_changed, track_loc): #returns a blink rate. 0 for off. -1 for on. positive for rate. if track_loc is not None: led.set_rgb(*self.cfg.LOC_COLORS[track_loc]) return -1 if model_file_changed: led.set_rgb(self.cfg.MODEL_RELOADED_LED_R, self.cfg.MODEL_RELOADED_LED_G, self.cfg.MODEL_RELOADED_LED_B) return 0.1 else: led.set_rgb(self.cfg.LED_R, self.cfg.LED_G, self.cfg.LED_B) if recording_alert: led.set_rgb(*recording_alert) return self.cfg.REC_COUNT_ALERT_BLINK_RATE else: led.set_rgb(self.cfg.LED_R, self.cfg.LED_G, self.cfg.LED_B) if behavior_state is not None and model_type == 'behavior': r, g, b = self.cfg.BEHAVIOR_LED_COLORS[behavior_state] led.set_rgb(r, g, b) return -1 #solid on if recording: return -1 #solid on elif mode == 'user': return 1 elif mode == 'local_angle': return 0.5 elif mode == 'local': return 0.1 return 0 if cfg.HAVE_RGB_LED and not cfg.DONKEY_GYM: from donkeycar.parts.led_status import RGB_LED led = RGB_LED(cfg.LED_PIN_R, cfg.LED_PIN_G, cfg.LED_PIN_B, cfg.LED_INVERT) led.set_rgb(cfg.LED_R, cfg.LED_G, cfg.LED_B) V.add(LedConditionLogic(cfg), inputs=['user/mode', 'recording', "records/alert", 'behavior/state', 'modelfile/modified', "pilot/loc"], outputs=['led/blink_rate']) V.add(led, inputs=['led/blink_rate']) def get_record_alert_color(num_records): col = (0, 0, 0) for count, color in cfg.RECORD_ALERT_COLOR_ARR: if num_records >= count: col = color return col class RecordTracker: def __init__(self): self.last_num_rec_print = 0 self.dur_alert = 0 self.force_alert = 0 def run(self, num_records): if num_records is None: return 0 if self.last_num_rec_print != num_records or self.force_alert: self.last_num_rec_print = num_records if num_records % 10 == 0: print("recorded", num_records, "records") if num_records % cfg.REC_COUNT_ALERT == 0 or self.force_alert: self.dur_alert = num_records // cfg.REC_COUNT_ALERT * cfg.REC_COUNT_ALERT_CYC self.force_alert = 0 if self.dur_alert > 0: self.dur_alert -= 1 if self.dur_alert != 0: return get_record_alert_color(num_records) return 0 rec_tracker_part = RecordTracker() V.add(rec_tracker_part, inputs=["tub/num_records"], outputs=['records/alert']) if cfg.AUTO_RECORD_ON_THROTTLE: def show_record_count_status(): rec_tracker_part.last_num_rec_print = 0 rec_tracker_part.force_alert = 1 if (cfg.CONTROLLER_TYPE != "pigpio_rc") and (cfg.CONTROLLER_TYPE != "MM1"): # these controllers don't use the joystick class if isinstance(ctr, JoystickController): ctr.set_button_down_trigger('circle', show_record_count_status) #then we are not using the circle button. hijack that to force a record count indication else: show_record_count_status() # ctr.set_button_down_trigger('circle', show_record_count_status) #Sombrero if cfg.HAVE_SOMBRERO: from donkeycar.parts.sombrero import Sombrero s = Sombrero() #IMU if cfg.HAVE_IMU: from donkeycar.parts.imu import IMU imu = IMU(sensor=cfg.IMU_SENSOR, dlp_setting=cfg.IMU_DLP_CONFIG) V.add(imu, outputs=['imu/acl_x', 'imu/acl_y', 'imu/acl_z', 'imu/gyr_x', 'imu/gyr_y', 'imu/gyr_z'], threaded=True) # Use the FPV preview, which will show the cropped image output, or the full frame. if cfg.USE_FPV: V.add(WebFpv(), inputs=['cam/image_array'], threaded=True) #Behavioral state if cfg.TRAIN_BEHAVIORS: bh = BehaviorPart(cfg.BEHAVIOR_LIST) V.add(bh, outputs=['behavior/state', 'behavior/label', "behavior/one_hot_state_array"]) try: ctr.set_button_down_trigger('L1', bh.increment_state) except: pass inputs = ['cam/image_array', "behavior/one_hot_state_array"] #IMU elif cfg.USE_LIDAR: inputs = ['cam/image_array', 'lidar/dist_array'] elif cfg.HAVE_ODOM: inputs = ['cam/image_array', 'enc/speed'] elif model_type == "imu": assert(cfg.HAVE_IMU) #Run the pilot if the mode is not user. inputs=['cam/image_array', 'imu/acl_x', 'imu/acl_y', 'imu/acl_z', 'imu/gyr_x', 'imu/gyr_y', 'imu/gyr_z'] elif cfg.USE_LIDAR: inputs = ['cam/image_array', 'lidar/dist_array'] else: inputs=['cam/image_array'] def load_model(kl, model_path): start = time.time() print('loading model', model_path) kl.load(model_path) print('finished loading in %s sec.' % (str(time.time() - start)) ) def load_weights(kl, weights_path): start = time.time() try: print('loading model weights', weights_path) kl.model.load_weights(weights_path) print('finished loading in %s sec.' % (str(time.time() - start)) ) except Exception as e: print(e) print('ERR>> problems loading weights', weights_path) def load_model_json(kl, json_fnm): start = time.time() print('loading model json', json_fnm) from tensorflow.python import keras try: with open(json_fnm, 'r') as handle: contents = handle.read() kl.model = keras.models.model_from_json(contents) print('finished loading json in %s sec.' % (str(time.time() - start)) ) except Exception as e: print(e) print("ERR>> problems loading model json", json_fnm) if model_path: #When we have a model, first create an appropriate Keras part kl = dk.utils.get_model_by_type(model_type, cfg) model_reload_cb = None if '.h5' in model_path or '.uff' in model_path or 'tflite' in model_path or '.pkl' in model_path: #when we have a .h5 extension #load everything from the model file load_model(kl, model_path) def reload_model(filename): load_model(kl, filename) model_reload_cb = reload_model elif '.json' in model_path: #when we have a .json extension #load the model from there and look for a matching #.wts file with just weights load_model_json(kl, model_path) weights_path = model_path.replace('.json', '.weights') load_weights(kl, weights_path) def reload_weights(filename): weights_path = filename.replace('.json', '.weights') load_weights(kl, weights_path) model_reload_cb = reload_weights else: print("ERR>> Unknown extension type on model file!!") return #this part will signal visual LED, if connected V.add(FileWatcher(model_path, verbose=True), outputs=['modelfile/modified']) #these parts will reload the model file, but only when ai is running so we don't interrupt user driving V.add(FileWatcher(model_path), outputs=['modelfile/dirty'], run_condition="ai_running") V.add(DelayedTrigger(100), inputs=['modelfile/dirty'], outputs=['modelfile/reload'], run_condition="ai_running") V.add(TriggeredCallback(model_path, model_reload_cb), inputs=["modelfile/reload"], run_condition="ai_running") outputs=['pilot/angle', 'pilot/throttle'] if cfg.TRAIN_LOCALIZER: outputs.append("pilot/loc") V.add(kl, inputs=inputs, outputs=outputs, run_condition='run_pilot') if cfg.STOP_SIGN_DETECTOR: from donkeycar.parts.object_detector.stop_sign_detector import StopSignDetector V.add(StopSignDetector(cfg.STOP_SIGN_MIN_SCORE, cfg.STOP_SIGN_SHOW_BOUNDING_BOX), inputs=['cam/image_array', 'pilot/throttle'], outputs=['pilot/throttle', 'cam/image_array']) #Choose what inputs should change the car. class DriveMode: def run(self, mode, user_angle, user_throttle, pilot_angle, pilot_throttle): if mode == 'user': return user_angle, user_throttle elif mode == 'local_angle': return pilot_angle if pilot_angle else 0.0, user_throttle else: return pilot_angle if pilot_angle else 0.0, pilot_throttle * cfg.AI_THROTTLE_MULT if pilot_throttle else 0.0 V.add(DriveMode(), inputs=['user/mode', 'user/angle', 'user/throttle', 'pilot/angle', 'pilot/throttle'], outputs=['angle', 'throttle']) #to give the car a boost when starting ai mode in a race. aiLauncher = AiLaunch(cfg.AI_LAUNCH_DURATION, cfg.AI_LAUNCH_THROTTLE, cfg.AI_LAUNCH_KEEP_ENABLED) V.add(aiLauncher, inputs=['user/mode', 'throttle'], outputs=['throttle']) if (cfg.CONTROLLER_TYPE != "pigpio_rc") and (cfg.CONTROLLER_TYPE != "MM1"): if isinstance(ctr, JoystickController): ctr.set_button_down_trigger(cfg.AI_LAUNCH_ENABLE_BUTTON, aiLauncher.enable_ai_launch) class AiRunCondition: ''' A bool part to let us know when ai is running. ''' def run(self, mode): if mode == "user": return False return True V.add(AiRunCondition(), inputs=['user/mode'], outputs=['ai_running']) #Ai Recording class AiRecordingCondition: ''' return True when ai mode, otherwize respect user mode recording flag ''' def run(self, mode, recording): if mode == 'user': return recording return True if cfg.RECORD_DURING_AI: V.add(AiRecordingCondition(), inputs=['user/mode', 'recording'], outputs=['recording']) #Drive train setup if cfg.DONKEY_GYM or cfg.DRIVE_TRAIN_TYPE == "MOCK": pass elif cfg.DRIVE_TRAIN_TYPE == "I2C_SERVO": from donkeycar.parts.actuator import PCA9685, PWMSteering, PWMThrottle steering_controller = PCA9685(cfg.STEERING_CHANNEL, cfg.PCA9685_I2C_ADDR, busnum=cfg.PCA9685_I2C_BUSNUM) steering = PWMSteering(controller=steering_controller, left_pulse=cfg.STEERING_LEFT_PWM, right_pulse=cfg.STEERING_RIGHT_PWM) throttle_controller = PCA9685(cfg.THROTTLE_CHANNEL, cfg.PCA9685_I2C_ADDR, busnum=cfg.PCA9685_I2C_BUSNUM) throttle = PWMThrottle(controller=throttle_controller, max_pulse=cfg.THROTTLE_FORWARD_PWM, zero_pulse=cfg.THROTTLE_STOPPED_PWM, min_pulse=cfg.THROTTLE_REVERSE_PWM) V.add(steering, inputs=['angle'], threaded=True) V.add(throttle, inputs=['throttle'], threaded=True) elif cfg.DRIVE_TRAIN_TYPE == "DC_STEER_THROTTLE": from donkeycar.parts.actuator import Mini_HBridge_DC_Motor_PWM steering = Mini_HBridge_DC_Motor_PWM(cfg.HBRIDGE_PIN_LEFT, cfg.HBRIDGE_PIN_RIGHT) throttle = Mini_HBridge_DC_Motor_PWM(cfg.HBRIDGE_PIN_FWD, cfg.HBRIDGE_PIN_BWD) V.add(steering, inputs=['angle']) V.add(throttle, inputs=['throttle']) elif cfg.DRIVE_TRAIN_TYPE == "DC_TWO_WHEEL": from donkeycar.parts.actuator import TwoWheelSteeringThrottle, Mini_HBridge_DC_Motor_PWM left_motor = Mini_HBridge_DC_Motor_PWM(cfg.HBRIDGE_PIN_LEFT_FWD, cfg.HBRIDGE_PIN_LEFT_BWD) right_motor = Mini_HBridge_DC_Motor_PWM(cfg.HBRIDGE_PIN_RIGHT_FWD, cfg.HBRIDGE_PIN_RIGHT_BWD) two_wheel_control = TwoWheelSteeringThrottle() V.add(two_wheel_control, inputs=['throttle', 'angle'], outputs=['left_motor_speed', 'right_motor_speed']) V.add(left_motor, inputs=['left_motor_speed']) V.add(right_motor, inputs=['right_motor_speed']) elif cfg.DRIVE_TRAIN_TYPE == "DC_TWO_WHEEL_L298N": from donkeycar.parts.actuator import TwoWheelSteeringThrottle, L298N_HBridge_DC_Motor left_motor = L298N_HBridge_DC_Motor(cfg.HBRIDGE_L298N_PIN_LEFT_FWD, cfg.HBRIDGE_L298N_PIN_LEFT_BWD, cfg.HBRIDGE_L298N_PIN_LEFT_EN) right_motor = L298N_HBridge_DC_Motor(cfg.HBRIDGE_L298N_PIN_RIGHT_FWD, cfg.HBRIDGE_L298N_PIN_RIGHT_BWD, cfg.HBRIDGE_L298N_PIN_RIGHT_EN) two_wheel_control = TwoWheelSteeringThrottle() V.add(two_wheel_control, inputs=['throttle', 'angle'], outputs=['left_motor_speed', 'right_motor_speed']) V.add(left_motor, inputs=['left_motor_speed']) V.add(right_motor, inputs=['right_motor_speed']) elif cfg.DRIVE_TRAIN_TYPE == "SERVO_HBRIDGE_PWM": from donkeycar.parts.actuator import ServoBlaster, PWMSteering steering_controller = ServoBlaster(cfg.STEERING_CHANNEL) #really pin #PWM pulse values should be in the range of 100 to 200 assert(cfg.STEERING_LEFT_PWM <= 200) assert(cfg.STEERING_RIGHT_PWM <= 200) steering = PWMSteering(controller=steering_controller, left_pulse=cfg.STEERING_LEFT_PWM, right_pulse=cfg.STEERING_RIGHT_PWM) from donkeycar.parts.actuator import Mini_HBridge_DC_Motor_PWM motor = Mini_HBridge_DC_Motor_PWM(cfg.HBRIDGE_PIN_FWD, cfg.HBRIDGE_PIN_BWD) V.add(steering, inputs=['angle'], threaded=True) V.add(motor, inputs=["throttle"]) elif cfg.DRIVE_TRAIN_TYPE == "MM1": from donkeycar.parts.robohat import RoboHATDriver V.add(RoboHATDriver(cfg), inputs=['angle', 'throttle']) elif cfg.DRIVE_TRAIN_TYPE == "PIGPIO_PWM": from donkeycar.parts.actuator import PWMSteering, PWMThrottle, PiGPIO_PWM steering_controller = PiGPIO_PWM(cfg.STEERING_PWM_PIN, freq=cfg.STEERING_PWM_FREQ, inverted=cfg.STEERING_PWM_INVERTED) steering = PWMSteering(controller=steering_controller, left_pulse=cfg.STEERING_LEFT_PWM, right_pulse=cfg.STEERING_RIGHT_PWM) throttle_controller = PiGPIO_PWM(cfg.THROTTLE_PWM_PIN, freq=cfg.THROTTLE_PWM_FREQ, inverted=cfg.THROTTLE_PWM_INVERTED) throttle = PWMThrottle(controller=throttle_controller, max_pulse=cfg.THROTTLE_FORWARD_PWM, zero_pulse=cfg.THROTTLE_STOPPED_PWM, min_pulse=cfg.THROTTLE_REVERSE_PWM) V.add(steering, inputs=['angle'], threaded=True) V.add(throttle, inputs=['throttle'], threaded=True) # OLED setup if cfg.USE_SSD1306_128_32: from donkeycar.parts.oled import OLEDPart auto_record_on_throttle = cfg.USE_JOYSTICK_AS_DEFAULT and cfg.AUTO_RECORD_ON_THROTTLE oled_part = OLEDPart(cfg.SSD1306_128_32_I2C_BUSNUM, auto_record_on_throttle=auto_record_on_throttle) V.add(oled_part, inputs=['recording', 'tub/num_records', 'user/mode'], outputs=[], threaded=True) #add tub to save data if cfg.USE_LIDAR: inputs = ['cam/image_array', 'lidar/dist_array', 'user/angle', 'user/throttle', 'user/mode'] types = ['image_array', 'nparray','float', 'float', 'str'] else: inputs=['cam/image_array','user/angle', 'user/throttle', 'user/mode'] types=['image_array','float', 'float','str'] if cfg.HAVE_ODOM: inputs += ['enc/speed'] types += ['float'] if cfg.TRAIN_BEHAVIORS: inputs += ['behavior/state', 'behavior/label', "behavior/one_hot_state_array"] types += ['int', 'str', 'vector'] if cfg.CAMERA_TYPE == "D435" and cfg.REALSENSE_D435_DEPTH: inputs += ['cam/depth_array'] types += ['gray16_array'] if cfg.HAVE_IMU or (cfg.CAMERA_TYPE == "D435" and cfg.REALSENSE_D435_IMU): inputs += ['imu/acl_x', 'imu/acl_y', 'imu/acl_z', 'imu/gyr_x', 'imu/gyr_y', 'imu/gyr_z'] types +=['float', 'float', 'float', 'float', 'float', 'float'] # rbx if cfg.DONKEY_GYM: if cfg.SIM_RECORD_LOCATION: inputs += ['pos/pos_x', 'pos/pos_y', 'pos/pos_z', 'pos/speed', 'pos/cte'] types += ['float', 'float', 'float', 'float', 'float'] if cfg.SIM_RECORD_GYROACCEL: inputs += ['gyro/gyro_x', 'gyro/gyro_y', 'gyro/gyro_z', 'accel/accel_x', 'accel/accel_y', 'accel/accel_z'] types += ['float', 'float', 'float', 'float', 'float', 'float'] if cfg.SIM_RECORD_VELOCITY: inputs += ['vel/vel_x', 'vel/vel_y', 'vel/vel_z'] types += ['float', 'float', 'float'] if cfg.SIM_RECORD_LIDAR: inputs += ['lidar/dist_array'] types += ['nparray'] if cfg.RECORD_DURING_AI: inputs += ['pilot/angle', 'pilot/throttle'] types += ['float', 'float'] if cfg.HAVE_PERFMON: from donkeycar.parts.perfmon import PerfMonitor mon = PerfMonitor(cfg) perfmon_outputs = ['perf/cpu', 'perf/mem', 'perf/freq'] inputs += perfmon_outputs types += ['float', 'float', 'float'] V.add(mon, inputs=[], outputs=perfmon_outputs, threaded=True) # do we want to store new records into own dir or append to existing tub_path = TubHandler(path=cfg.DATA_PATH).create_tub_path() if \ cfg.AUTO_CREATE_NEW_TUB else cfg.DATA_PATH tub_writer = TubWriter(tub_path, inputs=inputs, types=types, metadata=meta) V.add(tub_writer, inputs=inputs, outputs=["tub/num_records"], run_condition='recording') # Telemetry (we add the same metrics added to the TubHandler if cfg.HAVE_MQTT_TELEMETRY: telem_inputs, _ = tel.add_step_inputs(inputs, types) V.add(tel, inputs=telem_inputs, outputs=["tub/queue_size"], threaded=True) if cfg.PUB_CAMERA_IMAGES: from donkeycar.parts.network import TCPServeValue from donkeycar.parts.image import ImgArrToJpg pub = TCPServeValue("camera") V.add(ImgArrToJpg(), inputs=['cam/image_array'], outputs=['jpg/bin']) V.add(pub, inputs=['jpg/bin']) if type(ctr) is LocalWebController: if cfg.DONKEY_GYM: print("You can now go to http://localhost:%d to drive your car." % cfg.WEB_CONTROL_PORT) else: print("You can now go to <your hostname.local>:%d to drive your car." % cfg.WEB_CONTROL_PORT) elif(cfg.CONTROLLER_TYPE != "pigpio_rc") and (cfg.CONTROLLER_TYPE != "MM1"): if isinstance(ctr, JoystickController): print("You can now move your joystick to drive your car.") ctr.set_tub(tub_writer.tub) ctr.print_controls() #run the vehicle for 20 seconds V.start(rate_hz=cfg.DRIVE_LOOP_HZ, max_loop_count=cfg.MAX_LOOPS)
def drive(cfg, model_path=None, use_joystick=False, model_type=None, camera_type='single', meta=[]): """ Construct a working robotic vehicle from many parts. Each part runs as a job in the Vehicle loop, calling either it's run or run_threaded method depending on the constructor flag `threaded`. All parts are updated one after another at the framerate given in cfg.DRIVE_LOOP_HZ assuming each part finishes processing in a timely manner. Parts may have named outputs and inputs. The framework handles passing named outputs to parts requesting the same named input. """ logger.info(f'PID: {os.getpid()}') if cfg.DONKEY_GYM: #the simulator will use cuda and then we usually run out of resources #if we also try to use cuda. so disable for donkey_gym. os.environ["CUDA_VISIBLE_DEVICES"]="-1" if model_type is None: if cfg.TRAIN_LOCALIZER: model_type = "localizer" elif cfg.TRAIN_BEHAVIORS: model_type = "behavior" else: model_type = cfg.DEFAULT_MODEL_TYPE #Initialize car V = dk.vehicle.Vehicle() #Initialize logging before anything else to allow console logging if cfg.HAVE_CONSOLE_LOGGING: logger.setLevel(logging.getLevelName(cfg.LOGGING_LEVEL)) ch = logging.StreamHandler() ch.setFormatter(logging.Formatter(cfg.LOGGING_FORMAT)) logger.addHandler(ch) if cfg.HAVE_MQTT_TELEMETRY: from donkeycar.parts.telemetry import MqttTelemetry tel = MqttTelemetry(cfg) if cfg.HAVE_ODOM: if cfg.ENCODER_TYPE == "GPIO": from donkeycar.parts.encoder import RotaryEncoder enc = RotaryEncoder(mm_per_tick=0.306096, pin = cfg.ODOM_PIN, debug = cfg.ODOM_DEBUG) V.add(enc, inputs=['throttle'], outputs=['enc/speed'], threaded=True) elif cfg.ENCODER_TYPE == "arduino": from donkeycar.parts.encoder import ArduinoEncoder enc = ArduinoEncoder() V.add(enc, outputs=['enc/speed'], threaded=True) else: print("No supported encoder found") logger.info("cfg.CAMERA_TYPE %s"%cfg.CAMERA_TYPE) if camera_type == "stereo": if cfg.CAMERA_TYPE == "WEBCAM": from donkeycar.parts.camera import Webcam camA = Webcam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, iCam = 0) camB = Webcam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, iCam = 1) elif cfg.CAMERA_TYPE == "CVCAM": from donkeycar.parts.cv import CvCam camA = CvCam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, iCam = 0) camB = CvCam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, iCam = 1) else: raise(Exception("Unsupported camera type: %s" % cfg.CAMERA_TYPE)) V.add(camA, outputs=['cam/image_array_a'], threaded=True) V.add(camB, outputs=['cam/image_array_b'], threaded=True) from donkeycar.parts.image import StereoPair V.add(StereoPair(), inputs=['cam/image_array_a', 'cam/image_array_b'], outputs=['cam/image_array']) elif cfg.CAMERA_TYPE == "D435": from donkeycar.parts.realsense435i import RealSense435i cam = RealSense435i( enable_rgb=cfg.REALSENSE_D435_RGB, enable_depth=cfg.REALSENSE_D435_DEPTH, enable_imu=cfg.REALSENSE_D435_IMU, device_id=cfg.REALSENSE_D435_ID) V.add(cam, inputs=[], outputs=['cam/image_array', 'cam/depth_array', 'imu/acl_x', 'imu/acl_y', 'imu/acl_z', 'imu/gyr_x', 'imu/gyr_y', 'imu/gyr_z'], threaded=True) else: if cfg.DONKEY_GYM: from donkeycar.parts.dgym import DonkeyGymEnv inputs = [] outputs = ['cam/image_array'] threaded = True if cfg.DONKEY_GYM: from donkeycar.parts.dgym import DonkeyGymEnv #rbx cam = DonkeyGymEnv(cfg.DONKEY_SIM_PATH, host=cfg.SIM_HOST, env_name=cfg.DONKEY_GYM_ENV_NAME, conf=cfg.GYM_CONF, record_location=cfg.SIM_RECORD_LOCATION, record_gyroaccel=cfg.SIM_RECORD_GYROACCEL, record_velocity=cfg.SIM_RECORD_VELOCITY, record_lidar=cfg.SIM_RECORD_LIDAR, delay=cfg.SIM_ARTIFICIAL_LATENCY) threaded = True inputs = ['angle', 'throttle'] elif cfg.CAMERA_TYPE == "PICAM": from donkeycar.parts.camera import PiCamera cam = PiCamera(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, framerate=cfg.CAMERA_FRAMERATE, vflip=cfg.CAMERA_VFLIP, hflip=cfg.CAMERA_HFLIP) elif cfg.CAMERA_TYPE == "WEBCAM": from donkeycar.parts.camera import Webcam cam = Webcam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH) elif cfg.CAMERA_TYPE == "CVCAM": from donkeycar.parts.cv import CvCam cam = CvCam(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH) elif cfg.CAMERA_TYPE == "CSIC": from donkeycar.parts.camera import CSICamera cam = CSICamera(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, framerate=cfg.CAMERA_FRAMERATE, gstreamer_flip=cfg.CSIC_CAM_GSTREAMER_FLIP_PARM) elif cfg.CAMERA_TYPE == "V4L": from donkeycar.parts.camera import V4LCamera cam = V4LCamera(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH, framerate=cfg.CAMERA_FRAMERATE) elif cfg.CAMERA_TYPE == "MOCK": from donkeycar.parts.camera import MockCamera cam = MockCamera(image_w=cfg.IMAGE_W, image_h=cfg.IMAGE_H, image_d=cfg.IMAGE_DEPTH) elif cfg.CAMERA_TYPE == "IMAGE_LIST": from donkeycar.parts.camera import ImageListCamera cam = ImageListCamera(path_mask=cfg.PATH_MASK) elif cfg.CAMERA_TYPE == "LEOPARD": from donkeycar.parts.leopard_imaging import LICamera cam = LICamera(width=cfg.IMAGE_W, height=cfg.IMAGE_H, fps=cfg.CAMERA_FRAMERATE) else: raise(Exception("Unkown camera type: %s" % cfg.CAMERA_TYPE)) # add lidar if cfg.USE_LIDAR: from donkeycar.parts.lidar import RPLidar if cfg.LIDAR_TYPE == 'RP': print("adding RP lidar part") lidar = RPLidar(lower_limit = cfg.LIDAR_LOWER_LIMIT, upper_limit = cfg.LIDAR_UPPER_LIMIT) V.add(lidar, inputs=[],outputs=['lidar/dist_array'], threaded=True) if cfg.LIDAR_TYPE == 'YD': print("YD Lidar not yet supported") # Donkey gym part will output position information if it is configured if cfg.DONKEY_GYM: if cfg.SIM_RECORD_LOCATION: outputs += ['pos/pos_x', 'pos/pos_y', 'pos/pos_z', 'pos/speed', 'pos/cte'] if cfg.SIM_RECORD_GYROACCEL: outputs += ['gyro/gyro_x', 'gyro/gyro_y', 'gyro/gyro_z', 'accel/accel_x', 'accel/accel_y', 'accel/accel_z'] if cfg.SIM_RECORD_VELOCITY: outputs += ['vel/vel_x', 'vel/vel_y', 'vel/vel_z'] if cfg.SIM_RECORD_LIDAR: outputs += ['lidar/dist_array'] V.add(cam, inputs=inputs, outputs=outputs, threaded=threaded) #This web controller will create a web server that is capable #of managing steering, throttle, and modes, and more. ctr = LocalWebController(port=cfg.WEB_CONTROL_PORT, mode=cfg.WEB_INIT_MODE) V.add(ctr, inputs=['cam/image_array', 'tub/num_records'], outputs=['user/angle', 'user/throttle', 'user/mode', 'recording'], threaded=True) if use_joystick or cfg.USE_JOYSTICK_AS_DEFAULT: #modify max_throttle closer to 1.0 to have more power #modify steering_scale lower than 1.0 to have less responsive steering if cfg.CONTROLLER_TYPE == "pigpio_rc": # an RC controllers read by GPIO pins. They typically don't have buttons from donkeycar.parts.controller import RCReceiver ctr = RCReceiver(cfg) V.add(ctr, inputs=['cam/image_array'], outputs=['user/angle', 'user/throttle', 'recording'],threaded=False) else: if cfg.CONTROLLER_TYPE == "custom": #custom controller created with `donkey createjs` command from my_joystick import MyJoystickController ctr = MyJoystickController( throttle_dir=cfg.JOYSTICK_THROTTLE_DIR, throttle_scale=cfg.JOYSTICK_MAX_THROTTLE, steering_scale=cfg.JOYSTICK_STEERING_SCALE, auto_record_on_throttle=cfg.AUTO_RECORD_ON_THROTTLE) ctr.set_deadzone(cfg.JOYSTICK_DEADZONE) elif cfg.CONTROLLER_TYPE == "MM1": from donkeycar.parts.robohat import RoboHATController ctr = RoboHATController(cfg) else: from donkeycar.parts.controller import get_js_controller ctr = get_js_controller(cfg) if cfg.USE_NETWORKED_JS: from donkeycar.parts.controller import JoyStickSub netwkJs = JoyStickSub(cfg.NETWORK_JS_SERVER_IP) V.add(netwkJs, threaded=True) ctr.js = netwkJs V.add(ctr, inputs=['cam/image_array'], outputs=['user/angle', 'user/throttle', 'user/mode', 'recording'],threaded=True) #this throttle filter will allow one tap back for esc reverse th_filter = ThrottleFilter() V.add(th_filter, inputs=['user/throttle'], outputs=['user/throttle']) #See if we should even run the pilot module. #This is only needed because the part run_condition only accepts boolean class PilotCondition: def run(self, mode): if mode == 'user': return False else: return True V.add(PilotCondition(), inputs=['user/mode'], outputs=['run_pilot']) class LedConditionLogic: def __init__(self, cfg): self.cfg = cfg def run(self, mode, recording, recording_alert, behavior_state, model_file_changed, track_loc): #returns a blink rate. 0 for off. -1 for on. positive for rate. if track_loc is not None: led.set_rgb(*self.cfg.LOC_COLORS[track_loc]) return -1 if model_file_changed: led.set_rgb(self.cfg.MODEL_RELOADED_LED_R, self.cfg.MODEL_RELOADED_LED_G, self.cfg.MODEL_RELOADED_LED_B) return 0.1 else: led.set_rgb(self.cfg.LED_R, self.cfg.LED_G, self.cfg.LED_B) if recording_alert: led.set_rgb(*recording_alert) return self.cfg.REC_COUNT_ALERT_BLINK_RATE else: led.set_rgb(self.cfg.LED_R, self.cfg.LED_G, self.cfg.LED_B) if behavior_state is not None and model_type == 'behavior': r, g, b = self.cfg.BEHAVIOR_LED_COLORS[behavior_state] led.set_rgb(r, g, b) return -1 #solid on if recording: return -1 #solid on elif mode == 'user': return 1 elif mode == 'local_angle': return 0.5 elif mode == 'local': return 0.1 return 0 if cfg.HAVE_RGB_LED and not cfg.DONKEY_GYM: from donkeycar.parts.led_status import RGB_LED led = RGB_LED(cfg.LED_PIN_R, cfg.LED_PIN_G, cfg.LED_PIN_B, cfg.LED_INVERT) led.set_rgb(cfg.LED_R, cfg.LED_G, cfg.LED_B) V.add(LedConditionLogic(cfg), inputs=['user/mode', 'recording', "records/alert", 'behavior/state', 'modelfile/modified', "pilot/loc"], outputs=['led/blink_rate']) V.add(led, inputs=['led/blink_rate']) def get_record_alert_color(num_records): col = (0, 0, 0) for count, color in cfg.RECORD_ALERT_COLOR_ARR: if num_records >= count: col = color return col class RecordTracker: def __init__(self): self.last_num_rec_print = 0 self.dur_alert = 0 self.force_alert = 0 def run(self, num_records): if num_records is None: return 0 if self.last_num_rec_print != num_records or self.force_alert: self.last_num_rec_print = num_records if num_records % 10 == 0: print("recorded", num_records, "records") if num_records % cfg.REC_COUNT_ALERT == 0 or self.force_alert: self.dur_alert = num_records // cfg.REC_COUNT_ALERT * cfg.REC_COUNT_ALERT_CYC self.force_alert = 0 if self.dur_alert > 0: self.dur_alert -= 1 if self.dur_alert != 0: return get_record_alert_color(num_records) return 0 rec_tracker_part = RecordTracker() V.add(rec_tracker_part, inputs=["tub/num_records"], outputs=['records/alert']) if cfg.AUTO_RECORD_ON_THROTTLE: def show_record_count_status(): rec_tracker_part.last_num_rec_print = 0 rec_tracker_part.force_alert = 1 if (cfg.CONTROLLER_TYPE != "pigpio_rc") and (cfg.CONTROLLER_TYPE != "MM1"): # these controllers don't use the joystick class if isinstance(ctr, JoystickController): ctr.set_button_down_trigger('circle', show_record_count_status) #then we are not using the circle button. hijack that to force a record count indication else: show_record_count_status() # ctr.set_button_down_trigger('circle', show_record_count_status) #Sombrero if cfg.HAVE_SOMBRERO: from donkeycar.parts.sombrero import Sombrero s = Sombrero() #IMU if cfg.HAVE_IMU: from donkeycar.parts.imu import IMU imu = IMU(sensor=cfg.IMU_SENSOR, dlp_setting=cfg.IMU_DLP_CONFIG) V.add(imu, outputs=['imu/acl_x', 'imu/acl_y', 'imu/acl_z', 'imu/gyr_x', 'imu/gyr_y', 'imu/gyr_z'], threaded=True) # Use the FPV preview, which will show the cropped image output, or the full frame. if cfg.USE_FPV: V.add(WebFpv(), inputs=['cam/image_array'], threaded=True) #Behavioral state if cfg.TRAIN_BEHAVIORS: bh = BehaviorPart(cfg.BEHAVIOR_LIST) V.add(bh, outputs=['behavior/state', 'behavior/label', "behavior/one_hot_state_array"]) try: ctr.set_button_down_trigger('L1', bh.increment_state) except: pass inputs = ['cam/image_array', "behavior/one_hot_state_array"] #IMU elif cfg.USE_LIDAR: inputs = ['cam/image_array', 'lidar/dist_array'] elif cfg.HAVE_ODOM: inputs = ['cam/image_array', 'enc/speed'] elif model_type == "imu": assert(cfg.HAVE_IMU) #Run the pilot if the mode is not user. inputs=['cam/image_array', 'imu/acl_x', 'imu/acl_y', 'imu/acl_z', 'imu/gyr_x', 'imu/gyr_y', 'imu/gyr_z'] elif cfg.USE_LIDAR: inputs = ['cam/image_array', 'lidar/dist_array'] else: inputs=['cam/image_array'] def load_model(kl, model_path): start = time.time() print('loading model', model_path) kl.load(model_path) print('finished loading in %s sec.' % (str(time.time() - start)) ) def load_weights(kl, weights_path): start = time.time() try: print('loading model weights', weights_path) kl.model.load_weights(weights_path) print('finished loading in %s sec.' % (str(time.time() - start)) ) except Exception as e: print(e) print('ERR>> problems loading weights', weights_path) def load_model_json(kl, json_fnm): start = time.time() print('loading model json', json_fnm) from tensorflow.python import keras try: with open(json_fnm, 'r') as handle: contents = handle.read() kl.model = keras.models.model_from_json(contents) print('finished loading json in %s sec.' % (str(time.time() - start)) ) except Exception as e: print(e) print("ERR>> problems loading model json", json_fnm) if model_path: #When we have a model, first create an appropriate Keras part kl = dk.utils.get_model_by_type(model_type, cfg) model_reload_cb = None if '.h5' in model_path or '.uff' in model_path or 'tflite' in model_path or '.pkl' in model_path: #when we have a .h5 extension #load everything from the model file load_model(kl, model_path) def reload_model(filename): load_model(kl, filename) model_reload_cb = reload_model elif '.json' in model_path: #when we have a .json extension #load the model from there and look for a matching #.wts file with just weights load_model_json(kl, model_path) weights_path = model_path.replace('.json', '.weights') load_weights(kl, weights_path) def reload_weights(filename): weights_path = filename.replace('.json', '.weights') load_weights(kl, weights_path) model_reload_cb = reload_weights else: print("ERR>> Unknown extension type on model file!!") return #this part will signal visual LED, if connected V.add(FileWatcher(model_path, verbose=True), outputs=['modelfile/modified']) #these parts will reload the model file, but only when ai is running so we don't interrupt user driving V.add(FileWatcher(model_path), outputs=['modelfile/dirty'], run_condition="ai_running") V.add(DelayedTrigger(100), inputs=['modelfile/dirty'], outputs=['modelfile/reload'], run_condition="ai_running") V.add(TriggeredCallback(model_path, model_reload_cb), inputs=["modelfile/reload"], run_condition="ai_running") outputs=['pilot/angle', 'pilot/throttle'] if cfg.TRAIN_LOCALIZER: outputs.append("pilot/loc") V.add(kl, inputs=inputs, outputs=outputs, run_condition='run_pilot') if cfg.STOP_SIGN_DETECTOR: from donkeycar.parts.object_detector.stop_sign_detector import StopSignDetector V.add(StopSignDetector(cfg.STOP_SIGN_MIN_SCORE, cfg.STOP_SIGN_SHOW_BOUNDING_BOX), inputs=['cam/image_array', 'pilot/throttle'], outputs=['pilot/throttle', 'cam/image_array']) #Choose what inputs should change the car. class DriveMode: def run(self, mode, user_angle, user_throttle, pilot_angle, pilot_throttle): if mode == 'user': return user_angle, user_throttle elif mode == 'local_angle': return pilot_angle if pilot_angle else 0.0, user_throttle else: return pilot_angle if pilot_angle else 0.0, pilot_throttle * cfg.AI_THROTTLE_MULT if pilot_throttle else 0.0 V.add(DriveMode(), inputs=['user/mode', 'user/angle', 'user/throttle', 'pilot/angle', 'pilot/throttle'], outputs=['angle', 'throttle']) #to give the car a boost when starting ai mode in a race. aiLauncher = AiLaunch(cfg.AI_LAUNCH_DURATION, cfg.AI_LAUNCH_THROTTLE, cfg.AI_LAUNCH_KEEP_ENABLED) V.add(aiLauncher, inputs=['user/mode', 'throttle'], outputs=['throttle']) if (cfg.CONTROLLER_TYPE != "pigpio_rc") and (cfg.CONTROLLER_TYPE != "MM1"): if isinstance(ctr, JoystickController): ctr.set_button_down_trigger(cfg.AI_LAUNCH_ENABLE_BUTTON, aiLauncher.enable_ai_launch) class AiRunCondition: ''' A bool part to let us know when ai is running. ''' def run(self, mode): if mode == "user": return False return True V.add(AiRunCondition(), inputs=['user/mode'], outputs=['ai_running']) #Ai Recording class AiRecordingCondition: ''' return True when ai mode, otherwize respect user mode recording flag ''' def run(self, mode, recording): if mode == 'user': return recording return True if cfg.RECORD_DURING_AI: V.add(AiRecordingCondition(), inputs=['user/mode', 'recording'], outputs=['recording']) #Drive train setup if cfg.DONKEY_GYM or cfg.DRIVE_TRAIN_TYPE == "MOCK": pass elif cfg.DRIVE_TRAIN_TYPE == "I2C_SERVO": from donkeycar.parts.actuator import PCA9685, PWMSteering, PWMThrottle steering_controller = PCA9685(cfg.STEERING_CHANNEL, cfg.PCA9685_I2C_ADDR, busnum=cfg.PCA9685_I2C_BUSNUM) steering = PWMSteering(controller=steering_controller, left_pulse=cfg.STEERING_LEFT_PWM, right_pulse=cfg.STEERING_RIGHT_PWM) throttle_controller = PCA9685(cfg.THROTTLE_CHANNEL, cfg.PCA9685_I2C_ADDR, busnum=cfg.PCA9685_I2C_BUSNUM) throttle = PWMThrottle(controller=throttle_controller, max_pulse=cfg.THROTTLE_FORWARD_PWM, zero_pulse=cfg.THROTTLE_STOPPED_PWM, min_pulse=cfg.THROTTLE_REVERSE_PWM) V.add(steering, inputs=['angle'], threaded=True) V.add(throttle, inputs=['throttle'], threaded=True) elif cfg.DRIVE_TRAIN_TYPE == "DC_STEER_THROTTLE": from donkeycar.parts.actuator import Mini_HBridge_DC_Motor_PWM steering = Mini_HBridge_DC_Motor_PWM(cfg.HBRIDGE_PIN_LEFT, cfg.HBRIDGE_PIN_RIGHT) throttle = Mini_HBridge_DC_Motor_PWM(cfg.HBRIDGE_PIN_FWD, cfg.HBRIDGE_PIN_BWD) V.add(steering, inputs=['angle']) V.add(throttle, inputs=['throttle']) elif cfg.DRIVE_TRAIN_TYPE == "DC_TWO_WHEEL": from donkeycar.parts.actuator import TwoWheelSteeringThrottle, Mini_HBridge_DC_Motor_PWM left_motor = Mini_HBridge_DC_Motor_PWM(cfg.HBRIDGE_PIN_LEFT_FWD, cfg.HBRIDGE_PIN_LEFT_BWD) right_motor = Mini_HBridge_DC_Motor_PWM(cfg.HBRIDGE_PIN_RIGHT_FWD, cfg.HBRIDGE_PIN_RIGHT_BWD) two_wheel_control = TwoWheelSteeringThrottle() V.add(two_wheel_control, inputs=['throttle', 'angle'], outputs=['left_motor_speed', 'right_motor_speed']) V.add(left_motor, inputs=['left_motor_speed']) V.add(right_motor, inputs=['right_motor_speed']) elif cfg.DRIVE_TRAIN_TYPE == "DC_TWO_WHEEL_L298N": from donkeycar.parts.actuator import TwoWheelSteeringThrottle, L298N_HBridge_DC_Motor left_motor = L298N_HBridge_DC_Motor(cfg.HBRIDGE_L298N_PIN_LEFT_FWD, cfg.HBRIDGE_L298N_PIN_LEFT_BWD, cfg.HBRIDGE_L298N_PIN_LEFT_EN) right_motor = L298N_HBridge_DC_Motor(cfg.HBRIDGE_L298N_PIN_RIGHT_FWD, cfg.HBRIDGE_L298N_PIN_RIGHT_BWD, cfg.HBRIDGE_L298N_PIN_RIGHT_EN) two_wheel_control = TwoWheelSteeringThrottle() V.add(two_wheel_control, inputs=['throttle', 'angle'], outputs=['left_motor_speed', 'right_motor_speed']) V.add(left_motor, inputs=['left_motor_speed']) V.add(right_motor, inputs=['right_motor_speed']) elif cfg.DRIVE_TRAIN_TYPE == "SERVO_HBRIDGE_PWM": from donkeycar.parts.actuator import ServoBlaster, PWMSteering steering_controller = ServoBlaster(cfg.STEERING_CHANNEL) #really pin #PWM pulse values should be in the range of 100 to 200 assert(cfg.STEERING_LEFT_PWM <= 200) assert(cfg.STEERING_RIGHT_PWM <= 200) steering = PWMSteering(controller=steering_controller, left_pulse=cfg.STEERING_LEFT_PWM, right_pulse=cfg.STEERING_RIGHT_PWM) from donkeycar.parts.actuator import Mini_HBridge_DC_Motor_PWM motor = Mini_HBridge_DC_Motor_PWM(cfg.HBRIDGE_PIN_FWD, cfg.HBRIDGE_PIN_BWD) V.add(steering, inputs=['angle'], threaded=True) V.add(motor, inputs=["throttle"]) elif cfg.DRIVE_TRAIN_TYPE == "MM1": from donkeycar.parts.robohat import RoboHATDriver V.add(RoboHATDriver(cfg), inputs=['angle', 'throttle']) elif cfg.DRIVE_TRAIN_TYPE == "PIGPIO_PWM": from donkeycar.parts.actuator import PWMSteering, PWMThrottle, PiGPIO_PWM steering_controller = PiGPIO_PWM(cfg.STEERING_PWM_PIN, freq=cfg.STEERING_PWM_FREQ, inverted=cfg.STEERING_PWM_INVERTED) steering = PWMSteering(controller=steering_controller, left_pulse=cfg.STEERING_LEFT_PWM, right_pulse=cfg.STEERING_RIGHT_PWM) throttle_controller = PiGPIO_PWM(cfg.THROTTLE_PWM_PIN, freq=cfg.THROTTLE_PWM_FREQ, inverted=cfg.THROTTLE_PWM_INVERTED) throttle = PWMThrottle(controller=throttle_controller, max_pulse=cfg.THROTTLE_FORWARD_PWM, zero_pulse=cfg.THROTTLE_STOPPED_PWM, min_pulse=cfg.THROTTLE_REVERSE_PWM) V.add(steering, inputs=['angle'], threaded=True) V.add(throttle, inputs=['throttle'], threaded=True) # OLED setup if cfg.USE_SSD1306_128_32: from donkeycar.parts.oled import OLEDPart auto_record_on_throttle = cfg.USE_JOYSTICK_AS_DEFAULT and cfg.AUTO_RECORD_ON_THROTTLE oled_part = OLEDPart(cfg.SSD1306_128_32_I2C_BUSNUM, auto_record_on_throttle=auto_record_on_throttle) V.add(oled_part, inputs=['recording', 'tub/num_records', 'user/mode'], outputs=[], threaded=True) #add tub to save data if cfg.USE_LIDAR: inputs = ['cam/image_array', 'lidar/dist_array', 'user/angle', 'user/throttle', 'user/mode'] types = ['image_array', 'nparray','float', 'float', 'str'] else: inputs=['cam/image_array','user/angle', 'user/throttle', 'user/mode'] types=['image_array','float', 'float','str'] if cfg.HAVE_ODOM: inputs += ['enc/speed'] types += ['float'] if cfg.TRAIN_BEHAVIORS: inputs += ['behavior/state', 'behavior/label', "behavior/one_hot_state_array"] types += ['int', 'str', 'vector'] if cfg.CAMERA_TYPE == "D435" and cfg.REALSENSE_D435_DEPTH: inputs += ['cam/depth_array'] types += ['gray16_array'] if cfg.HAVE_IMU or (cfg.CAMERA_TYPE == "D435" and cfg.REALSENSE_D435_IMU): inputs += ['imu/acl_x', 'imu/acl_y', 'imu/acl_z', 'imu/gyr_x', 'imu/gyr_y', 'imu/gyr_z'] types +=['float', 'float', 'float', 'float', 'float', 'float'] # rbx if cfg.DONKEY_GYM: if cfg.SIM_RECORD_LOCATION: inputs += ['pos/pos_x', 'pos/pos_y', 'pos/pos_z', 'pos/speed', 'pos/cte'] types += ['float', 'float', 'float', 'float', 'float'] if cfg.SIM_RECORD_GYROACCEL: inputs += ['gyro/gyro_x', 'gyro/gyro_y', 'gyro/gyro_z', 'accel/accel_x', 'accel/accel_y', 'accel/accel_z'] types += ['float', 'float', 'float', 'float', 'float', 'float'] if cfg.SIM_RECORD_VELOCITY: inputs += ['vel/vel_x', 'vel/vel_y', 'vel/vel_z'] types += ['float', 'float', 'float'] if cfg.SIM_RECORD_LIDAR: inputs += ['lidar/dist_array'] types += ['nparray'] if cfg.RECORD_DURING_AI: inputs += ['pilot/angle', 'pilot/throttle'] types += ['float', 'float'] if cfg.HAVE_PERFMON: from donkeycar.parts.perfmon import PerfMonitor mon = PerfMonitor(cfg) perfmon_outputs = ['perf/cpu', 'perf/mem', 'perf/freq'] inputs += perfmon_outputs types += ['float', 'float', 'float'] V.add(mon, inputs=[], outputs=perfmon_outputs, threaded=True) # do we want to store new records into own dir or append to existing tub_path = TubHandler(path=cfg.DATA_PATH).create_tub_path() if \ cfg.AUTO_CREATE_NEW_TUB else cfg.DATA_PATH tub_writer = TubWriter(tub_path, inputs=inputs, types=types, metadata=meta) V.add(tub_writer, inputs=inputs, outputs=["tub/num_records"], run_condition='recording') # Telemetry (we add the same metrics added to the TubHandler if cfg.HAVE_MQTT_TELEMETRY: telem_inputs, _ = tel.add_step_inputs(inputs, types) V.add(tel, inputs=telem_inputs, outputs=["tub/queue_size"], threaded=True) if cfg.PUB_CAMERA_IMAGES: from donkeycar.parts.network import TCPServeValue from donkeycar.parts.image import ImgArrToJpg pub = TCPServeValue("camera") V.add(ImgArrToJpg(), inputs=['cam/image_array'], outputs=['jpg/bin']) V.add(pub, inputs=['jpg/bin']) if type(ctr) is LocalWebController: if cfg.DONKEY_GYM: print("You can now go to http://localhost:%d to drive your car." % cfg.WEB_CONTROL_PORT) else: print("You can now go to <your hostname.local>:%d to drive your car." % cfg.WEB_CONTROL_PORT) elif (cfg.CONTROLLER_TYPE != "pigpio_rc") and (cfg.CONTROLLER_TYPE != "MM1"): if isinstance(ctr, JoystickController): print("You can now move your joystick to drive your car.") ctr.set_tub(tub_writer.tub) ctr.print_controls() #run the vehicle for 20 seconds V.start(rate_hz=cfg.DRIVE_LOOP_HZ, max_loop_count=cfg.MAX_LOOPS)
30,452
def get_self_deployed_token(): if not (AUTH_ID and SELF_TENANT_ID and APP_SECRET): return_error('You must provide the Tenant ID, Application ID and Client Secret.') integration_context = demisto.getIntegrationContext() if integration_context and integration_context['token_expiration_time']: token_expiration_time = integration_context['token_expiration_time'] now = int(time.time()) if token_expiration_time < now: return integration_context['token'] url = 'https://login.windows.net/{}/oauth2/token'.format(SELF_TENANT_ID) resource_app_id_uri = 'https://api.securitycenter.windows.com' data = { 'resource': resource_app_id_uri, 'client_id': APP_ID, 'client_secret': APP_SECRET, 'grant_type': 'client_credentials' } response = requests.post(url, data, verify=USE_SSL) body = response.json() if response.status_code != 200: return_error('Error in Microsoft authorization: {}'.format(str(body))) demisto.setIntegrationContext({ 'token_expiration_time': body['expires_on'], 'token': body['access_token'] }) return body['access_token']
def get_self_deployed_token(): if not (AUTH_ID and SELF_TENANT_ID and APP_SECRET): return_error('You must provide the Tenant ID, Application ID and Client Secret.') integration_context = demisto.getIntegrationContext() if integration_context and integration_context.get('token_expiration_time'): token_expiration_time = integration_context['token_expiration_time'] now = int(time.time()) if token_expiration_time < now: return integration_context['token'] url = 'https://login.windows.net/{}/oauth2/token'.format(SELF_TENANT_ID) resource_app_id_uri = 'https://api.securitycenter.windows.com' data = { 'resource': resource_app_id_uri, 'client_id': APP_ID, 'client_secret': APP_SECRET, 'grant_type': 'client_credentials' } response = requests.post(url, data, verify=USE_SSL) body = response.json() if response.status_code != 200: return_error('Error in Microsoft authorization: {}'.format(str(body))) demisto.setIntegrationContext({ 'token_expiration_time': body['expires_on'], 'token': body['access_token'] }) return body['access_token']
11,899
def contain(image, size, method=Image.BICUBIC): """ Returns a sized version of the image, expanded to fill the requested aspect ratio and size. :param image: The image to size and crop. :param size: The requested output size in pixels, given as a (width, height) tuple. :param method: What resampling method to use. Default is :py:attr:`PIL.Image.BICUBIC`. See :ref:`concept-filters`. :return: An image. """ im_ratio = image.width / image.height dest_ratio = size[0] / size[1] if im_ratio != dest_ratio: if im_ratio > dest_ratio: new_height = int(image.height / image.width * size[0]) if new_height != size[1]: size = (size[0], new_height) else: new_width = int(image.width / image.height * size[1]) if new_width != size[0]: size = (new_width, size[1]) return image.resize(size, resample=method)
def contain(image, size, method=Image.BICUBIC): """ Returns a sized version of the image, expanded to fill the requested aspect ratio and size. :param image: The image to resize and crop. :param size: The requested output size in pixels, given as a (width, height) tuple. :param method: What resampling method to use. Default is :py:attr:`PIL.Image.BICUBIC`. See :ref:`concept-filters`. :return: An image. """ im_ratio = image.width / image.height dest_ratio = size[0] / size[1] if im_ratio != dest_ratio: if im_ratio > dest_ratio: new_height = int(image.height / image.width * size[0]) if new_height != size[1]: size = (size[0], new_height) else: new_width = int(image.width / image.height * size[1]) if new_width != size[0]: size = (new_width, size[1]) return image.resize(size, resample=method)
32,404
def main(): global EMAIL global SEND_AS command = demisto.command() client = Client() demisto.info(f'Command being called is {command}') commands = { 'test-module': test_module, 'send-mail': send_mail_command, 'reply-mail': reply_mail_command, 'fetch-incidents': fetch_incidents, 'gmail-auth-link': auth_link_command, 'gmail-auth-test': auth_test_command, 'gmail-get-attachments': get_attachments_command, } try: if command == 'fetch-incidents': demisto.incidents(fetch_incidents(client)) sys.exit(0) if command in commands: demisto.results(commands[command](client)) # Log exceptions except Exception as e: import traceback return_error('GMAIL: {} {}'.format(str(e), traceback.format_exc()))
def main(): global EMAIL global SEND_AS command = demisto.command() client = Client() demisto.info(f'Command being called is {command}') commands = { 'test-module': test_module, 'send-mail': send_mail_command, 'reply-mail': reply_mail_command, 'fetch-incidents': fetch_incidents, 'gmail-auth-link': auth_link_command, 'gmail-auth-test': auth_test_command, 'gmail-get-attachments': get_attachments_command, } try: if command == 'fetch-incidents': demisto.incidents(fetch_incidents(client)) sys.exit(0) if command in commands: demisto.results(commands[command](client)) # Log exceptions except Exception as e: import traceback return_error(f'An error occured: {e}', error=e)
45,349
def _predict( booster, data, **kwargs, ): """ Run distributed prediction with a trained booster on Ray backend. During work it runs xgb.predict on each worker for row partition of `data` and creates Modin DataFrame with prediction results. Parameters ---------- booster : xgboost.Booster A trained booster. data : modin.experimental.xgboost.DMatrix Input data used for prediction. **kwargs : dict Other parameters are the same as `xgboost.Booster.predict`. Returns ------- modin.pandas.DataFrame Modin DataFrame with prediction results. """ s = time.time() # Get metainfo from dmatrix input_index, input_columns, row_lengths = data.data_metainfo # Infer columns of result def _get_num_columns(booster, n_features, **kwargs): rng = np.random.RandomState(777) test_data = rng.randn(1, n_features) test_predictions = booster.predict( xgb.DMatrix(test_data), validate_features=False, **kwargs ) num_columns = ( test_predictions.shape[1] if len(test_predictions.shape) > 1 else 1 ) return num_columns result_num_columns = _get_num_columns(booster, len(input_columns), **kwargs) new_columns = list(range(result_num_columns)) # Put common data in object store booster = ray.put(booster) new_columns_ref = ray.put(new_columns) prediction_refs = [ _map_predict.remote(booster, part, new_columns_ref, **kwargs) for _, part in data.data ] predictions = from_partitions( prediction_refs, 0, index=input_index, columns=new_columns, row_lengths=row_lengths, column_widths=[len(new_columns)], ) LOGGER.info(f"Prediction time: {time.time() - s} s") return predictions
def _predict( booster, data, **kwargs, ): """ Run distributed prediction with a trained booster on Ray backend. During execution it runs `xgb.predict` on each worker for subset of `data` and creates Modin DataFrame with prediction results. Parameters ---------- booster : xgboost.Booster A trained booster. data : modin.experimental.xgboost.DMatrix Input data used for prediction. **kwargs : dict Other parameters are the same as `xgboost.Booster.predict`. Returns ------- modin.pandas.DataFrame Modin DataFrame with prediction results. """ s = time.time() # Get metainfo from dmatrix input_index, input_columns, row_lengths = data.data_metainfo # Infer columns of result def _get_num_columns(booster, n_features, **kwargs): rng = np.random.RandomState(777) test_data = rng.randn(1, n_features) test_predictions = booster.predict( xgb.DMatrix(test_data), validate_features=False, **kwargs ) num_columns = ( test_predictions.shape[1] if len(test_predictions.shape) > 1 else 1 ) return num_columns result_num_columns = _get_num_columns(booster, len(input_columns), **kwargs) new_columns = list(range(result_num_columns)) # Put common data in object store booster = ray.put(booster) new_columns_ref = ray.put(new_columns) prediction_refs = [ _map_predict.remote(booster, part, new_columns_ref, **kwargs) for _, part in data.data ] predictions = from_partitions( prediction_refs, 0, index=input_index, columns=new_columns, row_lengths=row_lengths, column_widths=[len(new_columns)], ) LOGGER.info(f"Prediction time: {time.time() - s} s") return predictions
13,216
def invalid_json_error(release, ex): """Error for invalid JSON format.""" release.model.errors = { 'errors': str(ex), }
def invalid_json_error(release, ex): """Error for invalid JSON format.""" release.model.errors = { 'errors': ex.message, }
32,473
def main() -> None: LOG('command is %s' % (demisto.command(),)) try: handle_proxy() if demisto.command() == 'test-module': # This is the call made when pressing the integration test button. http_request('/domains/categorization/google.com?showLabels') demisto.results('ok') sys.exit(0) elif demisto.command() == 'investigate-umbrella-domain-categorization' or demisto.command() == \ 'umbrella-domain-categorization': demisto.results(get_domain_categorization_command()) elif demisto.command() == 'investigate-umbrella-domain-search' or demisto.command() == 'umbrella-domain-search': demisto.results(get_domain_search_command()) elif demisto.command() == 'investigate-umbrella-domain-co-occurrences' or demisto.command() == \ 'umbrella-domain-co-occurrences': demisto.results(get_domain_co_occurrences_command()) elif demisto.command() == 'investigate-umbrella-domain-related' or demisto.command() == 'umbrella-domain-related': demisto.results(get_domain_related_command()) elif demisto.command() == 'investigate-umbrella-domain-security' or demisto.command() == 'umbrella-domain-security': demisto.results(get_domain_security_command()) elif demisto.command() == 'investigate-umbrella-domain-dns-history' or demisto.command() == \ 'umbrella-domain-dns-history': demisto.results(get_domain_dns_history_command()) elif demisto.command() == 'investigate-umbrella-ip-dns-history' or demisto.command() == 'umbrella-ip-dns-history': demisto.results(get_ip_dns_history_command()) elif demisto.command() == 'investigate-umbrella-ip-malicious-domains' or demisto.command() == \ 'umbrella-ip-malicious-domains': demisto.results(get_ip_malicious_domains_command()) # new-commands: elif demisto.command() == 'domain': return_results(get_domain_command()) elif demisto.command() == 'umbrella-get-related-domains': demisto.results(get_related_domains_command()) elif demisto.command() == 'umbrella-get-domain-classifiers': demisto.results(get_domain_classifiers_command()) elif demisto.command() == 'umbrella-get-domain-queryvolume': demisto.results(get_domain_query_volume_command()) elif demisto.command() == 'umbrella-get-domain-details': demisto.results(get_domain_details_command()) elif demisto.command() == 'umbrella-get-domains-for-email-registrar': demisto.results(get_domains_for_email_registrar_command()) elif demisto.command() == 'umbrella-get-domains-for-nameserver': demisto.results(get_domains_for_nameserver_command()) elif demisto.command() == 'umbrella-get-whois-for-domain': return_results(get_whois_for_domain_command()) elif demisto.command() == 'umbrella-get-malicious-domains-for-ip': demisto.results(get_malicious_domains_for_ip_command()) elif demisto.command() == 'umbrella-get-domains-using-regex': demisto.results(get_domain_using_regex_command()) elif demisto.command() == 'umbrella-get-domain-timeline': demisto.results(get_domain_timeline_command()) elif demisto.command() == 'umbrella-get-ip-timeline': demisto.results(get_ip_timeline_command()) elif demisto.command() == 'umbrella-get-url-timeline': demisto.results(get_url_timeline_command()) except HTTPError as e: if e.args[0]: return_error(e.args[0]) else: return_error(f"HTTP error with code {e.response.status_code}") except Exception as e: LOG(str(e)) LOG.print_log() return_error(str(e))
def main() -> None: demisto.debug(f'Command being called is {demisto.command()}') try: handle_proxy() if demisto.command() == 'test-module': # This is the call made when pressing the integration test button. http_request('/domains/categorization/google.com?showLabels') demisto.results('ok') sys.exit(0) elif demisto.command() == 'investigate-umbrella-domain-categorization' or demisto.command() == \ 'umbrella-domain-categorization': demisto.results(get_domain_categorization_command()) elif demisto.command() == 'investigate-umbrella-domain-search' or demisto.command() == 'umbrella-domain-search': demisto.results(get_domain_search_command()) elif demisto.command() == 'investigate-umbrella-domain-co-occurrences' or demisto.command() == \ 'umbrella-domain-co-occurrences': demisto.results(get_domain_co_occurrences_command()) elif demisto.command() == 'investigate-umbrella-domain-related' or demisto.command() == 'umbrella-domain-related': demisto.results(get_domain_related_command()) elif demisto.command() == 'investigate-umbrella-domain-security' or demisto.command() == 'umbrella-domain-security': demisto.results(get_domain_security_command()) elif demisto.command() == 'investigate-umbrella-domain-dns-history' or demisto.command() == \ 'umbrella-domain-dns-history': demisto.results(get_domain_dns_history_command()) elif demisto.command() == 'investigate-umbrella-ip-dns-history' or demisto.command() == 'umbrella-ip-dns-history': demisto.results(get_ip_dns_history_command()) elif demisto.command() == 'investigate-umbrella-ip-malicious-domains' or demisto.command() == \ 'umbrella-ip-malicious-domains': demisto.results(get_ip_malicious_domains_command()) # new-commands: elif demisto.command() == 'domain': return_results(get_domain_command()) elif demisto.command() == 'umbrella-get-related-domains': demisto.results(get_related_domains_command()) elif demisto.command() == 'umbrella-get-domain-classifiers': demisto.results(get_domain_classifiers_command()) elif demisto.command() == 'umbrella-get-domain-queryvolume': demisto.results(get_domain_query_volume_command()) elif demisto.command() == 'umbrella-get-domain-details': demisto.results(get_domain_details_command()) elif demisto.command() == 'umbrella-get-domains-for-email-registrar': demisto.results(get_domains_for_email_registrar_command()) elif demisto.command() == 'umbrella-get-domains-for-nameserver': demisto.results(get_domains_for_nameserver_command()) elif demisto.command() == 'umbrella-get-whois-for-domain': return_results(get_whois_for_domain_command()) elif demisto.command() == 'umbrella-get-malicious-domains-for-ip': demisto.results(get_malicious_domains_for_ip_command()) elif demisto.command() == 'umbrella-get-domains-using-regex': demisto.results(get_domain_using_regex_command()) elif demisto.command() == 'umbrella-get-domain-timeline': demisto.results(get_domain_timeline_command()) elif demisto.command() == 'umbrella-get-ip-timeline': demisto.results(get_ip_timeline_command()) elif demisto.command() == 'umbrella-get-url-timeline': demisto.results(get_url_timeline_command()) except HTTPError as e: if e.args[0]: return_error(e.args[0]) else: return_error(f"HTTP error with code {e.response.status_code}") except Exception as e: LOG(str(e)) LOG.print_log() return_error(str(e))
23,096
def asarray(a, allow_unknown_chunksizes=False, **kwargs): """Convert the input to a dask array. Parameters ---------- a : array-like Input data, in any form that can be converted to a dask array. Returns ------- out : dask array Dask array interpretation of a. Examples -------- >>> import dask.array as da >>> import numpy as np >>> x = np.arange(3) >>> da.asarray(x) dask.array<array, shape=(3,), dtype=int64, chunksize=(3,), chunktype=numpy.ndarray> >>> y = [[1, 2, 3], [4, 5, 6]] >>> da.asarray(y) dask.array<array, shape=(2, 3), dtype=int64, chunksize=(2, 3), chunktype=numpy.ndarray> """ if isinstance(a, Array): return a elif hasattr(a, "to_dask_array"): return a.to_dask_array() elif type(a).__module__.split(".")[0] == "xarray" and hasattr(a, "data"): return asarray(a.data) elif isinstance(a, (list, tuple)) and any(isinstance(i, Array) for i in a): return stack(a, allow_unknown_chunksizes=allow_unknown_chunksizes, **kwargs) elif not isinstance(getattr(a, "shape", None), Iterable): a = np.asarray(a) return from_array(a, getitem=getter_inline, **kwargs)
def asarray(a, allow_unknown_chunksizes=False, **kwargs): """Convert the input to a dask array. Parameters ---------- a : array-like Input data, in any form that can be converted to a dask array. Returns ------- out : dask array Dask array interpretation of a. Examples -------- >>> import dask.array as da >>> import numpy as np >>> x = np.arange(3) >>> da.asarray(x) dask.array<array, shape=(3,), dtype=int64, chunksize=(3,), chunktype=numpy.ndarray> >>> y = [[1, 2, 3], [4, 5, 6]] >>> da.asarray(y) dask.array<array, shape=(2, 3), dtype=int64, chunksize=(2, 3), chunktype=numpy.ndarray> """ if isinstance(a, Array): return a elif hasattr(a, "to_dask_array"): return a.to_dask_array() elif type(a).__module__.split(".")[0] == "xarray" and hasattr(a, "data"): return asarray(a.data) elif isinstance(a, (list, tuple)) and any(isinstance(i, Array) for i in a): return stack(a, allow_unknown_chunksizes=allow_unknown_chunksizes) elif not isinstance(getattr(a, "shape", None), Iterable): a = np.asarray(a) return from_array(a, getitem=getter_inline, **kwargs)
9,417
def main(): module = AnsibleModule( argument_spec=dict( login_user=dict(default=None), login_password=dict(default=None, no_log=True), login_host=dict(default='localhost'), login_port=dict(default='27017'), login_database=dict(default=None), replica_set=dict(default=None), database=dict(required=True, aliases=['db']), name=dict(required=True, aliases=['user']), password=dict(aliases=['pass'], no_log=True), ssl=dict(default=False, type='bool'), ssl_certfile=dict(default=None), ssl_keyfile=dict(default=None), ssl_ca_certs=dict(default=None), roles=dict(default=None, type='list'), state=dict(default='present', choices=['absent', 'present']), update_password=dict(default="always", choices=["always", "on_create"]), ssl_cert_reqs=dict(default='CERT_REQUIRED', choices=['CERT_NONE', 'CERT_OPTIONAL', 'CERT_REQUIRED']), ), supports_check_mode=True ) if not pymongo_found: module.fail_json(msg='the python pymongo module is required') login_user = module.params['login_user'] login_password = module.params['login_password'] login_host = module.params['login_host'] login_port = module.params['login_port'] login_database = module.params['login_database'] replica_set = module.params['replica_set'] db_name = module.params['database'] user = module.params['name'] password = module.params['password'] ssl = module.params['ssl'] ssl_certfile = module.params['ssl_certfile'] ssl_keyfile = module.params['ssl_keyfile'] ssl_ca_certs = module.params['ssl_ca_certs'] roles = module.params['roles'] or [] state = module.params['state'] update_password = module.params['update_password'] try: connection_params = { "host": login_host, "port": int(login_port), } if replica_set: connection_params["replicaset"] = replica_set if ssl: connection_params["ssl"] = ssl connection_params["ssl_cert_reqs"] = getattr(ssl_lib, module.params['ssl_cert_reqs']) if ssl_certfile: connection_params['ssl_certfile'] = ssl_certfile if ssl_keyfile: connection_params['ssl_keyfile'] = ssl_keyfile if ssl_ca_certs: connection_params['ssl_ca_certs'] = ssl_ca_certs client = MongoClient(**connection_params) # NOTE: this check must be done ASAP. # We doesn't need to be authenticated (this ability has lost in PyMongo 3.6) if LooseVersion(PyMongoVersion) <= LooseVersion('3.5'): check_compatibility(module, client) if login_user is None and login_password is None: mongocnf_creds = load_mongocnf() if mongocnf_creds is not False: login_user = mongocnf_creds['user'] login_password = mongocnf_creds['password'] elif login_password is None or login_user is None: module.fail_json(msg='when supplying login arguments, both login_user and login_password must be provided') if login_user is not None and login_password is not None: client.admin.authenticate(login_user, login_password, source=login_database) elif LooseVersion(PyMongoVersion) >= LooseVersion('3.0'): if db_name != "admin": module.fail_json(msg='The localhost login exception only allows the first admin account to be created') # else: this has to be the first admin user added except Exception as e: module.fail_json(msg='unable to connect to database: %s' % to_native(e), exception=traceback.format_exc()) if state == 'present': if password is None and update_password == 'always': module.fail_json(msg='password parameter required when adding a user unless update_password is set to on_create') try: if update_password != 'always': uinfo = user_find(client, user, db_name) if uinfo: password = None if not check_if_roles_changed(uinfo, roles, db_name): module.exit_json(changed=False, user=user) if module.check_mode: module.exit_json(changed=True, user=user) user_add(module, client, db_name, user, password, roles) except Exception as e: module.fail_json(msg='Unable to add or update user: %s' % to_native(e), exception=traceback.format_exc()) # Here we can check password change if mongo provide a query for that : https://jira.mongodb.org/browse/SERVER-22848 # newuinfo = user_find(client, user, db_name) # if uinfo['role'] == newuinfo['role'] and CheckPasswordHere: # module.exit_json(changed=False, user=user) elif state == 'absent': try: user_remove(module, client, db_name, user) except Exception as e: module.fail_json(msg='Unable to remove user: %s' % to_native(e), exception=traceback.format_exc()) module.exit_json(changed=True, user=user)
def main(): module = AnsibleModule( argument_spec=dict( login_user=dict(default=None), login_password=dict(default=None, no_log=True), login_host=dict(default='localhost'), login_port=dict(default='27017'), login_database=dict(default=None), replica_set=dict(default=None), database=dict(required=True, aliases=['db']), name=dict(required=True, aliases=['user']), password=dict(aliases=['pass'], no_log=True), ssl=dict(default=False, type='bool'), ssl_certfile=dict(default=None), ssl_keyfile=dict(default=None), ssl_ca_certs=dict(type='path'), roles=dict(default=None, type='list'), state=dict(default='present', choices=['absent', 'present']), update_password=dict(default="always", choices=["always", "on_create"]), ssl_cert_reqs=dict(default='CERT_REQUIRED', choices=['CERT_NONE', 'CERT_OPTIONAL', 'CERT_REQUIRED']), ), supports_check_mode=True ) if not pymongo_found: module.fail_json(msg='the python pymongo module is required') login_user = module.params['login_user'] login_password = module.params['login_password'] login_host = module.params['login_host'] login_port = module.params['login_port'] login_database = module.params['login_database'] replica_set = module.params['replica_set'] db_name = module.params['database'] user = module.params['name'] password = module.params['password'] ssl = module.params['ssl'] ssl_certfile = module.params['ssl_certfile'] ssl_keyfile = module.params['ssl_keyfile'] ssl_ca_certs = module.params['ssl_ca_certs'] roles = module.params['roles'] or [] state = module.params['state'] update_password = module.params['update_password'] try: connection_params = { "host": login_host, "port": int(login_port), } if replica_set: connection_params["replicaset"] = replica_set if ssl: connection_params["ssl"] = ssl connection_params["ssl_cert_reqs"] = getattr(ssl_lib, module.params['ssl_cert_reqs']) if ssl_certfile: connection_params['ssl_certfile'] = ssl_certfile if ssl_keyfile: connection_params['ssl_keyfile'] = ssl_keyfile if ssl_ca_certs: connection_params['ssl_ca_certs'] = ssl_ca_certs client = MongoClient(**connection_params) # NOTE: this check must be done ASAP. # We doesn't need to be authenticated (this ability has lost in PyMongo 3.6) if LooseVersion(PyMongoVersion) <= LooseVersion('3.5'): check_compatibility(module, client) if login_user is None and login_password is None: mongocnf_creds = load_mongocnf() if mongocnf_creds is not False: login_user = mongocnf_creds['user'] login_password = mongocnf_creds['password'] elif login_password is None or login_user is None: module.fail_json(msg='when supplying login arguments, both login_user and login_password must be provided') if login_user is not None and login_password is not None: client.admin.authenticate(login_user, login_password, source=login_database) elif LooseVersion(PyMongoVersion) >= LooseVersion('3.0'): if db_name != "admin": module.fail_json(msg='The localhost login exception only allows the first admin account to be created') # else: this has to be the first admin user added except Exception as e: module.fail_json(msg='unable to connect to database: %s' % to_native(e), exception=traceback.format_exc()) if state == 'present': if password is None and update_password == 'always': module.fail_json(msg='password parameter required when adding a user unless update_password is set to on_create') try: if update_password != 'always': uinfo = user_find(client, user, db_name) if uinfo: password = None if not check_if_roles_changed(uinfo, roles, db_name): module.exit_json(changed=False, user=user) if module.check_mode: module.exit_json(changed=True, user=user) user_add(module, client, db_name, user, password, roles) except Exception as e: module.fail_json(msg='Unable to add or update user: %s' % to_native(e), exception=traceback.format_exc()) # Here we can check password change if mongo provide a query for that : https://jira.mongodb.org/browse/SERVER-22848 # newuinfo = user_find(client, user, db_name) # if uinfo['role'] == newuinfo['role'] and CheckPasswordHere: # module.exit_json(changed=False, user=user) elif state == 'absent': try: user_remove(module, client, db_name, user) except Exception as e: module.fail_json(msg='Unable to remove user: %s' % to_native(e), exception=traceback.format_exc()) module.exit_json(changed=True, user=user)
9,615
def main(): module = AnsibleModule( argument_spec=dict( type=dict(required=True, choices=['user', 'group', 'project']), name=dict(required=False, default=None), mountpoint=dict(required=True), bhard=dict(required=False, default=None), bsoft=dict(required=False, default=None), ihard=dict(required=False, default=None), isoft=dict(required=False, default=None), rtbhard=dict(required=False, default=None), rtbsoft=dict(required=False, default=None), state=dict(required=False, default='present', choices=['present', 'absent']) ), supports_check_mode=True ) quota_type = module.params['type'] name = module.params['name'] mountpoint = module.params['mountpoint'] bhard = module.params['bhard'] bsoft = module.params['bsoft'] ihard = module.params['ihard'] isoft = module.params['isoft'] rtbhard = module.params['rtbhard'] rtbsoft = module.params['rtbsoft'] state = module.params['state'] if bhard is not None: bhard = human_to_bytes(bhard) if bsoft is not None: bsoft = human_to_bytes(bsoft) if rtbhard is not None: rtbhard = human_to_bytes(rtbhard) if rtbsoft is not None: rtbsoft = human_to_bytes(rtbsoft) changed = False if os.getuid() != 0: module.fail_json(msg='You need to be root to run this module') if not os.path.ismount(mountpoint): module.fail_json(msg='%s is not a mountpoint' % mountpoint) mp = get_fs_by_mountpoint(mountpoint) if mp is None: module.fail_json(msg='%s is not a mountpoint or not located on an xfs filesystem.' % mountpoint) if quota_type == 'user': type_arg = '-u' quota_default = 'root' if name is None: name = quota_default if 'uquota' not in mp['mntopts'] \ and 'usrquota' not in mp['mntopts'] \ and 'quota' not in mp['mntopts'] \ and 'uqnoenforce' not in mp['mntopts'] \ and 'qnoenforce' not in mp['mntopts']: module.fail_json( msg='%s is not mounted with the uquota/usrquota/quota/uqnoenforce/qnoenforce option.' % mountpoint ) try: pwd.getpwnam(name) except KeyError as e: module.fail_json(msg='User %s doesn\'t exist.' % name) if quota_type == 'group': type_arg = '-g' quota_default = 'root' if name is None: name = quota_default if 'gquota' not in mp['mntopts'] and 'grpquota' not in mp['mntopts'] and 'gqnoenforce' not in mp['mntopts']: module.fail_json( msg='%s is not mounted with the gquota/grpquota/gqnoenforce option. (current options: %s)' % (mountpoint, mp['mntopts']) ) try: grp.getgrnam(name) except KeyError as e: module.fail_json(msg='User %s doesn\'t exist.' % name) elif quota_type == 'project': type_arg = '-p' quota_default = '#0' if name is None: name = quota_default if 'pquota' not in mp['mntopts'] and 'prjquota' not in mp['mntopts'] and 'pqnoenforce' not in mp['mntopts']: module.fail_json(msg='%s is not mounted with the pquota/prjquota/pqnoenforce option.' % mountpoint) if name != quota_default and not os.path.isfile('/etc/projects'): module.fail_json(msg='/etc/projects doesn\'t exist.') if name != quota_default and not os.path.isfile('/etc/projid'): module.fail_json(msg='/etc/projid doesn\'t exist.') if name != quota_default and name is not None and get_project_id(name) is None: module.fail_json(msg='%s hasn\'t been defined in /etc/projid.' % name) prj_set = True if name != quota_default: cmd = 'project %s' % name r = exec_quota(module, cmd, mountpoint) if r['rc'] != 0: module.fail_json(msg='Could not get project state.', cmd=cmd, retval=r) else: for line in r['stdout']: if '%s - project identifier is not set' in line: prj_set = False break if not prj_set and not module.check_mode: cmd = 'project -s' r = exec_quota(module, cmd, mountpoint) if r['rc'] != 0: module.fail_json(msg='Could not get quota realtime block report.', cmd=cmd, retval=r) else: changed = True elif not prj_set and module.check_mode: changed = True changed = False # Set limits if state == 'absent': bhard = 0 bsoft = 0 ihard = 0 isoft = 0 rtbhard = 0 rtbsoft = 0 if bsoft is not None or bhard is not None: current_bsoft, current_bhard = quota_report(module, mountpoint, name, quota_type, 'b') if isoft is not None or ihard is not None: current_isoft, current_ihard = quota_report(module, mountpoint, name, quota_type, 'i') if rtbsoft is not None or rtbhard is not None: current_rtbsoft, current_rtbhard = quota_report(module, mountpoint, name, quota_type, 'rtb') limit = [] if bsoft is not None and int(bsoft / 1024) != current_bsoft: limit.append('bsoft=%s' % bsoft) if bhard is not None and int(bhard / 1024) != current_bhard: limit.append('bhard=%s' % bhard) if isoft is not None and isoft != current_isoft: limit.append('isoft=%s' % isoft) if ihard is not None and ihard != current_ihard: limit.append('ihard=%s' % ihard) if rtbsoft is not None and int(rtbsoft / 1024) != current_rtbsoft: limit.append('rtbsoft=%s' % rtbsoft) if rtbhard is not None and int(rtbhard / 1024) != current_rtbhard: limit.append('rtbhard=%s' % rtbhard) if len(limit) > 0 and not module.check_mode: if name == quota_default: cmd = 'limit %s -d %s' % (type_arg, ' '.join(limit)) else: cmd = 'limit %s %s %s' % (type_arg, ' '.join(limit), name) r = exec_quota(module, cmd, mountpoint) if r['rc'] != 0: module.fail_json(msg='Could not set limits.', cmd=cmd, retval=r) else: changed = True elif len(limit) > 0 and module.check_mode: changed = True module.exit_json(changed=changed) return True
def main(): module = AnsibleModule( argument_spec=dict( type=dict(type='str', required=True, choices=['user', 'group', 'project']), name=dict(required=False, default=None), mountpoint=dict(required=True), bhard=dict(required=False, default=None), bsoft=dict(required=False, default=None), ihard=dict(required=False, default=None), isoft=dict(required=False, default=None), rtbhard=dict(required=False, default=None), rtbsoft=dict(required=False, default=None), state=dict(required=False, default='present', choices=['present', 'absent']) ), supports_check_mode=True ) quota_type = module.params['type'] name = module.params['name'] mountpoint = module.params['mountpoint'] bhard = module.params['bhard'] bsoft = module.params['bsoft'] ihard = module.params['ihard'] isoft = module.params['isoft'] rtbhard = module.params['rtbhard'] rtbsoft = module.params['rtbsoft'] state = module.params['state'] if bhard is not None: bhard = human_to_bytes(bhard) if bsoft is not None: bsoft = human_to_bytes(bsoft) if rtbhard is not None: rtbhard = human_to_bytes(rtbhard) if rtbsoft is not None: rtbsoft = human_to_bytes(rtbsoft) changed = False if os.getuid() != 0: module.fail_json(msg='You need to be root to run this module') if not os.path.ismount(mountpoint): module.fail_json(msg='%s is not a mountpoint' % mountpoint) mp = get_fs_by_mountpoint(mountpoint) if mp is None: module.fail_json(msg='%s is not a mountpoint or not located on an xfs filesystem.' % mountpoint) if quota_type == 'user': type_arg = '-u' quota_default = 'root' if name is None: name = quota_default if 'uquota' not in mp['mntopts'] \ and 'usrquota' not in mp['mntopts'] \ and 'quota' not in mp['mntopts'] \ and 'uqnoenforce' not in mp['mntopts'] \ and 'qnoenforce' not in mp['mntopts']: module.fail_json( msg='%s is not mounted with the uquota/usrquota/quota/uqnoenforce/qnoenforce option.' % mountpoint ) try: pwd.getpwnam(name) except KeyError as e: module.fail_json(msg='User %s doesn\'t exist.' % name) if quota_type == 'group': type_arg = '-g' quota_default = 'root' if name is None: name = quota_default if 'gquota' not in mp['mntopts'] and 'grpquota' not in mp['mntopts'] and 'gqnoenforce' not in mp['mntopts']: module.fail_json( msg='%s is not mounted with the gquota/grpquota/gqnoenforce option. (current options: %s)' % (mountpoint, mp['mntopts']) ) try: grp.getgrnam(name) except KeyError as e: module.fail_json(msg='User %s doesn\'t exist.' % name) elif quota_type == 'project': type_arg = '-p' quota_default = '#0' if name is None: name = quota_default if 'pquota' not in mp['mntopts'] and 'prjquota' not in mp['mntopts'] and 'pqnoenforce' not in mp['mntopts']: module.fail_json(msg='%s is not mounted with the pquota/prjquota/pqnoenforce option.' % mountpoint) if name != quota_default and not os.path.isfile('/etc/projects'): module.fail_json(msg='/etc/projects doesn\'t exist.') if name != quota_default and not os.path.isfile('/etc/projid'): module.fail_json(msg='/etc/projid doesn\'t exist.') if name != quota_default and name is not None and get_project_id(name) is None: module.fail_json(msg='%s hasn\'t been defined in /etc/projid.' % name) prj_set = True if name != quota_default: cmd = 'project %s' % name r = exec_quota(module, cmd, mountpoint) if r['rc'] != 0: module.fail_json(msg='Could not get project state.', cmd=cmd, retval=r) else: for line in r['stdout']: if '%s - project identifier is not set' in line: prj_set = False break if not prj_set and not module.check_mode: cmd = 'project -s' r = exec_quota(module, cmd, mountpoint) if r['rc'] != 0: module.fail_json(msg='Could not get quota realtime block report.', cmd=cmd, retval=r) else: changed = True elif not prj_set and module.check_mode: changed = True changed = False # Set limits if state == 'absent': bhard = 0 bsoft = 0 ihard = 0 isoft = 0 rtbhard = 0 rtbsoft = 0 if bsoft is not None or bhard is not None: current_bsoft, current_bhard = quota_report(module, mountpoint, name, quota_type, 'b') if isoft is not None or ihard is not None: current_isoft, current_ihard = quota_report(module, mountpoint, name, quota_type, 'i') if rtbsoft is not None or rtbhard is not None: current_rtbsoft, current_rtbhard = quota_report(module, mountpoint, name, quota_type, 'rtb') limit = [] if bsoft is not None and int(bsoft / 1024) != current_bsoft: limit.append('bsoft=%s' % bsoft) if bhard is not None and int(bhard / 1024) != current_bhard: limit.append('bhard=%s' % bhard) if isoft is not None and isoft != current_isoft: limit.append('isoft=%s' % isoft) if ihard is not None and ihard != current_ihard: limit.append('ihard=%s' % ihard) if rtbsoft is not None and int(rtbsoft / 1024) != current_rtbsoft: limit.append('rtbsoft=%s' % rtbsoft) if rtbhard is not None and int(rtbhard / 1024) != current_rtbhard: limit.append('rtbhard=%s' % rtbhard) if len(limit) > 0 and not module.check_mode: if name == quota_default: cmd = 'limit %s -d %s' % (type_arg, ' '.join(limit)) else: cmd = 'limit %s %s %s' % (type_arg, ' '.join(limit), name) r = exec_quota(module, cmd, mountpoint) if r['rc'] != 0: module.fail_json(msg='Could not set limits.', cmd=cmd, retval=r) else: changed = True elif len(limit) > 0 and module.check_mode: changed = True module.exit_json(changed=changed) return True
36,980
def _unwrap_nested_config(parent_name, element): """ Function to unwrap nested config such as {"nested": {"a_nested_dict": 1.0}}. Args: parent_name (str): The name of the previous level of a nested config. For example, in the nested config file '{"a_dict": {"nested_element": 1.0}}', the `parent_name` of nested_element is "a_dict". element (Union[int, float, str, Mapping, Sequence]): The element (value) of the nested config. For example, in the nested config file '{"a_dict": {"nested_element": 1.0}}', the `element` of is `{"a_nested_dict": 1.0}`. Return: A dictionary with the unwrapped nested config. """ if isinstance(element, Mapping): # Case where the value is another dict (a nested dict) unwrapped_nested_params = {} for key, value in element.items(): # We recursively open the element (Dict format type) unwrapped_nested_params.update( _unwrap_nested_config(f"{parent_name}.{key}", value) ) return unwrapped_nested_params elif isinstance(element, Sequence) and not isinstance(element, str): # Case where the value is a list # Since str are sequence we negate it to be logged in the next else unwrapped_nested_params = {} for idx, value in enumerate(element): unwrapped_nested_params.update( _unwrap_nested_config(f"{parent_name}.{idx}", value) ) return unwrapped_nested_params else: return {parent_name: element}
def _unwrap_nested_config(parent_name, element): """ Function to unwrap nested config such as {"nested": {"a_nested_dict": 1.0}}. Args: parent_name (str): The name of the previous level of a nested config. For example, in the nested config file '{"a_dict": {"nested_element": 1.0}}', the `parent_name` of nested_element is "a_dict". element (Union[int, float, str, Mapping, Sequence]): The element (value) of the nested config. For example, in the nested config file '{"a_dict": {"nested_element": 1.0}}', the `element` of is `{"a_nested_dict": 1.0}`. Return: A dictionary with the unwrapped nested config. """ if isinstance(element, Mapping): # Case where the value is another dict (a nested dict) unwrapped_nested_params = {} for key, value in element.items(): # We recursively open the element (Dict format type) unwrapped_nested_params.update( _unwrap_nested_config(f"{parent_name}.{key}", value) ) return unwrapped_nested_params elif isinstance(element, Sequence) and not isinstance(element, (str, bytes)): # Case where the value is a list # Since str are sequence we negate it to be logged in the next else unwrapped_nested_params = {} for idx, value in enumerate(element): unwrapped_nested_params.update( _unwrap_nested_config(f"{parent_name}.{idx}", value) ) return unwrapped_nested_params else: return {parent_name: element}
41,034
def write_comp_figs(ts, mask, comptable, mmix, ref_img, out_dir, png_cmap): """ Creates static figures that highlight certain aspects of tedana processing This includes a figure for each component showing the component time course, the spatial weight map and a fast Fourier transform of the time course Parameters ---------- ts : (S x T) array_like Time series from which to derive ICA betas mask : (S,) array_like Boolean mask array comptable : (N x 5) array_like Array with columns denoting (1) index of component, (2) Kappa score of component, (3) Rho score of component, (4) variance explained by component, and (5) normalized variance explained by component mmix : (C x T) array_like Mixing matrix for converting input data to component space, where `C` is components and `T` is the same as in `data` ref_img : :obj:`str` or img_like Reference image to dictate how outputs are saved to disk out_dir : :obj:`str` Figures folder within output directory png_cmap : :obj:`str` The name of a matplotlib colormap to use when making figures. Optional. Default colormap is 'coolwarm' """ # Get the lenght of the timeseries n_vols = len(mmix) # Check that colormap provided exists if png_cmap not in plt.colormaps(): LGR.warning('Provided colormap is not recognized, proceeding with default') png_cmap = 'coolwarm' # regenerate the beta images ts_B = model.get_coeffs(ts, mmix, mask) ts_B = ts_B.reshape(ref_img.shape[:3] + ts_B.shape[1:]) # trim edges from ts_B array ts_B = trim_edge_zeros(ts_B) # Mask out remaining zeros ts_B = np.ma.masked_where(ts_B == 0, ts_B) # Get repetition time from ref_img tr = ref_img.header.get_zooms()[-1] # Create indices for 6 cuts, based on dimensions cuts = [ts_B.shape[dim] // 6 for dim in range(3)] expl_text = '' # Remove trailing ';' from rationale column comptable['rationale'] = comptable['rationale'].str.rstrip(';') for compnum in range(0, mmix.shape[1], 1): if comptable.iloc[compnum]["classification"] == 'accepted': line_color = 'g' expl_text = 'accepted' elif comptable.iloc[compnum]["classification"] == 'rejected': line_color = 'r' expl_text = 'rejection reason(s): ' + comptable.iloc[compnum]["rationale"] elif comptable.iloc[compnum]["classification"] == 'ignored': line_color = 'k' expl_text = 'ignored reason(s): ' + comptable.iloc[compnum]["rationale"] else: # Classification not added # If new, this will keep code running line_color = '0.75' expl_text = 'other classification' allplot = plt.figure(figsize=(10, 9)) ax_ts = plt.subplot2grid((5, 6), (0, 0), rowspan=1, colspan=6, fig=allplot) ax_ts.set_xlabel('TRs') ax_ts.set_xlim(0, n_vols) plt.yticks([]) # Make a second axis with units of time (s) max_xticks = 10 xloc = plt.MaxNLocator(max_xticks) ax_ts.xaxis.set_major_locator(xloc) ax_ts2 = ax_ts.twiny() ax1Xs = ax_ts.get_xticks() ax2Xs = [] for X in ax1Xs: # Limit to 2 decimal places seconds_val = round(X * tr, 2) ax2Xs.append(seconds_val) ax_ts2.set_xticks(ax1Xs) ax_ts2.set_xlim(ax_ts.get_xbound()) ax_ts2.set_xticklabels(ax2Xs) ax_ts2.set_xlabel('seconds') ax_ts.plot(mmix[:, compnum], color=line_color) # Title will include variance from comptable comp_var = "{0:.2f}".format(comptable.iloc[compnum]["variance explained"]) comp_kappa = "{0:.2f}".format(comptable.iloc[compnum]["kappa"]) comp_rho = "{0:.2f}".format(comptable.iloc[compnum]["rho"]) plt_title = 'Comp. {}: variance: {}%, kappa: {}, rho: {}, {}'.format(compnum, comp_var, comp_kappa, comp_rho, expl_text) title = ax_ts.set_title(plt_title) title.set_y(1.5) # Set range to ~1/10th of max positive or negative beta temp_max = np.abs(ts_B[:, :, :, compnum].max()) temp_min = np.abs(ts_B[:, :, :, compnum].min()) imgmax = np.max([temp_max, temp_min]) * .1 imgmin = imgmax * -1 for idx, cut in enumerate(cuts): for imgslice in range(1, 6): ax = plt.subplot2grid((5, 6), (idx + 1, imgslice - 1), rowspan=1, colspan=1) ax.axis('off') if idx == 0: to_plot = np.rot90(ts_B[imgslice * cuts[idx], :, :, compnum]) if idx == 1: to_plot = np.rot90(ts_B[:, imgslice * cuts[idx], :, compnum]) if idx == 2: to_plot = ts_B[:, :, imgslice * cuts[idx], compnum] ax_im = ax.imshow(to_plot, vmin=imgmin, vmax=imgmax, aspect='equal', cmap=png_cmap) # Add a color bar to the plot. ax_cbar = allplot.add_axes([0.8, 0.3, 0.03, 0.37]) cbar = allplot.colorbar(ax_im, ax_cbar) cbar.set_label('Component Beta', rotation=90) cbar.ax.yaxis.set_label_position('left') # Get fft and freqs for this subject # adapted from @dangom spectrum, freqs = get_spectrum(mmix[:, compnum], tr) # Plot it ax_fft = plt.subplot2grid((5, 6), (4, 0), rowspan=1, colspan=6) ax_fft.plot(freqs, spectrum) ax_fft.set_title('One Sided fft') ax_fft.set_xlabel('Hz') ax_fft.set_xlim(freqs[0], freqs[-1]) plt.yticks([]) # Fix spacing so TR label does overlap with other plots allplot.subplots_adjust(hspace=0.4) plot_name = 'comp_{}.png'.format(str(compnum).zfill(3)) compplot_name = os.path.join(out_dir, plot_name) plt.savefig(compplot_name) plt.close()
def write_comp_figs(ts, mask, comptable, mmix, ref_img, out_dir, png_cmap): """ Creates static figures that highlight certain aspects of tedana processing This includes a figure for each component showing the component time course, the spatial weight map and a fast Fourier transform of the time course Parameters ---------- ts : (S x T) array_like Time series from which to derive ICA betas mask : (S,) array_like Boolean mask array comptable : (N x 5) array_like Array with columns denoting (1) index of component, (2) Kappa score of component, (3) Rho score of component, (4) variance explained by component, and (5) normalized variance explained by component mmix : (C x T) array_like Mixing matrix for converting input data to component space, where `C` is components and `T` is the same as in `data` ref_img : :obj:`str` or img_like Reference image to dictate how outputs are saved to disk out_dir : :obj:`str` Figures folder within output directory png_cmap : :obj:`str` The name of a matplotlib colormap to use when making figures. Optional. Default colormap is 'coolwarm' """ # Get the lenght of the timeseries n_vols = len(mmix) # Check that colormap provided exists if png_cmap not in plt.colormaps(): LGR.warning('Provided colormap is not recognized, proceeding with default') png_cmap = 'coolwarm' # regenerate the beta images ts_B = model.get_coeffs(ts, mmix, mask) ts_B = ts_B.reshape(ref_img.shape[:3] + ts_B.shape[1:]) # trim edges from ts_B array ts_B = trim_edge_zeros(ts_B) # Mask out remaining zeros ts_B = np.ma.masked_where(ts_B == 0, ts_B) # Get repetition time from ref_img tr = ref_img.header.get_zooms()[-1] # Create indices for 6 cuts, based on dimensions cuts = [ts_B.shape[dim] // 6 for dim in range(3)] expl_text = '' # Remove trailing ';' from rationale column comptable['rationale'] = comptable['rationale'].str.rstrip(';') for compnum in range(0, mmix.shape[1], 1): if comptable.iloc[compnum]["classification"] == 'accepted': line_color = 'g' expl_text = 'accepted' elif comptable.iloc[compnum]["classification"] == 'rejected': line_color = 'r' expl_text = 'rejection reason(s): ' + comptable.iloc[compnum]["rationale"] elif comptable.iloc[compnum]["classification"] == 'ignored': line_color = 'k' expl_text = 'ignored reason(s): ' + comptable.iloc[compnum]["rationale"] else: # Classification not added # If new, this will keep code running line_color = '0.75' expl_text = 'other classification' allplot = plt.figure(figsize=(10, 9)) ax_ts = plt.subplot2grid((5, 6), (0, 0), rowspan=1, colspan=6, fig=allplot) ax_ts.set_xlabel('TRs') ax_ts.set_xlim(0, n_vols) plt.yticks([]) # Make a second axis with units of time (s) max_xticks = 10 xloc = plt.MaxNLocator(max_xticks) ax_ts.xaxis.set_major_locator(xloc) ax_ts2 = ax_ts.twiny() ax1Xs = ax_ts.get_xticks() ax2Xs = [] for X in ax1Xs: # Limit to 2 decimal places seconds_val = round(X * tr, 2) ax2Xs.append(seconds_val) ax_ts2.set_xticks(ax1Xs) ax_ts2.set_xlim(ax_ts.get_xbound()) ax_ts2.set_xticklabels(ax2Xs) ax_ts2.set_xlabel('seconds') ax_ts.plot(mmix[:, compnum], color=line_color) # Title will include variance from comptable comp_var = "{0:.2f}".format(comptable.iloc[compnum]["variance explained"]) comp_kappa = "{0:.2f}".format(comptable.iloc[compnum]["kappa"]) comp_rho = "{0:.2f}".format(comptable.iloc[compnum]["rho"]) plt_title = 'Comp. {}: variance: {}%, kappa: {}, rho: {}, {}'.format(compnum, comp_var, comp_kappa, comp_rho, expl_text) title = ax_ts.set_title(plt_title) title.set_y(1.5) # Set range to ~1/10th of max positive or negative beta temp_max = np.abs(ts_B[:, :, :, compnum].max()) temp_min = np.abs(ts_B[:, :, :, compnum].min()) imgmax = 0.1 * np.abs(ts_B[:, :, :, compnum]).max() imgmin = imgmax * -1 for idx, cut in enumerate(cuts): for imgslice in range(1, 6): ax = plt.subplot2grid((5, 6), (idx + 1, imgslice - 1), rowspan=1, colspan=1) ax.axis('off') if idx == 0: to_plot = np.rot90(ts_B[imgslice * cuts[idx], :, :, compnum]) if idx == 1: to_plot = np.rot90(ts_B[:, imgslice * cuts[idx], :, compnum]) if idx == 2: to_plot = ts_B[:, :, imgslice * cuts[idx], compnum] ax_im = ax.imshow(to_plot, vmin=imgmin, vmax=imgmax, aspect='equal', cmap=png_cmap) # Add a color bar to the plot. ax_cbar = allplot.add_axes([0.8, 0.3, 0.03, 0.37]) cbar = allplot.colorbar(ax_im, ax_cbar) cbar.set_label('Component Beta', rotation=90) cbar.ax.yaxis.set_label_position('left') # Get fft and freqs for this subject # adapted from @dangom spectrum, freqs = get_spectrum(mmix[:, compnum], tr) # Plot it ax_fft = plt.subplot2grid((5, 6), (4, 0), rowspan=1, colspan=6) ax_fft.plot(freqs, spectrum) ax_fft.set_title('One Sided fft') ax_fft.set_xlabel('Hz') ax_fft.set_xlim(freqs[0], freqs[-1]) plt.yticks([]) # Fix spacing so TR label does overlap with other plots allplot.subplots_adjust(hspace=0.4) plot_name = 'comp_{}.png'.format(str(compnum).zfill(3)) compplot_name = os.path.join(out_dir, plot_name) plt.savefig(compplot_name) plt.close()
26,232
def test_bgp_shutdown(duthosts, rand_one_dut_hostname): duthost=duthosts[rand_one_dut_hostname] loganalyzer = LogAnalyzer(ansible_host=duthost, marker_prefix="bgp_shutdown") loganalyzer.expect_regex=[] try: loganalyzer.expect_regex.append(expected_log) marker=loganalyzer.init() duthost.command(defined_action) logger.info("check for expected log in syslog") loganalyzer.analyze(marker) except LogAnalyzerError as err: logger.error("Unable to find expected log in syslog") raise err
def test_bgp_shutdown(duthosts, rand_one_dut_hostname): duthost=duthosts[rand_one_dut_hostname] loganalyzer = LogAnalyzer(ansible_host=duthost, marker_prefix="bgp_shutdown") loganalyzer.expect_regex=[expected_log] try: loganalyzer.expect_regex.append(expected_log) marker=loganalyzer.init() duthost.command(defined_action) logger.info("check for expected log in syslog") loganalyzer.analyze(marker) except LogAnalyzerError as err: logger.error("Unable to find expected log in syslog") raise err
32,223
def panorama_get_url_category_command(url_cmd: str, url: str, additional_suspicious: list, additional_malicious: list, target: str = None): """ Get the url category from Palo Alto URL Filtering """ urls = argToList(url) categories_dict: Dict[str, list] = {} categories_dict_hr: Dict[str, list] = {} command_results: List[CommandResults] = [] for url in urls: err_readable_output = None try: category = panorama_get_url_category(url_cmd, url, target) if category in categories_dict: categories_dict[category].append(url) categories_dict_hr[category].append(url) else: categories_dict[category] = [url] categories_dict_hr[category] = [url] context_urls = populate_url_filter_category_from_context(category) categories_dict[category] = list((set(categories_dict[category])).union(set(context_urls))) score = calculate_dbot_score(category.lower(), additional_suspicious, additional_malicious) except InvalidUrlLengthException as e: score = 0 category = None err_readable_output = str(e) dbot_score = Common.DBotScore( indicator=url, indicator_type=DBotScoreType.URL, integration_name='PAN-OS', score=score ) url_obj = Common.URL( url=url, dbot_score=dbot_score, category=category ) readable_output = err_readable_output or tableToMarkdown('URL', url_obj.to_context()) command_results.append(CommandResults( indicator=url_obj, readable_output=readable_output )) url_category_output_hr = [] for key, value in categories_dict_hr.items(): url_category_output_hr.append({ 'Category': key, 'URL': value }) url_category_output = [] for key, value in categories_dict.items(): url_category_output.append({ 'Category': key, 'URL': value }) title = 'URL Filtering' if url_cmd == 'url-info-cloud': title += ' from cloud' elif url_cmd == 'url-info-host': title += ' from host' human_readable = tableToMarkdown(f'{title}:', url_category_output_hr, ['URL', 'Category'], removeNull=True) command_results.insert(0, CommandResults( outputs_prefix='Panorama.URLFilter', outputs_key_field='Category', outputs=url_category_output, readable_output=human_readable, raw_response=categories_dict, )) return_results(command_results)
def panorama_get_url_category_command(url_cmd: str, url: str, additional_suspicious: list, additional_malicious: list, target: Optional[str] = None): """ Get the url category from Palo Alto URL Filtering """ urls = argToList(url) categories_dict: Dict[str, list] = {} categories_dict_hr: Dict[str, list] = {} command_results: List[CommandResults] = [] for url in urls: err_readable_output = None try: category = panorama_get_url_category(url_cmd, url, target) if category in categories_dict: categories_dict[category].append(url) categories_dict_hr[category].append(url) else: categories_dict[category] = [url] categories_dict_hr[category] = [url] context_urls = populate_url_filter_category_from_context(category) categories_dict[category] = list((set(categories_dict[category])).union(set(context_urls))) score = calculate_dbot_score(category.lower(), additional_suspicious, additional_malicious) except InvalidUrlLengthException as e: score = 0 category = None err_readable_output = str(e) dbot_score = Common.DBotScore( indicator=url, indicator_type=DBotScoreType.URL, integration_name='PAN-OS', score=score ) url_obj = Common.URL( url=url, dbot_score=dbot_score, category=category ) readable_output = err_readable_output or tableToMarkdown('URL', url_obj.to_context()) command_results.append(CommandResults( indicator=url_obj, readable_output=readable_output )) url_category_output_hr = [] for key, value in categories_dict_hr.items(): url_category_output_hr.append({ 'Category': key, 'URL': value }) url_category_output = [] for key, value in categories_dict.items(): url_category_output.append({ 'Category': key, 'URL': value }) title = 'URL Filtering' if url_cmd == 'url-info-cloud': title += ' from cloud' elif url_cmd == 'url-info-host': title += ' from host' human_readable = tableToMarkdown(f'{title}:', url_category_output_hr, ['URL', 'Category'], removeNull=True) command_results.insert(0, CommandResults( outputs_prefix='Panorama.URLFilter', outputs_key_field='Category', outputs=url_category_output, readable_output=human_readable, raw_response=categories_dict, )) return_results(command_results)
42,864
def bloch_messiah(S, tol=10): r""" Performs the Bloch-Messiah decomposition of a symplectic matrix in terms of two symplectic unitaries and squeezing transformation. It automatically sorts the squeezers so that they respect the canonical symplectic form. Note that it is assumed that the symplectic form is ..math:: \Omega = \begin{bmatrix}0&I\\-I&0\end{bmatrix} where :math:`I` is the identity matrix and :math:`0` is the zero matrix. For more info see: https://math.stackexchange.com/questions/1886038/finding-euler-decomposition-of-a-symplectic-matrix Args: S (array): A symplectic matrix S tol (int): the number of decimal places to use when determining if the matrix is symplectic Returns: tuple[array]: Returns the tuple ``(ut1, st1, vt1)``. ``ut1`` and ``vt1`` are symplectic unitaries, and ``st1`` is diagonal and of the form :math:`= \text{diag}(s1,\dots,s_n, 1/s_1,\dots,1/s_n)` such that :math:`S = ut1 st1 v1` """ (n, m) = S.shape if n != m: raise ValueError("The input matrix is not square") if n%2 != 0: raise ValueError("The input matrix must have an even number of rows/columns") n = n//2 omega = sympmat(n) if np.round(np.linalg.norm(np.transpose(S) @ omega @ S - omega), tol) != 0.0: raise ValueError("The input matrix is not symplectic") u, sigma = polar(S, side='left') ss, uss = takagi(sigma) ## Apply a permutation matrix so that the squeezers appear in the order ## s_1,...,s_n, 1/s_1,...1/s_n perm = np.array(list(range(0, n)) + list(reversed(range(n, 2*n)))) pmat = np.identity(2*n)[perm, :] ut = uss @ pmat ## Apply a second permutation matrix to permute s ## (and their corresonding inverses) to get the canonical symplectic form qomega = np.transpose(ut) @ (omega) @ ut st = pmat @ np.diag(ss) @ pmat # Identifying degenrate subspaces result = [] for _k, g in groupby(np.diag(st)[:n]): result.append(list(g)) stop_is = list(np.cumsum([len(res) for res in result])) start_is = [0] + stop_is[:-1] # Rotation matrices (not permutations) based on svd. # See Appending B2 of Serafini's book for more details. u_list, v_list = [], [] for start_i, stop_i in zip(start_is, stop_is): x = qomega[start_i: stop_i, n + start_i: n + stop_i].real u_svd, _s_svd, v_svd = np.linalg.svd(x) u_list = u_list + [u_svd] v_list = v_list + [v_svd.T] pmat1 = block_diag(*(u_list + v_list)) st1 = pmat1.T @ pmat @ np.diag(ss) @ pmat @ pmat1 ut1 = uss @ pmat @ pmat1 v1 = np.transpose(ut1) @ u return ut1, st1, v1
def bloch_messiah(S, tol=10): r""" Performs the Bloch-Messiah decomposition of a symplectic matrix in terms of two symplectic unitaries and squeezing transformation. It automatically sorts the squeezers so that they respect the canonical symplectic form. Note that it is assumed that the symplectic form is ..math:: \Omega = \begin{bmatrix}0&I\\-I&0\end{bmatrix} where :math:`I` is the identity matrix and :math:`0` is the zero matrix. For more info see: https://math.stackexchange.com/questions/1886038/finding-euler-decomposition-of-a-symplectic-matrix Args: S (array): A symplectic matrix S tol (int): the number of decimal places to use when determining if the matrix is symplectic Returns: tuple[array]: Returns the tuple ``(ut1, st1, vt1)``. ``ut1`` and ``vt1`` are symplectic unitaries, and ``st1`` is diagonal and of the form :math:`= \text{diag}(s1,\dots,s_n, 1/s_1,\dots,1/s_n)` such that :math:`S = ut1 st1 v1` """ (n, m) = S.shape if n != m: raise ValueError("The input matrix is not square") if n%2 != 0: raise ValueError("The input matrix must have an even number of rows/columns") n = n//2 omega = sympmat(n) if np.round(np.linalg.norm(np.transpose(S) @ omega @ S - omega), tol) != 0.0: raise ValueError("The input matrix is not symplectic") u, sigma = polar(S, side='left') ss, uss = takagi(sigma) ## Apply a permutation matrix so that the squeezers appear in the order ## s_1,...,s_n, 1/s_1,...1/s_n perm = np.array(list(range(0, n)) + list(reversed(range(n, 2*n)))) pmat = np.identity(2*n)[perm, :] ut = uss @ pmat ## Apply a second permutation matrix to permute s ## (and their corresonding inverses) to get the canonical symplectic form qomega = np.transpose(ut) @ (omega) @ ut st = pmat @ np.diag(ss) @ pmat # Identifying degenerate subspaces result = [] for _k, g in groupby(np.diag(st)[:n]): result.append(list(g)) stop_is = list(np.cumsum([len(res) for res in result])) start_is = [0] + stop_is[:-1] # Rotation matrices (not permutations) based on svd. # See Appending B2 of Serafini's book for more details. u_list, v_list = [], [] for start_i, stop_i in zip(start_is, stop_is): x = qomega[start_i: stop_i, n + start_i: n + stop_i].real u_svd, _s_svd, v_svd = np.linalg.svd(x) u_list = u_list + [u_svd] v_list = v_list + [v_svd.T] pmat1 = block_diag(*(u_list + v_list)) st1 = pmat1.T @ pmat @ np.diag(ss) @ pmat @ pmat1 ut1 = uss @ pmat @ pmat1 v1 = np.transpose(ut1) @ u return ut1, st1, v1
16,423
def get_device_uptime(uptime: float, last_uptime: datetime | None) -> datetime: """Return device uptime string, tolerate up to 5 seconds deviation.""" delta_uptime = utcnow() - timedelta(seconds=uptime) if ( not last_uptime or abs((delta_uptime - last_uptime).total_seconds()) > UPTIME_DEVIATION ): return delta_uptime.replace(microsecond=0) return last_uptime
def get_device_uptime(uptime: float, last_uptime: datetime | None) -> datetime: """Return device uptime string, tolerate up to 5 seconds deviation.""" delta_uptime = utcnow() - timedelta(seconds=uptime) if ( not last_uptime or abs((delta_uptime - last_uptime).total_seconds()) > UPTIME_DEVIATION ): return delta_uptime return last_uptime
33,267
def decode(data, encoding='utf-8'): assert encoding == 'utf-8', "Only UTF-8 encoding is currently supported." if encoding is not None: try: data = data.decode(encoding) except Exception as e: if os.environ.get('DEBUG'): tb = sys.exc_info()[2] raise e.with_traceback(tb) logger.warning("An decoding error has occurred... continuing anyway. To capture these errors, rerun the current command prefixed with `DEBUG=1 `.") data = data.decode(encoding, errors='ignore') return data
def decode(data, encoding='utf-8'): assert encoding == 'utf-8', "Only UTF-8 encoding is currently supported." if encoding is not None: try: data = data.decode(encoding) except Exception as e: if os.environ.get('DEBUG'): tb = sys.exc_info()[2] raise e.with_traceback(tb=sys.exc_info()[2]) logger.warning("An decoding error has occurred... continuing anyway. To capture these errors, rerun the current command prefixed with `DEBUG=1 `.") data = data.decode(encoding, errors='ignore') return data
24,890
def _get_quote_delimiter(string_token: str) -> str: """Returns the quote character used to delimit this token string. This function check whether the token is a well-formed string. Args: string_token: The token to be parsed. Returns: A string containing solely the first quote delimiter character in the given string. Raises: ValueError: No quote delimiter characters are present. """ match = QUOTE_DELIMITER_REGEX.match(string_token) if not match: raise ValueError(f"string token {string_token} is not a well-formed string") return match.group(2)
def _get_quote_delimiter(string_token: str) -> str: """Returns the quote character used to delimit this token string. This function checks whether the token is a well-formed string. Args: string_token: The token to be parsed. Returns: A string containing solely the first quote delimiter character in the given string. Raises: ValueError: No quote delimiter characters are present. """ match = QUOTE_DELIMITER_REGEX.match(string_token) if not match: raise ValueError(f"string token {string_token} is not a well-formed string") return match.group(2)
27,480
def modify_policy_add_role(crm_service, project_id, role, member): """Adds a new role binding to a policy.""" policy = get_policy(crm_service, project_id) binding = None for b in policy["bindings"]: if b["role"] == role: binding = b break if binding != None: binding["members"].append(member) else: binding = {"role": role, "members": [member]} policy["bindings"].append(binding) set_policy(crm_service, project_id, policy)
def modify_policy_add_role(crm_service, project_id, role, member): """Adds a new role binding to a policy.""" policy = get_policy(crm_service, project_id) binding = None for b in policy["bindings"]: if b["role"] == role: binding = b break if binding is not None: binding["members"].append(member) else: binding = {"role": role, "members": [member]} policy["bindings"].append(binding) set_policy(crm_service, project_id, policy)
23,053
def full(shape, fill_value, dtype=None, order="C", chunks=None): # np.isscalar has somewhat strange behavior: # https://docs.scipy.org/doc/numpy/reference/generated/numpy.isscalar.html if np.ndim(fill_value) != 0: raise ValueError(f"fill_value must be scalar. Received {fill_value} instead.") return _full( shape=shape, fill_value=fill_value, dtype=dtype, order=order, chunks=chunks )
def full(shape, fill_value, dtype=None, order="C", chunks=None): # np.isscalar has somewhat strange behavior: # https://docs.scipy.org/doc/numpy/reference/generated/numpy.isscalar.html if np.ndim(fill_value) != 0: raise ValueError(f"fill_value must be scalar. Received {type(fill_value)} instead.") return _full( shape=shape, fill_value=fill_value, dtype=dtype, order=order, chunks=chunks )
955
def solve(f, *symbols, **flags): r""" Algebraically solves equations and systems of equations. Explanation =========== Currently supported: - polynomial - transcendental - piecewise combinations of the above - systems of linear and polynomial equations - systems containing relational expressions Examples ======== The output varies according to the input and can be seen by example: >>> from sympy import solve, Poly, Eq, Function, exp >>> from sympy.abc import x, y, z, a, b >>> f = Function('f') Boolean or univariate Relational: >>> solve(x < 3) (-oo < x) & (x < 3) To always get a list of solution mappings, use flag dict=True: >>> solve(x - 3, dict=True) [{x: 3}] >>> sol = solve([x - 3, y - 1], dict=True) >>> sol [{x: 3, y: 1}] >>> sol[0][x] 3 >>> sol[0][y] 1 To get a list of *symbols* and set of solution(s) use flag set=True: >>> solve([x**2 - 3, y - 1], set=True) ([x, y], {(-sqrt(3), 1), (sqrt(3), 1)}) Single expression and single symbol that is in the expression: >>> solve(x - y, x) [y] >>> solve(x - 3, x) [3] >>> solve(Eq(x, 3), x) [3] >>> solve(Poly(x - 3), x) [3] >>> solve(x**2 - y**2, x, set=True) ([x], {(-y,), (y,)}) >>> solve(x**4 - 1, x, set=True) ([x], {(-1,), (1,), (-I,), (I,)}) Single expression with no symbol that is in the expression: >>> solve(3, x) [] >>> solve(x - 3, y) [] Single expression with no symbol given. In this case, all free *symbols* will be selected as potential *symbols* to solve for. If the equation is univariate then a list of solutions is returned; otherwise - as is the case when *symbols* are given as an iterable of length greater than 1 - a list of mappings will be returned: >>> solve(x - 3) [3] >>> solve(x**2 - y**2) [{x: -y}, {x: y}] >>> solve(z**2*x**2 - z**2*y**2) [{x: -y}, {x: y}, {z: 0}] >>> solve(z**2*x - z**2*y**2) [{x: y**2}, {z: 0}] When an object other than a Symbol is given as a symbol, it is isolated algebraically and an implicit solution may be obtained. This is mostly provided as a convenience to save you from replacing the object with a Symbol and solving for that Symbol. It will only work if the specified object can be replaced with a Symbol using the subs method: >>> solve(f(x) - x, f(x)) [x] >>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x)) [x + f(x)] >>> solve(f(x).diff(x) - f(x) - x, f(x)) [-x + Derivative(f(x), x)] >>> solve(x + exp(x)**2, exp(x), set=True) ([exp(x)], {(-sqrt(-x),), (sqrt(-x),)}) >>> from sympy import Indexed, IndexedBase, Tuple, sqrt >>> A = IndexedBase('A') >>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1) >>> solve(eqs, eqs.atoms(Indexed)) {A[1]: 1, A[2]: 2} * To solve for a symbol implicitly, use implicit=True: >>> solve(x + exp(x), x) [-LambertW(1)] >>> solve(x + exp(x), x, implicit=True) [-exp(x)] * It is possible to solve for anything that can be targeted with subs: >>> solve(x + 2 + sqrt(3), x + 2) [-sqrt(3)] >>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2) {y: -2 + sqrt(3), x + 2: -sqrt(3)} * Nothing heroic is done in this implicit solving so you may end up with a symbol still in the solution: >>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y) >>> solve(eqs, y, x + 2) {y: -sqrt(3)/(x + 3), x + 2: -2*x/(x + 3) - 6/(x + 3) + sqrt(3)/(x + 3)} >>> solve(eqs, y*x, x) {x: -y - 4, x*y: -3*y - sqrt(3)} * If you attempt to solve for a number remember that the number you have obtained does not necessarily mean that the value is equivalent to the expression obtained: >>> solve(sqrt(2) - 1, 1) [sqrt(2)] >>> solve(x - y + 1, 1) # /!\ -1 is targeted, too [x/(y - 1)] >>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)] [-x + y] * To solve for a function within a derivative, use ``dsolve``. Single expression and more than one symbol: * When there is a linear solution: >>> solve(x - y**2, x, y) [(y**2, y)] >>> solve(x**2 - y, x, y) [(x, x**2)] >>> solve(x**2 - y, x, y, dict=True) [{y: x**2}] * If there is no linear solution, then the first successful attempt for a nonlinear solution will be returned: >>> solve(x**2 - y**2, x, y, dict=True) [{x: -y}, {x: y}] >>> solve(x**2 - y**2/exp(x), x, y, dict=True) [{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}] >>> solve(x**2 - y**2/exp(x), y, x) [(-x*sqrt(exp(x)), x), (x*sqrt(exp(x)), x)] * When undetermined coefficients are identified: This happens when it is possible to form a linear set of equations in the variables provided from the coefficients of the expressions in symbols not provided. A single dictionary with specified values will be returned: >>> eq = (a + b)*x - b + 2 >>> solve(eq, a, b) {a: -2, b: 2} The coefficient system solved was: >>> list(eq.expand().as_coefficients_dict(x).values()) [a + b, 2 - b] To obtain an algebraic solution in terms of ``a`` or ``b`` pass the equation in a list: >>> solve([eq], a, b) {a: b*(1 - x)/x - 2/x} Iterable of one or more of the above: * Involving relationals or bools: >>> solve([x < 3, x - 2]) Eq(x, 2) >>> solve([x > 3, x - 2]) False * When the system is linear: * With a solution: >>> solve([x - 3], x) {x: 3} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y, z) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - z), z, x, y) {x: 2 - 5*y, z: 21*y - 6} * Without a solution: >>> solve([x + 3, x - 3]) [] * When the system is not linear: >>> solve([x**2 + y -2, y**2 - 4], x, y, set=True) ([x, y], {(-2, -2), (0, 2), (2, -2)}) * If no *symbols* are given, all free *symbols* will be selected and a list of mappings returned: >>> solve([x - 2, x**2 + y]) [{x: 2, y: -4}] >>> solve([x - 2, x**2 + f(x)], {f(x), x}) [{x: 2, f(x): -4}] * If any equation does not depend on the symbol(s) given, it will be eliminated from the equation set and an answer may be given implicitly in terms of variables that were not of interest: >>> solve([x - y, y - 3], x) {x: y} **Additional Examples** ``solve()`` with check=True (default) will run through the symbol tags to eliminate unwanted solutions. If no assumptions are included, all possible solutions will be returned: >>> from sympy import Symbol, solve >>> x = Symbol("x") >>> solve(x**2 - 1) [-1, 1] By using the positive tag, only one solution will be returned: >>> pos = Symbol("pos", positive=True) >>> solve(pos**2 - 1) [1] Assumptions are not checked when ``solve()`` input involves relationals or bools. When the solutions are checked, those that make any denominator zero are automatically excluded. If you do not want to exclude such solutions, then use the check=False option: >>> from sympy import sin, limit >>> solve(sin(x)/x) # 0 is excluded [pi] If check=False, then a solution to the numerator being zero is found: x = 0. In this case, this is a spurious solution since $\sin(x)/x$ has the well known limit (without dicontinuity) of 1 at x = 0: >>> solve(sin(x)/x, check=False) [0, pi] In the following case, however, the limit exists and is equal to the value of x = 0 that is excluded when check=True: >>> eq = x**2*(1/x - z**2/x) >>> solve(eq, x) [] >>> solve(eq, x, check=False) [0] >>> limit(eq, x, 0, '-') 0 >>> limit(eq, x, 0, '+') 0 **Disabling High-Order Explicit Solutions** When solving polynomial expressions, you might not want explicit solutions (which can be quite long). If the expression is univariate, ``CRootOf`` instances will be returned instead: >>> solve(x**3 - x + 1) [-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) - (-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3, -(-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/((-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)), -(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/(3*sqrt(69)/2 + 27/2)**(1/3)] >>> solve(x**3 - x + 1, cubics=False) [CRootOf(x**3 - x + 1, 0), CRootOf(x**3 - x + 1, 1), CRootOf(x**3 - x + 1, 2)] If the expression is multivariate, no solution might be returned: >>> solve(x**3 - x + a, x, cubics=False) [] Sometimes solutions will be obtained even when a flag is False because the expression could be factored. In the following example, the equation can be factored as the product of a linear and a quadratic factor so explicit solutions (which did not require solving a cubic expression) are obtained: >>> eq = x**3 + 3*x**2 + x - 1 >>> solve(eq, cubics=False) [-1, -1 + sqrt(2), -sqrt(2) - 1] **Solving Equations Involving Radicals** Because of SymPy's use of the principle root, some solutions to radical equations will be missed unless check=False: >>> from sympy import root >>> eq = root(x**3 - 3*x**2, 3) + 1 - x >>> solve(eq) [] >>> solve(eq, check=False) [1/3] In the above example, there is only a single solution to the equation. Other expressions will yield spurious roots which must be checked manually; roots which give a negative argument to odd-powered radicals will also need special checking: >>> from sympy import real_root, S >>> eq = root(x, 3) - root(x, 5) + S(1)/7 >>> solve(eq) # this gives 2 solutions but misses a 3rd [CRootOf(7*x**5 - 7*x**3 + 1, 1)**15, CRootOf(7*x**5 - 7*x**3 + 1, 2)**15] >>> sol = solve(eq, check=False) >>> [abs(eq.subs(x,i).n(2)) for i in sol] [0.48, 0.e-110, 0.e-110, 0.052, 0.052] The first solution is negative so ``real_root`` must be used to see that it satisfies the expression: >>> abs(real_root(eq.subs(x, sol[0])).n(2)) 0.e-110 If the roots of the equation are not real then more care will be necessary to find the roots, especially for higher order equations. Consider the following expression: >>> expr = root(x, 3) - root(x, 5) We will construct a known value for this expression at x = 3 by selecting the 1-th root for each radical: >>> expr1 = root(x, 3, 1) - root(x, 5, 1) >>> v = expr1.subs(x, -3) The ``solve`` function is unable to find any exact roots to this equation: >>> eq = Eq(expr, v); eq1 = Eq(expr1, v) >>> solve(eq, check=False), solve(eq1, check=False) ([], []) The function ``unrad``, however, can be used to get a form of the equation for which numerical roots can be found: >>> from sympy.solvers.solvers import unrad >>> from sympy import nroots >>> e, (p, cov) = unrad(eq) >>> pvals = nroots(e) >>> inversion = solve(cov, x)[0] >>> xvals = [inversion.subs(p, i) for i in pvals] Although ``eq`` or ``eq1`` could have been used to find ``xvals``, the solution can only be verified with ``expr1``: >>> z = expr - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9] [] >>> z1 = expr1 - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9] [-3.0] Parameters ========== f : - a single Expr or Poly that must be zero - an Equality - a Relational expression - a Boolean - iterable of one or more of the above symbols : (object(s) to solve for) specified as - none given (other non-numeric objects will be used) - single symbol - denested list of symbols (e.g., ``solve(f, x, y)``) - ordered iterable of symbols (e.g., ``solve(f, [x, y])``) flags : dict=True (default is False) Return list (perhaps empty) of solution mappings. set=True (default is False) Return list of symbols and set of tuple(s) of solution(s). exclude=[] (default) Do not try to solve for any of the free symbols in exclude; if expressions are given, the free symbols in them will be extracted automatically. check=True (default) If False, do not do any testing of solutions. This can be useful if you want to include solutions that make any denominator zero. numerical=True (default) Do a fast numerical check if *f* has only one symbol. minimal=True (default is False) A very fast, minimal testing. warn=True (default is False) Show a warning if ``checksol()`` could not conclude. simplify=True (default) Simplify all but polynomials of order 3 or greater before returning them and (if check is not False) use the general simplify function on the solutions and the expression obtained when they are substituted into the function which should be zero. force=True (default is False) Make positive all symbols without assumptions regarding sign. rational=True (default) Recast Floats as Rational; if this option is not used, the system containing Floats may fail to solve because of issues with polys. If rational=None, Floats will be recast as rationals but the answer will be recast as Floats. If the flag is False then nothing will be done to the Floats. manual=True (default is False) Do not use the polys/matrix method to solve a system of equations, solve them one at a time as you might "manually." implicit=True (default is False) Allows ``solve`` to return a solution for a pattern in terms of other functions that contain that pattern; this is only needed if the pattern is inside of some invertible function like cos, exp, ect. particular=True (default is False) Instructs ``solve`` to try to find a particular solution to a linear system with as many zeros as possible; this is very expensive. quick=True (default is False; ``particular`` must be True) Selects a fast heuristic to find a solution with many zeros whereas a value of False uses the very slow method guaranteed to find the largest number of zeros possible. cubics=True (default) Return explicit solutions when cubic expressions are encountered. When False, quartics and quintics are disabled, too. quartics=True (default) Return explicit solutions when quartic expressions are encountered. When False, quintics are disabled, too. quintics=True (default) Return explicit solutions (if possible) when quintic expressions are encountered. See Also ======== rsolve: For solving recurrence relationships dsolve: For solving differential equations """ from .inequalities import reduce_inequalities # set solver types explicitly; as soon as one is False # all the rest will be False ########################################################################### hints = ('cubics', 'quartics', 'quintics') default = True for k in hints: default = flags.setdefault(k, bool(flags.get(k, default))) # keeping track of how f was passed since if it is a list # a dictionary of results will be returned. ########################################################################### def _sympified_list(w): return list(map(sympify, w if iterable(w) else [w])) bare_f = not iterable(f) # check flag usage for particular/quick which should only be used # with systems of equations if flags.get('quick', None) is not None: if not flags.get('particular', None): raise ValueError('when using `quick`, `particular` should be True') if flags.get('particular', False) and bare_f: raise ValueError(filldedent(""" The 'particular/quick' flag is usually used with systems of equations. Either pass your equation in a list or consider using a solver like `diophantine` if you are looking for a solution in integers.""")) f, symbols = (_sympified_list(w) for w in [f, symbols]) if isinstance(f, list): f = [s for s in f if s is not S.true and s is not True] implicit = flags.get('implicit', False) # preprocess symbol(s) ########################################################################### ordered_symbols = None # were the symbols in a well defined order? if not symbols: # get symbols from equations symbols = set().union(*[fi.free_symbols for fi in f]) if len(symbols) < len(f): for fi in f: pot = preorder_traversal(fi) for p in pot: if isinstance(p, AppliedUndef): flags['dict'] = True # better show symbols symbols.add(p) pot.skip() # don't go any deeper ordered_symbols = False symbols = list(ordered(symbols)) # to make it canonical else: if len(symbols) == 1 and iterable(symbols[0]): symbols = symbols[0] ordered_symbols = symbols and is_sequence(symbols, include=GeneratorType) _symbols = list(uniq(symbols)) if len(_symbols) != len(symbols): ordered_symbols = False symbols = list(ordered(symbols)) else: symbols = _symbols # check for duplicates if len(symbols) != len(set(symbols)): raise ValueError('duplicate symbols given') # remove those not of interest exclude = flags.pop('exclude', set()) if exclude: if isinstance(exclude, Expr): exclude = [exclude] exclude = set().union(*[e.free_symbols for e in sympify(exclude)]) symbols = [s for s in symbols if s not in exclude] # preprocess equation(s) ########################################################################### for i, fi in enumerate(f): if isinstance(fi, (Eq, Ne)): if 'ImmutableDenseMatrix' in [type(a).__name__ for a in fi.args]: fi = fi.lhs - fi.rhs else: L, R = fi.args if isinstance(R, BooleanAtom): L, R = R, L if isinstance(L, BooleanAtom): if isinstance(fi, Ne): L = ~L if R.is_Relational: fi = ~R if L is S.false else R elif R.is_Symbol: return L elif R.is_Boolean and (~R).is_Symbol: return ~L else: raise NotImplementedError(filldedent(''' Unanticipated argument of Eq when other arg is True or False. ''')) else: fi = fi.rewrite(Add, evaluate=False) f[i] = fi if fi.is_Relational: return reduce_inequalities(f, symbols=symbols) if isinstance(fi, Poly): f[i] = fi.as_expr() # rewrite hyperbolics in terms of exp if they have symbols of # interest f[i] = f[i].replace(lambda w: isinstance(w, HyperbolicFunction) and \ w.has_free(*symbols), lambda w: w.rewrite(exp)) # if we have a Matrix, we need to iterate over its elements again if f[i].is_Matrix: bare_f = False f.extend(list(f[i])) f[i] = S.Zero # if we can split it into real and imaginary parts then do so freei = f[i].free_symbols if freei and all(s.is_extended_real or s.is_imaginary for s in freei): fr, fi = f[i].as_real_imag() # accept as long as new re, im, arg or atan2 are not introduced had = f[i].atoms(re, im, arg, atan2) if fr and fi and fr != fi and not any( i.atoms(re, im, arg, atan2) - had for i in (fr, fi)): if bare_f: bare_f = False f[i: i + 1] = [fr, fi] # real/imag handling ----------------------------- if any(isinstance(fi, (bool, BooleanAtom)) for fi in f): if flags.get('set', False): return [], set() return [] for i, fi in enumerate(f): # Abs while True: was = fi fi = fi.replace(Abs, lambda arg: separatevars(Abs(arg)).rewrite(Piecewise) if arg.has(*symbols) else Abs(arg)) if was == fi: break for e in fi.find(Abs): if e.has(*symbols): raise NotImplementedError('solving %s when the argument ' 'is not real or imaginary.' % e) # arg fi = fi.replace(arg, lambda a: arg(a).rewrite(atan2).rewrite(atan)) # save changes f[i] = fi # see if re(s) or im(s) appear freim = [fi for fi in f if fi.has(re, im)] if freim: irf = [] for s in symbols: if s.is_real or s.is_imaginary: continue # neither re(x) nor im(x) will appear # if re(s) or im(s) appear, the auxiliary equation must be present if any(fi.has(re(s), im(s)) for fi in freim): irf.append((s, re(s) + S.ImaginaryUnit*im(s))) if irf: for s, rhs in irf: f = [fi.xreplace({s: rhs}) for fi in f] + [s - rhs] symbols.extend([re(s), im(s)]) if bare_f: bare_f = False flags['dict'] = True # end of real/imag handling ----------------------------- # we can solve for non-symbol entities by replacing them with Dummy symbols f, symbols, swap_sym = recast_to_symbols(f, symbols) # udpate symset symset = set(symbols) # get rid of equations that have no symbols of interest; we don't # try to solve them because the user didn't ask and they might be # hard to solve; this means that solutions may be given in terms # of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y} newf = [] for fi in f: # let the solver handle equations that.. # - have no symbols but are expressions # - have symbols of interest # - have no symbols of interest but are constant # but when an expression is not constant and has no symbols of # interest, it can't change what we obtain for a solution from # the remaining equations so we don't include it; and if it's # zero it can be removed and if it's not zero, there is no # solution for the equation set as a whole # # The reason for doing this filtering is to allow an answer # to be obtained to queries like solve((x - y, y), x); without # this mod the return value is [] ok = False if fi.free_symbols & symset: ok = True else: if fi.is_number: if fi.is_Number: if fi.is_zero: continue return [] ok = True else: if fi.is_constant(): ok = True if ok: newf.append(fi) if not newf: return [] f = newf del newf # mask off any Object that we aren't going to invert: Derivative, # Integral, etc... so that solving for anything that they contain will # give an implicit solution seen = set() non_inverts = set() for fi in f: pot = preorder_traversal(fi) for p in pot: if not isinstance(p, Expr) or isinstance(p, Piecewise): pass elif (isinstance(p, bool) or not p.args or p in symset or p.is_Add or p.is_Mul or p.is_Pow and not implicit or p.is_Function and not implicit) and p.func not in (re, im): continue elif p not in seen: seen.add(p) if p.free_symbols & symset: non_inverts.add(p) else: continue pot.skip() del seen non_inverts = dict(list(zip(non_inverts, [Dummy() for _ in non_inverts]))) f = [fi.subs(non_inverts) for fi in f] # Both xreplace and subs are needed below: xreplace to force substitution # inside Derivative, subs to handle non-straightforward substitutions non_inverts = [(v, k.xreplace(swap_sym).subs(swap_sym)) for k, v in non_inverts.items()] # rationalize Floats floats = False if flags.get('rational', True) is not False: for i, fi in enumerate(f): if fi.has(Float): floats = True f[i] = nsimplify(fi, rational=True) # capture any denominators before rewriting since # they may disappear after the rewrite, e.g. issue 14779 flags['_denominators'] = _simple_dens(f[0], symbols) # Any embedded piecewise functions need to be brought out to the # top level so that the appropriate strategy gets selected. # However, this is necessary only if one of the piecewise # functions depends on one of the symbols we are solving for. def _has_piecewise(e): if e.is_Piecewise: return e.has(*symbols) return any(_has_piecewise(a) for a in e.args) for i, fi in enumerate(f): if _has_piecewise(fi): f[i] = piecewise_fold(fi) # # try to get a solution ########################################################################### if bare_f: solution = _solve(f[0], *symbols, **flags) # solution is: # dict for coeficient system with one solution # list of values # list of dicts else: solution = _solve_system(f, symbols, **flags) # solution is: # dict for linear/monotonic solution # list of dicts # list of tuples # # postprocessing ########################################################################### # Restore masked-off objects if non_inverts: def _do_dict(solution): return {k: v.subs(non_inverts) for k, v in solution.items()} if isinstance(solution, dict): solution = _do_dict(solution) elif solution and isinstance(solution, list): if isinstance(solution[0], dict): solution = [_do_dict(s) for s in solution] elif isinstance(solution[0], tuple): solution = [tuple([v.subs(non_inverts) for v in s]) for s in solution] else: solution = [v.subs(non_inverts) for v in solution] elif not solution: pass else: raise NotImplementedError(filldedent(''' no handling of %s was implemented''' % solution)) # Restore original "symbols" if a dictionary is returned. # This is not necessary for # - the single univariate equation case # since the symbol will have been removed from the solution; # - the nonlinear poly_system since that only supports zero-dimensional # systems and those results come back as a list # # ** unless there were Derivatives with the symbols, but those were handled # above. if swap_sym: symbols = [swap_sym.get(k, k) for k in symbols] if isinstance(solution, dict): solution = {swap_sym.get(k, k): v.subs(swap_sym) for k, v in solution.items()} elif solution and isinstance(solution, list) and isinstance(solution[0], dict): for i, sol in enumerate(solution): solution[i] = {swap_sym.get(k, k): v.subs(swap_sym) for k, v in sol.items()} # Get assumptions about symbols, to filter solutions. # Note that if assumptions about a solution can't be verified, it is still # returned. check = flags.get('check', True) # restore floats if floats and solution and flags.get('rational', None) is None: solution = nfloat(solution, exponent=False) if check and solution: # assumption checking warn = flags.get('warn', False) got_None = [] # solutions for which one or more symbols gave None no_False = [] # solutions for which no symbols gave False if isinstance(solution, tuple): # this has already been checked and is in as_set form return solution elif isinstance(solution, list): if isinstance(solution[0], tuple): for sol in solution: for symb, val in zip(symbols, sol): test = check_assumptions(val, **symb.assumptions0) if test is False: break if test is None: got_None.append(sol) else: no_False.append(sol) elif isinstance(solution[0], dict): for sol in solution: a_None = False for symb, val in sol.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: break a_None = True else: no_False.append(sol) if a_None: got_None.append(sol) else: # list of expressions for sol in solution: test = check_assumptions(sol, **symbols[0].assumptions0) if test is False: continue no_False.append(sol) if test is None: got_None.append(sol) elif isinstance(solution, dict): a_None = False for symb, val in solution.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: no_False = None break a_None = True else: no_False = solution if a_None: got_None.append(solution) elif isinstance(solution, (Relational, And, Or)): if len(symbols) != 1: raise ValueError("Length should be 1") if warn and symbols[0].assumptions0: warnings.warn(filldedent(""" \tWarning: assumptions about variable '%s' are not handled currently.""" % symbols[0])) # TODO: check also variable assumptions for inequalities else: raise TypeError('Unrecognized solution') # improve the checker solution = no_False if warn and got_None: warnings.warn(filldedent(""" \tWarning: assumptions concerning following solution(s) cannot be checked:""" + '\n\t' + ', '.join(str(s) for s in got_None))) # # done ########################################################################### as_dict = flags.get('dict', False) as_set = flags.get('set', False) if solution is not None and type(solution) not in (list, dict): return solution if not solution: if as_set: return symbols, set() return [] if ( # undo the dictionary solutions returned when the system was # only partially solved with poly-system not as_dict and ordered_symbols and type(solution) is list and type(solution[0]) is dict ): solution = [tuple([r.get(s, s) for s in symbols]) for r in solution] # make orderings canonical for: # - dict # - list of # * values # * tuples # * dicts if type(solution) is dict: solution = {k: solution[k] for k in ordered(solution.keys())} elif not as_set: # for set, no point in ordering solution.sort(key=default_sort_key) if solution and type(solution[0]) is tuple: # XXX is it better to handle at source of introduction? # if we don't do it then (or now) then # solve([x**2 + y -2, y**2 - 4], x, y) would # otherwise have (0, 2) appearing twice solution = list(uniq(solution)) if not (as_set or as_dict): return solution # convert all input to list of dicts if type(solution) is list and type(solution[0]) is dict: LOD = solution else: LOD = None if as_dict or not LOD: if isinstance(solution, dict): LOD = [solution] # dict was made canonical above elif type(solution[0]) is tuple: LOD = [dict(zip(symbols, s)) for s in solution] elif type(solution[0]) is dict: if not as_set: # put the keys in order within each dict LOD = [{k: s[k] for k in ordered(s)} for s in solution] else: LOD = solution # we will order after unifying keys else: assert len(symbols) == 1, 'logical error' LOD = [{symbols[0]: s} for s in solution] else: LOD = solution if as_dict: return LOD # set output: (symbols, {t1, t2, ...}) from list of dictionaries; # include all symbols for those that like a verbose solution # and to resolve any differences in dictionary keys. # # The set results can easily be used to make a verbose dict as # k, v = solve(eqs, syms, set=True) # sol = [dict(zip(k,i)) for i in v] # if ordered_symbols: k = symbols # keep preferred order else: # just unify the symbols for which solutions were found k = list(ordered(set(flatten(tuple(i.keys()) for i in LOD)))) return k, {tuple([s.get(ki, ki) for ki in k]) for s in LOD}
def solve(f, *symbols, **flags): r""" Algebraically solves equations and systems of equations. Explanation =========== Currently supported: - polynomial - transcendental - piecewise combinations of the above - systems of linear and polynomial equations - systems containing relational expressions Examples ======== The output varies according to the input and can be seen by example: >>> from sympy import solve, Poly, Eq, Function, exp >>> from sympy.abc import x, y, z, a, b >>> f = Function('f') Boolean or univariate Relational: >>> solve(x < 3) (-oo < x) & (x < 3) To always get a list of solution mappings, use flag dict=True: >>> solve(x - 3, dict=True) [{x: 3}] >>> sol = solve([x - 3, y - 1], dict=True) >>> sol [{x: 3, y: 1}] >>> sol[0][x] 3 >>> sol[0][y] 1 To get a list of *symbols* and set of solution(s) use flag set=True: >>> solve([x**2 - 3, y - 1], set=True) ([x, y], {(-sqrt(3), 1), (sqrt(3), 1)}) Single expression and single symbol that is in the expression: >>> solve(x - y, x) [y] >>> solve(x - 3, x) [3] >>> solve(Eq(x, 3), x) [3] >>> solve(Poly(x - 3), x) [3] >>> solve(x**2 - y**2, x, set=True) ([x], {(-y,), (y,)}) >>> solve(x**4 - 1, x, set=True) ([x], {(-1,), (1,), (-I,), (I,)}) Single expression with no symbol that is in the expression: >>> solve(3, x) [] >>> solve(x - 3, y) [] Single expression with no symbol given. In this case, all free *symbols* will be selected as potential *symbols* to solve for. If the equation is univariate then a list of solutions is returned; otherwise - as is the case when *symbols* are given as an iterable of length greater than 1 - a list of mappings will be returned: >>> solve(x - 3) [3] >>> solve(x**2 - y**2) [{x: -y}, {x: y}] >>> solve(z**2*x**2 - z**2*y**2) [{x: -y}, {x: y}, {z: 0}] >>> solve(z**2*x - z**2*y**2) [{x: y**2}, {z: 0}] When an object other than a Symbol is given as a symbol, it is isolated algebraically and an implicit solution may be obtained. This is mostly provided as a convenience to save you from replacing the object with a Symbol and solving for that Symbol. It will only work if the specified object can be replaced with a Symbol using the subs method: >>> solve(f(x) - x, f(x)) [x] >>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x)) [x + f(x)] >>> solve(f(x).diff(x) - f(x) - x, f(x)) [-x + Derivative(f(x), x)] >>> solve(x + exp(x)**2, exp(x), set=True) ([exp(x)], {(-sqrt(-x),), (sqrt(-x),)}) >>> from sympy import Indexed, IndexedBase, Tuple, sqrt >>> A = IndexedBase('A') >>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1) >>> solve(eqs, eqs.atoms(Indexed)) {A[1]: 1, A[2]: 2} * To solve for a symbol implicitly, use implicit=True: >>> solve(x + exp(x), x) [-LambertW(1)] >>> solve(x + exp(x), x, implicit=True) [-exp(x)] * It is possible to solve for anything that can be targeted with subs: >>> solve(x + 2 + sqrt(3), x + 2) [-sqrt(3)] >>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2) {y: -2 + sqrt(3), x + 2: -sqrt(3)} * Nothing heroic is done in this implicit solving so you may end up with a symbol still in the solution: >>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y) >>> solve(eqs, y, x + 2) {y: -sqrt(3)/(x + 3), x + 2: -2*x/(x + 3) - 6/(x + 3) + sqrt(3)/(x + 3)} >>> solve(eqs, y*x, x) {x: -y - 4, x*y: -3*y - sqrt(3)} * If you attempt to solve for a number remember that the number you have obtained does not necessarily mean that the value is equivalent to the expression obtained: >>> solve(sqrt(2) - 1, 1) [sqrt(2)] >>> solve(x - y + 1, 1) # /!\ -1 is targeted, too [x/(y - 1)] >>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)] [-x + y] * To solve for a function within a derivative, use ``dsolve``. Single expression and more than one symbol: * When there is a linear solution: >>> solve(x - y**2, x, y) [(y**2, y)] >>> solve(x**2 - y, x, y) [(x, x**2)] >>> solve(x**2 - y, x, y, dict=True) [{y: x**2}] * If there is no linear solution, then the first successful attempt for a nonlinear solution will be returned: >>> solve(x**2 - y**2, x, y, dict=True) [{x: -y}, {x: y}] >>> solve(x**2 - y**2/exp(x), x, y, dict=True) [{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}] >>> solve(x**2 - y**2/exp(x), y, x) [(-x*sqrt(exp(x)), x), (x*sqrt(exp(x)), x)] * When undetermined coefficients are identified: This happens when it is possible to form a linear set of equations in the variables provided from the coefficients of the expressions in symbols not provided. A single dictionary with specified values will be returned: >>> eq = (a + b)*x - b + 2 >>> solve(eq, a, b) {a: -2, b: 2} The coefficient system solved was: >>> list(eq.expand().as_coefficients_dict(x).values()) [a + b, 2 - b] To obtain an algebraic solution in terms of ``a`` or ``b`` pass the equation in a list: >>> solve([eq], a, b) {a: b*(1 - x)/x - 2/x} Iterable of one or more of the above: * Involving relationals or bools: >>> solve([x < 3, x - 2]) Eq(x, 2) >>> solve([x > 3, x - 2]) False * When the system is linear: * With a solution: >>> solve([x - 3], x) {x: 3} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - 15), x, y, z) {x: -3, y: 1} >>> solve((x + 5*y - 2, -3*x + 6*y - z), z, x, y) {x: 2 - 5*y, z: 21*y - 6} * Without a solution: >>> solve([x + 3, x - 3]) [] * When the system is not linear: >>> solve([x**2 + y -2, y**2 - 4], x, y, set=True) ([x, y], {(-2, -2), (0, 2), (2, -2)}) * If no *symbols* are given, all free *symbols* will be selected and a list of mappings returned: >>> solve([x - 2, x**2 + y]) [{x: 2, y: -4}] >>> solve([x - 2, x**2 + f(x)], {f(x), x}) [{x: 2, f(x): -4}] * If any equation does not depend on the symbol(s) given, it will be eliminated from the equation set and an answer may be given implicitly in terms of variables that were not of interest: >>> solve([x - y, y - 3], x) {x: y} **Additional Examples** ``solve()`` with check=True (default) will run through the symbol tags to eliminate unwanted solutions. If no assumptions are included, all possible solutions will be returned: >>> from sympy import Symbol, solve >>> x = Symbol("x") >>> solve(x**2 - 1) [-1, 1] By using the positive tag, only one solution will be returned: >>> pos = Symbol("pos", positive=True) >>> solve(pos**2 - 1) [1] Assumptions are not checked when ``solve()`` input involves relationals or bools. When the solutions are checked, those that make any denominator zero are automatically excluded. If you do not want to exclude such solutions, then use the check=False option: >>> from sympy import sin, limit >>> solve(sin(x)/x) # 0 is excluded [pi] If check=False, then a solution to the numerator being zero is found: x = 0. In this case, this is a spurious solution since $\sin(x)/x$ has the well known limit (without dicontinuity) of 1 at x = 0: >>> solve(sin(x)/x, check=False) [0, pi] In the following case, however, the limit exists and is equal to the value of x = 0 that is excluded when check=True: >>> eq = x**2*(1/x - z**2/x) >>> solve(eq, x) [] >>> solve(eq, x, check=False) [0] >>> limit(eq, x, 0, '-') 0 >>> limit(eq, x, 0, '+') 0 **Disabling High-Order Explicit Solutions** When solving polynomial expressions, you might not want explicit solutions (which can be quite long). If the expression is univariate, ``CRootOf`` instances will be returned instead: >>> solve(x**3 - x + 1) [-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) - (-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3, -(-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/((-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)), -(3*sqrt(69)/2 + 27/2)**(1/3)/3 - 1/(3*sqrt(69)/2 + 27/2)**(1/3)] >>> solve(x**3 - x + 1, cubics=False) [CRootOf(x**3 - x + 1, 0), CRootOf(x**3 - x + 1, 1), CRootOf(x**3 - x + 1, 2)] If the expression is multivariate, no solution might be returned: >>> solve(x**3 - x + a, x, cubics=False) [] Sometimes solutions will be obtained even when a flag is False because the expression could be factored. In the following example, the equation can be factored as the product of a linear and a quadratic factor so explicit solutions (which did not require solving a cubic expression) are obtained: >>> eq = x**3 + 3*x**2 + x - 1 >>> solve(eq, cubics=False) [-1, -1 + sqrt(2), -sqrt(2) - 1] **Solving Equations Involving Radicals** Because of SymPy's use of the principle root, some solutions to radical equations will be missed unless check=False: >>> from sympy import root >>> eq = root(x**3 - 3*x**2, 3) + 1 - x >>> solve(eq) [] >>> solve(eq, check=False) [1/3] In the above example, there is only a single solution to the equation. Other expressions will yield spurious roots which must be checked manually; roots which give a negative argument to odd-powered radicals will also need special checking: >>> from sympy import real_root, S >>> eq = root(x, 3) - root(x, 5) + S(1)/7 >>> solve(eq) # this gives 2 solutions but misses a 3rd [CRootOf(7*x**5 - 7*x**3 + 1, 1)**15, CRootOf(7*x**5 - 7*x**3 + 1, 2)**15] >>> sol = solve(eq, check=False) >>> [abs(eq.subs(x,i).n(2)) for i in sol] [0.48, 0.e-110, 0.e-110, 0.052, 0.052] The first solution is negative so ``real_root`` must be used to see that it satisfies the expression: >>> abs(real_root(eq.subs(x, sol[0])).n(2)) 0.e-110 If the roots of the equation are not real then more care will be necessary to find the roots, especially for higher order equations. Consider the following expression: >>> expr = root(x, 3) - root(x, 5) We will construct a known value for this expression at x = 3 by selecting the 1-th root for each radical: >>> expr1 = root(x, 3, 1) - root(x, 5, 1) >>> v = expr1.subs(x, -3) The ``solve`` function is unable to find any exact roots to this equation: >>> eq = Eq(expr, v); eq1 = Eq(expr1, v) >>> solve(eq, check=False), solve(eq1, check=False) ([], []) The function ``unrad``, however, can be used to get a form of the equation for which numerical roots can be found: >>> from sympy.solvers.solvers import unrad >>> from sympy import nroots >>> e, (p, cov) = unrad(eq) >>> pvals = nroots(e) >>> inversion = solve(cov, x)[0] >>> xvals = [inversion.subs(p, i) for i in pvals] Although ``eq`` or ``eq1`` could have been used to find ``xvals``, the solution can only be verified with ``expr1``: >>> z = expr - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9] [] >>> z1 = expr1 - v >>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9] [-3.0] Parameters ========== f : - a single Expr or Poly that must be zero - an Equality - a Relational expression - a Boolean - iterable of one or more of the above symbols : (object(s) to solve for) specified as - none given (other non-numeric objects will be used) - single symbol - denested list of symbols (e.g., ``solve(f, x, y)``) - ordered iterable of symbols (e.g., ``solve(f, [x, y])``) flags : dict=True (default is False) Return list (perhaps empty) of solution mappings. set=True (default is False) Return list of symbols and set of tuple(s) of solution(s). exclude=[] (default) Do not try to solve for any of the free symbols in exclude; if expressions are given, the free symbols in them will be extracted automatically. check=True (default) If False, do not do any testing of solutions. This can be useful if you want to include solutions that make any denominator zero. numerical=True (default) Do a fast numerical check if *f* has only one symbol. minimal=True (default is False) A very fast, minimal testing. warn=True (default is False) Show a warning if ``checksol()`` could not conclude. simplify=True (default) Simplify all but polynomials of order 3 or greater before returning them and (if check is not False) use the general simplify function on the solutions and the expression obtained when they are substituted into the function which should be zero. force=True (default is False) Make positive all symbols without assumptions regarding sign. rational=True (default) Recast Floats as Rational; if this option is not used, the system containing Floats may fail to solve because of issues with polys. If rational=None, Floats will be recast as rationals but the answer will be recast as Floats. If the flag is False then nothing will be done to the Floats. manual=True (default is False) Do not use the polys/matrix method to solve a system of equations, solve them one at a time as you might "manually." implicit=True (default is False) Allows ``solve`` to return a solution for a pattern in terms of other functions that contain that pattern; this is only needed if the pattern is inside of some invertible function like cos, exp, ect. particular=True (default is False) Instructs ``solve`` to try to find a particular solution to a linear system with as many zeros as possible; this is very expensive. quick=True (default is False; ``particular`` must be True) Selects a fast heuristic to find a solution with many zeros whereas a value of False uses the very slow method guaranteed to find the largest number of zeros possible. cubics=True (default) Return explicit solutions when cubic expressions are encountered. When False, quartics and quintics are disabled, too. quartics=True (default) Return explicit solutions when quartic expressions are encountered. When False, quintics are disabled, too. quintics=True (default) Return explicit solutions (if possible) when quintic expressions are encountered. See Also ======== rsolve: For solving recurrence relationships dsolve: For solving differential equations """ from .inequalities import reduce_inequalities # set solver types explicitly; as soon as one is False # all the rest will be False ########################################################################### hints = ('cubics', 'quartics', 'quintics') default = True for k in hints: default = flags.setdefault(k, bool(flags.get(k, default))) # keeping track of how f was passed since if it is a list # a dictionary of results will be returned. ########################################################################### def _sympified_list(w): return list(map(sympify, w if iterable(w) else [w])) bare_f = not iterable(f) # check flag usage for particular/quick which should only be used # with systems of equations if flags.get('quick', None) is not None: if not flags.get('particular', None): raise ValueError('when using `quick`, `particular` should be True') if flags.get('particular', False) and bare_f: raise ValueError(filldedent(""" The 'particular/quick' flag is usually used with systems of equations. Either pass your equation in a list or consider using a solver like `diophantine` if you are looking for a solution in integers.""")) f, symbols = (_sympified_list(w) for w in [f, symbols]) if isinstance(f, list): f = [s for s in f if s is not S.true and s is not True] implicit = flags.get('implicit', False) # preprocess symbol(s) ########################################################################### ordered_symbols = None # were the symbols in a well defined order? if not symbols: # get symbols from equations symbols = set().union(*[fi.free_symbols for fi in f]) if len(symbols) < len(f): for fi in f: pot = preorder_traversal(fi) for p in pot: if isinstance(p, AppliedUndef): flags['dict'] = True # better show symbols symbols.add(p) pot.skip() # don't go any deeper ordered_symbols = False symbols = list(ordered(symbols)) # to make it canonical else: if len(symbols) == 1 and iterable(symbols[0]): symbols = symbols[0] ordered_symbols = symbols and is_sequence(symbols, include=GeneratorType) _symbols = list(uniq(symbols)) if len(_symbols) != len(symbols): ordered_symbols = False symbols = list(ordered(symbols)) else: symbols = _symbols # check for duplicates if len(symbols) != len(set(symbols)): raise ValueError('duplicate symbols given') # remove those not of interest exclude = flags.pop('exclude', set()) if exclude: if isinstance(exclude, Expr): exclude = [exclude] exclude = set().union(*[e.free_symbols for e in sympify(exclude)]) symbols = [s for s in symbols if s not in exclude] # preprocess equation(s) ########################################################################### for i, fi in enumerate(f): if isinstance(fi, (Eq, Ne)): if 'ImmutableDenseMatrix' in [type(a).__name__ for a in fi.args]: fi = fi.lhs - fi.rhs else: L, R = fi.args if isinstance(R, BooleanAtom): L, R = R, L if isinstance(L, BooleanAtom): if isinstance(fi, Ne): L = ~L if R.is_Relational: fi = ~R if L is S.false else R elif R.is_Symbol: return L elif R.is_Boolean and (~R).is_Symbol: return ~L else: raise NotImplementedError(filldedent(''' Unanticipated argument of Eq when other arg is True or False. ''')) else: fi = fi.rewrite(Add, evaluate=False) f[i] = fi if fi.is_Relational: return reduce_inequalities(f, symbols=symbols) if isinstance(fi, Poly): f[i] = fi.as_expr() # rewrite hyperbolics in terms of exp if they have symbols of # interest f[i] = f[i].replace(lambda w: isinstance(w, HyperbolicFunction) and \ w.has_free(*symbols), lambda w: w.rewrite(exp)) # if we have a Matrix, we need to iterate over its elements again if f[i].is_Matrix: bare_f = False f.extend(list(f[i])) f[i] = S.Zero # if we can split it into real and imaginary parts then do so freei = f[i].free_symbols if freei and all(s.is_extended_real or s.is_imaginary for s in freei): fr, fi = f[i].as_real_imag() # accept as long as new re, im, arg or atan2 are not introduced had = f[i].atoms(re, im, arg, atan2) if fr and fi and fr != fi and not any( i.atoms(re, im, arg, atan2) - had for i in (fr, fi)): if bare_f: bare_f = False f[i: i + 1] = [fr, fi] # real/imag handling ----------------------------- if any(isinstance(fi, (bool, BooleanAtom)) for fi in f): if flags.get('set', False): return [], set() return [] for i, fi in enumerate(f): # Abs while True: was = fi fi = fi.replace(Abs, lambda arg: separatevars(Abs(arg)).rewrite(Piecewise) if arg.has(*symbols) else Abs(arg)) if was == fi: break for e in fi.find(Abs): if e.has(*symbols): raise NotImplementedError('solving %s when the argument ' 'is not real or imaginary.' % e) # arg fi = fi.replace(arg, lambda a: arg(a).rewrite(atan2).rewrite(atan)) # save changes f[i] = fi # see if re(s) or im(s) appear freim = [fi for fi in f if fi.has(re, im)] if freim: irf = [] for s in symbols: if s.is_real or s.is_imaginary: continue # neither re(x) nor im(x) will appear # if re(s) or im(s) appear, the auxiliary equation must be present if any(fi.has(re(s), im(s)) for fi in freim): irf.append((s, re(s) + S.ImaginaryUnit*im(s))) if irf: for s, rhs in irf: f = [fi.xreplace({s: rhs}) for fi in f] + [s - rhs] symbols.extend([re(s), im(s)]) if bare_f: bare_f = False flags['dict'] = True # end of real/imag handling ----------------------------- # we can solve for non-symbol entities by replacing them with Dummy symbols f, symbols, swap_sym = recast_to_symbols(f, symbols) # this set of symbols (perhaps recast) is needed below symset = set(symbols) # get rid of equations that have no symbols of interest; we don't # try to solve them because the user didn't ask and they might be # hard to solve; this means that solutions may be given in terms # of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y} newf = [] for fi in f: # let the solver handle equations that.. # - have no symbols but are expressions # - have symbols of interest # - have no symbols of interest but are constant # but when an expression is not constant and has no symbols of # interest, it can't change what we obtain for a solution from # the remaining equations so we don't include it; and if it's # zero it can be removed and if it's not zero, there is no # solution for the equation set as a whole # # The reason for doing this filtering is to allow an answer # to be obtained to queries like solve((x - y, y), x); without # this mod the return value is [] ok = False if fi.free_symbols & symset: ok = True else: if fi.is_number: if fi.is_Number: if fi.is_zero: continue return [] ok = True else: if fi.is_constant(): ok = True if ok: newf.append(fi) if not newf: return [] f = newf del newf # mask off any Object that we aren't going to invert: Derivative, # Integral, etc... so that solving for anything that they contain will # give an implicit solution seen = set() non_inverts = set() for fi in f: pot = preorder_traversal(fi) for p in pot: if not isinstance(p, Expr) or isinstance(p, Piecewise): pass elif (isinstance(p, bool) or not p.args or p in symset or p.is_Add or p.is_Mul or p.is_Pow and not implicit or p.is_Function and not implicit) and p.func not in (re, im): continue elif p not in seen: seen.add(p) if p.free_symbols & symset: non_inverts.add(p) else: continue pot.skip() del seen non_inverts = dict(list(zip(non_inverts, [Dummy() for _ in non_inverts]))) f = [fi.subs(non_inverts) for fi in f] # Both xreplace and subs are needed below: xreplace to force substitution # inside Derivative, subs to handle non-straightforward substitutions non_inverts = [(v, k.xreplace(swap_sym).subs(swap_sym)) for k, v in non_inverts.items()] # rationalize Floats floats = False if flags.get('rational', True) is not False: for i, fi in enumerate(f): if fi.has(Float): floats = True f[i] = nsimplify(fi, rational=True) # capture any denominators before rewriting since # they may disappear after the rewrite, e.g. issue 14779 flags['_denominators'] = _simple_dens(f[0], symbols) # Any embedded piecewise functions need to be brought out to the # top level so that the appropriate strategy gets selected. # However, this is necessary only if one of the piecewise # functions depends on one of the symbols we are solving for. def _has_piecewise(e): if e.is_Piecewise: return e.has(*symbols) return any(_has_piecewise(a) for a in e.args) for i, fi in enumerate(f): if _has_piecewise(fi): f[i] = piecewise_fold(fi) # # try to get a solution ########################################################################### if bare_f: solution = _solve(f[0], *symbols, **flags) # solution is: # dict for coeficient system with one solution # list of values # list of dicts else: solution = _solve_system(f, symbols, **flags) # solution is: # dict for linear/monotonic solution # list of dicts # list of tuples # # postprocessing ########################################################################### # Restore masked-off objects if non_inverts: def _do_dict(solution): return {k: v.subs(non_inverts) for k, v in solution.items()} if isinstance(solution, dict): solution = _do_dict(solution) elif solution and isinstance(solution, list): if isinstance(solution[0], dict): solution = [_do_dict(s) for s in solution] elif isinstance(solution[0], tuple): solution = [tuple([v.subs(non_inverts) for v in s]) for s in solution] else: solution = [v.subs(non_inverts) for v in solution] elif not solution: pass else: raise NotImplementedError(filldedent(''' no handling of %s was implemented''' % solution)) # Restore original "symbols" if a dictionary is returned. # This is not necessary for # - the single univariate equation case # since the symbol will have been removed from the solution; # - the nonlinear poly_system since that only supports zero-dimensional # systems and those results come back as a list # # ** unless there were Derivatives with the symbols, but those were handled # above. if swap_sym: symbols = [swap_sym.get(k, k) for k in symbols] if isinstance(solution, dict): solution = {swap_sym.get(k, k): v.subs(swap_sym) for k, v in solution.items()} elif solution and isinstance(solution, list) and isinstance(solution[0], dict): for i, sol in enumerate(solution): solution[i] = {swap_sym.get(k, k): v.subs(swap_sym) for k, v in sol.items()} # Get assumptions about symbols, to filter solutions. # Note that if assumptions about a solution can't be verified, it is still # returned. check = flags.get('check', True) # restore floats if floats and solution and flags.get('rational', None) is None: solution = nfloat(solution, exponent=False) if check and solution: # assumption checking warn = flags.get('warn', False) got_None = [] # solutions for which one or more symbols gave None no_False = [] # solutions for which no symbols gave False if isinstance(solution, tuple): # this has already been checked and is in as_set form return solution elif isinstance(solution, list): if isinstance(solution[0], tuple): for sol in solution: for symb, val in zip(symbols, sol): test = check_assumptions(val, **symb.assumptions0) if test is False: break if test is None: got_None.append(sol) else: no_False.append(sol) elif isinstance(solution[0], dict): for sol in solution: a_None = False for symb, val in sol.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: break a_None = True else: no_False.append(sol) if a_None: got_None.append(sol) else: # list of expressions for sol in solution: test = check_assumptions(sol, **symbols[0].assumptions0) if test is False: continue no_False.append(sol) if test is None: got_None.append(sol) elif isinstance(solution, dict): a_None = False for symb, val in solution.items(): test = check_assumptions(val, **symb.assumptions0) if test: continue if test is False: no_False = None break a_None = True else: no_False = solution if a_None: got_None.append(solution) elif isinstance(solution, (Relational, And, Or)): if len(symbols) != 1: raise ValueError("Length should be 1") if warn and symbols[0].assumptions0: warnings.warn(filldedent(""" \tWarning: assumptions about variable '%s' are not handled currently.""" % symbols[0])) # TODO: check also variable assumptions for inequalities else: raise TypeError('Unrecognized solution') # improve the checker solution = no_False if warn and got_None: warnings.warn(filldedent(""" \tWarning: assumptions concerning following solution(s) cannot be checked:""" + '\n\t' + ', '.join(str(s) for s in got_None))) # # done ########################################################################### as_dict = flags.get('dict', False) as_set = flags.get('set', False) if solution is not None and type(solution) not in (list, dict): return solution if not solution: if as_set: return symbols, set() return [] if ( # undo the dictionary solutions returned when the system was # only partially solved with poly-system not as_dict and ordered_symbols and type(solution) is list and type(solution[0]) is dict ): solution = [tuple([r.get(s, s) for s in symbols]) for r in solution] # make orderings canonical for: # - dict # - list of # * values # * tuples # * dicts if type(solution) is dict: solution = {k: solution[k] for k in ordered(solution.keys())} elif not as_set: # for set, no point in ordering solution.sort(key=default_sort_key) if solution and type(solution[0]) is tuple: # XXX is it better to handle at source of introduction? # if we don't do it then (or now) then # solve([x**2 + y -2, y**2 - 4], x, y) would # otherwise have (0, 2) appearing twice solution = list(uniq(solution)) if not (as_set or as_dict): return solution # convert all input to list of dicts if type(solution) is list and type(solution[0]) is dict: LOD = solution else: LOD = None if as_dict or not LOD: if isinstance(solution, dict): LOD = [solution] # dict was made canonical above elif type(solution[0]) is tuple: LOD = [dict(zip(symbols, s)) for s in solution] elif type(solution[0]) is dict: if not as_set: # put the keys in order within each dict LOD = [{k: s[k] for k in ordered(s)} for s in solution] else: LOD = solution # we will order after unifying keys else: assert len(symbols) == 1, 'logical error' LOD = [{symbols[0]: s} for s in solution] else: LOD = solution if as_dict: return LOD # set output: (symbols, {t1, t2, ...}) from list of dictionaries; # include all symbols for those that like a verbose solution # and to resolve any differences in dictionary keys. # # The set results can easily be used to make a verbose dict as # k, v = solve(eqs, syms, set=True) # sol = [dict(zip(k,i)) for i in v] # if ordered_symbols: k = symbols # keep preferred order else: # just unify the symbols for which solutions were found k = list(ordered(set(flatten(tuple(i.keys()) for i in LOD)))) return k, {tuple([s.get(ki, ki) for ki in k]) for s in LOD}
37,486
def _parse_common_args( backend, qobj_id, qobj_header, shots, memory, max_credits, seed_simulator, init_qubits, use_measure_esp, rep_delay, qubit_lo_freq, meas_lo_freq, qubit_lo_range, meas_lo_range, schedule_los, **run_config, ): """Resolve the various types of args allowed to the assemble() function through duck typing, overriding args, etc. Refer to the assemble() docstring for details on what types of inputs are allowed. Here the args are resolved by converting them to standard instances, and prioritizing them in case a run option is passed through multiple args (explicitly setting an arg has more priority than the arg set by backend) Returns: RunConfig: a run config, which is a standardized object that configures the qobj and determines the runtime environment. Raises: QiskitError: - If the memory arg is True and the backend does not support memory. - If ``shots`` exceeds ``max_shots`` for the configured backend. - If ``shots`` are not int type. - If any of qubit or meas lo's, or associated ranges do not have length equal to ``n_qubits``. - If qubit or meas lo's do not fit into perscribed ranges. - If ``use_measure_esp`` is set to ``True`` on a device which does not support ESP readout. """ # grab relevant info from backend if it exists backend_config = None backend_defaults = None n_qubits = None if backend: backend_config = backend.configuration() n_qubits = backend_config.n_qubits # check for memory flag applied to backend that does not support memory if memory and not backend_config.memory: raise QiskitError( "memory not supported by backend {}".format(backend_config.backend_name) ) # try to set defaults for pulse, other leave as None if backend_config.open_pulse: try: backend_defaults = backend.defaults() except AttributeError: pass # an identifier for the Qobj qobj_id = qobj_id or str(uuid.uuid4()) # The header that goes at the top of the Qobj (and later Result) # we process it as dict, then write entries that are not None to a QobjHeader object qobj_header = qobj_header or {} if isinstance(qobj_header, QobjHeader): qobj_header = qobj_header.to_dict() backend_name = getattr(backend_config, "backend_name", None) backend_version = getattr(backend_config, "backend_version", None) qobj_header = { **dict(backend_name=backend_name, backend_version=backend_version), **qobj_header, } qobj_header = QobjHeader(**{k: v for k, v in qobj_header.items() if v is not None}) max_shots = getattr(backend_config, "max_shots", None) if shots is None: if max_shots: shots = min(1024, max_shots) else: shots = 1024 elif not isinstance(shots, int): raise QiskitError("Argument 'shots' should be of type 'int'") elif max_shots and max_shots < shots: raise QiskitError( "Number of shots specified: %s exceeds max_shots property of the " "backend: %s." % (shots, max_shots) ) dynamic_reprate_enabled = getattr(backend_config, "dynamic_reprate_enabled", False) if dynamic_reprate_enabled: default_rep_delay = getattr(backend_config, "default_rep_delay", None) rep_delay_range = getattr(backend_config, "rep_delay_range", None) rep_delay = _parse_rep_delay(rep_delay, default_rep_delay, rep_delay_range) else: if rep_delay is not None: rep_delay = None warnings.warn( "Dynamic rep rates not supported on this backend, cannot use rep_delay.", RuntimeWarning, ) qubit_lo_freq = qubit_lo_freq or getattr(backend_defaults, "qubit_freq_est", None) meas_lo_freq = meas_lo_freq or getattr(backend_defaults, "meas_freq_est", None) qubit_lo_range = qubit_lo_range or getattr(backend_config, "qubit_lo_range", None) meas_lo_range = meas_lo_range or getattr(backend_config, "meas_lo_range", None) # check that LO frequencies are in the perscribed range _check_lo_freqs(qubit_lo_freq, qubit_lo_range, "qubit") _check_lo_freqs(meas_lo_freq, meas_lo_range, "meas") # configure experiment level LO frequencies schedule_los = schedule_los or [] if isinstance(schedule_los, (LoConfig, dict)): schedule_los = [schedule_los] # Convert to LoConfig if LO configuration supplied as dictionary schedule_los = [ lo_config if isinstance(lo_config, LoConfig) else LoConfig(lo_config) for lo_config in schedule_los ] measure_esp_enabled = getattr(backend_config, "measure_esp_enabled", False) if use_measure_esp is None: use_measure_esp = True if measure_esp_enabled else False # default use of esp readout if not measure_esp_enabled and use_measure_esp: raise QiskitError("ESP readout not supported on this device. Please make sure the flag " "'use_measure_esp' is set to 'False' or not used.") # create run configuration and populate run_config_dict = dict( shots=shots, memory=memory, max_credits=max_credits, seed_simulator=seed_simulator, init_qubits=init_qubits, use_measure_esp=use_measure_esp, rep_delay=rep_delay, qubit_lo_freq=qubit_lo_freq, meas_lo_freq=meas_lo_freq, qubit_lo_range=qubit_lo_range, meas_lo_range=meas_lo_range, schedule_los=schedule_los, n_qubits=n_qubits, **run_config, ) return qobj_id, qobj_header, run_config_dict
def _parse_common_args( backend, qobj_id, qobj_header, shots, memory, max_credits, seed_simulator, init_qubits, use_measure_esp, rep_delay, qubit_lo_freq, meas_lo_freq, qubit_lo_range, meas_lo_range, schedule_los, **run_config, ): """Resolve the various types of args allowed to the assemble() function through duck typing, overriding args, etc. Refer to the assemble() docstring for details on what types of inputs are allowed. Here the args are resolved by converting them to standard instances, and prioritizing them in case a run option is passed through multiple args (explicitly setting an arg has more priority than the arg set by backend) Returns: RunConfig: a run config, which is a standardized object that configures the qobj and determines the runtime environment. Raises: QiskitError: - If the memory arg is True and the backend does not support memory. - If ``shots`` exceeds ``max_shots`` for the configured backend. - If ``shots`` are not int type. - If any of qubit or meas lo's, or associated ranges do not have length equal to ``n_qubits``. - If qubit or meas lo's do not fit into perscribed ranges. - If ``use_measure_esp`` is set to ``True`` on a device which does not support ESP readout. """ # grab relevant info from backend if it exists backend_config = None backend_defaults = None n_qubits = None if backend: backend_config = backend.configuration() n_qubits = backend_config.n_qubits # check for memory flag applied to backend that does not support memory if memory and not backend_config.memory: raise QiskitError( "memory not supported by backend {}".format(backend_config.backend_name) ) # try to set defaults for pulse, other leave as None if backend_config.open_pulse: try: backend_defaults = backend.defaults() except AttributeError: pass # an identifier for the Qobj qobj_id = qobj_id or str(uuid.uuid4()) # The header that goes at the top of the Qobj (and later Result) # we process it as dict, then write entries that are not None to a QobjHeader object qobj_header = qobj_header or {} if isinstance(qobj_header, QobjHeader): qobj_header = qobj_header.to_dict() backend_name = getattr(backend_config, "backend_name", None) backend_version = getattr(backend_config, "backend_version", None) qobj_header = { **dict(backend_name=backend_name, backend_version=backend_version), **qobj_header, } qobj_header = QobjHeader(**{k: v for k, v in qobj_header.items() if v is not None}) max_shots = getattr(backend_config, "max_shots", None) if shots is None: if max_shots: shots = min(1024, max_shots) else: shots = 1024 elif not isinstance(shots, int): raise QiskitError("Argument 'shots' should be of type 'int'") elif max_shots and max_shots < shots: raise QiskitError( "Number of shots specified: %s exceeds max_shots property of the " "backend: %s." % (shots, max_shots) ) dynamic_reprate_enabled = getattr(backend_config, "dynamic_reprate_enabled", False) if dynamic_reprate_enabled: default_rep_delay = getattr(backend_config, "default_rep_delay", None) rep_delay_range = getattr(backend_config, "rep_delay_range", None) rep_delay = _parse_rep_delay(rep_delay, default_rep_delay, rep_delay_range) else: if rep_delay is not None: rep_delay = None warnings.warn( "Dynamic rep rates not supported on this backend, cannot use rep_delay.", RuntimeWarning, ) qubit_lo_freq = qubit_lo_freq or getattr(backend_defaults, "qubit_freq_est", None) meas_lo_freq = meas_lo_freq or getattr(backend_defaults, "meas_freq_est", None) qubit_lo_range = qubit_lo_range or getattr(backend_config, "qubit_lo_range", None) meas_lo_range = meas_lo_range or getattr(backend_config, "meas_lo_range", None) # check that LO frequencies are in the perscribed range _check_lo_freqs(qubit_lo_freq, qubit_lo_range, "qubit") _check_lo_freqs(meas_lo_freq, meas_lo_range, "meas") # configure experiment level LO frequencies schedule_los = schedule_los or [] if isinstance(schedule_los, (LoConfig, dict)): schedule_los = [schedule_los] # Convert to LoConfig if LO configuration supplied as dictionary schedule_los = [ lo_config if isinstance(lo_config, LoConfig) else LoConfig(lo_config) for lo_config in schedule_los ] measure_esp_enabled = getattr(backend_config, "measure_esp_enabled", False) if use_measure_esp is None: use_measure_esp = True if measure_esp_enabled else False # default use of esp readout if not measure_esp_enabled and use_measure_esp: raise QiskitError("ESP readout not supported on this device. Please make sure the flag " "'use_measure_esp' is unset or set to 'False'.") # create run configuration and populate run_config_dict = dict( shots=shots, memory=memory, max_credits=max_credits, seed_simulator=seed_simulator, init_qubits=init_qubits, use_measure_esp=use_measure_esp, rep_delay=rep_delay, qubit_lo_freq=qubit_lo_freq, meas_lo_freq=meas_lo_freq, qubit_lo_range=qubit_lo_range, meas_lo_range=meas_lo_range, schedule_los=schedule_los, n_qubits=n_qubits, **run_config, ) return qobj_id, qobj_header, run_config_dict
20,020
def spatial_clustering(mask, algorithm="OPTICS", min_cluster_size=5, max_distance=0, njobs=-1): """Counts and segments portions of an image based on distance between two pixels. Masks showing all clusters, plus masks of individual clusters, are returned. img: Image to segment. Algorithm: Algorithm to use for segregating different clusters. Currently supporting OPTICS and DBSCAN. (Default="OPTICS") min_cluster_size: The minimum size a section of a mask must be (in pixels) before it can be considered its own cluster. (Default=5) max_distance: The total distance between two pixels for them to be considered a part of the same cluster. For the DBSCAN algorithm, value must be between 0 and 1. For OPTICS, the value is in pixels and depends on the size of your picture. (Default=0) njobs: The number of processors to use for calculation of the clusters. Default is all available processors. """ al_upper = algorithm.upper() if "OPTICS" in al_upper: max_distance = np.inf elif "DBSCAN" in al_upper: max_distance = 0.2 else: raise NameError("Please use only 'OPTICS' or 'DBSCAN' ") if not max_distance == 0: max_distance = max_distance vis = mask backtorgb = cv2.cvtColor(vis, cv2.COLOR_GRAY2RGB) x, y = np.where(np.all(backtorgb == [255, 255, 255], axis=2)) zipped = np.column_stack((x, y)) if "OPTICS" in al_upper: scaled = StandardScaler(with_mean=False, with_std=False).fit_transform(zipped) db = OPTICS(max_eps=max_distance, min_samples=min_cluster_size, n_jobs=njobs).fit(scaled) elif "DBSCAN" in al_upper: scaled = StandardScaler().fit_transform(zipped) db = DBSCAN(eps=max_distance, min_samples=min_cluster_size, n_jobs=njobs).fit(scaled) n_clusters_ = len(set(db.labels_)) - (1 if -1 in db.labels_ else 0) colors = color_palette(n_clusters_ + 1) dict_of_colors = {} sub_mask = [] h, w = backtorgb.shape[:2] image = np.zeros((h, w, 3), np.uint8) for y in range(-1, n_clusters_ + 1): dict_of_colors[str(y)] = colors[y] for y in range(0, n_clusters_): sub_mask.append(np.zeros((h, w, 3), np.uint8)) dict_of_colors[str(-1)] = (255, 255, 255) for z in range(0, len(db.labels_)): if not db.labels_[z] == -1: sub_mask[db.labels_[z]][zipped[z][0], zipped[z][1]] = (dict_of_colors[str(db.labels_[z])][2], dict_of_colors[str(db.labels_[z])][1], dict_of_colors[str(db.labels_[z])][0]) image[zipped[z][0], zipped[z][1]] = (dict_of_colors[str(db.labels_[z])][2], dict_of_colors[str(db.labels_[z])][1], dict_of_colors[str(db.labels_[z])][0]) params.device += 1 if params.debug == 'print': print_image(image, "full_image_mask.png") for c in range(0, len(sub_mask)): print_image(sub_mask[c], "subimage_cluster_" + str(c) + ".png") elif params.debug == 'plot': plot_image(image) for c in range(0, len(sub_mask)): plot_image(sub_mask[c]) return image, sub_mask
def spatial_clustering(mask, algorithm="OPTICS", min_cluster_size=5, max_distance=0, njobs=-1): """Counts and segments portions of an image based on distance between two pixels. Masks showing all clusters, plus masks of individual clusters, are returned. img: Image to segment. Algorithm: Algorithm to use for segregating different clusters. Currently supporting OPTICS and DBSCAN. (Default="OPTICS") min_cluster_size: The minimum size a section of a mask must be (in pixels) before it can be considered its own cluster. (Default=5) max_distance: The total distance between two pixels for them to be considered a part of the same cluster. For the DBSCAN algorithm, value must be between 0 and 1. For OPTICS, the value is in pixels and depends on the size of your picture. (Default=0) njobs: The number of processors to use for calculation of the clusters. Default is all available processors. """ al_upper = algorithm.upper() if "OPTICS" in al_upper: max_distance = np.inf elif "DBSCAN" in al_upper: max_distance = 0.2 else: raise NameError("Please use only 'OPTICS' or 'DBSCAN' ") if not max_distance == 0: max_distance = max_distance vis = mask backtorgb = cv2.cvtColor(vis, cv2.COLOR_GRAY2RGB) x, y = np.where(np.all(backtorgb == [255, 255, 255], axis=2)) zipped = np.column_stack((x, y)) if "OPTICS" in al_upper: scaled = StandardScaler(with_mean=False, with_std=False).fit_transform(zipped) db = OPTICS(max_eps=max_distance, min_samples=min_cluster_size, n_jobs=njobs).fit(scaled) elif "DBSCAN" in al_upper: scaled = StandardScaler().fit_transform(zipped) db = DBSCAN(eps=max_distance, min_samples=min_cluster_size, n_jobs=njobs).fit(scaled) n_clusters_ = len(set(db.labels_)) - (1 if -1 in db.labels_ else 0) colors = color_palette(n_clusters_ + 1) dict_of_colors = {} sub_mask = [] h, w = backtorgb.shape[:2] image = np.zeros((h, w, 3), np.uint8) for y in range(-1, n_clusters_ + 1): dict_of_colors[str(y)] = colors[y] for y in range(0, n_clusters_): sub_mask.append(np.zeros((h, w, 3), np.uint8)) dict_of_colors[str(-1)] = (255, 255, 255) for z in range(0, len(db.labels_)): if not db.labels_[z] == -1: sub_mask[db.labels_[z]][zipped[z][0], zipped[z][1]] = 255 image[zipped[z][0], zipped[z][1]] = (dict_of_colors[str(db.labels_[z])][2], dict_of_colors[str(db.labels_[z])][1], dict_of_colors[str(db.labels_[z])][0]) params.device += 1 if params.debug == 'print': print_image(image, "full_image_mask.png") for c in range(0, len(sub_mask)): print_image(sub_mask[c], "subimage_cluster_" + str(c) + ".png") elif params.debug == 'plot': plot_image(image) for c in range(0, len(sub_mask)): plot_image(sub_mask[c]) return image, sub_mask
31,443
def close_false_positive_command(client: Client, args: dict): alert_ids = args.get('alert_ids') custom_filter = args.get('custom_filter') comment = args.get('comment') reason = CLOSE_FALSE_POSITIVE_REASON_OPTIONS.get(str(args.get('reason'))) sendFeedback = bool(args.get('sendFeedback')) feedbackText = args.get('feedbackText') allowContact = bool(args.get('allowContact')) contactEmail = args.get('contactEmail') request_data = args_to_filter_close_alerts(alert_ids, custom_filter, comment, reason, sendFeedback, feedbackText, allowContact, contactEmail) closed_false_positive_data = {} try: closed_false_positive_data = client.close_false_positive(request_data) except Exception as e: if 'alertsNotFound' in str(e): raise DemistoException('Error: This alert id is already closed or does not exist.') number_of_closed_false_positive_alerts = closed_false_positive_data['closed_false_positive'] return CommandResults( readable_output=f'{number_of_closed_false_positive_alerts} alerts are classified as closed false positive', outputs_prefix='MicrosoftCloudAppSecurity.Alerts', outputs_key_field='_id', outputs=closed_false_positive_data)
def close_false_positive_command(client: Client, args: dict): alert_ids = args.get('alert_ids') custom_filter = args.get('custom_filter') comment = args.get('comment') reason = CLOSE_FALSE_POSITIVE_REASON_OPTIONS.get(str(args.get('reason'))) sendFeedback = bool(args.get('sendFeedback')) feedbackText = args.get('feedbackText') allowContact = argToBoolean(args.get('allowContact')) contactEmail = args.get('contactEmail') request_data = args_to_filter_close_alerts(alert_ids, custom_filter, comment, reason, sendFeedback, feedbackText, allowContact, contactEmail) closed_false_positive_data = {} try: closed_false_positive_data = client.close_false_positive(request_data) except Exception as e: if 'alertsNotFound' in str(e): raise DemistoException('Error: This alert id is already closed or does not exist.') number_of_closed_false_positive_alerts = closed_false_positive_data['closed_false_positive'] return CommandResults( readable_output=f'{number_of_closed_false_positive_alerts} alerts are classified as closed false positive', outputs_prefix='MicrosoftCloudAppSecurity.Alerts', outputs_key_field='_id', outputs=closed_false_positive_data)
6,659
def run_bom_job( doc: "BOMUpdateLog", boms: Optional[Dict] = None, update_type: Optional[str] = "Replace BOM" ) -> None: try: doc.db_set("status", "In Progress") if not frappe.flags.in_test: frappe.db.commit() frappe.db.auto_commit_on_many_writes = 1 boms = frappe._dict(boms or {}) if update_type == "Replace BOM": replace_bom(boms) else: update_cost() doc.db_set("status", "Completed") except (Exception, JobTimeoutException): frappe.db.rollback() error_log = frappe.log_error(message=frappe.get_traceback(), title=_("BOM Update Tool Error")) doc.db_set("status", "Failed") doc.db_set("error_log", error_log.name) finally: frappe.db.auto_commit_on_many_writes = 0 frappe.db.commit() # nosemgrep
def run_bom_job( doc: "BOMUpdateLog", boms: Optional[Dict[str, str]] = None, update_type: str = "Replace BOM" ) -> None: try: doc.db_set("status", "In Progress") if not frappe.flags.in_test: frappe.db.commit() frappe.db.auto_commit_on_many_writes = 1 boms = frappe._dict(boms or {}) if update_type == "Replace BOM": replace_bom(boms) else: update_cost() doc.db_set("status", "Completed") except (Exception, JobTimeoutException): frappe.db.rollback() error_log = frappe.log_error(message=frappe.get_traceback(), title=_("BOM Update Tool Error")) doc.db_set("status", "Failed") doc.db_set("error_log", error_log.name) finally: frappe.db.auto_commit_on_many_writes = 0 frappe.db.commit() # nosemgrep
42,029
def _get_param_importance_plot( study: Study, evaluator: Optional[BaseImportanceEvaluator] = None, params: Optional[List[str]] = None, target: Optional[Callable[[FrozenTrial], float]] = None, target_name: str = "Objective Value", ) -> "Axes": # Set up the graph style. plt.style.use("ggplot") # Use ggplot style sheet for similar outputs to plotly. fig, ax = plt.subplots() ax.set_title("Hyperparameter Importances") ax.set_xlabel(f"Importance for {target_name}") ax.set_ylabel("Hyperparameter") # Prepare data for plotting. # Importances cannot be evaluated without completed trials. # Return an empty figure for consistency with other visualization functions. trials = [trial for trial in study.trials if trial.state == TrialState.COMPLETE] if len(trials) == 0: _logger.warning("Study instance does not contain completed trials.") return ax importances = optuna.importance.get_param_importances( study, evaluator=evaluator, params=params, target=target ) importances = OrderedDict(reversed(list(importances.items()))) importance_values = list(importances.values()) param_names = list(importances.keys()) pos = np.arange(len(param_names)) # Draw horizontal bars. ax.barh( pos, importance_values, align="center", color=cm.get_cmap("tab20c")(0), tick_label=param_names, ) renderer = fig.canvas.get_renderer() for idx, val in enumerate(importance_values): label = str(round(val, 2)) if val >= 0.01 else "<0.01" text = ax.text(val, idx, label, va="center") # Sometimes horizontal axis needs to be re-scaled # to avoid text going over plot area. bbox = text.get_window_extent(renderer) bbox = bbox.transformed(ax.transData.inverted()) _, plot_xmax = ax.get_xlim() bbox_xmax = bbox.x1 if bbox_xmax > plot_xmax: ax.set_xlim(xmax=AXES_PADDING_RATIO * bbox_xmax) return ax
def _get_param_importance_plot( study: Study, evaluator: Optional[BaseImportanceEvaluator] = None, params: Optional[List[str]] = None, target: Optional[Callable[[FrozenTrial], float]] = None, target_name: str = "Objective Value", ) -> "Axes": # Set up the graph style. plt.style.use("ggplot") # Use ggplot style sheet for similar outputs to plotly. fig, ax = plt.subplots() ax.set_title("Hyperparameter Importances") ax.set_xlabel(f"Importance for {target_name}") ax.set_ylabel("Hyperparameter") # Prepare data for plotting. # Importances cannot be evaluated without completed trials. # Return an empty figure for consistency with other visualization functions. trials = [trial for trial in study.trials if trial.state == TrialState.COMPLETE] if len(trials) == 0: _logger.warning("Study instance does not contain completed trials.") return ax importances = optuna.importance.get_param_importances( study, evaluator=evaluator, params=params, target=target ) importances = OrderedDict(reversed(list(importances.items()))) importance_values = list(importances.values()) param_names = list(importances.keys()) pos = np.arange(len(param_names)) # Draw horizontal bars. ax.barh( pos, importance_values, align="center", color=cm.get_cmap("tab20c")(0), tick_label=param_names, ) renderer = fig.canvas.get_renderer() for idx, val in enumerate(importance_values): label = str(round(val, 2)) if val >= 0.01 else "<0.01" text = ax.text(val, idx, label, va="center") # Sometimes horizontal axis needs to be re-scaled # to avoid text going over plot area. bbox = text.get_window_extent(renderer) bbox = bbox.transformed(ax.transData.inverted()) _, plot_xmax = ax.get_xlim() bbox_xmax = bbox.xmax if bbox_xmax > plot_xmax: ax.set_xlim(xmax=AXES_PADDING_RATIO * bbox_xmax) return ax
17,798
def check_num_args(root, benchmark_name, func, min_num_args, max_num_args=None): if max_num_args is None: max_num_args = min_num_args try: if sys.version_info[0] >= 3: info = inspect.getfullargspec(func) else: info = inspect.getargspec(func) except Exception as exc: print(f"{benchmark_name !s}: failed to check " f"({func !r}{_get_sourceline_info(func, root) !s}): {exc !s}") return True max_args = len(info.args) if inspect.ismethod(func): max_args -= 1 if info.defaults is not None: min_args = max_args - len(info.defaults) else: min_args = max_args if info.varargs is not None: max_args = float('inf') ok = (min_args <= max_num_args) and (min_num_args <= max_args) if not ok: if min_args == max_args: args_str = min_args else: args_str = f"{min_args}-{max_args}" if min_num_args == max_num_args: num_args_str = min_num_args else: num_args_str = f"{min_num_args}-{max_num_args}" print(f"{benchmark_name !s}: wrong number of arguments" f"(for {func !r}{_get_sourceline_info(func, root) !s}): expected {num_args_str}, " f"has {args_str}") return ok
def check_num_args(root, benchmark_name, func, min_num_args, max_num_args=None): if max_num_args is None: max_num_args = min_num_args try: if sys.version_info[0] >= 3: info = inspect.getfullargspec(func) else: info = inspect.getargspec(func) except Exception as exc: print(f"{benchmark_name !s}: failed to check " f"({func !r}{_get_sourceline_info(func, root) !s}): {exc !s}") return True max_args = len(info.args) if inspect.ismethod(func): max_args -= 1 if info.defaults is not None: min_args = max_args - len(info.defaults) else: min_args = max_args if info.varargs is not None: max_args = float('inf') ok = (min_args <= max_num_args) and (min_num_args <= max_args) if not ok: if min_args == max_args: args_str = min_args else: args_str = f"{min_args}-{max_args}" if min_num_args == max_num_args: num_args_str = min_num_args else: num_args_str = f"{min_num_args}-{max_num_args}" print(f"{benchmark_name !s}: wrong number of arguments " f"(for {func !r}{_get_sourceline_info(func, root) !s}): expected {num_args_str}, " f"has {args_str}") return ok
1,669
def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, check_input=True, **params): """ Compute elastic net path with coordinate descent. The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray of shape (n_samples,) or (n_samples, n_outputs) Target values. l1_ratio : float, default=0.5 Number between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso. eps : float, default=1e-3 Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, default=100 Number of alphas along the regularization path. alphas : ndarray, default=None List of alphas where to compute the models. If None alphas are set automatically. precompute : True | False | 'auto' | array-like, default='auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, default=None Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : bool, default=True If ``True``, X will be copied; else, it may be overwritten. coef_init : array of shape (n_features, ), default=None The initial values of the coefficients. verbose : bool or int, default=False Amount of verbosity. return_n_iter : bool, default=False Whether to return the number of iterations or not. positive : bool, default=False If set to True, forces coefficients to be positive. (Only allowed when ``y.ndim == 1``). check_input : bool, default=True Skip input validation checks, including the Gram matrix when provided assuming there are handled by the caller when check_input=False. **params : kwargs Keyword arguments passed to the coordinate descent solver. Returns ------- alphas : array of shape (n_alphas,) The alphas along the path where models are computed. coefs : array of shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array of shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like of shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). See Also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV Notes ----- For an example, see :ref:`examples/linear_model/plot_lasso_coordinate_descent_path.py <sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py>`. """ # We expect X and y to be already Fortran ordered when bypassing # checks if check_input: X = check_array(X, 'csc', dtype=[np.float64, np.float32], order='F', copy=copy_X) y = check_array(y, 'csc', dtype=X.dtype.type, order='F', copy=False, ensure_2d=False) if Xy is not None: # Xy should be a 1d contiguous array or a 2D C ordered array Xy = check_array(Xy, dtype=X.dtype.type, order='C', copy=False, ensure_2d=False) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape if multi_output and positive: raise ValueError('positive=True is not allowed for multi-output' ' (y.ndim != 1)') # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_offset' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_offset'] / params['X_scale'] X_sparse_scaling = np.asarray(X_sparse_scaling, dtype=X.dtype) else: X_sparse_scaling = np.zeros(n_features, dtype=X.dtype) # X should be normalized and fit already if function is called # from ElasticNet.fit if check_input: X, y, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False, check_input=check_input) if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=X.dtype) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=X.dtype) if coef_init is None: coef_ = np.zeros(coefs.shape[:-1], dtype=X.dtype, order='F') else: coef_ = np.asfortranarray(coef_init, dtype=X.dtype) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): # We expect precompute to be already Fortran ordered when bypassing # checks if check_input: precompute = check_array(precompute, dtype=X.dtype.type, order='C') model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like. Got %r" % precompute) coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps
def enet_path(X, y, l1_ratio=0.5, eps=1e-3, n_alphas=100, alphas=None, precompute='auto', Xy=None, copy_X=True, coef_init=None, verbose=False, return_n_iter=False, positive=False, check_input=True, **params): """ Compute elastic net path with coordinate descent. The elastic net optimization function varies for mono and multi-outputs. For mono-output tasks it is:: 1 / (2 * n_samples) * ||y - Xw||^2_2 + alpha * l1_ratio * ||w||_1 + 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2 For multi-output tasks it is:: (1 / (2 * n_samples)) * ||Y - XW||^Fro_2 + alpha * l1_ratio * ||W||_21 + 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2 Where:: ||W||_21 = \\sum_i \\sqrt{\\sum_j w_{ij}^2} i.e. the sum of norm of each row. Read more in the :ref:`User Guide <elastic_net>`. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse. y : ndarray of shape (n_samples,) or (n_samples, n_outputs) Target values. l1_ratio : float, default=0.5 Number between 0 and 1 passed to elastic net (scaling between l1 and l2 penalties). ``l1_ratio=1`` corresponds to the Lasso. eps : float, default=1e-3 Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``. n_alphas : int, default=100 Number of alphas along the regularization path. alphas : ndarray, default=None List of alphas where to compute the models. If None alphas are set automatically. precompute : "auto", bool or array-like, default='auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument. Xy : array-like, default=None Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed. copy_X : bool, default=True If ``True``, X will be copied; else, it may be overwritten. coef_init : array of shape (n_features, ), default=None The initial values of the coefficients. verbose : bool or int, default=False Amount of verbosity. return_n_iter : bool, default=False Whether to return the number of iterations or not. positive : bool, default=False If set to True, forces coefficients to be positive. (Only allowed when ``y.ndim == 1``). check_input : bool, default=True Skip input validation checks, including the Gram matrix when provided assuming there are handled by the caller when check_input=False. **params : kwargs Keyword arguments passed to the coordinate descent solver. Returns ------- alphas : array of shape (n_alphas,) The alphas along the path where models are computed. coefs : array of shape (n_features, n_alphas) or \ (n_outputs, n_features, n_alphas) Coefficients along the path. dual_gaps : array of shape (n_alphas,) The dual gaps at the end of the optimization for each alpha. n_iters : array-like of shape (n_alphas,) The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha. (Is returned when ``return_n_iter`` is set to True). See Also -------- MultiTaskElasticNet MultiTaskElasticNetCV ElasticNet ElasticNetCV Notes ----- For an example, see :ref:`examples/linear_model/plot_lasso_coordinate_descent_path.py <sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py>`. """ # We expect X and y to be already Fortran ordered when bypassing # checks if check_input: X = check_array(X, 'csc', dtype=[np.float64, np.float32], order='F', copy=copy_X) y = check_array(y, 'csc', dtype=X.dtype.type, order='F', copy=False, ensure_2d=False) if Xy is not None: # Xy should be a 1d contiguous array or a 2D C ordered array Xy = check_array(Xy, dtype=X.dtype.type, order='C', copy=False, ensure_2d=False) n_samples, n_features = X.shape multi_output = False if y.ndim != 1: multi_output = True _, n_outputs = y.shape if multi_output and positive: raise ValueError('positive=True is not allowed for multi-output' ' (y.ndim != 1)') # MultiTaskElasticNet does not support sparse matrices if not multi_output and sparse.isspmatrix(X): if 'X_offset' in params: # As sparse matrices are not actually centered we need this # to be passed to the CD solver. X_sparse_scaling = params['X_offset'] / params['X_scale'] X_sparse_scaling = np.asarray(X_sparse_scaling, dtype=X.dtype) else: X_sparse_scaling = np.zeros(n_features, dtype=X.dtype) # X should be normalized and fit already if function is called # from ElasticNet.fit if check_input: X, y, X_offset, y_offset, X_scale, precompute, Xy = \ _pre_fit(X, y, Xy, precompute, normalize=False, fit_intercept=False, copy=False, check_input=check_input) if alphas is None: # No need to normalize of fit_intercept: it has been done # above alphas = _alpha_grid(X, y, Xy=Xy, l1_ratio=l1_ratio, fit_intercept=False, eps=eps, n_alphas=n_alphas, normalize=False, copy_X=False) else: alphas = np.sort(alphas)[::-1] # make sure alphas are properly ordered n_alphas = len(alphas) tol = params.get('tol', 1e-4) max_iter = params.get('max_iter', 1000) dual_gaps = np.empty(n_alphas) n_iters = [] rng = check_random_state(params.get('random_state', None)) selection = params.get('selection', 'cyclic') if selection not in ['random', 'cyclic']: raise ValueError("selection should be either random or cyclic.") random = (selection == 'random') if not multi_output: coefs = np.empty((n_features, n_alphas), dtype=X.dtype) else: coefs = np.empty((n_outputs, n_features, n_alphas), dtype=X.dtype) if coef_init is None: coef_ = np.zeros(coefs.shape[:-1], dtype=X.dtype, order='F') else: coef_ = np.asfortranarray(coef_init, dtype=X.dtype) for i, alpha in enumerate(alphas): l1_reg = alpha * l1_ratio * n_samples l2_reg = alpha * (1.0 - l1_ratio) * n_samples if not multi_output and sparse.isspmatrix(X): model = cd_fast.sparse_enet_coordinate_descent( coef_, l1_reg, l2_reg, X.data, X.indices, X.indptr, y, X_sparse_scaling, max_iter, tol, rng, random, positive) elif multi_output: model = cd_fast.enet_coordinate_descent_multi_task( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random) elif isinstance(precompute, np.ndarray): # We expect precompute to be already Fortran ordered when bypassing # checks if check_input: precompute = check_array(precompute, dtype=X.dtype.type, order='C') model = cd_fast.enet_coordinate_descent_gram( coef_, l1_reg, l2_reg, precompute, Xy, y, max_iter, tol, rng, random, positive) elif precompute is False: model = cd_fast.enet_coordinate_descent( coef_, l1_reg, l2_reg, X, y, max_iter, tol, rng, random, positive) else: raise ValueError("Precompute should be one of True, False, " "'auto' or array-like. Got %r" % precompute) coef_, dual_gap_, eps_, n_iter_ = model coefs[..., i] = coef_ dual_gaps[i] = dual_gap_ n_iters.append(n_iter_) if verbose: if verbose > 2: print(model) elif verbose > 1: print('Path: %03i out of %03i' % (i, n_alphas)) else: sys.stderr.write('.') if return_n_iter: return alphas, coefs, dual_gaps, n_iters return alphas, coefs, dual_gaps
6,439
def get_customer_stats(filters, tree_view=False): """ Calculates number of new and repeated customers and revenue. """ company_condition = '' if filters.get('company'): company_condition = ' and company=%(company)s' customers = [] customers_in = {} for si in frappe.db.sql('''select territory, posting_date, customer, base_grand_total from `tabSales Invoice` where docstatus=1 and posting_date <= %(to_date)s {company_condition} order by posting_date'''.format(company_condition=company_condition), filters, as_dict=1): key = si.territory if tree_view else si.posting_date.strftime('%Y-%m') new_or_repeat = 'new' if si.customer not in customers else 'repeat' customers_in.setdefault(key, {'new': [0, 0.0], 'repeat': [0, 0.0]}) if filters.from_date <= si.posting_date.strftime('%Y-%m-%d'): customers_in[key][new_or_repeat][0] += 1 customers_in[key][new_or_repeat][1] += si.base_grand_total if new_or_repeat == 'new': customers.append(si.customer) return customers_in
def get_customer_stats(filters, tree_view=False): """ Calculates number of new and repeated customers and revenue. """ company_condition = '' if filters.get('company'): company_condition = ' and company=%(company)s' customers = [] customers_in = {} for si in frappe.db.sql('''select territory, posting_date, customer, base_grand_total from `tabSales Invoice` where docstatus=1 and posting_date <= %(to_date)s {company_condition} order by posting_date'''.format(company_condition=company_condition), filters, as_dict=1): key = si.territory if tree_view else si.posting_date.strftime('%Y-%m') new_or_repeat = 'new' if si.customer not in customers else 'repeat' customers_in.setdefault(key, {'new': [0, 0.0], 'repeat': [0, 0.0]}) if getdate(filters.from_date) <= getdate(si.posting_date): customers_in[key][new_or_repeat][0] += 1 customers_in[key][new_or_repeat][1] += si.base_grand_total if new_or_repeat == 'new': customers.append(si.customer) return customers_in
4,125
def approx_pi(n: cython.int=10000000): val: cython.double = 0. k: cython.int for k in range(1, n + 1): val += recip_square(k) return (6 * val) ** .5
def approx_pi(n: cython.int = 10000000): val: cython.double = 0. k: cython.int for k in range(1, n + 1): val += recip_square(k) return (6 * val) ** .5
30,721
def main(): """Main function """ cmd = demisto.command() LOG('Command being called is {}'.format(cmd)) try: if cmd in COMMANDS: COMMANDS[cmd]() else: LOG('Command {} not implemented'.format(cmd)) # Log exceptions except Exception as e: import traceback LOG(traceback.format_exc()) if demisto.command() == 'fetch-incidents': LOG(str(e)) LOG.print_log() raise else: return_error('An error occurred: {}'.format(str(e)))
def main(): """Main function """ cmd = demisto.command() demisto.debug('Command being called is {}'.format(cmd)) try: if cmd in COMMANDS: COMMANDS[cmd]() else: LOG('Command {} not implemented'.format(cmd)) # Log exceptions except Exception as e: import traceback LOG(traceback.format_exc()) if demisto.command() == 'fetch-incidents': LOG(str(e)) LOG.print_log() raise else: return_error('An error occurred: {}'.format(str(e)))
32,054
def get_incidents_long_running_execution(client: Client, offenses_per_fetch: int, user_query: str, fetch_mode: str, events_columns: str, events_limit: int, ip_enrich: bool, asset_enrich: bool, last_highest_id: int, incident_type: Optional[str], mirror_direction: Optional[str]) -> Tuple[Optional[List[Dict]], Optional[int]]: """ Gets offenses from QRadar service, and transforms them to incidents in a long running execution. Args: client (Client): Client to perform the API calls. offenses_per_fetch (int): Maximum number of offenses to be fetched. user_query (str): If given, the user filters for fetching offenses from QRadar service. fetch_mode (str): Fetch mode of the offenses. Can be 'Fetch Without Events', 'Fetch With All Events', 'Fetch Correlation Events Only' events_columns (str): Events columns to extract by search query for each offense. Only used when fetch mode is not 'Fetch Without Events'. events_limit (int): Number of events to be fetched for each offense. Only used when fetch mode is not 'Fetch Without Events'. ip_enrich (bool): Whether to enrich offense by changing IP IDs of each offense to its IP value. asset_enrich (bool): Whether to enrich offense with assets last_highest_id (int): The highest ID of all the offenses that have been fetched from QRadar service. incident_type (Optional[str]): Incident type. mirror_direction (Optional[str]): Whether mirror in is activated or not. Returns: (List[Dict], int): List of the incidents, and the new highest ID for next fetch. (None, None): if reset was triggered """ offense_highest_id = get_minimum_id_to_fetch(last_highest_id, user_query) user_query = f' AND {user_query}' if user_query else '' filter_fetch_query = f'id>{offense_highest_id}{user_query}' print_debug_msg(f'Filter query to QRadar: {filter_fetch_query}') range_max = offenses_per_fetch - 1 if offenses_per_fetch else MAXIMUM_OFFENSES_PER_FETCH - 1 range_ = f'items=0-{range_max}' # if fails here we can't recover, retry again later raw_offenses = client.offenses_list(range_, filter_=filter_fetch_query, sort=ASCENDING_ID_ORDER) if raw_offenses: raw_offenses_len = len(raw_offenses) print_debug_msg(f'raw_offenses size: {raw_offenses_len}') else: print_debug_msg('empty raw_offenses') new_highest_offense_id = raw_offenses[-1].get('id') if raw_offenses else offense_highest_id print_debug_msg(f'New highest ID returned from QRadar offenses: {new_highest_offense_id}') offenses = [] if fetch_mode != FetchMode.no_events.value: try: futures = [] for offense in raw_offenses: futures.append(EXECUTOR.submit( enrich_offense_with_events, client=client, offense=offense, fetch_mode=fetch_mode, events_columns=events_columns, events_limit=events_limit, )) offenses = [future.result(timeout=DEFAULT_EVENTS_TIMEOUT * 60) for future in futures] except concurrent.futures.TimeoutError as e: print_debug_msg( f"Error while enriching mirrored offenses with events: {str(e)} \n {traceback.format_exc()}") update_missing_offenses_from_raw_offenses(raw_offenses, offenses) else: offenses = raw_offenses if is_reset_triggered(): return None, None offenses_with_mirror = [ dict(offense, mirror_direction=mirror_direction, mirror_instance=demisto.integrationInstance()) for offense in offenses] if mirror_direction else offenses enriched_offenses = enrich_offenses_result(client, offenses_with_mirror, ip_enrich, asset_enrich) final_offenses = sanitize_outputs(enriched_offenses) incidents = create_incidents_from_offenses(final_offenses, incident_type) return incidents, new_highest_offense_id
def get_incidents_long_running_execution(client: Client, offenses_per_fetch: int, user_query: str, fetch_mode: str, events_columns: str, events_limit: int, ip_enrich: bool, asset_enrich: bool, last_highest_id: int, incident_type: Optional[str], mirror_direction: Optional[str]) -> Tuple[Optional[List[Dict]], Optional[int]]: """ Gets offenses from QRadar service, and transforms them to incidents in a long running execution. Args: client (Client): Client to perform the API calls. offenses_per_fetch (int): Maximum number of offenses to be fetched. user_query (str): If given, the user filters for fetching offenses from QRadar service. fetch_mode (str): Fetch mode of the offenses. Can be 'Fetch Without Events', 'Fetch With All Events', 'Fetch Correlation Events Only' events_columns (str): Events columns to extract by search query for each offense. Only used when fetch mode is not 'Fetch Without Events'. events_limit (int): Number of events to be fetched for each offense. Only used when fetch mode is not 'Fetch Without Events'. ip_enrich (bool): Whether to enrich offense by changing IP IDs of each offense to its IP value. asset_enrich (bool): Whether to enrich offense with assets last_highest_id (int): The highest ID of all the offenses that have been fetched from QRadar service. incident_type (Optional[str]): Incident type. mirror_direction (Optional[str]): Whether mirror in is activated or not. Returns: (List[Dict], int): List of the incidents, and the new highest ID for next fetch. (None, None): if reset was triggered """ offense_highest_id = get_minimum_id_to_fetch(last_highest_id, user_query) user_query = f' AND {user_query}' if user_query else '' filter_fetch_query = f'id>{offense_highest_id}{user_query}' print_debug_msg(f'Filter query to QRadar: {filter_fetch_query}') range_max = offenses_per_fetch - 1 if offenses_per_fetch else MAXIMUM_OFFENSES_PER_FETCH - 1 range_ = f'items=0-{range_max}' # if it fails here we can't recover, retry again later raw_offenses = client.offenses_list(range_, filter_=filter_fetch_query, sort=ASCENDING_ID_ORDER) if raw_offenses: raw_offenses_len = len(raw_offenses) print_debug_msg(f'raw_offenses size: {raw_offenses_len}') else: print_debug_msg('empty raw_offenses') new_highest_offense_id = raw_offenses[-1].get('id') if raw_offenses else offense_highest_id print_debug_msg(f'New highest ID returned from QRadar offenses: {new_highest_offense_id}') offenses = [] if fetch_mode != FetchMode.no_events.value: try: futures = [] for offense in raw_offenses: futures.append(EXECUTOR.submit( enrich_offense_with_events, client=client, offense=offense, fetch_mode=fetch_mode, events_columns=events_columns, events_limit=events_limit, )) offenses = [future.result(timeout=DEFAULT_EVENTS_TIMEOUT * 60) for future in futures] except concurrent.futures.TimeoutError as e: print_debug_msg( f"Error while enriching mirrored offenses with events: {str(e)} \n {traceback.format_exc()}") update_missing_offenses_from_raw_offenses(raw_offenses, offenses) else: offenses = raw_offenses if is_reset_triggered(): return None, None offenses_with_mirror = [ dict(offense, mirror_direction=mirror_direction, mirror_instance=demisto.integrationInstance()) for offense in offenses] if mirror_direction else offenses enriched_offenses = enrich_offenses_result(client, offenses_with_mirror, ip_enrich, asset_enrich) final_offenses = sanitize_outputs(enriched_offenses) incidents = create_incidents_from_offenses(final_offenses, incident_type) return incidents, new_highest_offense_id
53,305
def vector_space( x_arr=None, y_arr=None, z_arr=None, x_range=[0, 1], y_range=[0, 1], z_range=[0, 1], u_arr=None, v_arr=None, w_arr=None, func=(lambda x, y, z: [x, y, z]), precision=[0.05, 0.05, 0.05], ): r""" Returns a vector space in the form of a multi-dimensional array. Parameters ---------- x_arr: array_like The array representing the coordinates in the x-dimension. If not given, then range values are used to construct a uniform array on that interval. y_arr: array_like The array representing the coordinates in the y-dimension. If not given, then range values are used to construct a uniform array on that interval. z_arr: array_like The array representing the coordinates in the z-dimension. If not given, then range values are used to construct a uniform array on that interval. x_range: array_like A 1 by 2 array containing the range of x-vlaues for the vector spaces. If not given, the default interval [0,1] is assumed. y_range: array_like A 1 by 2 array containing the range of y-vlaues for the vector spaces. If not given, the default interval [0,1] is assumed. z_range: array_like A 1 by 2 array containing the range of z-vlaues for the vector spaces. If not given, the default interval [0,1] is assumed. u_arr: array_like A 3D array containing the x-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. v_arr: array_like A 3D array containing the y-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. w_arr: array_like A 3D array containing the z-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. func: <class 'function'> A function that takes in 3 arguments, respectively representing a x, y, and z coordinate of a point and returns the vector value for that point in the form of a 1 by 3 array. precision: array_like A 1 by 3 array containing the approximate precision values for each dimension, in the case where uniform arrays are being used. The default value is [0.05, 0.05, 0.05]. Returns ------- ndarray A 1 by 3 array with the first element containing the coordinates. the second element containing the vector values. and the third element containing the delta values for each dimension. Raises ------ This function does not raise any exceptions. Warns ----- This function does not raise any warnings. Notes ----- N/A """ # Constructing the Meshgrid if ( not isinstance(x_arr, type(None)) and not isinstance(y_arr, type(None)) and not isinstance(z_arr, type(None)) ): x, y, z = np.meshgrid( x_arr, y_arr, z_arr, indexing="ij", ) dx = np.diff(x_arr) dy = np.diff(y_arr) dz = np.diff(z_arr) else: x_den = int(np.around((x_range[1] - x_range[0]) / precision[0]) + 1) y_den = int(np.around((y_range[1] - y_range[0]) / precision[1]) + 1) z_den = int(np.around((z_range[1] - z_range[0]) / precision[2]) + 1) # dx = np.double((x_range[1] - x_range[0]) / (x_den - 1)) # dy = np.double((y_range[1] - y_range[0]) / (y_den - 1)) # dz = np.double((z_range[1] - z_range[0]) / (z_den - 1)) dx = np.diff(np.linspace(x_range[0], x_range[1], x_den)) dy = np.diff(np.linspace(y_range[0], y_range[1], y_den)) dz = np.diff(np.linspace(z_range[0], z_range[1], z_den)) x, y, z = np.meshgrid( np.linspace(x_range[0], x_range[1], x_den), np.linspace(y_range[0], y_range[1], y_den), np.linspace(z_range[0], z_range[1], z_den), indexing="ij", ) # Calculating the vector values if ( not isinstance(u_arr, type(None)) and not isinstance(v_arr, type(None)) and not isinstance(w_arr, type(None)) ): u = u_arr v = v_arr w = w_arr else: u, v, w = func(x, y, z) return np.array([x, y, z]), np.array([u, v, w]), np.array([dx, dy, dz])
def vector_space( x_arr=None, y_arr=None, z_arr=None, x_range=[0, 1], y_range=[0, 1], z_range=[0, 1], u_arr=None, v_arr=None, w_arr=None, func=(lambda x, y, z: [x, y, z]), precision=[0.05, 0.05, 0.05], ): r""" Returns a vector space in the form of a multi-dimensional array. Parameters ---------- x_arr: array_like The array representing the coordinates in the x-dimension. If not given, then range values are used to construct a uniform array on that interval. y_arr: array_like The array representing the coordinates in the y-dimension. If not given, then range values are used to construct a uniform array on that interval. z_arr: array_like The array representing the coordinates in the z-dimension. If not given, then range values are used to construct a uniform array on that interval. x_range: array_like A 1 by 2 array containing the range of x-values for the vector spaces. If not given, the default interval [0,1] is assumed. y_range: array_like A 1 by 2 array containing the range of y-values for the vector spaces. If not given, the default interval [0,1] is assumed. z_range: array_like A 1 by 2 array containing the range of z-values for the vector spaces. If not given, the default interval [0,1] is assumed. u_arr: array_like A 3D array containing the x-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. v_arr: array_like A 3D array containing the y-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. w_arr: array_like A 3D array containing the z-component of the vector values for the vector space. If not given, the vector values are generated over the vector space using the function func. func: <class 'function'> A function that takes in 3 arguments, respectively representing a x, y, and z coordinate of a point and returns the vector value for that point in the form of a 1 by 3 array. precision: array_like A 1 by 3 array containing the approximate precision values for each dimension, in the case where uniform arrays are being used. The default value is [0.05, 0.05, 0.05]. Returns ------- ndarray A 1 by 3 array with the first element containing the coordinates. the second element containing the vector values. and the third element containing the delta values for each dimension. Raises ------ This function does not raise any exceptions. Warns ----- This function does not raise any warnings. Notes ----- N/A """ # Constructing the Meshgrid if ( not isinstance(x_arr, type(None)) and not isinstance(y_arr, type(None)) and not isinstance(z_arr, type(None)) ): x, y, z = np.meshgrid( x_arr, y_arr, z_arr, indexing="ij", ) dx = np.diff(x_arr) dy = np.diff(y_arr) dz = np.diff(z_arr) else: x_den = int(np.around((x_range[1] - x_range[0]) / precision[0]) + 1) y_den = int(np.around((y_range[1] - y_range[0]) / precision[1]) + 1) z_den = int(np.around((z_range[1] - z_range[0]) / precision[2]) + 1) # dx = np.double((x_range[1] - x_range[0]) / (x_den - 1)) # dy = np.double((y_range[1] - y_range[0]) / (y_den - 1)) # dz = np.double((z_range[1] - z_range[0]) / (z_den - 1)) dx = np.diff(np.linspace(x_range[0], x_range[1], x_den)) dy = np.diff(np.linspace(y_range[0], y_range[1], y_den)) dz = np.diff(np.linspace(z_range[0], z_range[1], z_den)) x, y, z = np.meshgrid( np.linspace(x_range[0], x_range[1], x_den), np.linspace(y_range[0], y_range[1], y_den), np.linspace(z_range[0], z_range[1], z_den), indexing="ij", ) # Calculating the vector values if ( not isinstance(u_arr, type(None)) and not isinstance(v_arr, type(None)) and not isinstance(w_arr, type(None)) ): u = u_arr v = v_arr w = w_arr else: u, v, w = func(x, y, z) return np.array([x, y, z]), np.array([u, v, w]), np.array([dx, dy, dz])
36,267
def normalize_total( adata: AnnData, target_sum: Optional[float] = None, exclude_highly_expressed: bool = False, max_fraction: float = 0.05, key_added: Optional[str] = None, layer: Optional[str] = None, layers: Union[Literal['all'], Iterable[str]] = None, layer_norm: Optional[str] = None, inplace: bool = True, copy: bool = False, ) -> Optional[Dict[str, np.ndarray]]: """\ Normalize counts per cell. Normalize each cell by total counts over all genes, so that every cell has the same total count after normalization. If choosing `target_sum=1e6`, this is CPM normalization. If `exclude_highly_expressed=True`, very highly expressed genes are excluded from the computation of the normalization factor (size factor) for each cell. This is meaningful as these can strongly influence the resulting normalized values for all other genes [Weinreb17]_. Similar functions are used, for example, by Seurat [Satija15]_, Cell Ranger [Zheng17]_ or SPRING [Weinreb17]_. Params ------ adata The annotated data matrix of shape `n_obs` × `n_vars`. Rows correspond to cells and columns to genes. target_sum If `None`, after normalization, each observation (cell) has a total count equal to the median of total counts for observations (cells) before normalization. exclude_highly_expressed Exclude (very) highly expressed genes for the computation of the normalization factor (size factor) for each cell. A gene is considered highly expressed, if it has more than `max_fraction` of the total counts in at least one cell. The not-excluded genes will sum up to `target_sum`. max_fraction If `exclude_highly_expressed=True`, consider cells as highly expressed that have more counts than `max_fraction` of the original total counts in at least one cell. key_added Name of the field in `adata.obs` where the normalization factor is stored. layer Layer to normalize instead of `X`. If `None`, `X` is normalized. inplace Whether to update `adata` or return dictionary with normalized copies of `adata.X` and `adata.layers`. copy Whether to modify copied input object. Not compatible with inplace=False. Returns ------- Returns dictionary with normalized copies of `adata.X` and `adata.layers` or updates `adata` with normalized version of the original `adata.X` and `adata.layers`, depending on `inplace`. Example -------- >>> from anndata import AnnData >>> import scanpy as sc >>> sc.settings.verbosity = 2 >>> np.set_printoptions(precision=2) >>> adata = AnnData(np.array([ ... [3, 3, 3, 6, 6], ... [1, 1, 1, 2, 2], ... [1, 22, 1, 2, 2], ... ])) >>> adata.X array([[ 3., 3., 3., 6., 6.], [ 1., 1., 1., 2., 2.], [ 1., 22., 1., 2., 2.]], dtype=float32) >>> X_norm = sc.pp.normalize_total(adata, target_sum=1, inplace=False)['X'] >>> X_norm array([[0.14, 0.14, 0.14, 0.29, 0.29], [0.14, 0.14, 0.14, 0.29, 0.29], [0.04, 0.79, 0.04, 0.07, 0.07]], dtype=float32) >>> X_norm = sc.pp.normalize_total( ... adata, target_sum=1, exclude_highly_expressed=True, ... max_fraction=0.2, inplace=False ... )['X'] The following highly-expressed genes are not considered during normalization factor computation: ['1', '3', '4'] >>> X_norm array([[ 0.5, 0.5, 0.5, 1. , 1. ], [ 0.5, 0.5, 0.5, 1. , 1. ], [ 0.5, 11. , 0.5, 1. , 1. ]], dtype=float32) """ if copy: if not inplace: raise ValueError() adata = adata.copy() if max_fraction < 0 or max_fraction > 1: raise ValueError('Choose max_fraction between 0 and 1.') # Deprecated features if layers is not None: warn( FutureWarning( "The `layers` argument is deprecated. Instead, specify individual " "layers to normalize with `layer`." ) ) if layer_norm is not None: warn( FutureWarning( "The `layer_norm` argument is deprecated. Specify the target size " "factor directly with `target_sum`." ) ) if layers == 'all': layers = adata.layers.keys() elif isinstance(layers, str): raise ValueError( f"`layers` needs to be a list of strings or 'all', not {layers!r}" ) view_to_actual(adata) X = _get_obs_rep(adata, layer=layer) gene_subset = None msg = 'normalizing counts per cell' if exclude_highly_expressed: counts_per_cell = X.sum(1) # original counts per cell counts_per_cell = np.ravel(counts_per_cell) # at least one cell as more than max_fraction of counts per cell gene_subset = (X > counts_per_cell[:, None] * max_fraction).sum(0) gene_subset = np.ravel(gene_subset) == 0 msg += ( ' The following highly-expressed genes are not considered during ' f'normalization factor computation:\n{adata.var_names[~gene_subset].tolist()}' ) counts_per_cell = X[:, gene_subset].sum(1) else: counts_per_cell = X.sum(1) start = logg.info(msg) counts_per_cell = np.ravel(counts_per_cell) cell_subset = counts_per_cell > 0 if not np.all(cell_subset): warn(UserWarning('Some cells have zero counts')) if inplace: if key_added is not None: adata.obs[key_added] = counts_per_cell _set_obs_rep( adata, _normalize_data(X, counts_per_cell, target_sum), layer=layer ) else: # not recarray because need to support sparse dat = dict( X=_normalize_data(X, counts_per_cell, target_sum, copy=True), norm_factor=counts_per_cell, ) # Deprecated features if layer_norm == 'after': after = target_sum elif layer_norm == 'X': after = np.median(counts_per_cell[cell_subset]) elif layer_norm is None: after = None else: raise ValueError('layer_norm should be "after", "X" or None') for layer_to_norm in layers if layers is not None else (): res = normalize_total( adata, layer=layer_to_norm, target_sum=after, inplace=inplace ) if not inplace: dat[layer_to_norm] = res["X"] logg.info( ' finished ({time_passed})', time=start, ) if key_added is not None: logg.debug( f'and added {key_added!r}, counts per cell before normalization (adata.obs)' ) if copy: return adata elif not inplace: return dat
def normalize_total( adata: AnnData, target_sum: Optional[float] = None, exclude_highly_expressed: bool = False, max_fraction: float = 0.05, key_added: Optional[str] = None, layer: Optional[str] = None, layers: Union[Literal['all'], Iterable[str]] = None, layer_norm: Optional[str] = None, inplace: bool = True, copy: bool = False, ) -> Optional[Dict[str, np.ndarray]]: """\ Normalize counts per cell. Normalize each cell by total counts over all genes, so that every cell has the same total count after normalization. If choosing `target_sum=1e6`, this is CPM normalization. If `exclude_highly_expressed=True`, very highly expressed genes are excluded from the computation of the normalization factor (size factor) for each cell. This is meaningful as these can strongly influence the resulting normalized values for all other genes [Weinreb17]_. Similar functions are used, for example, by Seurat [Satija15]_, Cell Ranger [Zheng17]_ or SPRING [Weinreb17]_. Params ------ adata The annotated data matrix of shape `n_obs` × `n_vars`. Rows correspond to cells and columns to genes. target_sum If `None`, after normalization, each observation (cell) has a total count equal to the median of total counts for observations (cells) before normalization. exclude_highly_expressed Exclude (very) highly expressed genes for the computation of the normalization factor (size factor) for each cell. A gene is considered highly expressed, if it has more than `max_fraction` of the total counts in at least one cell. The not-excluded genes will sum up to `target_sum`. max_fraction If `exclude_highly_expressed=True`, consider cells as highly expressed that have more counts than `max_fraction` of the original total counts in at least one cell. key_added Name of the field in `adata.obs` where the normalization factor is stored. layer Layer to normalize instead of `X`. If `None`, `X` is normalized. inplace Whether to update `adata` or return dictionary with normalized copies of `adata.X` and `adata.layers`. copy Whether to modify copied input object. Not compatible with inplace=False. Returns ------- Returns dictionary with normalized copies of `adata.X` and `adata.layers` or updates `adata` with normalized version of the original `adata.X` and `adata.layers`, depending on `inplace`. Example -------- >>> from anndata import AnnData >>> import scanpy as sc >>> sc.settings.verbosity = 2 >>> np.set_printoptions(precision=2) >>> adata = AnnData(np.array([ ... [3, 3, 3, 6, 6], ... [1, 1, 1, 2, 2], ... [1, 22, 1, 2, 2], ... ])) >>> adata.X array([[ 3., 3., 3., 6., 6.], [ 1., 1., 1., 2., 2.], [ 1., 22., 1., 2., 2.]], dtype=float32) >>> X_norm = sc.pp.normalize_total(adata, target_sum=1, inplace=False)['X'] >>> X_norm array([[0.14, 0.14, 0.14, 0.29, 0.29], [0.14, 0.14, 0.14, 0.29, 0.29], [0.04, 0.79, 0.04, 0.07, 0.07]], dtype=float32) >>> X_norm = sc.pp.normalize_total( ... adata, target_sum=1, exclude_highly_expressed=True, ... max_fraction=0.2, inplace=False ... )['X'] The following highly-expressed genes are not considered during normalization factor computation: ['1', '3', '4'] >>> X_norm array([[ 0.5, 0.5, 0.5, 1. , 1. ], [ 0.5, 0.5, 0.5, 1. , 1. ], [ 0.5, 11. , 0.5, 1. , 1. ]], dtype=float32) """ if copy: if not inplace: raise ValueError("`copy=True` cannot be used with `inplace=False`.") adata = adata.copy() if max_fraction < 0 or max_fraction > 1: raise ValueError('Choose max_fraction between 0 and 1.') # Deprecated features if layers is not None: warn( FutureWarning( "The `layers` argument is deprecated. Instead, specify individual " "layers to normalize with `layer`." ) ) if layer_norm is not None: warn( FutureWarning( "The `layer_norm` argument is deprecated. Specify the target size " "factor directly with `target_sum`." ) ) if layers == 'all': layers = adata.layers.keys() elif isinstance(layers, str): raise ValueError( f"`layers` needs to be a list of strings or 'all', not {layers!r}" ) view_to_actual(adata) X = _get_obs_rep(adata, layer=layer) gene_subset = None msg = 'normalizing counts per cell' if exclude_highly_expressed: counts_per_cell = X.sum(1) # original counts per cell counts_per_cell = np.ravel(counts_per_cell) # at least one cell as more than max_fraction of counts per cell gene_subset = (X > counts_per_cell[:, None] * max_fraction).sum(0) gene_subset = np.ravel(gene_subset) == 0 msg += ( ' The following highly-expressed genes are not considered during ' f'normalization factor computation:\n{adata.var_names[~gene_subset].tolist()}' ) counts_per_cell = X[:, gene_subset].sum(1) else: counts_per_cell = X.sum(1) start = logg.info(msg) counts_per_cell = np.ravel(counts_per_cell) cell_subset = counts_per_cell > 0 if not np.all(cell_subset): warn(UserWarning('Some cells have zero counts')) if inplace: if key_added is not None: adata.obs[key_added] = counts_per_cell _set_obs_rep( adata, _normalize_data(X, counts_per_cell, target_sum), layer=layer ) else: # not recarray because need to support sparse dat = dict( X=_normalize_data(X, counts_per_cell, target_sum, copy=True), norm_factor=counts_per_cell, ) # Deprecated features if layer_norm == 'after': after = target_sum elif layer_norm == 'X': after = np.median(counts_per_cell[cell_subset]) elif layer_norm is None: after = None else: raise ValueError('layer_norm should be "after", "X" or None') for layer_to_norm in layers if layers is not None else (): res = normalize_total( adata, layer=layer_to_norm, target_sum=after, inplace=inplace ) if not inplace: dat[layer_to_norm] = res["X"] logg.info( ' finished ({time_passed})', time=start, ) if key_added is not None: logg.debug( f'and added {key_added!r}, counts per cell before normalization (adata.obs)' ) if copy: return adata elif not inplace: return dat
24,713
def spin_once( node: 'Node', *, executor: Optional[Executor] = None, timeout_sec: Optional[float] = None) -> None: """ Execute one item of work or wait until a timeout expires. One callback will be executed by the provided executor as long as that callback is ready before the timeout expires. If no executor is provided (ie. ``None``), then the global executor is used. It is possible the work done is for a node other than the one provided if the global executor has a partially completed coroutine. :param node: A node to add to the executor to check for work. :param executor: The executor to use, or the global executor if ``None``. :param timeout_sec: Seconds to wait. Block forever if ``None`` or negative. Don't wait if 0. """ executor = get_global_executor() if executor is None else executor try: executor.add_node(node) executor.spin_once(timeout_sec=timeout_sec) finally: executor.remove_node(node)
def spin_once( node: 'Node', *, executor: Optional['Executor'] = None, timeout_sec: Optional[float] = None) -> None: """ Execute one item of work or wait until a timeout expires. One callback will be executed by the provided executor as long as that callback is ready before the timeout expires. If no executor is provided (ie. ``None``), then the global executor is used. It is possible the work done is for a node other than the one provided if the global executor has a partially completed coroutine. :param node: A node to add to the executor to check for work. :param executor: The executor to use, or the global executor if ``None``. :param timeout_sec: Seconds to wait. Block forever if ``None`` or negative. Don't wait if 0. """ executor = get_global_executor() if executor is None else executor try: executor.add_node(node) executor.spin_once(timeout_sec=timeout_sec) finally: executor.remove_node(node)
6,992
def extract_javascript(code, keywords=("__"), options=None): """Extract messages from JavaScript source code. This is a modified version of babel's JS parser. Reused under BSD license. License: https://github.com/python-babel/babel/blob/master/LICENSE Changes from upstream: - Preserve arguments, babel's parser flattened all values in args, we need order because we use different syntax for translation which can contain 2nd arg which is array of many values. If argument is non-primitive type then value is NOT returned in args. E.g. __("0", ["1", "2"], "3") -> ("0", None, "3") - remove comments support - changed signature to accept string directly. :param code: code as string :param keywords: a list of keywords (i.e. function names) that should be recognized as translation functions :param options: a dictionary of additional options (optional) Supported options are: * `template_string` -- set to false to disable ES6 template string support. """ if options is None: options = {} funcname = message_lineno = None messages = [] last_argument = None concatenate_next = False last_token = None call_stack = -1 # Tree level = depth inside function call tree # Example: __("0", ["1", "2"], "3") # Depth __() # / | \ # 0 "0" [...] "3" <- only 0th level strings matter # / \ # 1 "1" "2" tree_level = 0 opening_operators = {"[", "{"} closing_operators = {"]", "}"} all_container_operators = opening_operators.union(closing_operators) dotted = any("." in kw for kw in keywords) for token in tokenize( code, jsx=True, template_string=options.get("template_string", True), dotted=dotted, ): if ( # Turn keyword`foo` expressions into keyword("foo") calls: funcname and (last_token and last_token.type == "name") # have a keyword... and token.type # we've seen nothing after the keyword... == "template_string" # this is a template string ): message_lineno = token.lineno messages = [unquote_string(token.value)] call_stack = 0 tree_level = 0 token = Token("operator", ")", token.lineno) if token.type == "operator" and token.value == "(": if funcname: message_lineno = token.lineno call_stack += 1 elif call_stack >= 0 and token.type == "operator" and token.value in all_container_operators: if token.value in opening_operators: tree_level += 1 if token.value in closing_operators: tree_level -= 1 elif call_stack == -1 and token.type == "linecomment" or token.type == "multilinecomment": pass # ignore comments elif funcname and call_stack == 0: if token.type == "operator" and token.value == ")": if last_argument is not None: messages.append(last_argument) if len(messages) > 1: messages = tuple(messages) elif messages: messages = messages[0] else: messages = None if messages is not None: yield (message_lineno, funcname, messages) funcname = message_lineno = last_argument = None concatenate_next = False messages = [] call_stack = -1 tree_level = 0 elif token.type in ("string", "template_string"): new_value = unquote_string(token.value) if tree_level > 0: pass elif concatenate_next: last_argument = (last_argument or "") + new_value concatenate_next = False else: last_argument = new_value elif token.type == "operator": if token.value == ",": if last_argument is not None: messages.append(last_argument) last_argument = None else: if tree_level == 0: messages.append(None) concatenate_next = False elif token.value == "+": concatenate_next = True elif call_stack > 0 and token.type == "operator" and token.value == ")": call_stack -= 1 tree_level = 0 elif funcname and call_stack == -1: funcname = None elif ( call_stack == -1 and token.type == "name" and token.value in keywords and (last_token is None or last_token.type != "name" or last_token.value != "function") ): funcname = token.value last_token = token
def extract_javascript(code, keywords=("__",), options=None): """Extract messages from JavaScript source code. This is a modified version of babel's JS parser. Reused under BSD license. License: https://github.com/python-babel/babel/blob/master/LICENSE Changes from upstream: - Preserve arguments, babel's parser flattened all values in args, we need order because we use different syntax for translation which can contain 2nd arg which is array of many values. If argument is non-primitive type then value is NOT returned in args. E.g. __("0", ["1", "2"], "3") -> ("0", None, "3") - remove comments support - changed signature to accept string directly. :param code: code as string :param keywords: a list of keywords (i.e. function names) that should be recognized as translation functions :param options: a dictionary of additional options (optional) Supported options are: * `template_string` -- set to false to disable ES6 template string support. """ if options is None: options = {} funcname = message_lineno = None messages = [] last_argument = None concatenate_next = False last_token = None call_stack = -1 # Tree level = depth inside function call tree # Example: __("0", ["1", "2"], "3") # Depth __() # / | \ # 0 "0" [...] "3" <- only 0th level strings matter # / \ # 1 "1" "2" tree_level = 0 opening_operators = {"[", "{"} closing_operators = {"]", "}"} all_container_operators = opening_operators.union(closing_operators) dotted = any("." in kw for kw in keywords) for token in tokenize( code, jsx=True, template_string=options.get("template_string", True), dotted=dotted, ): if ( # Turn keyword`foo` expressions into keyword("foo") calls: funcname and (last_token and last_token.type == "name") # have a keyword... and token.type # we've seen nothing after the keyword... == "template_string" # this is a template string ): message_lineno = token.lineno messages = [unquote_string(token.value)] call_stack = 0 tree_level = 0 token = Token("operator", ")", token.lineno) if token.type == "operator" and token.value == "(": if funcname: message_lineno = token.lineno call_stack += 1 elif call_stack >= 0 and token.type == "operator" and token.value in all_container_operators: if token.value in opening_operators: tree_level += 1 if token.value in closing_operators: tree_level -= 1 elif call_stack == -1 and token.type == "linecomment" or token.type == "multilinecomment": pass # ignore comments elif funcname and call_stack == 0: if token.type == "operator" and token.value == ")": if last_argument is not None: messages.append(last_argument) if len(messages) > 1: messages = tuple(messages) elif messages: messages = messages[0] else: messages = None if messages is not None: yield (message_lineno, funcname, messages) funcname = message_lineno = last_argument = None concatenate_next = False messages = [] call_stack = -1 tree_level = 0 elif token.type in ("string", "template_string"): new_value = unquote_string(token.value) if tree_level > 0: pass elif concatenate_next: last_argument = (last_argument or "") + new_value concatenate_next = False else: last_argument = new_value elif token.type == "operator": if token.value == ",": if last_argument is not None: messages.append(last_argument) last_argument = None else: if tree_level == 0: messages.append(None) concatenate_next = False elif token.value == "+": concatenate_next = True elif call_stack > 0 and token.type == "operator" and token.value == ")": call_stack -= 1 tree_level = 0 elif funcname and call_stack == -1: funcname = None elif ( call_stack == -1 and token.type == "name" and token.value in keywords and (last_token is None or last_token.type != "name" or last_token.value != "function") ): funcname = token.value last_token = token
32,256
def get_mapping_fields_command() -> GetMappingFieldsResponse: """ Returns the list of fields for an incident type. Args: client: XSOAR client to use Returns: Dictionary with keys as field names """ incident_type_scheme = SchemeTypeMapping(type_name="incident") for field in GLPI_ARGS: incident_type_scheme.add_field(field) mapping_response = GetMappingFieldsResponse() mapping_response.add_scheme_type(incident_type_scheme) return mapping_response
def get_mapping_fields_command() -> GetMappingFieldsResponse: """ Returns the list of fields for an incident type. Args: client: XSOAR client to use Returns: Dictionary with keys as field names """ incident_type_scheme = SchemeTypeMapping(type_name="GLPI Ticket") for field in GLPI_ARGS: incident_type_scheme.add_field(field) mapping_response = GetMappingFieldsResponse() mapping_response.add_scheme_type(incident_type_scheme) return mapping_response
9,080
def _build_egg(egg, tarball, to_dir): # extracting the tarball tmpdir = tempfile.mkdtemp() log.warn("Extracting in %s", tmpdir) old_wd = os.getcwd() try: os.chdir(tmpdir) tar = tarfile.open(tarball) _extractall(tar) tar.close() # going in the directory subdir = os.path.join(tmpdir, os.listdir(tmpdir)[0]) os.chdir(subdir) log.warn("Now working in %s", subdir) # building an egg log.warn("Building a Setuptools egg in %s", to_dir) _python_cmd("setup.py", "-q", "bdist_egg", "--dist-dir", to_dir) finally: os.chdir(old_wd) shutil.rmtree(tmpdir) # returning the result log.warn(egg) if not os.path.exists(egg): raise IOError("Could not build the egg.")
def _build_egg(egg, tarball, to_dir): # extracting the tarball tmpdir = tempfile.mkdtemp() log.warn(f"Extracting in {tmpdir}") old_wd = os.getcwd() try: os.chdir(tmpdir) tar = tarfile.open(tarball) _extractall(tar) tar.close() # going in the directory subdir = os.path.join(tmpdir, os.listdir(tmpdir)[0]) os.chdir(subdir) log.warn("Now working in %s", subdir) # building an egg log.warn("Building a Setuptools egg in %s", to_dir) _python_cmd("setup.py", "-q", "bdist_egg", "--dist-dir", to_dir) finally: os.chdir(old_wd) shutil.rmtree(tmpdir) # returning the result log.warn(egg) if not os.path.exists(egg): raise IOError("Could not build the egg.")
27,788
def test_subclassing_node_with_item_warns() -> None: with pytest.warns( PytestWarning, match="SoWrong is a Item subclass and should not be a collector" ): class SoWrong(nodes.Item, nodes.File): pass
def test_subclassing_both_item_and_collector_warns() -> None: with pytest.warns( PytestWarning, match="SoWrong is a Item subclass and should not be a collector" ): class SoWrong(nodes.Item, nodes.File): pass
13,258
def deprecated_posargs(func: C) -> C: """Insert a `*__deprecated_posargs,` shim in place of the `*,` for kwonly args. This turns out to be fairly tricky to get right with our preferred style of error handling (exhaustive) and various function-rewriting wrappers. """ if READTHEDOCS: # pragma: no cover # Documentation should show the new signatures without deprecation helpers. return func signature = inspect.signature(func) parameters = list(signature.parameters.values()) vararg = inspect.Parameter( name="__deprecated_posargs", kind=inspect.Parameter.VAR_POSITIONAL, annotation=Any, ) # If we're passed any VAR_POSITIONAL args, we'll use this sequence of # params to match them up with the correct KEYWORD_ONLY argument after # checking that it has it's default value - if you're passing by name, # can't have also been passing positionally before we deprecated that. deprecated = [] for i, arg in enumerate(tuple(parameters)): if arg.kind == inspect.Parameter.KEYWORD_ONLY: if not deprecated: parameters.insert(i, vararg) deprecated.append(arg) func.__signature__ = signature.replace(parameters=parameters) @proxies(func) def accept(*args, **kwargs): bound = func.__signature__.bind_partial(*args, **kwargs) bad_posargs = bound.arguments.pop("__deprecated_posargs", None) or () if len(bad_posargs) > len(deprecated): # We have more positional arguments than the wrapped func has parameters, # so there's no way this ever worked. We know that this bind will fail # but attempting it will raise a nice descriptive TypeError. signature.bind_partial(*args, **kwargs) for param, pos in zip(deprecated, bad_posargs): # Unfortunately, another layer of our function-wrapping logic passes in # all the default arguments as explicit arguments. This means that if # someone explicitly passes some value for a parameter as a positional # argument and *the default value* as a keyword argument, we'll emit a # deprecation warning but not an immediate error. Ah well... if bound.arguments.get(param.name, param.default) != param.default: raise TypeError( "Cannot pass {name}={p} positionally and {name}={n} by name!".format( name=param.name, p=pos, n=bound.arguments[param.name] ) ) from hypothesis._settings import note_deprecation note_deprecation( "%s was passed %s=%r as a positional argument, which will be a " "keyword-only argument in a future version." % (qualname(func), param.name, pos), since="RELEASEDAY", ) bound.arguments[param.name] = pos return func(*bound.args, **bound.kwargs) # We use these in convert_positional_arguments, to ensure that the LazyStrategy # repr of strategy objects look sensible (and will work without this shim). accept.__deprecated_posargs = tuple(deprecated) return accept
def deprecated_posargs(func: C) -> C: """Insert a `*__deprecated_posargs,` shim in place of the `*,` for kwonly args. This turns out to be fairly tricky to get right with our preferred style of error handling (exhaustive) and various function-rewriting wrappers. """ if READTHEDOCS: # pragma: no cover # Documentation should show the new signatures without deprecation helpers. return func signature = inspect.signature(func) parameters = list(signature.parameters.values()) vararg = inspect.Parameter( name="__deprecated_posargs", kind=inspect.Parameter.VAR_POSITIONAL, annotation=Any, ) # If we're passed any VAR_POSITIONAL args, we'll use this sequence of # params to match them up with the correct KEYWORD_ONLY argument after # checking that it has its default value - if you're passing by name, # can't have also been passing positionally before we deprecated that. deprecated = [] for i, arg in enumerate(tuple(parameters)): if arg.kind == inspect.Parameter.KEYWORD_ONLY: if not deprecated: parameters.insert(i, vararg) deprecated.append(arg) func.__signature__ = signature.replace(parameters=parameters) @proxies(func) def accept(*args, **kwargs): bound = func.__signature__.bind_partial(*args, **kwargs) bad_posargs = bound.arguments.pop("__deprecated_posargs", None) or () if len(bad_posargs) > len(deprecated): # We have more positional arguments than the wrapped func has parameters, # so there's no way this ever worked. We know that this bind will fail # but attempting it will raise a nice descriptive TypeError. signature.bind_partial(*args, **kwargs) for param, pos in zip(deprecated, bad_posargs): # Unfortunately, another layer of our function-wrapping logic passes in # all the default arguments as explicit arguments. This means that if # someone explicitly passes some value for a parameter as a positional # argument and *the default value* as a keyword argument, we'll emit a # deprecation warning but not an immediate error. Ah well... if bound.arguments.get(param.name, param.default) != param.default: raise TypeError( "Cannot pass {name}={p} positionally and {name}={n} by name!".format( name=param.name, p=pos, n=bound.arguments[param.name] ) ) from hypothesis._settings import note_deprecation note_deprecation( "%s was passed %s=%r as a positional argument, which will be a " "keyword-only argument in a future version." % (qualname(func), param.name, pos), since="RELEASEDAY", ) bound.arguments[param.name] = pos return func(*bound.args, **bound.kwargs) # We use these in convert_positional_arguments, to ensure that the LazyStrategy # repr of strategy objects look sensible (and will work without this shim). accept.__deprecated_posargs = tuple(deprecated) return accept