id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
24,512
def pick_card_member( config: dict, author: str, team: str, card_assignments: dict, approvers: List[str] = None ) -> Tuple[Any, Any]: """Return a member to assign to the created issue. In practice, it returns one trello user which is not the PR author or an approver, for the given team. For it to work, you need a `trello_users_$team` table in your ddev configuration, with keys being github users and values being their corresponding trello IDs (not names). For example:: [trello_users_integrations] john = "xxxxxxxxxxxxxxxxxxxxx" alice = "yyyyyyyyyyyyyyyyyyyy" """ if approvers is None: approvers = [] users = config.get(f'trello_users_{team}') if not users: return None, None if team not in card_assignments: # initialize map team -> user -> QA cards assigned team_members = list(users) random.shuffle(team_members) card_assignments[team] = dict.fromkeys(team_members, 0) member = min( [member for member in card_assignments[team] if member != author and member not in approvers], key=card_assignments[team].get, ) card_assignments[team][member] += 1 return member, users[member]
def pick_card_member( config: dict, author: str, team: str, card_assignments: dict, approvers: Optional[List[str]] = None ) -> Tuple[Any, Any]: """Return a member to assign to the created issue. In practice, it returns one trello user which is not the PR author or an approver, for the given team. For it to work, you need a `trello_users_$team` table in your ddev configuration, with keys being github users and values being their corresponding trello IDs (not names). For example:: [trello_users_integrations] john = "xxxxxxxxxxxxxxxxxxxxx" alice = "yyyyyyyyyyyyyyyyyyyy" """ if approvers is None: approvers = [] users = config.get(f'trello_users_{team}') if not users: return None, None if team not in card_assignments: # initialize map team -> user -> QA cards assigned team_members = list(users) random.shuffle(team_members) card_assignments[team] = dict.fromkeys(team_members, 0) member = min( [member for member in card_assignments[team] if member != author and member not in approvers], key=card_assignments[team].get, ) card_assignments[team][member] += 1 return member, users[member]
3,305
def save_userreport(project, report, start_time=None): if start_time is None: start_time = timezone.now() # XXX(dcramer): enforce case insensitivity by coercing this to a lowercase string report["event_id"] = report["event_id"].lower() report["project_id"] = project.id event = eventstore.get_event_by_id(project.id, report["event_id"]) # TODO(dcramer): we should probably create the user if they dont # exist, and ideally we'd also associate that with the event euser = find_event_user(report, event) if euser and not euser.name and report.get("name"): euser.update(name=report["name"]) if euser: report["event_user_id"] = euser.id if event: # if the event is more than 30 minutes old, we dont allow updates # as it might be abusive if event.datetime < start_time - timedelta(minutes=30): raise Conflict("Feedback for this event cannot be modified.") report["environment_id"] = event.get_environment().id report["group_id"] = event.group.id try: with transaction.atomic(): report_instance = UserReport.objects.create(**report) except IntegrityError: # There was a duplicate, so just overwrite the existing # row with the new one. The only way this ever happens is # if someone is messing around with the API, or doing # something wrong with the SDK, but this behavior is # more reasonable than just hard erroring and is more # expected. existing_report = UserReport.objects.get( project_id=report["project_id"], event_id=report["event_id"] ) # if the existing report was submitted more than 5 minutes ago, we dont # allow updates as it might be abusive (replay attacks) if existing_report.date_added < timezone.now() - timedelta(minutes=5): raise Conflict("Feedback for this event cannot be modified.") existing_report.update( name=report.get("name", ""), email=report["email"], comments=report["comments"], date_added=timezone.now(), event_user_id=euser.id if euser else None, ) report_instance = existing_report else: if report_instance.group_id: report_instance.notify() user_feedback_received.send( project=Project.objects.get(id=report_instance.project_id), group=Group.objects.get(id=report_instance.group_id), sender=save_userreport, ) return report_instance
def save_userreport(project, report, start_time=None): if start_time is None: start_time = timezone.now() # XXX(dcramer): enforce case insensitivity by coercing this to a lowercase string report["event_id"] = report["event_id"].lower() report["project_id"] = project.id event = eventstore.get_event_by_id(project.id, report["event_id"]) # TODO(dcramer): we should probably create the user if they dont # exist, and ideally we'd also associate that with the event euser = find_event_user(report, event) if euser and not euser.name and report.get("name"): euser.update(name=report["name"]) if euser: report["event_user_id"] = euser.id if event: # if the event is more than 30 minutes old, we dont allow updates # as it might be abusive if event.datetime < start_time - timedelta(minutes=30): raise Conflict("Feedback for this event cannot be modified.") report["environment_id"] = event.get_environment().id report["group_id"] = event.group_id try: with transaction.atomic(): report_instance = UserReport.objects.create(**report) except IntegrityError: # There was a duplicate, so just overwrite the existing # row with the new one. The only way this ever happens is # if someone is messing around with the API, or doing # something wrong with the SDK, but this behavior is # more reasonable than just hard erroring and is more # expected. existing_report = UserReport.objects.get( project_id=report["project_id"], event_id=report["event_id"] ) # if the existing report was submitted more than 5 minutes ago, we dont # allow updates as it might be abusive (replay attacks) if existing_report.date_added < timezone.now() - timedelta(minutes=5): raise Conflict("Feedback for this event cannot be modified.") existing_report.update( name=report.get("name", ""), email=report["email"], comments=report["comments"], date_added=timezone.now(), event_user_id=euser.id if euser else None, ) report_instance = existing_report else: if report_instance.group_id: report_instance.notify() user_feedback_received.send( project=Project.objects.get(id=report_instance.project_id), group=Group.objects.get(id=report_instance.group_id), sender=save_userreport, ) return report_instance
32,606
def project_list_command(client: Client, args: Dict) -> CommandResults: limit = int(args.get('limit', 50)) project_key = args.get('project_key') page = arg_to_number(args.get('page', 1)) check_args(limit, page) page_size = min(100, limit) params = { 'page': page, 'pagelen': page_size } response = client.get_project_list_request(params, project_key) if project_key: results = [response] readable_name = f'The information about project {project_key.upper()}' else: results = check_pagination(client, response, limit) readable_name = f'List of the projects in {client.workspace}' human_readable = [] for value in results: d = {'Key': value.get('key'), 'Name': value.get('name'), 'Description': value.get('description'), 'IsPrivate': value.get('is_private')} human_readable.append(d) headers = ['Key', 'Name', 'Description', 'IsPrivate'] readable_output = tableToMarkdown( name=readable_name, t=human_readable, removeNull=True, headers=headers ) return CommandResults( readable_output=readable_output, outputs_prefix='Bitbucket.Project', outputs=results, raw_response=results )
def project_list_command(client: Client, args: Dict) -> CommandResults: limit = int(args.get('limit', 50)) project_key = args.get('project_key') page = arg_to_number(args.get('page', 1)) check_args(limit, page) page_size = min(100, limit) params = { 'page': page, 'pagelen': page_size } response = client.get_project_list_request(params, project_key) if project_key: results = [response] readable_name = f'The information about project {project_key.upper()}' else: results = check_pagination(client, response, limit) readable_name = f'List of projects in {client.workspace}' human_readable = [] for value in results: d = {'Key': value.get('key'), 'Name': value.get('name'), 'Description': value.get('description'), 'IsPrivate': value.get('is_private')} human_readable.append(d) headers = ['Key', 'Name', 'Description', 'IsPrivate'] readable_output = tableToMarkdown( name=readable_name, t=human_readable, removeNull=True, headers=headers ) return CommandResults( readable_output=readable_output, outputs_prefix='Bitbucket.Project', outputs=results, raw_response=results )
48,731
def get_provider_info(conn_type_to_hook, connection_types): """ Retrieves provider information and adds information to hooks/connection :param conn_type_to_hook: dictionary of mapping for connections -> hooks :param connection_types: array of connection types :return: dictionary metadata about all providers installed """ def ignore(_): pass def update_or_replace_connection_type(core_connection_types, provider_connection_types): """ Updates or replaces all core connection types with those that come from a provider. If same connection type is found in core types it is replaced with the provider one, otherwise the provider connection type is appended to the list. :param core_connection_types: all core connection tepes :type core_connection_types List[Tuple] :param provider_connection_types: provider connection types :type provider_connection_types List[Tuple] :return: None """ for provider_connection_type in provider_connection_types: for index, core_connection_type in enumerate(connection_types): if core_connection_type[0] == provider_connection_type[0]: connection_types[index] = provider_connection_type break core_connection_types.append(provider_connection_type) try: from airflow import providers except ImportError: print("No providers are available!") return {} providers_path = providers.__path__ providers_name = providers.__name__ provider_dict = {} for (_, name, ispkg) in pkgutil.walk_packages(path=providers_path, prefix=providers_name + ".", onerror=ignore): try: if ispkg: provider_info_module = importlib.import_module(".provider_info", package=name) print("Adding provider info for {}".format(name)) conn_type_to_hook.update(provider_info_module.CONN_TYPE_TO_HOOK) update_or_replace_connection_type(connection_types, provider_info_module.connection_types) provider_metadata = { 'name': provider_info_module.PROVIDER_NAME, 'version': provider_info_module.PROVIDER_VERSION, 'url': provider_info_module.PROVIDER_URL, 'docs': provider_info_module.PROVIDER_DOCS, } provider_dict[provider_info_module.PROVIDER_NAME] = provider_metadata print(provider_metadata) except ModuleNotFoundError: pass except Exception as e: # noqa pylint: disable=broad-except print("Provider {} could not be loaded because of {}".format(name, e)) return providers
def get_provider_info(conn_type_to_hook, connection_types): """ Retrieves provider information and adds information to hooks/connection :param conn_type_to_hook: dictionary of mapping for connections -> hooks :param connection_types: array of connection types :return: dictionary metadata about all providers installed """ def ignore(_): pass def update_or_replace_connection_type(core_connection_types, provider_connection_types): """ Updates or replaces all core connection types with those that come from a provider. If same connection type is found in core types it is replaced with the provider one, otherwise the provider connection type is appended to the list. :param core_connection_types: all core connection tepes :type core_connection_types List[Tuple] :param provider_connection_types: provider connection types :type provider_connection_types List[Tuple] :return: None """ for provider_connection_type in provider_connection_types: for index, core_connection_type in enumerate(connection_types): if core_connection_type[0] == provider_connection_type[0]: connection_types[index] = provider_connection_type break core_connection_types.append(provider_connection_type) try: from airflow import providers except ImportError: print("No providers are available!") return {} providers_path = providers.__path__ providers_name = providers.__name__ provider_dict = {} for (_, name, ispkg) in pkgutil.walk_packages(path=providers_path, prefix=providers_name + ".", onerror=ignore): if not ispkg: continue try: provider_info_module = importlib.import_module(".provider_info", package=name) print("Adding provider info for {}".format(name)) conn_type_to_hook.update(provider_info_module.CONN_TYPE_TO_HOOK) update_or_replace_connection_type(connection_types, provider_info_module.connection_types) provider_metadata = { 'name': provider_info_module.PROVIDER_NAME, 'version': provider_info_module.PROVIDER_VERSION, 'url': provider_info_module.PROVIDER_URL, 'docs': provider_info_module.PROVIDER_DOCS, } provider_dict[provider_info_module.PROVIDER_NAME] = provider_metadata print(provider_metadata) except ModuleNotFoundError: pass except Exception as e: # noqa pylint: disable=broad-except print("Provider {} could not be loaded because of {}".format(name, e)) return providers
45,917
def homography_warp( patch_src: torch.Tensor, src_homo_dst: torch.Tensor, dsize: Tuple[int, int], mode: str = 'bilinear', padding_mode: str = 'zeros', align_corners: bool = False, normalized_coordinates: bool = True, normalized_homography: bool = True, ) -> torch.Tensor: r"""Warp image patches or tensors by normalized 2D homographies. See :class:`~kornia.geometry.warp.HomographyWarper` for details. Args: patch_src: The image or tensor to warp. Should be from source of shape if homography normalized :math:`(N, C, H, W)`. if homography not normalized :math:`(B, C, H, W)` src_homo_dst: The homography or stack of homographies from destination to source of shape if homography normalized :math:`(N, 3, 3)` if homography not normalized :math:`(B, 3, 3)`. dsize: if homography normalized: The height and width of the image to warp. if homography not normalized: size of the output image (height, width). mode: interpolation mode to calculate output values ``'bilinear'`` | ``'nearest'``. padding_mode: padding mode for outside grid values ``'zeros'`` | ``'border'`` | ``'reflection'``. align_corners: interpolation flag. normalized_coordinates: Whether the homography assumes [-1, 1] normalized coordinates or not. normalized_homography: show is homography normalized. Return: Patch sampled at locations from source to destination. Example_1: >>> input = torch.rand(1, 3, 32, 32) >>> homography = torch.eye(3).view(1, 3, 3) >>> output = homography_warp(input, homography, (32, 32)) Example_2 >>> img = torch.rand(1, 4, 5, 6) >>> H = torch.eye(3)[None] >>> out = homography_warp(img, H, (4, 2), align_corners=True, normalized_homography=False) >>> print(out.shape) torch.Size([1, 4, 4, 2]) """ if normalized_homography: if not src_homo_dst.device == patch_src.device: raise TypeError( "Patch and homography must be on the same device. \ Got patch.device: {} src_H_dst.device: {}.".format( patch_src.device, src_homo_dst.device ) ) height, width = dsize grid = create_meshgrid(height, width, normalized_coordinates=normalized_coordinates) warped_grid = warp_grid(grid, src_homo_dst) return F.grid_sample(patch_src, warped_grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners) else: mode = 'bilinear' align_corners = True if not isinstance(patch_src, torch.Tensor): raise TypeError(f"Input src type is not a torch.Tensor. Got {type(patch_src)}") if not isinstance(src_homo_dst, torch.Tensor): raise TypeError(f"Input M type is not a torch.Tensor. Got {type(src_homo_dst)}") if not len(patch_src.shape) == 4: raise ValueError(f"Input src must be a BxCxHxW tensor. Got {patch_src.shape}") if not (len(src_homo_dst.shape) == 3 and src_homo_dst.shape[-2:] == (3, 3)): raise ValueError(f"Input M must be a Bx3x3 tensor. Got {src_homo_dst.shape}") B, _, H, W = patch_src.size() h_out, w_out = dsize # we normalize the 3x3 transformation matrix and convert to 3x4 dst_norm_trans_src_norm: torch.Tensor = normalize_homography(src_homo_dst, (H, W), (h_out, w_out)) # Bx3x3 src_norm_trans_dst_norm = _torch_inverse_cast(dst_norm_trans_src_norm) # Bx3x3 # this piece of code substitutes F.affine_grid since it does not support 3x3 grid = ( create_meshgrid(h_out, w_out, normalized_coordinates=True, device=patch_src.device).to(patch_src.dtype).repeat(B, 1, 1, 1)) grid = transform_points(src_norm_trans_dst_norm[:, None, None], grid) return F.grid_sample(patch_src, grid, align_corners=align_corners, mode=mode, padding_mode=padding_mode)
def homography_warp( patch_src: torch.Tensor, src_homo_dst: torch.Tensor, dsize: Tuple[int, int], mode: str = 'bilinear', padding_mode: str = 'zeros', align_corners: bool = False, normalized_coordinates: bool = True, normalized_homography: bool = True, ) -> torch.Tensor: r"""Warp image patches or tensors by normalized 2D homographies. See :class:`~kornia.geometry.warp.HomographyWarper` for details. Args: patch_src: The image or tensor to warp. Should be from source of shape if homography normalized :math:`(N, C, H, W)`. if homography not normalized :math:`(B, C, H, W)` src_homo_dst: The homography or stack of homographies from destination to source of shape if homography normalized :math:`(N, 3, 3)` if homography not normalized :math:`(B, 3, 3)`. dsize: if homography normalized: The height and width of the image to warp. if homography not normalized: size of the output image (height, width). mode: interpolation mode to calculate output values ``'bilinear'`` | ``'nearest'``. padding_mode: padding mode for outside grid values ``'zeros'`` | ``'border'`` | ``'reflection'``. align_corners: interpolation flag. normalized_coordinates: Whether the homography assumes [-1, 1] normalized coordinates or not. normalized_homography: show is homography normalized. Return: Patch sampled at locations from source to destination. Example_1: >>> input = torch.rand(1, 3, 32, 32) >>> homography = torch.eye(3).view(1, 3, 3) >>> output = homography_warp(input, homography, (32, 32)) Example_2 >>> img = torch.rand(1, 4, 5, 6) >>> H = torch.eye(3)[None] >>> out = homography_warp(img, H, (4, 2), align_corners=True, normalized_homography=False) >>> print(out.shape) torch.Size([1, 4, 4, 2]) """ if normalized_homography: if not src_homo_dst.device == patch_src.device: raise TypeError( "Patch and homography must be on the same device. \ Got patch.device: {} src_H_dst.device: {}.".format( patch_src.device, src_homo_dst.device ) ) height, width = dsize grid = create_meshgrid(height, width, normalized_coordinates=normalized_coordinates, device=patch_src.device, dtype=patch_src.dtype) warped_grid = warp_grid(grid, src_homo_dst) return F.grid_sample(patch_src, warped_grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners) else: mode = 'bilinear' align_corners = True if not isinstance(patch_src, torch.Tensor): raise TypeError(f"Input src type is not a torch.Tensor. Got {type(patch_src)}") if not isinstance(src_homo_dst, torch.Tensor): raise TypeError(f"Input M type is not a torch.Tensor. Got {type(src_homo_dst)}") if not len(patch_src.shape) == 4: raise ValueError(f"Input src must be a BxCxHxW tensor. Got {patch_src.shape}") if not (len(src_homo_dst.shape) == 3 and src_homo_dst.shape[-2:] == (3, 3)): raise ValueError(f"Input M must be a Bx3x3 tensor. Got {src_homo_dst.shape}") B, _, H, W = patch_src.size() h_out, w_out = dsize # we normalize the 3x3 transformation matrix and convert to 3x4 dst_norm_trans_src_norm: torch.Tensor = normalize_homography(src_homo_dst, (H, W), (h_out, w_out)) # Bx3x3 src_norm_trans_dst_norm = _torch_inverse_cast(dst_norm_trans_src_norm) # Bx3x3 # this piece of code substitutes F.affine_grid since it does not support 3x3 grid = ( create_meshgrid(h_out, w_out, normalized_coordinates=True, device=patch_src.device).to(patch_src.dtype).repeat(B, 1, 1, 1)) grid = transform_points(src_norm_trans_dst_norm[:, None, None], grid) return F.grid_sample(patch_src, grid, align_corners=align_corners, mode=mode, padding_mode=padding_mode)
43,164
def initialize(ip_config, num_servers=1, num_workers=0, max_queue_size=MAX_QUEUE_SIZE, net_type='tensorpipe', num_worker_threads=1): """Initialize DGL's distributed module This function initializes DGL's distributed module. It acts differently in server or client modes. In the server mode, it runs the server code and never returns. In the client mode, it builds connections with servers for communication and creates worker processes for distributed sampling. `num_workers` specifies the number of sampling worker processes per trainer process. Users also have to provide the number of server processes on each machine in order to connect to all the server processes in the cluster of machines correctly. Parameters ---------- ip_config: str File path of ip_config file num_servers : int The number of server processes on each machine. This argument is deprecated in DGL 0.7.0. num_workers: int Number of worker process on each machine. The worker processes are used for distributed sampling. This argument is deprecated in DGL 0.7.0. max_queue_size : int Maximal size (bytes) of client queue buffer (~20 GB on default). Note that the 20 GB is just an upper-bound and DGL uses zero-copy and it will not allocate 20GB memory at once. net_type : str, optional Networking type. Currently the valid option is ``'socket'`` or ``'tensorpipe'``. Default: ``'tensorpipe'`` num_worker_threads: int The number of threads in a worker process. Note ---- Users have to invoke this API before any DGL's distributed API and framework-specific distributed API. For example, when used with Pytorch, users have to invoke this function before Pytorch's `pytorch.distributed.init_process_group`. """ if os.environ.get('DGL_ROLE', 'client') == 'server': from .dist_graph import DistGraphServer assert os.environ.get('DGL_SERVER_ID') is not None, \ 'Please define DGL_SERVER_ID to run DistGraph server' assert os.environ.get('DGL_IP_CONFIG') is not None, \ 'Please define DGL_IP_CONFIG to run DistGraph server' assert os.environ.get('DGL_NUM_SERVER') is not None, \ 'Please define DGL_NUM_SERVER to run DistGraph server' assert os.environ.get('DGL_NUM_CLIENT') is not None, \ 'Please define DGL_NUM_CLIENT to run DistGraph server' assert os.environ.get('DGL_CONF_PATH') is not None, \ 'Please define DGL_CONF_PATH to run DistGraph server' formats = os.environ.get('DGL_GRAPH_FORMAT', 'csc').split(',') formats = [f.strip() for f in formats] rpc.reset() keep_alive = bool(int(os.environ.get('DGL_KEEP_ALIVE', 0))) serv = DistGraphServer(int(os.environ.get('DGL_SERVER_ID')), os.environ.get('DGL_IP_CONFIG'), int(os.environ.get('DGL_NUM_SERVER')), int(os.environ.get('DGL_NUM_CLIENT')), os.environ.get('DGL_CONF_PATH'), graph_format=formats, keep_alive=keep_alive, net_type=net_type) serv.start() sys.exit() else: if os.environ.get('DGL_NUM_SAMPLER') is not None: num_workers = int(os.environ.get('DGL_NUM_SAMPLER')) else: num_workers = 0 if os.environ.get('DGL_NUM_SERVER') is not None: num_servers = int(os.environ.get('DGL_NUM_SERVER')) else: num_servers = 1 group_id = int(os.environ.get('DGL_GROUP_ID', 0)) rpc.reset() global SAMPLER_POOL global NUM_SAMPLER_WORKERS is_standalone = os.environ.get( 'DGL_DIST_MODE', 'standalone') == 'standalone' if num_workers > 0 and not is_standalone: SAMPLER_POOL = CustomPool(num_workers, (ip_config, num_servers, max_queue_size, net_type, 'sampler', num_worker_threads, group_id)) else: SAMPLER_POOL = None NUM_SAMPLER_WORKERS = num_workers if not is_standalone: assert num_servers is not None and num_servers > 0, \ 'The number of servers per machine must be specified with a positive number.' connect_to_server(ip_config, num_servers, max_queue_size, net_type, group_id=group_id) init_role('default') init_kvstore(ip_config, num_servers, 'default')
def initialize(ip_config, num_servers=1, num_workers=0, max_queue_size=MAX_QUEUE_SIZE, net_type='tensorpipe', num_worker_threads=1): """Initialize DGL's distributed module This function initializes DGL's distributed module. It acts differently in server or client modes. In the server mode, it runs the server code and never returns. In the client mode, it builds connections with servers for communication and creates worker processes for distributed sampling. `num_workers` specifies the number of sampling worker processes per trainer process. Users also have to provide the number of server processes on each machine in order to connect to all the server processes in the cluster of machines correctly. Parameters ---------- ip_config: str File path of ip_config file num_servers : int The number of server processes on each machine. This argument is deprecated in DGL 0.7.0. num_workers: int Number of worker process on each machine. The worker processes are used for distributed sampling. This argument is deprecated in DGL 0.7.0. max_queue_size : int Maximal size (bytes) of client queue buffer (~20 GB on default). Note that the 20 GB is just an upper-bound and DGL uses zero-copy and it will not allocate 20GB memory at once. net_type : str, optional Networking type. Valid options are: ``'socket'``, ``'tensorpipe'``. Default: ``'tensorpipe'`` num_worker_threads: int The number of threads in a worker process. Note ---- Users have to invoke this API before any DGL's distributed API and framework-specific distributed API. For example, when used with Pytorch, users have to invoke this function before Pytorch's `pytorch.distributed.init_process_group`. """ if os.environ.get('DGL_ROLE', 'client') == 'server': from .dist_graph import DistGraphServer assert os.environ.get('DGL_SERVER_ID') is not None, \ 'Please define DGL_SERVER_ID to run DistGraph server' assert os.environ.get('DGL_IP_CONFIG') is not None, \ 'Please define DGL_IP_CONFIG to run DistGraph server' assert os.environ.get('DGL_NUM_SERVER') is not None, \ 'Please define DGL_NUM_SERVER to run DistGraph server' assert os.environ.get('DGL_NUM_CLIENT') is not None, \ 'Please define DGL_NUM_CLIENT to run DistGraph server' assert os.environ.get('DGL_CONF_PATH') is not None, \ 'Please define DGL_CONF_PATH to run DistGraph server' formats = os.environ.get('DGL_GRAPH_FORMAT', 'csc').split(',') formats = [f.strip() for f in formats] rpc.reset() keep_alive = bool(int(os.environ.get('DGL_KEEP_ALIVE', 0))) serv = DistGraphServer(int(os.environ.get('DGL_SERVER_ID')), os.environ.get('DGL_IP_CONFIG'), int(os.environ.get('DGL_NUM_SERVER')), int(os.environ.get('DGL_NUM_CLIENT')), os.environ.get('DGL_CONF_PATH'), graph_format=formats, keep_alive=keep_alive, net_type=net_type) serv.start() sys.exit() else: if os.environ.get('DGL_NUM_SAMPLER') is not None: num_workers = int(os.environ.get('DGL_NUM_SAMPLER')) else: num_workers = 0 if os.environ.get('DGL_NUM_SERVER') is not None: num_servers = int(os.environ.get('DGL_NUM_SERVER')) else: num_servers = 1 group_id = int(os.environ.get('DGL_GROUP_ID', 0)) rpc.reset() global SAMPLER_POOL global NUM_SAMPLER_WORKERS is_standalone = os.environ.get( 'DGL_DIST_MODE', 'standalone') == 'standalone' if num_workers > 0 and not is_standalone: SAMPLER_POOL = CustomPool(num_workers, (ip_config, num_servers, max_queue_size, net_type, 'sampler', num_worker_threads, group_id)) else: SAMPLER_POOL = None NUM_SAMPLER_WORKERS = num_workers if not is_standalone: assert num_servers is not None and num_servers > 0, \ 'The number of servers per machine must be specified with a positive number.' connect_to_server(ip_config, num_servers, max_queue_size, net_type, group_id=group_id) init_role('default') init_kvstore(ip_config, num_servers, 'default')
27,726
def test_files_by_name_are_correct(testdir): testdir.maketxtfile("foo") testdir.maketxtfile(custom="foobar") assert len(testdir.created_files) == 2
def test_files_by_name_are_correct(testdir): testdir.maketxtfile("foo") testdir.maketxtfile(custom="foobar") assert testdir.created_files == {testdir.tmpdir.join("test_files_by_name_are_correct.py"), testdir.tmpdir.join("custom.py")}
39,702
def main(): module = ForemanSubnetModule( argument_spec=dict( updated_name=dict(), ), foreman_spec=dict( name=dict(required=True), description=dict(), network_type=dict(choices=['IPv4', 'IPv6'], default='IPv4'), dns_primary=dict(), dns_secondary=dict(), domains=dict(type='entity_list'), gateway=dict(), network=dict(required=True), cidr=dict(type='int'), mask=dict(), from_ip=dict(flat_name='from'), to_ip=dict(flat_name='to'), boot_mode=dict(choices=['DHCP', 'Static'], default='DHCP'), ipam=dict(choices=['DHCP', 'Internal DB', 'Random DB', 'EUI-64', 'None'], default='DHCP'), dhcp_proxy=dict(type='entity', flat_name='dhcp_id', resource_type='smart_proxies'), httpboot_proxy=dict(type='entity', flat_name='httpboot_id', resource_type='smart_proxies'), tftp_proxy=dict(type='entity', flat_name='tftp_id', resource_type='smart_proxies'), discovery_proxy=dict(type='entity', flat_name='discovery_id', resource_type='smart_proxies'), dns_proxy=dict(type='entity', flat_name='dns_id', resource_type='smart_proxies'), template_proxy=dict(type='entity', flat_name='template_id', resource_type='smart_proxies'), remote_execution_proxies=dict(type='entity_list', resource_type='smart_proxies'), vlanid=dict(type='int'), mtu=dict(type='int'), ), required_plugins=[('discovery', ['discovery_proxy'])], ) if not HAS_IPADDRESS: module.fail_json(msg=missing_required_lib("ipaddress"), exception=IPADDRESS_IMP_ERR) module_params = module.foreman_params if not module.desired_absent: if module_params['network_type'] == 'IPv4': if 'mask' not in module_params and 'cidr' not in module_params: module.fail_json('When specifying IPv4 networks, either "mask" or "cidr" is required.') IPNetwork = ipaddress.IPv4Network else: IPNetwork = ipaddress.IPv6Network if 'mask' in module_params and 'cidr' not in module_params: module_params['cidr'] = IPNetwork(u'%s/%s' % (module_params['network'], module_params['mask'])).prefixlen elif 'mask' not in module_params and 'cidr' in module_params: module_params['mask'] = str(IPNetwork(u'%s/%s' % (module_params['network'], module_params['cidr'])).netmask) with module.api_connection(): module.run()
def main(): module = ForemanSubnetModule( argument_spec=dict( updated_name=dict(), ), foreman_spec=dict( name=dict(required=True), description=dict(), network_type=dict(choices=['IPv4', 'IPv6'], default='IPv4'), dns_primary=dict(), dns_secondary=dict(), domains=dict(type='entity_list'), gateway=dict(), network=dict(required=True), cidr=dict(type='int'), mask=dict(), from_ip=dict(flat_name='from'), to_ip=dict(flat_name='to'), boot_mode=dict(choices=['DHCP', 'Static'], default='DHCP'), ipam=dict(choices=['DHCP', 'Internal DB', 'Random DB', 'EUI-64', 'None'], default='DHCP'), dhcp_proxy=dict(type='entity', flat_name='dhcp_id', resource_type='smart_proxies'), httpboot_proxy=dict(type='entity', flat_name='httpboot_id', resource_type='smart_proxies'), tftp_proxy=dict(type='entity', flat_name='tftp_id', resource_type='smart_proxies'), discovery_proxy=dict(type='entity', flat_name='discovery_id', resource_type='smart_proxies'), dns_proxy=dict(type='entity', flat_name='dns_id', resource_type='smart_proxies'), template_proxy=dict(type='entity', flat_name='template_id', resource_type='smart_proxies'), remote_execution_proxies=dict(type='entity_list', resource_type='smart_proxies'), vlanid=dict(type='int'), mtu=dict(type='int'), ), required_plugins=[('discovery', ['discovery_proxy'])], ) if not HAS_IPADDRESS: module.fail_json(msg=missing_required_lib("ipaddress"), exception=IPADDRESS_IMP_ERR) module_params = module.foreman_params if not module.desired_absent: if module_params['network_type'] == 'IPv4': if 'mask' not in module_params and 'cidr' not in module_params: module.fail_json(msg='When specifying IPv4 networks, either "mask" or "cidr" is required.') IPNetwork = ipaddress.IPv4Network else: IPNetwork = ipaddress.IPv6Network if 'mask' in module_params and 'cidr' not in module_params: module_params['cidr'] = IPNetwork(u'%s/%s' % (module_params['network'], module_params['mask'])).prefixlen elif 'mask' not in module_params and 'cidr' in module_params: module_params['mask'] = str(IPNetwork(u'%s/%s' % (module_params['network'], module_params['cidr'])).netmask) with module.api_connection(): module.run()
8,871
def subreddit_sorting(bot, trigger, s, sorting): if sorting == 'new': submissions = list(s.new()) elif sorting == 'top': submissions = list(s.top()) elif sorting == 'hot': submissions = list(s.hot()) elif sorting == 'controversial': submissions = list(s.controversial()) elif sorting == 'gilded': submissions = list(s.gilded()) elif sorting == 'rising': submissions = list(s.rising()) elif sorting == 'sticky': try: submissions = [s.sticky()] except prawcore.exceptions.NotFound: bot.say("r/" + s.display_name + " appears to not have a stickied post!") return elif sorting == 'random': submissions = [s.random()] or [] else: return if not len(submissions): bot.say("r/" + s.display_name + ' ' + sorting + " appears to have no items!") return NOLIMIT if sorting != 'sticky': submissions_filter = [] for submission in submissions: if not submission.stickied: submissions_filter.append(submission) submissions = submissions_filter submission = submissions[0] link = "https://reddit.com/r/" + s.display_name + "/comments/" + str(submission) say_post_info( bot, trigger, re.match(post_url, link).group(1), False, True)
def subreddit_sorting(bot, trigger, s, sorting): if sorting == 'new': submissions = list(s.new()) elif sorting == 'top': submissions = list(s.top()) elif sorting == 'hot': submissions = list(s.hot()) elif sorting == 'controversial': submissions = list(s.controversial()) elif sorting == 'gilded': submissions = list(s.gilded()) elif sorting == 'rising': submissions = list(s.rising()) elif sorting == 'sticky': try: submissions = [s.sticky()] except prawcore.exceptions.NotFound: bot.say("r/" + s.display_name + " appears to not have a stickied post!") return elif sorting == 'random': submissions = [s.random()] or [] else: raise ValueError("Unknown sorting type '%s'" % sorting) if not len(submissions): bot.say("r/" + s.display_name + ' ' + sorting + " appears to have no items!") return NOLIMIT if sorting != 'sticky': submissions_filter = [] for submission in submissions: if not submission.stickied: submissions_filter.append(submission) submissions = submissions_filter submission = submissions[0] link = "https://reddit.com/r/" + s.display_name + "/comments/" + str(submission) say_post_info( bot, trigger, re.match(post_url, link).group(1), False, True)
3,786
def test_validate_index(): # The indexing tests in the official array API test suite test that the # array object correctly handles the subset of indices that are required # by the spec. But the NumPy array API implementation specifically # disallows any index not required by the spec, via Array._validate_index. # This test focuses on testing that non-valid indices are correctly # rejected. See # https://data-apis.org/array-api/latest/API_specification/indexing.html # and the docstring of Array._validate_index for the exact indexing # behavior that should be allowed. This does not test indices that are # already invalid in NumPy itself because Array will generally just pass # such indices directly to the underlying np.ndarray. a = ones((3, 4)) # Out of bounds slices are not allowed assert_raises(IndexError, lambda: a[:4]) assert_raises(IndexError, lambda: a[:-4]) assert_raises(IndexError, lambda: a[:3:-1]) assert_raises(IndexError, lambda: a[:-5:-1]) assert_raises(IndexError, lambda: a[3:]) assert_raises(IndexError, lambda: a[-4:]) assert_raises(IndexError, lambda: a[3::-1]) assert_raises(IndexError, lambda: a[-4::-1]) assert_raises(IndexError, lambda: a[...,:5]) assert_raises(IndexError, lambda: a[...,:-5]) assert_raises(IndexError, lambda: a[...,:4:-1]) assert_raises(IndexError, lambda: a[...,:-6:-1]) assert_raises(IndexError, lambda: a[...,4:]) assert_raises(IndexError, lambda: a[...,-5:]) assert_raises(IndexError, lambda: a[...,4::-1]) assert_raises(IndexError, lambda: a[...,-5::-1]) # Boolean indices cannot be part of a larger tuple index assert_raises(IndexError, lambda: a[a[:,0]==1,0]) assert_raises(IndexError, lambda: a[a[:,0]==1,...]) assert_raises(IndexError, lambda: a[..., a[0]==1]) assert_raises(IndexError, lambda: a[[True, True, True]]) assert_raises(IndexError, lambda: a[(True, True, True),]) # Integer array indices are not allowed (except for 0-D) idx = asarray([[0, 1]]) assert_raises(IndexError, lambda: a[idx]) assert_raises(IndexError, lambda: a[idx,]) assert_raises(IndexError, lambda: a[[0, 1]]) assert_raises(IndexError, lambda: a[(0, 1), (0, 1)]) assert_raises(IndexError, lambda: a[[0, 1]]) assert_raises(IndexError, lambda: a[np.array([[0, 1]])]) # np.newaxis is not allowed assert_raises(IndexError, lambda: a[None]) assert_raises(IndexError, lambda: a[None, ...]) assert_raises(IndexError, lambda: a[..., None]) # Multiaxis indices must contain exactly as many indices as dimensions assert_raises(IndexError, lambda: a[()]) assert_raises(IndexError, lambda: a[0,])
def test_validate_index(): # The indexing tests in the official array API test suite test that the # array object correctly handles the subset of indices that are required # by the spec. But the NumPy array API implementation specifically # disallows any index not required by the spec, via Array._validate_index. # This test focuses on testing that non-valid indices are correctly # rejected. See # https://data-apis.org/array-api/latest/API_specification/indexing.html # and the docstring of Array._validate_index for the exact indexing # behavior that should be allowed. This does not test indices that are # already invalid in NumPy itself because Array will generally just pass # such indices directly to the underlying np.ndarray. a = ones((3, 4)) # Out of bounds slices are not allowed assert_raises(IndexError, lambda: a[:4]) assert_raises(IndexError, lambda: a[:-4]) assert_raises(IndexError, lambda: a[:3:-1]) assert_raises(IndexError, lambda: a[:-5:-1]) assert_raises(IndexError, lambda: a[3:]) assert_raises(IndexError, lambda: a[-4:]) assert_raises(IndexError, lambda: a[3::-1]) assert_raises(IndexError, lambda: a[-4::-1]) assert_raises(IndexError, lambda: a[...,:5]) assert_raises(IndexError, lambda: a[...,:-5]) assert_raises(IndexError, lambda: a[...,:4:-1]) assert_raises(IndexError, lambda: a[...,:-6:-1]) assert_raises(IndexError, lambda: a[...,4:]) assert_raises(IndexError, lambda: a[...,-5:]) assert_raises(IndexError, lambda: a[...,4::-1]) assert_raises(IndexError, lambda: a[...,-5::-1]) # Boolean indices cannot be part of a larger tuple index assert_raises(IndexError, lambda: a[a[:,0]==1,0]) assert_raises(IndexError, lambda: a[a[:,0]==1,...]) assert_raises(IndexError, lambda: a[..., a[0]==1]) assert_raises(IndexError, lambda: a[[True, True, True]]) assert_raises(IndexError, lambda: a[(True, True, True),]) # Integer array indices are not allowed (except for 0-D) idx = asarray([[0, 1]]) assert_raises(IndexError, lambda: a[idx]) assert_raises(IndexError, lambda: a[idx,]) assert_raises(IndexError, lambda: a[[0, 1]]) assert_raises(IndexError, lambda: a[(0, 1), (0, 1)]) assert_raises(IndexError, lambda: a[[0, 1]]) assert_raises(IndexError, lambda: a[np.array([[0, 1]])]) # np.newaxis is not allowed assert_raises(IndexError, lambda: a[None]) assert_raises(IndexError, lambda: a[None, ...]) assert_raises(IndexError, lambda: a[..., None]) # Multiaxis indices must contain exactly as many indices as dimensions assert_raises(IndexError, lambda: a[()]) assert_raises(IndexError, lambda: a[0])
54,336
def check_multiple_raters(is_train, loader_params): if any([isinstance(class_suffix, list) for class_suffix in loader_params["target_suffix"]]): print( "\nAnnotations from multiple raters will be used during model training, one annotation from one rater " "randomly selected at each iteration.\n") if not is_train: print( "\nERROR: Please provide only one annotation per class in 'target_suffix' when not training a model.\n") exit()
def check_multiple_raters(is_train, loader_params): if any([isinstance(class_suffix, list) for class_suffix in loader_params["target_suffix"]]): print( "\nAnnotations from multiple raters will be used during model training, one annotation from one rater " "randomly selected at each iteration.\n") if not is_train: print( "\nERROR: Please provide only one annotation per class in 'target_suffix' when not training a model.\n") exit()
30,021
def rk4(derivs, y0, t): """ Integrate 1-D or N-D system of ODEs using 4-th order Runge-Kutta. This is a toy implementation which may be useful if you find yourself stranded on a system w/o scipy. Otherwise use :func:`scipy.integrate`. Example:: >>> ### 2D system >>> def derivs(x): ... d1 = x[0] + 2*x[1] ... d2 = -3*x[0] + 4*x[1] ... return (d1, d2) >>> dt = 0.0005 >>> t = arange(0.0, 2.0, dt) >>> y0 = (1,2) >>> yout = rk4(derivs6, y0, t) If you have access to scipy, you should probably be using the scipy.integrate tools rather than this function. This would then require re-adding the time variable to the signature of derivs. Args: derivs: the derivative of the system and has the signature ``dy = derivs(yi)`` y0: initial state vector t: sample times Returns: yout: Runge-Kutta approximation of the ODE """ try: Ny = len(y0) except TypeError: yout = np.zeros((len(t),), np.float_) else: yout = np.zeros((len(t), Ny), np.float_) yout[0] = y0 for i in np.arange(len(t) - 1): this = t[i] dt = t[i + 1] - this dt2 = dt / 2.0 y0 = yout[i] k1 = np.asarray(derivs(y0)) k2 = np.asarray(derivs(y0 + dt2 * k1)) k3 = np.asarray(derivs(y0 + dt2 * k2)) k4 = np.asarray(derivs(y0 + dt * k3)) yout[i + 1] = y0 + dt / 6.0 * (k1 + 2 * k2 + 2 * k3 + k4) # We only care about the final timestep and we cleave off action value which will be zero return yout[-1][:4]
def rk4(derivs, y0, t): """ Integrate 1-D or N-D system of ODEs using 4-th order Runge-Kutta. This is a toy implementation which may be useful if you find yourself stranded on a system w/o scipy. Otherwise use :func:`scipy.integrate`. Example:: >>> ### 2D system >>> def derivs(x): ... d1 = x[0] + 2*x[1] ... d2 = -3*x[0] + 4*x[1] ... return (d1, d2) >>> dt = 0.0005 >>> t = arange(0.0, 2.0, dt) >>> y0 = (1,2) >>> yout = rk4(derivs, y0, t) If you have access to scipy, you should probably be using the scipy.integrate tools rather than this function. This would then require re-adding the time variable to the signature of derivs. Args: derivs: the derivative of the system and has the signature ``dy = derivs(yi)`` y0: initial state vector t: sample times Returns: yout: Runge-Kutta approximation of the ODE """ try: Ny = len(y0) except TypeError: yout = np.zeros((len(t),), np.float_) else: yout = np.zeros((len(t), Ny), np.float_) yout[0] = y0 for i in np.arange(len(t) - 1): this = t[i] dt = t[i + 1] - this dt2 = dt / 2.0 y0 = yout[i] k1 = np.asarray(derivs(y0)) k2 = np.asarray(derivs(y0 + dt2 * k1)) k3 = np.asarray(derivs(y0 + dt2 * k2)) k4 = np.asarray(derivs(y0 + dt * k3)) yout[i + 1] = y0 + dt / 6.0 * (k1 + 2 * k2 + 2 * k3 + k4) # We only care about the final timestep and we cleave off action value which will be zero return yout[-1][:4]
55,120
def tape_text( tape, wire_order=None, show_all_wires=False, decimals=None, max_length=100, tape_offset=None ): """Text based diagram for a Quantum Tape. Args: tape (QuantumTape): the operations and measurements to draw Keyword Args: wire_order (Sequence[Any]): the order (from top to bottom) to print the wires of the circuit show_all_wires (bool): If True, all wires, including empty wires, are printed. decimals (int): How many decimal points to include when formatting operation parameters. Default ``None`` will omit parameters from operation labels. decimals (Int) : how many decimal points to display in the operation label. If ``None``, no parameters will be displayed. max_length (Int) : Maximum length of a individual line. After this length, the diagram will begin anew beneath the previous lines. tape_offset (list[Int]): Used to offset numbering when labelling nested tapes. Used internally for recursive calls. Returns: str : String based graphic of the circuit. **Example:** .. code-block:: python with qml.tape.QuantumTape() as tape: qml.QFT(wires=(0,1,2)) qml.RX(1.234, wires=0) qml.RY(1.234, wires=1) qml.RZ(1.234, wires=2) qml.Toffoli(wires=(0,1,"aux")) qml.expval(qml.PauliZ("aux")) qml.state() >>> print(draw_text(tape)) 0: ─╭QFT──RX─╭C─┤ State 1: ─├QFT──RY─├C─┤ State 2: ─╰QFT──RZ─│──┤ State aux: ──────────╰X─┤ <Z> State .. UsageDetails:: **Decimals:** >>> print(draw_text(tape, decimals=2)) 0: ─╭QFT──RX(1.23)─╭C─┤ State 1: ─├QFT──RY(1.23)─├C─┤ State 2: ─╰QFT──RZ(1.23)─│──┤ State aux: ────────────────╰X─┤ <Z> State **Max Length:** The ``max_length`` keyword wraps long circuits >>> rng = np.random.default_rng(seed=42) >>> shape = qml.StronglyEntanglingLayers.shape(n_wires=5, n_layers=5) >>> params = rng.random(shape) >>> tape2 = qml.StronglyEntanglingLayers(params, wires=range(5)).expand() >>> print(tape_text(tape2, max_length=60)) 0: ──Rot─╭C──────────╭X──Rot─╭C───────╭X──Rot──────╭C────╭X 1: ──Rot─╰X─╭C───────│───Rot─│──╭C────│──╭X────Rot─│──╭C─│─ 2: ──Rot────╰X─╭C────│───Rot─╰X─│──╭C─│──│─────Rot─│──│──╰C 3: ──Rot───────╰X─╭C─│───Rot────╰X─│──╰C─│─────Rot─╰X─│──── 4: ──Rot──────────╰X─╰C──Rot───────╰X────╰C────Rot────╰X─── ───Rot───────────╭C─╭X──Rot──────╭C──────────────╭X─┤ ──╭X────Rot──────│──╰C─╭X────Rot─╰X───╭C─────────│──┤ ──│────╭X────Rot─│─────╰C───╭X────Rot─╰X───╭C────│──┤ ──╰C───│─────Rot─│──────────╰C───╭X────Rot─╰X─╭C─│──┤ ───────╰C────Rot─╰X──────────────╰C────Rot────╰X─╰C─┤ **Wire Order:** >>> print(tape_text(tape, wire_order=["aux", 2, 1, 0])) aux: ──────────╭X─┤ <Z> State 2: ─╭QFT──RZ─│──┤ State 1: ─├QFT──RY─├C─┤ State 0: ─╰QFT──RX─╰C─┤ State **Show all wires:** >>> print(tape_text(tape, wire_order=["a", "b", "aux", 0,1,2], show_all_wires=True)) a: ─────────────┤ State b: ─────────────┤ State aux: ──────────╭X─┤ <Z> State 0: ─╭QFT──RX─├C─┤ State 1: ─├QFT──RY─╰C─┤ State 2: ─╰QFT──RZ────┤ State """ if tape_offset is None: tape_offset = [0] # use a list so it's a mutable data structure tape_cache = [] wire_map = convert_wire_order( tape.operations + tape.measurements, wire_order=wire_order, show_all_wires=show_all_wires ) n_wires = len(wire_map) if n_wires == 0: return "" totals = [f"{wire}: " for wire in wire_map] line_length = max(len(s) for s in totals) totals = [s.rjust(line_length, " ") for s in totals] # Used to store lines that are hitting the maximum length finished_lines = [] layers_list = [ drawable_layers(tape.operations, wire_map=wire_map), drawable_layers(tape.measurements, wire_map=wire_map), ] add_list = [_add_op, _add_measurement] fillers = ["─", " "] enders = [True, False] # add "─┤" after all operations for layers, add, filler, ender in zip(layers_list, add_list, fillers, enders): for layer in layers: layer_str = [filler] * n_wires for op in layer: # Currently can't use `isinstance(op, QuantumTape)` due to circular imports if hasattr(op, "measurements"): # isa tape layer_str = _add_grouping_symbols(op, layer_str, wire_map) label = f"Tape:{tape_offset[0]+len(tape_cache)}" for w in op.wires: layer_str[wire_map[w]] += label tape_cache.append(op) else: layer_str = add(op, layer_str, wire_map, decimals) max_label_len = max(len(s) for s in layer_str) layer_str = [s.ljust(max_label_len, filler) for s in layer_str] line_length += max_label_len + 1 # one for the filler character if line_length > max_length: # move totals into finished_lines and reset totals finished_lines += totals finished_lines[-1] += "\n" totals = [filler] * n_wires line_length = 1 + max_label_len totals = [filler.join([t, s]) for t, s in zip(totals, layer_str)] if ender: totals = [s + "─┤" for s in totals] # Recursively handle nested tapes # tape_totals = "\n".join(finished_lines + totals) current_tape_offset = tape_offset[0] tape_offset[0] += len(tape_cache) for i, nested_tape in enumerate(tape_cache): label = f"\nTape:{i+current_tape_offset}" tape_str = tape_text( nested_tape, wire_order, show_all_wires, decimals, max_length, tape_offset ) tape_totals = "\n".join([tape_totals, label, tape_str]) return tape_totals
def tape_text( tape, wire_order=None, show_all_wires=False, decimals=None, max_length=100, tape_offset=None ): """Text based diagram for a Quantum Tape. Args: tape (QuantumTape): the operations and measurements to draw Keyword Args: wire_order (Sequence[Any]): the order (from top to bottom) to print the wires of the circuit show_all_wires (bool): If True, all wires, including empty wires, are printed. decimals (int): How many decimal points to include when formatting operation parameters. Default ``None`` will omit parameters from operation labels. max_length (Int) : Maximum length of a individual line. After this length, the diagram will begin anew beneath the previous lines. tape_offset (list[Int]): Used to offset numbering when labelling nested tapes. Used internally for recursive calls. Returns: str : String based graphic of the circuit. **Example:** .. code-block:: python with qml.tape.QuantumTape() as tape: qml.QFT(wires=(0,1,2)) qml.RX(1.234, wires=0) qml.RY(1.234, wires=1) qml.RZ(1.234, wires=2) qml.Toffoli(wires=(0,1,"aux")) qml.expval(qml.PauliZ("aux")) qml.state() >>> print(draw_text(tape)) 0: ─╭QFT──RX─╭C─┤ State 1: ─├QFT──RY─├C─┤ State 2: ─╰QFT──RZ─│──┤ State aux: ──────────╰X─┤ <Z> State .. UsageDetails:: **Decimals:** >>> print(draw_text(tape, decimals=2)) 0: ─╭QFT──RX(1.23)─╭C─┤ State 1: ─├QFT──RY(1.23)─├C─┤ State 2: ─╰QFT──RZ(1.23)─│──┤ State aux: ────────────────╰X─┤ <Z> State **Max Length:** The ``max_length`` keyword wraps long circuits >>> rng = np.random.default_rng(seed=42) >>> shape = qml.StronglyEntanglingLayers.shape(n_wires=5, n_layers=5) >>> params = rng.random(shape) >>> tape2 = qml.StronglyEntanglingLayers(params, wires=range(5)).expand() >>> print(tape_text(tape2, max_length=60)) 0: ──Rot─╭C──────────╭X──Rot─╭C───────╭X──Rot──────╭C────╭X 1: ──Rot─╰X─╭C───────│───Rot─│──╭C────│──╭X────Rot─│──╭C─│─ 2: ──Rot────╰X─╭C────│───Rot─╰X─│──╭C─│──│─────Rot─│──│──╰C 3: ──Rot───────╰X─╭C─│───Rot────╰X─│──╰C─│─────Rot─╰X─│──── 4: ──Rot──────────╰X─╰C──Rot───────╰X────╰C────Rot────╰X─── ───Rot───────────╭C─╭X──Rot──────╭C──────────────╭X─┤ ──╭X────Rot──────│──╰C─╭X────Rot─╰X───╭C─────────│──┤ ──│────╭X────Rot─│─────╰C───╭X────Rot─╰X───╭C────│──┤ ──╰C───│─────Rot─│──────────╰C───╭X────Rot─╰X─╭C─│──┤ ───────╰C────Rot─╰X──────────────╰C────Rot────╰X─╰C─┤ **Wire Order:** >>> print(tape_text(tape, wire_order=["aux", 2, 1, 0])) aux: ──────────╭X─┤ <Z> State 2: ─╭QFT──RZ─│──┤ State 1: ─├QFT──RY─├C─┤ State 0: ─╰QFT──RX─╰C─┤ State **Show all wires:** >>> print(tape_text(tape, wire_order=["a", "b", "aux", 0,1,2], show_all_wires=True)) a: ─────────────┤ State b: ─────────────┤ State aux: ──────────╭X─┤ <Z> State 0: ─╭QFT──RX─├C─┤ State 1: ─├QFT──RY─╰C─┤ State 2: ─╰QFT──RZ────┤ State """ if tape_offset is None: tape_offset = [0] # use a list so it's a mutable data structure tape_cache = [] wire_map = convert_wire_order( tape.operations + tape.measurements, wire_order=wire_order, show_all_wires=show_all_wires ) n_wires = len(wire_map) if n_wires == 0: return "" totals = [f"{wire}: " for wire in wire_map] line_length = max(len(s) for s in totals) totals = [s.rjust(line_length, " ") for s in totals] # Used to store lines that are hitting the maximum length finished_lines = [] layers_list = [ drawable_layers(tape.operations, wire_map=wire_map), drawable_layers(tape.measurements, wire_map=wire_map), ] add_list = [_add_op, _add_measurement] fillers = ["─", " "] enders = [True, False] # add "─┤" after all operations for layers, add, filler, ender in zip(layers_list, add_list, fillers, enders): for layer in layers: layer_str = [filler] * n_wires for op in layer: # Currently can't use `isinstance(op, QuantumTape)` due to circular imports if hasattr(op, "measurements"): # isa tape layer_str = _add_grouping_symbols(op, layer_str, wire_map) label = f"Tape:{tape_offset[0]+len(tape_cache)}" for w in op.wires: layer_str[wire_map[w]] += label tape_cache.append(op) else: layer_str = add(op, layer_str, wire_map, decimals) max_label_len = max(len(s) for s in layer_str) layer_str = [s.ljust(max_label_len, filler) for s in layer_str] line_length += max_label_len + 1 # one for the filler character if line_length > max_length: # move totals into finished_lines and reset totals finished_lines += totals finished_lines[-1] += "\n" totals = [filler] * n_wires line_length = 1 + max_label_len totals = [filler.join([t, s]) for t, s in zip(totals, layer_str)] if ender: totals = [s + "─┤" for s in totals] # Recursively handle nested tapes # tape_totals = "\n".join(finished_lines + totals) current_tape_offset = tape_offset[0] tape_offset[0] += len(tape_cache) for i, nested_tape in enumerate(tape_cache): label = f"\nTape:{i+current_tape_offset}" tape_str = tape_text( nested_tape, wire_order, show_all_wires, decimals, max_length, tape_offset ) tape_totals = "\n".join([tape_totals, label, tape_str]) return tape_totals
25,177
def infer_typing_newtype(node, context_itton=None): """Infer a typing.TypeVar(...) or typing.NewType(...) call""" try: func = next(node.func.infer(context=context_itton)) except (InferenceError, StopIteration) as exc: raise UseInferenceDefault from exc if func.qname() != "typing.NewType": raise UseInferenceDefault if not node.args: raise UseInferenceDefault derived = node.args[0].as_string().strip("'") base = node.args[1].as_string().strip("'") node = extract_node(TYPING_NEWTYPE_TEMPLATE.format(derived=derived, base=base)) return node.infer(context=context_itton)
def infer_typing_newtype(node, context_itton=None): """Infer a typing.NewType(...) call""" try: func = next(node.func.infer(context=context_itton)) except (InferenceError, StopIteration) as exc: raise UseInferenceDefault from exc if func.qname() != "typing.NewType": raise UseInferenceDefault if not node.args: raise UseInferenceDefault derived = node.args[0].as_string().strip("'") base = node.args[1].as_string().strip("'") node = extract_node(TYPING_NEWTYPE_TEMPLATE.format(derived=derived, base=base)) return node.infer(context=context_itton)
34,432
def test_not_importing_conversation_tests_in_project(tmpdir_factory): root = tmpdir_factory.mktemp("Parent Bot") config = {"imports": ["bots/Bot A"]} config_path = str(root / "config.yml") utils.dump_obj_as_yaml_to_file(config_path, config) story_data_file = root / "bots" / "Bot A" / "data" / "stories.md" story_data_file.write("""## story""", ensure=True) conversation_tests_file = ( root / "bots" / "Bot A" / "tests" / "conversation_tests.md" ) conversation_tests_file.write( """## story test""", ensure=True, ) selector = MultiProjectImporter(config_path) # Conversation tests should not be included in story paths expected = [str(story_data_file)] actual = selector._story_paths assert expected == actual
def test_not_importing_conversation_tests_in_project(tmpdir_factory): root = tmpdir_factory.mktemp("Parent Bot") config = {"imports": ["bots/Bot A"]} config_path = str(root / "config.yml") utils.dump_obj_as_yaml_to_file(config_path, config) story_data_file = root / "bots" / "Bot A" / "data" / "stories.md" story_data_file.write("""## story""", ensure=True) conversation_tests_file = ( root / "bots" / "Bot A" / DEFAULT_E2E_TESTS_PATH / "conversation_tests.md" ) conversation_tests_file.write( """## story test""", ensure=True, ) selector = MultiProjectImporter(config_path) # Conversation tests should not be included in story paths expected = [str(story_data_file)] actual = selector._story_paths assert expected == actual
32,310
def test_module(get_events: DefenderGetEvents) -> str: """Tests API connectivity and authentication' Returning 'ok' indicates that the integration works like it is supposed to. Connection to the service is successful. Raises exceptions if something goes wrong. :type get_events: ``DefenderGetEvents`` :param get_events: the get_events instance :return: 'ok' if test passed, anything else will fail the test. :rtype: ``str`` """ message: str = '' try: get_events.client.request.params = {'limit': 1} get_events.run() message = 'ok' except DemistoException as e: if 'Forbidden' in str(e) or 'authenticate' in str(e): message = AUTH_ERROR_MSG else: raise e return message
def test_module(get_events: DefenderGetEvents) -> str: """Tests API connectivity and authentication' Returning 'ok' indicates that the integration works like it is supposed to. Connection to the service is successful. Raises exceptions if something goes wrong. :type get_events: ``DefenderGetEvents`` :param get_events: the get_events instance :return: 'ok' if test passed, anything else will fail the test. :rtype: ``str`` """ message: str = '' try: get_events.client.request.params = {'limit': 1} get_events.run() message = 'ok' except DemistoException as e: if 'Forbidden' in str(e) or 'authenticate' in str(e): message = AUTH_ERROR_MSG else: raise return message
39,026
def timedelta_isoformat(td: datetime.timedelta) -> str: """ ISO 8601 encoding for time deltas. """ minutes, seconds = divmod(td.seconds, 60) hours, minutes = divmod(minutes, 60) return f'{"-" if td.days < 0 else ""}P{abs(td.days)}DT{hours:d}H{minutes:d}M{seconds:d}.{td.microseconds:06d}S'
def timedelta_isoformat(td: datetime.timedelta) -> str: """ ISO 8601 encoding for Python timedelta object. """ minutes, seconds = divmod(td.seconds, 60) hours, minutes = divmod(minutes, 60) return f'{"-" if td.days < 0 else ""}P{abs(td.days)}DT{hours:d}H{minutes:d}M{seconds:d}.{td.microseconds:06d}S'
31,840
def checkpoint_add_objects_batch_command(client: Client, object_type: str, ipaddress, name): printable_result = {} readable_output = '' ipaddress = argToList(ipaddress, ',') name = argToList(name, ',') add_list = [] for ip, n in zip(ipaddress, name): tmp_dict = {'name': n, 'ip-address': ip} add_list.append(tmp_dict) result = current_result = client.add_objects_batch(object_type, add_list) if result: printable_result = {'task-id': result.get('task-id')} readable_output = tableToMarkdown('CheckPoint data for add-objects-batch command:', printable_result) command_results = CommandResults( outputs_prefix='CheckPoint.add_objects_batch', outputs_key_field='uid', readable_output=readable_output, outputs=printable_result, raw_response=result ) return command_results
def checkpoint_add_objects_batch_command(client: Client, object_type: str, ipaddress, name): context_data = {} readable_output = '' ipaddress = argToList(ipaddress, ',') name = argToList(name, ',') add_list = [] for ip, n in zip(ipaddress, name): tmp_dict = {'name': n, 'ip-address': ip} add_list.append(tmp_dict) result = current_result = client.add_objects_batch(object_type, add_list) if result: printable_result = {'task-id': result.get('task-id')} readable_output = tableToMarkdown('CheckPoint data for add-objects-batch command:', printable_result) command_results = CommandResults( outputs_prefix='CheckPoint.add_objects_batch', outputs_key_field='uid', readable_output=readable_output, outputs=printable_result, raw_response=result ) return command_results
32,087
def main(): # pragma: no cover # """ # Executes an integration command # """ params = demisto.params() Client.severity = params.get('severity', '').upper() Client.query = params.get('query', Client.query) Client.tag = params.get('feedTags', params.get('tag', Client.tag)) Client.tlp_color = params.get('tlp_color') client = Client(params) commands = { 'test-module': module_test, 'xdr-iocs-enable': iocs_command, 'xdr-iocs-disable': iocs_command, 'xdr-iocs-push': tim_insert_jsons, } command = demisto.command() try: if command == 'fetch-indicators': fetch_indicators(client, params.get('autoSync', False)) elif command == 'xdr-iocs-set-sync-time': set_sync_time(demisto.args()['time']) elif command == 'xdr-iocs-create-sync-file': get_sync_file() elif command in commands: commands[command](client) elif command == 'xdr-iocs-sync': xdr_iocs_sync_command(client, demisto.args().get('firstTime') == 'true') else: raise NotImplementedError(command) except Exception as error: return_error(str(error), error)
def main(): # pragma: no cover # """ # Executes an integration command # """ params = demisto.params() Client.severity = params.get('severity', '').upper() Client.query = params.get('query', Client.query) Client.tag = params.get('feedTags', params.get('tag', Client.tag)) Client.tlp_color = params.get('tlp_color') client = Client(params) commands = { 'test-module': module_test, 'xdr-iocs-enable': iocs_command, 'xdr-iocs-disable': iocs_command, 'xdr-iocs-push': tim_insert_jsons, } command = demisto.command() try: if command == 'fetch-indicators': fetch_indicators(client, params.get('autoSync', False)) elif command == 'xdr-iocs-set-sync-time': set_sync_time(demisto.args()['time']) elif command == 'xdr-iocs-create-sync-file': get_sync_file() elif command in commands: commands[command](client) elif command == 'xdr-iocs-sync': xdr_iocs_sync_command(client, demisto.args().get('firstTime') == 'true') else: raise NotImplementedError(command) except Exception as error: return_error(str(error), error)
22,269
def key_type_token_mapper(key, key_type, token, route_extra, url): global db_conn # print 'key %s key_type %s token %s route_extra %s url %s\n' % (key, key_type, token, route_extra, url) if key and key_type and token: # sqlite3.ProgrammingError: SQLite objects created in a thread can only be used in that same thread. The object was created in thread id x and this is thread id y. # So try upto 2 times for i in range(2): # Order by rowid gives us the last row added try: row = db_conn.execute("select host, port from %s where key=? and key_type=? and token=? order by rowid desc limit 1" % (DATABASE_TABLE_NAME), (key, key_type, token)).fetchone() if row: rval = '%s:%s' % (tuple(row)) return rval.encode() break except sqlite3.ProgrammingError: db_conn = sqlite3.connect(realtime_db_file) continue break return None
def key_type_token_mapper(key, key_type, token, route_extra, url): global db_conn # print 'key %s key_type %s token %s route_extra %s url %s\n' % (key, key_type, token, route_extra, url) if key and key_type and token: # sqlite3.ProgrammingError: SQLite objects created in a thread can only be used in that same thread. The object was created in thread id x and this is thread id y. # So try upto 2 times for i in range(2): # Order by rowid gives us the last row added try: row = db_conn.execute("SELECT host, port FROM %s WHERE key=? AND key_type=? AND token=? ORDER BY rowid DESC LIMIT 1" % (DATABASE_TABLE_NAME), (key, key_type, token)).fetchone() if row: rval = '%s:%s' % (tuple(row)) return rval.encode() break except sqlite3.ProgrammingError: db_conn = sqlite3.connect(realtime_db_file) continue break return None
17,648
def _get_flexible_source_candidates_for_submodule(ds, sm): """Assemble candidates from where to install a submodule Even if a URL for submodule is provided explicitly -- first tries urls under parent's module tracking branch remote. Additional candidate URLs can be generated based on templates specified as configuration variables with the pattern `datalad.get.subdataset-source-candidate-<name>` where `name` is an arbitrary identifier. A template string assigned to such a variable can utilize the Python format mini language and may reference a number of properties that are inferred from the parent dataset's knowledge about the target subdataset. Properties include any submodule property specified in the respective .gitmodules record. For convenience, an existing `datalad-id` record is made available under the shortened name `id`. Additionally, the URL of any configured remote that contains the respective submodule commit is available as `remote-<name>` properties, where `name` is the configured remote name. Parameters ---------- ds : Dataset Parent dataset of to-be-installed subdataset. sm : dict Submodule record as produced by `subdatasets()`. Returns ------- list of tuples Where each tuples consists of a name and a URL. Names are not unique and either derived from the name of the respective remote, template configuration variable, or 'origin' for the candidate URL that was obtained from the .gitmodule record. """ # short cuts ds_repo = ds.repo sm_url = sm.get('gitmodule_url', None) sm_path = op.relpath(sm['path'], start=sm['parentds']) clone_urls = [] # CANDIDATE: tracking remote of the current branch tracking_remote, tracking_branch = ds_repo.get_tracking_branch() candidate_remotes = [tracking_remote] if tracking_remote else [] # if we have a remote, let's check the location of that remote # for the presence of the desired submodule last_commit = ds_repo.get_last_commit_hexsha(sm_path) if last_commit: # CANDIDATE: any remote that has the commit when the submodule was # last modified # ideally should also give preference to the remotes which have # the same branch checked out I guess candidate_remotes += list(_get_remotes_having_commit(ds_repo, last_commit)) # prepare a dict to generate URL candidates from templates sm_candidate_props = { k[10:].replace('datalad-id', 'id'): v for k, v in sm.items() if k.startswith('gitmodule_') } for remote in unique(candidate_remotes): remote_url = ds_repo.get_remote_url(remote, push=False) # Directly on parent's ds url if remote_url: # make remotes and their URLs available to template rendering sm_candidate_props['remoteurl-{}'.format(remote)] = remote_url # attempt: submodule checkout at parent remote URL # We might need to quote sm_path portion, e.g. for spaces etc if isinstance(RI(remote_url), URL): sm_path_url = urlquote(sm_path) else: sm_path_url = sm_path clone_urls.extend( ('50{}'.format(remote), url) for url in _get_flexible_source_candidates( # alternate suffixes are tested by `clone` anyways sm_path_url, remote_url, alternate_suffix=False) ) # attempt: provided (configured?) submodule URL # TODO: consider supporting DataLadRI here? or would confuse # git and we wouldn't want that (i.e. not allow pure git clone # --recursive) if sm_url: clone_urls.extend( ('60{}'.format(remote), url) for url in _get_flexible_source_candidates( sm_url, remote_url, alternate_suffix=False) ) prio_candidate_expr = re.compile('[0-9][0-9].*') for name, tmpl in [(c[40:], ds_repo.config[c]) for c in ds_repo.config.keys() if c.startswith( 'datalad.get.subdataset-source-candidate-')]: url = tmpl.format(**sm_candidate_props) # we don't want "flexible_source_candidates" here, this is # configuration that can be made arbitrarily precise from the # outside. Additional guesswork can only make it slower clone_urls.append(( # assign a default priority, if a config doesn't have one name if prio_candidate_expr.match(name) else '70{}'.format(name), url)) # CANDIDATE: the actual configured gitmodule URL if sm_url: clone_urls.extend( ('99local', url) for url in _get_flexible_source_candidates( sm_url, ds.path, alternate_suffix=False) # avoid inclusion of submodule location itself if url != sm['path'] ) # sort all candidates by there label, thereby allowing # candidate provided by configuration to purposefully # sort before or after automatically generated configuration clone_urls = sorted(clone_urls, key=lambda x: x[0]) # take out any duplicate source candidates # unique() takes out the duplicated at the tail end clone_urls = unique(clone_urls, lambda x: x[1]) return clone_urls
def _get_flexible_source_candidates_for_submodule(ds, sm): """Assemble candidates from where to install a submodule Even if a URL for submodule is provided explicitly -- first tries urls under parent's module tracking branch remote. Additional candidate URLs can be generated based on templates specified as configuration variables with the pattern `datalad.get.subdataset-source-candidate-<name>` where `name` is an arbitrary identifier. A template string assigned to such a variable can utilize the Python format mini language and may reference a number of properties that are inferred from the parent dataset's knowledge about the target subdataset. Properties include any submodule property specified in the respective .gitmodules record. For convenience, an existing `datalad-id` record is made available under the shortened name `id`. Additionally, the URL of any configured remote that contains the respective submodule commit is available as `remote-<name>` properties, where `name` is the configured remote name. Parameters ---------- ds : Dataset Parent dataset of to-be-installed subdataset. sm : dict Submodule record as produced by `subdatasets()`. Returns ------- list of tuples Where each tuples consists of a name and a URL. Names are not unique and either derived from the name of the respective remote, template configuration variable, or 'origin' for the candidate URL that was obtained from the .gitmodule record. """ # short cuts ds_repo = ds.repo sm_url = sm.get('gitmodule_url', None) sm_path = op.relpath(sm['path'], start=sm['parentds']) clone_urls = [] # CANDIDATE: tracking remote of the current branch tracking_remote, tracking_branch = ds_repo.get_tracking_branch() candidate_remotes = [tracking_remote] if tracking_remote else [] # if we have a remote, let's check the location of that remote # for the presence of the desired submodule last_commit = ds_repo.get_last_commit_hexsha(sm_path) if last_commit: # CANDIDATE: any remote that has the commit when the submodule was # last modified # ideally should also give preference to the remotes which have # the same branch checked out I guess candidate_remotes += list(_get_remotes_having_commit(ds_repo, last_commit)) # prepare a dict to generate URL candidates from templates sm_candidate_props = { k[10:].replace('datalad-id', 'id'): v for k, v in sm.items() if k.startswith('gitmodule_') } for remote in unique(candidate_remotes): remote_url = ds_repo.get_remote_url(remote, push=False) # Directly on parent's ds url if remote_url: # make remotes and their URLs available to template rendering sm_candidate_props['remoteurl-{}'.format(remote)] = remote_url # attempt: submodule checkout at parent remote URL # We might need to quote sm_path portion, e.g. for spaces etc if isinstance(RI(remote_url), URL): sm_path_url = urlquote(sm_path) else: sm_path_url = sm_path clone_urls.extend( ('50{}'.format(remote), url) for url in _get_flexible_source_candidates( # alternate suffixes are tested by `clone` anyways sm_path_url, remote_url, alternate_suffix=False) ) # attempt: provided (configured?) submodule URL # TODO: consider supporting DataLadRI here? or would confuse # git and we wouldn't want that (i.e. not allow pure git clone # --recursive) if sm_url: clone_urls.extend( ('60{}'.format(remote), url) for url in _get_flexible_source_candidates( sm_url, remote_url, alternate_suffix=False) ) prio_candidate_expr = re.compile('[0-9][0-9].*') for name, tmpl in [(c[40:], ds_repo.config[c]) for c in ds_repo.config.keys() if c.startswith( 'datalad.get.subdataset-source-candidate-')]: url = tmpl.format(**sm_candidate_props) # we don't want "flexible_source_candidates" here, this is # configuration that can be made arbitrarily precise from the # outside. Additional guesswork can only make it slower clone_urls.append(( # assign a default priority, if a config doesn't have one name if prio_candidate_expr.match(name) else '70{}'.format(name), url)) # CANDIDATE: the actual configured gitmodule URL if sm_url: clone_urls.extend( ('99local', url) for url in _get_flexible_source_candidates( sm_url, ds.path, alternate_suffix=False) # avoid inclusion of submodule location itself if url != sm['path'] ) # sort all candidates by there label, thereby allowing # candidate provided by configuration to purposefully # sort before or after automatically generated configuration # sort all candidates by their label, thereby allowing # take out any duplicate source candidates # unique() takes out the duplicated at the tail end clone_urls = unique(clone_urls, lambda x: x[1]) return clone_urls
35,634
def create_feature_extractor( model: nn.Module, return_nodes: Optional[Union[List[str], Dict[str, str]]] = None, train_return_nodes: Optional[Union[List[str], Dict[str, str]]] = None, eval_return_nodes: Optional[Union[List[str], Dict[str, str]]] = None, tracer_kwargs: Dict = {}, suppress_diff_warning: bool = False) -> fx.GraphModule: """ Creates a new graph module that returns intermediate nodes from a given model as dictionary with user specified keys as strings, and the requested outputs as values. This is achieved by re-writing the computation graph of the model via FX to return the desired nodes as outputs. All unused nodes are removed, together with their corresponding parameters. Desired output nodes must be specified as a ``.`` seperated path walking the module hierarchy from top level module down to leaf operation or leaf module. For more details on the node naming conventions used here, please see the :ref:`relevant subheading <about-node-names>` in the `documentation <https://pytorch.org/vision/stable/feature_extraction.html>`_. Not all models will be FX traceable, although with some massaging they can be made to cooperate. Here's a (not exhaustive) list of tips: - If you don't need to trace through a particular, problematic sub-module, turn it into a "leaf module" by passing a list of ``leaf_modules`` as one of the ``tracer_kwargs`` (see example below). It will not be traced through, but rather, the resulting graph will hold a reference to that module's forward method. - Likewise, you may turn functions into leaf functions by passing a list of ``autowrap_functions`` as one of the ``tracer_kwargs`` (see example below). - Some inbuilt Python functions can be problematic. For instance, ``int`` will raise an error during tracing. You may wrap them in your own function and then pass that in ``autowrap_functions`` as one of the ``tracer_kwargs``. For further information on FX see the `torch.fx documentation <https://pytorch.org/docs/stable/fx.html>`_. Args: model (nn.Module): model on which we will extract the features return_nodes (list or dict, optional): either a ``List`` or a ``Dict`` containing the names (or partial names - see note above) of the nodes for which the activations will be returned. If it is a ``Dict``, the keys are the node names, and the values are the user-specified keys for the graph module's returned dictionary. If it is a ``List``, it is treated as a ``Dict`` mapping node specification strings directly to output names. In the case that ``train_return_nodes`` and ``eval_return_nodes`` are specified, this should not be specified. train_return_nodes (list or dict, optional): similar to ``return_nodes``. This can be used if the return nodes for train mode are different than those from eval mode. If this is specified, ``eval_return_nodes`` must also be specified, and ``return_nodes`` should not be specified. eval_return_nodes (list or dict, optional): similar to ``return_nodes``. This can be used if the return nodes for train mode are different than those from eval mode. If this is specified, ``train_return_nodes`` must also be specified, and `return_nodes` should not be specified. tracer_kwargs (dict, optional): a dictionary of keywork arguments for ``NodePathTracer`` (which passes them onto it's parent class `torch.fx.Tracer <https://pytorch.org/docs/stable/fx.html#torch.fx.Tracer>`_). suppress_diff_warning (bool, optional): whether to suppress a warning when there are discrepancies between the train and eval version of the graph. Defaults to False. Examples:: >>> # Feature extraction with resnet >>> model = torchvision.models.resnet18() >>> # extract layer1 and layer3, giving as names `feat1` and feat2` >>> model = create_feature_extractor( >>> model, {'layer1': 'feat1', 'layer3': 'feat2'}) >>> out = model(torch.rand(1, 3, 224, 224)) >>> print([(k, v.shape) for k, v in out.items()]) >>> [('feat1', torch.Size([1, 64, 56, 56])), >>> ('feat2', torch.Size([1, 256, 14, 14]))] >>> # Specifying leaf modules and leaf functions >>> def leaf_function(x): >>> # This would raise a TypeError if traced through >>> return int(x) >>> >>> class LeafModule(torch.nn.Module): >>> def forward(self, x): >>> # This would raise a TypeError if traced through >>> int(x.shape[0]) >>> return torch.nn.functional.relu(x + 4) >>> >>> class MyModule(torch.nn.Module): >>> def __init__(self): >>> super().__init__() >>> self.conv = torch.nn.Conv2d(3, 1, 3) >>> self.leaf_module = LeafModule() >>> >>> def forward(self, x): >>> leaf_function(x.shape[0]) >>> x = self.conv(x) >>> return self.leaf_module(x) >>> >>> model = create_feature_extractor( >>> MyModule(), return_nodes=['leaf_module'], >>> tracer_kwargs={'leaf_modules': [LeafModule], >>> 'autowrap_functions': [leaf_function]}) """ is_training = model.training assert any(arg is not None for arg in [ return_nodes, train_return_nodes, eval_return_nodes]), ( "Either `return_nodes` or `train_return_nodes` and " "`eval_return_nodes` together, should be specified") assert not ((train_return_nodes is None) ^ (eval_return_nodes is None)), \ ("If any of `train_return_nodes` and `eval_return_nodes` are " "specified, then both should be specified") assert ((return_nodes is None) ^ (train_return_nodes is None)), \ ("If `train_return_nodes` and `eval_return_nodes` are specified, " "then both should be specified") # Put *_return_nodes into Dict[str, str] format def to_strdict(n) -> Dict[str, str]: if isinstance(n, list): return {str(i): str(i) for i in n} return {str(k): str(v) for k, v in n.items()} if train_return_nodes is None: return_nodes = to_strdict(return_nodes) train_return_nodes = deepcopy(return_nodes) eval_return_nodes = deepcopy(return_nodes) else: train_return_nodes = to_strdict(train_return_nodes) eval_return_nodes = to_strdict(eval_return_nodes) # Repeat the tracing and graph rewriting for train and eval mode tracers = {} graphs = {} mode_return_nodes: Dict[str, Dict[str, str]] = { 'train': train_return_nodes, 'eval': eval_return_nodes } for mode in ['train', 'eval']: if mode == 'train': model.train() elif mode == 'eval': model.eval() # Instantiate our NodePathTracer and use that to trace the model tracer = NodePathTracer(**tracer_kwargs) graph = tracer.trace(model) name = model.__class__.__name__ if isinstance( model, nn.Module) else model.__name__ graph_module = fx.GraphModule(tracer.root, graph, name) available_nodes = list(tracer.node_to_qualname.values()) # FIXME We don't know if we should expect this to happen assert len(set(available_nodes)) == len(available_nodes), \ "There are duplicate nodes! Please raise an issue https://github.com/pytorch/vision/issues" # Check that all outputs in return_nodes are present in the model for query in mode_return_nodes[mode].keys(): # To check if a query is available we need to check that at least # one of the available names starts with it up to a . if not any([re.match(rf'^{query}(\.|$)', n) is not None for n in available_nodes]): raise ValueError( f"node: '{query}' is not present in model. Hint: use " "`get_graph_node_names` to make sure the " "`return_nodes` you specified are present. It may even " "be that you need to specify `train_return_nodes` and " "`eval_return_nodes` separately.") # Remove existing output nodes (train mode) orig_output_nodes = [] for n in reversed(graph_module.graph.nodes): if n.op == 'output': orig_output_nodes.append(n) assert len(orig_output_nodes) for n in orig_output_nodes: graph_module.graph.erase_node(n) # Find nodes corresponding to return_nodes and make them into output_nodes nodes = [n for n in graph_module.graph.nodes] output_nodes = OrderedDict() for n in reversed(nodes): module_qualname = tracer.node_to_qualname.get(n) if module_qualname is None: # NOTE - Know cases where this happens: # - Node representing creation of a tensor constant - probably # not interesting as a return node # - When packing outputs into a named tuple like in InceptionV3 continue for query in mode_return_nodes[mode]: depth = query.count('.') if '.'.join(module_qualname.split('.')[:depth + 1]) == query: output_nodes[mode_return_nodes[mode][query]] = n mode_return_nodes[mode].pop(query) break output_nodes = OrderedDict(reversed(list(output_nodes.items()))) # And add them in the end of the graph with graph_module.graph.inserting_after(nodes[-1]): graph_module.graph.output(output_nodes) # Remove unused modules / parameters graph_module.graph.eliminate_dead_code() graph_module.recompile() # Keep track of the tracer and graph so we can choose the main one tracers[mode] = tracer graphs[mode] = graph # Warn user if there are any discrepancies between the graphs of the # train and eval modes if not suppress_diff_warning: _warn_graph_differences(tracers['train'], tracers['eval']) # Build the final graph module graph_module = DualGraphModule( model, graphs['train'], graphs['eval'], class_name=name) # Restore original training mode model.train(is_training) graph_module.train(is_training) return graph_module
def create_feature_extractor( model: nn.Module, return_nodes: Optional[Union[List[str], Dict[str, str]]] = None, train_return_nodes: Optional[Union[List[str], Dict[str, str]]] = None, eval_return_nodes: Optional[Union[List[str], Dict[str, str]]] = None, tracer_kwargs: Dict = {}, suppress_diff_warning: bool = False) -> fx.GraphModule: """ Creates a new graph module that returns intermediate nodes from a given model as dictionary with user specified keys as strings, and the requested outputs as values. This is achieved by re-writing the computation graph of the model via FX to return the desired nodes as outputs. All unused nodes are removed, together with their corresponding parameters. Desired output nodes must be specified as a ``.`` separated path walking the module hierarchy from top level module down to leaf operation or leaf module. For more details on the node naming conventions used here, please see the :ref:`relevant subheading <about-node-names>` in the `documentation <https://pytorch.org/vision/stable/feature_extraction.html>`_. Not all models will be FX traceable, although with some massaging they can be made to cooperate. Here's a (not exhaustive) list of tips: - If you don't need to trace through a particular, problematic sub-module, turn it into a "leaf module" by passing a list of ``leaf_modules`` as one of the ``tracer_kwargs`` (see example below). It will not be traced through, but rather, the resulting graph will hold a reference to that module's forward method. - Likewise, you may turn functions into leaf functions by passing a list of ``autowrap_functions`` as one of the ``tracer_kwargs`` (see example below). - Some inbuilt Python functions can be problematic. For instance, ``int`` will raise an error during tracing. You may wrap them in your own function and then pass that in ``autowrap_functions`` as one of the ``tracer_kwargs``. For further information on FX see the `torch.fx documentation <https://pytorch.org/docs/stable/fx.html>`_. Args: model (nn.Module): model on which we will extract the features return_nodes (list or dict, optional): either a ``List`` or a ``Dict`` containing the names (or partial names - see note above) of the nodes for which the activations will be returned. If it is a ``Dict``, the keys are the node names, and the values are the user-specified keys for the graph module's returned dictionary. If it is a ``List``, it is treated as a ``Dict`` mapping node specification strings directly to output names. In the case that ``train_return_nodes`` and ``eval_return_nodes`` are specified, this should not be specified. train_return_nodes (list or dict, optional): similar to ``return_nodes``. This can be used if the return nodes for train mode are different than those from eval mode. If this is specified, ``eval_return_nodes`` must also be specified, and ``return_nodes`` should not be specified. eval_return_nodes (list or dict, optional): similar to ``return_nodes``. This can be used if the return nodes for train mode are different than those from eval mode. If this is specified, ``train_return_nodes`` must also be specified, and `return_nodes` should not be specified. tracer_kwargs (dict, optional): a dictionary of keywork arguments for ``NodePathTracer`` (which passes them onto it's parent class `torch.fx.Tracer <https://pytorch.org/docs/stable/fx.html#torch.fx.Tracer>`_). suppress_diff_warning (bool, optional): whether to suppress a warning when there are discrepancies between the train and eval version of the graph. Defaults to False. Examples:: >>> # Feature extraction with resnet >>> model = torchvision.models.resnet18() >>> # extract layer1 and layer3, giving as names `feat1` and feat2` >>> model = create_feature_extractor( >>> model, {'layer1': 'feat1', 'layer3': 'feat2'}) >>> out = model(torch.rand(1, 3, 224, 224)) >>> print([(k, v.shape) for k, v in out.items()]) >>> [('feat1', torch.Size([1, 64, 56, 56])), >>> ('feat2', torch.Size([1, 256, 14, 14]))] >>> # Specifying leaf modules and leaf functions >>> def leaf_function(x): >>> # This would raise a TypeError if traced through >>> return int(x) >>> >>> class LeafModule(torch.nn.Module): >>> def forward(self, x): >>> # This would raise a TypeError if traced through >>> int(x.shape[0]) >>> return torch.nn.functional.relu(x + 4) >>> >>> class MyModule(torch.nn.Module): >>> def __init__(self): >>> super().__init__() >>> self.conv = torch.nn.Conv2d(3, 1, 3) >>> self.leaf_module = LeafModule() >>> >>> def forward(self, x): >>> leaf_function(x.shape[0]) >>> x = self.conv(x) >>> return self.leaf_module(x) >>> >>> model = create_feature_extractor( >>> MyModule(), return_nodes=['leaf_module'], >>> tracer_kwargs={'leaf_modules': [LeafModule], >>> 'autowrap_functions': [leaf_function]}) """ is_training = model.training assert any(arg is not None for arg in [ return_nodes, train_return_nodes, eval_return_nodes]), ( "Either `return_nodes` or `train_return_nodes` and " "`eval_return_nodes` together, should be specified") assert not ((train_return_nodes is None) ^ (eval_return_nodes is None)), \ ("If any of `train_return_nodes` and `eval_return_nodes` are " "specified, then both should be specified") assert ((return_nodes is None) ^ (train_return_nodes is None)), \ ("If `train_return_nodes` and `eval_return_nodes` are specified, " "then both should be specified") # Put *_return_nodes into Dict[str, str] format def to_strdict(n) -> Dict[str, str]: if isinstance(n, list): return {str(i): str(i) for i in n} return {str(k): str(v) for k, v in n.items()} if train_return_nodes is None: return_nodes = to_strdict(return_nodes) train_return_nodes = deepcopy(return_nodes) eval_return_nodes = deepcopy(return_nodes) else: train_return_nodes = to_strdict(train_return_nodes) eval_return_nodes = to_strdict(eval_return_nodes) # Repeat the tracing and graph rewriting for train and eval mode tracers = {} graphs = {} mode_return_nodes: Dict[str, Dict[str, str]] = { 'train': train_return_nodes, 'eval': eval_return_nodes } for mode in ['train', 'eval']: if mode == 'train': model.train() elif mode == 'eval': model.eval() # Instantiate our NodePathTracer and use that to trace the model tracer = NodePathTracer(**tracer_kwargs) graph = tracer.trace(model) name = model.__class__.__name__ if isinstance( model, nn.Module) else model.__name__ graph_module = fx.GraphModule(tracer.root, graph, name) available_nodes = list(tracer.node_to_qualname.values()) # FIXME We don't know if we should expect this to happen assert len(set(available_nodes)) == len(available_nodes), \ "There are duplicate nodes! Please raise an issue https://github.com/pytorch/vision/issues" # Check that all outputs in return_nodes are present in the model for query in mode_return_nodes[mode].keys(): # To check if a query is available we need to check that at least # one of the available names starts with it up to a . if not any([re.match(rf'^{query}(\.|$)', n) is not None for n in available_nodes]): raise ValueError( f"node: '{query}' is not present in model. Hint: use " "`get_graph_node_names` to make sure the " "`return_nodes` you specified are present. It may even " "be that you need to specify `train_return_nodes` and " "`eval_return_nodes` separately.") # Remove existing output nodes (train mode) orig_output_nodes = [] for n in reversed(graph_module.graph.nodes): if n.op == 'output': orig_output_nodes.append(n) assert len(orig_output_nodes) for n in orig_output_nodes: graph_module.graph.erase_node(n) # Find nodes corresponding to return_nodes and make them into output_nodes nodes = [n for n in graph_module.graph.nodes] output_nodes = OrderedDict() for n in reversed(nodes): module_qualname = tracer.node_to_qualname.get(n) if module_qualname is None: # NOTE - Know cases where this happens: # - Node representing creation of a tensor constant - probably # not interesting as a return node # - When packing outputs into a named tuple like in InceptionV3 continue for query in mode_return_nodes[mode]: depth = query.count('.') if '.'.join(module_qualname.split('.')[:depth + 1]) == query: output_nodes[mode_return_nodes[mode][query]] = n mode_return_nodes[mode].pop(query) break output_nodes = OrderedDict(reversed(list(output_nodes.items()))) # And add them in the end of the graph with graph_module.graph.inserting_after(nodes[-1]): graph_module.graph.output(output_nodes) # Remove unused modules / parameters graph_module.graph.eliminate_dead_code() graph_module.recompile() # Keep track of the tracer and graph so we can choose the main one tracers[mode] = tracer graphs[mode] = graph # Warn user if there are any discrepancies between the graphs of the # train and eval modes if not suppress_diff_warning: _warn_graph_differences(tracers['train'], tracers['eval']) # Build the final graph module graph_module = DualGraphModule( model, graphs['train'], graphs['eval'], class_name=name) # Restore original training mode model.train(is_training) graph_module.train(is_training) return graph_module
12,377
def handle(name, cfg, cloud, log, _args): """ Call to handle apk_repos sections in cloud-config file. @param name: The module name "apk-configure" from cloud.cfg @param cfg: A nested dict containing the entire cloud config contents. @param cloud: The L{CloudInit} object in use. @param log: Pre-initialized Python logger object to use for logging. @param _args: Any module arguments from cloud.cfg """ # If there is no "apk_repos" section in the configuration # then do nothing. apk_section = cfg.get('apk_repos') if not apk_section: LOG.debug(("Skipping module named %s," " no 'apk_repos' section found"), name) return validate_cloudconfig_schema(cfg, schema) # If "preserve_repositories" is explicitly set to True in # the configuration do nothing. if util.is_true(apk_section.get('preserve_repositories'), False): LOG.debug(("Skipping module named %s," " 'preserve_repositories' is set"), name) return # If there is no "alpine_repo" subsection of "apk_repos" present in the # configuration then do nothing, as at least "version" is required to # create valid repositories entries. alpine_repo = apk_section.get('alpine_repo') if not alpine_repo: LOG.debug(("Skipping module named %s," " no 'alpine_repo' configuration found"), name) return # If there is no "version" value present in configuration then do nothing. alpine_version = alpine_repo.get('version') if not alpine_version: LOG.debug(("Skipping module named %s," " 'version' not specified in alpine_repo"), name) return local_repo = apk_section.get('local_repo_base_url', '') _write_repositories_file(alpine_repo, alpine_version, local_repo)
def handle(name, cfg, cloud, log, _args): """ Call to handle apk_repos sections in cloud-config file. @param name: The module name "apk-configure" from cloud.cfg @param cfg: A nested dict containing the entire cloud config contents. @param cloud: The L{CloudInit} object in use. @param log: Pre-initialized Python logger object to use for logging. @param _args: Any module arguments from cloud.cfg """ # If there is no "apk_repos" section in the configuration # then do nothing. apk_section = cfg.get('apk_repos') if not apk_section: LOG.debug(("Skipping module named %s," " no 'apk_repos' section found"), name) return validate_cloudconfig_schema(cfg, schema) # If "preserve_repositories" is explicitly set to True in # the configuration do nothing. if util.get_cfg_option_bool(apk_section, 'preserve_repositories', False): LOG.debug(("Skipping module named %s," " 'preserve_repositories' is set"), name) return # If there is no "alpine_repo" subsection of "apk_repos" present in the # configuration then do nothing, as at least "version" is required to # create valid repositories entries. alpine_repo = apk_section.get('alpine_repo') if not alpine_repo: LOG.debug(("Skipping module named %s," " no 'alpine_repo' configuration found"), name) return # If there is no "version" value present in configuration then do nothing. alpine_version = alpine_repo.get('version') if not alpine_version: LOG.debug(("Skipping module named %s," " 'version' not specified in alpine_repo"), name) return local_repo = apk_section.get('local_repo_base_url', '') _write_repositories_file(alpine_repo, alpine_version, local_repo)
55,841
def compute_sync_committee_proposer_reward(spec, state, committee, committee_bits): proposer_reward = 0 for index, bit in zip(committee, committee_bits): if not bit: continue inclusion_reward = compute_sync_committee_inclusion_reward( spec, state, index, committee, committee_bits, ) proposer_reward_denominator = (spec.WEIGHT_DENOMINATOR - spec.PROPOSER_WEIGHT) * spec.WEIGHT_DENOMINATOR // spec.PROPOSER_WEIGHT proposer_reward += spec.Gwei((inclusion_reward * spec.WEIGHT_DENOMINATOR) // proposer_reward_denominator) return proposer_reward
def compute_sync_committee_proposer_reward(spec, state, committee, committee_bits): proposer_reward = 0 for index, bit in zip(committee, committee_bits): if not bit: continue inclusion_reward = compute_sync_committee_inclusion_reward( spec, state, index, committee, committee_bits, ) proposer_reward_denominator = ( (spec.WEIGHT_DENOMINATOR - spec.PROPOSER_WEIGHT) * spec.WEIGHT_DENOMINATOR // spec.PROPOSER_WEIGHT ) proposer_reward += spec.Gwei((inclusion_reward * spec.WEIGHT_DENOMINATOR) // proposer_reward_denominator) return proposer_reward
34,461
def _load_from_endpoint_config(endpoint_config: EndpointConfig) -> "LockStore": """Given the name of a `LockStore` module tries to retrieve it.""" try: lock_store_class = common.class_from_module_path(endpoint_config.type) return lock_store_class(endpoint_config=endpoint_config) except (AttributeError, ImportError) as e: raise Exception( f"Could not find a class based on the module path " f"'{endpoint_config.type}'. Failed to create a `LockStore` " f"instance. Error: {e}" )
def _load_from_endpoint_config(endpoint_config: EndpointConfig) -> "LockStore": """Retrieve a `LockStore` based on its class name.""" try: lock_store_class = common.class_from_module_path(endpoint_config.type) return lock_store_class(endpoint_config=endpoint_config) except (AttributeError, ImportError) as e: raise Exception( f"Could not find a class based on the module path " f"'{endpoint_config.type}'. Failed to create a `LockStore` " f"instance. Error: {e}" )
51,451
def _decode_datetime_with_pandas(flat_num_dates, units, calendar): if calendar not in _STANDARD_CALENDARS: raise OutOfBoundsDatetime( "Cannot decode times from a non-standard calendar, {!r}, using " "pandas.".format(calendar) ) delta, ref_date = _unpack_netcdf_time_units(units) delta = _netcdf_to_numpy_timeunit(delta) try: ref_date = pd.Timestamp(ref_date) except ValueError: # ValueError is raised by pd.Timestamp for non-ISO timestamp # strings, in which case we fall back to using cftime raise OutOfBoundsDatetime with warnings.catch_warnings(): warnings.filterwarnings("ignore", "invalid value encountered", RuntimeWarning) pd.to_timedelta(flat_num_dates.min(), delta) + ref_date pd.to_timedelta(flat_num_dates.max(), delta) + ref_date # To avoid integer overflow when converting to nanosecond units for integer # dtypes smaller than np.int64 cast all integer-dtype arrays to np.int64 # (GH 2002). if flat_num_dates.dtype.kind == "i": flat_num_dates = flat_num_dates.astype(np.int64) # Cast input ordinals to integers of nanoseconds because pd.to_timedelta # works much faster when dealing with integers (GH 1399). flat_num_dates_ns_int = (flat_num_dates * _NS_PER_TIME_DELTA[delta]).astype( np.int64 ) # Use pd.to_timedelta to safely cast integer values to timedeltas, # and add those to a Timestamp to safely produce a DatetimeIndex. This # ensures that we do not encounter integer overflow at any point in the # process without raising OutOfBoundsDatetime. return (pd.to_timedelta(flat_num_dates_ns_int, "ns") + ref_date).values
def _decode_datetime_with_pandas(flat_num_dates, units, calendar): if calendar not in _STANDARD_CALENDARS: raise OutOfBoundsDatetime( "Cannot decode times from a non-standard calendar, {!r}, using " "pandas.".format(calendar) ) delta, ref_date = _unpack_netcdf_time_units(units) delta = _netcdf_to_numpy_timeunit(delta) try: ref_date = pd.Timestamp(ref_date) except ValueError: # ValueError is raised by pd.Timestamp for non-ISO timestamp # strings, in which case we fall back to using cftime raise OutOfBoundsDatetime with warnings.catch_warnings(): warnings.filterwarnings("ignore", "invalid value encountered", RuntimeWarning) pd.to_timedelta(flat_num_dates.min(), delta) pd.to_timedelta(flat_num_dates.max(), delta) # To avoid integer overflow when converting to nanosecond units for integer # dtypes smaller than np.int64 cast all integer-dtype arrays to np.int64 # (GH 2002). if flat_num_dates.dtype.kind == "i": flat_num_dates = flat_num_dates.astype(np.int64) # Cast input ordinals to integers of nanoseconds because pd.to_timedelta # works much faster when dealing with integers (GH 1399). flat_num_dates_ns_int = (flat_num_dates * _NS_PER_TIME_DELTA[delta]).astype( np.int64 ) # Use pd.to_timedelta to safely cast integer values to timedeltas, # and add those to a Timestamp to safely produce a DatetimeIndex. This # ensures that we do not encounter integer overflow at any point in the # process without raising OutOfBoundsDatetime. return (pd.to_timedelta(flat_num_dates_ns_int, "ns") + ref_date).values
51,787
def generate_package_index(cache_prefix): """Create the build cache index page. Creates (or replaces) the "index.json" page at the location given in cache_prefix. This page contains a link for each binary package (.yaml or .json) under cache_prefix. """ tmpdir = tempfile.mkdtemp() db_root_dir = os.path.join(tmpdir, 'db_root') db = spack_db.Database(None, db_dir=db_root_dir, enable_transaction_locking=False, record_fields=['spec', 'ref_count', 'in_buildcache']) try: file_list = ( entry for entry in web_util.list_url(cache_prefix) if entry.endswith('.yaml') or entry.endswith('.json')) except KeyError as inst: msg = 'No packages at {0}: {1}'.format(cache_prefix, inst) tty.warn(msg) return except Exception as err: # If we got some kind of S3 (access denied or other connection # error), the first non boto-specific class in the exception # hierarchy is Exception. Just print a warning and return msg = 'Encountered problem listing packages at {0}: {1}'.format( cache_prefix, err) tty.warn(msg) return tty.debug('Retrieving spec descriptor files from {0} to build index'.format( cache_prefix)) for file_path in file_list: try: spec_url = url_util.join(cache_prefix, file_path) tty.debug('fetching {0}'.format(spec_url)) _, _, spec_file = web_util.read_from_url(spec_url) spec_file_contents = codecs.getreader('utf-8')(spec_file).read() # Need full spec.json name or this gets confused with index.json. if spec_url.endswith('spec.json'): s = Spec.from_json(spec_file_contents) db.add(s, None) db.mark(s, 'in_buildcache', True) elif spec_url.endswith('yaml'): s = Spec.from_yaml(spec_file_contents) db.add(s, None) db.mark(s, 'in_buildcache', True) except (URLError, web_util.SpackWebError) as url_err: tty.error('Error reading specfile: {0}'.format(file_path)) tty.error(url_err) try: index_json_path = os.path.join(db_root_dir, 'index.json') with open(index_json_path, 'w') as f: db._write_to_file(f) # Read the index back in and compute it's hash with open(index_json_path) as f: index_string = f.read() index_hash = compute_hash(index_string) # Write the hash out to a local file index_hash_path = os.path.join(db_root_dir, 'index.json.hash') with open(index_hash_path, 'w') as f: f.write(index_hash) # Push the index itself web_util.push_to_url( index_json_path, url_util.join(cache_prefix, 'index.json'), keep_original=False, extra_args={'ContentType': 'application/json'}) # Push the hash web_util.push_to_url( index_hash_path, url_util.join(cache_prefix, 'index.json.hash'), keep_original=False, extra_args={'ContentType': 'text/plain'}) except Exception as err: msg = 'Encountered problem pushing package index to {0}: {1}'.format( cache_prefix, err) tty.warn(msg) finally: shutil.rmtree(tmpdir)
def generate_package_index(cache_prefix): """Create the build cache index page. Creates (or replaces) the "index.json" page at the location given in cache_prefix. This page contains a link for each binary package (.yaml or .json) under cache_prefix. """ tmpdir = tempfile.mkdtemp() db_root_dir = os.path.join(tmpdir, 'db_root') db = spack_db.Database(None, db_dir=db_root_dir, enable_transaction_locking=False, record_fields=['spec', 'ref_count', 'in_buildcache']) try: file_list = ( entry for entry in web_util.list_url(cache_prefix) if entry.endswith('.yaml') or entry.endswith('.json')) except KeyError as inst: msg = 'No packages at {0}: {1}'.format(cache_prefix, inst) tty.warn(msg) return except Exception as err: # If we got some kind of S3 (access denied or other connection # error), the first non boto-specific class in the exception # hierarchy is Exception. Just print a warning and return msg = 'Encountered problem listing packages at {0}: {1}'.format( cache_prefix, err) tty.warn(msg) return tty.debug('Retrieving spec descriptor files from {0} to build index'.format( cache_prefix)) for file_path in file_list: try: spec_url = url_util.join(cache_prefix, file_path) tty.debug('fetching {0}'.format(spec_url)) _, _, spec_file = web_util.read_from_url(spec_url) spec_file_contents = codecs.getreader('utf-8')(spec_file).read() # Need full spec.json name or this gets confused with index.json. if spec_url.endswith('spec.json'): s = Spec.from_json(spec_file_contents) elif spec_url.endswith('yaml'): s = Spec.from_yaml(spec_file_contents) db.add(s, None) db.mark(s, 'in_buildcache', True) except (URLError, web_util.SpackWebError) as url_err: tty.error('Error reading specfile: {0}'.format(file_path)) tty.error(url_err) try: index_json_path = os.path.join(db_root_dir, 'index.json') with open(index_json_path, 'w') as f: db._write_to_file(f) # Read the index back in and compute it's hash with open(index_json_path) as f: index_string = f.read() index_hash = compute_hash(index_string) # Write the hash out to a local file index_hash_path = os.path.join(db_root_dir, 'index.json.hash') with open(index_hash_path, 'w') as f: f.write(index_hash) # Push the index itself web_util.push_to_url( index_json_path, url_util.join(cache_prefix, 'index.json'), keep_original=False, extra_args={'ContentType': 'application/json'}) # Push the hash web_util.push_to_url( index_hash_path, url_util.join(cache_prefix, 'index.json.hash'), keep_original=False, extra_args={'ContentType': 'text/plain'}) except Exception as err: msg = 'Encountered problem pushing package index to {0}: {1}'.format( cache_prefix, err) tty.warn(msg) finally: shutil.rmtree(tmpdir)
31,394
def cisco_stealthwatch_list_tenants_command(client: Client, tenant_id: str = None) -> CommandResults: """List all tenants (called domains on the Stealthwatch API) Args: client (Client): Cisco Stealthwatch Client tenant_id (str): The id of the tenant to retrieve its information Returns: CommandResults: Raw response, outputs and readable outputs """ if tenant_id: response = client.get_tenant(tenant_id) outputs = response.get('data', []) table = tableToMarkdown(f'Tenant (tenant_id: {tenant_id})', outputs, headers=['id', 'displayName'], removeNull=True) command_results = CommandResults( outputs_prefix='CiscoStealthwatch.Tenant', outputs_key_field='id', raw_response=response, outputs=outputs, readable_output=table ) else: response = client.list_tenants() outputs = [] for tenant in response.get('data', []): outputs.append(tenant) table = tableToMarkdown('Tenants:', outputs, headers=['id', 'displayName'], removeNull=True) command_results = CommandResults( outputs_prefix='CiscoStealthwatch.Tenant', outputs_key_field='id', raw_response=response, outputs=outputs, readable_output=table ) return command_results
def cisco_stealthwatch_list_tenants_command(client: Client, tenant_id: str = None) -> CommandResults: """List all tenants (called domains on the Stealthwatch API) Args: client (Client): Cisco Stealthwatch Client tenant_id (str): The id of the tenant to retrieve its information Returns: CommandResults: Raw response, outputs and readable outputs """ if tenant_id: response = client.get_tenant(tenant_id) outputs = response.get('data', []) table = tableToMarkdown(f'Results for tenant {tenant_id}:', outputs, headers=['id', 'displayName'], removeNull=True) command_results = CommandResults( outputs_prefix='CiscoStealthwatch.Tenant', outputs_key_field='id', raw_response=response, outputs=outputs, readable_output=table ) else: response = client.list_tenants() outputs = [] for tenant in response.get('data', []): outputs.append(tenant) table = tableToMarkdown('Tenants:', outputs, headers=['id', 'displayName'], removeNull=True) command_results = CommandResults( outputs_prefix='CiscoStealthwatch.Tenant', outputs_key_field='id', raw_response=response, outputs=outputs, readable_output=table ) return command_results
35,563
def fingerprint(logcan, sendcan): fixed_fingerprint = os.environ.get('FINGERPRINT', "") skip_fw_query = os.environ.get('SKIP_FW_QUERY', False) ecu_rx_addrs = set() if not fixed_fingerprint and not skip_fw_query: # Vin query only reliably works through OBDII bus = 1 cached_params = Params().get("CarParamsCache") if cached_params is not None: cached_params = car.CarParams.from_bytes(cached_params) if cached_params.carName == "mock": cached_params = None if cached_params is not None and len(cached_params.carFw) > 0 and cached_params.carVin is not VIN_UNKNOWN: cloudlog.warning("Using cached CarParams") vin, vin_rx_addr = cached_params.carVin, 0 car_fw = list(cached_params.carFw) else: cloudlog.warning("Getting VIN & FW versions") # Give some time to let sendcan connect to boardd time.sleep(0.2) # Sending a message to the functional addresses solves skipped iso-tp frames send_functional_tester_present(logcan, sendcan, bus) _, vin_rx_addr, vin = get_vin(logcan, sendcan, bus) ecu_rx_addrs = get_present_ecus(logcan, sendcan) car_fw = get_fw_versions_ordered(logcan, sendcan, ecu_rx_addrs) exact_fw_match, fw_candidates = match_fw_to_car(car_fw) else: vin, vin_rx_addr = VIN_UNKNOWN, 0 exact_fw_match, fw_candidates, car_fw = True, set(), [] if not is_valid_vin(vin): cloudlog.event("Malformed VIN", vin=vin, error=True) vin = VIN_UNKNOWN cloudlog.warning("VIN %s", vin) Params().put("CarVin", vin) finger = gen_empty_fingerprint() candidate_cars = {i: all_legacy_fingerprint_cars() for i in [0, 1]} # attempt fingerprint on both bus 0 and 1 frame = 0 frame_fingerprint = 100 # 1s car_fingerprint = None done = False # drain CAN socket so we always get the latest messages messaging.drain_sock_raw(logcan) while not done: a = get_one_can(logcan) for can in a.can: # The fingerprint dict is generated for all buses, this way the car interface # can use it to detect a (valid) multipanda setup and initialize accordingly if can.src < 128: if can.src not in finger: finger[can.src] = {} finger[can.src][can.address] = len(can.dat) for b in candidate_cars: # Ignore extended messages and VIN query response. if can.src == b and can.address < 0x800 and can.address not in (0x7df, 0x7e0, 0x7e8): candidate_cars[b] = eliminate_incompatible_cars(can, candidate_cars[b]) # if we only have one car choice and the time since we got our first # message has elapsed, exit for b in candidate_cars: if len(candidate_cars[b]) == 1 and frame > frame_fingerprint: # fingerprint done car_fingerprint = candidate_cars[b][0] # bail if no cars left or we've been waiting for more than 2s failed = (all(len(cc) == 0 for cc in candidate_cars.values()) and frame > frame_fingerprint) or frame > 200 succeeded = car_fingerprint is not None done = failed or succeeded frame += 1 exact_match = True source = car.CarParams.FingerprintSource.can # If FW query returns exactly 1 candidate, use it if len(fw_candidates) == 1: car_fingerprint = list(fw_candidates)[0] source = car.CarParams.FingerprintSource.fw exact_match = exact_fw_match if fixed_fingerprint: car_fingerprint = fixed_fingerprint source = car.CarParams.FingerprintSource.fixed cloudlog.event("fingerprinted", car_fingerprint=car_fingerprint, source=source, fuzzy=not exact_match, fw_count=len(car_fw), ecu_responses=list(ecu_rx_addrs), vin_rx_addr=vin_rx_addr, error=True) return car_fingerprint, finger, vin, car_fw, source, exact_match
def fingerprint(logcan, sendcan): fixed_fingerprint = os.environ.get('FINGERPRINT', "") skip_fw_query = os.environ.get('SKIP_FW_QUERY', False) ecu_rx_addrs = set() if not fixed_fingerprint and not skip_fw_query: # Vin query only reliably works through OBDII bus = 1 cached_params = Params().get("CarParamsCache") if cached_params is not None: cached_params = car.CarParams.from_bytes(cached_params) if cached_params.carName == "mock": cached_params = None if cached_params is not None and len(cached_params.carFw) > 0 and cached_params.carVin is not VIN_UNKNOWN: cloudlog.warning("Using cached CarParams") vin, vin_rx_addr = cached_params.carVin, 0 car_fw = list(cached_params.carFw) else: cloudlog.warning("Getting VIN & FW versions") # Allow some time to let sendcan connect to boardd time.sleep(0.2) # Sending a message to the functional addresses solves skipped iso-tp frames send_functional_tester_present(logcan, sendcan, bus) _, vin_rx_addr, vin = get_vin(logcan, sendcan, bus) ecu_rx_addrs = get_present_ecus(logcan, sendcan) car_fw = get_fw_versions_ordered(logcan, sendcan, ecu_rx_addrs) exact_fw_match, fw_candidates = match_fw_to_car(car_fw) else: vin, vin_rx_addr = VIN_UNKNOWN, 0 exact_fw_match, fw_candidates, car_fw = True, set(), [] if not is_valid_vin(vin): cloudlog.event("Malformed VIN", vin=vin, error=True) vin = VIN_UNKNOWN cloudlog.warning("VIN %s", vin) Params().put("CarVin", vin) finger = gen_empty_fingerprint() candidate_cars = {i: all_legacy_fingerprint_cars() for i in [0, 1]} # attempt fingerprint on both bus 0 and 1 frame = 0 frame_fingerprint = 100 # 1s car_fingerprint = None done = False # drain CAN socket so we always get the latest messages messaging.drain_sock_raw(logcan) while not done: a = get_one_can(logcan) for can in a.can: # The fingerprint dict is generated for all buses, this way the car interface # can use it to detect a (valid) multipanda setup and initialize accordingly if can.src < 128: if can.src not in finger: finger[can.src] = {} finger[can.src][can.address] = len(can.dat) for b in candidate_cars: # Ignore extended messages and VIN query response. if can.src == b and can.address < 0x800 and can.address not in (0x7df, 0x7e0, 0x7e8): candidate_cars[b] = eliminate_incompatible_cars(can, candidate_cars[b]) # if we only have one car choice and the time since we got our first # message has elapsed, exit for b in candidate_cars: if len(candidate_cars[b]) == 1 and frame > frame_fingerprint: # fingerprint done car_fingerprint = candidate_cars[b][0] # bail if no cars left or we've been waiting for more than 2s failed = (all(len(cc) == 0 for cc in candidate_cars.values()) and frame > frame_fingerprint) or frame > 200 succeeded = car_fingerprint is not None done = failed or succeeded frame += 1 exact_match = True source = car.CarParams.FingerprintSource.can # If FW query returns exactly 1 candidate, use it if len(fw_candidates) == 1: car_fingerprint = list(fw_candidates)[0] source = car.CarParams.FingerprintSource.fw exact_match = exact_fw_match if fixed_fingerprint: car_fingerprint = fixed_fingerprint source = car.CarParams.FingerprintSource.fixed cloudlog.event("fingerprinted", car_fingerprint=car_fingerprint, source=source, fuzzy=not exact_match, fw_count=len(car_fw), ecu_responses=list(ecu_rx_addrs), vin_rx_addr=vin_rx_addr, error=True) return car_fingerprint, finger, vin, car_fw, source, exact_match
52,348
def finalize(visit_id: int, webdriver: WebDriver, extension_socket: clientsocket, sleep: int) -> None: """ Informs the extension that a visit is done """ tab_restart_browser(webdriver) # This doesn't seem to be instant # so we should wait a bit before unsetting the visit_id time.sleep(sleep) msg = {"action": "Finalize", "visit_id": visit_id} extension_socket.send(msg)
def finalize(visit_id: int, webdriver: WebDriver, extension_socket: clientsocket, sleep: int) -> None: """ Informs the extension that a visit is done """ tab_restart_browser(webdriver) # This doesn't immediately stop data saving from the current # visit so we sleep briefly before unsetting the visit_id. # so we should wait a bit before unsetting the visit_id time.sleep(sleep) msg = {"action": "Finalize", "visit_id": visit_id} extension_socket.send(msg)
31,878
def test_dbot_score(): """ Given: - response from MalwareBazaar on hash file When: - Running a file command Then: - creating a CommanResult containing DbotScore and relationship """ mock_response = util_load_json('test_data/response_data_dbot_score.json') result = MalwareBazaar.file_process("094fd325049b8a9cf6d3e5ef2a6d4cc6a567d7d49c35f8bb8dd9e3c6acf3d78d", {}, mock_response) indicator: CommonServerPython.Common.File = result.indicator assert indicator.dbot_score.score == 3
def test_dbot_score(): """ Given: - response from MalwareBazaar on hash file When: - Running a file command Then: - creating a CommanResult containing DbotScore and relationship """ mock_response = util_load_json('test_data/response_data_dbot_score.json') result = MalwareBazaar.file_process("094fd325049b8a9cf6d3e5ef2a6d4cc6a567d7d49c35f8bb8dd9e3c6acf3d78d", {}, mock_response) indicator: Common.File = result.indicator assert indicator.dbot_score.score == 3
52,935
def parse_args(args: Optional[Sequence[str]] = None) -> dict: """Parse atomic-reactor CLI arguments. :param args: iterable of strings to parse as CLI arguments. By default, sys.argv[1:] :return: parsed arguments as a dict """ parser = argparse.ArgumentParser(prog=PROG, description=DESCRIPTION) _add_global_args(parser) # Subcommands (there is only one - 'task') subcommands = parser.add_subparsers(title="subcommands", metavar="subcommand", required=True) task_parser = subcommands.add_parser( "task", help="run a task", description="Run a specific task in the container build process.", ) _add_common_task_args(task_parser) # The individual tasks tasks = task_parser.add_subparsers(title="tasks", metavar="task", required=True) orchestrator = tasks.add_parser( "orchestrator", help="orchestrate a build", description="Orchestrate a binary container build.", ) orchestrator.set_defaults(func=task.orchestrator) worker = tasks.add_parser( "worker", help="run the worker task", description="Run the worker task for a binary container build.", ) worker.set_defaults(func=task.worker) source_container_build = tasks.add_parser( "source-container-build", help="build a source container", description="Build a source container.", ) source_container_build.set_defaults(func=task.source_container_build) source_container_exit = tasks.add_parser( "source-container-exit", help="Source container build exit task.", description="Run plugins while exiting a source container build.", ) source_container_exit.set_defaults(func=task.source_container_exit) clone = tasks.add_parser( "clone", help="Clone source to build", description="Source is cloned by this command and used by rest of the build tasks", ) clone.set_defaults(func=task.clone) binary_container_prebuild = tasks.add_parser( "binary-container-prebuild", help="binary container pre-build step", description="Execute binary container pre-build steps.", ) binary_container_prebuild.set_defaults(func=task.binary_container_prebuild) binary_container_build = tasks.add_parser( "binary-container-build", help="build a binary container", description="Build a binary container.", ) binary_container_build.set_defaults(func=task.binary_container_build) binary_container_build.add_argument('--platform', action="store", help="platform on which to build container") binary_container_postbuild = tasks.add_parser( "binary-container-postbuild", help="binary container post-build step", description="Execute binary container post-build steps.", ) binary_container_postbuild.set_defaults(func=task.binary_container_postbuild) binary_container_exit = tasks.add_parser( "binary-container-exit", help="exit a binary container build", description="Execute binary container exit steps.", ) binary_container_exit.set_defaults(func=task.binary_container_exit) return vars(parser.parse_args(args))
def parse_args(args: Optional[Sequence[str]] = None) -> dict: """Parse atomic-reactor CLI arguments. :param args: iterable of strings to parse as CLI arguments. By default, sys.argv[1:] :return: parsed arguments as a dict """ parser = argparse.ArgumentParser(prog=PROG, description=DESCRIPTION) _add_global_args(parser) # Subcommands (there is only one - 'task') subcommands = parser.add_subparsers(title="subcommands", metavar="subcommand", required=True) task_parser = subcommands.add_parser( "task", help="run a task", description="Run a specific task in the container build process.", ) _add_common_task_args(task_parser) # The individual tasks tasks = task_parser.add_subparsers(title="tasks", metavar="task", required=True) orchestrator = tasks.add_parser( "orchestrator", help="orchestrate a build", description="Orchestrate a binary container build.", ) orchestrator.set_defaults(func=task.orchestrator) worker = tasks.add_parser( "worker", help="run the worker task", description="Run the worker task for a binary container build.", ) worker.set_defaults(func=task.worker) source_container_build = tasks.add_parser( "source-container-build", help="build a source container", description="Build a source container.", ) source_container_build.set_defaults(func=task.source_container_build) source_container_exit = tasks.add_parser( "source-container-exit", help="exit a source container build", description="Execute source container exit steps.", ) source_container_exit.set_defaults(func=task.source_container_exit) clone = tasks.add_parser( "clone", help="Clone source to build", description="Source is cloned by this command and used by rest of the build tasks", ) clone.set_defaults(func=task.clone) binary_container_prebuild = tasks.add_parser( "binary-container-prebuild", help="binary container pre-build step", description="Execute binary container pre-build steps.", ) binary_container_prebuild.set_defaults(func=task.binary_container_prebuild) binary_container_build = tasks.add_parser( "binary-container-build", help="build a binary container", description="Build a binary container.", ) binary_container_build.set_defaults(func=task.binary_container_build) binary_container_build.add_argument('--platform', action="store", help="platform on which to build container") binary_container_postbuild = tasks.add_parser( "binary-container-postbuild", help="binary container post-build step", description="Execute binary container post-build steps.", ) binary_container_postbuild.set_defaults(func=task.binary_container_postbuild) binary_container_exit = tasks.add_parser( "binary-container-exit", help="exit a binary container build", description="Execute binary container exit steps.", ) binary_container_exit.set_defaults(func=task.binary_container_exit) return vars(parser.parse_args(args))
47,093
def is_training_run_on_sagemaker(): return True if "SAGEMAKER_JOB_NAME" in os.environ and os.environ["DISABLE_TELEMETRY"] is False else False
def is_training_run_on_sagemaker(): return ("SAGEMAKER_JOB_NAME" in os.environ and not DISABLE_TELEMETRY)
28,203
def tprint(string, dt=1, tag='default'): """ Print progress of a loop every dt seconds. """ ptime = _tprint_times.get(tag, 0) if (time.time() - ptime) > dt: print(string) _tprint_times[tag] = time.time()
def tprint(string, dt=1, tag='default'): """Print progress of a loop every ``dt`` seconds.""" ptime = _tprint_times.get(tag, 0) if (time.time() - ptime) > dt: print(string) _tprint_times[tag] = time.time()
7,158
def autolevel(image, selem, out=None, mask=None, shift_x=False, shift_y=False): """Auto-level image using local histogram. This filter locally stretches the histogram of grey values to cover the entire range of values from "white" to "black". Parameters ---------- image : 2-D array (integer, float or boolean) Input image. selem : 2-D array (integer, float or boolean) The neighborhood expressed as a 2-D array of 1's and 0's. out : 2-D array (integer, float or boolean) If None, a new array is allocated. mask : ndarray (integer, float or boolean) Mask array that defines (>0) area of the image included in the local neighborhood. If None, the complete image is used (default). shift_x, shift_y : int Offset added to the structuring element center point. Shift is bounded to the structuring element sizes (center must be inside the given structuring element). Returns ------- out : 2-D array (same dtype as input image) Output image. Examples -------- >>> from skimage import data >>> from skimage.morphology import disk >>> from skimage.filters.rank import autolevel >>> img = data.camera() >>> auto = autolevel(img, disk(5)) """ return _apply_scalar_per_pixel(generic_cy._autolevel, image, selem, out=out, mask=mask, shift_x=shift_x, shift_y=shift_y)
def autolevel(image, selem, out=None, mask=None, shift_x=False, shift_y=False): """Auto-level image using local histogram. This filter locally stretches the histogram of gray values to cover the entire range of values from "white" to "black". Parameters ---------- image : 2-D array (integer, float or boolean) Input image. selem : 2-D array (integer, float or boolean) The neighborhood expressed as a 2-D array of 1's and 0's. out : 2-D array (integer, float or boolean) If None, a new array is allocated. mask : ndarray (integer, float or boolean) Mask array that defines (>0) area of the image included in the local neighborhood. If None, the complete image is used (default). shift_x, shift_y : int Offset added to the structuring element center point. Shift is bounded to the structuring element sizes (center must be inside the given structuring element). Returns ------- out : 2-D array (same dtype as input image) Output image. Examples -------- >>> from skimage import data >>> from skimage.morphology import disk >>> from skimage.filters.rank import autolevel >>> img = data.camera() >>> auto = autolevel(img, disk(5)) """ return _apply_scalar_per_pixel(generic_cy._autolevel, image, selem, out=out, mask=mask, shift_x=shift_x, shift_y=shift_y)
38,511
def vertexes_of_convex_domain(A: np.ndarray, b: np.ndarray) -> np.ndarray: """Find the vertexes of a convex domain specified as an intersection of half spaces. The function assumes the domain is defined by inequalities on the form A * x + b <= 0 For more information, see scipy.spatial functions HalfspaceIntersection. The function has been tested for 2d and 3d domains. Error messages from HalfspaceIntersection are quite possibly from from qhull. These will often reflect errors in the way the matrix A and b are set up (e.g. sign errors that imply that the inequalities do not form a closed domain). Parameters ---------- A : np.ndarray, size num_planes x num_dim Matrix of normal vectors (in rows) for the half planes. Should be oriented so that A * x + b < 0 b : np.ndarray, size num_planes Constants used to define inequalities of the half spaces. Should be scaled so that A * x + b < 0. """ b = b.reshape((-1, 1)) # First, find an interior point of the half space. For this we could have used # the function half_space_interior_point, but that function is heavily geared # towards 3d domains, so we prefer the simpler option below. # Find the point that minimizes the distance from all half planes; this should # be a point in the middle (somehow defined) of the domain. fun = lambda x: np.linalg.norm(A.dot(x.reshape((-1, 1))) + b) # Use scipy optimization to find an interior point to the half space. interior_point = optimize.minimize(fun, np.zeros(A.shape[1])).x # Set up constraints on the format that scipy.spatial HalfspaceIntersection # expects constraints = np.hstack((A, b)) # Get hold of domain (this will call qhull) domain = HalfspaceIntersection(constraints, interior_point) # Return intersections in the expected format (thus the transpose) return domain.intersections.T
def vertexes_of_convex_domain(A: np.ndarray, b: np.ndarray) -> np.ndarray: """Find the vertexes of a convex domain specified as an intersection of half spaces. The function assumes the domain is defined by inequalities on the form A * x + b <= 0 For more information, see scipy.spatial functions HalfspaceIntersection. The function has been tested for 2d and 3d domains. Error messages from HalfspaceIntersection are quite possibly from qhull. These will often reflect errors in the way the matrix A and b are set up (e.g. sign errors that imply that the inequalities do not form a closed domain). Parameters ---------- A : np.ndarray, size num_planes x num_dim Matrix of normal vectors (in rows) for the half planes. Should be oriented so that A * x + b < 0 b : np.ndarray, size num_planes Constants used to define inequalities of the half spaces. Should be scaled so that A * x + b < 0. """ b = b.reshape((-1, 1)) # First, find an interior point of the half space. For this we could have used # the function half_space_interior_point, but that function is heavily geared # towards 3d domains, so we prefer the simpler option below. # Find the point that minimizes the distance from all half planes; this should # be a point in the middle (somehow defined) of the domain. fun = lambda x: np.linalg.norm(A.dot(x.reshape((-1, 1))) + b) # Use scipy optimization to find an interior point to the half space. interior_point = optimize.minimize(fun, np.zeros(A.shape[1])).x # Set up constraints on the format that scipy.spatial HalfspaceIntersection # expects constraints = np.hstack((A, b)) # Get hold of domain (this will call qhull) domain = HalfspaceIntersection(constraints, interior_point) # Return intersections in the expected format (thus the transpose) return domain.intersections.T
43,354
def run_cli(filename, template, rules, regions, override_spec, build_graph, mandatory_rules=None): """Process args and run""" template_obj = Template(filename, template, regions) customMatches = cfnlint.custom_rules.check_custom_rules('custom_rules.txt', template_obj) if override_spec: cfnlint.helpers.override_specs(override_spec) if build_graph: template_obj.build_graph() return customMatches + run_checks(filename, template, rules, regions, mandatory_rules)
def run_cli(filename, template, rules, regions, override_spec, build_graph, mandatory_rules=None): """Process args and run""" template_obj = Template(filename, template, regions) custom_matches = cfnlint.custom_rules.check('custom_rules.txt', template_obj) if override_spec: cfnlint.helpers.override_specs(override_spec) if build_graph: template_obj.build_graph() return customMatches + run_checks(filename, template, rules, regions, mandatory_rules)
766
def get_fnames(name='small_64D'): """Provide filenames of some datasets or other useful parametrisations. Parameters ---------- name : str the filename/s of which dataset to return, one of: 'small_64D' small region of interest nifti,bvecs,bvals 64 directions 'small_101D' small region of interest nifti,bvecs,bvals 101 directions 'aniso_vox' volume with anisotropic voxel size as Nifti 'fornix' 300 tracks in Trackvis format (from Pittsburgh Brain Competition) 'gqi_vectors' the scanner wave vectors needed for a GQI acquisitions of 101 directions tested on Siemens 3T Trio 'small_25' small ROI (10x8x2) DTI data (b value 2000, 25 directions) 'test_piesno' slice of N=8, K=14 diffusion data 'reg_c' small 2D image used for validating registration 'reg_o' small 2D image used for validation registration 'cb_2' two vectorized cingulum bundles Returns ------- fnames : tuple filenames for dataset Examples ---------- >>> import numpy as np >>> from dipy.io.image import load_nifti >>> from dipy.data import get_fnames >>> fimg, fbvals, fbvecs = get_fnames('small_101D') >>> bvals=np.loadtxt(fbvals) >>> bvecs=np.loadtxt(fbvecs).T >>> data, affine = load_nifti(fimg) >>> data.shape == (6, 10, 10, 102) True >>> bvals.shape == (102,) True >>> bvecs.shape == (102, 3) True """ if name == 'small_64D': fbvals = pjoin(DATA_DIR, 'small_64D.bval') fbvecs = pjoin(DATA_DIR, 'small_64D.bvec') fimg = pjoin(DATA_DIR, 'small_64D.nii') return fimg, fbvals, fbvecs if name == '55dir_grad.bvec': return pjoin(DATA_DIR, '55dir_grad.bvec') if name == 'small_101D': fbvals = pjoin(DATA_DIR, 'small_101D.bval') fbvecs = pjoin(DATA_DIR, 'small_101D.bvec') fimg = pjoin(DATA_DIR, 'small_101D.nii.gz') return fimg, fbvals, fbvecs if name == 'aniso_vox': return pjoin(DATA_DIR, 'aniso_vox.nii.gz') if name == 'ascm_test': return pjoin(DATA_DIR, 'ascm_out_test.nii.gz') if name == 'fornix': return pjoin(DATA_DIR, 'tracks300.trk') if name == 'gqi_vectors': return pjoin(DATA_DIR, 'ScannerVectors_GQI101.txt') if name == 'dsi515btable': return pjoin(DATA_DIR, 'dsi515_b_table.txt') if name == 'dsi4169btable': return pjoin(DATA_DIR, 'dsi4169_b_table.txt') if name == 'grad514': return pjoin(DATA_DIR, 'grad_514.txt') if name == "small_25": fbvals = pjoin(DATA_DIR, 'small_25.bval') fbvecs = pjoin(DATA_DIR, 'small_25.bvec') fimg = pjoin(DATA_DIR, 'small_25.nii.gz') return fimg, fbvals, fbvecs if name == 'small_25_streamlines': fstreamlines = pjoin(DATA_DIR, 'EuDX_small_25.trk') return fstreamlines if name == "S0_10": fimg = pjoin(DATA_DIR, 'S0_10slices.nii.gz') return fimg if name == "test_piesno": fimg = pjoin(DATA_DIR, 'test_piesno.nii.gz') return fimg if name == "reg_c": return pjoin(DATA_DIR, 'C.npy') if name == "reg_o": return pjoin(DATA_DIR, 'circle.npy') if name == 'cb_2': return pjoin(DATA_DIR, 'cb_2.npz') if name == "t1_coronal_slice": return pjoin(DATA_DIR, 't1_coronal_slice.npy') if name == 'scil_b0': files, folder = fetch_scil_b0() files = files['datasets_multi-site_all_companies.zip'][2] files = [pjoin(folder, f) for f in files] return [f for f in files if os.path.isfile(f)] if name == 'stanford_hardi': files, folder = fetch_stanford_hardi() fraw = pjoin(folder, 'HARDI150.nii.gz') fbval = pjoin(folder, 'HARDI150.bval') fbvec = pjoin(folder, 'HARDI150.bvec') return fraw, fbval, fbvec if name == 'taiwan_ntu_dsi': files, folder = fetch_taiwan_ntu_dsi() fraw = pjoin(folder, 'DSI203.nii.gz') fbval = pjoin(folder, 'DSI203.bval') fbvec = pjoin(folder, 'DSI203.bvec') return fraw, fbval, fbvec if name == 'sherbrooke_3shell': files, folder = fetch_sherbrooke_3shell() fraw = pjoin(folder, 'HARDI193.nii.gz') fbval = pjoin(folder, 'HARDI193.bval') fbvec = pjoin(folder, 'HARDI193.bvec') return fraw, fbval, fbvec if name == 'isbi2013_2shell': files, folder = fetch_isbi2013_2shell() fraw = pjoin(folder, 'phantom64.nii.gz') fbval = pjoin(folder, 'phantom64.bval') fbvec = pjoin(folder, 'phantom64.bvec') return fraw, fbval, fbvec if name == 'stanford_labels': files, folder = fetch_stanford_labels() return pjoin(folder, "aparc-reduced.nii.gz") if name == 'syn_data': files, folder = fetch_syn_data() t1_name = pjoin(folder, 't1.nii.gz') b0_name = pjoin(folder, 'b0.nii.gz') return t1_name, b0_name if name == 'stanford_t1': files, folder = fetch_stanford_t1() return pjoin(folder, 't1.nii.gz') if name == 'stanford_pve_maps': files, folder = fetch_stanford_pve_maps() f_pve_csf = pjoin(folder, 'pve_csf.nii.gz') f_pve_gm = pjoin(folder, 'pve_gm.nii.gz') f_pve_wm = pjoin(folder, 'pve_wm.nii.gz') return f_pve_csf, f_pve_gm, f_pve_wm if name == 'ivim': files, folder = fetch_ivim() fraw = pjoin(folder, 'ivim.nii.gz') fbval = pjoin(folder, 'ivim.bval') fbvec = pjoin(folder, 'ivim.bvec') return fraw, fbval, fbvec if name == 'tissue_data': files, folder = fetch_tissue_data() t1_name = pjoin(folder, 'tissue_data', 't1_brain.nii.gz') t1d_name = pjoin(folder, 'tissue_data', 't1_brain_denoised.nii.gz') ap_name = pjoin(folder, 'tissue_data', 'power_map.nii.gz') return t1_name, t1d_name, ap_name if name == 'cfin_multib': files, folder = fetch_cfin_multib() t1_name = pjoin(folder, 'T1.nii') fraw = pjoin(folder, '__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.nii') fbval = pjoin(folder, '__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.bval') fbvec = pjoin(folder, '__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.bvec') return fraw, fbval, fbvec, t1_name if name == 'target_tractrogram_hcp': files, folder = fetch_target_tractogram_hcp() return pjoin(folder, 'target_tractogram_hcp', 'hcp_tractogram', 'streamlines.trk') if name == 'bundle_atlas_hcp842': files, folder = fetch_bundle_atlas_hcp842() return get_bundle_atlas_hcp842()
def get_fnames(name='small_64D'): """Provides full paths to example datasets. Parameters ---------- name : str the filename/s of which dataset to return, one of: 'small_64D' small region of interest nifti,bvecs,bvals 64 directions 'small_101D' small region of interest nifti,bvecs,bvals 101 directions 'aniso_vox' volume with anisotropic voxel size as Nifti 'fornix' 300 tracks in Trackvis format (from Pittsburgh Brain Competition) 'gqi_vectors' the scanner wave vectors needed for a GQI acquisitions of 101 directions tested on Siemens 3T Trio 'small_25' small ROI (10x8x2) DTI data (b value 2000, 25 directions) 'test_piesno' slice of N=8, K=14 diffusion data 'reg_c' small 2D image used for validating registration 'reg_o' small 2D image used for validation registration 'cb_2' two vectorized cingulum bundles Returns ------- fnames : tuple filenames for dataset Examples ---------- >>> import numpy as np >>> from dipy.io.image import load_nifti >>> from dipy.data import get_fnames >>> fimg, fbvals, fbvecs = get_fnames('small_101D') >>> bvals=np.loadtxt(fbvals) >>> bvecs=np.loadtxt(fbvecs).T >>> data, affine = load_nifti(fimg) >>> data.shape == (6, 10, 10, 102) True >>> bvals.shape == (102,) True >>> bvecs.shape == (102, 3) True """ if name == 'small_64D': fbvals = pjoin(DATA_DIR, 'small_64D.bval') fbvecs = pjoin(DATA_DIR, 'small_64D.bvec') fimg = pjoin(DATA_DIR, 'small_64D.nii') return fimg, fbvals, fbvecs if name == '55dir_grad.bvec': return pjoin(DATA_DIR, '55dir_grad.bvec') if name == 'small_101D': fbvals = pjoin(DATA_DIR, 'small_101D.bval') fbvecs = pjoin(DATA_DIR, 'small_101D.bvec') fimg = pjoin(DATA_DIR, 'small_101D.nii.gz') return fimg, fbvals, fbvecs if name == 'aniso_vox': return pjoin(DATA_DIR, 'aniso_vox.nii.gz') if name == 'ascm_test': return pjoin(DATA_DIR, 'ascm_out_test.nii.gz') if name == 'fornix': return pjoin(DATA_DIR, 'tracks300.trk') if name == 'gqi_vectors': return pjoin(DATA_DIR, 'ScannerVectors_GQI101.txt') if name == 'dsi515btable': return pjoin(DATA_DIR, 'dsi515_b_table.txt') if name == 'dsi4169btable': return pjoin(DATA_DIR, 'dsi4169_b_table.txt') if name == 'grad514': return pjoin(DATA_DIR, 'grad_514.txt') if name == "small_25": fbvals = pjoin(DATA_DIR, 'small_25.bval') fbvecs = pjoin(DATA_DIR, 'small_25.bvec') fimg = pjoin(DATA_DIR, 'small_25.nii.gz') return fimg, fbvals, fbvecs if name == 'small_25_streamlines': fstreamlines = pjoin(DATA_DIR, 'EuDX_small_25.trk') return fstreamlines if name == "S0_10": fimg = pjoin(DATA_DIR, 'S0_10slices.nii.gz') return fimg if name == "test_piesno": fimg = pjoin(DATA_DIR, 'test_piesno.nii.gz') return fimg if name == "reg_c": return pjoin(DATA_DIR, 'C.npy') if name == "reg_o": return pjoin(DATA_DIR, 'circle.npy') if name == 'cb_2': return pjoin(DATA_DIR, 'cb_2.npz') if name == "t1_coronal_slice": return pjoin(DATA_DIR, 't1_coronal_slice.npy') if name == 'scil_b0': files, folder = fetch_scil_b0() files = files['datasets_multi-site_all_companies.zip'][2] files = [pjoin(folder, f) for f in files] return [f for f in files if os.path.isfile(f)] if name == 'stanford_hardi': files, folder = fetch_stanford_hardi() fraw = pjoin(folder, 'HARDI150.nii.gz') fbval = pjoin(folder, 'HARDI150.bval') fbvec = pjoin(folder, 'HARDI150.bvec') return fraw, fbval, fbvec if name == 'taiwan_ntu_dsi': files, folder = fetch_taiwan_ntu_dsi() fraw = pjoin(folder, 'DSI203.nii.gz') fbval = pjoin(folder, 'DSI203.bval') fbvec = pjoin(folder, 'DSI203.bvec') return fraw, fbval, fbvec if name == 'sherbrooke_3shell': files, folder = fetch_sherbrooke_3shell() fraw = pjoin(folder, 'HARDI193.nii.gz') fbval = pjoin(folder, 'HARDI193.bval') fbvec = pjoin(folder, 'HARDI193.bvec') return fraw, fbval, fbvec if name == 'isbi2013_2shell': files, folder = fetch_isbi2013_2shell() fraw = pjoin(folder, 'phantom64.nii.gz') fbval = pjoin(folder, 'phantom64.bval') fbvec = pjoin(folder, 'phantom64.bvec') return fraw, fbval, fbvec if name == 'stanford_labels': files, folder = fetch_stanford_labels() return pjoin(folder, "aparc-reduced.nii.gz") if name == 'syn_data': files, folder = fetch_syn_data() t1_name = pjoin(folder, 't1.nii.gz') b0_name = pjoin(folder, 'b0.nii.gz') return t1_name, b0_name if name == 'stanford_t1': files, folder = fetch_stanford_t1() return pjoin(folder, 't1.nii.gz') if name == 'stanford_pve_maps': files, folder = fetch_stanford_pve_maps() f_pve_csf = pjoin(folder, 'pve_csf.nii.gz') f_pve_gm = pjoin(folder, 'pve_gm.nii.gz') f_pve_wm = pjoin(folder, 'pve_wm.nii.gz') return f_pve_csf, f_pve_gm, f_pve_wm if name == 'ivim': files, folder = fetch_ivim() fraw = pjoin(folder, 'ivim.nii.gz') fbval = pjoin(folder, 'ivim.bval') fbvec = pjoin(folder, 'ivim.bvec') return fraw, fbval, fbvec if name == 'tissue_data': files, folder = fetch_tissue_data() t1_name = pjoin(folder, 'tissue_data', 't1_brain.nii.gz') t1d_name = pjoin(folder, 'tissue_data', 't1_brain_denoised.nii.gz') ap_name = pjoin(folder, 'tissue_data', 'power_map.nii.gz') return t1_name, t1d_name, ap_name if name == 'cfin_multib': files, folder = fetch_cfin_multib() t1_name = pjoin(folder, 'T1.nii') fraw = pjoin(folder, '__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.nii') fbval = pjoin(folder, '__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.bval') fbvec = pjoin(folder, '__DTI_AX_ep2d_2_5_iso_33d_20141015095334_4.bvec') return fraw, fbval, fbvec, t1_name if name == 'target_tractrogram_hcp': files, folder = fetch_target_tractogram_hcp() return pjoin(folder, 'target_tractogram_hcp', 'hcp_tractogram', 'streamlines.trk') if name == 'bundle_atlas_hcp842': files, folder = fetch_bundle_atlas_hcp842() return get_bundle_atlas_hcp842()
16,076
def process_turn_on_params( siren: SirenEntity, params: SirenTurnOnServiceParameters ) -> SirenTurnOnServiceParameters: """ Process turn_on service params. Filters out unsupported params and validates the rest. """ supported_features = siren.supported_features or 0 if not supported_features & SUPPORT_TONES: params.pop(ATTR_TONE, None) elif (tone := params.get(ATTR_TONE)) is not None: # Raise an exception if the specified tone isn't available is_tone_dict_value = bool( isinstance(siren.available_tones, dict) and tone in siren.available_tones.values() ) if not ( siren.available_tones and (tone in siren.available_tones or is_tone_dict_value) ): raise ValueError( f"Invalid tone specified for entity {siren.entity_id}: {tone}, " "check the available_tones attribute for valid tones to pass in" ) # If available tones is a dict, and the tone provided is a dict value, we need # to transform it to the corresponding dict key before returning if is_tone_dict_value: assert isinstance(siren.available_tones, dict) params[ATTR_TONE] = next( key for key, value in siren.available_tones.items() if value == tone ) if not supported_features & SUPPORT_DURATION: params.pop(ATTR_DURATION, None) if not supported_features & SUPPORT_VOLUME_SET: params.pop(ATTR_VOLUME_LEVEL, None) return params
def process_turn_on_params( siren: SirenEntity, params: SirenTurnOnServiceParameters ) -> SirenTurnOnServiceParameters: """ Process turn_on service params. Filters out unsupported params and validates the rest. """ supported_features = siren.supported_features or 0 if not supported_features & SUPPORT_TONES: params.pop(ATTR_TONE, None) elif (tone := params.get(ATTR_TONE)) is not None: # Raise an exception if the specified tone isn't available is_tone_dict_value = bool( isinstance(siren.available_tones, dict) and tone in siren.available_tones.values() ) if not ( siren.available_tones or tone not in siren.available_tones or not is_tone_dict_value ): raise ValueError( f"Invalid tone specified for entity {siren.entity_id}: {tone}, " "check the available_tones attribute for valid tones to pass in" ) # If available tones is a dict, and the tone provided is a dict value, we need # to transform it to the corresponding dict key before returning if is_tone_dict_value: assert isinstance(siren.available_tones, dict) params[ATTR_TONE] = next( key for key, value in siren.available_tones.items() if value == tone ) if not supported_features & SUPPORT_DURATION: params.pop(ATTR_DURATION, None) if not supported_features & SUPPORT_VOLUME_SET: params.pop(ATTR_VOLUME_LEVEL, None) return params
29,721
def _running_process_matches(handle): """Check whether the current process is same as of handle's Parameters ---------- handle: ``pyvnml.nvml.LP_struct_c_nvmlDevice_t`` NVML handle to CUDA device Returns ------- out: bool ``True`` if device handle's has a CUDA context on the running process, or ``False`` otherwise. """ init_once() if hasattr(pynvml, "nvmlDeviceGetComputeRunningProcesses_v2"): running_processes = pynvml.nvmlDeviceGetComputeRunningProcesses_v2(handle) else: running_processes = pynvml.nvmlDeviceGetComputeRunningProcesses(handle) for proc in running_processes: if os.getpid() == proc.pid: return True return False
def _running_process_matches(handle): """Check whether the current process is same as of handle's Parameters ---------- handle: ``pyvnml.nvml.LP_struct_c_nvmlDevice_t`` NVML handle to CUDA device Returns ------- out: bool ``True`` if device handle's has a CUDA context on the running process, or ``False`` otherwise. """ init_once() if hasattr(pynvml, "nvmlDeviceGetComputeRunningProcesses_v2"): running_processes = pynvml.nvmlDeviceGetComputeRunningProcesses_v2(handle) else: running_processes = pynvml.nvmlDeviceGetComputeRunningProcesses(handle) return any(os.getpid() == proc.pid for proc in running_processes)
49,619
def auto_chunks(chunks, shape, limit, dtype, previous_chunks=None): """Determine automatic chunks This takes in a chunks value that contains ``"auto"`` values in certain dimensions and replaces those values with concrete dimension sizes that try to get chunks to be of a certain size in bytes, provided by the ``limit=`` keyword. If multiple dimensions are marked as ``"auto"`` then they will all respond to meet the desired byte limit, trying to respect the aspect ratio of their dimensions in ``previous_chunks=``, if given. Parameters ---------- chunks: Tuple A tuple of either dimensions or tuples of explicit chunk dimensions Some entries should be "auto" shape: Tuple[int] limit: int, str The maximum allowable size of a chunk in bytes previous_chunks: Tuple[Tuple[int]] See also -------- normalize_chunks: for full docstring and parameters """ if previous_chunks is not None: previous_chunks = tuple( c if isinstance(c, tuple) else (c,) for c in previous_chunks ) chunks = list(chunks) autos = {i for i, c in enumerate(chunks) if c == "auto"} if not autos: return tuple(chunks) if limit is None: limit = config.get("array.chunk-size") if isinstance(limit, str): limit = parse_bytes(limit) if dtype is None: raise TypeError("dtype must be known for auto-chunking") if dtype.hasobject: raise NotImplementedError( "Can not use auto rechunking with object dtype. " "We are unable to estimate the size in bytes of object data" ) for x in tuple(chunks) + tuple(shape): if ( isinstance(x, Number) and np.isnan(x) or isinstance(x, tuple) and np.isnan(x).any() ): raise ValueError( "Can not perform automatic rechunking with unknown " "(nan) chunk sizes.%s" % unknown_chunk_message ) limit = max(1, limit) largest_block = np.prod( [cs if isinstance(cs, Number) else max(cs) for cs in chunks if cs != "auto"] ) if previous_chunks: # Base ideal ratio on the median chunk size of the previous chunks result = {a: np.median(previous_chunks[a]) for a in autos} ideal_shape = [] for i, s in enumerate(shape): chunk_frequencies = frequencies(previous_chunks[i]) mode, count = max(chunk_frequencies.items(), key=lambda kv: kv[1]) if mode > 1 and count >= len(previous_chunks[i]) / 2: ideal_shape.append(mode) else: ideal_shape.append(s) # How much larger or smaller the ideal chunk size is relative to what we have now multiplier = _compute_multiplier(limit, dtype, largest_block, result) last_multiplier = 0 last_autos = set() while ( multiplier != last_multiplier or autos != last_autos ): # while things change last_multiplier = multiplier # record previous values last_autos = set(autos) # record previous values # Expand or contract each of the dimensions appropriately for a in sorted(autos): if ideal_shape[a] == 0: result[a] = 0 continue proposed = result[a] * multiplier ** (1 / len(autos)) if proposed > shape[a]: # we've hit the shape boundary autos.remove(a) largest_block *= shape[a] chunks[a] = shape[a] del result[a] else: result[a] = round_to(proposed, ideal_shape[a]) # recompute how much multiplier we have left, repeat multiplier = _compute_multiplier(limit, dtype, largest_block, result) for k, v in result.items(): chunks[k] = v return tuple(chunks) else: # Check if dtype.itemsize is greater than 0 assert dtype.itemsize > 0, "dtype.itemsize must be > 0" size = (limit / dtype.itemsize / largest_block) ** (1 / len(autos)) small = [i for i in autos if shape[i] < size] if small: for i in small: chunks[i] = (shape[i],) return auto_chunks(chunks, shape, limit, dtype) for i in autos: chunks[i] = round_to(size, shape[i]) return tuple(chunks)
def auto_chunks(chunks, shape, limit, dtype, previous_chunks=None): """Determine automatic chunks This takes in a chunks value that contains ``"auto"`` values in certain dimensions and replaces those values with concrete dimension sizes that try to get chunks to be of a certain size in bytes, provided by the ``limit=`` keyword. If multiple dimensions are marked as ``"auto"`` then they will all respond to meet the desired byte limit, trying to respect the aspect ratio of their dimensions in ``previous_chunks=``, if given. Parameters ---------- chunks: Tuple A tuple of either dimensions or tuples of explicit chunk dimensions Some entries should be "auto" shape: Tuple[int] limit: int, str The maximum allowable size of a chunk in bytes previous_chunks: Tuple[Tuple[int]] See also -------- normalize_chunks: for full docstring and parameters """ if previous_chunks is not None: previous_chunks = tuple( c if isinstance(c, tuple) else (c,) for c in previous_chunks ) chunks = list(chunks) autos = {i for i, c in enumerate(chunks) if c == "auto"} if not autos: return tuple(chunks) if limit is None: limit = config.get("array.chunk-size") if isinstance(limit, str): limit = parse_bytes(limit) if dtype is None: raise TypeError("dtype must be known for auto-chunking") if dtype.hasobject: raise NotImplementedError( "Can not use auto rechunking with object dtype. " "We are unable to estimate the size in bytes of object data" ) for x in tuple(chunks) + tuple(shape): if ( isinstance(x, Number) and np.isnan(x) or isinstance(x, tuple) and np.isnan(x).any() ): raise ValueError( "Can not perform automatic rechunking with unknown " "(nan) chunk sizes.%s" % unknown_chunk_message ) limit = max(1, limit) largest_block = np.prod( [cs if isinstance(cs, Number) else max(cs) for cs in chunks if cs != "auto"] ) if previous_chunks: # Base ideal ratio on the median chunk size of the previous chunks result = {a: np.median(previous_chunks[a]) for a in autos} ideal_shape = [] for i, s in enumerate(shape): chunk_frequencies = frequencies(previous_chunks[i]) mode, count = max(chunk_frequencies.items(), key=lambda kv: kv[1]) if mode > 1 and count >= len(previous_chunks[i]) / 2: ideal_shape.append(mode) else: ideal_shape.append(s) # How much larger or smaller the ideal chunk size is relative to what we have now multiplier = _compute_multiplier(limit, dtype, largest_block, result) last_multiplier = 0 last_autos = set() while ( multiplier != last_multiplier or autos != last_autos ): # while things change last_multiplier = multiplier # record previous values last_autos = set(autos) # record previous values # Expand or contract each of the dimensions appropriately for a in sorted(autos): if ideal_shape[a] == 0: result[a] = 0 continue proposed = result[a] * multiplier ** (1 / len(autos)) if proposed > shape[a]: # we've hit the shape boundary autos.remove(a) largest_block *= shape[a] chunks[a] = shape[a] del result[a] else: result[a] = round_to(proposed, ideal_shape[a]) # recompute how much multiplier we have left, repeat multiplier = _compute_multiplier(limit, dtype, largest_block, result) for k, v in result.items(): chunks[k] = v return tuple(chunks) else: # Check if dtype.itemsize is greater than 0 if dtype.itemsize == 0: raise ValueError( "auto-chunking with dtype.itemsize == 0 is not supported, please pass in `chunks` explicitly" ) size = (limit / dtype.itemsize / largest_block) ** (1 / len(autos)) small = [i for i in autos if shape[i] < size] if small: for i in small: chunks[i] = (shape[i],) return auto_chunks(chunks, shape, limit, dtype) for i in autos: chunks[i] = round_to(size, shape[i]) return tuple(chunks)
54,063
def add_random_edge(edge_index, p: float = 0.2, force_undirected: bool = False, num_nodes: Optional[Union[Tuple[int], int]] = None, training: bool = True) -> Tuple[Tensor, Tensor]: r"""Randomly adds edges of ratio :obj:`p` into the existing edges :obj:`edge_index`. The method returns (1) the retained :obj:`edge_index`, (2) the added edge indices. Args: edge_index (LongTensor): The edge indices. p (float, optional): Ratio of added edges to the existing edges. (default: :obj:`0.2`) force_undirected (bool, optional): If set to :obj:`True`, will either drop or keep both edges of an undirected edge. (default: :obj:`False`) num_nodes (int, Tuple[int], optional): The overall number of nodes, *i.e.* :obj:`max_val + 1`, or the number of source and destination nodes, *i.e.* :obj:`(max_src_val + 1, max_dst_val + 1)` of :attr:`edge_index`. (default: :obj:`None`) training (bool, optional): If set to :obj:`False`, this operation is a no-op. (default: :obj:`True`) :rtype: (:class:`LongTensor`, :class:`LongTensor`) Examples: >>> # Standard case >>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5) >>> edge_index tensor([[0, 1, 1, 2, 2, 3, 2, 1, 3], [1, 0, 2, 1, 3, 2, 0, 2, 1]]) >>> added_edges tensor([[2, 1, 3], [0, 2, 1]]) >>> # The returned graph is kept undirected >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5, ... force_undirected=True) >>> edge_index tensor([[0, 1, 1, 2, 2, 3, 2, 1, 3, 0, 2, 1], [1, 0, 2, 1, 3, 2, 0, 2, 1, 2, 1, 3]]) >>> added_edges tensor([[2, 1, 3, 0, 2, 1], [0, 2, 1, 2, 1, 3]]) >>> # For bipartite graphs >>> edge_index = torch.tensor([[0, 1, 2, 3, 4, 5], ... [2, 3, 1, 4, 2, 1]]) >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5, ... num_nodes=(6, 5)) >>> edge_index tensor([[0, 1, 2, 3, 4, 5, 3, 4, 1], [2, 3, 1, 4, 2, 1, 1, 3, 2]]) >>> added_edges tensor([[3, 4, 1], [1, 3, 2]]) """ if p < 0. or p > 1.: raise ValueError(f'Ratio of added edges has to be between 0 and 1 ' f'(got {p}') device = edge_index.device if not training or p == 0.0: edge_index_to_add = torch.tensor([], device=device).view(2, 0) return edge_index, edge_index_to_add num_nodes = (num_nodes, num_nodes) if not isinstance(num_nodes, tuple) else num_nodes num_src_nodes = num_nodes[0] or edge_index[0].max().item() + 1 num_dst_nodes = num_nodes[1] or edge_index[1].max().item() + 1 num_edges_to_add = round(edge_index.size(1) * p) row = torch.randint(0, num_src_nodes, size=(num_edges_to_add, )) col = torch.randint(0, num_dst_nodes, size=(num_edges_to_add, )) if force_undirected: edge_index_to_add = torch.stack( [torch.cat([row, col], dim=0), torch.cat([col, row], dim=0)], dim=0).to(device) else: edge_index_to_add = torch.stack([row, col], dim=0).to(device) edge_index = torch.cat([edge_index, edge_index_to_add], dim=1) return edge_index, edge_index_to_add
def add_random_edge(edge_index, p: float = 0.2, force_undirected: bool = False, num_nodes: Optional[Union[Tuple[int], int]] = None, training: bool = True) -> Tuple[Tensor, Tensor]: r"""Randomly adds edges of ratio :obj:`p` into the existing edges :obj:`edge_index`. The method returns (1) the retained :obj:`edge_index`, (2) the added edge indices. Args: edge_index (LongTensor): The edge indices. p (float, optional): Ratio of added edges to the existing edges. (default: :obj:`0.2`) force_undirected (bool, optional): If set to :obj:`True`, will either drop or keep both edges of an undirected edge. (default: :obj:`False`) num_nodes (int, Tuple[int], optional): The overall number of nodes, *i.e.* :obj:`max_val + 1`, or the number of source and destination nodes, *i.e.* :obj:`(max_src_val + 1, max_dst_val + 1)` of :attr:`edge_index`. (default: :obj:`None`) training (bool, optional): If set to :obj:`False`, this operation is a no-op. (default: :obj:`True`) :rtype: (:class:`LongTensor`, :class:`LongTensor`) Examples: >>> # Standard case >>> edge_index = torch.tensor([[0, 1, 1, 2, 2, 3], ... [1, 0, 2, 1, 3, 2]]) >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5) >>> edge_index tensor([[0, 1, 1, 2, 2, 3, 2, 1, 3], [1, 0, 2, 1, 3, 2, 0, 2, 1]]) >>> added_edges tensor([[2, 1, 3], [0, 2, 1]]) >>> # The returned graph is kept undirected >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5, ... force_undirected=True) >>> edge_index tensor([[0, 1, 1, 2, 2, 3, 2, 1, 3, 0, 2, 1], [1, 0, 2, 1, 3, 2, 0, 2, 1, 2, 1, 3]]) >>> added_edges tensor([[2, 1, 3, 0, 2, 1], [0, 2, 1, 2, 1, 3]]) >>> # For bipartite graphs >>> edge_index = torch.tensor([[0, 1, 2, 3, 4, 5], ... [2, 3, 1, 4, 2, 1]]) >>> edge_index, added_edges = add_random_edge(edge_index, p=0.5, ... num_nodes=(6, 5)) >>> edge_index tensor([[0, 1, 2, 3, 4, 5, 3, 4, 1], [2, 3, 1, 4, 2, 1, 1, 3, 2]]) >>> added_edges tensor([[3, 4, 1], [1, 3, 2]]) """ if p < 0. or p > 1.: raise ValueError(f'Ratio of added edges has to be between 0 and 1 ' f'(got {p}') device = edge_index.device if not training or p == 0.0: edge_index_to_add = torch.tensor([], device=device).view(2, 0) return edge_index, edge_index_to_add num_nodes = (num_nodes, num_nodes) if not isinstance(num_nodes, tuple) else num_nodes num_src_nodes = maybe_num_nodes(edge_index, num_nodes[0]) num_dst_nodes = maybe_num_nodes(edge_index, num_nodes[1]) num_edges_to_add = round(edge_index.size(1) * p) row = torch.randint(0, num_src_nodes, size=(num_edges_to_add, )) col = torch.randint(0, num_dst_nodes, size=(num_edges_to_add, )) if force_undirected: edge_index_to_add = torch.stack( [torch.cat([row, col], dim=0), torch.cat([col, row], dim=0)], dim=0).to(device) else: edge_index_to_add = torch.stack([row, col], dim=0).to(device) edge_index = torch.cat([edge_index, edge_index_to_add], dim=1) return edge_index, edge_index_to_add
53,846
def register_providers(): _register_one_provider("Microsoft.BotService/botServices", "2021-03-01", True) _register_one_provider("Microsoft.Automation/automationAccounts", "2020-01-13-preview", True) _register_one_provider('Microsoft.AppConfiguration/configurationStores', '2020-06-01', True) _register_one_provider("Microsoft.Batch/batchAccounts", "2020-03-01", True) # "Microsoft.Cache/redisEnterprise", "2021-03-01", True _register_one_provider('Microsoft.CognitiveServices/accounts', '2021-04-30', True) _register_one_provider('Microsoft.Compute/diskAccesses', '2020-09-30', True) _register_one_provider('Microsoft.ContainerRegistry/registries', '2019-12-01-preview', True) _register_one_provider('Microsoft.DBforMySQL/servers', '2018-06-01', False, '2017-12-01-preview') _register_one_provider('Microsoft.DBforMariaDB/servers', '2018-06-01', False) _register_one_provider('Microsoft.DBforPostgreSQL/servers', '2018-06-01', False, '2017-12-01-preview') _register_one_provider('Microsoft.Devices/IotHubs', '2020-03-01', True) _register_one_provider('Microsoft.DocumentDB/databaseAccounts', '2019-08-01-preview', False, '2020-03-01') _register_one_provider('Microsoft.DigitalTwins/digitalTwinsInstances', '2020-12-01', True) _register_one_provider('Microsoft.EventGrid/topics', '2020-04-01-preview', True) _register_one_provider('Microsoft.EventGrid/domains', '2020-04-01-preview', True) _register_one_provider("Microsoft.EventHub/namespaces", "2018-01-01-preview", True) _register_one_provider("Microsoft.HealthcareApis/services", "2020-03-30", True) _register_one_provider('microsoft.insights/privateLinkScopes', '2019-10-17-preview', True) _register_one_provider('Microsoft.KeyVault/managedHSMs', '2021-04-01-preview', True) _register_one_provider('Microsoft.Keyvault/vaults', '2019-09-01', False) _register_one_provider("Microsoft.Media/mediaservices", "2020-05-01", True) # "Microsoft.Migrate/assessmentProjects", "2020-05-01-preview", False # "Microsoft.Migrate/migrateProjects", "2020-06-01-preview", False _register_one_provider('Microsoft.Network/applicationGateways', '2020-05-01', True) # "Microsoft.OffAzure/masterSites", "2020-07-07", False _register_one_provider("Microsoft.Purview/accounts", "2021-07-01", True) _register_one_provider('Microsoft.PowerBI/privateLinkServicesForPowerBI', '2020-06-01', False) _register_one_provider('Microsoft.Search/searchServices', '2020-08-01', True) _register_one_provider("Microsoft.ServiceBus/namespaces", "2018-01-01-preview", True) _register_one_provider('Microsoft.SignalRService/signalr', '2020-05-01', False) _register_one_provider('Microsoft.Sql/servers', '2018-06-01-preview', True) _register_one_provider('Microsoft.Storage/storageAccounts', '2019-06-01', True) _register_one_provider("Microsoft.StorageSync/storageSyncServices", "2020-03-01", True) _register_one_provider("Microsoft.Synapse/workspaces", "2019-06-01-preview", True) _register_one_provider('Microsoft.Web/sites', '2019-08-01', False) _register_one_provider("Microsoft.Web/hostingEnvironments", "2020-10-01", True)
def register_providers(): _register_one_provider("Microsoft.Automation/automationAccounts", "2020-01-13-preview", True) _register_one_provider('Microsoft.AppConfiguration/configurationStores', '2020-06-01', True) _register_one_provider("Microsoft.Batch/batchAccounts", "2020-03-01", True) _register_one_provider("Microsoft.BotService/botServices", "2021-03-01", True) # "Microsoft.Cache/redisEnterprise", "2021-03-01", True _register_one_provider('Microsoft.CognitiveServices/accounts', '2021-04-30', True) _register_one_provider('Microsoft.Compute/diskAccesses', '2020-09-30', True) _register_one_provider('Microsoft.ContainerRegistry/registries', '2019-12-01-preview', True) _register_one_provider('Microsoft.DBforMySQL/servers', '2018-06-01', False, '2017-12-01-preview') _register_one_provider('Microsoft.DBforMariaDB/servers', '2018-06-01', False) _register_one_provider('Microsoft.DBforPostgreSQL/servers', '2018-06-01', False, '2017-12-01-preview') _register_one_provider('Microsoft.Devices/IotHubs', '2020-03-01', True) _register_one_provider('Microsoft.DocumentDB/databaseAccounts', '2019-08-01-preview', False, '2020-03-01') _register_one_provider('Microsoft.DigitalTwins/digitalTwinsInstances', '2020-12-01', True) _register_one_provider('Microsoft.EventGrid/topics', '2020-04-01-preview', True) _register_one_provider('Microsoft.EventGrid/domains', '2020-04-01-preview', True) _register_one_provider("Microsoft.EventHub/namespaces", "2018-01-01-preview", True) _register_one_provider("Microsoft.HealthcareApis/services", "2020-03-30", True) _register_one_provider('microsoft.insights/privateLinkScopes', '2019-10-17-preview', True) _register_one_provider('Microsoft.KeyVault/managedHSMs', '2021-04-01-preview', True) _register_one_provider('Microsoft.Keyvault/vaults', '2019-09-01', False) _register_one_provider("Microsoft.Media/mediaservices", "2020-05-01", True) # "Microsoft.Migrate/assessmentProjects", "2020-05-01-preview", False # "Microsoft.Migrate/migrateProjects", "2020-06-01-preview", False _register_one_provider('Microsoft.Network/applicationGateways', '2020-05-01', True) # "Microsoft.OffAzure/masterSites", "2020-07-07", False _register_one_provider("Microsoft.Purview/accounts", "2021-07-01", True) _register_one_provider('Microsoft.PowerBI/privateLinkServicesForPowerBI', '2020-06-01', False) _register_one_provider('Microsoft.Search/searchServices', '2020-08-01', True) _register_one_provider("Microsoft.ServiceBus/namespaces", "2018-01-01-preview", True) _register_one_provider('Microsoft.SignalRService/signalr', '2020-05-01', False) _register_one_provider('Microsoft.Sql/servers', '2018-06-01-preview', True) _register_one_provider('Microsoft.Storage/storageAccounts', '2019-06-01', True) _register_one_provider("Microsoft.StorageSync/storageSyncServices", "2020-03-01", True) _register_one_provider("Microsoft.Synapse/workspaces", "2019-06-01-preview", True) _register_one_provider('Microsoft.Web/sites', '2019-08-01', False) _register_one_provider("Microsoft.Web/hostingEnvironments", "2020-10-01", True)
436
def choose_best_partition_for_topic(topic, key, shuffle_shards_per_key=5): """ Choose the best partition for topic through shuffle-sharding - Map each key onto :shuffle_shards_per_key: partitions using consistent hashing - Within those, pick the partition with the shortest backlog Shuffle-sharding (as proponents put it) has the almost magical effect of simulating one queue per key, isolating customers to a large extent from each others' workloads. A :key: value of None is assigned to all partitions, and is thus a way of disabling shuffle-sharding and going for the shortest of all partitions. If :shuffle_shards_per_key: or is greater than the number of partitions then the key is irrelevant and all keys are assigned to all partitions; this has the same effect as using key=None. For more on shuffle-sharding see: https://aws.amazon.com/blogs/architecture/shuffle-sharding-massive-and-magical-fault-isolation/ """ if topic not in _get_topic_to_pillow_map(): # None means there's no best, use the default return None backlog_lengths_by_partition = _get_backlog_lengths_by_partition(topic) all_partitions = set(backlog_lengths_by_partition.keys()) if not key: whitelist = all_partitions else: # map key to the partitions it's assigned to whitelist = _n_choose_k_hash( key=key, n=max(all_partitions) + 1, k=shuffle_shards_per_key, ) & all_partitions _, best_partition = min( (backlog_length, partition) for partition, backlog_length in backlog_lengths_by_partition.items() if partition in whitelist ) return best_partition
def choose_best_partition_for_topic(topic, key, shuffle_shards_per_key=5): """ Choose the best partition for topic through shuffle-sharding - Map each key onto :shuffle_shards_per_key: partitions using consistent hashing - Within those, pick the partition with the shortest backlog Shuffle-sharding (as proponents put it) has the almost magical effect of simulating one queue per key, isolating customers to a large extent from each others' workloads. A :key: value of None is assigned to all partitions, and is thus a way of disabling shuffle-sharding and going for the shortest of all partitions. If :shuffle_shards_per_key: is greater than the number of partitions then the key is irrelevant and all keys are assigned to all partitions; this has the same effect as using key=None. For more on shuffle-sharding see: https://aws.amazon.com/blogs/architecture/shuffle-sharding-massive-and-magical-fault-isolation/ """ if topic not in _get_topic_to_pillow_map(): # None means there's no best, use the default return None backlog_lengths_by_partition = _get_backlog_lengths_by_partition(topic) all_partitions = set(backlog_lengths_by_partition.keys()) if not key: whitelist = all_partitions else: # map key to the partitions it's assigned to whitelist = _n_choose_k_hash( key=key, n=max(all_partitions) + 1, k=shuffle_shards_per_key, ) & all_partitions _, best_partition = min( (backlog_length, partition) for partition, backlog_length in backlog_lengths_by_partition.items() if partition in whitelist ) return best_partition
57,964
def domain_reputation_command(client: Client, args: Dict[str, Any], default_threshold: int) -> List[CommandResults]: """domain command: Returns domain reputation for a list of domains :type client: ``Client`` :param Client: HelloWorld client to use :type args: ``Dict[str, Any]`` :param args: all command arguments, usually passed from ``demisto.args()``. ``args['domain']`` list of domains or a single domain ``args['threshold']`` threshold to determine whether a domain is malicious :type default_threshold: ``int`` :param default_threshold: default threshold to determine whether an domain is malicious if threshold is not specified in the XSOAR arguments :return: A ``CommandResults`` object that is then passed to ``return_results``, that contains Domains :rtype: ``CommandResults`` """ # INTEGRATION DEVELOPER TIP # Reputation commands usually support multiple inputs (i.e. arrays), so # they can be invoked once in XSOAR. In this case the API supports a single # IP at a time, so we will cycle this for all the members of the array. # We use argToList(), implemented in CommonServerPython.py to automatically # return a list of a single element even if the provided input is a scalar. domains = argToList(args.get('domain')) if len(domains) == 0: raise ValueError('domain(s) not specified') threshold = int(args.get('threshold', default_threshold)) # Initialize an empty list of CommandResults to return, # each CommandResult will contain context standard for Domain command_results: List[CommandResults] = [] for domain in domains: domain_data = client.get_domain_reputation(domain) domain_data['domain'] = domain # INTEGRATION DEVELOPER TIP # We want to convert the dates to ISO8601 as # Cortex XSOAR customers and integrations use this format by default if 'creation_date' in domain_data: domain_data['creation_date'] = parse_domain_date(domain_data['creation_date']) if 'expiration_date' in domain_data: domain_data['expiration_date'] = parse_domain_date(domain_data['expiration_date']) if 'updated_date' in domain_data: domain_data['updated_date'] = parse_domain_date(domain_data['updated_date']) # HelloWorld score to XSOAR reputation mapping # See: https://xsoar.pan.dev/docs/integrations/dbot # We are using Common.DBotScore as macros to simplify # the mapping. score = 0 reputation = int(domain_data.get('score', 0)) if reputation == 0: score = Common.DBotScore.NONE # unknown elif reputation >= threshold: score = Common.DBotScore.BAD # bad elif reputation >= threshold / 2: score = Common.DBotScore.SUSPICIOUS # suspicious else: score = Common.DBotScore.GOOD # good # INTEGRATION DEVELOPER TIP # The context is bigger here than other commands, as it consists in 3 # parts: the vendor-specific context (HelloWorld), the standard-context # (Domain) and the DBotScore. # More information: # https://xsoar.pan.dev/docs/integrations/context-and-outputs # https://xsoar.pan.dev/docs/integrations/context-standards # https://xsoar.pan.dev/docs/integrations/dbot # Also check the sample Design Document dbot_score = Common.DBotScore( indicator=domain, integration_name='HelloWorld', indicator_type=DBotScoreType.DOMAIN, score=score, malicious_description=f'Hello World returned reputation {reputation}' ) # Create the Domain Standard Context structure using Common.Domain and # add dbot_score to it. domain_standard_context = Common.Domain( domain=domain, creation_date=domain_data.get('creation_date', None), expiration_date=domain_data.get('expiration_date', None), updated_date=domain_data.get('updated_date', None), organization=domain_data.get('org', None), name_servers=domain_data.get('name_servers', None), registrant_name=domain_data.get('name', None), registrant_country=domain_data.get('country', None), registrar_name=domain_data.get('registrar', None), dbot_score=dbot_score ) # In this case we want to use an custom markdown to specify the table title, # but otherwise ``CommandResults()`` will call ``tableToMarkdown()`` # automatically readable_output = tableToMarkdown('Domain', domain_data) # INTEGRATION DEVELOPER TIP # The output key will be ``HelloWorld.Domain``, using ``domain`` as the key # field. # ``indicator`` is used to provide the context standard (Domain) command_results.append(CommandResults( readable_output=readable_output, outputs_prefix='HelloWorld.Domain', outputs_key_field='domain', outputs=domain_data, indicator=domain_standard_context )) return command_results
def domain_reputation_command(client: Client, args: Dict[str, Any], default_threshold: int) -> List[CommandResults]: """domain command: Returns domain reputation for a list of domains :type client: ``Client`` :param Client: HelloWorld client to use :type args: ``Dict[str, Any]`` :param args: all command arguments, usually passed from ``demisto.args()``. ``args['domain']`` list of domains or a single domain ``args['threshold']`` threshold to determine whether a domain is malicious :type default_threshold: ``int`` :param default_threshold: default threshold to determine whether an domain is malicious if threshold is not specified in the XSOAR arguments :return: A ``CommandResults`` object that is then passed to ``return_results``, that contains Domains :rtype: ``CommandResults`` """ # INTEGRATION DEVELOPER TIP # Reputation commands usually support multiple inputs (i.e. arrays), so # they can be invoked once in XSOAR. In this case the API supports a single # IP at a time, so we will cycle this for all the members of the array. # We use argToList(), implemented in CommonServerPython.py to automatically # return a list of a single element even if the provided input is a scalar. domains = argToList(args.get('domain')) if not domains: raise ValueError('domain(s) not specified') threshold = int(args.get('threshold', default_threshold)) # Initialize an empty list of CommandResults to return, # each CommandResult will contain context standard for Domain command_results: List[CommandResults] = [] for domain in domains: domain_data = client.get_domain_reputation(domain) domain_data['domain'] = domain # INTEGRATION DEVELOPER TIP # We want to convert the dates to ISO8601 as # Cortex XSOAR customers and integrations use this format by default if 'creation_date' in domain_data: domain_data['creation_date'] = parse_domain_date(domain_data['creation_date']) if 'expiration_date' in domain_data: domain_data['expiration_date'] = parse_domain_date(domain_data['expiration_date']) if 'updated_date' in domain_data: domain_data['updated_date'] = parse_domain_date(domain_data['updated_date']) # HelloWorld score to XSOAR reputation mapping # See: https://xsoar.pan.dev/docs/integrations/dbot # We are using Common.DBotScore as macros to simplify # the mapping. score = 0 reputation = int(domain_data.get('score', 0)) if reputation == 0: score = Common.DBotScore.NONE # unknown elif reputation >= threshold: score = Common.DBotScore.BAD # bad elif reputation >= threshold / 2: score = Common.DBotScore.SUSPICIOUS # suspicious else: score = Common.DBotScore.GOOD # good # INTEGRATION DEVELOPER TIP # The context is bigger here than other commands, as it consists in 3 # parts: the vendor-specific context (HelloWorld), the standard-context # (Domain) and the DBotScore. # More information: # https://xsoar.pan.dev/docs/integrations/context-and-outputs # https://xsoar.pan.dev/docs/integrations/context-standards # https://xsoar.pan.dev/docs/integrations/dbot # Also check the sample Design Document dbot_score = Common.DBotScore( indicator=domain, integration_name='HelloWorld', indicator_type=DBotScoreType.DOMAIN, score=score, malicious_description=f'Hello World returned reputation {reputation}' ) # Create the Domain Standard Context structure using Common.Domain and # add dbot_score to it. domain_standard_context = Common.Domain( domain=domain, creation_date=domain_data.get('creation_date', None), expiration_date=domain_data.get('expiration_date', None), updated_date=domain_data.get('updated_date', None), organization=domain_data.get('org', None), name_servers=domain_data.get('name_servers', None), registrant_name=domain_data.get('name', None), registrant_country=domain_data.get('country', None), registrar_name=domain_data.get('registrar', None), dbot_score=dbot_score ) # In this case we want to use an custom markdown to specify the table title, # but otherwise ``CommandResults()`` will call ``tableToMarkdown()`` # automatically readable_output = tableToMarkdown('Domain', domain_data) # INTEGRATION DEVELOPER TIP # The output key will be ``HelloWorld.Domain``, using ``domain`` as the key # field. # ``indicator`` is used to provide the context standard (Domain) command_results.append(CommandResults( readable_output=readable_output, outputs_prefix='HelloWorld.Domain', outputs_key_field='domain', outputs=domain_data, indicator=domain_standard_context )) return command_results
41,354
def format_data(df, **kwargs): """Convert a `pd.Dataframe` or `pd.Series` to the required format""" if isinstance(df, pd.Series): df = df.to_frame() # Check for R-style year columns, converting where necessary def convert_r_columns(c): try: first = c[0] second = c[1:] if first == 'X': try: # bingo! was X2015 R-style, return the integer return int(second) except: # nope, not an int, fall down to final return statement pass except: # not a string/iterable/etc, fall down to final return statement pass return c df.columns = map(convert_r_columns, df.columns) # if `value` is given but not `variable`, # melt value columns and use column name as `variable` if 'value' in kwargs and 'variable' not in kwargs: value = kwargs.pop('value') value = value if islistable(value) else [value] _df = df.set_index(list(set(df.columns) - set(value))) dfs = [] for v in value: if v not in df.columns: raise ValueError('column `{}` does not exist!'.format(v)) vdf = _df[v].to_frame().rename(columns={v: 'value'}) vdf['variable'] = v dfs.append(vdf.reset_index()) df = pd.concat(dfs).reset_index(drop=True) # otherwise, rename columns or concat to IAMC-style or do a fill-by-value for col, value in kwargs.items(): if col in df: raise ValueError('conflict of kwarg with column `{}` in dataframe!' .format(col)) if isstr(value) and value in df: df.rename(columns={value: col}, inplace=True) elif islistable(value) and all([c in df.columns for c in value]): df[col] = df.apply(lambda x: concat_with_pipe(x, value), axis=1) df.drop(value, axis=1, inplace=True) elif isstr(value): df[col] = value else: raise ValueError('invalid argument for casting `{}: {}`' .format(col, value)) # all lower case str_cols = [c for c in df.columns if isstr(c)] df.rename(columns={c: str(c).lower() for c in str_cols}, inplace=True) if 'notes' in df.columns: # this came from the database logger().info('Ignoring notes column in dataframe') df.drop(columns='notes', inplace=True) col = df.columns[0] # first column has database copyright notice df = df[~df[col].str.contains('database', case=False)] if 'scenario' in df.columns and 'model' not in df.columns: # model and scenario are jammed together in RCP data scen = df['scenario'] df['model'] = scen.apply(lambda s: s.split('-')[0].strip()) df['scenario'] = scen.apply( lambda s: '-'.join(s.split('-')[1:]).strip()) # reset the index if meaningful entries are included there if not list(df.index.names) == [None]: df.reset_index(inplace=True) # format columns to lower-case and check that all required columns exist if not set(IAMC_IDX).issubset(set(df.columns)): missing = list(set(IAMC_IDX) - set(df.columns)) raise ValueError("missing required columns `{}`!".format(missing)) # check whether data in wide format (IAMC) or long format (`value` column) if 'value' in df.columns: # check if time column is given as `year` (int) or `time` (datetime) cols = df.columns if 'year' in cols: time_col = 'year' elif 'time' in cols: time_col = 'time' else: msg = 'invalid time format, must have either `year` or `time`!' raise ValueError(msg) extra_cols = list(set(cols) - set(IAMC_IDX + [time_col, 'value'])) else: # if in wide format, check if columns are years (int) or datetime cols = set(df.columns) - set(IAMC_IDX) year_cols, time_cols, extra_cols = [], [], [] for i in cols: try: int(i) # this is a year year_cols.append(i) except (ValueError, TypeError): try: dateutil.parser.parse(str(i)) # this is datetime time_cols.append(i) except ValueError: extra_cols.append(i) # some other string if year_cols and not time_cols: time_col = 'year' melt_cols = year_cols elif not year_cols and time_cols: time_col = 'time' melt_cols = time_cols else: msg = 'invalid column format, must be either years or `datetime`!' raise ValueError(msg) df = pd.melt(df, id_vars=IAMC_IDX + extra_cols, var_name=time_col, value_vars=sorted(melt_cols), value_name='value') # cast value columns to numeric, drop NaN's, sort data df['value'] = df['value'].astype('float64') df.dropna(inplace=True) # check for duplicates and return sorted data idx_cols = IAMC_IDX + [time_col] + extra_cols if any(df[idx_cols].duplicated()): raise ValueError('duplicate rows in `data`!') return sort_data(df, idx_cols), time_col, extra_cols
def format_data(df, **kwargs): """Convert a `pd.Dataframe` or `pd.Series` to the required format""" if isinstance(df, pd.Series): df = df.to_frame() # Check for R-style year columns, converting where necessary def convert_r_columns(c): try: first = c[0] second = c[1:] if first == 'X': try: # bingo! was X2015 R-style, return the integer return int(second) except: # nope, not an int, fall down to final return statement pass except: # not a string/iterable/etc, fall down to final return statement pass return c df.columns = df.columns.map(convert_r_columns) # if `value` is given but not `variable`, # melt value columns and use column name as `variable` if 'value' in kwargs and 'variable' not in kwargs: value = kwargs.pop('value') value = value if islistable(value) else [value] _df = df.set_index(list(set(df.columns) - set(value))) dfs = [] for v in value: if v not in df.columns: raise ValueError('column `{}` does not exist!'.format(v)) vdf = _df[v].to_frame().rename(columns={v: 'value'}) vdf['variable'] = v dfs.append(vdf.reset_index()) df = pd.concat(dfs).reset_index(drop=True) # otherwise, rename columns or concat to IAMC-style or do a fill-by-value for col, value in kwargs.items(): if col in df: raise ValueError('conflict of kwarg with column `{}` in dataframe!' .format(col)) if isstr(value) and value in df: df.rename(columns={value: col}, inplace=True) elif islistable(value) and all([c in df.columns for c in value]): df[col] = df.apply(lambda x: concat_with_pipe(x, value), axis=1) df.drop(value, axis=1, inplace=True) elif isstr(value): df[col] = value else: raise ValueError('invalid argument for casting `{}: {}`' .format(col, value)) # all lower case str_cols = [c for c in df.columns if isstr(c)] df.rename(columns={c: str(c).lower() for c in str_cols}, inplace=True) if 'notes' in df.columns: # this came from the database logger().info('Ignoring notes column in dataframe') df.drop(columns='notes', inplace=True) col = df.columns[0] # first column has database copyright notice df = df[~df[col].str.contains('database', case=False)] if 'scenario' in df.columns and 'model' not in df.columns: # model and scenario are jammed together in RCP data scen = df['scenario'] df['model'] = scen.apply(lambda s: s.split('-')[0].strip()) df['scenario'] = scen.apply( lambda s: '-'.join(s.split('-')[1:]).strip()) # reset the index if meaningful entries are included there if not list(df.index.names) == [None]: df.reset_index(inplace=True) # format columns to lower-case and check that all required columns exist if not set(IAMC_IDX).issubset(set(df.columns)): missing = list(set(IAMC_IDX) - set(df.columns)) raise ValueError("missing required columns `{}`!".format(missing)) # check whether data in wide format (IAMC) or long format (`value` column) if 'value' in df.columns: # check if time column is given as `year` (int) or `time` (datetime) cols = df.columns if 'year' in cols: time_col = 'year' elif 'time' in cols: time_col = 'time' else: msg = 'invalid time format, must have either `year` or `time`!' raise ValueError(msg) extra_cols = list(set(cols) - set(IAMC_IDX + [time_col, 'value'])) else: # if in wide format, check if columns are years (int) or datetime cols = set(df.columns) - set(IAMC_IDX) year_cols, time_cols, extra_cols = [], [], [] for i in cols: try: int(i) # this is a year year_cols.append(i) except (ValueError, TypeError): try: dateutil.parser.parse(str(i)) # this is datetime time_cols.append(i) except ValueError: extra_cols.append(i) # some other string if year_cols and not time_cols: time_col = 'year' melt_cols = year_cols elif not year_cols and time_cols: time_col = 'time' melt_cols = time_cols else: msg = 'invalid column format, must be either years or `datetime`!' raise ValueError(msg) df = pd.melt(df, id_vars=IAMC_IDX + extra_cols, var_name=time_col, value_vars=sorted(melt_cols), value_name='value') # cast value columns to numeric, drop NaN's, sort data df['value'] = df['value'].astype('float64') df.dropna(inplace=True) # check for duplicates and return sorted data idx_cols = IAMC_IDX + [time_col] + extra_cols if any(df[idx_cols].duplicated()): raise ValueError('duplicate rows in `data`!') return sort_data(df, idx_cols), time_col, extra_cols
58,278
def _create_size_placeholder(name, axis_wo_b, tag, batch_dim): """ :param str name: :param int axis_wo_b: :param Dim tag: :param Dim|None batch_dim: """ from .basic import reuse_name_scope with reuse_name_scope("extern_data/placeholders/%s" % name, absolute=True): if batch_dim is not None and batch_dim.batch is not None: batch = batch_dim.batch elif tag.batch is not None: batch = tag.batch else: batch = None dyn_size_ext = Data( "%s_dim%i_size" % (name, axis_wo_b), dtype=Data.size_dtype, dim_tags=[batch_dim] if batch_dim else [], batch=batch) dyn_size = tf_compat.v1.placeholder( name=dyn_size_ext.name, dtype=dyn_size_ext.dtype, shape=dyn_size_ext.batch_shape) dyn_size_ext.placeholder = dyn_size if dyn_size_ext.batch: tag.set_dyn_size_ext_for_batch_ctx( batch=dyn_size_ext.batch, ctx=dyn_size_ext.control_flow_ctx, dyn_size_ext=dyn_size_ext) else: tag.dyn_size_ext = dyn_size_ext if batch_dim and batch_dim.batch: tag.batch = batch_dim.batch tag.set_tag_on_size_tensor(dyn_size)
def _create_size_placeholder(name, axis_wo_b, tag, batch_dim): """ :param str name: :param int axis_wo_b: :param Dim tag: :param Dim|None batch_dim: """ from .basic import reuse_name_scope with reuse_name_scope("extern_data/placeholders/%s" % name, absolute=True): if batch_dim is not None and batch_dim.batch is not None: batch = batch_dim.batch elif tag.batch is not None: batch = tag.batch else: batch = None dyn_size_ext = Data( "%s_dim%i_size" % (name, axis_wo_b), dtype=Data.size_dtype, dim_tags=[batch_dim] if batch_dim else [], batch=batch if batch_dim else None) dyn_size = tf_compat.v1.placeholder( name=dyn_size_ext.name, dtype=dyn_size_ext.dtype, shape=dyn_size_ext.batch_shape) dyn_size_ext.placeholder = dyn_size if dyn_size_ext.batch: tag.set_dyn_size_ext_for_batch_ctx( batch=dyn_size_ext.batch, ctx=dyn_size_ext.control_flow_ctx, dyn_size_ext=dyn_size_ext) else: tag.dyn_size_ext = dyn_size_ext if batch_dim and batch_dim.batch: tag.batch = batch_dim.batch tag.set_tag_on_size_tensor(dyn_size)
5,012
def _get_aligned_offsets(hd_list, height, align="baseline"): """ Vertically align boxes each specified by their ``(height, descent)`` pair. (For simplicity of the description, the terminology used here assumes a horizontal layout, but the function works equally for a vertical layout.) Parameters ---------- hd_list List of (height, xdescent) of boxes to be aligned. height : float or None Intended total height. If None, the maximum of the heights in *hd_list* is used. align : {'baseline', 'left', 'top', 'right', 'bottom', 'center'} The alignment anchor of the boxes. Returns ------- height The total height of the packing (if a value was originally passed in, it is returned without checking that it is actually large enough). descent The descent of the packing. offsets The bottom offsets of the boxes. """ if height is None: height = max(h for h, d in hd_list) _api.check_in_list( ["baseline", "left", "top", "right", "bottom", "center"], align=align) if align == "baseline": height_descent = max(h - d for h, d in hd_list) descent = max(d for h, d in hd_list) height = height_descent + descent offsets = [0. for h, d in hd_list] elif align in ["left", "top"]: descent = 0. offsets = [d for h, d in hd_list] elif align in ["right", "bottom"]: descent = 0. offsets = [height - h + d for h, d in hd_list] elif align == "center": descent = 0. offsets = [(height - h) * .5 + d for h, d in hd_list] return height, descent, offsets
def _get_aligned_offsets(hd_list, height, align="baseline"): """ Align boxes each specified by their ``(height, descent)`` pair. (For simplicity of the description, the terminology used here assumes a horizontal layout, but the function works equally for a vertical layout.) Parameters ---------- hd_list List of (height, xdescent) of boxes to be aligned. height : float or None Intended total height. If None, the maximum of the heights in *hd_list* is used. align : {'baseline', 'left', 'top', 'right', 'bottom', 'center'} The alignment anchor of the boxes. Returns ------- height The total height of the packing (if a value was originally passed in, it is returned without checking that it is actually large enough). descent The descent of the packing. offsets The bottom offsets of the boxes. """ if height is None: height = max(h for h, d in hd_list) _api.check_in_list( ["baseline", "left", "top", "right", "bottom", "center"], align=align) if align == "baseline": height_descent = max(h - d for h, d in hd_list) descent = max(d for h, d in hd_list) height = height_descent + descent offsets = [0. for h, d in hd_list] elif align in ["left", "top"]: descent = 0. offsets = [d for h, d in hd_list] elif align in ["right", "bottom"]: descent = 0. offsets = [height - h + d for h, d in hd_list] elif align == "center": descent = 0. offsets = [(height - h) * .5 + d for h, d in hd_list] return height, descent, offsets
41,667
def make_package(package, version=None): import yaml version = ('/' + version) if version else '' url = f"https://pypi.org/pypi/{package}{version}/json" with urllib.request.urlopen(url) as fd: json_content = json.load(fd) entry = get_sdist_url_entry(json_content) download_url = entry['url'] sha256 = entry['digests']['sha256'] version = json_content['info']['version'] yaml_content = { 'package': { 'name': package, 'version': version }, 'source': { 'url': download_url, 'sha256': sha256 }, 'test': { 'imports': [ package ] } } if not (PACKAGES_ROOT / package).is_dir(): os.makedirs(PACKAGES_ROOT / package) with open(PACKAGES_ROOT / package / 'meta.yaml', 'w') as fd: yaml.dump(yaml_content, fd, default_flow_style=False)
def make_package(package, version=None): import yaml version = ('/' + version) if version is not None else '' url = f"https://pypi.org/pypi/{package}{version}/json" with urllib.request.urlopen(url) as fd: json_content = json.load(fd) entry = get_sdist_url_entry(json_content) download_url = entry['url'] sha256 = entry['digests']['sha256'] version = json_content['info']['version'] yaml_content = { 'package': { 'name': package, 'version': version }, 'source': { 'url': download_url, 'sha256': sha256 }, 'test': { 'imports': [ package ] } } if not (PACKAGES_ROOT / package).is_dir(): os.makedirs(PACKAGES_ROOT / package) with open(PACKAGES_ROOT / package / 'meta.yaml', 'w') as fd: yaml.dump(yaml_content, fd, default_flow_style=False)
10,808
def _remove_unneeded_phis(phimap): """Remove unneeded PHis from the phimap """ all_phis = [] for philist in phimap.values(): all_phis.extend(philist) unneeded_phis = set() # Find unneeded PHIs. for phi in all_phis: ivs = phi.value.incoming_values # It's unneeded if the incomings are either undefined or # the PHI node it self if all(iv is ir.UNDEFINED or iv == phi.target for iv in ivs): unneeded_phis.add(phi) # Fix up references to unneeded PHIs for phi in all_phis: for unneed in unneeded_phis: if unneed is not phi: # If the unneeded PHI is in the current phi's incoming values if unneed.target in phi.value.incoming_values: # Replace the unneeded PHI with a UNDEFINED idx = phi.value.incoming_values.index(unneed.target) phi.value.incoming_values[idx] = ir.UNDEFINED # Remove unneeded phis for philist in phimap.values(): for unneeded in unneeded_phis: if unneeded in philist: philist.remove(unneeded)
def _remove_unneeded_phis(phimap): """Remove unneeded PHis from the phimap """ all_phis = [] for philist in phimap.values(): all_phis.extend(philist) unneeded_phis = set() # Find unneeded PHIs. for phi in all_phis: ivs = phi.value.incoming_values # It's unneeded if the incomings are either undefined or # the PHI node it self if all(iv is ir.UNDEFINED or iv == phi.target for iv in ivs): unneeded_phis.add(phi) # Fix up references to unneeded PHIs for phi in all_phis: for unneed in unneeded_phis: if unneed is not phi: # If the unneeded PHI is in the current phi's incoming values if unneed.target in phi.value.incoming_values: # Replace the unneeded PHI with an UNDEFINED idx = phi.value.incoming_values.index(unneed.target) phi.value.incoming_values[idx] = ir.UNDEFINED # Remove unneeded phis for philist in phimap.values(): for unneeded in unneeded_phis: if unneeded in philist: philist.remove(unneeded)
46,527
def test_finality_from_genesis_rule_4(state): test_state = deepcopy(state) blocks = [] for epoch in range(6): prev_state, new_blocks, test_state = next_epoch_with_attestations(test_state, True, False) blocks += new_blocks if epoch == 0: check_finality(test_state, prev_state, False, False, False) elif epoch == 1: check_finality(test_state, prev_state, False, False, False) elif epoch == 2: check_finality(test_state, prev_state, True, False, False) elif epoch >= 3: # rule 4 of finaliy check_finality(test_state, prev_state, True, True, True) assert test_state.finalized_epoch == prev_state.current_justified_epoch assert test_state.finalized_root == prev_state.current_justified_root return state, blocks, test_state
def test_finality_from_genesis_rule_4(state): test_state = deepcopy(state) blocks = [] for epoch in range(6): prev_state, new_blocks, test_state = next_epoch_with_attestations(test_state, True, False) blocks += new_blocks if epoch == 0: check_finality(test_state, prev_state, False, False, False) elif epoch == 1: check_finality(test_state, prev_state, False, False, False) elif epoch == 2: check_finality(test_state, prev_state, True, False, False) elif epoch >= 3: # rule 4 of finality check_finality(test_state, prev_state, True, True, True) assert test_state.finalized_epoch == prev_state.current_justified_epoch assert test_state.finalized_root == prev_state.current_justified_root return state, blocks, test_state
57,944
def send_mail(args: dict, sg_from_email: str, sg_sender_name: str, sg): message = Mail() # type: ignore[name-defined] attach_ids = args.get('AttachIDs') attach_names = args.get('AttachNames') or "" if attach_ids: process_attachments(message, attach_ids, attach_names) categories = args.get('Categories') if categories: categories = categories.split(",") for category in categories: message.category = Category(category) # type: ignore[name-defined] batch_id = args.get('BatchID') if batch_id: message.batch_id = BatchId(batch_id) # type: ignore[name-defined] send_at = args.get('SendAt') if send_at: t = dateutil.parser.parse(send_at) send_time = time.mktime(t.timetuple()) message.send_at = SendAt(int(send_time)) # type: ignore[name-defined] asm = args.get('Asm') if asm: asm = asm if type(asm) is dict else json.loads(asm) message.asm = Asm(GroupId(asm["group_id"]), GroupsToDisplay(asm["groups_to_display"])) # type: ignore[name-defined] custom_args = args.get('CustomArgs') if custom_args: custom_args = custom_args if type(custom_args) is dict else json.loads(custom_args) for key in custom_args: message.custom_arg = CustomArg(key, custom_args[key]) # type: ignore[name-defined] ip_pool_name = args.get('IPPoolName') if ip_pool_name: message.ip_pool_name = IpPoolName(ip_pool_name) # type: ignore[name-defined] # Mail Tracking settings tracking_settings = TrackingSettings() # type: ignore[name-defined] click_tracking = args.get('ClickTracking') if click_tracking: click_tracking = click_tracking if type(click_tracking) is dict else json.loads(click_tracking) is_enable = False if click_tracking["enable"] == 'False' else True tracking_settings.click_tracking = ClickTracking(is_enable, # type: ignore[name-defined] click_tracking["enable_text"]) open_tracking = args.get('OpenTracking') if open_tracking: open_tracking = open_tracking if type(open_tracking) is dict else json.loads(open_tracking) is_enable = False if open_tracking["enable"] == 'False' else True tracking_settings.open_tracking = OpenTracking( # type: ignore[name-defined] is_enable, OpenTrackingSubstitutionTag(open_tracking["substitution_tag"])) # type: ignore[name-defined] sub_tracking = args.get('SubscriptionTracking') if sub_tracking: sub_tracking = sub_tracking if type(sub_tracking) is dict else json.loads(sub_tracking) is_enable = False if sub_tracking["enable"] == 'False' else True tracking_settings.subscription_tracking = SubscriptionTracking( # type: ignore[name-defined] is_enable, SubscriptionText(sub_tracking["text"]), # type: ignore[name-defined] SubscriptionHtml(sub_tracking["html"]), # type: ignore[name-defined] SubscriptionSubstitutionTag(sub_tracking["substitution_tag"])) # type: ignore[name-defined] ganalytics = args.get('GAnalytics') if ganalytics: ganalytics = ganalytics if type(ganalytics) is dict else json.loads(ganalytics) is_enable = False if ganalytics["enable"] == 'False' else True tracking_settings.ganalytics = Ganalytics( # type: ignore[name-defined] is_enable, UtmSource(ganalytics["utm_source"]), # type: ignore[name-defined] UtmMedium(ganalytics["utm_medium"]), # type: ignore[name-defined] UtmTerm(ganalytics["utm_term"]), # type: ignore[name-defined] UtmContent(ganalytics["utm_content"]), # type: ignore[name-defined] UtmCampaign(ganalytics["utm_campaign"])) # type: ignore[name-defined] message.tracking_settings = tracking_settings # Mail Settings mail_settings = MailSettings() # type: ignore[name-defined] bcc_mail_set = args.get('BccSettings') if bcc_mail_set: bcc_mail_set = bcc_mail_set if type(bcc_mail_set) is dict else json.loads(bcc_mail_set) is_enable = False if bcc_mail_set["enable"] == 'False' else True mail_settings.bcc_settings = BccSettings( # type: ignore[name-defined] is_enable, BccSettingsEmail(bcc_mail_set["email"])) # type: ignore[name-defined] footer = args.get('Footer') if footer: footer = footer if type(footer) is dict else json.loads(footer) is_enable = False if footer["enable"] == 'False' else True mail_settings.footer_settings = FooterSettings( # type: ignore[name-defined] is_enable, FooterText(footer["text"]), # type: ignore[name-defined] FooterHtml(footer["html"])) # type: ignore[name-defined] spam_check = args.get('SpamCheck') if spam_check: spam_check = spam_check if type(spam_check) is dict else json.loads(spam_check) is_enable = False if spam_check["enable"] == 'False' else True mail_settings.spam_check = SpamCheck( # type: ignore[name-defined] is_enable, SpamThreshold(spam_check["threshold"]), # type: ignore[name-defined] SpamUrl(spam_check["post_to_url"])) # type: ignore[name-defined] sandbox_mode = args.get('SandboxMode') if sandbox_mode: sandbox_mode = False if sandbox_mode == 'False' else True mail_settings.sandbox_mode = SandBoxMode(sandbox_mode) # type: ignore[name-defined] bypass_list_management = args.get('BypassListManagement') if bypass_list_management: bypass_list_management = False if bypass_list_management == 'False' else True mail_settings.bypass_list_management = BypassListManagement(bypass_list_management) # type: ignore[name-defined] message.mail_settings = mail_settings headers = args.get('Headers') if headers: headers = headers if type(headers) is dict else json.loads(headers) for key in headers: message.header = Header(key, headers[key]) # type: ignore[name-defined] template_id = args.get('TemplateID') if template_id: message.template_id = TemplateId(template_id) # type: ignore[name-defined] subject = args.get('Subject') message.subject = Subject(subject) # type: ignore[name-defined] email_body = args.get('HtmlBody') if email_body: message.content = Content(MimeType.html, email_body) # type: ignore[name-defined] raw_body = args.get('RawBody') if raw_body: message.content = Content(MimeType.text, raw_body) # type: ignore[name-defined] reply_to_email = args.get('ReplyTo') if reply_to_email: message.reply_to = ReplyTo(reply_to_email, None) # type: ignore[name-defined] elif reply_to_email == "": return "Send-email failed: replyTo email is empty, please provide valid email" message.from_email = From(sg_from_email, sg_sender_name) # type: ignore[name-defined] to_emails = args.get('ToEmails') to_emails = to_emails if isinstance(to_emails, list) else to_emails.split(",") # type: ignore[union-attr] for email in to_emails: message.to = To(email, None, p=0) # type: ignore[name-defined] cc_emails = args.get('Cc') if cc_emails: cc_emails = cc_emails if isinstance(cc_emails, list) else cc_emails.split(",") for email in cc_emails: message.cc = Cc(email, None, p=0) # type: ignore[name-defined] elif cc_emails == "": return "Send-email failed: CC list is empty, please provide valid email" bcc_emails = args.get('Bcc') if bcc_emails: bcc_emails = bcc_emails if isinstance(bcc_emails, list) else bcc_emails.split(",") for email in bcc_emails: message.bcc = Bcc(email, None, p=0) # type: ignore[name-defined] elif bcc_emails == "": return "Send-email failed: BCC list is empty, please provide valid email" response = sg.send(message) if response.status_code == 202: return "Email Sent successfully" else: return "Failed to send email " + response.status_code
def send_mail(args: dict, sg_from_email: str, sg_sender_name: str, sg): message = Mail() # type: ignore[name-defined] attach_ids = args.get('AttachIDs') attach_names = args.get('AttachNames') or "" if attach_ids: process_attachments(message, attach_ids, attach_names) categories = args.get('Categories') if categories: categories = categories.split(",") for category in categories: message.category = Category(category) # type: ignore[name-defined] batch_id = args.get('BatchID') if batch_id: message.batch_id = BatchId(batch_id) # type: ignore[name-defined] send_at = args.get('SendAt') if send_at: t = dateutil.parser.parse(send_at) send_time = time.mktime(t.timetuple()) message.send_at = SendAt(int(send_time)) # type: ignore[name-defined] asm = args.get('Asm') if asm: asm = asm if type(asm) is dict else json.loads(asm) message.asm = Asm(GroupId(asm["group_id"]), GroupsToDisplay(asm["groups_to_display"])) # type: ignore[name-defined] custom_args = args.get('CustomArgs') if custom_args: custom_args = custom_args if type(custom_args) is dict else json.loads(custom_args) for key in custom_args: message.custom_arg = CustomArg(key, custom_args[key]) # type: ignore[name-defined] ip_pool_name = args.get('IPPoolName') if ip_pool_name: message.ip_pool_name = IpPoolName(ip_pool_name) # type: ignore[name-defined] # Mail Tracking settings tracking_settings = TrackingSettings() # type: ignore[name-defined] click_tracking = args.get('ClickTracking') if click_tracking: click_tracking = click_tracking if type(click_tracking) is dict else json.loads(click_tracking) is_enable = False if click_tracking["enable"] == 'False' else True tracking_settings.click_tracking = ClickTracking(is_enable, # type: ignore[name-defined] click_tracking["enable_text"]) open_tracking = args.get('OpenTracking') if open_tracking: open_tracking = open_tracking if type(open_tracking) is dict else json.loads(open_tracking) is_enable = False if open_tracking["enable"] == 'False' else True tracking_settings.open_tracking = OpenTracking( # type: ignore[name-defined] is_enable, OpenTrackingSubstitutionTag(open_tracking["substitution_tag"])) # type: ignore[name-defined] sub_tracking = args.get('SubscriptionTracking') if sub_tracking: sub_tracking = sub_tracking if type(sub_tracking) is dict else json.loads(sub_tracking) is_enable = False if sub_tracking["enable"] == 'False' else True tracking_settings.subscription_tracking = SubscriptionTracking( # type: ignore[name-defined] is_enable, SubscriptionText(sub_tracking["text"]), # type: ignore[name-defined] SubscriptionHtml(sub_tracking["html"]), # type: ignore[name-defined] SubscriptionSubstitutionTag(sub_tracking["substitution_tag"])) # type: ignore[name-defined] ganalytics = args.get('GAnalytics') if ganalytics: ganalytics = ganalytics if type(ganalytics) is dict else json.loads(ganalytics) is_enable = False if ganalytics["enable"] == 'False' else True tracking_settings.ganalytics = Ganalytics( # type: ignore[name-defined] is_enable, UtmSource(ganalytics["utm_source"]), # type: ignore[name-defined] UtmMedium(ganalytics["utm_medium"]), # type: ignore[name-defined] UtmTerm(ganalytics["utm_term"]), # type: ignore[name-defined] UtmContent(ganalytics["utm_content"]), # type: ignore[name-defined] UtmCampaign(ganalytics["utm_campaign"])) # type: ignore[name-defined] message.tracking_settings = tracking_settings # Mail Settings mail_settings = MailSettings() # type: ignore[name-defined] bcc_mail_set = args.get('BccSettings') if bcc_mail_set: bcc_mail_set = bcc_mail_set if type(bcc_mail_set) is dict else json.loads(bcc_mail_set) is_enable = False if bcc_mail_set["enable"] == 'False' else True mail_settings.bcc_settings = BccSettings( # type: ignore[name-defined] is_enable, BccSettingsEmail(bcc_mail_set["email"])) # type: ignore[name-defined] footer = args.get('Footer') if footer: footer = footer if type(footer) is dict else json.loads(footer) is_enable = False if footer["enable"] == 'False' else True mail_settings.footer_settings = FooterSettings( # type: ignore[name-defined] is_enable, FooterText(footer["text"]), # type: ignore[name-defined] FooterHtml(footer["html"])) # type: ignore[name-defined] spam_check = args.get('SpamCheck') if spam_check: spam_check = spam_check if type(spam_check) is dict else json.loads(spam_check) is_enable = False if spam_check["enable"] == 'False' else True mail_settings.spam_check = SpamCheck( # type: ignore[name-defined] is_enable, SpamThreshold(spam_check["threshold"]), # type: ignore[name-defined] SpamUrl(spam_check["post_to_url"])) # type: ignore[name-defined] sandbox_mode = args.get('SandboxMode') if sandbox_mode: sandbox_mode = False if sandbox_mode == 'False' else True mail_settings.sandbox_mode = SandBoxMode(sandbox_mode) # type: ignore[name-defined] bypass_list_management = args.get('BypassListManagement') if bypass_list_management: bypass_list_management = False if bypass_list_management == 'False' else True mail_settings.bypass_list_management = BypassListManagement(bypass_list_management) # type: ignore[name-defined] message.mail_settings = mail_settings headers = args.get('Headers') if headers: headers = headers if type(headers) is dict else json.loads(headers) for key in headers: message.header = Header(key, headers[key]) # type: ignore[name-defined] template_id = args.get('TemplateID') if template_id: message.template_id = TemplateId(template_id) # type: ignore[name-defined] subject = args.get('Subject') message.subject = Subject(subject) # type: ignore[name-defined] email_body = args.get('HtmlBody') if email_body: message.content = Content(MimeType.html, email_body) # type: ignore[name-defined] raw_body = args.get('RawBody') if raw_body: message.content = Content(MimeType.text, raw_body) # type: ignore[name-defined] reply_to_email = args.get('ReplyTo') if reply_to_email: message.reply_to = ReplyTo(reply_to_email, None) # type: ignore[name-defined] else: raise DemistoException('ReplyTo email is invalid, please provide a valid email.') message.from_email = From(sg_from_email, sg_sender_name) # type: ignore[name-defined] to_emails = args.get('ToEmails') to_emails = to_emails if isinstance(to_emails, list) else to_emails.split(",") # type: ignore[union-attr] for email in to_emails: message.to = To(email, None, p=0) # type: ignore[name-defined] cc_emails = args.get('Cc') if cc_emails: cc_emails = cc_emails if isinstance(cc_emails, list) else cc_emails.split(",") for email in cc_emails: message.cc = Cc(email, None, p=0) # type: ignore[name-defined] elif cc_emails == "": return "Send-email failed: CC list is empty, please provide valid email" bcc_emails = args.get('Bcc') if bcc_emails: bcc_emails = bcc_emails if isinstance(bcc_emails, list) else bcc_emails.split(",") for email in bcc_emails: message.bcc = Bcc(email, None, p=0) # type: ignore[name-defined] elif bcc_emails == "": return "Send-email failed: BCC list is empty, please provide valid email" response = sg.send(message) if response.status_code == 202: return "Email Sent successfully" else: return "Failed to send email " + response.status_code
40,025
def maximum_weight_independent_set(edges: Iterable[Tuple[Variable, Variable]], nodes: Optional[Iterable[Tuple[Variable, float]]] = None, *, strength: Optional[float] = None, strength_multiplier: float = 2, ) -> BinaryQuadraticModel: """Return a binary quadratic model encoding a maximum-weight independent set problem. Given a graph `G`, an independent set is a set of nodes such that the subgraph of `G` induced by these nodes contains no edges. A maximum-weight independent set is the independent set with the highest total node weight. Args: edges: The edges of the graph as an iterable of two-tuples. nodes: The nodes of the graph as an iterable of two-tuples where the first element of the tuple is the node label and the second element is the node weight. Nodes not specified are given a weight of ``1``. strength: The strength of the quadratic biases. Must be strictly greater than ``1`` in order to enforce the independent set constraint. If not given, the strength is determined by the ``strength_multiplier``. strength_multiplier: The strength of the quadratic biases is given by the maximum node weight multiplied by ``strength_multiplier``. Returns: A binary quadratic model. The binary quadratic model will have variables and interactions corresponding to ``nodes`` and ``edges``. Examples: >>> from dimod.generators import maximum_weight_independent_set Get a maximum independent set binary quadratic model from a list of edges and nodes. >>> maximum_weight_independent_set([(0, 1)], [(0, .25), (1, .5), (2, 1)]) BinaryQuadraticModel({0: -0.25, 1: -0.5, 2: -1.0}, {(1, 0): 2.0}, 0.0, 'BINARY') Get a maximum independent set binary quadratic model from a :class:`networkx.Graph`. >>> import networkx as nx >>> G = nx.Graph() >>> G.add_edges_from([(0, 1), (1, 2)]) >>> G.add_nodes_from([0, 2], weight=.25) >>> G.add_node(1, weight=.5) >>> maximum_weight_independent_set(G.edges, G.nodes('weight')) BinaryQuadraticModel({0: -0.25, 1: -0.5, 2: -0.25}, {(1, 0): 1.0, (2, 1): 1.0}, 0.0, 'BINARY') """ bqm = independent_set(edges) objective = BinaryQuadraticModel(vartype=Vartype.BINARY) objective.add_linear_from((v, 1) for v in bqm.variables) if nodes is None: max_weight = 1. else: for v, weight in nodes: objective.set_linear(v, weight) max_weight = objective.linear.max(default=1) if strength is None: bqm *= max_weight*strength_multiplier bqm -= objective else: bqm *= strength bqm -= objective bqm.offset = 0 # otherwise subtracting the objective gives -0 offset return bqm
def maximum_weight_independent_set(edges: Iterable[Tuple[Variable, Variable]], nodes: Optional[Iterable[Tuple[Variable, float]]] = None, *, strength: Optional[float] = None, strength_multiplier: float = 2, ) -> BinaryQuadraticModel: """Return a binary quadratic model encoding a maximum-weight independent set problem. Given a graph `G`, an independent set is a set of nodes such that the subgraph of `G` induced by these nodes contains no edges. A maximum-weight independent set is the independent set with the highest total node weight. Args: edges: The edges of the graph as an iterable of two-tuples. nodes: The nodes of the graph as an iterable of two-tuples where the first element of the tuple is the node label and the second element is the node weight. Nodes not specified are given a weight of ``1``. strength: The strength of the quadratic biases. Must be strictly greater than ``1`` in order to enforce the independent set constraint. If not given, the strength is determined by the ``strength_multiplier``. strength_multiplier: The strength of the quadratic biases is given by the maximum node weight multiplied by ``strength_multiplier``. Returns: A binary quadratic model. The binary quadratic model will have variables and interactions corresponding to ``nodes`` and ``edges``. Examples: >>> from dimod.generators import maximum_weight_independent_set Get a maximum-weight independent set binary quadratic model from a list of edges and nodes. >>> maximum_weight_independent_set([(0, 1)], [(0, .25), (1, .5), (2, 1)]) BinaryQuadraticModel({0: -0.25, 1: -0.5, 2: -1.0}, {(1, 0): 2.0}, 0.0, 'BINARY') Get a maximum independent set binary quadratic model from a :class:`networkx.Graph`. >>> import networkx as nx >>> G = nx.Graph() >>> G.add_edges_from([(0, 1), (1, 2)]) >>> G.add_nodes_from([0, 2], weight=.25) >>> G.add_node(1, weight=.5) >>> maximum_weight_independent_set(G.edges, G.nodes('weight')) BinaryQuadraticModel({0: -0.25, 1: -0.5, 2: -0.25}, {(1, 0): 1.0, (2, 1): 1.0}, 0.0, 'BINARY') """ bqm = independent_set(edges) objective = BinaryQuadraticModel(vartype=Vartype.BINARY) objective.add_linear_from((v, 1) for v in bqm.variables) if nodes is None: max_weight = 1. else: for v, weight in nodes: objective.set_linear(v, weight) max_weight = objective.linear.max(default=1) if strength is None: bqm *= max_weight*strength_multiplier bqm -= objective else: bqm *= strength bqm -= objective bqm.offset = 0 # otherwise subtracting the objective gives -0 offset return bqm
40,586
def update_p_nom_max(n): # if extendable carriers (solar/onwind/...) have capacity >= 0, # e.g. existing assets from the OPSD project are included to the network, # the installed capacity might exceed the expansion limit. # Hence, we update the assumptions. n.generators.p_nom_max = (n.generators .apply(lambda b: b[['p_nom_min','p_nom_max']].max(), axis=1))
def update_p_nom_max(n): # if extendable carriers (solar/onwind/...) have capacity >= 0, # e.g. existing assets from the OPSD project are included to the network, # the installed capacity might exceed the expansion limit. # Hence, we update the assumptions. n.generators.p_nom_max = n.generators[['p_nom_min', 'p_nom_max']].max(1)
29,506
def process_raw_message_batch( realm_id: int, raw_messages: List[Dict[str, Any]], subscriber_map: Dict[int, Set[int]], user_id_mapper: IdMapper, user_handler: UserHandler, get_recipient_id_from_receiver_name: Callable[[str, int], int], is_pm_data: bool, output_dir: str, zerver_realmemoji: List[Dict[str, Any]], total_reactions: List[Dict[str, Any]], uploads_list: List[ZerverFieldsT], zerver_attachment: List[ZerverFieldsT], mattermost_data_dir: str, ) -> None: def fix_mentions(content: str, mention_user_ids: Set[int]) -> str: for user_id in mention_user_ids: user = user_handler.get_user(user_id=user_id) mattermost_mention = "@{short_name}".format(**user) zulip_mention = "@**{full_name}**".format(**user) content = content.replace(mattermost_mention, zulip_mention) content = content.replace("@channel", "@**all**") content = content.replace("@all", "@**all**") # We don't have an equivalent for Mattermost's @here mention which mentions all users # online in the channel. content = content.replace("@here", "@**all**") return content mention_map: Dict[int, Set[int]] = {} zerver_message = [] import html2text h = html2text.HTML2Text() pm_members = {} for raw_message in raw_messages: message_id = NEXT_ID("message") mention_user_ids = get_mentioned_user_ids(raw_message, user_id_mapper) mention_map[message_id] = mention_user_ids content = fix_mentions( content=raw_message["content"], mention_user_ids=mention_user_ids, ) content = h.handle(content) if len(content) > 10000: # nocoverage logging.info("skipping too-long message of length %s", len(content)) continue date_sent = raw_message["date_sent"] sender_user_id = raw_message["sender_id"] if "channel_name" in raw_message: recipient_id = get_recipient_id_from_receiver_name( raw_message["channel_name"], Recipient.STREAM ) elif "huddle_name" in raw_message: recipient_id = get_recipient_id_from_receiver_name( raw_message["huddle_name"], Recipient.HUDDLE ) elif "pm_members" in raw_message: members = raw_message["pm_members"] member_ids = {user_id_mapper.get(member) for member in members} pm_members[message_id] = member_ids if sender_user_id == user_id_mapper.get(members[0]): recipient_id = get_recipient_id_from_receiver_name(members[1], Recipient.PERSONAL) else: recipient_id = get_recipient_id_from_receiver_name(members[0], Recipient.PERSONAL) else: raise AssertionError("raw_message without channel_name, huddle_name or pm_members key") rendered_content = None has_attachment = False has_image = False has_link = False if "attachments" in raw_message: has_attachment = True has_link = True file_info = process_message_attachments( attachments=raw_message["attachments"], realm_id=realm_id, message_id=message_id, user_id=sender_user_id, user_handler=user_handler, zerver_attachment=zerver_attachment, uploads_list=uploads_list, mattermost_data_dir=mattermost_data_dir, output_dir=output_dir, ) content += file_info["content"] has_image = file_info["has_image"] topic_name = "imported from mattermost" message = build_message( content=content, message_id=message_id, date_sent=date_sent, recipient_id=recipient_id, rendered_content=rendered_content, topic_name=topic_name, user_id=sender_user_id, has_image=has_image, has_link=has_link, has_attachment=has_attachment, ) zerver_message.append(message) build_reactions( realm_id, total_reactions, raw_message["reactions"], message_id, user_id_mapper, zerver_realmemoji, ) zerver_usermessage = make_user_messages( zerver_message=zerver_message, subscriber_map=subscriber_map, is_pm_data=is_pm_data, mention_map=mention_map, ) message_json = dict( zerver_message=zerver_message, zerver_usermessage=zerver_usermessage, ) dump_file_id = NEXT_ID("dump_file_id" + str(realm_id)) message_file = f"/messages-{dump_file_id:06}.json" create_converted_data_files(message_json, output_dir, message_file)
def process_raw_message_batch( realm_id: int, raw_messages: List[Dict[str, Any]], subscriber_map: Dict[int, Set[int]], user_id_mapper: IdMapper, user_handler: UserHandler, get_recipient_id_from_receiver_name: Callable[[str, int], int], is_pm_data: bool, output_dir: str, zerver_realmemoji: List[Dict[str, Any]], total_reactions: List[Dict[str, Any]], uploads_list: List[ZerverFieldsT], zerver_attachment: List[ZerverFieldsT], mattermost_data_dir: str, ) -> None: def fix_mentions(content: str, mention_user_ids: Set[int]) -> str: for user_id in mention_user_ids: user = user_handler.get_user(user_id=user_id) mattermost_mention = "@{short_name}".format(**user) zulip_mention = "@**{full_name}**".format(**user) content = content.replace(mattermost_mention, zulip_mention) content = content.replace("@channel", "@**all**") content = content.replace("@all", "@**all**") # We don't have an equivalent for Mattermost's @here mention which mentions all users # online in the channel. content = content.replace("@here", "@**all**") return content mention_map: Dict[int, Set[int]] = {} zerver_message = [] import html2text h = html2text.HTML2Text() pm_members = {} for raw_message in raw_messages: message_id = NEXT_ID("message") mention_user_ids = get_mentioned_user_ids(raw_message, user_id_mapper) mention_map[message_id] = mention_user_ids content = fix_mentions( content=raw_message["content"], mention_user_ids=mention_user_ids, ) content = h.handle(content) if len(content) > 10000: # nocoverage logging.info("skipping too-long message of length %s", len(content)) continue date_sent = raw_message["date_sent"] sender_user_id = raw_message["sender_id"] if "channel_name" in raw_message: recipient_id = get_recipient_id_from_receiver_name( raw_message["channel_name"], Recipient.STREAM ) elif "huddle_name" in raw_message: recipient_id = get_recipient_id_from_receiver_name( raw_message["huddle_name"], Recipient.HUDDLE ) elif "pm_members" in raw_message: members = raw_message["pm_members"] member_ids = {user_id_mapper.get(member) for member in members} pm_members[message_id] = member_ids if sender_user_id == user_id_mapper.get(members[0]): recipient_id = get_recipient_id_from_receiver_name(members[1], Recipient.PERSONAL) else: recipient_id = get_recipient_id_from_receiver_name(members[0], Recipient.PERSONAL) else: raise AssertionError("raw_message without channel_name, huddle_name or pm_members key") rendered_content = None has_attachment = False has_image = False has_link = False if "attachments" in raw_message: has_attachment = True has_link = True content, has_image = process_message_attachments( attachments=raw_message["attachments"], realm_id=realm_id, message_id=message_id, user_id=sender_user_id, user_handler=user_handler, zerver_attachment=zerver_attachment, uploads_list=uploads_list, mattermost_data_dir=mattermost_data_dir, output_dir=output_dir, ) content += file_info["content"] has_image = file_info["has_image"] topic_name = "imported from mattermost" message = build_message( content=content, message_id=message_id, date_sent=date_sent, recipient_id=recipient_id, rendered_content=rendered_content, topic_name=topic_name, user_id=sender_user_id, has_image=has_image, has_link=has_link, has_attachment=has_attachment, ) zerver_message.append(message) build_reactions( realm_id, total_reactions, raw_message["reactions"], message_id, user_id_mapper, zerver_realmemoji, ) zerver_usermessage = make_user_messages( zerver_message=zerver_message, subscriber_map=subscriber_map, is_pm_data=is_pm_data, mention_map=mention_map, ) message_json = dict( zerver_message=zerver_message, zerver_usermessage=zerver_usermessage, ) dump_file_id = NEXT_ID("dump_file_id" + str(realm_id)) message_file = f"/messages-{dump_file_id:06}.json" create_converted_data_files(message_json, output_dir, message_file)
8,656
def get_running_pid(filename): """Retrieve the pid number from the given ``filename``. :param str filename: path to file to read the PID from :return: the PID number of a sopel instance if running, ``None`` otherwise :rtype: integer This function tries to retrieve a PID number from the given ``filename``, as an integer, and returns ``None`` if the file is not found or if the content is not an integer. """ if not os.path.isfile(filename): return with open(filename, 'r') as pid_file: try: return int(pid_file.read()) except ValueError: pass
def get_running_pid(filename): """Retrieve the pid number from the given ``filename``. :param str filename: path to file to read the PID from :return: the PID number of a Sopel instance if running, ``None`` otherwise :rtype: integer This function tries to retrieve a PID number from the given ``filename``, as an integer, and returns ``None`` if the file is not found or if the content is not an integer. """ if not os.path.isfile(filename): return with open(filename, 'r') as pid_file: try: return int(pid_file.read()) except ValueError: pass
39,302
def vtk_points(points, deep=True): """Convert numpy or list of points to a vtkPoints object.""" if not isinstance(points, np.ndarray): points = np.array(points) # verify is numeric if not np.issubdtype(points.dtype, np.number): raise TypeError('Points must be a numeric type') # check dimensionality if points.ndim == 1: points = points.reshape((-1, 3)) elif points.ndim > 2: raise ValueError('Dimension of ``points`` should be 1 or 2, not ' f'{points.ndim}') # verify shape if points.shape[1] != 3: raise ValueError('Points array must contain three values per point. \n' f'Shape is {points.shape} and should be (X, 3)') # points must be contiguous if not points.flags['C_CONTIGUOUS']: points = np.ascontiguousarray(points) vtkpts = _vtk.vtkPoints() vtkpts.SetData(_vtk.numpy_to_vtk(points, deep=deep)) return vtkpts
def vtk_points(points, deep=True): """Convert numpy or list of points to a vtkPoints object.""" if not isinstance(points, np.ndarray): points = np.array(points) # verify is numeric if not np.issubdtype(points.dtype, np.number): raise TypeError('Points must be a numeric type') # check dimensionality if points.ndim == 1: points = points.reshape(-1, 3) elif points.ndim > 2: raise ValueError('Dimension of ``points`` should be 1 or 2, not ' f'{points.ndim}') # verify shape if points.shape[1] != 3: raise ValueError('Points array must contain three values per point. \n' f'Shape is {points.shape} and should be (X, 3)') # points must be contiguous if not points.flags['C_CONTIGUOUS']: points = np.ascontiguousarray(points) vtkpts = _vtk.vtkPoints() vtkpts.SetData(_vtk.numpy_to_vtk(points, deep=deep)) return vtkpts
25,581
def limit_thread_cpu_usage_by_time() -> None: """This will enable Gevent's monitoring thread, and if a Greenlet uses the CPU for longer than `max_blocking_time` it will be killed. This will result in the whole process being killed, since exceptions are propagate to the top-level. The goal here is to detect slow functions that have to be optimized. """ gevent.config.monitor_thread = True gevent.config.max_blocking_time = 10.0 # The monitoring thread will use the trace api just like the TraceSampler # and the SwitchMonitoring. Sadly there is no API to uninstall the thread, # but this should not be a problem. monitor_thread = gevent.get_hub().start_periodic_monitoring_thread() # This code must not use the tracer from the monitor_thread because calls # to `did_block_hub` will reset its internal state. If two threads use the # same underlying tracer false positives will happen, because the swith # counter will be artifically reset. greenlet_tracer = GreenletTracer() def kill_offender(hub: Hub) -> None: tracer = monitor_thread._greenlet_tracer if greenlet_tracer.did_block_hub(hub): active_greenlet = tracer.active_greenlet hub.loop.run_callback( lambda: active_greenlet.throw( RaidenUnrecoverableError( f"A greenlet used the CPU for longer than " f"{gevent.config.max_blocking_time} seconds, killing it" ) ) ) monitor_thread.add_monitoring_function(kill_offender, gevent.config.max_blocking_time)
def limit_thread_cpu_usage_by_time() -> None: """This will enable Gevent's monitoring thread, and if a Greenlet uses the CPU for longer than `max_blocking_time` it will be killed. This will result in the whole process being killed, since exceptions are propagate to the top-level. The goal here is to detect slow functions that have to be optimized. """ gevent.config.monitor_thread = True gevent.config.max_blocking_time = 10.0 # The monitoring thread will use the trace api just like the TraceSampler # and the SwitchMonitoring. Sadly there is no API to uninstall the thread, # but this should not be a problem. monitor_thread = gevent.get_hub().start_periodic_monitoring_thread() # This code must not use the tracer from the monitor_thread because calls # to `did_block_hub` will reset its internal state. If two threads use the # same underlying tracer false positives will happen, because the switch # counter will be artifically reset. greenlet_tracer = GreenletTracer() def kill_offender(hub: Hub) -> None: tracer = monitor_thread._greenlet_tracer if greenlet_tracer.did_block_hub(hub): active_greenlet = tracer.active_greenlet hub.loop.run_callback( lambda: active_greenlet.throw( RaidenUnrecoverableError( f"A greenlet used the CPU for longer than " f"{gevent.config.max_blocking_time} seconds, killing it" ) ) ) monitor_thread.add_monitoring_function(kill_offender, gevent.config.max_blocking_time)
10,492
def upgrade(m, mode="yes", force=False, default_release=None, use_apt_get=False, dpkg_options=expand_dpkg_options(DPKG_OPTIONS), autoremove=False, no_remove=False, allow_unauthenticated=False, ): if autoremove: autoremove = '--auto-remove' else: autoremove = '' if m.check_mode: check_arg = '--simulate' else: check_arg = '' apt_cmd = None prompt_regex = None if mode == "dist" or (mode == "full" and use_apt_get): # apt-get dist-upgrade apt_cmd = APT_GET_CMD upgrade_command = "dist-upgrade %s" % (autoremove) elif mode == "full" and not use_apt_get: # aptitude full-upgrade apt_cmd = APTITUDE_CMD upgrade_command = "full-upgrade" else: if use_apt_get: apt_cmd = APT_GET_CMD upgrade_command = "upgrade --with-new-pkgs %s" % (autoremove) else: # aptitude safe-upgrade # mode=yes # default apt_cmd = APTITUDE_CMD upgrade_command = "safe-upgrade" prompt_regex = r"(^Do you want to ignore this warning and proceed anyway\?|^\*\*\*.*\[default=.*\])" if force: if apt_cmd == APT_GET_CMD: force_yes = '--force-yes' else: force_yes = '--assume-yes --allow-untrusted' else: force_yes = '' if no_remove: no_remove = '--no-remove' else: no_remove = '' allow_unauthenticated = '--allow-unauthenticated' if allow_unauthenticated else '' if apt_cmd is None: if use_apt_get: apt_cmd = APT_GET_CMD else: m.fail_json(msg="Unable to find APTITUDE in path. Please make sure " "to have APTITUDE in path or use 'force_apt_get=True'") apt_cmd_path = m.get_bin_path(apt_cmd, required=True) cmd = '%s -y %s %s %s %s %s %s' % (apt_cmd_path, dpkg_options, force_yes, no_remove, allow_unauthenticated, check_arg, upgrade_command) if default_release: cmd += " -t '%s'" % (default_release,) with PolicyRcD(m): rc, out, err = m.run_command(cmd, prompt_regex=prompt_regex) if m._diff: diff = parse_diff(out) else: diff = {} if rc: m.fail_json(msg="'%s %s' failed: %s" % (apt_cmd, upgrade_command, err), stdout=out, rc=rc) if (apt_cmd == APT_GET_CMD and APT_GET_ZERO in out) or (apt_cmd == APTITUDE_CMD and APTITUDE_ZERO in out): m.exit_json(changed=False, msg=out, stdout=out, stderr=err) m.exit_json(changed=True, msg=out, stdout=out, stderr=err, diff=diff)
def upgrade(m, mode="yes", force=False, default_release=None, use_apt_get=False, dpkg_options=expand_dpkg_options(DPKG_OPTIONS), autoremove=False, fail_on_autoremove =False, allow_unauthenticated=False, ): if autoremove: autoremove = '--auto-remove' else: autoremove = '' if m.check_mode: check_arg = '--simulate' else: check_arg = '' apt_cmd = None prompt_regex = None if mode == "dist" or (mode == "full" and use_apt_get): # apt-get dist-upgrade apt_cmd = APT_GET_CMD upgrade_command = "dist-upgrade %s" % (autoremove) elif mode == "full" and not use_apt_get: # aptitude full-upgrade apt_cmd = APTITUDE_CMD upgrade_command = "full-upgrade" else: if use_apt_get: apt_cmd = APT_GET_CMD upgrade_command = "upgrade --with-new-pkgs %s" % (autoremove) else: # aptitude safe-upgrade # mode=yes # default apt_cmd = APTITUDE_CMD upgrade_command = "safe-upgrade" prompt_regex = r"(^Do you want to ignore this warning and proceed anyway\?|^\*\*\*.*\[default=.*\])" if force: if apt_cmd == APT_GET_CMD: force_yes = '--force-yes' else: force_yes = '--assume-yes --allow-untrusted' else: force_yes = '' if no_remove: no_remove = '--no-remove' else: no_remove = '' allow_unauthenticated = '--allow-unauthenticated' if allow_unauthenticated else '' if apt_cmd is None: if use_apt_get: apt_cmd = APT_GET_CMD else: m.fail_json(msg="Unable to find APTITUDE in path. Please make sure " "to have APTITUDE in path or use 'force_apt_get=True'") apt_cmd_path = m.get_bin_path(apt_cmd, required=True) cmd = '%s -y %s %s %s %s %s %s' % (apt_cmd_path, dpkg_options, force_yes, no_remove, allow_unauthenticated, check_arg, upgrade_command) if default_release: cmd += " -t '%s'" % (default_release,) with PolicyRcD(m): rc, out, err = m.run_command(cmd, prompt_regex=prompt_regex) if m._diff: diff = parse_diff(out) else: diff = {} if rc: m.fail_json(msg="'%s %s' failed: %s" % (apt_cmd, upgrade_command, err), stdout=out, rc=rc) if (apt_cmd == APT_GET_CMD and APT_GET_ZERO in out) or (apt_cmd == APTITUDE_CMD and APTITUDE_ZERO in out): m.exit_json(changed=False, msg=out, stdout=out, stderr=err) m.exit_json(changed=True, msg=out, stdout=out, stderr=err, diff=diff)
31,853
def get_ransomware_alerts_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ Gets ransomware alerts detected by Cohesity Helios. :type client: ``Client`` :param Client: cohesity helios client to use. :type args: ``Dict[str, Any]`` :param args: Dictionary with get ransomware alerts parameters. Returns command result with the list of fetched ransomware alerts. """ start_time_millis = datestring_to_millis(args.get('created_after', '')) end_time_millis = datestring_to_millis(args.get('created_before', '')) severity_list = args.get('alert_severity_list', None) ids_list = args.get('alert_id_list', None) limit = args.get('limit', MAX_FETCH_DEFAULT) # Fetch ransomware alerts via client. resp = client.get_ransomware_alerts( start_time_millis=start_time_millis, end_time_millis=end_time_millis, alert_ids=ids_list, alert_severity_list=severity_list, max_fetch=limit) demisto.debug("Got {numAlerts} alerts between {start} and {end}". format(numAlerts=len(resp), start=start_time_millis, end=end_time_millis)) # Parse alerts for readable output. ransomware_alerts = [] for alert in resp: alert_details = get_ransomware_alert_details(alert) ransomware_alerts.append(alert_details) return CommandResults( outputs_prefix='CohesityHelios.RansomwareAlert', outputs_key_field='alert_id', outputs=ransomware_alerts, )
def get_ransomware_alerts_command(client: Client, args: Dict[str, Any]) -> CommandResults: """ Gets ransomware alerts detected by Cohesity Helios. :type client: ``Client`` :param Client: cohesity helios client to use. :type args: ``Dict[str, Any]`` :param args: Dictionary with get ransomware alerts parameters. Returns command result with the list of fetched ransomware alerts. """ start_time_millis = datestring_to_millis(args.get('created_after', '')) end_time_millis = datestring_to_millis(args.get('created_before', '')) severity_list = args.get('alert_severity_list', None) ids_list = args.get('alert_id_list', None) limit = args.get('limit', MAX_FETCH_DEFAULT) # Fetch ransomware alerts via client. resp = client.get_ransomware_alerts( start_time_millis=start_time_millis, end_time_millis=end_time_millis, alert_ids=ids_list, alert_severity_list=severity_list, max_fetch=limit) demisto.debug(f"Got {len(resp)} alerts between {start_time_millis} and {end_time_millis}.") # Parse alerts for readable output. ransomware_alerts = [] for alert in resp: alert_details = get_ransomware_alert_details(alert) ransomware_alerts.append(alert_details) return CommandResults( outputs_prefix='CohesityHelios.RansomwareAlert', outputs_key_field='alert_id', outputs=ransomware_alerts, )
31,453
def is_the_only_rn_in_block(release_notes_dir: str, version: str, changelog: dict): """ Check if the given version is a key of an aggregated changelog block, as in its value in the changelog doesn't contains other release notes that have been aggregated in previous uploads. If that is the case, the adjacent previous release note in the changelog will be equal to the one in the release notes directory, and this function asserts that. Args: release_notes_dir: the path to the release notes dir. version (str): the wanted version. changelog (dict): the changelog from the production bucket. Returns: True if this version's value in the changelog is not an aggregated release notes block. False otherwise. """ if changelog.get(version): all_rn_versions = [] lowest_version = [LooseVersion('0.0.0')] for filename in sorted(os.listdir(release_notes_dir)): _current_version = filename.replace('.md', '') current_version = _current_version.replace('_', '.') all_rn_versions.append(LooseVersion(current_version)) lower_versions_all_versions = [item for item in all_rn_versions if item < version] + lowest_version lower_versions_in_changelog = [LooseVersion(item) for item in changelog.keys() if LooseVersion(item) < version] + lowest_version return max(lower_versions_all_versions) == max(lower_versions_in_changelog) return False
def is_the_only_rn_in_block(release_notes_dir: str, version: str, changelog: dict): """ Check if the given version is a key of an aggregated changelog block, as in its value in the changelog doesn't contains other release notes that have been aggregated in previous uploads. If that is the case, the adjacent previous release note in the changelog will be equal to the one in the release notes directory, and this function asserts that. Args: release_notes_dir: the path to the release notes dir. version (str): the wanted version. changelog (dict): the changelog from the production bucket. Returns: True if this version's value in the changelog is not an aggregated release notes block. False otherwise. """ if changelog.get(version): all_rn_versions = [] lowest_version = [LooseVersion('1.0.0')] for filename in sorted(os.listdir(release_notes_dir)): _current_version = filename.replace('.md', '') current_version = _current_version.replace('_', '.') all_rn_versions.append(LooseVersion(current_version)) lower_versions_all_versions = [item for item in all_rn_versions if item < version] + lowest_version lower_versions_in_changelog = [LooseVersion(item) for item in changelog.keys() if LooseVersion(item) < version] + lowest_version return max(lower_versions_all_versions) == max(lower_versions_in_changelog) return False
40,765
def supervised_training_step( model: torch.nn.Module, optimizer: torch.optim.Optimizer, loss_fn: Union[Callable, torch.nn.Module], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, output_transform: Callable = lambda x, y, y_pred, loss: loss.item(), gradient_accumulation_steps: int = 1, ) -> Callable: """Factory function for supervised training. Args: model: the model to train. optimizer: the optimizer to use. loss_fn: the loss function to use. device: device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. Device can be CPU, GPU. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. output_transform: function that receives 'x', 'y', 'y_pred', 'loss' and returns value to be assigned to engine's state.output after each iteration. Default is returning `loss.item()`. gradient_accumulation_steps: Number of steps the gradients should be accumulated across. (default: 1 (means no gradient accumulation)) Returns: Callable: update function. Example:: from ignite.engine import Engine, supervised_training_step model = ... optimizer = ... loss_fn = ... update_fn = supervised_training_step(model, optimizer, loss_fn, 'cuda') trainer = Engine(update_fn) .. versionadded:: 0.4.5 .. versionadded:: 0.5.0 Added Gradient Accumulation. """ def update(engine: Engine, batch: Sequence[torch.Tensor]) -> Union[Any, Tuple[torch.Tensor]]: model.train() x, y = prepare_batch(batch, device=device, non_blocking=non_blocking) y_pred = model(x) loss = loss_fn(y_pred, y) / gradient_accumulation_steps loss.backward() if engine.state.iteration % gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() return output_transform(x, y, y_pred, loss) return update
def supervised_training_step( model: torch.nn.Module, optimizer: torch.optim.Optimizer, loss_fn: Union[Callable, torch.nn.Module], device: Optional[Union[str, torch.device]] = None, non_blocking: bool = False, prepare_batch: Callable = _prepare_batch, output_transform: Callable = lambda x, y, y_pred, loss: loss.item(), gradient_accumulation_steps: int = 1, ) -> Callable: """Factory function for supervised training. Args: model: the model to train. optimizer: the optimizer to use. loss_fn: the loss function to use. device: device type specification (default: None). Applies to batches after starting the engine. Model *will not* be moved. Device can be CPU, GPU. non_blocking: if True and this copy is between CPU and GPU, the copy may occur asynchronously with respect to the host. For other cases, this argument has no effect. prepare_batch: function that receives `batch`, `device`, `non_blocking` and outputs tuple of tensors `(batch_x, batch_y)`. output_transform: function that receives 'x', 'y', 'y_pred', 'loss' and returns value to be assigned to engine's state.output after each iteration. Default is returning `loss.item()`. gradient_accumulation_steps: Number of steps the gradients should be accumulated across. (default: 1 (means no gradient accumulation)) Returns: Callable: update function. Example:: from ignite.engine import Engine, supervised_training_step model = ... optimizer = ... loss_fn = ... update_fn = supervised_training_step(model, optimizer, loss_fn, 'cuda') trainer = Engine(update_fn) .. versionadded:: 0.4.5 .. versionchanged:: 0.5.0 Added Gradient Accumulation. """ def update(engine: Engine, batch: Sequence[torch.Tensor]) -> Union[Any, Tuple[torch.Tensor]]: model.train() x, y = prepare_batch(batch, device=device, non_blocking=non_blocking) y_pred = model(x) loss = loss_fn(y_pred, y) / gradient_accumulation_steps loss.backward() if engine.state.iteration % gradient_accumulation_steps == 0: optimizer.step() optimizer.zero_grad() return output_transform(x, y, y_pred, loss) return update
31,549
def elasticsearch_builder(proxies): """Builds an Elasticsearch obj with the necessary credentials, proxy settings and secure connection.""" connection_args = { "hosts": [SERVER], "connection_class": RequestsHttpConnection, "proxies": proxies, "verify_certs": INSECURE, "timeout": TIMEOUT } if API_KEY_ID: connection_args["api_key"] = API_KEY elif USERNAME: connection_args["http_auth"] = (USERNAME, PASSWORD) es = Elasticsearch(**connection_args) # this should be passed as api_key via Elasticsearch init, but this code ensures it'll be set correctly if API_KEY_ID and hasattr(es, 'transport'): es.transport.get_connection().session.headers['authorization'] = get_api_key_header_val(API_KEY) return es
def elasticsearch_builder(proxies): """Builds an Elasticsearch obj with the necessary credentials, proxy settings and secure connection.""" connection_args = { "hosts": [SERVER], "connection_class": RequestsHttpConnection, "proxies": proxies, "verify_certs": INSECURE, "timeout": TIMEOUT, } if API_KEY_ID: connection_args["api_key"] = API_KEY elif USERNAME: connection_args["http_auth"] = (USERNAME, PASSWORD) es = Elasticsearch(**connection_args) # this should be passed as api_key via Elasticsearch init, but this code ensures it'll be set correctly if API_KEY_ID and hasattr(es, 'transport'): es.transport.get_connection().session.headers['authorization'] = get_api_key_header_val(API_KEY) return es
2,372
def _inclusive_low_high(interval, dtype=float): """Generate values low and high to be within the interval range.""" eps = 10 * np.finfo(dtype).eps if interval.low == -np.inf: low = -1e10 elif interval.low < 0: low = interval.low * (1 - eps) + eps else: low = interval.low * (1 + eps) + eps if interval.high == np.inf: high = 1e10 elif interval.high < 0: high = interval.high * (1 + eps) - eps else: high = interval.high * (1 - eps) - eps return low, high
def _inclusive_low_high(interval, dtype=np.float32): """Generate values low and high to be within the interval range.""" eps = 10 * np.finfo(dtype).eps if interval.low == -np.inf: low = -1e10 elif interval.low < 0: low = interval.low * (1 - eps) + eps else: low = interval.low * (1 + eps) + eps if interval.high == np.inf: high = 1e10 elif interval.high < 0: high = interval.high * (1 + eps) - eps else: high = interval.high * (1 - eps) - eps return low, high
34
def _get_betterworldbooks_thirdparty_metadata(isbn): if isbn: url = 'https://www.betterworldbooks.com/product/detail/-%s' % isbn try: r = requests.get(url) results = [{ 'url': BWB_AFFILIATE_LINK % (isbn), 'qlt': r[0].lower(), 'price': '$%s (%s)' % (r[1], r[0].lower()), 'price_amt': r[1], } for r in re.findall('data-condition=\"(New|Used).*data-price=\"([0-9.]+)\"', r.content)] cheapest = sorted(results, key=lambda r: Decimal(r['price_amt']))[0] return cheapest except Exception: return {}
def _get_betterworldbooks_thirdparty_metadata(isbn): if isbn: url = 'https://www.betterworldbooks.com/product/detail/-%s' % isbn try: r = requests.get(url) results = [{ 'url': BWB_AFFILIATE_LINK % (isbn), 'qlt': r[0].lower(), 'price': '$%s (%s)' % (r[1], r[0].lower()), 'price_amt': r[1], } for r in re.findall('data-condition="(New|Used).*data-price="([0-9.]+)"', r.content)] cheapest = sorted(results, key=lambda r: Decimal(r['price_amt']))[0] return cheapest except Exception: return {}
40,593
def plot_total_cost_bar(n, ax=None, opts={}): if ax is None: ax = plt.gca() total_load = (n.snapshot_weightings.generators * n.loads_t.p.sum(axis=1)).sum() tech_colors = opts['tech_colors'] def split_costs(n): costs = aggregate_costs(n).reset_index(level=0, drop=True) costs_ex = aggregate_costs(n, existing_only=True).reset_index(level=0, drop=True) return (costs['capital'].add(costs['marginal'], fill_value=0.), costs_ex['capital'], costs['capital'] - costs_ex['capital'], costs['marginal']) costs, costs_cap_ex, costs_cap_new, costs_marg = split_costs(n) costs_graph = pd.DataFrame(dict(a=costs.drop('load', errors='ignore')), index=['AC-AC', 'AC line', 'onwind', 'offwind-ac', 'offwind-dc', 'solar', 'OCGT','CCGT', 'battery', 'H2']).dropna() bottom = np.array([0., 0.]) texts = [] for i,ind in enumerate(costs_graph.index): data = np.asarray(costs_graph.loc[ind])/total_load ax.bar([0.5], data, bottom=bottom, color=tech_colors[ind], width=0.7, zorder=-1) bottom_sub = bottom bottom = bottom+data if ind in opts['conv_techs'] + ['AC line']: for c in [costs_cap_ex, costs_marg]: if ind in c: data_sub = np.asarray([c.loc[ind]])/total_load ax.bar([0.5], data_sub, linewidth=0, bottom=bottom_sub, color=tech_colors[ind], width=0.7, zorder=-1, alpha=0.8) bottom_sub += data_sub if abs(data[-1]) < 5: continue text = ax.text(1.1,(bottom-0.5*data)[-1]-3,opts['nice_names'].get(ind,ind)) texts.append(text) ax.set_ylabel("Average system cost [Eur/MWh]") ax.set_ylim([0, opts.get('costs_max', 80)]) ax.set_xlim([0, 1]) ax.set_xticklabels([]) ax.grid(True, axis="y", color='k', linestyle='dotted')
def plot_total_cost_bar(n, opts, ax=None): if ax is None: ax = plt.gca() total_load = (n.snapshot_weightings.generators * n.loads_t.p.sum(axis=1)).sum() tech_colors = opts['tech_colors'] def split_costs(n): costs = aggregate_costs(n).reset_index(level=0, drop=True) costs_ex = aggregate_costs(n, existing_only=True).reset_index(level=0, drop=True) return (costs['capital'].add(costs['marginal'], fill_value=0.), costs_ex['capital'], costs['capital'] - costs_ex['capital'], costs['marginal']) costs, costs_cap_ex, costs_cap_new, costs_marg = split_costs(n) costs_graph = pd.DataFrame(dict(a=costs.drop('load', errors='ignore')), index=['AC-AC', 'AC line', 'onwind', 'offwind-ac', 'offwind-dc', 'solar', 'OCGT','CCGT', 'battery', 'H2']).dropna() bottom = np.array([0., 0.]) texts = [] for i,ind in enumerate(costs_graph.index): data = np.asarray(costs_graph.loc[ind])/total_load ax.bar([0.5], data, bottom=bottom, color=tech_colors[ind], width=0.7, zorder=-1) bottom_sub = bottom bottom = bottom+data if ind in opts['conv_techs'] + ['AC line']: for c in [costs_cap_ex, costs_marg]: if ind in c: data_sub = np.asarray([c.loc[ind]])/total_load ax.bar([0.5], data_sub, linewidth=0, bottom=bottom_sub, color=tech_colors[ind], width=0.7, zorder=-1, alpha=0.8) bottom_sub += data_sub if abs(data[-1]) < 5: continue text = ax.text(1.1,(bottom-0.5*data)[-1]-3,opts['nice_names'].get(ind,ind)) texts.append(text) ax.set_ylabel("Average system cost [Eur/MWh]") ax.set_ylim([0, opts.get('costs_max', 80)]) ax.set_xlim([0, 1]) ax.set_xticklabels([]) ax.grid(True, axis="y", color='k', linestyle='dotted')
45,913
def interp(x: torch.Tensor, xp: torch.Tensor, fp: torch.Tensor) -> torch.Tensor: """Interpolate ``x`` tensor according to ``xp`` and ``fp`` as in ``np.interp``. This implementation cannot reproduce numpy results identically, but reasonable. Code refered to `here <https://github.com/pytorch/pytorch/issues/1552#issuecomment-926972915>`_. """ slopes = (fp[1:] - fp[:-1]) / (xp[1:] - xp[:-1]) locs = torch.searchsorted(xp, x) locs = locs.clip(1, len(xp) - 1) - 1 return slopes[locs] * (x - xp[locs]) + xp[locs]
def interp(x: torch.Tensor, xp: torch.Tensor, fp: torch.Tensor) -> torch.Tensor: """Interpolate ``x`` tensor according to ``xp`` and ``fp`` as in ``np.interp``. This implementation cannot reproduce numpy results identically, but reasonable. Code referred to `here <https://github.com/pytorch/pytorch/issues/1552#issuecomment-926972915>`_. """ slopes = (fp[1:] - fp[:-1]) / (xp[1:] - xp[:-1]) locs = torch.searchsorted(xp, x) locs = locs.clip(1, len(xp) - 1) - 1 return slopes[locs] * (x - xp[locs]) + xp[locs]
43,890
def two_qubit_decomposition(U, wires): r"""Recover the decomposition of a two-qubit matrix :math:`U` in terms of elementary operations. The work of `Shende, Markov, and Bullock (2003) <https://arxiv.org/abs/quant-ph/0308033>`__ presents a fixed-form decomposition of :math:`U` in terms of single-qubit gates and CNOTs. Multiple such decompositions are possible (by choosing two of {``RX``, ``RY``, ``RZ``}). Here we choose the ``RY``, ``RZ`` case (fig. 2 in the above) to match with the default decomposition of the single-qubit ``Rot`` operations as ``RZ RY RZ``. The form of the decomposition is: .. figure:: ../../_static/two_qubit_decomposition.svg :align: center :width: 100% :target: javascript:void(0); where :math:`A, B, C, D` are :math:`SU(2)` gates. Args: U (tensor): A 4 x 4 unitary matrix. wires (Union[Wires, Sequence[int] or int]): The wires on which to apply the operation. Returns: list[qml.Operation]: A list of operations that represent the decomposition of the matrix U. """ # First, test if we have a tensor product of two single-qubit operations. If # so, we don't actually need to do a decomposition. To test this, we can # check if Edag U E is in SO(4) because of the isomorphism between SO(4) and # SU(2) x SU(2). test_so4 = qml.math.linalg.multi_dot([Edag, U, E]) if qml.math.isclose(qml.math.linalg.det(test_so4), 1.0) and qml.math.allclose( qml.math.dot(test_so4, qml.math.T(test_so4)), qml.math.eye(4) ): A, B = _su2su2_to_tensor_products(U) A_ops = zyz_decomposition(A, wires[0]) B_ops = zyz_decomposition(B, wires[1]) return A_ops + B_ops # The final form of this decomposition is U = (A \otimes B) V (C \otimes D), # as expressed in the circuit below. # -U- = -C--X--RZ(d)--C---------X--A-| # -U- = -D--C--RY(b)--X--RY(a)--C--B-| # First, we note that this method works only for SU(4) gates, meaning that # we need to rescale the matrix by its determinant. Furthermore, we add a # SWAP as per v1 of 0308033, which helps with some rearranging of gates in # the decomposition (it will cancel out the fact that we need to add a SWAP # to fix the determinant in another part later). swap_U = qml.math.exp(1j * np.pi / 4) * qml.math.dot(SWAP, _convert_to_su4(U)) # Next, we can choose the angles of the RZ / RY rotations. See the docstring # within the function used below. This is to ensure U and V somehow maintain # a relationship between their spectra to ensure we can recover A, B, C, D. alpha, beta, delta = _select_rotation_angles(swap_U) # This is the interior portion of the decomposition circuit interior_decomp = [ qml.CNOT(wires=[wires[1], wires[0]]), qml.RZ(delta, wires=wires[0]), qml.RY(beta, wires=wires[1]), qml.CNOT(wires=[wires[0], wires[1]]), qml.RY(alpha, wires=wires[1]), qml.CNOT(wires=[wires[1], wires[0]]), ] # We need the matrix representation of this interior part, V, in order to # decompose U = (A \otimes B) V (C \otimes D) # # Looking at the decomposition above, V has determinant -1 (because there # are 3 CNOTs, each with determinant -1). The relationship between U and V # requires that both are in SU(4), so we add a SWAP after to V. We will see # how this gets fixed later. # # -V- = -X--RZ(d)--C---------X--SWAP-| # -V- = -C--RY(b)--X--RY(a)--C--SWAP-| RZd = qml.RZ(delta, wires=0).matrix RYb = qml.RY(beta, wires=0).matrix RYa = qml.RY(alpha, wires=0).matrix V = qml.math.linalg.multi_dot( [ SWAP, CNOT10, qml.math.kron(qml.math.eye(2), RYa), CNOT01, qml.math.kron(RZd, RYb), CNOT10, ] ) # Now we need to find the four SU(2) operations A, B, C, D A, B, C, D = _extract_su2su2_prefactors(swap_U, V) # At this point, we have the following: # -U-SWAP- = --C--X-RZ(d)-C-------X-SWAP--A| # -U-SWAP- = --D--C-RZ(b)-X-RY(a)-C-SWAP--B| # # Using the relationship that SWAP(A \otimes B) SWAP = B \otimes A, # -U-SWAP- = --C--X-RZ(d)-C-------X--B--SWAP-| # -U-SWAP- = --D--C-RZ(b)-X-RY(a)-C--A--SWAP-| # # Now the SWAPs cancel, giving us the desired decomposition # (up to a global phase). # -U- = --C--X-RZ(d)-C-------X--B--| # -U- = --D--C-RZ(b)-X-RY(a)-C--A--| A_ops = zyz_decomposition(A, wires[1]) B_ops = zyz_decomposition(B, wires[0]) C_ops = zyz_decomposition(C, wires[0]) D_ops = zyz_decomposition(D, wires[1]) # Return the full decomposition return C_ops + D_ops + interior_decomp + A_ops + B_ops
def two_qubit_decomposition(U, wires): r"""Recover the decomposition of a two-qubit matrix :math:`U` in terms of elementary operations. The work of `Shende, Markov, and Bullock (2003) <https://arxiv.org/abs/quant-ph/0308033>`__ presents a fixed-form decomposition of :math:`U` in terms of single-qubit gates and CNOTs. Multiple such decompositions are possible (by choosing two of {``RX``, ``RY``, ``RZ``}). Here we choose the ``RY``, ``RZ`` case (fig. 2 in the above) to match with the default decomposition of the single-qubit ``Rot`` operations as ``RZ RY RZ``. The form of the decomposition is: .. figure:: ../../_static/two_qubit_decomposition.svg :align: center :width: 100% :target: javascript:void(0); where :math:`A, B, C, D` are :math:`SU(2)` gates. Args: U (tensor): A 4 x 4 unitary matrix. wires (Union[Wires, Sequence[int] or int]): The wires on which to apply the operation. Returns: list[qml.Operation]: A list of operations that represent the decomposition of the matrix U. """ # First, test if we have a tensor product of two single-qubit operations. If # so, we don't actually need to do a decomposition. To test this, we can # check if Edag U E is in SO(4) because of the isomorphism between SO(4) and # SU(2) x SU(2). test_so4 = qml.math.linalg.multi_dot([Edag, U, E]) if qml.math.isclose(qml.math.linalg.det(test_so4), 1.0) and qml.math.allclose( qml.math.dot(test_so4, qml.math.T(test_so4)), qml.math.eye(4) ): A, B = _su2su2_to_tensor_products(U) A_ops = zyz_decomposition(A, wires[0]) B_ops = zyz_decomposition(B, wires[1]) return A_ops + B_ops # The final form of this decomposition is U = (A \otimes B) V (C \otimes D), # as expressed in the circuit below. # -U- = -C--X--RZ(d)--C---------X--A-| # -U- = -D--C--RY(b)--X--RY(a)--C--B-| # First, we note that this method works only for SU(4) gates, meaning that # we need to rescale the matrix by its determinant. Furthermore, we add a # SWAP as per v1 of 0308033, which helps with some rearranging of gates in # the decomposition (it will cancel out the fact that we need to add a SWAP # to fix the determinant in another part later). swap_U = np.exp(1j * np.pi / 4) * qml.math.dot(SWAP, _convert_to_su4(U)) # Next, we can choose the angles of the RZ / RY rotations. See the docstring # within the function used below. This is to ensure U and V somehow maintain # a relationship between their spectra to ensure we can recover A, B, C, D. alpha, beta, delta = _select_rotation_angles(swap_U) # This is the interior portion of the decomposition circuit interior_decomp = [ qml.CNOT(wires=[wires[1], wires[0]]), qml.RZ(delta, wires=wires[0]), qml.RY(beta, wires=wires[1]), qml.CNOT(wires=[wires[0], wires[1]]), qml.RY(alpha, wires=wires[1]), qml.CNOT(wires=[wires[1], wires[0]]), ] # We need the matrix representation of this interior part, V, in order to # decompose U = (A \otimes B) V (C \otimes D) # # Looking at the decomposition above, V has determinant -1 (because there # are 3 CNOTs, each with determinant -1). The relationship between U and V # requires that both are in SU(4), so we add a SWAP after to V. We will see # how this gets fixed later. # # -V- = -X--RZ(d)--C---------X--SWAP-| # -V- = -C--RY(b)--X--RY(a)--C--SWAP-| RZd = qml.RZ(delta, wires=0).matrix RYb = qml.RY(beta, wires=0).matrix RYa = qml.RY(alpha, wires=0).matrix V = qml.math.linalg.multi_dot( [ SWAP, CNOT10, qml.math.kron(qml.math.eye(2), RYa), CNOT01, qml.math.kron(RZd, RYb), CNOT10, ] ) # Now we need to find the four SU(2) operations A, B, C, D A, B, C, D = _extract_su2su2_prefactors(swap_U, V) # At this point, we have the following: # -U-SWAP- = --C--X-RZ(d)-C-------X-SWAP--A| # -U-SWAP- = --D--C-RZ(b)-X-RY(a)-C-SWAP--B| # # Using the relationship that SWAP(A \otimes B) SWAP = B \otimes A, # -U-SWAP- = --C--X-RZ(d)-C-------X--B--SWAP-| # -U-SWAP- = --D--C-RZ(b)-X-RY(a)-C--A--SWAP-| # # Now the SWAPs cancel, giving us the desired decomposition # (up to a global phase). # -U- = --C--X-RZ(d)-C-------X--B--| # -U- = --D--C-RZ(b)-X-RY(a)-C--A--| A_ops = zyz_decomposition(A, wires[1]) B_ops = zyz_decomposition(B, wires[0]) C_ops = zyz_decomposition(C, wires[0]) D_ops = zyz_decomposition(D, wires[1]) # Return the full decomposition return C_ops + D_ops + interior_decomp + A_ops + B_ops
17,502
def open_dataset( filename_or_obj: str | os.PathLike, *, engine: T_Engine = None, chunks: T_Chunks = None, cache: bool | None = None, decode_cf: bool | None = None, mask_and_scale: bool | None = None, decode_times: bool | None = None, decode_timedelta: bool | None = None, use_cftime: bool | None = None, concat_characters: bool | None = None, decode_coords: Literal["coordinates", "all"] | bool | None = None, drop_variables: str | Iterable[str] | None = None, inline_array: bool = False, backend_kwargs: dict[str, Any] | None = None, **kwargs, ) -> Dataset: """Open and decode a dataset from a file or file-like object. Parameters ---------- filename_or_obj : str, Path, file-like or DataStore Strings and Path objects are interpreted as a path to a netCDF file or an OpenDAP URL and opened with python-netCDF4, unless the filename ends with .gz, in which case the file is gunzipped and opened with scipy.io.netcdf (only netCDF3 supported). Byte-strings or file-like objects are opened by scipy.io.netcdf (netCDF3) or h5py (netCDF4/HDF). engine : {"netcdf4", "scipy", "pydap", "h5netcdf", "pynio", "cfgrib", \ "pseudonetcdf", "zarr", None}, installed backenend \ or subclass of xarray.backends.BackendEntrypoint, optional Engine to use when reading files. If not provided, the default engine is chosen based on available dependencies, with a preference for "netcdf4". A custom backend class (a subclass of ``BackendEntrypoint``) can also be used. chunks : int, dict, 'auto' or None, optional If chunks is provided, it is used to load the new dataset into dask arrays. ``chunks=-1`` loads the dataset with dask using a single chunk for all arrays. ``chunks={}`` loads the dataset with dask using engine preferred chunks if exposed by the backend, otherwise with a single chunk for all arrays. ``chunks='auto'`` will use dask ``auto`` chunking taking into account the engine preferred chunks. See dask chunking for more details. cache : bool, optional If True, cache data loaded from the underlying datastore in memory as NumPy arrays when accessed to avoid reading from the underlying data- store multiple times. Defaults to True unless you specify the `chunks` argument to use dask, in which case it defaults to False. Does not change the behavior of coordinates corresponding to dimensions, which always load their data from disk into a ``pandas.Index``. decode_cf : bool, optional Whether to decode these variables, assuming they were saved according to CF conventions. mask_and_scale : bool, optional If True, replace array values equal to `_FillValue` with NA and scale values according to the formula `original_values * scale_factor + add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are taken from variable attributes (if they exist). If the `_FillValue` or `missing_value` attribute contains multiple values a warning will be issued and all array values matching one of the multiple values will be replaced by NA. mask_and_scale defaults to True except for the pseudonetcdf backend. This keyword may not be supported by all the backends. decode_times : bool, optional If True, decode times encoded in the standard NetCDF datetime format into datetime objects. Otherwise, leave them encoded as numbers. This keyword may not be supported by all the backends. decode_timedelta : bool, optional If True, decode variables and coordinates with time units in {"days", "hours", "minutes", "seconds", "milliseconds", "microseconds"} into timedelta objects. If False, leave them encoded as numbers. If None (default), assume the same value of decode_time. This keyword may not be supported by all the backends. use_cftime: bool, optional Only relevant if encoded dates come from a standard calendar (e.g. "gregorian", "proleptic_gregorian", "standard", or not specified). If None (default), attempt to decode times to ``np.datetime64[ns]`` objects; if this is not possible, decode times to ``cftime.datetime`` objects. If True, always decode times to ``cftime.datetime`` objects, regardless of whether or not they can be represented using ``np.datetime64[ns]`` objects. If False, always decode times to ``np.datetime64[ns]`` objects; if this is not possible raise an error. This keyword may not be supported by all the backends. concat_characters : bool, optional If True, concatenate along the last dimension of character arrays to form string arrays. Dimensions will only be concatenated over (and removed) if they have no corresponding variable and if they are only used as the last dimension of character arrays. This keyword may not be supported by all the backends. decode_coords : bool or {"coordinates", "all"}, optional Controls which variables are set as coordinate variables: - "coordinates" or True: Set variables referred to in the ``'coordinates'`` attribute of the datasets or individual variables as coordinate variables. - "all": Set variables referred to in ``'grid_mapping'``, ``'bounds'`` and other attributes as coordinate variables. drop_variables: str or iterable of str, optional A variable or list of variables to exclude from being parsed from the dataset. This may be useful to drop variables with problems or inconsistent values. inline_array: bool, default: False How to include the array in the dask task graph. By default(``inline_array=False``) the array is included in a task by itself, and each chunk refers to that task by its key. With ``inline_array=True``, Dask will instead inline the array directly in the values of the task graph. See :py:func:`dask.array.from_array`. backend_kwargs: dict Additional keyword arguments passed on to the engine open function, equivalent to `**kwargs`. **kwargs: dict Additional keyword arguments passed on to the engine open function. For example: - 'group': path to the netCDF4 group in the given file to open given as a str,supported by "netcdf4", "h5netcdf", "zarr". - 'lock': resource lock to use when reading data from disk. Only relevant when using dask or another form of parallelism. By default, appropriate locks are chosen to safely read and write files with the currently active dask scheduler. Supported by "netcdf4", "h5netcdf", "scipy", "pynio", "pseudonetcdf", "cfgrib". See engine open function for kwargs accepted by each specific engine. Returns ------- dataset : Dataset The newly created dataset. Notes ----- ``open_dataset`` opens the file with read-only access. When you modify values of a Dataset, even one linked to files on disk, only the in-memory copy you are manipulating in xarray is modified: the original file on disk is never touched. See Also -------- open_mfdataset """ if cache is None: cache = chunks is None if backend_kwargs is not None: kwargs.update(backend_kwargs) if engine is None: engine = plugins.guess_engine(filename_or_obj) backend = plugins.get_backend(engine) decoders = _resolve_decoders_kwargs( decode_cf, open_backend_dataset_parameters=backend.open_dataset_parameters, mask_and_scale=mask_and_scale, decode_times=decode_times, decode_timedelta=decode_timedelta, concat_characters=concat_characters, use_cftime=use_cftime, decode_coords=decode_coords, ) overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None) backend_ds = backend.open_dataset( filename_or_obj, drop_variables=drop_variables, **decoders, **kwargs, ) ds = _dataset_from_backend_dataset( backend_ds, filename_or_obj, engine, chunks, cache, overwrite_encoded_chunks, inline_array, drop_variables=drop_variables, **decoders, **kwargs, ) return ds
def open_dataset( filename_or_obj: str | os.PathLike, *, engine: T_Engine = None, chunks: T_Chunks = None, cache: bool | None = None, decode_cf: bool | None = None, mask_and_scale: bool | None = None, decode_times: bool | None = None, decode_timedelta: bool | None = None, use_cftime: bool | None = None, concat_characters: bool | None = None, decode_coords: Literal["coordinates", "all"] | bool | None = None, drop_variables: str | Iterable[str] | None = None, inline_array: bool = False, backend_kwargs: dict[str, Any] | None = None, **kwargs, ) -> Dataset: """Open and decode a dataset from a file or file-like object. Parameters ---------- filename_or_obj : str, Path, file-like or DataStore Strings and Path objects are interpreted as a path to a netCDF file or an OpenDAP URL and opened with python-netCDF4, unless the filename ends with .gz, in which case the file is gunzipped and opened with scipy.io.netcdf (only netCDF3 supported). Byte-strings or file-like objects are opened by scipy.io.netcdf (netCDF3) or h5py (netCDF4/HDF). engine : {"netcdf4", "scipy", "pydap", "h5netcdf", "pynio", "cfgrib", \ "pseudonetcdf", "zarr", None}, installed backend \ or subclass of xarray.backends.BackendEntrypoint, optional Engine to use when reading files. If not provided, the default engine is chosen based on available dependencies, with a preference for "netcdf4". A custom backend class (a subclass of ``BackendEntrypoint``) can also be used. chunks : int, dict, 'auto' or None, optional If chunks is provided, it is used to load the new dataset into dask arrays. ``chunks=-1`` loads the dataset with dask using a single chunk for all arrays. ``chunks={}`` loads the dataset with dask using engine preferred chunks if exposed by the backend, otherwise with a single chunk for all arrays. ``chunks='auto'`` will use dask ``auto`` chunking taking into account the engine preferred chunks. See dask chunking for more details. cache : bool, optional If True, cache data loaded from the underlying datastore in memory as NumPy arrays when accessed to avoid reading from the underlying data- store multiple times. Defaults to True unless you specify the `chunks` argument to use dask, in which case it defaults to False. Does not change the behavior of coordinates corresponding to dimensions, which always load their data from disk into a ``pandas.Index``. decode_cf : bool, optional Whether to decode these variables, assuming they were saved according to CF conventions. mask_and_scale : bool, optional If True, replace array values equal to `_FillValue` with NA and scale values according to the formula `original_values * scale_factor + add_offset`, where `_FillValue`, `scale_factor` and `add_offset` are taken from variable attributes (if they exist). If the `_FillValue` or `missing_value` attribute contains multiple values a warning will be issued and all array values matching one of the multiple values will be replaced by NA. mask_and_scale defaults to True except for the pseudonetcdf backend. This keyword may not be supported by all the backends. decode_times : bool, optional If True, decode times encoded in the standard NetCDF datetime format into datetime objects. Otherwise, leave them encoded as numbers. This keyword may not be supported by all the backends. decode_timedelta : bool, optional If True, decode variables and coordinates with time units in {"days", "hours", "minutes", "seconds", "milliseconds", "microseconds"} into timedelta objects. If False, leave them encoded as numbers. If None (default), assume the same value of decode_time. This keyword may not be supported by all the backends. use_cftime: bool, optional Only relevant if encoded dates come from a standard calendar (e.g. "gregorian", "proleptic_gregorian", "standard", or not specified). If None (default), attempt to decode times to ``np.datetime64[ns]`` objects; if this is not possible, decode times to ``cftime.datetime`` objects. If True, always decode times to ``cftime.datetime`` objects, regardless of whether or not they can be represented using ``np.datetime64[ns]`` objects. If False, always decode times to ``np.datetime64[ns]`` objects; if this is not possible raise an error. This keyword may not be supported by all the backends. concat_characters : bool, optional If True, concatenate along the last dimension of character arrays to form string arrays. Dimensions will only be concatenated over (and removed) if they have no corresponding variable and if they are only used as the last dimension of character arrays. This keyword may not be supported by all the backends. decode_coords : bool or {"coordinates", "all"}, optional Controls which variables are set as coordinate variables: - "coordinates" or True: Set variables referred to in the ``'coordinates'`` attribute of the datasets or individual variables as coordinate variables. - "all": Set variables referred to in ``'grid_mapping'``, ``'bounds'`` and other attributes as coordinate variables. drop_variables: str or iterable of str, optional A variable or list of variables to exclude from being parsed from the dataset. This may be useful to drop variables with problems or inconsistent values. inline_array: bool, default: False How to include the array in the dask task graph. By default(``inline_array=False``) the array is included in a task by itself, and each chunk refers to that task by its key. With ``inline_array=True``, Dask will instead inline the array directly in the values of the task graph. See :py:func:`dask.array.from_array`. backend_kwargs: dict Additional keyword arguments passed on to the engine open function, equivalent to `**kwargs`. **kwargs: dict Additional keyword arguments passed on to the engine open function. For example: - 'group': path to the netCDF4 group in the given file to open given as a str,supported by "netcdf4", "h5netcdf", "zarr". - 'lock': resource lock to use when reading data from disk. Only relevant when using dask or another form of parallelism. By default, appropriate locks are chosen to safely read and write files with the currently active dask scheduler. Supported by "netcdf4", "h5netcdf", "scipy", "pynio", "pseudonetcdf", "cfgrib". See engine open function for kwargs accepted by each specific engine. Returns ------- dataset : Dataset The newly created dataset. Notes ----- ``open_dataset`` opens the file with read-only access. When you modify values of a Dataset, even one linked to files on disk, only the in-memory copy you are manipulating in xarray is modified: the original file on disk is never touched. See Also -------- open_mfdataset """ if cache is None: cache = chunks is None if backend_kwargs is not None: kwargs.update(backend_kwargs) if engine is None: engine = plugins.guess_engine(filename_or_obj) backend = plugins.get_backend(engine) decoders = _resolve_decoders_kwargs( decode_cf, open_backend_dataset_parameters=backend.open_dataset_parameters, mask_and_scale=mask_and_scale, decode_times=decode_times, decode_timedelta=decode_timedelta, concat_characters=concat_characters, use_cftime=use_cftime, decode_coords=decode_coords, ) overwrite_encoded_chunks = kwargs.pop("overwrite_encoded_chunks", None) backend_ds = backend.open_dataset( filename_or_obj, drop_variables=drop_variables, **decoders, **kwargs, ) ds = _dataset_from_backend_dataset( backend_ds, filename_or_obj, engine, chunks, cache, overwrite_encoded_chunks, inline_array, drop_variables=drop_variables, **decoders, **kwargs, ) return ds
38,513
def star_shape_cell_centers(g: "pp.Grid", as_nan: bool = False) -> np.ndarray: """ For a given grid compute the star shape center for each cell. The algorithm computes the half space intersections, by using the above method half_space_pt, of the spaces defined by the cell faces and the face normals. This is a wrapper method that operate on a grid. Parameters ---------- g: pp.Grid the grid as_nan: bool, optional Decide whether, in case some cells are not star-shaped return nan as new center. Otherwise an exception is raised (default behaviour). Returns ------- np.ndarray The new cell centers. """ # no need for 1d or 0d grids if g.dim < 2: return g.cell_centers # retrieve the faces and nodes faces, _, sgn = sps.find(g.cell_faces) nodes, _, _ = sps.find(g.face_nodes) # shift the nodes close to the origin, to avoid numerical problems when coordinates are # too big xn = g.nodes.copy() xn_shift = np.average(xn, axis=1) xn -= np.tile(xn_shift, (xn.shape[1], 1)).T # compute the star shape cell centers by constructing the half spaces of each cell # given by its faces and related normals cell_centers = np.zeros((3, g.num_cells)) for c in np.arange(g.num_cells): loc = slice(g.cell_faces.indptr[c], g.cell_faces.indptr[c + 1]) faces_loc = faces[loc] loc_n = g.face_nodes.indptr[faces_loc] # make the normals coherent normal = np.multiply( sgn[loc], np.divide(g.face_normals[:, faces_loc], g.face_areas[faces_loc]) ) x0, x1 = xn[:, nodes[loc_n]], xn[:, nodes[loc_n + 1]] coords = np.concatenate((x0, x1), axis=1) # compute a point in the half space intersection of all cell faces try: cell_centers[:, c] = pp.half_space.half_space_interior_point( normal, (x1 + x0) / 2.0, coords ) except ValueError: # the cell is not star-shaped if as_nan: cell_centers[:, c] = np.array([np.nan, np.nan, np.nan]) else: raise ValueError( "Cell not star-shaped impossible to compute the centre" ) # shift back the computed cell centers and return them return cell_centers + np.tile(xn_shift, (g.num_cells, 1)).T
def star_shape_cell_centers(g: "pp.Grid", as_nan: bool = False) -> np.ndarray: """ For a given grid compute the star shape center for each cell. The algorithm computes the half space intersections, by using the above method half_space_pt, of the spaces defined by the cell faces and the face normals. This is a wrapper method that operate on a grid. Parameters ---------- g: pp.Grid the grid as_nan: bool, optional Decide whether to return nan as the new center for cells which are not new center. Otherwise an exception is raised (default behaviour). Returns ------- np.ndarray The new cell centers. """ # no need for 1d or 0d grids if g.dim < 2: return g.cell_centers # retrieve the faces and nodes faces, _, sgn = sps.find(g.cell_faces) nodes, _, _ = sps.find(g.face_nodes) # shift the nodes close to the origin, to avoid numerical problems when coordinates are # too big xn = g.nodes.copy() xn_shift = np.average(xn, axis=1) xn -= np.tile(xn_shift, (xn.shape[1], 1)).T # compute the star shape cell centers by constructing the half spaces of each cell # given by its faces and related normals cell_centers = np.zeros((3, g.num_cells)) for c in np.arange(g.num_cells): loc = slice(g.cell_faces.indptr[c], g.cell_faces.indptr[c + 1]) faces_loc = faces[loc] loc_n = g.face_nodes.indptr[faces_loc] # make the normals coherent normal = np.multiply( sgn[loc], np.divide(g.face_normals[:, faces_loc], g.face_areas[faces_loc]) ) x0, x1 = xn[:, nodes[loc_n]], xn[:, nodes[loc_n + 1]] coords = np.concatenate((x0, x1), axis=1) # compute a point in the half space intersection of all cell faces try: cell_centers[:, c] = pp.half_space.half_space_interior_point( normal, (x1 + x0) / 2.0, coords ) except ValueError: # the cell is not star-shaped if as_nan: cell_centers[:, c] = np.array([np.nan, np.nan, np.nan]) else: raise ValueError( "Cell not star-shaped impossible to compute the centre" ) # shift back the computed cell centers and return them return cell_centers + np.tile(xn_shift, (g.num_cells, 1)).T
23,666
def AM_AOD_PW_spectral_correction(airmass_absolute, aod500, pw, module_type=None, coefficients=None, min_aod500=0.05, max_aod500=0.6, min_pw=0.25, max_pw=4): r""" Spectral mismatch modifier based on absolute (pressure-adjusted) airmass (AM), aerosol optical depth (AOD) at 500 nm and precipitable water (PW). Estimates a spectral mismatch modifier :math:`M` representing the effect on module short circuit current of variation in the spectral irradiance, :math:`MM` is estimated from absolute (pressure-adjusted) AM, :math:`ama`, AOD at 500 nm, :math:`aod500` and PW, :math:`pw`. The best fit polynomial for each atmospheric parameter (AM, AOD, PW) and PV technology under study has been obtained from synthetic spectra generated with SMARTS [1], considering the following boundary conditions: * :math:`1.0 <= ama <= 5.0` * :math:`0.05 <= aod500 <= 0.6` * :math:`0.25 \textrm{cm} <= pw <= 4 \textrm{cm}` * Spectral range is limited to that of CMP11 (280 nm to 2800 nm) * All other parameters fixed at G173 standard Elevation (deg), AOD and PW data were recorded in the city of Jaén, Spain for one year synchronously with both, broadband and spectroradiometric measurements of 30º tilted global irradiance south-facing logged in 5-min intervals. AM was estimated through elevation data. Finally, the spectral mismatch factor was calculated for each of the PV technologies and a multivariable regression adjustment as a function of AM, AOD and PW was performed according to [2] and [3]. As such, the polynomial adjustment coefficients included in [3] were obtained. Parameters ---------- airmass_absolute : array-like absolute (pressure-adjusted) airmass. [unitless] aod500 : array-like atmospheric aerosol optical depth at 500 nm. [unitless] pw : array-like atmospheric precipitable water. [cm] min_aod500 : float, default 0.05 minimum atmospheric aerosol optical depth at 500 nm. Any aod500 value lower than min_aod500 is set to min_aod500 to avoid model divergence. [unitless] max_aod500 : float, default 0.6 maximum atmospheric aerosol optical depth at 500 nm. Any aod500 value higher than max_aod500 is set to NaN to avoid model divergence. [unitless] min_pw : float, default 0.25 minimum atmospheric precipitable water. Any pw value lower than min_pw is set to min_pw to avoid model divergence. [cm] max_pw : float, default 4 maximum atmospheric precipitable water. Any pw value higher than max_pw is set to NaN to avoid model divergence. [cm] module_type : None or string, default None a string specifying a cell type. Values of 'cdte', 'monosi', 'cigs', 'multisi','asi' and 'pervovskite'. If provided, module_type selects default coefficients for the following modules: * 'cdte' - anonymous CdTe module. * 'monosi', - anonymous sc-si module. * 'multisi', - anonymous mc-si- module. * 'cigs' - anonymous copper indium gallium selenide module. * 'asi' - anonymous amorphous silicon module. * 'perovskite' - anonymous pervoskite module. coefficients : None or array-like, default None the coefficients employed have been obtained with experimental data in the city of Jaén, Spain. It is pending to verify if such coefficients vary in places with extreme climates where AOD and pw values are frequently high. Returns ------- modifier: array-like spectral mismatch factor (unitless) which is can be multiplied with broadband irradiance reaching a module's cells to estimate effective irradiance, i.e., the irradiance that is converted to electrical current. References ---------- .. [1] Gueymard, Christian. SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Cocoa, FL: Florida Solar Energy Center, 1995. .. [2] Theristis, M., Fernández, E., Almonacid, F., and Pérez-Higueras, Pedro. "Spectral Corrections Based on Air Mass, Aerosol Optical Depth and Precipitable Water for CPV Performance Modeling. "IEEE Journal of Photovoltaics 2016, 6(6), 1598-1604. https://doi.org/10.1109/jphotov.2016.2606702 .. [3] Caballero, J.A., Fernández, E., Theristis, M., Almonacid, F., and Nofuentes, G. "Spectral Corrections Based on Air Mass, Aerosol Optical Depth and Precipitable Water for PV Performance Modeling. " IEEE Journal of Photovoltaics 2018, 8(2), 552-558. https://doi.org/10.1109/jphotov.2017.2787019 """ # --- Screen Input Data --- # *** ama *** # Replace Extremely High ama with ama 10 to prevent model divergence # ama > 10 will only occur very close to sunset if np.max(airmass_absolute) > 10: airmass_absolute = np.minimum(airmass_absolute, 10) # Warn user about ama data that is exceptionally low if np.min(airmass_absolute) < 0.58: warn('Exceptionally low air mass: ' + 'model not intended for extra-terrestrial use') # pvl_absoluteairmass(1,pvl_alt2pres(4340)) = 0.58 Elevation of # Mina Pirquita, Argentian = 4340 m. Highest elevation city with # population over 50,000. # *** aod500 *** # Replace aod500 Values below 0.05 with 0.05 to prevent model from # diverging" aod500 = np.atleast_1d(aod500) aod500 = aod500.astype('float64') if np.min(aod500) < min_aod500: aod500 = np.maximum(aod500, min_aod500) warn(f'Exceptionally low aod values replaced with {min_aod500} to' 'prevent model divergence') # Warn user about aod500 data that is exceptionally high if np.max(aod500) > max_aod500: aod500[aod500 > max_aod500] = np.nan warn('Exceptionally high aod values replaced by np.nan: ' 'check input data.') # *** pw *** # Replace pw Values below 0.25 cm with 0.25 cm to prevent model from # diverging" pw = np.atleast_1d(pw) pw = pw.astype('float64') if np.min(pw) < min_pw: pw = np.maximum(pw, min_pw) warn(f'Exceptionally low pw values replaced with {min_pw} cm to ' 'prevent model divergence') # Warn user about pw data that is exceptionally high if np.max(pw) > max_pw: pw[pw > max_pw] = np.nan warn('Exceptionally high pw values replaced by np.nan: ' 'check input data.') # Experimental coefficients _coefficients = {} _coefficients['cdte'] = ( 1.0044, 0.0095, -0.0037, 0.0002, 0.0000, -0.0046, -0.0182, 0, 0.0095, 0.0068, 0, 1) _coefficients['monosi'] = ( 0.9706, 0.0377, -0.0123, 0.0025, -0.0002, 0.0159, -0.0165, 0, -0.0016, -0.0027, 1, 0) _coefficients['multisi'] = ( 0.9836, 0.0254, -0.0085, 0.0016, -0.0001, 0.0094, -0.0132, 0, -0.0002, -0.0011, 1, 0) _coefficients['cigs'] = ( 0.9801, 0.0283, -0.0092, 0.0019, -0.0001, 0.0117, -0.0126, 0, -0.0011, -0.0019, 1, 0) _coefficients['asi'] = ( 1.1060, -0.0848, 0.0302, -0.0076, 0.0006, -0.12838, 0.0986, -0.0254, 0.0156, 0.0146, 1, 0) _coefficients['perovskite'] = ( 1.0637, -0.0491, 0.0180, -0.0047, 0.0004, -0.0773, 0.0583, -0.0159, 0.01251, 0.0109, 1, 0) if module_type is not None and coefficients is None: coefficients = _coefficients[module_type.lower()] elif module_type is None and coefficients is not None: pass elif module_type is None and coefficients is None: raise TypeError('No valid input provided, both module_type' + 'and coefficients are None') else: raise TypeError('Cannot resolve input, must supply only one' + 'of module_type and coefficients') # Evaluate Spectral Shift coeff = coefficients ama = airmass_absolute aod500_ref = 0.84 pw_ref = 1.42 modifier = ( coeff[0] + (ama) * coeff[1] + (ama * ama) * coeff[2] + (ama * ama * ama) * coeff[3] + (ama * ama * ama * ama) * coeff[4] + (aod500 - aod500_ref) * coeff[5] + ((aod500 - aod500_ref) * (ama) * coeff[6]) * coeff[10] + ((aod500 - aod500_ref) * (np.log(ama)) * coeff[6]) * coeff[11] + (aod500 - aod500_ref) + (ama * ama) * coeff[7] + (pw - pw_ref) * coeff[8] + (pw - pw_ref) * (np.log(ama)) * coeff[9]) return modifier
def AM_AOD_PW_spectral_correction(airmass_absolute, aod500, pw, module_type=None, coefficients=None, min_aod500=0.05, max_aod500=0.6, min_pw=0.25, max_pw=4): r""" Spectral mismatch modifier based on absolute (pressure-adjusted) airmass (AM), aerosol optical depth (AOD) at 500 nm and precipitable water (PW). Estimates a spectral mismatch modifier :math:`M` representing the effect on module short circuit current of variation in the spectral irradiance, :math:`MM` is estimated from absolute (pressure-adjusted) AM, :math:`ama`, AOD at 500 nm, :math:`aod500` and PW, :math:`pw`. The best fit polynomial for each atmospheric parameter (AM, AOD, PW) and PV technology under study has been obtained from synthetic spectra generated with SMARTS [1], considering the following boundary conditions: * :math:`1.0 <= ama <= 5.0` * :math:`0.05 <= aod500 <= 0.6` * :math:`0.25 \textrm{cm} <= pw <= 4 \textrm{cm}` * Spectral range is limited to that of CMP11 (280 nm to 2800 nm) * All other parameters fixed at G173 standard Elevation (deg), AOD and PW data were recorded in the city of Jaén, Spain for one year synchronously with both, broadband and spectroradiometric measurements of 30º tilted global irradiance south-facing logged in 5-min intervals. AM was estimated through elevation data. Finally, the spectral mismatch factor was calculated for each of the PV technologies and a multivariable regression adjustment as a function of AM, AOD and PW was performed according to [2] and [3]. As such, the polynomial adjustment coefficients included in [3] were obtained. Parameters ---------- airmass_absolute : array-like absolute (pressure-adjusted) airmass. [unitless] aod500 : array-like atmospheric aerosol optical depth at 500 nm. [unitless] pw : array-like atmospheric precipitable water. [cm] min_aod500 : float, default 0.05 minimum atmospheric aerosol optical depth at 500 nm. Any aod500 value lower than min_aod500 is set to min_aod500 to avoid model divergence. [unitless] max_aod500 : float, default 0.6 maximum atmospheric aerosol optical depth at 500 nm. Any aod500 value higher than max_aod500 is set to NaN to avoid model divergence. [unitless] min_pw : float, default 0.25 minimum atmospheric precipitable water. Any pw value lower than min_pw is set to min_pw to avoid model divergence. [cm] max_pw : float, default 4 maximum atmospheric precipitable water. Any pw value higher than max_pw is set to NaN to avoid model divergence. [cm] module_type : None or string, default None a string specifying a cell type. Values of 'cdte', 'monosi', 'cigs', 'multisi','asi' and 'pervovskite'. If provided, module_type selects default coefficients for the following modules: * 'cdte' - anonymous CdTe module. * 'monosi', - anonymous sc-si module. * 'multisi', - anonymous mc-si- module. * 'cigs' - anonymous copper indium gallium selenide module. * 'asi' - anonymous amorphous silicon module. * 'perovskite' - anonymous perovskite module. coefficients : None or array-like, default None the coefficients employed have been obtained with experimental data in the city of Jaén, Spain. It is pending to verify if such coefficients vary in places with extreme climates where AOD and pw values are frequently high. Returns ------- modifier: array-like spectral mismatch factor (unitless) which is can be multiplied with broadband irradiance reaching a module's cells to estimate effective irradiance, i.e., the irradiance that is converted to electrical current. References ---------- .. [1] Gueymard, Christian. SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Cocoa, FL: Florida Solar Energy Center, 1995. .. [2] Theristis, M., Fernández, E., Almonacid, F., and Pérez-Higueras, Pedro. "Spectral Corrections Based on Air Mass, Aerosol Optical Depth and Precipitable Water for CPV Performance Modeling. "IEEE Journal of Photovoltaics 2016, 6(6), 1598-1604. https://doi.org/10.1109/jphotov.2016.2606702 .. [3] Caballero, J.A., Fernández, E., Theristis, M., Almonacid, F., and Nofuentes, G. "Spectral Corrections Based on Air Mass, Aerosol Optical Depth and Precipitable Water for PV Performance Modeling. " IEEE Journal of Photovoltaics 2018, 8(2), 552-558. https://doi.org/10.1109/jphotov.2017.2787019 """ # --- Screen Input Data --- # *** ama *** # Replace Extremely High ama with ama 10 to prevent model divergence # ama > 10 will only occur very close to sunset if np.max(airmass_absolute) > 10: airmass_absolute = np.minimum(airmass_absolute, 10) # Warn user about ama data that is exceptionally low if np.min(airmass_absolute) < 0.58: warn('Exceptionally low air mass: ' + 'model not intended for extra-terrestrial use') # pvl_absoluteairmass(1,pvl_alt2pres(4340)) = 0.58 Elevation of # Mina Pirquita, Argentian = 4340 m. Highest elevation city with # population over 50,000. # *** aod500 *** # Replace aod500 Values below 0.05 with 0.05 to prevent model from # diverging" aod500 = np.atleast_1d(aod500) aod500 = aod500.astype('float64') if np.min(aod500) < min_aod500: aod500 = np.maximum(aod500, min_aod500) warn(f'Exceptionally low aod values replaced with {min_aod500} to' 'prevent model divergence') # Warn user about aod500 data that is exceptionally high if np.max(aod500) > max_aod500: aod500[aod500 > max_aod500] = np.nan warn('Exceptionally high aod values replaced by np.nan: ' 'check input data.') # *** pw *** # Replace pw Values below 0.25 cm with 0.25 cm to prevent model from # diverging" pw = np.atleast_1d(pw) pw = pw.astype('float64') if np.min(pw) < min_pw: pw = np.maximum(pw, min_pw) warn(f'Exceptionally low pw values replaced with {min_pw} cm to ' 'prevent model divergence') # Warn user about pw data that is exceptionally high if np.max(pw) > max_pw: pw[pw > max_pw] = np.nan warn('Exceptionally high pw values replaced by np.nan: ' 'check input data.') # Experimental coefficients _coefficients = {} _coefficients['cdte'] = ( 1.0044, 0.0095, -0.0037, 0.0002, 0.0000, -0.0046, -0.0182, 0, 0.0095, 0.0068, 0, 1) _coefficients['monosi'] = ( 0.9706, 0.0377, -0.0123, 0.0025, -0.0002, 0.0159, -0.0165, 0, -0.0016, -0.0027, 1, 0) _coefficients['multisi'] = ( 0.9836, 0.0254, -0.0085, 0.0016, -0.0001, 0.0094, -0.0132, 0, -0.0002, -0.0011, 1, 0) _coefficients['cigs'] = ( 0.9801, 0.0283, -0.0092, 0.0019, -0.0001, 0.0117, -0.0126, 0, -0.0011, -0.0019, 1, 0) _coefficients['asi'] = ( 1.1060, -0.0848, 0.0302, -0.0076, 0.0006, -0.12838, 0.0986, -0.0254, 0.0156, 0.0146, 1, 0) _coefficients['perovskite'] = ( 1.0637, -0.0491, 0.0180, -0.0047, 0.0004, -0.0773, 0.0583, -0.0159, 0.01251, 0.0109, 1, 0) if module_type is not None and coefficients is None: coefficients = _coefficients[module_type.lower()] elif module_type is None and coefficients is not None: pass elif module_type is None and coefficients is None: raise TypeError('No valid input provided, both module_type' + 'and coefficients are None') else: raise TypeError('Cannot resolve input, must supply only one' + 'of module_type and coefficients') # Evaluate Spectral Shift coeff = coefficients ama = airmass_absolute aod500_ref = 0.84 pw_ref = 1.42 modifier = ( coeff[0] + (ama) * coeff[1] + (ama * ama) * coeff[2] + (ama * ama * ama) * coeff[3] + (ama * ama * ama * ama) * coeff[4] + (aod500 - aod500_ref) * coeff[5] + ((aod500 - aod500_ref) * (ama) * coeff[6]) * coeff[10] + ((aod500 - aod500_ref) * (np.log(ama)) * coeff[6]) * coeff[11] + (aod500 - aod500_ref) + (ama * ama) * coeff[7] + (pw - pw_ref) * coeff[8] + (pw - pw_ref) * (np.log(ama)) * coeff[9]) return modifier
2,447
def linear_kernel(X, Y=None, dense_output=True): """ Compute the linear kernel between X and Y. Read more in the :ref:`User Guide <linear_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_X, n_features) Array of pairwise kernels between samples, or a feature array. Y : ndarray of shape (n_samples_Y, n_features), default=None A second feature array. If `None`, uses `Y=X`. dense_output : bool, default=True Whether to return dense output even when the input is sparse. If ``False``, the output is sparse if both input arrays are sparse. .. versionadded:: 0.20 Returns ------- Gram matrix : ndarray of shape (n_samples_X, n_samples_Y) Gram matrix X.T * Y. """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=dense_output)
def linear_kernel(X, Y=None, dense_output=True): """ Compute the linear kernel between X and Y. Read more in the :ref:`User Guide <linear_kernel>`. Parameters ---------- X : ndarray of shape (n_samples_X, n_features) A feature array. Y : ndarray of shape (n_samples_Y, n_features), default=None A second feature array. If `None`, uses `Y=X`. dense_output : bool, default=True Whether to return dense output even when the input is sparse. If ``False``, the output is sparse if both input arrays are sparse. .. versionadded:: 0.20 Returns ------- Gram matrix : ndarray of shape (n_samples_X, n_samples_Y) Gram matrix X.T * Y. """ X, Y = check_pairwise_arrays(X, Y) return safe_sparse_dot(X, Y.T, dense_output=dense_output)
38,819
def patch_links_index(link, out_dir=OUTPUT_DIR): """hack to in-place update one row's info in the generated index html""" title = link['title'] or latest_output(link)['title'] successful = len(tuple(filter(None, latest_output(link).values()))) # Patch JSON index changed = False json_file_links = parse_json_links_index(out_dir) for saved_link in json_file_links: if saved_link['url'] == link['url']: saved_link['title'] = title saved_link['history'] = link['history'] changed = True break if changed: write_json_links_index(out_dir, json_file_links) # Patch HTML index html_path = os.path.join(out_dir, 'index.html') with open(html_path, 'r') as html_file: html = [line[:-1] for line in html_file] for idx, line in enumerate(html): if title and ('<span data-title-for="{}"'.format(link['url']) in line): html[idx] = '<span>{}</span>'.format(title) elif successful and ('<span data-number-for="{}"'.format(link['url']) in line): html[idx] = '<span>{}</span>'.format(successful) break with open(html_path, 'w') as f: f.write('\n'.join(html))
def patch_links_index(link, out_dir=OUTPUT_DIR): """hack to in-place update one row's info in the generated index html""" title = link['title'] or latest_output(link)['title'] successful = len(tuple(filter(None, latest_output(link).values()))) # Patch JSON index changed = False json_file_links = parse_json_links_index(out_dir) for saved_link in json_file_links: if saved_link['url'] == link['url']: saved_link['title'] = title saved_link['history'] = link['history'] changed = True break if changed: write_json_links_index(out_dir, json_file_links) # Patch HTML index html_path = os.path.join(out_dir, 'index.html') with open(html_path, 'r') as html_file: html = html_file.read().splitlines() for idx, line in enumerate(html): if title and ('<span data-title-for="{}"'.format(link['url']) in line): html[idx] = '<span>{}</span>'.format(title) elif successful and ('<span data-number-for="{}"'.format(link['url']) in line): html[idx] = '<span>{}</span>'.format(successful) break with open(html_path, 'w') as f: f.write('\n'.join(html))
15,106
def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the sensor platform.""" if discovery_info is None: return if os.path.isfile(SYSFILE): under_voltage = UnderVoltage() elif os.path.isfile(SYSFILE_LEGACY): # support older kernel under_voltage = UnderVoltage(legacy=True) else: _LOGGER.critical( "Can't find the system class needed for this component, make sure that your kernel is recent and the hardware is supported." ) return add_entities([RaspberryChargerBinarySensor(under_voltage)])
def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the sensor platform.""" if discovery_info is None: return if os.path.isfile(SYSFILE): under_voltage = UnderVoltage() elif os.path.isfile(SYSFILE_LEGACY): # support older kernel under_voltage = UnderVoltage(legacy=True) else: _LOGGER.error( "Can't find the system class needed for this component, make sure that your kernel is recent and the hardware is supported." ) return add_entities([RaspberryChargerBinarySensor(under_voltage)])
53,191
def byte_to_mebibyte(byte): return byte / (1024 * 1024)
def byte_to_mebibyte(byte): return byte / (1024 * 1024)
7,192
def corner_peaks(image, min_distance=1, threshold_abs=None, threshold_rel=None, exclude_border=True, indices=True, num_peaks=np.inf, footprint=None, labels=None, *, num_peaks_per_label=np.inf, p=np.inf): """Find corners in corner measure response image. This differs from `skimage.feature.peak_local_max` in that it suppresses multiple connected peaks with the same accumulator value. Parameters ---------- image : ndarray Input image. min_distance : int, optional The minimum distance seperating peaks. Use the ``p`` argument to set the Minkowski p-norm defining the distance. * : * See :py:meth:`skimage.feature.peak_local_max`. p : float Which Minkowski p-norm to use. Should be in the range [1, inf]. A finite large p may cause a ValueError if overflow can occur. inf corresponds to the chebychev distance and 2 to the euclidean distance. Returns ------- output : ndarray or ndarray of bools * If `indices = True` : (row, column, ...) coordinates of peaks. * If `indices = False` : Boolean array shaped like `image`, with peaks represented by True values. See also -------- skimage.feature.peak_local_max Notes ----- The `num_peaks` limit is applied before suppression of connected peaks. If you want to limit the number of peaks after suppression, you should set `num_peaks=np.inf` and post-process the output of this function. Examples -------- >>> from skimage.feature import peak_local_max >>> response = np.zeros((5, 5)) >>> response[2:4, 2:4] = 1 >>> response array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 1., 1., 0.], [0., 0., 1., 1., 0.], [0., 0., 0., 0., 0.]]) >>> peak_local_max(response) array([[3, 3], [3, 2], [2, 3], [2, 2]]) >>> corner_peaks(response) array([[3, 3]]) """ if threshold_rel is None: threshold_rel = 0.1 warn("Until the version 0.16, threshold_rel was set to 0.1 by default." "Starting from version 0.16, the default value is set to None." "Until version 0.18, a None value corresponds to a threshold " "value of 0.1. The default behavior will match " "skimage.feature.peak_local_max.", category=FutureWarning, stacklevel=2) # Get the coordinates of the detected peaks coords = peak_local_max(image, min_distance=min_distance, threshold_abs=threshold_abs, threshold_rel=threshold_rel, exclude_border=exclude_border, indices=True, num_peaks=num_peaks, footprint=footprint, labels=labels, num_peaks_per_label=num_peaks_per_label) if len(coords): # Use KDtree to find the peaks that are too close to each others tree = spatial.cKDTree(coords) rejected_peaks = set() for idx, point in enumerate(coords): if idx not in rejected_peaks: candidates = tree.query_ball_point(point, r=min_distance, p=p) candidates.remove(idx) rejected_peaks.update(candidates) # Remove the peaks that are too close to each others coords = np.delete(coords, tuple(rejected_peaks), axis=0)[::-1] if indices is True: return coords peaks = np.zeros_like(image, dtype=bool) peaks[tuple(coords.T)] = True return peaks
def corner_peaks(image, min_distance=1, threshold_abs=None, threshold_rel=None, exclude_border=True, indices=True, num_peaks=np.inf, footprint=None, labels=None, *, num_peaks_per_label=np.inf, p=np.inf): """Find corners in corner measure response image. This differs from `skimage.feature.peak_local_max` in that it suppresses multiple connected peaks with the same accumulator value. Parameters ---------- image : ndarray Input image. min_distance : int, optional The minimum distance seperating peaks. Use the ``p`` argument to set the Minkowski p-norm defining the distance. * : * See :py:meth:`skimage.feature.peak_local_max`. p : float Which Minkowski p-norm to use. Should be in the range [1, inf]. A finite large p may cause a ValueError if overflow can occur. inf corresponds to the Chebyshev distance and 2 to the euclidean distance. Returns ------- output : ndarray or ndarray of bools * If `indices = True` : (row, column, ...) coordinates of peaks. * If `indices = False` : Boolean array shaped like `image`, with peaks represented by True values. See also -------- skimage.feature.peak_local_max Notes ----- The `num_peaks` limit is applied before suppression of connected peaks. If you want to limit the number of peaks after suppression, you should set `num_peaks=np.inf` and post-process the output of this function. Examples -------- >>> from skimage.feature import peak_local_max >>> response = np.zeros((5, 5)) >>> response[2:4, 2:4] = 1 >>> response array([[0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0., 0., 1., 1., 0.], [0., 0., 1., 1., 0.], [0., 0., 0., 0., 0.]]) >>> peak_local_max(response) array([[3, 3], [3, 2], [2, 3], [2, 2]]) >>> corner_peaks(response) array([[3, 3]]) """ if threshold_rel is None: threshold_rel = 0.1 warn("Until the version 0.16, threshold_rel was set to 0.1 by default." "Starting from version 0.16, the default value is set to None." "Until version 0.18, a None value corresponds to a threshold " "value of 0.1. The default behavior will match " "skimage.feature.peak_local_max.", category=FutureWarning, stacklevel=2) # Get the coordinates of the detected peaks coords = peak_local_max(image, min_distance=min_distance, threshold_abs=threshold_abs, threshold_rel=threshold_rel, exclude_border=exclude_border, indices=True, num_peaks=num_peaks, footprint=footprint, labels=labels, num_peaks_per_label=num_peaks_per_label) if len(coords): # Use KDtree to find the peaks that are too close to each others tree = spatial.cKDTree(coords) rejected_peaks = set() for idx, point in enumerate(coords): if idx not in rejected_peaks: candidates = tree.query_ball_point(point, r=min_distance, p=p) candidates.remove(idx) rejected_peaks.update(candidates) # Remove the peaks that are too close to each others coords = np.delete(coords, tuple(rejected_peaks), axis=0)[::-1] if indices is True: return coords peaks = np.zeros_like(image, dtype=bool) peaks[tuple(coords.T)] = True return peaks
55,680
def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int): """Function to initialize each worker. The seed of each worker equals to. ``num_worker * rank + worker_id + user_seed``. Args: worker_id (int): Id for each worker. num_workers (int): Number of workers. rank (int): Rank in distributed training. seed (int): Random seed. """ worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed) torch.manual_seed(worker_seed)
def worker_init_fn(worker_id: int, num_workers: int, rank: int, seed: int): """Function to initialize each worker. The seed of each worker equals to ``num_worker * rank + worker_id + user_seed``. Args: worker_id (int): Id for each worker. num_workers (int): Number of workers. rank (int): Rank in distributed training. seed (int): Random seed. """ worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed) torch.manual_seed(worker_seed)
12,128
def _block2event(block, seed_map, id_default, ph2comp): """ Read HypoDD event block """ lines = block.strip().splitlines() yr, mo, dy, hr, mn, sc, la, lo, dp, mg, eh, ez, rms, id_ = lines[0].split() time = UTCDateTime('{}-{}-{} {}-{}-{}'.format(yr, mo, dy, hr, mn, sc)) picks = [] arrivals = [] for line in lines[1:]: sta, reltime, weight, phase = line.split() comp = ph2comp.get(phase, '') wid = seed_map.get(sta, id_default) _waveform_id = WaveformStreamID(seed_string=wid.format(sta, comp)) pick = Pick(waveform_id=_waveform_id, phase_hint=phase, time=time + float(reltime)) arrival = Arrival(phase=phase, pick_id=pick.resource_id, time_weight=float(weight)) picks.append(pick) arrivals.append(arrival) qu = None if rms == '0.0' else OriginQuality(standard_error=float(rms)) origin = Origin(arrivals=arrivals, quality=qu, latitude=float(la), longitude=float(lo), depth=1000 * float(dp), time=time) magnitude = Magnitude(mag=mg) event = Event(resource_id=id_, picks=picks, origins=[origin], magnitudes=[magnitude], preferred_origin_id=origin.resource_id, preferred_magnitude_id=magnitude.resource_id) return event
def _block2event(block, seed_map, id_default, ph2comp): """ Read HypoDD event block """ lines = block.strip().splitlines() yr, mo, dy, hr, mn, sc, la, lo, dp, mg, eh, ez, rms, id_ = lines[0].split() time = UTCDateTime('{}-{}-{} {}-{}-{}'.format(yr, mo, dy, hr, mn, sc)) picks = [] arrivals = [] for line in lines[1:]: sta, reltime, weight, phase = line.split() comp = ph2comp.get(phase, '') wid = seed_map.get(sta, id_default) _waveform_id = WaveformStreamID(seed_string=wid.format(sta, comp)) pick = Pick(waveform_id=_waveform_id, phase_hint=phase, time=time + float(reltime)) arrival = Arrival(phase=phase, pick_id=pick.resource_id, time_weight=float(weight)) picks.append(pick) arrivals.append(arrival) qu = None if rms == '0.0' else OriginQuality(standard_error=float(rms)) origin = Origin(arrivals=arrivals, quality=qu, latitude=float(la), longitude=float(lo), depth=1000 * float(dp), time=time) magnitude = Magnitude(mag=mg) event = Event(resource_id="smi:local/event/" + id_, picks=picks, origins=[origin], magnitudes=[magnitude], preferred_origin_id=origin.resource_id, preferred_magnitude_id=magnitude.resource_id) return event
27,665
def cross_chan_correlation( st1, streams, shift_len=0.0, allow_individual_trace_shifts=True, xcorr_func='fftw', concurrency="concurrent", cores=1, **kwargs): """ Calculate cross-channel correlation. Determine the cross-channel correlation between two streams of multichannel seismic data. :type st1: obspy.core.stream.Stream :param st1: Stream one :type streams: list :param streams: Streams to compare to. :type shift_len: float :param shift_len: Seconds to shift the streams by (total value for negative and positive direction together) :type allow_individual_trace_shifts: bool :param allow_individual_trace_shifts: Controls whether templates are shifted by shift_len in relation to the picks as a whole, or whether each trace can be shifted individually. Defaults to True. :type xcorr_func: str, callable :param xcorr_func: The method for performing correlations. Accepts either a string or callable. See :func:`eqcorrscan.utils.correlate.register_array_xcorr` for more details :type concurrency: str :param concurrency: Concurrency for xcorr-func. :type cores: int :param cores: Number of threads to parallel over :returns: cross channel correlation, float - normalized by number of channels. locations of maximums :rtype: numpy.ndarray, numpy.ndarray .. Note:: If no matching channels were found then the coherance and index for that stream will be nan. """ # Cut all channels in stream-list to be the correct length (shorter than # st1 if stack = False by shift_len). allow_individual_trace_shifts =\ allow_individual_trace_shifts and shift_len > 0 n_streams = len(streams) df = st1[0].stats.sampling_rate end_trim = int((shift_len * df) / 2) _streams = [] if end_trim > 0: for stream in streams: _stream = stream.copy() # Do not work on the users data for tr in _stream: tr.data = tr.data[end_trim: -end_trim] if tr.stats.sampling_rate != df: raise NotImplementedError("Sampling rates differ") _streams.append(_stream) streams = _streams else: # _prep_data_for_correlation works in place on data. # We need to copy it first. streams = [stream.copy() for stream in streams] # Check which channels are in st1 and match those in the stream_list st1, prep_streams, stream_indexes = _prep_data_for_correlation( stream=st1.copy(), templates=streams, template_names=list(range(len(streams))), force_stream_epoch=False) # Run the correlations multichannel_normxcorr = get_stream_xcorr(xcorr_func, concurrency) [cccsums, no_chans, _] = multichannel_normxcorr( templates=prep_streams, stream=st1, cores=cores, stack=False, **kwargs) # Find maximas, sum and divide by no_chans if allow_individual_trace_shifts: coherances = cccsums.max(axis=-1).sum(axis=-1) / no_chans else: cccsums = cccsums.sum(axis=1) coherances = cccsums.max(axis=-1) / no_chans # Subtract half length of correlogram and convert positions to seconds positions = (cccsums.argmax(axis=-1) - end_trim) / df # This section re-orders the coherences to correspond to the order of the # input streams _coherances = np.empty(n_streams) if allow_individual_trace_shifts: n_max_traces = max([len(st) for st in streams]) n_shifts_per_stream = positions.shape[1] _positions = np.empty([positions.shape[0], n_max_traces]) else: # _positions = np.empty_like(positions) _positions = np.empty([positions.shape[0], 1]) n_shifts_per_stream = 1 _coherances.fill(np.nan) _positions.fill(np.nan) for coh_ind, stream_ind in enumerate(stream_indexes): _coherances[stream_ind] = coherances[coh_ind] _positions[stream_ind, :n_shifts_per_stream] = positions[coh_ind] if not allow_individual_trace_shifts: # remove empty third axis from array _positions = _positions[:, ] return _coherances, _positions
def cross_chan_correlation( st1, streams, shift_len=0.0, allow_individual_trace_shifts=True, xcorr_func='fftw', concurrency="concurrent", cores=1, **kwargs): """ Calculate cross-channel correlation. Determine the cross-channel correlation between two streams of multichannel seismic data. :type st1: obspy.core.stream.Stream :param st1: Stream one :type streams: list :param streams: Streams to compare to. :type shift_len: float :param shift_len: Seconds to shift the streams by (total value for negative and positive direction together) :type allow_individual_trace_shifts: bool :param allow_individual_trace_shifts: Controls whether templates are shifted by shift_len in relation to the picks as a whole, or whether each trace can be shifted individually. Defaults to True. :type xcorr_func: str, callable :param xcorr_func: The method for performing correlations. Accepts either a string or callable. See :func:`eqcorrscan.utils.correlate.register_array_xcorr` for more details :type concurrency: str :param concurrency: Concurrency for xcorr-func. :type cores: int :param cores: Number of threads to parallel over :returns: cross channel correlation, float - normalized by number of channels. locations of maximums :rtype: numpy.ndarray, numpy.ndarray .. Note:: If no matching channels were found then the coherance and index for that stream will be nan. """ # Cut all channels in stream-list to be the correct length (shorter than # st1 if stack = False by shift_len). allow_individual_trace_shifts =\ allow_individual_trace_shifts and shift_len > 0 n_streams = len(streams) df = st1[0].stats.sampling_rate end_trim = int((shift_len * df) / 2) _streams = [] if end_trim > 0: for stream in streams: _stream = stream.copy() # Do not work on the users data for tr in _stream: tr.data = tr.data[end_trim: -end_trim] if tr.stats.sampling_rate != df: raise NotImplementedError("Sampling rates differ") _streams.append(_stream) streams = _streams else: # _prep_data_for_correlation works in place on data. # We need to copy it first. streams = [stream.copy() for stream in streams] # Check which channels are in st1 and match those in the stream_list st_preped, prep_streams, stream_indexes = _prep_data_for_correlation( stream=st1.copy(), templates=streams, template_names=list(range(len(streams))), force_stream_epoch=False) # Run the correlations multichannel_normxcorr = get_stream_xcorr(xcorr_func, concurrency) [cccsums, no_chans, _] = multichannel_normxcorr( templates=prep_streams, stream=st1, cores=cores, stack=False, **kwargs) # Find maximas, sum and divide by no_chans if allow_individual_trace_shifts: coherances = cccsums.max(axis=-1).sum(axis=-1) / no_chans else: cccsums = cccsums.sum(axis=1) coherances = cccsums.max(axis=-1) / no_chans # Subtract half length of correlogram and convert positions to seconds positions = (cccsums.argmax(axis=-1) - end_trim) / df # This section re-orders the coherences to correspond to the order of the # input streams _coherances = np.empty(n_streams) if allow_individual_trace_shifts: n_max_traces = max([len(st) for st in streams]) n_shifts_per_stream = positions.shape[1] _positions = np.empty([positions.shape[0], n_max_traces]) else: # _positions = np.empty_like(positions) _positions = np.empty([positions.shape[0], 1]) n_shifts_per_stream = 1 _coherances.fill(np.nan) _positions.fill(np.nan) for coh_ind, stream_ind in enumerate(stream_indexes): _coherances[stream_ind] = coherances[coh_ind] _positions[stream_ind, :n_shifts_per_stream] = positions[coh_ind] if not allow_individual_trace_shifts: # remove empty third axis from array _positions = _positions[:, ] return _coherances, _positions
10,335
def main(): protocols = [ 'http', 'https', 'email', 'email_json', 'sms', 'sqs', 'application', 'lambda', ] argument_spec = dict( msg=dict(required=True, aliases=['default']), subject=dict(), topic=dict(required=True), message_attributes=dict(type='dict'), message_structure=dict(choices=['json', 'string'], default='json'), ) for p in protocols: argument_spec[p] = dict() module = AnsibleAWSModule(argument_spec=argument_spec) sns_kwargs = dict( Message=module.params['msg'], MessageStructure=module.params['message_structure'] ) if module.params['subject']: sns_kwargs.update({"Subject": module.params['subject']}) if module.params['message_attributes']: if module.params['message_structure'] != 'string': module.fail_json(msg='message_attributes is only supported when the message_structure is "string".') sns_kwargs['MessageAttributes'] = module.params['message_attributes'] dict_msg = { 'default': sns_kwargs['Message'] } for p in protocols: if module.params[p]: if sns_kwargs['MessageStructure'] != 'json': module.fail_json(msg='Protocol-specific messages are only supported when message_structure is "json".') dict_msg[p.replace('_', '-')] = module.params[p] client = module.client('sns') topic = module.params['topic'] if ':' in topic: # Short names can't contain ':' so we'll assume this is the full ARN sns_kwargs['TopicArn'] = topic else: sns_kwargs['TopicArn'] = arn_topic_lookup(module, client, topic) if not sns_kwargs['TopicArn']: module.fail_json(msg='Could not find topic: {0}'.format(topic)) if sns_kwargs['MessageStructure'] == 'json': sns_kwargs['Message'] = json.dumps(dict_msg) try: result = client.publish(**sns_kwargs) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg='Failed to publish message') module.exit_json(msg='OK', message_id=result['MessageId'])
def main(): protocols = [ 'http', 'https', 'email', 'email_json', 'sms', 'sqs', 'application', 'lambda', ] argument_spec = dict( msg=dict(required=True, aliases=['default']), subject=dict(), topic=dict(required=True), message_attributes=dict(type='dict'), message_structure=dict(choices=['json', 'string'], default='json'), ) for p in protocols: argument_spec[p] = dict() module = AnsibleAWSModule(argument_spec=argument_spec) sns_kwargs = dict( Message=module.params['msg'], MessageStructure=module.params['message_structure'], ) if module.params['subject']: sns_kwargs.update({"Subject": module.params['subject']}) if module.params['message_attributes']: if module.params['message_structure'] != 'string': module.fail_json(msg='message_attributes is only supported when the message_structure is "string".') sns_kwargs['MessageAttributes'] = module.params['message_attributes'] dict_msg = { 'default': sns_kwargs['Message'] } for p in protocols: if module.params[p]: if sns_kwargs['MessageStructure'] != 'json': module.fail_json(msg='Protocol-specific messages are only supported when message_structure is "json".') dict_msg[p.replace('_', '-')] = module.params[p] client = module.client('sns') topic = module.params['topic'] if ':' in topic: # Short names can't contain ':' so we'll assume this is the full ARN sns_kwargs['TopicArn'] = topic else: sns_kwargs['TopicArn'] = arn_topic_lookup(module, client, topic) if not sns_kwargs['TopicArn']: module.fail_json(msg='Could not find topic: {0}'.format(topic)) if sns_kwargs['MessageStructure'] == 'json': sns_kwargs['Message'] = json.dumps(dict_msg) try: result = client.publish(**sns_kwargs) except (BotoCoreError, ClientError) as e: module.fail_json_aws(e, msg='Failed to publish message') module.exit_json(msg='OK', message_id=result['MessageId'])
5,738
def load_complex(folder, precision): file = 'mhd1280b.cua' dtype = _dtype_map[precision] path = os.path.join(folder, precision, 'Examples', file) with open(path, "r") as f: contents = f.readlines() file_metadata = contents[1].split() matrix_metadata = contents[2].split() datum_length = 15 # hard code rather than getting from contents[3] n_header = 4 n_total, n_indptr, n_indices, n_data, _ = (int(n) for n in file_metadata) m, n, nnz, _ = (int(n) for n in matrix_metadata[1:]) line_indptr = n_header line_indices = line_indptr + n_indptr line_data = line_indices + n_indices def _concatenate_lines(lines): return "".join([line.rstrip() for line in lines]) indptr = _concatenate_lines(contents[line_indptr:line_indices]) indptr = np.asarray([int(i) for i in indptr.split()])-1 indices = _concatenate_lines(contents[line_indices:line_data]) indices = np.asarray([int(i) for i in indices.split()])-1 data = _concatenate_lines(contents[line_data:]) data = np.asarray([float(data[i:i+datum_length]) for i in range(0, len(data), datum_length)]) real, imag= data[::2], data[1::2] data = real + imag*1.0j data.astype(dtype) return csc_matrix((data, indices, indptr), (m, n))
def load_complex(folder, precision): file = 'mhd1280b.cua' dtype = _dtype_map[precision] path = os.path.join(folder, precision, 'Examples', file) with open(path, "r") as f: contents = f.readlines() file_metadata = contents[1].split() matrix_metadata = contents[2].split() datum_length = 15 # hard code rather than getting from contents[3] n_header = 4 n_total, n_indptr, n_indices, n_data, _ = (int(n) for n in file_metadata) m, n, nnz, _ = (int(n) for n in matrix_metadata[1:]) line_indptr = n_header line_indices = line_indptr + n_indptr line_data = line_indices + n_indices def _concatenate_lines(lines): return "".join([line.rstrip() for line in lines]) indptr = _concatenate_lines(contents[line_indptr:line_indices]) indptr = np.asarray([int(i) for i in indptr.split()])-1 indices = _concatenate_lines(contents[line_indices:line_data]) indices = np.asarray([int(i) for i in indices.split()])-1 data = _concatenate_lines(contents[line_data:]) data = np.asarray([float(data[i:i+datum_length]) for i in range(0, len(data), datum_length)]) real, imag = data[::2], data[1::2] data = real + imag*1.0j data.astype(dtype) return csc_matrix((data, indices, indptr), (m, n))
3,324
def get_performance_facets( query, params, orderby=None, aggregate_column="duration", aggregate_function="avg", limit=20, referrer=None, ): """ High-level API for getting 'facet map' results for performance data Performance facets are high frequency tags and the aggregate duration of their most frequent values query (str) Filter query string to create conditions from. params (Dict[str, str]) Filtering parameters with start, end, project_id, environment limit (int) The number of records to fetch. referrer (str|None) A referrer string to help locate the origin of this query. Returns Sequence[FacetResult] """ with sentry_sdk.start_span( op="discover.discover", description="facets.filter_transform" ) as span: span.set_data("query", query) snuba_filter = get_filter(query, params) # Resolve the public aliases into the discover dataset names. snuba_filter, translated_columns = resolve_discover_aliases(snuba_filter) with sentry_sdk.start_span(op="discover.discover", description="facets.frequent_tags"): # Get the most relevant tag keys key_names = raw_query( aggregations=[ [aggregate_function, aggregate_column, "aggregate"], ["count", None, "count"], ], start=snuba_filter.start, end=snuba_filter.end, conditions=snuba_filter.conditions, filter_keys=snuba_filter.filter_keys, orderby=["-count"], dataset=Dataset.Discover, limit=limit, referrer=referrer, ) counts = [r["count"] for r in key_names["data"]] if not counts: return [] results = [] snuba_filter.conditions.append([aggregate_column, "IS NOT NULL", None]) # Aggregate for transaction transaction_aggregate = key_names["data"][0]["aggregate"] # Dynamically sample so at least 10000 transactions are selected transaction_count = key_names["data"][0]["count"] sampling_enabled = transaction_count > 10000 target_sample = 10000 * (math.log(transaction_count, 10) - 3) # Log growth starting at 10,000 dynamic_sample_rate = 0 if transaction_count <= 0 else (target_sample / transaction_count) options_sample_rate = ( options.get("discover2.tags_performance_facet_sample_rate") or dynamic_sample_rate ) sample_rate = options_sample_rate if sampling_enabled else None sample_multiplier = sample_rate if sample_rate else 1 excluded_tags = [ "tags_key", "NOT IN", ["trace", "trace.ctx", "trace.span", "project", "browser"], ] with sentry_sdk.start_span(op="discover.discover", description="facets.aggregate_tags"): conditions = snuba_filter.conditions aggregate_comparison = transaction_aggregate * 1.01 if transaction_aggregate else 0 having = [excluded_tags] if orderby and orderby in ("-sumdelta", "aggregate", "-aggregate"): having.append(["aggregate", ">", aggregate_comparison]) if orderby is None: orderby = [] else: orderby = [orderby] tag_values = raw_query( selected_columns=[ [ "sum", [ "minus", [ aggregate_column, str(transaction_aggregate), ], ], "sumdelta", ], ], aggregations=[ [aggregate_function, aggregate_column, "aggregate"], ["count", None, "cnt"], ], conditions=conditions, start=snuba_filter.start, end=snuba_filter.end, filter_keys=snuba_filter.filter_keys, orderby=orderby + ["tags_key"], groupby=["tags_key", "tags_value"], having=having, dataset=Dataset.Discover, referrer=referrer, sample=sample_rate, turbo=sample_rate is not None, limitby=[5, "tags_key"], ) results.extend( [ PerformanceFacetResult( r["tags_key"], r["tags_value"], float(r["aggregate"]), float(r["cnt"] / transaction_count), float(r["aggregate"] / transaction_aggregate), float(r["sumdelta"]), ) for r in tag_values["data"] ] ) return results
def get_performance_facets( query, params, orderby=None, aggregate_column="duration", aggregate_function="avg", limit=20, referrer=None, ): """ High-level API for getting 'facet map' results for performance data Performance facets are high frequency tags and the aggregate duration of their most frequent values query (str) Filter query string to create conditions from. params (Dict[str, str]) Filtering parameters with start, end, project_id, environment limit (int) The number of records to fetch. referrer (str|None) A referrer string to help locate the origin of this query. Returns Sequence[FacetResult] """ with sentry_sdk.start_span( op="discover.discover", description="facets.filter_transform" ) as span: span.set_data("query", query) snuba_filter = get_filter(query, params) # Resolve the public aliases into the discover dataset names. snuba_filter, translated_columns = resolve_discover_aliases(snuba_filter) with sentry_sdk.start_span(op="discover.discover", description="facets.frequent_tags"): # Get the most relevant tag keys key_names = raw_query( aggregations=[ [aggregate_function, aggregate_column, "aggregate"], ["count", None, "count"], ], start=snuba_filter.start, end=snuba_filter.end, conditions=snuba_filter.conditions, filter_keys=snuba_filter.filter_keys, orderby=["-count"], dataset=Dataset.Discover, limit=limit, referrer=referrer, ) counts = [r["count"] for r in key_names["data"]] if len(counts) != 1: return [] results = [] snuba_filter.conditions.append([aggregate_column, "IS NOT NULL", None]) # Aggregate for transaction transaction_aggregate = key_names["data"][0]["aggregate"] # Dynamically sample so at least 10000 transactions are selected transaction_count = key_names["data"][0]["count"] sampling_enabled = transaction_count > 10000 target_sample = 10000 * (math.log(transaction_count, 10) - 3) # Log growth starting at 10,000 dynamic_sample_rate = 0 if transaction_count <= 0 else (target_sample / transaction_count) options_sample_rate = ( options.get("discover2.tags_performance_facet_sample_rate") or dynamic_sample_rate ) sample_rate = options_sample_rate if sampling_enabled else None sample_multiplier = sample_rate if sample_rate else 1 excluded_tags = [ "tags_key", "NOT IN", ["trace", "trace.ctx", "trace.span", "project", "browser"], ] with sentry_sdk.start_span(op="discover.discover", description="facets.aggregate_tags"): conditions = snuba_filter.conditions aggregate_comparison = transaction_aggregate * 1.01 if transaction_aggregate else 0 having = [excluded_tags] if orderby and orderby in ("-sumdelta", "aggregate", "-aggregate"): having.append(["aggregate", ">", aggregate_comparison]) if orderby is None: orderby = [] else: orderby = [orderby] tag_values = raw_query( selected_columns=[ [ "sum", [ "minus", [ aggregate_column, str(transaction_aggregate), ], ], "sumdelta", ], ], aggregations=[ [aggregate_function, aggregate_column, "aggregate"], ["count", None, "cnt"], ], conditions=conditions, start=snuba_filter.start, end=snuba_filter.end, filter_keys=snuba_filter.filter_keys, orderby=orderby + ["tags_key"], groupby=["tags_key", "tags_value"], having=having, dataset=Dataset.Discover, referrer=referrer, sample=sample_rate, turbo=sample_rate is not None, limitby=[5, "tags_key"], ) results.extend( [ PerformanceFacetResult( r["tags_key"], r["tags_value"], float(r["aggregate"]), float(r["cnt"] / transaction_count), float(r["aggregate"] / transaction_aggregate), float(r["sumdelta"]), ) for r in tag_values["data"] ] ) return results
10,897
def template_constant_dict(config, ignore=None, skip_lower=None, toolchain=None): """Create a dict for templating the values in the easyconfigs. - config is a dict with the structure of EasyConfig._config """ if skip_lower is not None: _log.deprecated("Use of 'skip_lower' named argument for template_constant_dict has no effect anymore", '4.0') # TODO find better name # ignore if ignore is None: ignore = [] # make dict template_values = {} _log.debug("config: %s", config) # set 'arch' for system architecture based on 'machine' (4th) element of platform.uname() return value template_values['arch'] = platform.uname()[4] # step 1: add TEMPLATE_NAMES_EASYCONFIG for name in TEMPLATE_NAMES_EASYCONFIG: if name in ignore: continue # check if this template name is already handled if template_values.get(name[0]) is not None: continue if name[0].startswith('toolchain_'): tc = config.get('toolchain') if tc is not None: template_values['toolchain_name'] = tc.get('name', None) template_values['toolchain_version'] = tc.get('version', None) # only go through this once ignore.extend(['toolchain_name', 'toolchain_version']) elif name[0].startswith('version_'): # parse major and minor version numbers version = config['version'] if version is not None: _log.debug("version found in easyconfig is %s", version) version = version.split('.') try: major = version[0] template_values['version_major'] = major minor = version[1] template_values['version_minor'] = minor template_values['version_major_minor'] = '.'.join([major, minor]) except IndexError: # if there is no minor version, skip it pass # only go through this once ignore.extend(['version_major', 'version_minor', 'version_major_minor']) elif name[0].endswith('letter'): # parse first letters if name[0].startswith('name'): softname = config['name'] if softname is not None: template_values['nameletter'] = softname[0] else: raise EasyBuildError("Undefined name %s from TEMPLATE_NAMES_EASYCONFIG", name) # step 2: define *ver and *shortver templates for name, pref in TEMPLATE_SOFTWARE_VERSIONS: # copy to avoid changing original list below deps = copy.copy(config.get('dependencies', [])) if hasattr(config, 'iterating'): if 'builddependencies' in config.iterate_options: if config.iterating: deps += config.get('builddependencies', []) else: deps += config.get('builddependencies', []) for dep in deps: if isinstance(dep, dict): dep_name, dep_version = dep['name'], dep['version'] # take into account dependencies marked as external modules, # where name/version may have to be harvested from metadata available for that external module if dep.get('external_module', False): metadata = dep.get('external_module_metadata', {}) if dep_name is None: # name is a list in metadata, just take first value (if any) dep_name = metadata.get('name', [None])[0] if dep_version is None: # version is a list in metadata, just take first value (if any) dep_version = metadata.get('version', [None])[0] elif isinstance(dep, (list, tuple)): dep_name, dep_version = dep[0], dep[1] else: raise EasyBuildError("Unexpected type for dependency: %s", dep) if isinstance(dep_name, string_type) and dep_name.lower() == name.lower() and dep_version: dep_version = pick_dep_version(dep_version) template_values['%sver' % pref] = dep_version dep_version_parts = dep_version.split('.') template_values['%smajver' % pref] = dep_version_parts[0] if len(dep_version_parts) > 1: template_values['%sminver' % pref] = dep_version_parts[1] template_values['%sshortver' % pref] = '.'.join(dep_version_parts[:2]) break # step 3: add remaining from config for name in TEMPLATE_NAMES_CONFIG: if name in ignore: continue if name in config: template_values[name] = config[name] _log.debug('name: %s, config: %s', name, config[name]) # step 4. make lower variants for name in TEMPLATE_NAMES_LOWER: if name in ignore: continue value = config.get(name) or template_values.get(name) if value is None: continue try: template_values[TEMPLATE_NAMES_LOWER_TEMPLATE % {'name': name}] = value.lower() except Exception: _log.warning("Failed to get .lower() for name %s value %s (type %s)", name, value, type(value)) # step 5. add additional conditional templates if toolchain is not None and hasattr(toolchain, 'mpi_cmd_prefix'): try: # get prefix for commands to be run with mpi runtime using default number of ranks mpi_cmd_prefix = toolchain.mpi_cmd_prefix() if mpi_cmd_prefix is not None: template_values['mpi_cmd_prefix'] = mpi_cmd_prefix except EasyBuildError as err: # don't fail just because we couldn't resolve this template _log.warning("Failed to create mpi_cmd_prefix template, error was:\n%s", err) return template_values
def template_constant_dict(config, ignore=None, skip_lower=None, toolchain=None): """Create a dict for templating the values in the easyconfigs. - config is a dict with the structure of EasyConfig._config """ if skip_lower is not None: _log.deprecated("Use of 'skip_lower' named argument for template_constant_dict has no effect anymore", '4.0') # TODO find better name # ignore if ignore is None: ignore = [] # make dict template_values = {} _log.debug("config: %s", config) # set 'arch' for system architecture based on 'machine' (4th) element of platform.uname() return value template_values['arch'] = platform.uname()[4] # step 1: add TEMPLATE_NAMES_EASYCONFIG for name in TEMPLATE_NAMES_EASYCONFIG: if name in ignore: continue # check if this template name is already handled if template_values.get(name[0]) is not None: continue if name[0].startswith('toolchain_'): tc = config.get('toolchain') if tc is not None: template_values['toolchain_name'] = tc.get('name', None) template_values['toolchain_version'] = tc.get('version', None) # only go through this once ignore.extend(['toolchain_name', 'toolchain_version']) elif name[0].startswith('version_'): # parse major and minor version numbers version = config['version'] if version is not None: _log.debug("version found in easyconfig is %s", version) version = version.split('.') try: major = version[0] template_values['version_major'] = major minor = version[1] template_values['version_minor'] = minor template_values['version_major_minor'] = '.'.join([major, minor]) except IndexError: # if there is no minor version, skip it pass # only go through this once ignore.extend(['version_major', 'version_minor', 'version_major_minor']) elif name[0].endswith('letter'): # parse first letters if name[0].startswith('name'): softname = config['name'] if softname is not None: template_values['nameletter'] = softname[0] else: raise EasyBuildError("Undefined name %s from TEMPLATE_NAMES_EASYCONFIG", name) # step 2: define *ver and *shortver templates for name, pref in TEMPLATE_SOFTWARE_VERSIONS: # copy to avoid changing original list below deps = copy.copy(config.get('dependencies', [])) deps += config.get('builddependencies', []) for dep in deps: if isinstance(dep, dict): dep_name, dep_version = dep['name'], dep['version'] # take into account dependencies marked as external modules, # where name/version may have to be harvested from metadata available for that external module if dep.get('external_module', False): metadata = dep.get('external_module_metadata', {}) if dep_name is None: # name is a list in metadata, just take first value (if any) dep_name = metadata.get('name', [None])[0] if dep_version is None: # version is a list in metadata, just take first value (if any) dep_version = metadata.get('version', [None])[0] elif isinstance(dep, (list, tuple)): dep_name, dep_version = dep[0], dep[1] else: raise EasyBuildError("Unexpected type for dependency: %s", dep) if isinstance(dep_name, string_type) and dep_name.lower() == name.lower() and dep_version: dep_version = pick_dep_version(dep_version) template_values['%sver' % pref] = dep_version dep_version_parts = dep_version.split('.') template_values['%smajver' % pref] = dep_version_parts[0] if len(dep_version_parts) > 1: template_values['%sminver' % pref] = dep_version_parts[1] template_values['%sshortver' % pref] = '.'.join(dep_version_parts[:2]) break # step 3: add remaining from config for name in TEMPLATE_NAMES_CONFIG: if name in ignore: continue if name in config: template_values[name] = config[name] _log.debug('name: %s, config: %s', name, config[name]) # step 4. make lower variants for name in TEMPLATE_NAMES_LOWER: if name in ignore: continue value = config.get(name) or template_values.get(name) if value is None: continue try: template_values[TEMPLATE_NAMES_LOWER_TEMPLATE % {'name': name}] = value.lower() except Exception: _log.warning("Failed to get .lower() for name %s value %s (type %s)", name, value, type(value)) # step 5. add additional conditional templates if toolchain is not None and hasattr(toolchain, 'mpi_cmd_prefix'): try: # get prefix for commands to be run with mpi runtime using default number of ranks mpi_cmd_prefix = toolchain.mpi_cmd_prefix() if mpi_cmd_prefix is not None: template_values['mpi_cmd_prefix'] = mpi_cmd_prefix except EasyBuildError as err: # don't fail just because we couldn't resolve this template _log.warning("Failed to create mpi_cmd_prefix template, error was:\n%s", err) return template_values
48,091
def put_labels(frame, predictions): """ Coverts predictions to text labels and puts them to the top left corner of a frame. """ frame = frame.copy() assert len(predictions) == 1 # TODO (ilya-krylov): handle multi-label classification assert len(predictions[0].get_labels()) == 1 label = predictions[0].get_labels()[0] color = tuple(getattr(label.color, x) for x in ("blue", "green", "red")) put_text_on_rect_bg(frame, label.name, (0, 0), color=color) return frame
def put_labels(frame, predictions): """ Converts predictions to text labels and puts them to the top left corner of a frame. """ frame = frame.copy() assert len(predictions) == 1 # TODO (ilya-krylov): handle multi-label classification assert len(predictions[0].get_labels()) == 1 label = predictions[0].get_labels()[0] color = tuple(getattr(label.color, x) for x in ("blue", "green", "red")) put_text_on_rect_bg(frame, label.name, (0, 0), color=color) return frame
37,383
def initialize(self, params, qubits=None): """Qubit initializalition is done by appending instructions to the quantum circuit (by calling Initialize(params)) and the qubits we wish to iniatilize. Note that the qubits are first set to `|0>` and then the desired state is achieved by applying a state preparing unitary. Args: params (str or list): * list: vector of complex amplitudes to initialize to. * string: labels of basis states of the Pauli eigenstates Z, X, Y. See :meth:`~qiskit.quantum_info.states.statevector.Statevector.from_label`. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label '01' initializes the qubit zero to `|1>` and the qubit one to `|0>`. qubits (QuantumRegister or int): * QuantumRegister: A list of qubits to be initialized [Default: None]. * int: Index of qubit to initialzied [Default: None]. Returns: qiskit.circuit.Instruction: a handle to the instruction that was just initialized Examples: Prepare a qubit in the anti-symmetric state 1/sqrt(2)(`|0>` - `|1>`). .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(1) circuit.initialize([1/np.sqrt(2), -1/np.sqrt(2)], 0) circuit.draw() output: ┌──────────────────────────────┐ q_0: ┤ initialize(0.70711,-0.70711) ├ └──────────────────────────────┘ Initialize from a string two qubits in the state `|10>`. The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in :meth:`~qiskit.quantum_info.states.statevector.Statevector.from_label`. .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.initialize('01', circuit.qubits) circuit.draw() output: ┌──────────────────┐ q_0: ┤0 ├ │ initialize(0,1) │ q_1: ┤1 ├ └──────────────────┘ Initialize two qubits from an array of complex amplitudes .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.initialize([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits) circuit.draw() output: ┌────────────────────────────────────┐ q_0: ┤0 ├ │ initialize(0,0.70711,-0.70711j,0) │ q_1: ┤1 ├ └────────────────────────────────────┘ """ if qubits is None: qubits = self.qubits else: if isinstance(qubits, int): qubits = [qubits] qubits = self._bit_argument_conversion(qubits, self.qubits) num_qubits = None if not isinstance(params, int) else len(qubits) return self.append(Initialize(params, num_qubits), qubits)
def initialize(self, params, qubits=None): """Qubit initializalition is done by appending instructions to the quantum circuit (by calling Initialize(params)) and the qubits we wish to initialize. Note that the qubits are first set to `|0>` and then the desired state is achieved by applying a state preparing unitary. Args: params (str or list): * list: vector of complex amplitudes to initialize to. * string: labels of basis states of the Pauli eigenstates Z, X, Y. See :meth:`~qiskit.quantum_info.states.statevector.Statevector.from_label`. Notice the order of the labels is reversed with respect to the qubit index to be applied to. Example label '01' initializes the qubit zero to `|1>` and the qubit one to `|0>`. qubits (QuantumRegister or int): * QuantumRegister: A list of qubits to be initialized [Default: None]. * int: Index of qubit to initialzied [Default: None]. Returns: qiskit.circuit.Instruction: a handle to the instruction that was just initialized Examples: Prepare a qubit in the anti-symmetric state 1/sqrt(2)(`|0>` - `|1>`). .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(1) circuit.initialize([1/np.sqrt(2), -1/np.sqrt(2)], 0) circuit.draw() output: ┌──────────────────────────────┐ q_0: ┤ initialize(0.70711,-0.70711) ├ └──────────────────────────────┘ Initialize from a string two qubits in the state `|10>`. The order of the labels is reversed with respect to qubit index. More information about labels for basis states are in :meth:`~qiskit.quantum_info.states.statevector.Statevector.from_label`. .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.initialize('01', circuit.qubits) circuit.draw() output: ┌──────────────────┐ q_0: ┤0 ├ │ initialize(0,1) │ q_1: ┤1 ├ └──────────────────┘ Initialize two qubits from an array of complex amplitudes .. code-block:: import numpy as np from qiskit import QuantumCircuit circuit = QuantumCircuit(2) circuit.initialize([0, 1/np.sqrt(2), -1.j/np.sqrt(2), 0], circuit.qubits) circuit.draw() output: ┌────────────────────────────────────┐ q_0: ┤0 ├ │ initialize(0,0.70711,-0.70711j,0) │ q_1: ┤1 ├ └────────────────────────────────────┘ """ if qubits is None: qubits = self.qubits else: if isinstance(qubits, int): qubits = [qubits] qubits = self._bit_argument_conversion(qubits, self.qubits) num_qubits = None if not isinstance(params, int) else len(qubits) return self.append(Initialize(params, num_qubits), qubits)
32,080
def main(): if not TOKEN: raise Exception('api token must be provided.') handle_proxy() command = demisto.command() LOG(f'Command being called is {command}') # should raise error in case of issue if command == 'fetch-incidents': demisto.incidents(fetch_incidents()) else: try: if command == 'test-module': # This is the call made when pressing the integration test button. test_module() demisto.results('ok') elif command == 'cbp-fileCatalog-search': search_file_catalog_command() elif command == 'cbp-computer-search': search_computer_command() elif command == 'cbp-computer-update': update_computer_command() elif command == 'cbp-fileInstance-search': search_file_instance_command() elif command == 'cbp-event-search': search_event_command() elif command == 'cbp-approvalRequest-search': search_approval_request_command() elif command == 'cbp-fileRule-search': search_file_rule_command() elif command == 'cbp-fileRule-get': get_file_rule_command() elif command == 'cbp-fileRule-delete': delete_file_rule_command() elif command in ('cbp-fileRule-update', 'cbp-fileRule-createOrUpdate'): update_file_rule_command() elif command == 'cbp-policy-search': search_policy_command() elif command == 'cbp-serverConfig-search': search_server_config_command() elif command == 'cbp-publisher-search': search_publisher_command() elif command == 'cbp-fileAnalysis-search': search_file_analysis_command() elif command == 'cbp-fileAnalysis-get': get_file_analysis_command() elif command == 'cbp-fileAnalysis-createOrUpdate': update_file_analysis_command() elif command == 'cbp-fileUpload-createOrUpdate': update_file_upload_command() elif command == 'cbp-fileUpload-download': download_file_upload_command() elif command == 'cbp-fileUpload-search': search_file_upload_command() elif command == 'cbp-fileUpload-get': get_file_upload_command() elif command == 'cbp-computer-get': get_computer_command() elif command == 'cbp-connector-get': get_connector_command() elif command == 'cbp-connector-search': search_connector_command() elif command == 'cbp-approvalRequest-resolve': resolve_approval_request_command() else: return_error(f"Command {command} is not supported.") # Log exceptions except Exception as e: return_error(str(e))
def main(): if not TOKEN: raise Exception('API Token must be provided.') handle_proxy() command = demisto.command() LOG(f'Command being called is {command}') # should raise error in case of issue if command == 'fetch-incidents': demisto.incidents(fetch_incidents()) else: try: if command == 'test-module': # This is the call made when pressing the integration test button. test_module() demisto.results('ok') elif command == 'cbp-fileCatalog-search': search_file_catalog_command() elif command == 'cbp-computer-search': search_computer_command() elif command == 'cbp-computer-update': update_computer_command() elif command == 'cbp-fileInstance-search': search_file_instance_command() elif command == 'cbp-event-search': search_event_command() elif command == 'cbp-approvalRequest-search': search_approval_request_command() elif command == 'cbp-fileRule-search': search_file_rule_command() elif command == 'cbp-fileRule-get': get_file_rule_command() elif command == 'cbp-fileRule-delete': delete_file_rule_command() elif command in ('cbp-fileRule-update', 'cbp-fileRule-createOrUpdate'): update_file_rule_command() elif command == 'cbp-policy-search': search_policy_command() elif command == 'cbp-serverConfig-search': search_server_config_command() elif command == 'cbp-publisher-search': search_publisher_command() elif command == 'cbp-fileAnalysis-search': search_file_analysis_command() elif command == 'cbp-fileAnalysis-get': get_file_analysis_command() elif command == 'cbp-fileAnalysis-createOrUpdate': update_file_analysis_command() elif command == 'cbp-fileUpload-createOrUpdate': update_file_upload_command() elif command == 'cbp-fileUpload-download': download_file_upload_command() elif command == 'cbp-fileUpload-search': search_file_upload_command() elif command == 'cbp-fileUpload-get': get_file_upload_command() elif command == 'cbp-computer-get': get_computer_command() elif command == 'cbp-connector-get': get_connector_command() elif command == 'cbp-connector-search': search_connector_command() elif command == 'cbp-approvalRequest-resolve': resolve_approval_request_command() else: return_error(f"Command {command} is not supported.") # Log exceptions except Exception as e: return_error(str(e))
3,926
def lexicographical_topological_sort(G, key=None): """Generates a unique ordering of nodes by first sorting topologically (for which there are often multiple valid orderings) and then additionally by sorting lexicographically. A topological sort arranges the nodes of a directed graph so that the upstream node of each directed edge precedes the downstream node. It is always possible to find a solution for directed graphs that have no cycles. There may be more than one valid solution. Lexicographical sorting is just sorting alphabetically. It is used here to break ties in the topological sort and to determine a single, unique ordering. This can be useful in comparing sort results. The lexicographical order can be customized by providing a function to the `key=` parameter. The definition of the key function is the same as used in python's built-in `sort()`. The function takes a single argument and returns a key to use for sorting purposes. Lexicographical sorting can fail if the node names are un-sortable. See the example below. The solution is to provide a function to the `key=` argument that returns sortable keys. Parameters ---------- G : NetworkX digraph A directed acyclic graph (DAG) key : function, optional A function of one argument that converts a node name to a comparison key. Use to resolve ambiguities in the sort order. Defaults to the identity function. Yields ------ nodes Yields the nodes of G in lexicographical topological sort order. Raises ------ NetworkXError Topological sort is defined for directed graphs only. If the graph `G` is undirected, a :exc:`NetworkXError` is raised. NetworkXUnfeasible If `G` is not a directed acyclic graph (DAG) no topological sort exists and a :exc:`NetworkXUnfeasible` exception is raised. This can also be raised if `G` is changed while the returned iterator is being processed RuntimeError If `G` is changed while the returned iterator is being processed. TypeError Results from un-sortable node names. Consider using `key=` parameter to resolve ambiguities in the sort order. Examples -------- >>> DG = nx.DiGraph([(2, 1), (2, 5), (1, 3), (1, 4), (5, 4)]) >>> list(nx.lexicographical_topological_sort(DG)) [2, 1, 3, 5, 4] >>> list(nx.lexicographical_topological_sort(DG, key=lambda x: -x)) [2, 5, 1, 4, 3] The sort will fail for this graph because the comparison of integers to strings is not defined in python. Is 3 greater or less than 'red'? >>> DG = nx.DiGraph([(1, 'red'), (3, 'red'), (1, 'green'), (2, 'blue')]) >>> list(nx.lexicographical_topological_sort(DG)) Traceback (most recent call last): ... TypeError: '<' not supported between instances of 'str' and 'int' ... The solution is to provide a function that returns keys that do compare. There are many ways to write a `key` function. This one returns a tuple where the first element is True for `str`, False otherwise. The second element is the node name. This groups the strings and integers separately so they can be compared only among themselves. >>> key = lambda node: (isinstance(node, str), node) >>> list(nx.lexicographical_topological_sort(DG, key=key)) [1, 2, 3, 'blue', 'green', 'red'] Notes ----- This algorithm is based on a description and proof in "Introduction to Algorithms: A Creative Approach" [1]_ . See also -------- topological_sort References ---------- .. [1] Manber, U. (1989). *Introduction to Algorithms - A Creative Approach.* Addison-Wesley. """ if not G.is_directed(): msg = "Topological sort not defined on undirected graphs." raise nx.NetworkXError(msg) if key is None: def key(node): return node nodeid_map = {n: i for i, n in enumerate(G)} def create_tuple(node): return key(node), nodeid_map[node], node indegree_map = {v: d for v, d in G.in_degree() if d > 0} # These nodes have zero indegree and ready to be returned. zero_indegree = [create_tuple(v) for v, d in G.in_degree() if d == 0] heapq.heapify(zero_indegree) while zero_indegree: _, _, node = heapq.heappop(zero_indegree) if node not in G: raise RuntimeError("Graph changed during iteration") for _, child in G.edges(node): try: indegree_map[child] -= 1 except KeyError as err: raise RuntimeError("Graph changed during iteration") from err if indegree_map[child] == 0: try: heapq.heappush(zero_indegree, create_tuple(child)) except TypeError as err: raise TypeError( f"{err}\nConsider using `key=` parameter to resolve ambiguities in the sort order." ) del indegree_map[child] yield node if indegree_map: msg = "Graph contains a cycle or graph changed during iteration" raise nx.NetworkXUnfeasible(msg)
def lexicographical_topological_sort(G, key=None): """Generates a unique ordering of nodes by first sorting topologically (for which there are often multiple valid orderings) and then additionally by sorting lexicographically. A topological sort arranges the nodes of a directed graph so that the upstream node of each directed edge precedes the downstream node. It is always possible to find a solution for directed graphs that have no cycles. There may be more than one valid solution. Lexicographical sorting is just sorting alphabetically. It is used here to break ties in the topological sort and to determine a single, unique ordering. This can be useful in comparing sort results. The lexicographical order can be customized by providing a function to the `key=` parameter. The definition of the key function is the same as used in python's built-in `sort()`. The function takes a single argument and returns a key to use for sorting purposes. Lexicographical sorting can fail if the node names are un-sortable. See the example below. The solution is to provide a function to the `key=` argument that returns sortable keys. Parameters ---------- G : NetworkX digraph A directed acyclic graph (DAG) key : function, optional A function of one argument that converts a node name to a comparison key. It defines and resolves ambiguities in the sort order. Defaults to the identity function. Yields ------ nodes Yields the nodes of G in lexicographical topological sort order. Raises ------ NetworkXError Topological sort is defined for directed graphs only. If the graph `G` is undirected, a :exc:`NetworkXError` is raised. NetworkXUnfeasible If `G` is not a directed acyclic graph (DAG) no topological sort exists and a :exc:`NetworkXUnfeasible` exception is raised. This can also be raised if `G` is changed while the returned iterator is being processed RuntimeError If `G` is changed while the returned iterator is being processed. TypeError Results from un-sortable node names. Consider using `key=` parameter to resolve ambiguities in the sort order. Examples -------- >>> DG = nx.DiGraph([(2, 1), (2, 5), (1, 3), (1, 4), (5, 4)]) >>> list(nx.lexicographical_topological_sort(DG)) [2, 1, 3, 5, 4] >>> list(nx.lexicographical_topological_sort(DG, key=lambda x: -x)) [2, 5, 1, 4, 3] The sort will fail for this graph because the comparison of integers to strings is not defined in python. Is 3 greater or less than 'red'? >>> DG = nx.DiGraph([(1, 'red'), (3, 'red'), (1, 'green'), (2, 'blue')]) >>> list(nx.lexicographical_topological_sort(DG)) Traceback (most recent call last): ... TypeError: '<' not supported between instances of 'str' and 'int' ... The solution is to provide a function that returns keys that do compare. There are many ways to write a `key` function. This one returns a tuple where the first element is True for `str`, False otherwise. The second element is the node name. This groups the strings and integers separately so they can be compared only among themselves. >>> key = lambda node: (isinstance(node, str), node) >>> list(nx.lexicographical_topological_sort(DG, key=key)) [1, 2, 3, 'blue', 'green', 'red'] Notes ----- This algorithm is based on a description and proof in "Introduction to Algorithms: A Creative Approach" [1]_ . See also -------- topological_sort References ---------- .. [1] Manber, U. (1989). *Introduction to Algorithms - A Creative Approach.* Addison-Wesley. """ if not G.is_directed(): msg = "Topological sort not defined on undirected graphs." raise nx.NetworkXError(msg) if key is None: def key(node): return node nodeid_map = {n: i for i, n in enumerate(G)} def create_tuple(node): return key(node), nodeid_map[node], node indegree_map = {v: d for v, d in G.in_degree() if d > 0} # These nodes have zero indegree and ready to be returned. zero_indegree = [create_tuple(v) for v, d in G.in_degree() if d == 0] heapq.heapify(zero_indegree) while zero_indegree: _, _, node = heapq.heappop(zero_indegree) if node not in G: raise RuntimeError("Graph changed during iteration") for _, child in G.edges(node): try: indegree_map[child] -= 1 except KeyError as err: raise RuntimeError("Graph changed during iteration") from err if indegree_map[child] == 0: try: heapq.heappush(zero_indegree, create_tuple(child)) except TypeError as err: raise TypeError( f"{err}\nConsider using `key=` parameter to resolve ambiguities in the sort order." ) del indegree_map[child] yield node if indegree_map: msg = "Graph contains a cycle or graph changed during iteration" raise nx.NetworkXUnfeasible(msg)
56,224
def main(): log.basicConfig(format='[ %(levelname)s ] %(message)s', level=log.INFO, stream=sys.stdout) args = build_argparser().parse_args() mask_rcnn_model_xml = args.mask_rcnn_model mask_rcnn_model_bin = os.path.splitext(mask_rcnn_model_xml)[0] + '.bin' text_enc_model_xml = args.text_enc_model text_enc_model_bin = os.path.splitext(text_enc_model_xml)[0] + '.bin' text_dec_model_xml = args.text_dec_model text_dec_model_bin = os.path.splitext(text_dec_model_xml)[0] + '.bin' # Plugin initialization for specified device and load extensions library if specified. log.info('Creating Inference Engine...') ie = IECore() if args.cpu_extension and 'CPU' in args.device: ie.add_extension(args.cpu_extension, 'CPU') # Read IR log.info('Loading network files:\n\t{}\n\t{}'.format(mask_rcnn_model_xml, mask_rcnn_model_bin)) mask_rcnn_net = IENetwork(model=mask_rcnn_model_xml, weights=mask_rcnn_model_bin) log.info('Loading network files:\n\t{}\n\t{}'.format(text_enc_model_xml, text_enc_model_bin)) text_enc_net = IENetwork(model=text_enc_model_xml, weights=text_enc_model_bin) log.info('Loading network files:\n\t{}\n\t{}'.format(text_dec_model_xml, text_dec_model_bin)) text_dec_net = IENetwork(model=text_dec_model_xml, weights=text_dec_model_bin) if 'CPU' in args.device: supported_layers = ie.query_network(mask_rcnn_net, 'CPU') not_supported_layers = [l for l in mask_rcnn_net.layers.keys() if l not in supported_layers] if len(not_supported_layers) != 0: log.error('Following layers are not supported by the plugin for specified device {}:\n {}'. format(args.device, ', '.join(not_supported_layers))) log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l " "or --cpu_extension command line argument") sys.exit(1) required_input_keys = {'im_data', 'im_info'} assert required_input_keys == set(mask_rcnn_net.inputs.keys()), \ 'Demo supports only topologies with the following input keys: {}'.format(', '.join(required_input_keys)) required_output_keys = {'boxes', 'scores', 'classes', 'raw_masks', 'text_features'} assert required_output_keys.issubset(mask_rcnn_net.outputs.keys()), \ 'Demo supports only topologies with the following output keys: {}'.format(', '.join(required_output_keys)) n, c, h, w = mask_rcnn_net.inputs['im_data'].shape assert n == 1, 'Only batch 1 is supported by the demo application' log.info('Loading IR to the plugin...') mask_rcnn_exec_net = ie.load_network(network=mask_rcnn_net, device_name=args.device, num_requests=2) text_enc_exec_net = ie.load_network(network=text_enc_net, device_name=args.device) text_dec_exec_net = ie.load_network(network=text_dec_net, device_name=args.device) for name, input in text_dec_exec_net.inputs.items(): if len(input.shape) == 3: if input.shape[1] == 1: trd_input_prev_hidden = name else: trd_input_encoder_outputs = name elif len(input.shape) == 1: trd_input_prev_symbol = name for name, output in text_dec_exec_net.outputs.items(): if len(output.shape) == 3: trd_output_cur_hidden = name elif len(output.shape) == 2: trd_output_symbols_distr = name hidden_shape = text_dec_net.inputs[trd_input_prev_hidden].shape del mask_rcnn_net del text_enc_net del text_dec_net try: input_source = int(args.input_source) except ValueError: input_source = args.input_source if os.path.isdir(input_source): cap = FolderCapture(input_source) else: cap = cv2.VideoCapture(input_source) if not cap.isOpened(): log.error('Failed to open "{}"'.format(args.input_source)) if isinstance(cap, cv2.VideoCapture): cap.set(cv2.CAP_PROP_BUFFERSIZE, 1) if args.no_track: tracker = None else: tracker = StaticIOUTracker() visualizer = Visualizer(['__background__', 'text'], show_boxes=args.show_boxes, show_scores=args.show_scores) render_time = 0 log.info('Starting inference...') print("To close the application, press 'CTRL+C' here or switch to the output window and press ESC key") while cap.isOpened(): ret, frame = cap.read() if not ret: break if not args.keep_aspect_ratio: # Resize the image to a target size. scale_x = w / frame.shape[1] scale_y = h / frame.shape[0] input_image = cv2.resize(frame, (w, h)) else: # Resize the image to keep the same aspect ratio and to fit it to a window of a target size. scale_x = scale_y = min(h / frame.shape[0], w / frame.shape[1]) input_image = cv2.resize(frame, None, fx=scale_x, fy=scale_y) input_image_size = input_image.shape[:2] input_image = np.pad(input_image, ((0, h - input_image_size[0]), (0, w - input_image_size[1]), (0, 0)), mode='constant', constant_values=0) # Change data layout from HWC to CHW. input_image = input_image.transpose((2, 0, 1)) input_image = input_image.reshape((n, c, h, w)).astype(np.float32) input_image_info = np.asarray([[input_image_size[0], input_image_size[1], 1]], dtype=np.float32) # Run the net. inf_start = time.time() outputs = mask_rcnn_exec_net.infer({'im_data': input_image, 'im_info': input_image_info}) # Parse detection results of the current request boxes = outputs['boxes'] scores = outputs['scores'] classes = outputs['classes'].astype(np.uint32) raw_masks = outputs['raw_masks'] text_features = outputs['text_features'] # Filter out detections with low confidence. detections_filter = scores > args.prob_threshold scores = scores[detections_filter] classes = classes[detections_filter] boxes = boxes[detections_filter] raw_masks = raw_masks[detections_filter] text_features = text_features[detections_filter] boxes[:, 0::2] /= scale_x boxes[:, 1::2] /= scale_y masks = [] for box, cls, raw_mask in zip(boxes, classes, raw_masks): raw_cls_mask = raw_mask[cls, ...] mask = segm_postprocess(box, raw_cls_mask, frame.shape[0], frame.shape[1]) masks.append(mask) texts = [] for feature in text_features: feature = text_enc_exec_net.infer({'input': feature}) feature = list(feature.values())[0] feature = np.reshape(feature, (feature.shape[0], feature.shape[1], -1)) feature = np.transpose(feature, (0, 2, 1)) hidden = np.zeros(hidden_shape) prev_symbol_index = np.ones((1,)) * SOS_INDEX text = '' for i in range(MAX_SEQ_LEN): decoder_output = text_dec_exec_net.infer({ trd_input_prev_symbol: prev_symbol_index, trd_input_prev_hidden: hidden, trd_input_encoder_outputs: feature}) symbols_distr = decoder_output[trd_output_symbols_distr] prev_symbol_index = int(np.argmax(symbols_distr, axis=1)) if prev_symbol_index == EOS_INDEX: break text += args.alphabet[prev_symbol_index] hidden = decoder_output[trd_output_cur_hidden] texts.append(text) inf_end = time.time() inf_time = inf_end - inf_start render_start = time.time() if len(boxes) and args.raw_output_message: log.info('Detected boxes:') log.info(' Class ID | Confidence | XMIN | YMIN | XMAX | YMAX ') for box, cls, score, mask in zip(boxes, classes, scores, masks): log.info('{:>10} | {:>10f} | {:>8.2f} | {:>8.2f} | {:>8.2f} | {:>8.2f} '.format(cls, score, *box)) # Get instance track IDs. masks_tracks_ids = None if tracker is not None: masks_tracks_ids = tracker(masks, classes) # Visualize masks. frame = visualizer(frame, boxes, classes, scores, masks, texts, masks_tracks_ids) # Draw performance stats. inf_time_message = 'Inference and post-processing time: {:.3f} ms'.format(inf_time * 1000) render_time_message = 'OpenCV rendering time: {:.3f} ms'.format(render_time * 1000) cv2.putText(frame, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (200, 10, 10), 1) cv2.putText(frame, render_time_message, (15, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1) # Print performance counters. if args.perf_counts: perf_counts = mask_rcnn_exec_net.requests[0].get_perf_counts() log.info('Performance counters:') print('{:<70} {:<15} {:<15} {:<15} {:<10}'.format('name', 'layer_type', 'exet_type', 'status', 'real_time, us')) for layer, stats in perf_counts.items(): print('{:<70} {:<15} {:<15} {:<15} {:<10}'.format(layer, stats['layer_type'], stats['exec_type'], stats['status'], stats['real_time'])) if not args.no_show: # Show resulting image. cv2.imshow('Results', frame) render_end = time.time() render_time = render_end - render_start if not args.no_show: key = cv2.waitKey(args.delay) esc_code = 27 if key == esc_code: break cv2.destroyAllWindows() cap.release()
def main(): log.basicConfig(format='[ %(levelname)s ] %(message)s', level=log.INFO, stream=sys.stdout) args = build_argparser().parse_args() mask_rcnn_model_xml = args.mask_rcnn_model mask_rcnn_model_bin = os.path.splitext(mask_rcnn_model_xml)[0] + '.bin' text_enc_model_xml = args.text_enc_model text_enc_model_bin = os.path.splitext(text_enc_model_xml)[0] + '.bin' text_dec_model_xml = args.text_dec_model text_dec_model_bin = os.path.splitext(text_dec_model_xml)[0] + '.bin' # Plugin initialization for specified device and load extensions library if specified. log.info('Creating Inference Engine...') ie = IECore() if args.cpu_extension and 'CPU' in args.device: ie.add_extension(args.cpu_extension, 'CPU') # Read IR log.info('Loading network files:\n\t{}\n\t{}'.format(mask_rcnn_model_xml, mask_rcnn_model_bin)) mask_rcnn_net = IENetwork(model=mask_rcnn_model_xml, weights=mask_rcnn_model_bin) log.info('Loading network files:\n\t{}\n\t{}'.format(text_enc_model_xml, text_enc_model_bin)) text_enc_net = IENetwork(model=text_enc_model_xml, weights=text_enc_model_bin) log.info('Loading network files:\n\t{}\n\t{}'.format(text_dec_model_xml, text_dec_model_bin)) text_dec_net = IENetwork(model=text_dec_model_xml, weights=text_dec_model_bin) if 'CPU' in args.device: supported_layers = ie.query_network(mask_rcnn_net, 'CPU') not_supported_layers = [l for l in mask_rcnn_net.layers.keys() if l not in supported_layers] if len(not_supported_layers) != 0: log.error('Following layers are not supported by the plugin for specified device {}:\n {}'. format(args.device, ', '.join(not_supported_layers))) log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l " "or --cpu_extension command line argument") sys.exit(1) required_input_keys = {'im_data', 'im_info'} assert required_input_keys == set(mask_rcnn_net.inputs.keys()), \ 'Demo supports only topologies with the following input keys: {}'.format(', '.join(required_input_keys)) required_output_keys = {'boxes', 'scores', 'classes', 'raw_masks', 'text_features'} assert required_output_keys.issubset(mask_rcnn_net.outputs.keys()), \ 'Demo supports only topologies with the following output keys: {}'.format(', '.join(required_output_keys)) n, c, h, w = mask_rcnn_net.inputs['im_data'].shape assert n == 1, 'Only batch 1 is supported by the demo application' log.info('Loading IR to the plugin...') mask_rcnn_exec_net = ie.load_network(network=mask_rcnn_net, device_name=args.device, num_requests=2) text_enc_exec_net = ie.load_network(network=text_enc_net, device_name=args.device) text_dec_exec_net = ie.load_network(network=text_dec_net, device_name=args.device) for name, input in text_dec_exec_net.inputs.items(): if len(input.shape) == 3: if input.shape[1] == 1: trd_input_prev_hidden = name else: trd_input_encoder_outputs = name elif len(input.shape) == 1: trd_input_prev_symbol = name for name, output in text_dec_exec_net.outputs.items(): if len(output.shape) == 3: trd_output_cur_hidden = name elif len(output.shape) == 2: trd_output_symbols_distr = name hidden_shape = text_dec_net.inputs[trd_input_prev_hidden].shape del mask_rcnn_net del text_enc_net del text_dec_net try: input_source = int(args.input_source) except ValueError: input_source = args.input_source if os.path.isdir(input_source): cap = FolderCapture(input_source) else: cap = cv2.VideoCapture(input_source) if not cap.isOpened(): log.error('Failed to open "{}"'.format(args.input_source)) if isinstance(cap, cv2.VideoCapture): cap.set(cv2.CAP_PROP_BUFFERSIZE, 1) if args.no_track: tracker = None else: tracker = StaticIOUTracker() visualizer = Visualizer(['__background__', 'text'], show_boxes=args.show_boxes, show_scores=args.show_scores) render_time = 0 log.info('Starting inference...') print("To close the application, press 'CTRL+C' here or switch to the output window and press ESC key") while cap.isOpened(): ret, frame = cap.read() if not ret: break if not args.keep_aspect_ratio: # Resize the image to a target size. scale_x = w / frame.shape[1] scale_y = h / frame.shape[0] input_image = cv2.resize(frame, (w, h)) else: # Resize the image to keep the same aspect ratio and to fit it to a window of a target size. scale_x = scale_y = min(h / frame.shape[0], w / frame.shape[1]) input_image = cv2.resize(frame, None, fx=scale_x, fy=scale_y) input_image_size = input_image.shape[:2] input_image = np.pad(input_image, ((0, h - input_image_size[0]), (0, w - input_image_size[1]), (0, 0)), mode='constant', constant_values=0) # Change data layout from HWC to CHW. input_image = input_image.transpose((2, 0, 1)) input_image = input_image.reshape((n, c, h, w)).astype(np.float32) input_image_info = np.asarray([[input_image_size[0], input_image_size[1], 1]], dtype=np.float32) # Run the net. inf_start = time.time() outputs = mask_rcnn_exec_net.infer({'im_data': input_image, 'im_info': input_image_info}) # Parse detection results of the current request boxes = outputs['boxes'] scores = outputs['scores'] classes = outputs['classes'].astype(np.uint32) raw_masks = outputs['raw_masks'] text_features = outputs['text_features'] # Filter out detections with low confidence. detections_filter = scores > args.prob_threshold scores = scores[detections_filter] classes = classes[detections_filter] boxes = boxes[detections_filter] raw_masks = raw_masks[detections_filter] text_features = text_features[detections_filter] boxes[:, 0::2] /= scale_x boxes[:, 1::2] /= scale_y masks = [] for box, cls, raw_mask in zip(boxes, classes, raw_masks): raw_cls_mask = raw_mask[cls, ...] mask = segm_postprocess(box, raw_cls_mask, frame.shape[0], frame.shape[1]) masks.append(mask) texts = [] for feature in text_features: feature = text_enc_exec_net.infer({'input': feature}) feature = list(feature.values())[0] feature = np.reshape(feature, (feature.shape[0], feature.shape[1], -1)) feature = np.transpose(feature, (0, 2, 1)) hidden = np.zeros(hidden_shape) prev_symbol_index = np.ones((1,)) * SOS_INDEX text = '' for i in range(MAX_SEQ_LEN): decoder_output = text_dec_exec_net.infer({ trd_input_prev_symbol: prev_symbol_index, trd_input_prev_hidden: hidden, trd_input_encoder_outputs: feature}) symbols_distr = decoder_output[trd_output_symbols_distr] prev_symbol_index = int(np.argmax(symbols_distr, axis=1)) if prev_symbol_index == EOS_INDEX: break text += args.alphabet[prev_symbol_index] hidden = decoder_output[trd_output_cur_hidden] texts.append(text) inf_end = time.time() inf_time = inf_end - inf_start render_start = time.time() if len(boxes) and args.raw_output_message: log.info('Detected boxes:') log.info(' Class ID | Confidence | XMIN | YMIN | XMAX | YMAX ') for box, cls, score, mask in zip(boxes, classes, scores, masks): log.info('{:>10} | {:>10f} | {:>8.2f} | {:>8.2f} | {:>8.2f} | {:>8.2f} '.format(cls, score, *box)) # Get instance track IDs. masks_tracks_ids = None if tracker is not None: masks_tracks_ids = tracker(masks, classes) # Visualize masks. frame = visualizer(frame, boxes, classes, scores, masks, texts, masks_tracks_ids) # Draw performance stats. inf_time_message = 'Inference and post-processing time: {:.3f} ms'.format(inf_time * 1000) render_time_message = 'OpenCV rendering time: {:.3f} ms'.format(render_time * 1000) cv2.putText(frame, inf_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (200, 10, 10), 1) cv2.putText(frame, render_time_message, (15, 30), cv2.FONT_HERSHEY_COMPLEX, 0.5, (10, 10, 200), 1) # Print performance counters. if args.perf_counts: perf_counts = mask_rcnn_exec_net.requests[0].get_perf_counts() log.info('Performance counters:') print('{:<70} {:<15} {:<15} {:<15} {:<10}'.format('name', 'layer_type', 'exet_type', 'status', 'real_time, us')) for layer, stats in perf_counts.items(): print('{:<70} {:<15} {:<15} {:<15} {:<10}'.format(layer, stats['layer_type'], stats['exec_type'], stats['status'], stats['real_time'])) if not args.no_show: # Show resulting image. cv2.imshow('Results', frame) render_end = time.time() render_time = render_end - render_start if not args.no_show: key = cv2.waitKey(args.delay) esc_code = 27 if key == esc_code: break cv2.destroyAllWindows() cap.release()
55,062
def sparse_hamiltonian(H): r"""Computes the sparse matrix representation a Hamiltonian in the computational basis. Args: H (~.Hamiltonian): Hamiltonian operator for which the matrix representation should be measured Returns: coo_matrix: a sparse matrix in scipy COOrdinate format with the dimension of :math:`(2^n, 2^n)` where :math:`n` is the number of wires **Example:** This function can be used by passing a `qml.Hamiltonian` object as: >>> coeffs = [0.5, 0.5] >>> obs = [qml.PauliZ(wires=[0]) @ qml.PauliZ(wires=[1]), ... qml.Identity(wires=[0]) @ qml.PauliZ(wires=[1])] >>> H = qml.Hamiltonian(coeffs, obs) >>> H_sparse = sparse_hamiltonian(H) The resulting sparse matrix can be either used directly or transformed into a numpy array: >>> H_sparse.toarray() array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]]) """ if not isinstance(H, qml.Hamiltonian): raise TypeError("Passed Hamiltonian must be of type `qml.Hamiltonian`") n = len(H.wires) matrix = scipy.sparse.coo_matrix((2 ** n, 2 ** n), dtype="complex128") for coeffs, ops in zip(H.coeffs, H.ops): obs = [scipy.sparse.coo_matrix(o.matrix) for o in ops.obs] mat = [scipy.sparse.eye(2, format="coo")] * n for i, j in enumerate(ops.wires): mat[j] = obs[i] matrix += functools.reduce(lambda i, j: scipy.sparse.kron(i, j, format="coo"), mat) * coeffs return matrix.tocoo()
def sparse_hamiltonian(H): r"""Computes the sparse matrix representation a Hamiltonian in the computational basis. Args: H (~.Hamiltonian): Hamiltonian operator for which the matrix representation should be measured Returns: coo_matrix: a sparse matrix in scipy COOrdinate format with the dimension of :math:`(2^n, 2^n)` where :math:`n` is the number of wires **Example:** This function can be used by passing a `qml.Hamiltonian` object as: >>> coeffs = [0.5, 0.5] >>> obs = [qml.PauliZ(0) @ qml.PauliZ(1), qml.PauliZ(1)] >>> H = qml.Hamiltonian(coeffs, obs) >>> H_sparse = sparse_hamiltonian(H) The resulting sparse matrix can be either used directly or transformed into a numpy array: >>> H_sparse.toarray() array([[ 1.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, -1.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j, 0.+0.j]]) """ if not isinstance(H, qml.Hamiltonian): raise TypeError("Passed Hamiltonian must be of type `qml.Hamiltonian`") n = len(H.wires) matrix = scipy.sparse.coo_matrix((2 ** n, 2 ** n), dtype="complex128") for coeffs, ops in zip(H.coeffs, H.ops): obs = [scipy.sparse.coo_matrix(o.matrix) for o in ops.obs] mat = [scipy.sparse.eye(2, format="coo")] * n for i, j in enumerate(ops.wires): mat[j] = obs[i] matrix += functools.reduce(lambda i, j: scipy.sparse.kron(i, j, format="coo"), mat) * coeffs return matrix.tocoo()
50,229
def test_match_orders_with_new_user(customer_user): def get_order_user_by_customer_email(email): return Order.objects.filter(user_email=email).first().user customer_email = customer_user.email address = customer_user.default_billing_address.get_copy() Order.objects.create( billing_address=address, user=None, user_email=customer_email, ) assert get_order_user_by_customer_email(customer_email) is None match_orders_with_new_user(customer_user) assert get_order_user_by_customer_email(customer_email) == customer_user
def test_match_orders_with_new_user(customer_user): def get_order_user_by_customer_email(email): return Order.objects.filter(user_email=email).first().user customer_email = customer_user.email address = customer_user.default_billing_address.get_copy() order = Order.objects.create( billing_address=address, user=None, user_email=customer_email, ) match_orders_with_new_user(customer_user) order.refresh_from_db() assert order.user == customer_user
5,795
def ascent(): """ Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos The image is derived from accent-to-the-top.jpg at http://www.public-domain-image.com/people-public-domain-images-pictures/ Parameters ---------- None Returns ------- ascent : ndarray convenient image to use for testing and demonstration Examples -------- >>> import scipy.misc >>> ascent = scipy.misc.ascent() >>> ascent.shape (512, 512) >>> ascent.max() 255 >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.imshow(ascent) >>> plt.show() """ import pickle import os import numpy as np fname = os.path.join(os.path.dirname(__file__),'ascent.dat') with open(fname, 'rb') as f: ascent = array(pickle.load(f)) return ascent.astype(np.uint8)
def ascent(): """ Get an 8-bit grayscale bit-depth, 512 x 512 derived image for easy use in demos The image is derived from accent-to-the-top.jpg at http://www.public-domain-image.com/people-public-domain-images-pictures/ Parameters ---------- None Returns ------- ascent : ndarray convenient image to use for testing and demonstration Examples -------- >>> import scipy.misc >>> ascent = scipy.misc.ascent() >>> ascent.shape (512, 512) >>> ascent.max() 255 >>> import matplotlib.pyplot as plt >>> plt.gray() >>> plt.imshow(ascent) >>> plt.show() """ import pickle import os import numpy as np fname = os.path.join(os.path.dirname(__file__),'ascent.dat') with open(fname, 'rb') as f: ascent = np.array(pickle.load(f), dtype=np.uint8) return ascent.astype(np.uint8)
35,901
def test_defaults_for_casper_votes(sample_slashable_vote_data_params): votes = SlashableVoteData(**sample_slashable_vote_data_params) assert (votes.aggregate_signature_poc_0_indices == sample_slashable_vote_data_params['aggregate_signature_poc_0_indices']) assert (votes.aggregate_signature_poc_1_indices == sample_slashable_vote_data_params['aggregate_signature_poc_1_indices']) assert votes.data == sample_slashable_vote_data_params['data'] assert votes.aggregate_signature == sample_slashable_vote_data_params['aggregate_signature']
def test_defaults_for_slashable_vote_data(sample_slashable_vote_data_params): votes = SlashableVoteData(**sample_slashable_vote_data_params) assert (votes.aggregate_signature_poc_0_indices == sample_slashable_vote_data_params['aggregate_signature_poc_0_indices']) assert (votes.aggregate_signature_poc_1_indices == sample_slashable_vote_data_params['aggregate_signature_poc_1_indices']) assert votes.data == sample_slashable_vote_data_params['data'] assert votes.aggregate_signature == sample_slashable_vote_data_params['aggregate_signature']
41,035
def selcomps(seldict, comptable, mmix, manacc, n_echos): """ Classify components in seldict as "accepted," "rejected," or "ignored." The selection process uses previously calculated parameters listed in `seldict` for each ICA component such as Kappa (a T2* weighting metric), Rho (an S0 weighting metric), and variance explained. See `Notes` for additional calculated metrics used to classify each component into one of the four listed groups. Parameters ---------- seldict : :obj:`dict` A dictionary with component-specific features used for classification. As output from `fitmodels_direct` comptable : (C x 5) :obj:`pandas.DataFrame` Component metric table mmix : (T x C) array_like Mixing matrix for converting input data to component space, where `C` is components and `T` is the number of volumes in the original data manacc : :obj:`list` Comma-separated list of indices of manually accepted components n_echos : :obj:`int` Number of echos in original data Returns ------- comptable : :obj:`pandas.DataFrame` Updated component table with additional metrics and with classification (accepted, rejected, or ignored) Notes ----- The selection algorithm used in this function was originated in ME-ICA by Prantik Kundu, and his original implementation is available at: https://github.com/ME-ICA/me-ica/blob/b2781dd087ab9de99a2ec3925f04f02ce84f0adc/meica.libs/select_model.py This component selection process uses multiple, previously calculated metrics that include: kappa, rho, variance explained, component spatial weighting maps, noise and spatial frequency metrics, and measures of spatial overlap across metrics. Prantik began to update these selection criteria to use SVMs to distinguish components, a hypercommented version of this attempt is available at: https://gist.github.com/emdupre/ca92d52d345d08ee85e104093b81482e """ cols_at_end = ['classification', 'rationale'] comptable['classification'] = 'accepted' comptable['rationale'] = '' Z_maps = seldict['Z_maps'] Z_clmaps = seldict['Z_clmaps'] F_R2_maps = seldict['F_R2_maps'] F_S0_clmaps = seldict['F_S0_clmaps'] F_R2_clmaps = seldict['F_R2_clmaps'] Br_S0_clmaps = seldict['Br_S0_clmaps'] Br_R2_clmaps = seldict['Br_R2_clmaps'] n_vols, n_comps = mmix.shape # Set knobs LOW_PERC = 25 HIGH_PERC = 90 if n_vols < 100: EXTEND_FACTOR = 3 else: EXTEND_FACTOR = 2 RESTRICT_FACTOR = 2 # Lists of components all_comps = np.arange(comptable.shape[0]) # unclf is a full list that is whittled down over criteria # since the default classification is "accepted", at the end of the tree # the remaining elements in unclf match up to the accepted components unclf = np.arange(comptable.shape[0]) # If user has specified if manacc: acc = sorted([int(vv) for vv in manacc.split(',')]) rej = sorted(np.setdiff1d(all_comps, acc)) comptable.loc[acc, 'classification'] = 'accepted' comptable.loc[rej, 'classification'] = 'rejected' comptable.loc[rej, 'rationale'] += 'I001;' # Move decision columns to end comptable = comptable[[c for c in comptable if c not in cols_at_end] + [c for c in cols_at_end if c in comptable]] comptable['rationale'] = comptable['rationale'].str.rstrip(';') return comptable """ Tally number of significant voxels for cluster-extent thresholded R2 and S0 model F-statistic maps. """ comptable['countsigFR2'] = F_R2_clmaps.sum(axis=0) comptable['countsigFS0'] = F_S0_clmaps.sum(axis=0) """ Generate Dice values for R2 and S0 models - dice_FR2: Dice value of cluster-extent thresholded maps of R2-model betas and F-statistics. - dice_FS0: Dice value of cluster-extent thresholded maps of S0-model betas and F-statistics. """ comptable['dice_FR2'] = np.zeros(all_comps.shape[0]) comptable['dice_FS0'] = np.zeros(all_comps.shape[0]) for i_comp in all_comps: comptable.loc[i_comp, 'dice_FR2'] = utils.dice(Br_R2_clmaps[:, i_comp], F_R2_clmaps[:, i_comp]) comptable.loc[i_comp, 'dice_FS0'] = utils.dice(Br_S0_clmaps[:, i_comp], F_S0_clmaps[:, i_comp]) comptable.loc[np.isnan(comptable['dice_FR2']), 'dice_FR2'] = 0 comptable.loc[np.isnan(comptable['dice_FS0']), 'dice_FS0'] = 0 """ Generate three metrics of component noise: - countnoise: Number of "noise" voxels (voxels highly weighted for component, but not from clusters) - signal-noise_t: T-statistic for two-sample t-test of F-statistics from "signal" voxels (voxels in clusters) against "noise" voxels (voxels not in clusters) for R2 model. - signal-noise_p: P-value from t-test. """ comptable['countnoise'] = 0 comptable['signal-noise_t'] = 0 comptable['signal-noise_p'] = 0 for i_comp in all_comps: # index voxels significantly loading on component but not from clusters comp_noise_sel = ((np.abs(Z_maps[:, i_comp]) > 1.95) & (Z_clmaps[:, i_comp] == 0)) comptable.loc[i_comp, 'countnoise'] = np.array( comp_noise_sel, dtype=np.int).sum() # NOTE: Why only compare distributions of *unique* F-statistics? noise_FR2_Z = np.log10(np.unique(F_R2_maps[comp_noise_sel, i_comp])) signal_FR2_Z = np.log10(np.unique( F_R2_maps[Z_clmaps[:, i_comp] == 1, i_comp])) (comptable.loc[i_comp, 'signal-noise_t'], comptable.loc[i_comp, 'signal-noise_p']) = stats.ttest_ind( signal_FR2_Z, noise_FR2_Z, equal_var=False) comptable.loc[np.isnan(comptable['signal-noise_t']), 'signal-noise_t'] = 0 comptable.loc[np.isnan(comptable['signal-noise_p']), 'signal-noise_p'] = 0 """ Assemble decision table with five metrics: - Kappa values ranked from largest to smallest - R2-model F-score map/beta map Dice scores ranked from largest to smallest - Signal F > Noise F t-statistics ranked from largest to smallest - Number of "noise" voxels (voxels highly weighted for component, but not from clusters) ranked from smallest to largest - Number of voxels with significant R2-model F-scores within clusters ranked from largest to smallest Smaller values (i.e., higher ranks) across metrics indicate more BOLD dependence and less noise. """ d_table_rank = np.vstack([ n_comps - stats.rankdata(comptable['kappa']), n_comps - stats.rankdata(comptable['dice_FR2']), n_comps - stats.rankdata(comptable['signal-noise_t']), stats.rankdata(comptable['countnoise']), n_comps - stats.rankdata(comptable['countsigFR2'])]).T comptable['d_table_score'] = d_table_rank.mean(axis=1) """ Step 1: Reject anything that's obviously an artifact a. Estimate a null variance """ # Rho is higher than Kappa temp_rej0a = all_comps[(comptable['rho'] > comptable['kappa'])] comptable.loc[temp_rej0a, 'classification'] = 'rejected' comptable.loc[temp_rej0a, 'rationale'] += 'I002;' # Number of significant voxels for S0 model is higher than number for R2 # model *and* number for R2 model is greater than zero. temp_rej0b = all_comps[((comptable['countsigFS0'] > comptable['countsigFR2']) & (comptable['countsigFR2'] > 0))] comptable.loc[temp_rej0b, 'classification'] = 'rejected' comptable.loc[temp_rej0b, 'rationale'] += 'I003;' rej = np.union1d(temp_rej0a, temp_rej0b) # Dice score for S0 maps is higher than Dice score for R2 maps and variance # explained is higher than the median across components. temp_rej1 = all_comps[(comptable['dice_FS0'] > comptable['dice_FR2']) & (comptable['variance explained'] > np.median(comptable['variance explained']))] comptable.loc[temp_rej1, 'classification'] = 'rejected' comptable.loc[temp_rej1, 'rationale'] += 'I004;' rej = np.union1d(temp_rej1, rej) # T-value is less than zero (noise has higher F-statistics than signal in # map) and variance explained is higher than the median across components. temp_rej2 = unclf[(comptable.loc[unclf, 'signal-noise_t'] < 0) & (comptable.loc[unclf, 'variance explained'] > np.median(comptable['variance explained']))] comptable.loc[temp_rej2, 'classification'] = 'rejected' comptable.loc[temp_rej2, 'rationale'] += 'I005;' rej = np.union1d(temp_rej2, rej) unclf = np.setdiff1d(unclf, rej) """ Step 2: Make a guess for what the good components are, in order to estimate good component properties a. Not outlier variance b. Kappa>kappa_elbow c. Rho<Rho_elbow d. High R2* dice compared to S0 dice e. Gain of F_R2 in clusters vs noise f. Estimate a low and high variance """ # Step 2a # Upper limit for variance explained is median across components with high # Kappa values. High Kappa is defined as Kappa above Kappa elbow. varex_upper_p = np.median( comptable.loc[comptable['kappa'] > getelbow(comptable['kappa'], return_val=True), 'variance explained']) ncls = unclf.copy() # NOTE: We're not sure why this is done, nor why it's specifically done # three times. Need to look into this deeper, esp. to make sure the 3 # isn't a hard-coded reference to the number of echoes. # Reduce components to investigate as "good" to ones in which change in # variance explained is less than the limit defined above.... What? for i_loop in range(3): ncls = comptable.loc[ncls].loc[ comptable.loc[ ncls, 'variance explained'].diff() < varex_upper_p].index.values # Compute elbows from other elbows f05, _, f01 = utils.getfbounds(n_echos) kappas_nonsig = comptable.loc[comptable['kappa'] < f01, 'kappa'] # NOTE: Would an elbow from all Kappa values *ever* be lower than one from # a subset of lower values? kappa_elbow = np.min((getelbow(kappas_nonsig, return_val=True), getelbow(comptable['kappa'], return_val=True))) rho_elbow = np.mean((getelbow(comptable.loc[ncls, 'rho'], return_val=True), getelbow(comptable['rho'], return_val=True), f05)) # Provisionally accept components based on Kappa and Rho elbows acc_prov = ncls[(comptable.loc[ncls, 'kappa'] >= kappa_elbow) & (comptable.loc[ncls, 'rho'] < rho_elbow)] if len(acc_prov) == 0: LGR.warning('No BOLD-like components detected') ign = sorted(np.setdiff1d(all_comps, rej)) comptable.loc[ign, 'classification'] = 'ignored' comptable.loc[ign, 'rationale'] += 'I006;' # Move decision columns to end comptable = comptable[[c for c in comptable if c not in cols_at_end] + [c for c in cols_at_end if c in comptable]] comptable['rationale'] = comptable['rationale'].str.rstrip(';') return comptable # Calculate "rate" for kappa: kappa range divided by variance explained # range, for potentially accepted components # NOTE: What is the logic behind this? kappa_rate = ((np.max(comptable.loc[acc_prov, 'kappa']) - np.min(comptable.loc[acc_prov, 'kappa'])) / (np.max(comptable.loc[acc_prov, 'variance explained']) - np.min(comptable.loc[acc_prov, 'variance explained']))) comptable['kappa ratio'] = kappa_rate * comptable['variance explained'] / comptable['kappa'] varex_lower = stats.scoreatpercentile( comptable.loc[acc_prov, 'variance explained'], LOW_PERC) varex_upper = stats.scoreatpercentile( comptable.loc[acc_prov, 'variance explained'], HIGH_PERC) """ Step 3: Get rid of midk components; i.e., those with higher than max decision score and high variance """ max_good_d_score = EXTEND_FACTOR * len(acc_prov) midk = unclf[(comptable.loc[unclf, 'd_table_score'] > max_good_d_score) & (comptable.loc[unclf, 'variance explained'] > EXTEND_FACTOR * varex_upper)] comptable.loc[midk, 'classification'] = 'rejected' comptable.loc[midk, 'rationale'] += 'I007;' unclf = np.setdiff1d(unclf, midk) acc_prov = np.setdiff1d(acc_prov, midk) """ Step 4: Find components to ignore """ # collect high variance unclassified components # and mix of high/low provisionally accepted high_varex = np.union1d( acc_prov, unclf[comptable.loc[unclf, 'variance explained'] > varex_lower]) # ignore low variance components ign = np.setdiff1d(unclf, high_varex) # but only if they have bad decision scores ign = np.setdiff1d( ign, ign[comptable.loc[ign, 'd_table_score'] < max_good_d_score]) # and low kappa ign = np.setdiff1d(ign, ign[comptable.loc[ign, 'kappa'] > kappa_elbow]) comptable.loc[ign, 'classification'] = 'ignored' comptable.loc[ign, 'rationale'] += 'I008;' unclf = np.setdiff1d(unclf, ign) """ Step 5: Scrub the set if there are components that haven't been rejected or ignored, but are still not listed in the provisionally accepted group. """ if len(unclf) > len(acc_prov): comptable['d_table_score_scrub'] = np.nan # Recompute the midk steps on the limited set to clean up the tail d_table_rank = np.vstack([ len(unclf) - stats.rankdata(comptable.loc[unclf, 'kappa']), len(unclf) - stats.rankdata(comptable.loc[unclf, 'dice_FR2']), len(unclf) - stats.rankdata(comptable.loc[unclf, 'signal-noise_t']), stats.rankdata(comptable.loc[unclf, 'countnoise']), len(unclf) - stats.rankdata(comptable.loc[unclf, 'countsigFR2'])]).T comptable.loc[unclf, 'd_table_score_scrub'] = d_table_rank.mean(1) num_acc_guess = int(np.mean([ np.sum((comptable.loc[unclf, 'kappa'] > kappa_elbow) & (comptable.loc[unclf, 'rho'] < rho_elbow)), np.sum(comptable.loc[unclf, 'kappa'] > kappa_elbow)])) # Rejection candidate based on artifact type A: candartA conservative_guess = num_acc_guess / RESTRICT_FACTOR candartA = np.intersect1d( unclf[comptable.loc[unclf, 'd_table_score_scrub'] > conservative_guess], unclf[comptable.loc[unclf, 'kappa ratio'] > EXTEND_FACTOR * 2]) candartA = (candartA[comptable.loc[candartA, 'variance explained'] > varex_upper * EXTEND_FACTOR]) comptable.loc[candartA, 'classification'] = 'rejected' comptable.loc[candartA, 'rationale'] += 'I009;' midk = np.union1d(midk, candartA) unclf = np.setdiff1d(unclf, midk) # Rejection candidate based on artifact type B: candartB conservative_guess2 = num_acc_guess * HIGH_PERC / 100. candartB = unclf[comptable.loc[unclf, 'd_table_score_scrub'] > conservative_guess2] candartB = (candartB[comptable.loc[candartB, 'variance explained'] > varex_lower * EXTEND_FACTOR]) comptable.loc[candartB, 'classification'] = 'rejected' comptable.loc[candartB, 'rationale'] += 'I010;' midk = np.union1d(midk, candartB) unclf = np.setdiff1d(unclf, midk) # Find components to ignore # Ignore high variance explained, poor decision tree scored components new_varex_lower = stats.scoreatpercentile( comptable.loc[unclf[:num_acc_guess], 'variance explained'], LOW_PERC) candart = unclf[comptable.loc[unclf, 'd_table_score_scrub'] > num_acc_guess] ign_add0 = candart[comptable.loc[candart, 'variance explained'] > new_varex_lower] ign_add0 = np.setdiff1d(ign_add0, midk) comptable.loc[ign_add0, 'classification'] = 'ignored' comptable.loc[ign_add0, 'rationale'] += 'I011;' ign = np.union1d(ign, ign_add0) unclf = np.setdiff1d(unclf, ign) # Ignore low Kappa, high variance explained components ign_add1 = np.intersect1d( unclf[comptable.loc[unclf, 'kappa'] <= kappa_elbow], unclf[comptable.loc[unclf, 'variance explained'] > new_varex_lower]) ign_add1 = np.setdiff1d(ign_add1, midk) comptable.loc[ign_add1, 'classification'] = 'ignored' comptable.loc[ign_add1, 'rationale'] += 'I012;' # at this point, unclf is equivalent to accepted # Move decision columns to end comptable = comptable[[c for c in comptable if c not in cols_at_end] + [c for c in cols_at_end if c in comptable]] comptable['rationale'] = comptable['rationale'].str.rstrip(';') return comptable
def selcomps(seldict, comptable, mmix, manacc, n_echos): """ Classify components in seldict as "accepted," "rejected," or "ignored." The selection process uses previously calculated parameters listed in `seldict` for each ICA component such as Kappa (a T2* weighting metric), Rho (an S0 weighting metric), and variance explained. See `Notes` for additional calculated metrics used to classify each component into one of the four listed groups. Parameters ---------- seldict : :obj:`dict` A dictionary with component-specific features used for classification. As output from `fitmodels_direct` comptable : (C x 5) :obj:`pandas.DataFrame` Component metric table mmix : (T x C) array_like Mixing matrix for converting input data to component space, where `C` is components and `T` is the number of volumes in the original data manacc : :obj:`list` Comma-separated list of indices of manually accepted components n_echos : :obj:`int` Number of echos in original data Returns ------- comptable : :obj:`pandas.DataFrame` Updated component table with additional metrics and with classification (accepted, rejected, or ignored) Notes ----- The selection algorithm used in this function was originated in ME-ICA by Prantik Kundu, and his original implementation is available at: https://github.com/ME-ICA/me-ica/blob/b2781dd087ab9de99a2ec3925f04f02ce84f0adc/meica.libs/select_model.py This component selection process uses multiple, previously calculated metrics that include: kappa, rho, variance explained, component spatial weighting maps, noise and spatial frequency metrics, and measures of spatial overlap across metrics. Prantik began to update these selection criteria to use SVMs to distinguish components, a hypercommented version of this attempt is available at: https://gist.github.com/emdupre/ca92d52d345d08ee85e104093b81482e """ cols_at_end = ['classification', 'rationale'] comptable['classification'] = 'accepted' comptable['rationale'] = '' Z_maps = seldict['Z_maps'] Z_clmaps = seldict['Z_clmaps'] F_R2_maps = seldict['F_R2_maps'] F_S0_clmaps = seldict['F_S0_clmaps'] F_R2_clmaps = seldict['F_R2_clmaps'] Br_S0_clmaps = seldict['Br_S0_clmaps'] Br_R2_clmaps = seldict['Br_R2_clmaps'] n_vols, n_comps = mmix.shape # Set knobs LOW_PERC = 25 HIGH_PERC = 90 if n_vols < 100: EXTEND_FACTOR = 3 else: EXTEND_FACTOR = 2 RESTRICT_FACTOR = 2 # Lists of components all_comps = np.arange(comptable.shape[0]) # unclf is a full list that is whittled down over criteria # since the default classification is "accepted", at the end of the tree # the remaining elements in unclf are classified as accepted unclf = np.arange(comptable.shape[0]) # If user has specified if manacc: acc = sorted([int(vv) for vv in manacc.split(',')]) rej = sorted(np.setdiff1d(all_comps, acc)) comptable.loc[acc, 'classification'] = 'accepted' comptable.loc[rej, 'classification'] = 'rejected' comptable.loc[rej, 'rationale'] += 'I001;' # Move decision columns to end comptable = comptable[[c for c in comptable if c not in cols_at_end] + [c for c in cols_at_end if c in comptable]] comptable['rationale'] = comptable['rationale'].str.rstrip(';') return comptable """ Tally number of significant voxels for cluster-extent thresholded R2 and S0 model F-statistic maps. """ comptable['countsigFR2'] = F_R2_clmaps.sum(axis=0) comptable['countsigFS0'] = F_S0_clmaps.sum(axis=0) """ Generate Dice values for R2 and S0 models - dice_FR2: Dice value of cluster-extent thresholded maps of R2-model betas and F-statistics. - dice_FS0: Dice value of cluster-extent thresholded maps of S0-model betas and F-statistics. """ comptable['dice_FR2'] = np.zeros(all_comps.shape[0]) comptable['dice_FS0'] = np.zeros(all_comps.shape[0]) for i_comp in all_comps: comptable.loc[i_comp, 'dice_FR2'] = utils.dice(Br_R2_clmaps[:, i_comp], F_R2_clmaps[:, i_comp]) comptable.loc[i_comp, 'dice_FS0'] = utils.dice(Br_S0_clmaps[:, i_comp], F_S0_clmaps[:, i_comp]) comptable.loc[np.isnan(comptable['dice_FR2']), 'dice_FR2'] = 0 comptable.loc[np.isnan(comptable['dice_FS0']), 'dice_FS0'] = 0 """ Generate three metrics of component noise: - countnoise: Number of "noise" voxels (voxels highly weighted for component, but not from clusters) - signal-noise_t: T-statistic for two-sample t-test of F-statistics from "signal" voxels (voxels in clusters) against "noise" voxels (voxels not in clusters) for R2 model. - signal-noise_p: P-value from t-test. """ comptable['countnoise'] = 0 comptable['signal-noise_t'] = 0 comptable['signal-noise_p'] = 0 for i_comp in all_comps: # index voxels significantly loading on component but not from clusters comp_noise_sel = ((np.abs(Z_maps[:, i_comp]) > 1.95) & (Z_clmaps[:, i_comp] == 0)) comptable.loc[i_comp, 'countnoise'] = np.array( comp_noise_sel, dtype=np.int).sum() # NOTE: Why only compare distributions of *unique* F-statistics? noise_FR2_Z = np.log10(np.unique(F_R2_maps[comp_noise_sel, i_comp])) signal_FR2_Z = np.log10(np.unique( F_R2_maps[Z_clmaps[:, i_comp] == 1, i_comp])) (comptable.loc[i_comp, 'signal-noise_t'], comptable.loc[i_comp, 'signal-noise_p']) = stats.ttest_ind( signal_FR2_Z, noise_FR2_Z, equal_var=False) comptable.loc[np.isnan(comptable['signal-noise_t']), 'signal-noise_t'] = 0 comptable.loc[np.isnan(comptable['signal-noise_p']), 'signal-noise_p'] = 0 """ Assemble decision table with five metrics: - Kappa values ranked from largest to smallest - R2-model F-score map/beta map Dice scores ranked from largest to smallest - Signal F > Noise F t-statistics ranked from largest to smallest - Number of "noise" voxels (voxels highly weighted for component, but not from clusters) ranked from smallest to largest - Number of voxels with significant R2-model F-scores within clusters ranked from largest to smallest Smaller values (i.e., higher ranks) across metrics indicate more BOLD dependence and less noise. """ d_table_rank = np.vstack([ n_comps - stats.rankdata(comptable['kappa']), n_comps - stats.rankdata(comptable['dice_FR2']), n_comps - stats.rankdata(comptable['signal-noise_t']), stats.rankdata(comptable['countnoise']), n_comps - stats.rankdata(comptable['countsigFR2'])]).T comptable['d_table_score'] = d_table_rank.mean(axis=1) """ Step 1: Reject anything that's obviously an artifact a. Estimate a null variance """ # Rho is higher than Kappa temp_rej0a = all_comps[(comptable['rho'] > comptable['kappa'])] comptable.loc[temp_rej0a, 'classification'] = 'rejected' comptable.loc[temp_rej0a, 'rationale'] += 'I002;' # Number of significant voxels for S0 model is higher than number for R2 # model *and* number for R2 model is greater than zero. temp_rej0b = all_comps[((comptable['countsigFS0'] > comptable['countsigFR2']) & (comptable['countsigFR2'] > 0))] comptable.loc[temp_rej0b, 'classification'] = 'rejected' comptable.loc[temp_rej0b, 'rationale'] += 'I003;' rej = np.union1d(temp_rej0a, temp_rej0b) # Dice score for S0 maps is higher than Dice score for R2 maps and variance # explained is higher than the median across components. temp_rej1 = all_comps[(comptable['dice_FS0'] > comptable['dice_FR2']) & (comptable['variance explained'] > np.median(comptable['variance explained']))] comptable.loc[temp_rej1, 'classification'] = 'rejected' comptable.loc[temp_rej1, 'rationale'] += 'I004;' rej = np.union1d(temp_rej1, rej) # T-value is less than zero (noise has higher F-statistics than signal in # map) and variance explained is higher than the median across components. temp_rej2 = unclf[(comptable.loc[unclf, 'signal-noise_t'] < 0) & (comptable.loc[unclf, 'variance explained'] > np.median(comptable['variance explained']))] comptable.loc[temp_rej2, 'classification'] = 'rejected' comptable.loc[temp_rej2, 'rationale'] += 'I005;' rej = np.union1d(temp_rej2, rej) unclf = np.setdiff1d(unclf, rej) """ Step 2: Make a guess for what the good components are, in order to estimate good component properties a. Not outlier variance b. Kappa>kappa_elbow c. Rho<Rho_elbow d. High R2* dice compared to S0 dice e. Gain of F_R2 in clusters vs noise f. Estimate a low and high variance """ # Step 2a # Upper limit for variance explained is median across components with high # Kappa values. High Kappa is defined as Kappa above Kappa elbow. varex_upper_p = np.median( comptable.loc[comptable['kappa'] > getelbow(comptable['kappa'], return_val=True), 'variance explained']) ncls = unclf.copy() # NOTE: We're not sure why this is done, nor why it's specifically done # three times. Need to look into this deeper, esp. to make sure the 3 # isn't a hard-coded reference to the number of echoes. # Reduce components to investigate as "good" to ones in which change in # variance explained is less than the limit defined above.... What? for i_loop in range(3): ncls = comptable.loc[ncls].loc[ comptable.loc[ ncls, 'variance explained'].diff() < varex_upper_p].index.values # Compute elbows from other elbows f05, _, f01 = utils.getfbounds(n_echos) kappas_nonsig = comptable.loc[comptable['kappa'] < f01, 'kappa'] # NOTE: Would an elbow from all Kappa values *ever* be lower than one from # a subset of lower values? kappa_elbow = np.min((getelbow(kappas_nonsig, return_val=True), getelbow(comptable['kappa'], return_val=True))) rho_elbow = np.mean((getelbow(comptable.loc[ncls, 'rho'], return_val=True), getelbow(comptable['rho'], return_val=True), f05)) # Provisionally accept components based on Kappa and Rho elbows acc_prov = ncls[(comptable.loc[ncls, 'kappa'] >= kappa_elbow) & (comptable.loc[ncls, 'rho'] < rho_elbow)] if len(acc_prov) == 0: LGR.warning('No BOLD-like components detected') ign = sorted(np.setdiff1d(all_comps, rej)) comptable.loc[ign, 'classification'] = 'ignored' comptable.loc[ign, 'rationale'] += 'I006;' # Move decision columns to end comptable = comptable[[c for c in comptable if c not in cols_at_end] + [c for c in cols_at_end if c in comptable]] comptable['rationale'] = comptable['rationale'].str.rstrip(';') return comptable # Calculate "rate" for kappa: kappa range divided by variance explained # range, for potentially accepted components # NOTE: What is the logic behind this? kappa_rate = ((np.max(comptable.loc[acc_prov, 'kappa']) - np.min(comptable.loc[acc_prov, 'kappa'])) / (np.max(comptable.loc[acc_prov, 'variance explained']) - np.min(comptable.loc[acc_prov, 'variance explained']))) comptable['kappa ratio'] = kappa_rate * comptable['variance explained'] / comptable['kappa'] varex_lower = stats.scoreatpercentile( comptable.loc[acc_prov, 'variance explained'], LOW_PERC) varex_upper = stats.scoreatpercentile( comptable.loc[acc_prov, 'variance explained'], HIGH_PERC) """ Step 3: Get rid of midk components; i.e., those with higher than max decision score and high variance """ max_good_d_score = EXTEND_FACTOR * len(acc_prov) midk = unclf[(comptable.loc[unclf, 'd_table_score'] > max_good_d_score) & (comptable.loc[unclf, 'variance explained'] > EXTEND_FACTOR * varex_upper)] comptable.loc[midk, 'classification'] = 'rejected' comptable.loc[midk, 'rationale'] += 'I007;' unclf = np.setdiff1d(unclf, midk) acc_prov = np.setdiff1d(acc_prov, midk) """ Step 4: Find components to ignore """ # collect high variance unclassified components # and mix of high/low provisionally accepted high_varex = np.union1d( acc_prov, unclf[comptable.loc[unclf, 'variance explained'] > varex_lower]) # ignore low variance components ign = np.setdiff1d(unclf, high_varex) # but only if they have bad decision scores ign = np.setdiff1d( ign, ign[comptable.loc[ign, 'd_table_score'] < max_good_d_score]) # and low kappa ign = np.setdiff1d(ign, ign[comptable.loc[ign, 'kappa'] > kappa_elbow]) comptable.loc[ign, 'classification'] = 'ignored' comptable.loc[ign, 'rationale'] += 'I008;' unclf = np.setdiff1d(unclf, ign) """ Step 5: Scrub the set if there are components that haven't been rejected or ignored, but are still not listed in the provisionally accepted group. """ if len(unclf) > len(acc_prov): comptable['d_table_score_scrub'] = np.nan # Recompute the midk steps on the limited set to clean up the tail d_table_rank = np.vstack([ len(unclf) - stats.rankdata(comptable.loc[unclf, 'kappa']), len(unclf) - stats.rankdata(comptable.loc[unclf, 'dice_FR2']), len(unclf) - stats.rankdata(comptable.loc[unclf, 'signal-noise_t']), stats.rankdata(comptable.loc[unclf, 'countnoise']), len(unclf) - stats.rankdata(comptable.loc[unclf, 'countsigFR2'])]).T comptable.loc[unclf, 'd_table_score_scrub'] = d_table_rank.mean(1) num_acc_guess = int(np.mean([ np.sum((comptable.loc[unclf, 'kappa'] > kappa_elbow) & (comptable.loc[unclf, 'rho'] < rho_elbow)), np.sum(comptable.loc[unclf, 'kappa'] > kappa_elbow)])) # Rejection candidate based on artifact type A: candartA conservative_guess = num_acc_guess / RESTRICT_FACTOR candartA = np.intersect1d( unclf[comptable.loc[unclf, 'd_table_score_scrub'] > conservative_guess], unclf[comptable.loc[unclf, 'kappa ratio'] > EXTEND_FACTOR * 2]) candartA = (candartA[comptable.loc[candartA, 'variance explained'] > varex_upper * EXTEND_FACTOR]) comptable.loc[candartA, 'classification'] = 'rejected' comptable.loc[candartA, 'rationale'] += 'I009;' midk = np.union1d(midk, candartA) unclf = np.setdiff1d(unclf, midk) # Rejection candidate based on artifact type B: candartB conservative_guess2 = num_acc_guess * HIGH_PERC / 100. candartB = unclf[comptable.loc[unclf, 'd_table_score_scrub'] > conservative_guess2] candartB = (candartB[comptable.loc[candartB, 'variance explained'] > varex_lower * EXTEND_FACTOR]) comptable.loc[candartB, 'classification'] = 'rejected' comptable.loc[candartB, 'rationale'] += 'I010;' midk = np.union1d(midk, candartB) unclf = np.setdiff1d(unclf, midk) # Find components to ignore # Ignore high variance explained, poor decision tree scored components new_varex_lower = stats.scoreatpercentile( comptable.loc[unclf[:num_acc_guess], 'variance explained'], LOW_PERC) candart = unclf[comptable.loc[unclf, 'd_table_score_scrub'] > num_acc_guess] ign_add0 = candart[comptable.loc[candart, 'variance explained'] > new_varex_lower] ign_add0 = np.setdiff1d(ign_add0, midk) comptable.loc[ign_add0, 'classification'] = 'ignored' comptable.loc[ign_add0, 'rationale'] += 'I011;' ign = np.union1d(ign, ign_add0) unclf = np.setdiff1d(unclf, ign) # Ignore low Kappa, high variance explained components ign_add1 = np.intersect1d( unclf[comptable.loc[unclf, 'kappa'] <= kappa_elbow], unclf[comptable.loc[unclf, 'variance explained'] > new_varex_lower]) ign_add1 = np.setdiff1d(ign_add1, midk) comptable.loc[ign_add1, 'classification'] = 'ignored' comptable.loc[ign_add1, 'rationale'] += 'I012;' # at this point, unclf is equivalent to accepted # Move decision columns to end comptable = comptable[[c for c in comptable if c not in cols_at_end] + [c for c in cols_at_end if c in comptable]] comptable['rationale'] = comptable['rationale'].str.rstrip(';') return comptable
7,337
def ransac(data, model_class, min_samples, residual_threshold, is_data_valid=None, is_model_valid=None, max_trials=100, stop_sample_num=np.inf, stop_residuals_sum=0, stop_probability=1, random_state=None, initial_inliers=None): """Fit a model to data with the RANSAC (random sample consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. Each iteration performs the following tasks: 1. Select `min_samples` random samples from the original data and check whether the set of data is valid (see `is_data_valid`). 2. Estimate a model to the random subset (`model_cls.estimate(*data[random_subset]`) and check whether the estimated model is valid (see `is_model_valid`). 3. Classify all data as inliers or outliers by calculating the residuals to the estimated model (`model_cls.residuals(*data)`) - all data samples with residuals smaller than the `residual_threshold` are considered as inliers. 4. Save estimated model as best model if number of inlier samples is maximal. In case the current estimated model has the same number of inliers, it is only considered as the best model if it has less sum of residuals. These steps are performed either a maximum number of times or until one of the special stop criteria are met. The final model is estimated using all inlier samples of the previously determined best model. Parameters ---------- data : [list, tuple of] (N, ...) array Data set to which the model is fitted, where N is the number of data points and the remaining dimension are depending on model requirements. If the model class requires multiple input data arrays (e.g. source and destination coordinates of ``skimage.transform.AffineTransform``), they can be optionally passed as tuple or list. Note, that in this case the functions ``estimate(*data)``, ``residuals(*data)``, ``is_model_valid(model, *random_data)`` and ``is_data_valid(*random_data)`` must all take each data array as separate arguments. model_class : object Object with the following object methods: * ``success = estimate(*data)`` * ``residuals(*data)`` where `success` indicates whether the model estimation succeeded (`True` or `None` for success, `False` for failure). min_samples : int in range (0, N) The minimum number of data points to fit a model to. residual_threshold : float larger than 0 Maximum distance for a data point to be classified as an inlier. is_data_valid : function, optional This function is called with the randomly selected data before the model is fitted to it: `is_data_valid(*random_data)`. is_model_valid : function, optional This function is called with the estimated model and the randomly selected data: `is_model_valid(model, *random_data)`, . max_trials : int, optional Maximum number of iterations for random sample selection. stop_sample_num : int, optional Stop iteration if at least this number of inliers are found. stop_residuals_sum : float, optional Stop iteration if sum of residuals is less than or equal to this threshold. stop_probability : float in range [0, 1], optional RANSAC iteration stops if at least one outlier-free set of the training data is sampled with ``probability >= stop_probability``, depending on the current best model's inlier ratio and the number of trials. This requires to generate at least N samples (trials): N >= log(1 - probability) / log(1 - e**m) where the probability (confidence) is typically set to a high value such as 0.99, e is the current fraction of inliers w.r.t. the total number of samples, and m is the min_samples value. random_state : {None, int, `numpy.random.Generator`}, optional If `random_state` is None the `numpy.random.Generator` singleton is used. If `random_state` is an int, a new ``Generator`` instance is used, seeded with `random_state`. If `random_state` is already a ``Generator`` instance then that instance is used. initial_inliers : array-like of bool, shape (N,), optional Initial samples selection for model estimation Returns ------- model : object Best model with largest consensus set. inliers : (N, ) array Boolean mask of inliers classified as ``True``. References ---------- .. [1] "RANSAC", Wikipedia, https://en.wikipedia.org/wiki/RANSAC Examples -------- Generate ellipse data without tilt and add noise: >>> t = np.linspace(0, 2 * np.pi, 50) >>> xc, yc = 20, 30 >>> a, b = 5, 10 >>> x = xc + a * np.cos(t) >>> y = yc + b * np.sin(t) >>> data = np.column_stack([x, y]) >>> rng = np.random.default_rng(203560) # do not copy this value >>> data += rng.normal(size=data.shape) Add some faulty data: >>> data[0] = (100, 100) >>> data[1] = (110, 120) >>> data[2] = (120, 130) >>> data[3] = (140, 130) Estimate ellipse model using all available data: >>> model = EllipseModel() >>> model.estimate(data) True >>> np.round(model.params) # doctest: +SKIP array([ 72., 75., 77., 14., 1.]) Estimate ellipse model using RANSAC: >>> ransac_model, inliers = ransac(data, EllipseModel, 20, 3, max_trials=50) >>> abs(np.round(ransac_model.params)) array([20., 30., 10., 6., 2.]) >>> inliers # doctest: +SKIP array([False, False, False, False, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], dtype=bool) >>> sum(inliers) > 40 True RANSAC can be used to robustly estimate a geometric transformation. In this section, we also show how to use a proportion of the total samples, rather than an absolute number. >>> from skimage.transform import SimilarityTransform >>> rng = np.random.default_rng() >>> src = 100 * rng.random((50, 2)) >>> model0 = SimilarityTransform(scale=0.5, rotation=1, ... translation=(10, 20)) >>> dst = model0(src) >>> dst[0] = (10000, 10000) >>> dst[1] = (-100, 100) >>> dst[2] = (50, 50) >>> ratio = 0.5 # use half of the samples >>> min_samples = int(ratio * len(src)) >>> model, inliers = ransac((src, dst), SimilarityTransform, min_samples, ... 10, ... initial_inliers=np.ones(len(src), dtype=bool)) >>> inliers # doctest: +SKIP array([False, False, False, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) """ best_inlier_num = 0 best_inlier_residuals_sum = np.inf best_inliers = [] validate_model = is_model_valid is not None validate_data = is_data_valid is not None random_state = np.random.default_rng(random_state) # in case data is not pair of input and output, male it like it if not isinstance(data, (tuple, list)): data = (data, ) num_samples = len(data[0]) if not (0 < min_samples < num_samples): raise ValueError(f"`min_samples` must be in range (0, {num_samples})") if residual_threshold < 0: raise ValueError("`residual_threshold` must be greater than zero") if max_trials < 0: raise ValueError("`max_trials` must be greater than zero") if not (0 <= stop_probability <= 1): raise ValueError("`stop_probability` must be in range [0, 1]") if initial_inliers is not None and len(initial_inliers) != num_samples: raise ValueError( f"RANSAC received a vector of initial inliers (length " f"{len(initial_inliers)}) that didn't match the number of " f"samples ({num_samples}). The vector of initial inliers should " f"have the same length as the number of samples and contain only " f"True (this sample is an initial inlier) and False (this one " f"isn't) values.") # for the first run use initial guess of inliers spl_idxs = (initial_inliers if initial_inliers is not None else random_state.choice(num_samples, min_samples, replace=False)) # estimate model for current random sample set model = model_class() for num_trials in range(max_trials): # do sample selection according data pairs samples = [d[spl_idxs] for d in data] # for next iteration choose random sample set and be sure that # no samples repeat spl_idxs = random_state.choice(num_samples, min_samples, replace=False) # optional check if random sample set is valid if validate_data and not is_data_valid(*samples): continue success = model.estimate(*samples) # backwards compatibility if success is not None and not success: continue # optional check if estimated model is valid if validate_model and not is_model_valid(model, *samples): continue residuals = np.abs(model.residuals(*data)) # consensus set / inliers inliers = residuals < residual_threshold residuals_sum = residuals.dot(residuals) # choose as new best model if number of inliers is maximal inliers_count = np.count_nonzero(inliers) if ( # more inliers inliers_count > best_inlier_num # same number of inliers but less "error" in terms of residuals or (inliers_count == best_inlier_num and residuals_sum < best_inlier_residuals_sum)): best_inlier_num = inliers_count best_inlier_residuals_sum = residuals_sum best_inliers = inliers dynamic_max_trials = _dynamic_max_trials(best_inlier_num, num_samples, min_samples, stop_probability) if (best_inlier_num >= stop_sample_num or best_inlier_residuals_sum <= stop_residuals_sum or num_trials >= dynamic_max_trials): break # estimate final model using all inliers if any(best_inliers): # select inliers for each data array data_inliers = [d[best_inliers] for d in data] model.estimate(*data_inliers) if validate_model and not is_model_valid(model, *data_inliers): warn("Estimated model is not valid. Try increase max_trials.") else: model = None best_inliers = None warn("No inliers found. Model not fitted") return model, best_inliers
def ransac(data, model_class, min_samples, residual_threshold, is_data_valid=None, is_model_valid=None, max_trials=100, stop_sample_num=np.inf, stop_residuals_sum=0, stop_probability=1, random_state=None, initial_inliers=None): """Fit a model to data with the RANSAC (random sample consensus) algorithm. RANSAC is an iterative algorithm for the robust estimation of parameters from a subset of inliers from the complete data set. Each iteration performs the following tasks: 1. Select `min_samples` random samples from the original data and check whether the set of data is valid (see `is_data_valid`). 2. Estimate a model to the random subset (`model_cls.estimate(*data[random_subset]`) and check whether the estimated model is valid (see `is_model_valid`). 3. Classify all data as inliers or outliers by calculating the residuals to the estimated model (`model_cls.residuals(*data)`) - all data samples with residuals smaller than the `residual_threshold` are considered as inliers. 4. Save estimated model as best model if number of inlier samples is maximal. In case the current estimated model has the same number of inliers, it is only considered as the best model if it has less sum of residuals. These steps are performed either a maximum number of times or until one of the special stop criteria are met. The final model is estimated using all inlier samples of the previously determined best model. Parameters ---------- data : [list, tuple of] (N, ...) array Data set to which the model is fitted, where N is the number of data points and the remaining dimension are depending on model requirements. If the model class requires multiple input data arrays (e.g. source and destination coordinates of ``skimage.transform.AffineTransform``), they can be optionally passed as tuple or list. Note, that in this case the functions ``estimate(*data)``, ``residuals(*data)``, ``is_model_valid(model, *random_data)`` and ``is_data_valid(*random_data)`` must all take each data array as separate arguments. model_class : object Object with the following object methods: * ``success = estimate(*data)`` * ``residuals(*data)`` where `success` indicates whether the model estimation succeeded (`True` or `None` for success, `False` for failure). min_samples : int in range (0, N) The minimum number of data points to fit a model to. residual_threshold : float larger than 0 Maximum distance for a data point to be classified as an inlier. is_data_valid : function, optional This function is called with the randomly selected data before the model is fitted to it: `is_data_valid(*random_data)`. is_model_valid : function, optional This function is called with the estimated model and the randomly selected data: `is_model_valid(model, *random_data)`, . max_trials : int, optional Maximum number of iterations for random sample selection. stop_sample_num : int, optional Stop iteration if at least this number of inliers are found. stop_residuals_sum : float, optional Stop iteration if sum of residuals is less than or equal to this threshold. stop_probability : float in range [0, 1], optional RANSAC iteration stops if at least one outlier-free set of the training data is sampled with ``probability >= stop_probability``, depending on the current best model's inlier ratio and the number of trials. This requires to generate at least N samples (trials): N >= log(1 - probability) / log(1 - e**m) where the probability (confidence) is typically set to a high value such as 0.99, e is the current fraction of inliers w.r.t. the total number of samples, and m is the min_samples value. random_state : {None, int, `numpy.random.Generator`}, optional If `random_state` is None the `numpy.random.Generator` singleton is used. If `random_state` is an int, a new ``Generator`` instance is used, seeded with `random_state`. If `random_state` is already a ``Generator`` instance then that instance is used. initial_inliers : array-like of bool, shape (N,), optional Initial samples selection for model estimation Returns ------- model : object Best model with largest consensus set. inliers : (N, ) array Boolean mask of inliers classified as ``True``. References ---------- .. [1] "RANSAC", Wikipedia, https://en.wikipedia.org/wiki/RANSAC Examples -------- Generate ellipse data without tilt and add noise: >>> t = np.linspace(0, 2 * np.pi, 50) >>> xc, yc = 20, 30 >>> a, b = 5, 10 >>> x = xc + a * np.cos(t) >>> y = yc + b * np.sin(t) >>> data = np.column_stack([x, y]) >>> rng = np.random.default_rng(203560) # do not copy this value >>> data += rng.normal(size=data.shape) Add some faulty data: >>> data[0] = (100, 100) >>> data[1] = (110, 120) >>> data[2] = (120, 130) >>> data[3] = (140, 130) Estimate ellipse model using all available data: >>> model = EllipseModel() >>> model.estimate(data) True >>> np.round(model.params) # doctest: +SKIP array([ 72., 75., 77., 14., 1.]) Estimate ellipse model using RANSAC: >>> ransac_model, inliers = ransac(data, EllipseModel, 20, 3, max_trials=50) >>> abs(np.round(ransac_model.params)) array([20., 30., 10., 6., 2.]) >>> inliers # doctest: +SKIP array([False, False, False, False, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], dtype=bool) >>> sum(inliers) > 40 True RANSAC can be used to robustly estimate a geometric transformation. In this section, we also show how to use a proportion of the total samples, rather than an absolute number. >>> from skimage.transform import SimilarityTransform >>> rng = np.random.default_rng() >>> src = 100 * rng.random((50, 2)) >>> model0 = SimilarityTransform(scale=0.5, rotation=1, ... translation=(10, 20)) >>> dst = model0(src) >>> dst[0] = (10000, 10000) >>> dst[1] = (-100, 100) >>> dst[2] = (50, 50) >>> ratio = 0.5 # use half of the samples >>> min_samples = int(ratio * len(src)) >>> model, inliers = ransac((src, dst), SimilarityTransform, min_samples, ... 10, ... initial_inliers=np.ones(len(src), dtype=bool)) >>> inliers # doctest: +SKIP array([False, False, False, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True]) """ best_inlier_num = 0 best_inlier_residuals_sum = np.inf best_inliers = [] validate_model = is_model_valid is not None validate_data = is_data_valid is not None random_state = np.random.default_rng(random_state) # in case data is not pair of input and output, male it like it if not isinstance(data, (tuple, list)): data = (data, ) num_samples = len(data[0]) if not (0 < min_samples < num_samples): raise ValueError(f"`min_samples` must be in range (0, {num_samples})") if residual_threshold < 0: raise ValueError("`residual_threshold` must be greater than zero") if max_trials < 0: raise ValueError("`max_trials` must be greater than zero") if not (0 <= stop_probability <= 1): raise ValueError("`stop_probability` must be in range [0, 1]") if initial_inliers is not None and len(initial_inliers) != num_samples: raise ValueError( f"RANSAC received a vector of initial inliers (length " f"{len(initial_inliers)}) that didn't match the number of " f"samples ({num_samples}). The vector of initial inliers should " f"have the same length as the number of samples and contain only " f"True (this sample is an initial inlier) and False (this one " f"isn't) values.") # for the first run use initial guess of inliers spl_idxs = (initial_inliers if initial_inliers is not None else random_state.choice(num_samples, min_samples, replace=False)) # estimate model for current random sample set model = model_class() for num_trials in range(max_trials): # do sample selection according data pairs samples = [d[spl_idxs] for d in data] # for next iteration choose random sample set and be sure that # no samples repeat spl_idxs = random_state.choice(num_samples, min_samples, replace=False) # optional check if random sample set is valid if validate_data and not is_data_valid(*samples): continue success = model.estimate(*samples) # backwards compatibility if success is not None and not success: continue # optional check if estimated model is valid if validate_model and not is_model_valid(model, *samples): continue residuals = np.abs(model.residuals(*data)) # consensus set / inliers inliers = residuals < residual_threshold residuals_sum = residuals.dot(residuals) # choose as new best model if number of inliers is maximal inliers_count = np.count_nonzero(inliers) if ( # more inliers inliers_count > best_inlier_num # same number of inliers but less "error" in terms of residuals or (inliers_count == best_inlier_num and residuals_sum < best_inlier_residuals_sum)): best_inlier_num = inliers_count best_inlier_residuals_sum = residuals_sum best_inliers = inliers dynamic_max_trials = _dynamic_max_trials(best_inlier_num, num_samples, min_samples, stop_probability) if (best_inlier_num >= stop_sample_num or best_inlier_residuals_sum <= stop_residuals_sum or num_trials >= dynamic_max_trials): break # estimate final model using all inliers if any(best_inliers): # select inliers for each data array data_inliers = [d[best_inliers] for d in data] model.estimate(*data_inliers) if validate_model and not is_model_valid(model, *data_inliers): warn("Estimated model is not valid. Try increasing max_trials.") else: model = None best_inliers = None warn("No inliers found. Model not fitted") return model, best_inliers
38,714
def main(): # Setup command line options argparser = argparse.ArgumentParser() output_options = argparser.add_argument_group( 'Options controlling ReFrame output' ) locate_options = argparser.add_argument_group( 'Options for discovering checks' ) select_options = argparser.add_argument_group( 'Options for selecting checks' ) action_options = argparser.add_argument_group( 'Options controlling actions' ) run_options = argparser.add_argument_group( 'Options controlling the execution of checks' ) env_options = argparser.add_argument_group( 'Options controlling the ReFrame environment' ) misc_options = argparser.add_argument_group('Miscellaneous options') # Output directory options output_options.add_argument( '--prefix', action='store', metavar='DIR', help='Set general directory prefix to DIR', envvar='RFM_PREFIX', configvar='systems/prefix' ) output_options.add_argument( '-o', '--output', action='store', metavar='DIR', help='Set output directory prefix to DIR', envvar='RFM_OUTPUT_DIR', configvar='systems/outputdir' ) output_options.add_argument( '-s', '--stage', action='store', metavar='DIR', help='Set stage directory prefix to DIR', envvar='RFM_STAGE_DIR', configvar='systems/stagedir' ) output_options.add_argument( '--timestamp', action='store', nargs='?', const='', metavar='TIMEFMT', help=('Append a timestamp to the output and stage directory prefixes ' '(default: "%%FT%%T")'), envvar='RFM_TIMESTAMP_DIRS', configvar='general/timestamp_dirs' ) output_options.add_argument( '--perflogdir', action='store', metavar='DIR', help=('Set performance log data directory prefix ' '(relevant only to the filelog log handler)'), envvar='RFM_PERFLOG_DIR', configvar='logging/handlers_perflog/filelog_basedir' ) output_options.add_argument( '--keep-stage-files', action='store_true', help='Keep stage directories even for successful checks', envvar='RFM_KEEP_STAGE_FILES', configvar='general/keep_stage_files' ) output_options.add_argument( '--dont-restage', action='store_false', dest='clean_stagedir', help='Reuse the test stage directory', envvar='RFM_CLEAN_STAGEDIR', configvar='general/clean_stagedir' ) output_options.add_argument( '--save-log-files', action='store_true', default=False, help='Save ReFrame log files to the output directory', envvar='RFM_SAVE_LOG_FILES', configvar='general/save_log_files' ) output_options.add_argument( '--report-file', action='store', metavar='FILE', help="Store JSON run report in FILE", envvar='RFM_REPORT_FILE', configvar='general/report_file' ) # Check discovery options locate_options.add_argument( '-c', '--checkpath', action='append', metavar='PATH', help="Add PATH to the check search path list", envvar='RFM_CHECK_SEARCH_PATH :', configvar='general/check_search_path' ) locate_options.add_argument( '-R', '--recursive', action='store_true', help='Search for checks in the search path recursively', envvar='RFM_CHECK_SEARCH_RECURSIVE', configvar='general/check_search_recursive' ) locate_options.add_argument( '--ignore-check-conflicts', action='store_true', help='Skip checks with conflicting names', envvar='RFM_IGNORE_CHECK_CONFLICTS', configvar='general/ignore_check_conflicts' ) # Select options select_options.add_argument( '-t', '--tag', action='append', dest='tags', metavar='PATTERN', default=[], help='Select checks with at least one tag matching PATTERN' ) select_options.add_argument( '-n', '--name', action='append', dest='names', default=[], metavar='PATTERN', help='Select checks whose name matches PATTERN' ) select_options.add_argument( '-x', '--exclude', action='append', dest='exclude_names', metavar='PATTERN', default=[], help='Exclude checks whose name matches PATTERN' ) select_options.add_argument( '-p', '--prgenv', action='append', default=[r'.*'], metavar='PATTERN', help=('Select checks with at least one ' 'programming environment matching PATTERN') ) select_options.add_argument( '--failed', action='store_true', help="Select failed test cases (only when '--restore-session' is used)" ) select_options.add_argument( '--gpu-only', action='store_true', help='Select only GPU checks' ) select_options.add_argument( '--cpu-only', action='store_true', help='Select only CPU checks' ) # Action options action_options.add_argument( '-l', '--list', action='store_true', help='List the selected checks' ) action_options.add_argument( '-L', '--list-detailed', action='store_true', help='List the selected checks providing details for each test' ) action_options.add_argument( '-r', '--run', action='store_true', help='Run the selected checks' ) # Run options run_options.add_argument( '-J', '--job-option', action='append', metavar='OPT', dest='job_options', default=[], help='Pass option OPT to job scheduler' ) run_options.add_argument( '--force-local', action='store_true', help='Force local execution of checks' ) run_options.add_argument( '--skip-sanity-check', action='store_true', help='Skip sanity checking' ) run_options.add_argument( '--skip-performance-check', action='store_true', help='Skip performance checking' ) run_options.add_argument( '--strict', action='store_true', help='Enforce strict performance checking' ) run_options.add_argument( '--skip-system-check', action='store_true', help='Skip system check' ) run_options.add_argument( '--skip-prgenv-check', action='store_true', help='Skip programming environment check' ) run_options.add_argument( '--exec-policy', metavar='POLICY', action='store', choices=['async', 'serial'], default='async', help='Set the execution policy of ReFrame (default: "async")' ) run_options.add_argument( '--mode', action='store', help='Execution mode to use' ) run_options.add_argument( '--max-retries', metavar='NUM', action='store', default=0, help='Set the maximum number of times a failed regression test ' 'may be retried (default: 0)' ) run_options.add_argument( '--restore-session', action='store', nargs='?', const='', metavar='REPORT', help='Restore a testing session from REPORT file' ) run_options.add_argument( '--flex-alloc-nodes', action='store', dest='flex_alloc_nodes', metavar='{all|STATE|NUM}', default=None, help='Set strategy for the flexible node allocation (default: "idle").' ) run_options.add_argument( '--disable-hook', action='append', metavar='NAME', dest='hooks', default=[], help='Disable a pipeline hook for this run' ) env_options.add_argument( '-M', '--map-module', action='append', metavar='MAPPING', dest='module_mappings', default=[], help='Add a module mapping', envvar='RFM_MODULE_MAPPINGS ,', configvar='general/module_mappings' ) env_options.add_argument( '-m', '--module', action='append', default=[], metavar='MOD', dest='user_modules', help='Load module MOD before running any regression check', envvar='RFM_USER_MODULES ,', configvar='general/user_modules' ) env_options.add_argument( '--module-mappings', action='store', metavar='FILE', dest='module_map_file', help='Load module mappings from FILE', envvar='RFM_MODULE_MAP_FILE', configvar='general/module_map_file' ) env_options.add_argument( '-u', '--unload-module', action='append', metavar='MOD', dest='unload_modules', default=[], help='Unload module MOD before running any regression check', envvar='RFM_UNLOAD_MODULES ,', configvar='general/unload_modules' ) env_options.add_argument( '--module-path', action='append', metavar='PATH', dest='module_paths', default=[], help='(Un)use module path PATH before running any regression check', ) env_options.add_argument( '--purge-env', action='store_true', dest='purge_env', default=False, help='Unload all modules before running any regression check', envvar='RFM_PURGE_ENVIRONMENT', configvar='general/purge_environment' ) env_options.add_argument( '--non-default-craype', action='store_true', help='Test a non-default Cray Programming Environment', envvar='RFM_NON_DEFAULT_CRAYPE', configvar='general/non_default_craype' ) # Miscellaneous options misc_options.add_argument( '-C', '--config-file', action='store', dest='config_file', metavar='FILE', help='Set configuration file', envvar='RFM_CONFIG_FILE' ) misc_options.add_argument( '--nocolor', action='store_false', dest='colorize', help='Disable coloring of output', envvar='RFM_COLORIZE', configvar='general/colorize' ) misc_options.add_argument( '--failure-stats', action='store_true', help='Print failure statistics' ) misc_options.add_argument( '--performance-report', action='store_true', help='Print a report for performance tests' ) misc_options.add_argument( '--show-config', action='store', nargs='?', const='all', metavar='PARAM', help='Print the value of configuration parameter PARAM and exit' ) misc_options.add_argument( '--system', action='store', help='Load configuration for SYSTEM', envvar='RFM_SYSTEM' ) misc_options.add_argument( '--upgrade-config-file', action='store', metavar='OLD[:NEW]', help='Upgrade ReFrame 2.x configuration file to ReFrame 3.x syntax' ) misc_options.add_argument( '-V', '--version', action='version', version=osext.reframe_version() ) misc_options.add_argument( '-v', '--verbose', action='count', help='Increase verbosity level of output', envvar='RFM_VERBOSE', configvar='general/verbose' ) # Options not associated with command-line arguments argparser.add_argument( dest='graylog_server', envvar='RFM_GRAYLOG_ADDRESS', configvar='logging/handlers_perflog/graylog_address', help='Graylog server address' ) argparser.add_argument( dest='syslog_address', envvar='RFM_SYSLOG_ADDRESS', configvar='logging/handlers_perflog/syslog_address', help='Syslog server address' ) argparser.add_argument( dest='ignore_reqnodenotavail', envvar='RFM_IGNORE_REQNODENOTAVAIL', configvar='schedulers/ignore_reqnodenotavail', action='store_true', help='Graylog server address' ) argparser.add_argument( dest='use_login_shell', envvar='RFM_USE_LOGIN_SHELL', configvar='general/use_login_shell', action='store_true', help='Use a login shell for job scripts' ) if len(sys.argv) == 1: argparser.print_help() sys.exit(1) # Parse command line options = argparser.parse_args() # First configure logging with our generic configuration so as to be able # to print pretty messages; logging will be reconfigured by user's # configuration later site_config = config.load_config( os.path.join(reframe.INSTALL_PREFIX, 'reframe/core/settings.py') ) site_config.select_subconfig('generic') options.update_config(site_config) logging.configure_logging(site_config) logging.getlogger().colorize = site_config.get('general/0/colorize') printer = PrettyPrinter() printer.colorize = site_config.get('general/0/colorize') printer.inc_verbosity(site_config.get('general/0/verbose')) if os.getenv('RFM_GRAYLOG_SERVER'): printer.warning( 'RFM_GRAYLOG_SERVER environment variable is deprecated; ' 'please use RFM_GRAYLOG_ADDRESS instead' ) os.environ['RFM_GRAYLOG_ADDRESS'] = os.getenv('RFM_GRAYLOG_SERVER') if options.upgrade_config_file is not None: old_config, *new_config = options.upgrade_config_file.split( ':', maxsplit=1 ) new_config = new_config[0] if new_config else None try: new_config = config.convert_old_config(old_config, new_config) except Exception as e: printer.error(f'could not convert file: {e}') sys.exit(1) printer.info( f'Conversion successful! ' f'The converted file can be found at {new_config!r}.' ) sys.exit(0) # Now configure ReFrame according to the user configuration file try: try: printer.debug('Loading user configuration') site_config = config.load_config(options.config_file) except warnings.ReframeDeprecationWarning as e: printer.warning(e) converted = config.convert_old_config(options.config_file) printer.warning( f"configuration file has been converted " f"to the new syntax here: '{converted}'" ) site_config = config.load_config(converted) site_config.validate() # We ignore errors about unresolved sections or configuration # parameters here, because they might be defined at the individual # partition level and will be caught when we will instantiating # internally the system and partitions later on. site_config.select_subconfig(options.system, ignore_resolve_errors=True) for err in options.update_config(site_config): printer.warning(str(err)) # Update options from the selected execution mode if options.mode: mode_args = site_config.get(f'modes/@{options.mode}/options') # We lexically split the mode options, because otherwise spaces # will be treated as part of the option argument; see GH bug #1554 mode_args = list(itertools.chain.from_iterable(shlex.split(m) for m in mode_args)) # Parse the mode's options and reparse the command-line options = argparser.parse_args(mode_args) options = argparser.parse_args(namespace=options.cmd_options) options.update_config(site_config) logging.configure_logging(site_config) except (OSError, errors.ConfigError) as e: printer.error(f'failed to load configuration: {e}') printer.error(logfiles_message()) sys.exit(1) logging.getlogger().colorize = site_config.get('general/0/colorize') printer.colorize = site_config.get('general/0/colorize') printer.inc_verbosity(site_config.get('general/0/verbose')) try: printer.debug('Initializing runtime') runtime.init_runtime(site_config) except errors.ConfigError as e: printer.error(f'failed to initialize runtime: {e}') printer.error(logfiles_message()) sys.exit(1) rt = runtime.runtime() try: if site_config.get('general/0/module_map_file'): rt.modules_system.load_mapping_from_file( site_config.get('general/0/module_map_file') ) if site_config.get('general/0/module_mappings'): for m in site_config.get('general/0/module_mappings'): rt.modules_system.load_mapping(m) except (errors.ConfigError, OSError) as e: printer.error('could not load module mappings: %s' % e) sys.exit(1) if (osext.samefile(rt.stage_prefix, rt.output_prefix) and not site_config.get('general/0/keep_stage_files')): printer.error("stage and output refer to the same directory; " "if this is on purpose, please use the " "'--keep-stage-files' option.") printer.error(logfiles_message()) sys.exit(1) # Show configuration after everything is set up if options.show_config: config_param = options.show_config if config_param == 'all': printer.info(str(rt.site_config)) else: value = rt.get_option(config_param) if value is None: printer.error( f'no such configuration parameter found: {config_param}' ) else: printer.info(json.dumps(value, indent=2)) sys.exit(0) printer.debug(format_env(options.env_vars)) # Setup the check loader if options.restore_session is not None: # We need to load the failed checks only from a report if options.restore_session: filename = options.restore_session else: filename = runreport.next_report_filename( osext.expandvars(site_config.get('general/0/report_file')), new=False ) report = runreport.load_report(filename) check_search_path = list(report.slice('filename', unique=True)) check_search_recursive = False # If `-c` or `-R` are passed explicitly outside the configuration # file, override the values set from the report file if site_config.is_sticky_option('general/check_search_path'): printer.warning( 'Ignoring check search path set in the report file: ' 'search path set explicitly in the command-line or ' 'the environment' ) check_search_path = site_config.get( 'general/0/check_search_path' ) if site_config.is_sticky_option('general/check_search_recursive'): printer.warning( 'Ignoring check search recursive option from the report file: ' 'option set explicitly in the command-line or the environment' ) check_search_recursive = site_config.get( 'general/0/check_search_recursive' ) else: check_search_recursive = site_config.get( 'general/0/check_search_recursive' ) check_search_path = site_config.get('general/0/check_search_path') loader = RegressionCheckLoader( load_path=check_search_path, recurse=check_search_recursive, ignore_conflicts=site_config.get( 'general/0/ignore_check_conflicts' ) ) def print_infoline(param, value): param = param + ':' printer.info(f" {param.ljust(18)} {value}") session_info = { 'cmdline': ' '.join(sys.argv), 'config_file': rt.site_config.filename, 'data_version': runreport.DATA_VERSION, 'hostname': socket.gethostname(), 'prefix_output': rt.output_prefix, 'prefix_stage': rt.stage_prefix, 'user': osext.osuser(), 'version': osext.reframe_version(), 'workdir': os.getcwd(), } # Print command line printer.info(f"[ReFrame Setup]") print_infoline('version', session_info['version']) print_infoline('command', repr(session_info['cmdline'])) print_infoline( f"launched by", f"{session_info['user'] or '<unknown>'}@{session_info['hostname']}" ) print_infoline('working directory', repr(session_info['workdir'])) print_infoline('settings file', f"{session_info['config_file']!r}") print_infoline('check search path', f"{'(R) ' if loader.recurse else ''}" f"{':'.join(loader.load_path)!r}") print_infoline('stage directory', repr(session_info['prefix_stage'])) print_infoline('output directory', repr(session_info['prefix_output'])) printer.info('') try: # Locate and load checks try: checks_found = loader.load_all() printer.verbose(f'Loaded {len(checks_found)} test(s)') except OSError as e: raise errors.ReframeError from e # Generate all possible test cases first; we will need them for # resolving dependencies after filtering # Determine the allowed programming environments allowed_environs = {e.name for env_patt in options.prgenv for p in rt.system.partitions for e in p.environs if re.match(env_patt, e.name)} testcases_all = generate_testcases(checks_found, options.skip_system_check, options.skip_prgenv_check, allowed_environs) testcases = testcases_all printer.verbose(f'Generated {len(testcases)} test case(s)') # Filter test cases by name if options.exclude_names: for name in options.exclude_names: testcases = filter(filters.have_not_name(name), testcases) if options.names: testcases = filter( filters.have_name('|'.join(options.names)), testcases ) testcases = list(testcases) printer.verbose( f'Filtering test cases(s) by name: {len(testcases)} remaining' ) # Filter test cases by tags for tag in options.tags: testcases = filter(filters.have_tag(tag), testcases) testcases = list(testcases) printer.verbose( f'Filtering test cases(s) by tags: {len(testcases)} remaining' ) # Filter test cases further if options.gpu_only and options.cpu_only: printer.error("options `--gpu-only' and `--cpu-only' " "are mutually exclusive") sys.exit(1) if options.gpu_only: testcases = filter(filters.have_gpu_only(), testcases) elif options.cpu_only: testcases = filter(filters.have_cpu_only(), testcases) testcases = list(testcases) printer.verbose( f'Filtering test cases(s) by other attributes: ' f'{len(testcases)} remaining' ) # Filter in failed cases if options.failed: if options.restore_session is None: printer.error( "the option '--failed' can only be used " "in combination with the '--restore-session' option" ) sys.exit(1) def _case_failed(t): rec = report.case(*t) if rec and rec['result'] == 'failure': return True else: return False testcases = list(filter(_case_failed, testcases)) printer.verbose( f'Filtering successful test case(s): ' f'{len(testcases)} remaining' ) # Prepare for running printer.debug('Building and validating the full test DAG') testgraph, skipped_cases = dependencies.build_deps(testcases_all) if skipped_cases: # Some cases were skipped, so adjust testcases testcases = list(set(testcases) - set(skipped_cases)) printer.verbose( f'Filtering test case(s) due to unresolved dependencies: ' f'{len(testcases)} remaining' ) dependencies.validate_deps(testgraph) printer.debug('Full test DAG:') printer.debug(dependencies.format_deps(testgraph)) restored_cases = [] if len(testcases) != len(testcases_all): testgraph = dependencies.prune_deps( testgraph, testcases, max_depth=1 if options.restore_session is not None else None ) printer.debug('Pruned test DAG') printer.debug(dependencies.format_deps(testgraph)) if options.restore_session is not None: testgraph, restored_cases = report.restore_dangling(testgraph) testcases = dependencies.toposort( testgraph, is_subgraph=options.restore_session is not None ) printer.verbose(f'Final number of test cases: {len(testcases)}') # Disable hooks for tc in testcases: for h in options.hooks: type(tc.check).disable_hook(h) # Act on checks if options.list or options.list_detailed: list_checks(testcases, printer, options.list_detailed) sys.exit(0) if not options.run: printer.error(f"No action specified. Please specify `-l'/`-L' for " f"listing or `-r' for running. " f"Try `{argparser.prog} -h' for more options.") sys.exit(1) # Manipulate ReFrame's environment if site_config.get('general/0/purge_environment'): rt.modules_system.unload_all() else: for m in site_config.get('general/0/unload_modules'): rt.modules_system.unload_module(**m) # Load the environment for the current system try: printer.debug(f'Loading environment for current system') runtime.loadenv(rt.system.preload_environ) except errors.EnvironError as e: printer.error("failed to load current system's environment; " "please check your configuration") printer.debug(str(e)) raise def module_use(*paths): try: rt.modules_system.searchpath_add(*paths) except errors.EnvironError as e: printer.warning(f'could not add module paths correctly') printer.debug(str(e)) def module_unuse(*paths): try: rt.modules_system.searchpath_remove(*paths) except errors.EnvironError as e: printer.warning(f'could not remove module paths correctly') printer.debug(str(e)) printer.debug('(Un)using module paths from command line') module_paths = {} for d in options.module_paths: if d.startswith('-'): module_paths.setdefault('-', []) module_paths['-'].append(d[1:]) elif d.startswith('+'): module_paths.setdefault('+', []) module_paths['+'].append(d[1:]) else: module_paths.setdefault('x', []) module_paths['x'].append(d) for op, paths in module_paths.items(): if op == '+': module_use(*paths) elif op == '-': module_unuse(*paths) else: # First empty the current module path in a portable way searchpath = [p for p in rt.modules_system.searchpath if p] if searchpath: rt.modules_system.searchpath_remove(*searchpath) # Treat `A:B` syntax as well in this case paths = itertools.chain(*(p.split(':') for p in paths)) module_use(*paths) printer.debug('Loading user modules from command line') for m in site_config.get('general/0/user_modules'): try: rt.modules_system.load_module(**m, force=True) except errors.EnvironError as e: printer.warning( f'could not load module {m["name"]!r} correctly; ' f'skipping...' ) printer.debug(str(e)) options.flex_alloc_nodes = options.flex_alloc_nodes or 'idle' # Run the tests # Setup the execution policy if options.exec_policy == 'serial': exec_policy = SerialExecutionPolicy() elif options.exec_policy == 'async': exec_policy = AsynchronousExecutionPolicy() else: # This should not happen, since choices are handled by # argparser printer.error("unknown execution policy `%s': Exiting...") sys.exit(1) exec_policy.skip_system_check = options.skip_system_check exec_policy.force_local = options.force_local exec_policy.strict_check = options.strict exec_policy.skip_sanity_check = options.skip_sanity_check exec_policy.skip_performance_check = options.skip_performance_check exec_policy.keep_stage_files = site_config.get( 'general/0/keep_stage_files' ) try: errmsg = "invalid option for --flex-alloc-nodes: '{0}'" sched_flex_alloc_nodes = int(options.flex_alloc_nodes) if sched_flex_alloc_nodes <= 0: raise errors.ConfigError( errmsg.format(options.flex_alloc_nodes) ) except ValueError: sched_flex_alloc_nodes = options.flex_alloc_nodes exec_policy.sched_flex_alloc_nodes = sched_flex_alloc_nodes parsed_job_options = [] for opt in options.job_options: optstr, *_ = re.split(r'=|\s+', opt) if opt.startswith('-') or opt.startswith('#'): parsed_job_options.append(opt) elif len(optstr) == 1: parsed_job_options.append(f'-{opt}') else: parsed_job_options.append(f'--{opt}') exec_policy.sched_options = parsed_job_options try: max_retries = int(options.max_retries) except ValueError: raise errors.ConfigError( f'--max-retries is not a valid integer: {max_retries}' ) from None runner = Runner(exec_policy, printer, max_retries) try: time_start = time.time() session_info['time_start'] = time.strftime( '%FT%T%z', time.localtime(time_start), ) runner.runall(testcases, restored_cases) finally: time_end = time.time() session_info['time_end'] = time.strftime( '%FT%T%z', time.localtime(time_end) ) session_info['time_elapsed'] = time_end - time_start # Print a retry report if we did any retries if runner.stats.failures(run=0): printer.info(runner.stats.retry_report()) # Print a failure report if we had failures in the last run success = True if runner.stats.failures(): success = False runner.stats.print_failure_report(printer) if options.failure_stats: runner.stats.print_failure_stats(printer) if options.performance_report: printer.info(runner.stats.performance_report()) # Generate the report for this session report_file = os.path.normpath( osext.expandvars(rt.get_option('general/0/report_file')) ) basedir = os.path.dirname(report_file) if basedir: os.makedirs(basedir, exist_ok=True) # Build final JSON report run_stats = runner.stats.json() session_info.update({ 'num_cases': run_stats[0]['num_cases'], 'num_failures': run_stats[-1]['num_failures'] }) json_report = { 'session_info': session_info, 'runs': run_stats, 'restored_cases': [] } if options.restore_session is not None: for c in restored_cases: json_report['restored_cases'].append(report.case(*c)) report_file = runreport.next_report_filename(report_file) try: with open(report_file, 'w') as fp: jsonext.dump(json_report, fp, indent=2) fp.write('\n') except OSError as e: printer.warning( f'failed to generate report in {report_file!r}: {e}' ) if not success: sys.exit(1) sys.exit(0) except KeyboardInterrupt: sys.exit(1) except errors.ReframeError as e: printer.error(str(e)) sys.exit(1) except (Exception, errors.ReframeFatalError): exc_info = sys.exc_info() tb = ''.join(traceback.format_exception(*exc_info)) printer.error(errors.what(*exc_info)) if errors.is_severe(*exc_info): printer.error(tb) else: printer.verbose(tb) sys.exit(1) finally: try: log_files = logging.log_files() if site_config.get('general/0/save_log_files'): log_files = logging.save_log_files(rt.output_prefix) except OSError as e: printer.error(f'could not save log file: {e}') sys.exit(1) finally: printer.info(logfiles_message())
def main(): # Setup command line options argparser = argparse.ArgumentParser() output_options = argparser.add_argument_group( 'Options controlling ReFrame output' ) locate_options = argparser.add_argument_group( 'Options for discovering checks' ) select_options = argparser.add_argument_group( 'Options for selecting checks' ) action_options = argparser.add_argument_group( 'Options controlling actions' ) run_options = argparser.add_argument_group( 'Options controlling the execution of checks' ) env_options = argparser.add_argument_group( 'Options controlling the ReFrame environment' ) misc_options = argparser.add_argument_group('Miscellaneous options') # Output directory options output_options.add_argument( '--prefix', action='store', metavar='DIR', help='Set general directory prefix to DIR', envvar='RFM_PREFIX', configvar='systems/prefix' ) output_options.add_argument( '-o', '--output', action='store', metavar='DIR', help='Set output directory prefix to DIR', envvar='RFM_OUTPUT_DIR', configvar='systems/outputdir' ) output_options.add_argument( '-s', '--stage', action='store', metavar='DIR', help='Set stage directory prefix to DIR', envvar='RFM_STAGE_DIR', configvar='systems/stagedir' ) output_options.add_argument( '--timestamp', action='store', nargs='?', const='', metavar='TIMEFMT', help=('Append a timestamp to the output and stage directory prefixes ' '(default: "%%FT%%T")'), envvar='RFM_TIMESTAMP_DIRS', configvar='general/timestamp_dirs' ) output_options.add_argument( '--perflogdir', action='store', metavar='DIR', help=('Set performance log data directory prefix ' '(relevant only to the filelog log handler)'), envvar='RFM_PERFLOG_DIR', configvar='logging/handlers_perflog/filelog_basedir' ) output_options.add_argument( '--keep-stage-files', action='store_true', help='Keep stage directories even for successful checks', envvar='RFM_KEEP_STAGE_FILES', configvar='general/keep_stage_files' ) output_options.add_argument( '--dont-restage', action='store_false', dest='clean_stagedir', help='Reuse the test stage directory', envvar='RFM_CLEAN_STAGEDIR', configvar='general/clean_stagedir' ) output_options.add_argument( '--save-log-files', action='store_true', default=False, help='Save ReFrame log files to the output directory', envvar='RFM_SAVE_LOG_FILES', configvar='general/save_log_files' ) output_options.add_argument( '--report-file', action='store', metavar='FILE', help="Store JSON run report in FILE", envvar='RFM_REPORT_FILE', configvar='general/report_file' ) # Check discovery options locate_options.add_argument( '-c', '--checkpath', action='append', metavar='PATH', help="Add PATH to the check search path list", envvar='RFM_CHECK_SEARCH_PATH :', configvar='general/check_search_path' ) locate_options.add_argument( '-R', '--recursive', action='store_true', help='Search for checks in the search path recursively', envvar='RFM_CHECK_SEARCH_RECURSIVE', configvar='general/check_search_recursive' ) locate_options.add_argument( '--ignore-check-conflicts', action='store_true', help='Skip checks with conflicting names', envvar='RFM_IGNORE_CHECK_CONFLICTS', configvar='general/ignore_check_conflicts' ) # Select options select_options.add_argument( '-t', '--tag', action='append', dest='tags', metavar='PATTERN', default=[], help='Select checks with at least one tag matching PATTERN' ) select_options.add_argument( '-n', '--name', action='append', dest='names', default=[], metavar='PATTERN', help='Select checks whose name matches PATTERN' ) select_options.add_argument( '-x', '--exclude', action='append', dest='exclude_names', metavar='PATTERN', default=[], help='Exclude checks whose name matches PATTERN' ) select_options.add_argument( '-p', '--prgenv', action='append', default=[r'.*'], metavar='PATTERN', help=('Select checks with at least one ' 'programming environment matching PATTERN') ) select_options.add_argument( '--failed', action='store_true', help="Select failed test cases (only when '--restore-session' is used)" ) select_options.add_argument( '--gpu-only', action='store_true', help='Select only GPU checks' ) select_options.add_argument( '--cpu-only', action='store_true', help='Select only CPU checks' ) # Action options action_options.add_argument( '-l', '--list', action='store_true', help='List the selected checks' ) action_options.add_argument( '-L', '--list-detailed', action='store_true', help='List the selected checks providing details for each test' ) action_options.add_argument( '-r', '--run', action='store_true', help='Run the selected checks' ) # Run options run_options.add_argument( '-J', '--job-option', action='append', metavar='OPT', dest='job_options', default=[], help='Pass option OPT to job scheduler' ) run_options.add_argument( '--force-local', action='store_true', help='Force local execution of checks' ) run_options.add_argument( '--skip-sanity-check', action='store_true', help='Skip sanity checking' ) run_options.add_argument( '--skip-performance-check', action='store_true', help='Skip performance checking' ) run_options.add_argument( '--strict', action='store_true', help='Enforce strict performance checking' ) run_options.add_argument( '--skip-system-check', action='store_true', help='Skip system check' ) run_options.add_argument( '--skip-prgenv-check', action='store_true', help='Skip programming environment check' ) run_options.add_argument( '--exec-policy', metavar='POLICY', action='store', choices=['async', 'serial'], default='async', help='Set the execution policy of ReFrame (default: "async")' ) run_options.add_argument( '--mode', action='store', help='Execution mode to use' ) run_options.add_argument( '--max-retries', metavar='NUM', action='store', default=0, help='Set the maximum number of times a failed regression test ' 'may be retried (default: 0)' ) run_options.add_argument( '--restore-session', action='store', nargs='?', const='', metavar='REPORT', help='Restore a testing session from REPORT file' ) run_options.add_argument( '--flex-alloc-nodes', action='store', dest='flex_alloc_nodes', metavar='{all|STATE|NUM}', default=None, help='Set strategy for the flexible node allocation (default: "idle").' ) run_options.add_argument( '--disable-hook', action='append', metavar='NAME', dest='hooks', default=[], help='Disable a pipeline hook for this run' ) env_options.add_argument( '-M', '--map-module', action='append', metavar='MAPPING', dest='module_mappings', default=[], help='Add a module mapping', envvar='RFM_MODULE_MAPPINGS ,', configvar='general/module_mappings' ) env_options.add_argument( '-m', '--module', action='append', default=[], metavar='MOD', dest='user_modules', help='Load module MOD before running any regression check', envvar='RFM_USER_MODULES ,', configvar='general/user_modules' ) env_options.add_argument( '--module-mappings', action='store', metavar='FILE', dest='module_map_file', help='Load module mappings from FILE', envvar='RFM_MODULE_MAP_FILE', configvar='general/module_map_file' ) env_options.add_argument( '-u', '--unload-module', action='append', metavar='MOD', dest='unload_modules', default=[], help='Unload module MOD before running any regression check', envvar='RFM_UNLOAD_MODULES ,', configvar='general/unload_modules' ) env_options.add_argument( '--module-path', action='append', metavar='PATH', dest='module_paths', default=[], help='(Un)use module path PATH before running any regression check', ) env_options.add_argument( '--purge-env', action='store_true', dest='purge_env', default=False, help='Unload all modules before running any regression check', envvar='RFM_PURGE_ENVIRONMENT', configvar='general/purge_environment' ) env_options.add_argument( '--non-default-craype', action='store_true', help='Test a non-default Cray Programming Environment', envvar='RFM_NON_DEFAULT_CRAYPE', configvar='general/non_default_craype' ) # Miscellaneous options misc_options.add_argument( '-C', '--config-file', action='store', dest='config_file', metavar='FILE', help='Set configuration file', envvar='RFM_CONFIG_FILE' ) misc_options.add_argument( '--nocolor', action='store_false', dest='colorize', help='Disable coloring of output', envvar='RFM_COLORIZE', configvar='general/colorize' ) misc_options.add_argument( '--failure-stats', action='store_true', help='Print failure statistics' ) misc_options.add_argument( '--performance-report', action='store_true', help='Print a report for performance tests' ) misc_options.add_argument( '--show-config', action='store', nargs='?', const='all', metavar='PARAM', help='Print the value of configuration parameter PARAM and exit' ) misc_options.add_argument( '--system', action='store', help='Load configuration for SYSTEM', envvar='RFM_SYSTEM' ) misc_options.add_argument( '--upgrade-config-file', action='store', metavar='OLD[:NEW]', help='Upgrade ReFrame 2.x configuration file to ReFrame 3.x syntax' ) misc_options.add_argument( '-V', '--version', action='version', version=osext.reframe_version() ) misc_options.add_argument( '-v', '--verbose', action='count', help='Increase verbosity level of output', envvar='RFM_VERBOSE', configvar='general/verbose' ) # Options not associated with command-line arguments argparser.add_argument( dest='graylog_server', envvar='RFM_GRAYLOG_ADDRESS', configvar='logging/handlers_perflog/graylog_address', help='Graylog server address' ) argparser.add_argument( dest='syslog_address', envvar='RFM_SYSLOG_ADDRESS', configvar='logging/handlers_perflog/syslog_address', help='Syslog server address' ) argparser.add_argument( dest='ignore_reqnodenotavail', envvar='RFM_IGNORE_REQNODENOTAVAIL', configvar='schedulers/ignore_reqnodenotavail', action='store_true', help='Graylog server address' ) argparser.add_argument( dest='use_login_shell', envvar='RFM_USE_LOGIN_SHELL', configvar='general/use_login_shell', action='store_true', help='Use a login shell for job scripts' ) if len(sys.argv) == 1: argparser.print_help() sys.exit(1) # Parse command line options = argparser.parse_args() # First configure logging with our generic configuration so as to be able # to print pretty messages; logging will be reconfigured by user's # configuration later site_config = config.load_config( os.path.join(reframe.INSTALL_PREFIX, 'reframe/core/settings.py') ) site_config.select_subconfig('generic') options.update_config(site_config) logging.configure_logging(site_config) logging.getlogger().colorize = site_config.get('general/0/colorize') printer = PrettyPrinter() printer.colorize = site_config.get('general/0/colorize') printer.inc_verbosity(site_config.get('general/0/verbose')) if os.getenv('RFM_GRAYLOG_SERVER'): printer.warning( 'RFM_GRAYLOG_SERVER environment variable is deprecated; ' 'please use RFM_GRAYLOG_ADDRESS instead' ) os.environ['RFM_GRAYLOG_ADDRESS'] = os.getenv('RFM_GRAYLOG_SERVER') if options.upgrade_config_file is not None: old_config, *new_config = options.upgrade_config_file.split( ':', maxsplit=1 ) new_config = new_config[0] if new_config else None try: new_config = config.convert_old_config(old_config, new_config) except Exception as e: printer.error(f'could not convert file: {e}') sys.exit(1) printer.info( f'Conversion successful! ' f'The converted file can be found at {new_config!r}.' ) sys.exit(0) # Now configure ReFrame according to the user configuration file try: try: printer.debug('Loading user configuration') site_config = config.load_config(options.config_file) except warnings.ReframeDeprecationWarning as e: printer.warning(e) converted = config.convert_old_config(options.config_file) printer.warning( f"configuration file has been converted " f"to the new syntax here: '{converted}'" ) site_config = config.load_config(converted) site_config.validate() # We ignore errors about unresolved sections or configuration # parameters here, because they might be defined at the individual # partition level and will be caught when we will instantiating # internally the system and partitions later on. site_config.select_subconfig(options.system, ignore_resolve_errors=True) for err in options.update_config(site_config): printer.warning(str(err)) # Update options from the selected execution mode if options.mode: mode_args = site_config.get(f'modes/@{options.mode}/options') # We lexically split the mode options, because otherwise spaces # will be treated as part of the option argument; see GH bug #1554 mode_args = list(itertools.chain.from_iterable(shlex.split(m) for m in mode_args)) # Parse the mode's options and reparse the command-line options = argparser.parse_args(mode_args) options = argparser.parse_args(namespace=options.cmd_options) options.update_config(site_config) logging.configure_logging(site_config) except (OSError, errors.ConfigError) as e: printer.error(f'failed to load configuration: {e}') printer.error(logfiles_message()) sys.exit(1) logging.getlogger().colorize = site_config.get('general/0/colorize') printer.colorize = site_config.get('general/0/colorize') printer.inc_verbosity(site_config.get('general/0/verbose')) try: printer.debug('Initializing runtime') runtime.init_runtime(site_config) except errors.ConfigError as e: printer.error(f'failed to initialize runtime: {e}') printer.error(logfiles_message()) sys.exit(1) rt = runtime.runtime() try: if site_config.get('general/0/module_map_file'): rt.modules_system.load_mapping_from_file( site_config.get('general/0/module_map_file') ) if site_config.get('general/0/module_mappings'): for m in site_config.get('general/0/module_mappings'): rt.modules_system.load_mapping(m) except (errors.ConfigError, OSError) as e: printer.error('could not load module mappings: %s' % e) sys.exit(1) if (osext.samefile(rt.stage_prefix, rt.output_prefix) and not site_config.get('general/0/keep_stage_files')): printer.error("stage and output refer to the same directory; " "if this is on purpose, please use the " "'--keep-stage-files' option.") printer.error(logfiles_message()) sys.exit(1) # Show configuration after everything is set up if options.show_config: config_param = options.show_config if config_param == 'all': printer.info(str(rt.site_config)) else: value = rt.get_option(config_param) if value is None: printer.error( f'no such configuration parameter found: {config_param}' ) else: printer.info(json.dumps(value, indent=2)) sys.exit(0) printer.debug(format_env(options.env_vars)) # Setup the check loader if options.restore_session is not None: # We need to load the failed checks only from a report if options.restore_session: filename = options.restore_session else: filename = runreport.next_report_filename( osext.expandvars(site_config.get('general/0/report_file')), new=False ) report = runreport.load_report(filename) check_search_path = list(report.slice('filename', unique=True)) check_search_recursive = False # If `-c` or `-R` are passed explicitly outside the configuration # file, override the values set from the report file if site_config.is_sticky_option('general/check_search_path'): printer.warning( 'Ignoring check search path set in the report file: ' 'search path set explicitly in the command-line or ' 'the environment' ) check_search_path = site_config.get( 'general/0/check_search_path' ) if site_config.is_sticky_option('general/check_search_recursive'): printer.warning( 'Ignoring check search recursive option from the report file: ' 'option set explicitly in the command-line or the environment' ) check_search_recursive = site_config.get( 'general/0/check_search_recursive' ) else: check_search_recursive = site_config.get( 'general/0/check_search_recursive' ) check_search_path = site_config.get('general/0/check_search_path') loader = RegressionCheckLoader( load_path=check_search_path, recurse=check_search_recursive, ignore_conflicts=site_config.get( 'general/0/ignore_check_conflicts' ) ) def print_infoline(param, value): param = param + ':' printer.info(f" {param.ljust(18)} {value}") session_info = { 'cmdline': ' '.join(sys.argv), 'config_file': rt.site_config.filename, 'data_version': runreport.DATA_VERSION, 'hostname': socket.gethostname(), 'prefix_output': rt.output_prefix, 'prefix_stage': rt.stage_prefix, 'user': osext.osuser(), 'version': osext.reframe_version(), 'workdir': os.getcwd(), } # Print command line printer.info(f"[ReFrame Setup]") print_infoline('version', session_info['version']) print_infoline('command', repr(session_info['cmdline'])) print_infoline( f"launched by", f"{session_info['user'] or '<unknown>'}@{session_info['hostname']}" ) print_infoline('working directory', repr(session_info['workdir'])) print_infoline('settings file', f"{session_info['config_file']!r}") print_infoline('check search path', f"{'(R) ' if loader.recurse else ''}" f"{':'.join(loader.load_path)!r}") print_infoline('stage directory', repr(session_info['prefix_stage'])) print_infoline('output directory', repr(session_info['prefix_output'])) printer.info('') try: # Locate and load checks try: checks_found = loader.load_all() printer.verbose(f'Loaded {len(checks_found)} test(s)') except OSError as e: raise errors.ReframeError from e # Generate all possible test cases first; we will need them for # resolving dependencies after filtering # Determine the allowed programming environments allowed_environs = {e.name for env_patt in options.prgenv for p in rt.system.partitions for e in p.environs if re.match(env_patt, e.name)} testcases_all = generate_testcases(checks_found, options.skip_system_check, options.skip_prgenv_check, allowed_environs) testcases = testcases_all printer.verbose(f'Generated {len(testcases)} test case(s)') # Filter test cases by name if options.exclude_names: for name in options.exclude_names: testcases = filter(filters.have_not_name(name), testcases) if options.names: testcases = filter( filters.have_name('|'.join(options.names)), testcases ) testcases = list(testcases) printer.verbose( f'Filtering test cases(s) by name: {len(testcases)} remaining' ) # Filter test cases by tags for tag in options.tags: testcases = filter(filters.have_tag(tag), testcases) testcases = list(testcases) printer.verbose( f'Filtering test cases(s) by tags: {len(testcases)} remaining' ) # Filter test cases further if options.gpu_only and options.cpu_only: printer.error("options `--gpu-only' and `--cpu-only' " "are mutually exclusive") sys.exit(1) if options.gpu_only: testcases = filter(filters.have_gpu_only(), testcases) elif options.cpu_only: testcases = filter(filters.have_cpu_only(), testcases) testcases = list(testcases) printer.verbose( f'Filtering test cases(s) by other attributes: ' f'{len(testcases)} remaining' ) # Filter in failed cases if options.failed: if options.restore_session is None: printer.error( "the option '--failed' can only be used " "in combination with the '--restore-session' option" ) sys.exit(1) def _case_failed(t): rec = report.case(*t) if rec and rec['result'] == 'failure': return True else: return False testcases = list(filter(_case_failed, testcases)) printer.verbose( f'Filtering successful test case(s): ' f'{len(testcases)} remaining' ) # Prepare for running printer.debug('Building and validating the full test DAG') testgraph, skipped_cases = dependencies.build_deps(testcases_all) if skipped_cases: # Some cases were skipped, so adjust testcases testcases = list(set(testcases) - set(skipped_cases)) printer.verbose( f'Filtering test case(s) due to unresolved dependencies: ' f'{len(testcases)} remaining' ) dependencies.validate_deps(testgraph) printer.debug('Full test DAG:') printer.debug(dependencies.format_deps(testgraph)) restored_cases = [] if len(testcases) != len(testcases_all): testgraph = dependencies.prune_deps( testgraph, testcases, max_depth=1 if options.restore_session is not None else None ) printer.debug('Pruned test DAG') printer.debug(dependencies.format_deps(testgraph)) if options.restore_session is not None: testgraph, restored_cases = report.restore_dangling(testgraph) testcases = dependencies.toposort( testgraph, is_subgraph=options.restore_session is not None ) printer.verbose(f'Final number of test cases: {len(testcases)}') # Disable hooks for tc in testcases: for h in options.hooks: type(tc.check).disable_hook(h) # Act on checks if options.list or options.list_detailed: list_checks(testcases, printer, options.list_detailed) sys.exit(0) if not options.run: printer.error(f"No action specified. Please specify `-l'/`-L' for " f"listing or `-r' for running. " f"Try `{argparser.prog} -h' for more options.") sys.exit(1) # Manipulate ReFrame's environment if site_config.get('general/0/purge_environment'): rt.modules_system.unload_all() else: for m in site_config.get('general/0/unload_modules'): rt.modules_system.unload_module(**m) # Load the environment for the current system try: printer.debug(f'Loading environment for current system') runtime.loadenv(rt.system.preload_environ) except errors.EnvironError as e: printer.error("failed to load current system's environment; " "please check your configuration") printer.debug(str(e)) raise def module_use(*paths): try: rt.modules_system.searchpath_add(*paths) except errors.EnvironError as e: printer.warning(f'could not add module paths correctly') printer.debug(str(e)) def module_unuse(*paths): try: rt.modules_system.searchpath_remove(*paths) except errors.EnvironError as e: printer.warning(f'could not remove module paths correctly') printer.debug(str(e)) printer.debug('(Un)using module paths from command line') module_paths = {} for d in options.module_paths: if d.startswith('-'): module_paths.setdefault('-', []) module_paths['-'].append(d[1:]) elif d.startswith('+'): module_paths.setdefault('+', []) module_paths['+'].append(d[1:]) else: module_paths.setdefault('x', []) module_paths['x'].append(d) for op, paths in module_paths.items(): if op == '+': module_use(*paths) elif op == '-': module_unuse(*paths) else: # First empty the current module path in a portable way searchpath = [p for p in rt.modules_system.searchpath if p] if searchpath: rt.modules_system.searchpath_remove(*searchpath) # Treat `A:B` syntax as well in this case paths = itertools.chain(*(p.split(':') for p in paths)) module_use(*paths) printer.debug('Loading user modules from command line') for m in site_config.get('general/0/user_modules'): try: rt.modules_system.load_module(**m, force=True) except errors.EnvironError as e: printer.warning( f'could not load module {m["name"]!r} correctly; ' f'skipping...' ) printer.debug(str(e)) options.flex_alloc_nodes = options.flex_alloc_nodes or 'idle' # Run the tests # Setup the execution policy if options.exec_policy == 'serial': exec_policy = SerialExecutionPolicy() elif options.exec_policy == 'async': exec_policy = AsynchronousExecutionPolicy() else: # This should not happen, since choices are handled by # argparser printer.error("unknown execution policy `%s': Exiting...") sys.exit(1) exec_policy.skip_system_check = options.skip_system_check exec_policy.force_local = options.force_local exec_policy.strict_check = options.strict exec_policy.skip_sanity_check = options.skip_sanity_check exec_policy.skip_performance_check = options.skip_performance_check exec_policy.keep_stage_files = site_config.get( 'general/0/keep_stage_files' ) try: errmsg = "invalid option for --flex-alloc-nodes: '{0}'" sched_flex_alloc_nodes = int(options.flex_alloc_nodes) if sched_flex_alloc_nodes <= 0: raise errors.ConfigError( errmsg.format(options.flex_alloc_nodes) ) except ValueError: sched_flex_alloc_nodes = options.flex_alloc_nodes exec_policy.sched_flex_alloc_nodes = sched_flex_alloc_nodes parsed_job_options = [] for opt in options.job_options: optstr = re.split(r'=|\s+', opt)[0] if opt.startswith('-') or opt.startswith('#'): parsed_job_options.append(opt) elif len(optstr) == 1: parsed_job_options.append(f'-{opt}') else: parsed_job_options.append(f'--{opt}') exec_policy.sched_options = parsed_job_options try: max_retries = int(options.max_retries) except ValueError: raise errors.ConfigError( f'--max-retries is not a valid integer: {max_retries}' ) from None runner = Runner(exec_policy, printer, max_retries) try: time_start = time.time() session_info['time_start'] = time.strftime( '%FT%T%z', time.localtime(time_start), ) runner.runall(testcases, restored_cases) finally: time_end = time.time() session_info['time_end'] = time.strftime( '%FT%T%z', time.localtime(time_end) ) session_info['time_elapsed'] = time_end - time_start # Print a retry report if we did any retries if runner.stats.failures(run=0): printer.info(runner.stats.retry_report()) # Print a failure report if we had failures in the last run success = True if runner.stats.failures(): success = False runner.stats.print_failure_report(printer) if options.failure_stats: runner.stats.print_failure_stats(printer) if options.performance_report: printer.info(runner.stats.performance_report()) # Generate the report for this session report_file = os.path.normpath( osext.expandvars(rt.get_option('general/0/report_file')) ) basedir = os.path.dirname(report_file) if basedir: os.makedirs(basedir, exist_ok=True) # Build final JSON report run_stats = runner.stats.json() session_info.update({ 'num_cases': run_stats[0]['num_cases'], 'num_failures': run_stats[-1]['num_failures'] }) json_report = { 'session_info': session_info, 'runs': run_stats, 'restored_cases': [] } if options.restore_session is not None: for c in restored_cases: json_report['restored_cases'].append(report.case(*c)) report_file = runreport.next_report_filename(report_file) try: with open(report_file, 'w') as fp: jsonext.dump(json_report, fp, indent=2) fp.write('\n') except OSError as e: printer.warning( f'failed to generate report in {report_file!r}: {e}' ) if not success: sys.exit(1) sys.exit(0) except KeyboardInterrupt: sys.exit(1) except errors.ReframeError as e: printer.error(str(e)) sys.exit(1) except (Exception, errors.ReframeFatalError): exc_info = sys.exc_info() tb = ''.join(traceback.format_exception(*exc_info)) printer.error(errors.what(*exc_info)) if errors.is_severe(*exc_info): printer.error(tb) else: printer.verbose(tb) sys.exit(1) finally: try: log_files = logging.log_files() if site_config.get('general/0/save_log_files'): log_files = logging.save_log_files(rt.output_prefix) except OSError as e: printer.error(f'could not save log file: {e}') sys.exit(1) finally: printer.info(logfiles_message())
35,360
def convert_script( filename_in, filename_out, loglevel="WARNING", auto_exit=True, line_ending=None, exec_file=None, macros_as_functions=True, use_function_names=True, show_log=False, add_imports=True, comment_solve=False, cleanup_output=True, header=True, print_com=True, ): """Converts an ANSYS input file to a python PyMAPDL script. Parameters ---------- filename_in : str Filename of the ansys input file to read in. filename_out : str Filename of the python script to write a translation to. loglevel : str, optional Logging level of the ansys object within the script. auto_exit : bool, optional Adds a line to the end of the script to exit MAPDL. Default ``True``. line_ending : str, optional When None, automatically determined by OS being used. macros_as_functions : bool, optional Attempt to convert MAPDL macros to python functions. use_function_names : bool, optional Convert MAPDL functions to ansys.mapdl.core.Mapdl class methods. When ``True``, the MAPDL command "K" will be converted to ``mapdl.k``. When ``False``, it will be converted to ``mapdl.run('k')``. show_log : bool, optional Print the converted commands using a logger (from ``logging`` Python module). add_imports : bool, optional If ``True``, add the lines ``from ansys.mapdl.core import launch_mapdl`` and ``mapdl = launch_mapdl(loglevel="WARNING")`` to the beginning of the output file. This option is useful if you are planning to use the output script from another mapdl session. See examples section. This option overrides ``auto_exit``. comment_solve : bool, optional If ``True``, it will pythonically comment the lines that contain ``"SOLVE"`` or ``"/EOF"``. cleanup_output : bool, optional If ``True`` the output is formatted using ``autopep8`` before writing the file or returning the string. This requires ``autopep8`` to be installed. header : bool, optional If ``True``, the default header is written in the first line of the output. If a string is provided, this string will be used as header. print_com : bool, optional Print command ``/COM`` arguments to python console. Defaults to ``True``. Returns ------- list List of lines translated. Examples -------- >>> from ansys.mapdl import core as pymapdl >>> from ansys.mapdl.core import examples >>> clines = pymapdl.convert_script(examples.vmfiles['vm1'], 'vm1.py') Converting a script and using it already in the same session. For this case, it is recommended to use :func:`convert_apdl_block() <ansys.mapdl.core.convert_apdl_block>` since this way it is not needed to write the file. >>> from ansys.mapdl.core import launch_mapdl >>> from ansys.mapdl.core import examples >>> from ansys.mapdl.core import convert_script >>> in_file = examples.vmfiles['vm10'] >>> filename = in_file.split('\\')[-1] >>> out_file = 'out_' + filename.replace('.dat', '.py') >>> output = convert_script(file, out_file, line_ending='\\n') >>> mapdl = launch_mapdl() >>> with open(out_file, 'r') as fid: ... cmds = fid.read() >>> mapdl.input_strings(cmds.splitlines()[2:10]) """ with open(filename_in, "r") as fid: apdl_strings = fid.readlines() translator = _convert( apdl_strings=apdl_strings, loglevel=loglevel, auto_exit=auto_exit, line_ending=line_ending, exec_file=exec_file, macros_as_functions=macros_as_functions, use_function_names=use_function_names, show_log=show_log, add_imports=add_imports, comment_solve=comment_solve, cleanup_output=cleanup_output, header=header, print_com=print_com, ) translator.save(filename_out) return translator.lines
def convert_script( filename_in, filename_out, loglevel="WARNING", auto_exit=True, line_ending=None, exec_file=None, macros_as_functions=True, use_function_names=True, show_log=False, add_imports=True, comment_solve=False, cleanup_output=True, header=True, print_com=True, ): """Converts an ANSYS input file to a python PyMAPDL script. Parameters ---------- filename_in : str Filename of the ansys input file to read in. filename_out : str Filename of the python script to write a translation to. loglevel : str, optional Logging level of the ansys object within the script. auto_exit : bool, optional Adds a line to the end of the script to exit MAPDL. Default ``True``. line_ending : str, optional When None, automatically determined by OS being used. macros_as_functions : bool, optional Attempt to convert MAPDL macros to python functions. use_function_names : bool, optional Convert MAPDL functions to ansys.mapdl.core.Mapdl class methods. When ``True``, the MAPDL command "K" will be converted to ``mapdl.k``. When ``False``, it will be converted to ``mapdl.run('k')``. show_log : bool, optional Print the converted commands using a logger (from ``logging`` Python module). add_imports : bool, optional If ``True``, add the lines ``from ansys.mapdl.core import launch_mapdl`` and ``mapdl = launch_mapdl(loglevel="WARNING")`` to the beginning of the output file. This option is useful if you are planning to use the output script from another mapdl session. See examples section. This option overrides ``auto_exit``. comment_solve : bool, optional If ``True``, it will pythonically comment the lines that contain ``"SOLVE"`` or ``"/EOF"``. cleanup_output : bool, optional If ``True`` the output is formatted using ``autopep8`` before writing the file or returning the string. This requires ``autopep8`` to be installed. header : bool, optional If ``True``, the default header is written in the first line of the output. If a string is provided, this string will be used as header. print_com : bool, optional Print command ``/COM`` arguments to python console. Defaults to ``True``. Returns ------- list List of lines translated. Examples -------- >>> from ansys.mapdl import core as pymapdl >>> from ansys.mapdl.core import examples >>> clines = pymapdl.convert_script(examples.vmfiles['vm1'], 'vm1.py') Converting a script and using it already in the same session. For this case, it is recommended to use :func:`convert_apdl_block() <ansys.mapdl.core.convert_apdl_block>` since you do not need to write the file. >>> from ansys.mapdl.core import launch_mapdl >>> from ansys.mapdl.core import examples >>> from ansys.mapdl.core import convert_script >>> in_file = examples.vmfiles['vm10'] >>> filename = in_file.split('\\')[-1] >>> out_file = 'out_' + filename.replace('.dat', '.py') >>> output = convert_script(file, out_file, line_ending='\\n') >>> mapdl = launch_mapdl() >>> with open(out_file, 'r') as fid: ... cmds = fid.read() >>> mapdl.input_strings(cmds.splitlines()[2:10]) """ with open(filename_in, "r") as fid: apdl_strings = fid.readlines() translator = _convert( apdl_strings=apdl_strings, loglevel=loglevel, auto_exit=auto_exit, line_ending=line_ending, exec_file=exec_file, macros_as_functions=macros_as_functions, use_function_names=use_function_names, show_log=show_log, add_imports=add_imports, comment_solve=comment_solve, cleanup_output=cleanup_output, header=header, print_com=print_com, ) translator.save(filename_out) return translator.lines
34,063
def list_actors( address: Optional[str] = None, filters: Optional[List[Tuple[str, PredicateType, SupportedFilterType]]] = None, limit: int = DEFAULT_LIMIT, timeout: int = DEFAULT_RPC_TIMEOUT, detail: bool = False, raise_on_missing_output: bool = True, _explain: bool = False, ) -> List[Dict]: """List actors in the cluster. Args: address: The IP address and port of the head node. Defaults to `http://localhost:8265` if not set. filters: List of tuples of filter key, predicate (=, or !=), and the filter value. E.g., `("id", "=", "abcd")` limit: Max number of entries returned by the state backend. timeout: Max timeout value for the http/gRPC requests made. detail: When True, more details info (specified in `ActorState`) will be queried and returned. See :ref:`ActorState <state-api-schema-actor>`. raise_on_missing_output: When True, exceptions will be raised if there is missing data due to truncation/data source unavailable. _explain: Print the API information such as API latency or failed query information. Returns: List of dictionary of :ref:`ActorState <state-api-schema-actor>`. Raises: Exceptions: :ref:`RayStateApiException <state-api-exceptions>` if the CLI failed to query the data. """ return StateApiClient(address=address).list( StateResource.ACTORS, options=ListApiOptions( limit=limit, timeout=timeout, filters=filters, detail=detail, ), raise_on_missing_output=raise_on_missing_output, _explain=_explain, )
def list_actors( address: Optional[str] = None, filters: Optional[List[Tuple[str, PredicateType, SupportedFilterType]]] = None, limit: int = DEFAULT_LIMIT, timeout: int = DEFAULT_RPC_TIMEOUT, detail: bool = False, raise_on_missing_output: bool = True, _explain: bool = False, ) -> List[Dict]: """List actors in the cluster. Args: address: The IP address and port of the head node. Defaults to `http://localhost:8265` if not set. filters: List of tuples of filter key, predicate (=, or !=), and the filter value. E.g., `("id", "=", "abcd")` limit: Max number of entries returned by the state backend. timeout: Max timeout value for the http/gRPC requests made. detail: When True, more details info (specified in `ActorState`) will be queried and returned. See :ref:`ActorState <state-api-schema-actor>`. raise_on_missing_output: When True, exceptions will be raised if there is missing data due to truncation/data source unavailable. _explain: Print the API information such as API latency or failed query information. Returns: List of dictionarified :ref:`ActorState <state-api-schema-actor>`. Raises: Exceptions: :ref:`RayStateApiException <state-api-exceptions>` if the CLI failed to query the data. """ return StateApiClient(address=address).list( StateResource.ACTORS, options=ListApiOptions( limit=limit, timeout=timeout, filters=filters, detail=detail, ), raise_on_missing_output=raise_on_missing_output, _explain=_explain, )
36,298
def test_bit_flip_channel_fidelity(forest, use_seed): """ We use Eqn (5) of https://arxiv.org/abs/quant-ph/0701138 to compare the fidelity """ qc = get_qc("1q-qvm") if use_seed: np.random.seed(0) qc.qam.random_seed = 0 num_expts = 1 else: num_expts = 100 # prepare experiment settings expt1 = ExperimentSetting(TensorProductState(plusX(0)), sX(0)) expt2 = ExperimentSetting(TensorProductState(plusY(0)), sY(0)) expt3 = ExperimentSetting(TensorProductState(plusZ(0)), sZ(0)) expt_list = [expt1, expt2, expt3] # prepare noisy bit-flip channel as program for some random value of probability prob = np.random.uniform(0.1, 0.5) # the bit flip channel is composed of two Kraus operations -- # applying the X gate with probability `prob`, and applying the identity gate # with probability `1 - prob` kraus_ops = [ np.sqrt(1 - prob) * np.array([[1, 0], [0, 1]]), np.sqrt(prob) * np.array([[0, 1], [1, 0]]), ] p = Program(Pragma("PRESERVE_BLOCK"), I(0), Pragma("END_PRESERVE_BLOCK")) p.define_noisy_gate("I", [0], kraus_ops) # prepare TomographyExperiment process_exp = Experiment(settings=expt_list, program=p) # list to store experiment results expts = [] for _ in range(num_expts): expt_results = [] for res in measure_observables(qc, process_exp, n_shots=2000): expt_results.append(res.expectation) expts.append(expt_results) expts = np.array(expts) results = np.mean(expts, axis=0) estimated_fidelity = _point_channel_fidelity_estimate(results) # how close is this channel to the identity operator expected_fidelity = 1 - (2 / 3) * prob np.testing.assert_allclose(expected_fidelity, estimated_fidelity, atol=2e-2)
def test_bit_flip_channel_fidelity(forest, use_seed): """ We use Eqn (5) of https://arxiv.org/abs/quant-ph/0701138 to compare the fidelity """ qc = get_qc("1q-qvm") if use_seed: np.random.seed(0) qc.qam.random_seed = 0 num_expts = 1 else: num_expts = 100 # prepare experiment settings expt1 = ExperimentSetting(TensorProductState(plusX(0)), sX(0)) expt2 = ExperimentSetting(TensorProductState(plusY(0)), sY(0)) expt3 = ExperimentSetting(TensorProductState(plusZ(0)), sZ(0)) expt_list = [expt1, expt2, expt3] # prepare noisy bit-flip channel as program for some random value of probability prob = np.random.uniform(0.1, 0.5) # the bit flip channel is composed of two Kraus operations -- # applying the X gate with probability `prob`, and applying the identity gate # with probability `1 - prob` kraus_ops = [ np.sqrt(1 - prob) * np.array([[1, 0], [0, 1]]), np.sqrt(prob) * np.array([[0, 1], [1, 0]]), ] p = Program(Pragma("PRESERVE_BLOCK"), I(0), Pragma("END_PRESERVE_BLOCK")) p.define_noisy_gate("I", [0], kraus_ops) # prepare Experiment process_exp = Experiment(settings=expt_list, program=p) # list to store experiment results expts = [] for _ in range(num_expts): expt_results = [] for res in measure_observables(qc, process_exp, n_shots=2000): expt_results.append(res.expectation) expts.append(expt_results) expts = np.array(expts) results = np.mean(expts, axis=0) estimated_fidelity = _point_channel_fidelity_estimate(results) # how close is this channel to the identity operator expected_fidelity = 1 - (2 / 3) * prob np.testing.assert_allclose(expected_fidelity, estimated_fidelity, atol=2e-2)
56,684
def update_translations(locales=[]): if locales: print(f"Updating the following locales: {locales}") locales_to_update = locales else: print("Updating all locales") locales_to_update = get_locales() pot_path = os.path.join(root, 'messages.pot') template = read_po(open(pot_path, 'rb')) for locale in locales_to_update: po_path = os.path.join(root, locale, 'messages.po') mo_path = os.path.join(root, locale, 'messages.mo') if os.path.exists(po_path): catalog = read_po(open(po_path, 'rb')) catalog.update(template) f = open(po_path, 'wb') write_po(f, catalog) f.close() print('updated', po_path) else: print(f"ERROR: {po_path} does not exist...") compile_translations()
def update_translations(locales=[]): locales_to_update = locales or get_locales() print(f"Updating {locales_to_update}") pot_path = os.path.join(root, 'messages.pot') template = read_po(open(pot_path, 'rb')) for locale in locales_to_update: po_path = os.path.join(root, locale, 'messages.po') mo_path = os.path.join(root, locale, 'messages.mo') if os.path.exists(po_path): catalog = read_po(open(po_path, 'rb')) catalog.update(template) f = open(po_path, 'wb') write_po(f, catalog) f.close() print('updated', po_path) else: print(f"ERROR: {po_path} does not exist...") compile_translations()
25,140
def _precache_zipimporters(path=None): """ For each path that has not been already cached in the sys.path_importer_cache, create a new zipimporter instance and store it into the cache. Return a dict associating all paths, stored into the cache, to corresponding zipimporter instances :param path: paths that has to be added into the cache :return: association between paths stored into the cache and zipimporter instances """ pic = sys.path_importer_cache # When measured, despite having the same complexity (O(n)), # converting to tuples and then caching the conversion to sets # and the set difference is faster than converting to sets # and then only caching the set difference. req_paths = tuple(path or sys.path) cached_paths = tuple(pic) new_paths = _cached_set_diff(req_paths, cached_paths) for entry_path in new_paths: try: pic[entry_path] = zipimport.zipimporter(entry_path) except zipimport.ZipImportError: continue return {key: value for key, value in pic.items() if isinstance(value, zipimport.zipimporter)}
def _precache_zipimporters(path=None): """ For each path that has not been already cached in the sys.path_importer_cache, create a new zipimporter instance and store it into the cache. Return a dict associating all paths, stored in the cache, to corresponding zipimporter instances :param path: paths that has to be added into the cache :return: association between paths stored into the cache and zipimporter instances """ pic = sys.path_importer_cache # When measured, despite having the same complexity (O(n)), # converting to tuples and then caching the conversion to sets # and the set difference is faster than converting to sets # and then only caching the set difference. req_paths = tuple(path or sys.path) cached_paths = tuple(pic) new_paths = _cached_set_diff(req_paths, cached_paths) for entry_path in new_paths: try: pic[entry_path] = zipimport.zipimporter(entry_path) except zipimport.ZipImportError: continue return {key: value for key, value in pic.items() if isinstance(value, zipimport.zipimporter)}