id
int64
11
59.9k
original
stringlengths
33
150k
modified
stringlengths
37
150k
31,616
def test_edit_case(mocker): params = { "url": "https://content.demisto.works:20120", "insecure": True, "credentials": { "identifier": "NGCP", "password": "TIl1nW@H0ZEG" }, "version": "11.3"} raw_response_has_event_list = {"assignedTo": 8207, "closeTime": "2021-05-25T10:29:17Z", "dataSourceList": ["47"], "deviceList": None, "eventList": [ {"id": "144117387300438016|6204912068", "lastTime": "2021-05-25T09:47:10Z", "message": "TEST"}], "history": "\n------- Viewed: 05/25/2021 10:26:37(GMT)" "TEST@TEST -------\n\n------- Viewed: 05/25/2021 10:27:34(" "GMT) " " TEST@TEST -------\n", "id": 58136, "notes": "------- Opened on 2021/05/25 09:53:53(GMT) by Triggered Condition -------" "\n\n------- In Progress: 05/25/2021 10:29:17(GMT) Xsoar@TEST -------" "\n\n------- Changes: 05/25/2021 10:29:17(GMT) Xsoar@TEST -------" "\n Organization\n old: None\n new: BRD" "\n\n", "openTime": "2021-05-25T09:53:53Z", "orgId": 2, "severity": 50, "statusId": 3, "summary": "BRD-ALERT- Recon - Horizontal - Scan"} mocker.patch.object(McAfeeESMClient, 'get_case_detail', return_value=('', {}, raw_response_has_event_list)) mocker.patch.object(McAfeeESMClient, '_McAfeeESMClient__request', return_value={}) client = McAfeeESMClient(params) client.edit_case() result = client._McAfeeESMClient__request.call_args.kwargs['data']['caseDetail'] assert len(result['eventList']) > 0
def test_edit_case(mocker): params = { "url": "https://content.demisto.works:20120", "insecure": True, "credentials": { "identifier": "NGCP", "password": "TIl1nW@H0ZEG" }, "version": "11.3"} raw_response_has_event_list = {"assignedTo": 8207, "closeTime": "2021-05-25T10:29:17Z", "dataSourceList": ["47"], "deviceList": None, "eventList": [ {"id": "144117387300438016|6204912068", "lastTime": "2021-05-25T09:47:10Z", "message": "TEST"}], "history": "\n------- Viewed: 05/25/2021 10:26:37(GMT)" "TEST@TEST -------\n\n------- Viewed: 05/25/2021 10:27:34(" "GMT) " " TEST@TEST -------\n", "id": 58136, "notes": "------- Opened on 2021/05/25 09:53:53(GMT) by Triggered Condition -------" "\n\n------- In Progress: 05/25/2021 10:29:17(GMT) Xsoar@TEST -------" "\n\n------- Changes: 05/25/2021 10:29:17(GMT) Xsoar@TEST -------" "\n Organization\n old: None\n new: BRD" "\n\n", "openTime": "2021-05-25T09:53:53Z", "orgId": 2, "severity": 50, "statusId": 3, "summary": "ALERT - Scan"} mocker.patch.object(McAfeeESMClient, 'get_case_detail', return_value=('', {}, raw_response_has_event_list)) mocker.patch.object(McAfeeESMClient, '_McAfeeESMClient__request', return_value={}) client = McAfeeESMClient(params) client.edit_case() result = client._McAfeeESMClient__request.call_args.kwargs['data']['caseDetail'] assert len(result['eventList']) > 0
8,727
def add_common_arguments(parser): """Add common and configuration-related arguments to a ``parser``. :param parser: Argument parser (or subparser) :type parser: argparse.ArgumentParser This functions adds the common arguments for Sopel's command line tools. It adds the following arguments: * ``-c/--config``: the name of the Sopel config, or its absolute path * ``--config-dir``: the directory to look for Sopel config This can be used on an argument parser, or an argument subparser, to handle these cases:: [sopel-command] -c [filename] [sopel-command] [action] -c [filename] [sopel-command] --config-dir [directory] -c [name] Then, when the parser parses the command line arguments, it will expose ``config`` and ``configdir`` options that can be used to find and load Sopel's settings. .. seealso:: The :func:`sopel.cli.utils.load_settings` function uses an ``options`` object from a parser configured with such arguments. """ parser.add_argument( '-c', '--config', default='default', metavar='filename', dest='config', help='Use a specific configuration file.') parser.add_argument( '--config-dir', default=config.DEFAULT_HOMEDIR, dest='configdir', help='Look for configuration from this Sopel config directory.')
def add_common_arguments(parser): """Add common and configuration-related arguments to a ``parser``. :param parser: Argument parser (or subparser) :type parser: argparse.ArgumentParser This functions adds the common arguments for Sopel's command line tools. It adds the following arguments: * ``-c/--config``: the name of the Sopel config, or its absolute path * ``--config-dir``: the directory to look for Sopel config This can be used on an argument parser, or an argument subparser, to handle these cases:: [sopel-command] -c [filename] [sopel-command] [action] -c [filename] [sopel-command] --config-dir [directory] -c [name] Then, when the parser parses the command line arguments, it will expose ``config`` and ``configdir`` options that can be used to find and load Sopel's settings. .. seealso:: The :func:`sopel.cli.utils.load_settings` function uses an ``options`` object from a parser configured with such arguments. """ parser.add_argument( '-c', '--config', default='default', metavar='filename', dest='config', help='Use a specific configuration file.') parser.add_argument( '--config-dir', default=config.DEFAULT_HOMEDIR, dest='configdir', help='Look for configuration files in this directory.')
9,078
def _install(tarball, install_args=()): # extracting the tarball tmpdir = tempfile.mkdtemp() log.warn("Extracting in %s", tmpdir) old_wd = os.getcwd() try: os.chdir(tmpdir) tar = tarfile.open(tarball) _extractall(tar) tar.close() # going in the directory subdir = os.path.join(tmpdir, os.listdir(tmpdir)[0]) os.chdir(subdir) log.warn("Now working in %s", subdir) # installing log.warn("Installing Setuptools") if not _python_cmd("setup.py", "install", *install_args): log.warn("Something went wrong during the installation.") log.warn("See the error message above.") # exitcode will be 2 return 2 finally: os.chdir(old_wd) shutil.rmtree(tmpdir)
def _install(tarball, install_args=()): # extracting the tarball tmpdir = tempfile.mkdtemp() log.warn(f"Extracting in {tmpdir}") old_wd = os.getcwd() try: os.chdir(tmpdir) tar = tarfile.open(tarball) _extractall(tar) tar.close() # going in the directory subdir = os.path.join(tmpdir, os.listdir(tmpdir)[0]) os.chdir(subdir) log.warn("Now working in %s", subdir) # installing log.warn("Installing Setuptools") if not _python_cmd("setup.py", "install", *install_args): log.warn("Something went wrong during the installation.") log.warn("See the error message above.") # exitcode will be 2 return 2 finally: os.chdir(old_wd) shutil.rmtree(tmpdir)
47,686
def run_pipx_command(args): setup(args) verbose = args.verbose if "package" in args: package = args.package if urllib.parse.urlparse(package).scheme: raise PipxError("Package cannot be a url") if package == "pipx": if args.command == "uninstall": logging.warning( "Did you mean to use 'pipx-app' instead of 'pipx' for the package name?" ) else: raise PipxError("use 'pipx-app' instead of 'pipx' for package name") if "spec" in args and args.spec is not None: if urllib.parse.urlparse(args.spec).scheme: if "#egg=" not in args.spec: args.spec = args.spec + f"#egg={package}" venv_dir = pipx_local_venvs / package logging.info(f"virtualenv location is {venv_dir}") if args.command == "install": package_or_url = ( args.spec if ("spec" in args and args.spec is not None) else package ) install( venv_dir, package, package_or_url, local_bin_dir, args.python, verbose, force=args.force, ) elif args.command == "inject": package_or_url = ( args.spec if ("spec" in args and args.spec is not None) else args.dependency ) inject(venv_dir, args.dependency, package_or_url, verbose) elif args.command == "upgrade": package_or_url = ( args.spec if ("spec" in args and args.spec is not None) else package ) upgrade(venv_dir, package, package_or_url, verbose, upgrading_all=False) elif args.command == "list": list_packages(pipx_local_venvs) elif args.command == "uninstall": uninstall(venv_dir, package, local_bin_dir, verbose) elif args.command == "uninstall-all": uninstall_all(pipx_local_venvs, local_bin_dir, verbose) print(f"To reinstall pipx, run '{INSTALL_PIPX_CMD}'") elif args.command == "upgrade-all": upgrade_all(pipx_local_venvs, verbose) elif args.command == "reinstall-all": reinstall_all(pipx_local_venvs, local_bin_dir, args.python, verbose) else: raise PipxError(f"Unknown command {args.command}")
def run_pipx_command(args): setup(args) verbose = args.verbose if "package" in args: package = args.package if urllib.parse.urlparse(package).scheme: raise PipxError("Package cannot be a url") if package == "pipx": if args.command == "uninstall": logging.warning( "Did you mean to use 'pipx-app' instead of 'pipx' for the package name?" ) else: raise PipxError("use 'pipx-app' instead of 'pipx' for package name") if "spec" in args and args.spec is not None: if urllib.parse.urlparse(args.spec).scheme: if "#egg=" not in args.spec: args.spec = args.spec + f"#egg={package}" venv_dir = pipx_local_venvs / package logging.info(f"virtualenv location is {venv_dir}") if args.command == "install": package_or_url = ( args.spec if ("spec" in args and args.spec is not None) else package ) install( venv_dir, package, package_or_url, local_bin_dir, args.python, verbose, force=args.force, ) elif args.command == "inject": package_or_url = ( args.spec if ("spec" in args and args.spec is not None) else args.dependency ) inject(venv_dir, args.dependency, verbose) elif args.command == "upgrade": package_or_url = ( args.spec if ("spec" in args and args.spec is not None) else package ) upgrade(venv_dir, package, package_or_url, verbose, upgrading_all=False) elif args.command == "list": list_packages(pipx_local_venvs) elif args.command == "uninstall": uninstall(venv_dir, package, local_bin_dir, verbose) elif args.command == "uninstall-all": uninstall_all(pipx_local_venvs, local_bin_dir, verbose) print(f"To reinstall pipx, run '{INSTALL_PIPX_CMD}'") elif args.command == "upgrade-all": upgrade_all(pipx_local_venvs, verbose) elif args.command == "reinstall-all": reinstall_all(pipx_local_venvs, local_bin_dir, args.python, verbose) else: raise PipxError(f"Unknown command {args.command}")
4,189
def make_resolution_matrix(fwd, invop, method, lambda2): """Compute resolution matrix for linear inverse operator. Parameters ---------- fwd: forward solution Used to get leadfield matrix. invop: inverse operator Inverse operator to get inverse matrix. pick_ori='normal' will be selected. method: string Inverse method to use (MNE, dSPM, sLORETA). lambda2: float The regularisation parameter. Returns ------- resmat: 2D numpy array. Resolution matrix (inverse matrix times leadfield). """ # make sure forward and inverse operator match fwd = _convert_forward_match_inv(fwd, invop) # don't include bad channels # only use good channels from inverse operator bads_inv = invop['info']['bads'] # good channels ch_names = [c for c in invop['info']['ch_names'] if (c not in bads_inv)] # get leadfield matrix from forward solution leadfield = _pick_leadfield(fwd['sol']['data'], fwd, ch_names) invmat = _get_matrix_from_inverse_operator(invop, fwd, method=method, lambda2=lambda2) resmat = invmat.dot(leadfield) dims = resmat.shape print('Dimensions of resolution matrix: %d by %d.' % (dims[0], dims[1])) return resmat
def make_resolution_matrix(fwd, invop, method, lambda2): """Compute resolution matrix for linear inverse operator. Parameters ---------- fwd: forward solution Used to get leadfield matrix. inverse_operator: instance of InverseOperator Inverse operator to get inverse matrix. pick_ori='normal' will be selected. method: string Inverse method to use (MNE, dSPM, sLORETA). lambda2: float The regularisation parameter. Returns ------- resmat: 2D numpy array. Resolution matrix (inverse matrix times leadfield). """ # make sure forward and inverse operator match fwd = _convert_forward_match_inv(fwd, invop) # don't include bad channels # only use good channels from inverse operator bads_inv = invop['info']['bads'] # good channels ch_names = [c for c in invop['info']['ch_names'] if (c not in bads_inv)] # get leadfield matrix from forward solution leadfield = _pick_leadfield(fwd['sol']['data'], fwd, ch_names) invmat = _get_matrix_from_inverse_operator(invop, fwd, method=method, lambda2=lambda2) resmat = invmat.dot(leadfield) dims = resmat.shape print('Dimensions of resolution matrix: %d by %d.' % (dims[0], dims[1])) return resmat
38,540
def match_1d( new_g: pp.Grid, old_g: pp.Grid, tol: float, scaling: Optional[Literal["averaged", "integrated"]] = None, ) -> sps.spmatrix: """Obtain mappings between the cells of non-matching 1d grids. The overlaps are identified as a sparse matrix which maps from cells in the old to the new grid. It is asumed that the two grids are aligned, with common start and endpoints. Parameters: new_g (pp.Grid). Target grid for the mapping. Should have dimension 1. old_g (pp.Grid). Original grid. Should have dimension 1. tol (float): Tolerance used to filter away false overlaps caused by numerical errors. Should be scaled relative to the cell size. scaling (str, optional): Control weights of the returned matrix, see return values for specification. Returns: sps.spmatrix: Mapping from the cells in the old to the new grid. The values in the matrix depends on the parameter scaling: If set to 'averaged', a mapping fit for intensive quantities (e.g., pressure) is returned (all rows sum to unity). If set to 'integrated', the matrix is a mapping for extensive quantities (column sum is 1). If not provided, the matrix elements are 1 for cell-pairs (new and old grid) that overlap; overlaps with areas less than the parameter tol will be ignored. """ # Cell-node relation between grids - we know there are two nodes per cell cell_nodes_new = new_g.cell_nodes() cell_nodes_old = old_g.cell_nodes() nodes_new = pp.utils.mcolon.mcolon( cell_nodes_new.indptr[0:-1], cell_nodes_new.indptr[1:] ) nodes_old = pp.utils.mcolon.mcolon( cell_nodes_old.indptr[0:-1], cell_nodes_old.indptr[1:] ) # Reshape so that the nodes of cells are stored columnwise lines_new = cell_nodes_new.indices[nodes_new].reshape((2, -1), order="F") lines_old = cell_nodes_old.indices[nodes_old].reshape((2, -1), order="F") p_new = new_g.nodes p_old = old_g.nodes # Compute the intersection between the two tessalations. # intersect is a list, every list member is a tuple with overlapping # cells in grid 1 and 2, and their common area. intersect = pp.intersections.line_tesselation(p_new, p_old, lines_new, lines_old) num = len(intersect) new_g_ind = np.zeros(num, dtype=int) old_g_ind = np.zeros(num, dtype=int) weights = np.zeros(num) for ind, i in enumerate(intersect): new_g_ind[ind] = i[0] old_g_ind[ind] = i[1] weights[ind] = i[2] # The weights as computed from the intersection algorithm gives the volumes of the # intersected cells. Depending on the specified scaling, the weights should be # modified. if scaling == "averaged": weights /= new_g.cell_volumes[new_g_ind] elif scaling == "integrated": weights /= old_g.cell_volumes[old_g_ind] elif scaling is None: mask = weights > tol new_g_ind = new_g_ind[mask] old_g_ind = old_g_ind[mask] weights = np.ones_like(new_g_ind) return sps.coo_matrix( (weights, (new_g_ind, old_g_ind)), shape=(new_g.num_cells, old_g.num_cells) ).tocsr()
def match_1d( new_g: pp.Grid, old_g: pp.Grid, tol: float, scaling: Optional[Literal["averaged", "integrated"]] = None, ) -> sps.spmatrix: """Obtain mappings between the cells of non-matching 1d grids. The overlaps are identified as a sparse matrix which maps from cells in the old to the new grid. It is asumed that the two grids are aligned, with common start and endpoints. Parameters: new_g (pp.Grid). Target grid for the mapping. Should have dimension 1. old_g (pp.Grid). Original grid. Should have dimension 1. tol (float): Tolerance used to filter away false overlaps caused by numerical errors. Should be scaled relative to the cell size. scaling (str, optional): Control weights of the returned matrix, see return values for specification. Returns: sps.spmatrix: Mapping from the cells in the old to the new grid. The values in the matrix depends on the parameter scaling: If set to 'averaged', a mapping fit for intensive quantities (e.g., pressure) is returned (all rows sum to unity). If set to 'integrated', the matrix is a mapping for extensive quantities (column sum is 1). If not provided, the matrix elements are 1 for cell-pairs (new and old grid) that overlap; overlaps with areas less than the parameter tol will be ignored. """ # Cell-node relation between grids - we know there are two nodes per cell cell_nodes_new = new_g.cell_nodes() cell_nodes_old = old_g.cell_nodes() nodes_new = pp.utils.mcolon.mcolon( cell_nodes_new.indptr[0:-1], cell_nodes_new.indptr[1:] ) nodes_old = pp.utils.mcolon.mcolon( cell_nodes_old.indptr[0:-1], cell_nodes_old.indptr[1:] ) # Reshape so that the nodes of cells are stored columnwise lines_new = cell_nodes_new.indices[nodes_new].reshape((2, -1), order="F") lines_old = cell_nodes_old.indices[nodes_old].reshape((2, -1), order="F") p_new = new_g.nodes p_old = old_g.nodes # Compute the intersection between the two tesselations. # intersect is a list, every list member is a tuple with overlapping # cells in grid 1 and 2, and their common area. intersect = pp.intersections.line_tesselation(p_new, p_old, lines_new, lines_old) num = len(intersect) new_g_ind = np.zeros(num, dtype=int) old_g_ind = np.zeros(num, dtype=int) weights = np.zeros(num) for ind, i in enumerate(intersect): new_g_ind[ind] = i[0] old_g_ind[ind] = i[1] weights[ind] = i[2] # The weights as computed from the intersection algorithm gives the volumes of the # intersected cells. Depending on the specified scaling, the weights should be # modified. if scaling == "averaged": weights /= new_g.cell_volumes[new_g_ind] elif scaling == "integrated": weights /= old_g.cell_volumes[old_g_ind] elif scaling is None: mask = weights > tol new_g_ind = new_g_ind[mask] old_g_ind = old_g_ind[mask] weights = np.ones_like(new_g_ind) return sps.coo_matrix( (weights, (new_g_ind, old_g_ind)), shape=(new_g.num_cells, old_g.num_cells) ).tocsr()
56,352
def _test_pytest_function(pyfuncitem): _pdb = pytestPDB._init_pdb("runcall") testfunction = pyfuncitem.obj pyfuncitem.obj = _pdb.runcall if "func" in pyfuncitem.funcargs: # pragma: no branch raise ValueError("--trace can't be used with a fixture named func!") pyfuncitem.funcargs["func"] = testfunction if "func" not in pyfuncitem._fixtureinfo.argnames: # if using e.g. parametrize the _fixtureinfo is shared new_list = list(pyfuncitem._fixtureinfo.argnames) new_list.append("func") pyfuncitem._fixtureinfo.argnames = tuple(new_list)
def _test_pytest_function(pyfuncitem): _pdb = pytestPDB._init_pdb("runcall") testfunction = pyfuncitem.obj pyfuncitem.obj = _pdb.runcall if "func" in pyfuncitem.funcargs: # pragma: no branch raise ValueError("--trace can't be used with a fixture named func!") pyfuncitem.funcargs["func"] = testfunction if "func" not in pyfuncitem._fixtureinfo.argnames: # TODO: when using parameterized tests, the _fixtureinfo is shared # that needs to move to FunctionDefinition new_list = list(pyfuncitem._fixtureinfo.argnames) new_list.append("func") pyfuncitem._fixtureinfo.argnames = tuple(new_list)
48,645
def check_metadata() -> None: for distribution in os.listdir("stubs"): with open(os.path.join("stubs", distribution, "METADATA.toml")) as f: data = tomli.loads(f.read()) assert "version" in data, f"Missing version for {distribution}" version = data["version"] msg = f"Unsupported Python version {version}" assert isinstance(version, str), msg assert re.fullmatch(r"\d+(\.\d+)+|\d+(\.\d+)*\.\*", version), msg for key in data: assert key in metadata_keys, f"Unexpected key {key} for {distribution}" assert isinstance(data.get("requires", []), list), f"Invalid requires value for {distribution}" for dep in data.get("requires", []): assert isinstance(dep, str), f"Invalid dependency {dep} for {distribution}" for space in " \t\n": assert space not in dep, f"For consistency dependency should not have whitespace: {dep}" assert ";" not in dep, f"Semicolons in dependencies are not supported, got {dep}" stripped, relation, dep_version = _strip_dep_version(dep) if relation: assert relation in {"==", ">", ">=", "<", "<="}, f"Bad relation '{relation}' in dependency {dep}" assert dep_version.count(".") <= 2, f"Bad version '{dep_version}' in dependency {dep}" for part in dep_version.split("."): assert part.isnumeric(), f"Bad version '{part}' in dependency {dep}" assert set(data.get("tool", [])).issubset({"stubtest"}), f"Unrecognised tool for {distribution}" for key in data.get("tool", {}).get("stubtest", {}): assert key in stubtest_keys, f"Unrecognised stubtest key {key} for {distribution}"
def check_metadata() -> None: for distribution in os.listdir("stubs"): with open(os.path.join("stubs", distribution, "METADATA.toml")) as f: data = tomli.loads(f.read()) assert "version" in data, f"Missing version for {distribution}" version = data["version"] msg = f"Unsupported Python version {version}" assert isinstance(version, str), msg assert re.fullmatch(r"\d+(\.\d+)+|\d+(\.\d+)*\.\*", version), msg for key in data: assert key in metadata_keys, f"Unexpected key {key} for {distribution}" assert isinstance(data.get("requires", []), list), f"Invalid requires value for {distribution}" for dep in data.get("requires", []): assert isinstance(dep, str), f"Invalid dependency {dep} for {distribution}" for space in " \t\n": assert space not in dep, f"For consistency dependency should not have whitespace: {dep}" assert ";" not in dep, f"Semicolons in dependencies are not supported, got {dep}" stripped, relation, dep_version = _strip_dep_version(dep) if relation: assert relation in {"==", ">", ">=", "<", "<="}, f"Bad relation '{relation}' in dependency {dep}" assert dep_version.count(".") <= 2, f"Bad version '{dep_version}' in dependency {dep}" for part in dep_version.split("."): assert part.isnumeric(), f"Bad version '{part}' in dependency {dep}" assert set(data.get("tool", [])).issubset(tool_keys.keys()), f"Unrecognised tool for {distribution}" for tool, tk in tool_keys.items(): for key in data.get("tool", {}).get(tool, {}): assert key in tk, f"Unrecognised {tool} key {key} for {distribution}"
750
def get_data_independent_estimation_quantities(design_matrix, regularization_matrix=None): Q = compute_unscaled_posterior_precision(design_matrix, regularization_matrix) unscaled_posterior_covariance = covariance_from_precision(Q) # TODO: evaluate whether using the explicit inverse leads to numerical instability pseudoInv = np.einsum('...ij, ...kj->...ik', unscaled_posterior_covariance, design_matrix) # pseudoInv = np.linalg.solve(S, np.swapaxes(design_matrix, -1, -2)) degrees_of_freedom = compute_degrees_of_freedom(design_matrix, pseudoInv) return unscaled_posterior_covariance, pseudoInv, degrees_of_freedom
def get_data_independent_estimation_quantities(design_matrix, regularization_matrix=None): Q = compute_unscaled_posterior_precision(design_matrix, regularization_matrix) unscaled_posterior_covariance = covariance_from_precision(Q) # TODO: evaluate whether using the explicit inverse leads to numerical instability pseudoInv = np.einsum('...ij, ...kj->...ik', unscaled_posterior_covariance, design_matrix) # pseudoInv = np.linalg.solve(S, np.swapaxes(design_matrix, -1, -2)) degrees_of_freedom = compute_degrees_of_freedom(design_matrix, pseudoInv) return unscaled_posterior_covariance, pseudo_inv, degrees_of_freedom
31,789
def update_group_command(client, args): scim = safe_load_json(args.get('scim')) group_id = scim.get('id') group_name = scim.get('displayName') if not group_id: return_error("You must supply 'id' in the scim data") member_ids_to_add = args.get('memberIdsToAdd') member_ids_to_delete = args.get('memberIdsToDelete') operations = [] member_ids_json_list = [] if member_ids_to_add: if type(member_ids_to_add) is not list: member_ids_to_add = json.loads(member_ids_to_add) for member_id in member_ids_to_add: member_ids_json_list.append( { "value": member_id } ) if member_ids_json_list: operation = { "op": "add", "path": "members", "value": member_ids_json_list } operations.append(operation) if member_ids_to_delete: if type(member_ids_to_delete) is not list: member_ids_to_delete = json.loads(member_ids_to_delete) for member_id in member_ids_to_delete: operation = { "op": "remove", "path": f"members[value eq \"{member_id}\"]" } operations.append(operation) group_input = {'schemas': ["urn:ietf:params:scim:api:messages:2.0:PatchOp"], 'Operations': operations} res = client.update_group(group_id, group_input) res_json = res.json() if res.status_code == 200: generic_iam_context = OutputContext(success=True, id=group_id, displayName=group_name) elif res.status_code == 404: generic_iam_context = OutputContext(success=False, id=group_id, displayName=group_name, errorCode=404, errorMessage="Group/User Not Found or User not a member of group", details=res.json()) else: generic_iam_context = OutputContext(success=False, displayName=group_name, id=group_id, errorCode=res_json.get('code'), errorMessage=res_json.get('message'), details=res_json) readable_output = tableToMarkdown('Oracle Cloud Update Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output )
def update_group_command(client, args): scim = safe_load_json(args.get('scim')) group_id = scim.get('id') group_name = scim.get('displayName') if not group_id: return_error("You must supply 'id' in the scim data") member_ids_to_add = args.get('memberIdsToAdd') member_ids_to_delete = args.get('memberIdsToDelete') operations = [] member_ids_json_list = [] if member_ids_to_add: if type(member_ids_to_add) is not list: member_ids_to_add = json.loads(member_ids_to_add) for member_id in member_ids_to_add: member_ids_json_list.append( { "value": member_id } ) if member_ids_json_list: operation = { "op": "add", "path": "members", "value": member_ids_json_list } operations.append(operation) if member_ids_to_delete: if type(member_ids_to_delete) is not list: member_ids_to_delete = json.loads(member_ids_to_delete) for member_id in member_ids_to_delete: operation = { "op": "remove", "path": f"members[value eq \"{member_id}\"]" } operations.append(operation) group_input = {'schemas': ['urn:ietf:params:scim:api:messages:2.0:PatchOp'], 'Operations': operations} res = client.update_group(group_id, group_input) res_json = res.json() if res.status_code == 200: generic_iam_context = OutputContext(success=True, id=group_id, displayName=group_name) elif res.status_code == 404: generic_iam_context = OutputContext(success=False, id=group_id, displayName=group_name, errorCode=404, errorMessage="Group/User Not Found or User not a member of group", details=res.json()) else: generic_iam_context = OutputContext(success=False, displayName=group_name, id=group_id, errorCode=res_json.get('code'), errorMessage=res_json.get('message'), details=res_json) readable_output = tableToMarkdown('Oracle Cloud Update Group:', generic_iam_context.data, removeNull=True) return CommandResults( raw_response=generic_iam_context.data, outputs_prefix=generic_iam_context.command, outputs_key_field='id', outputs=generic_iam_context.data, readable_output=readable_output )
45,354
def get_benchmarks_shapes(bench_id: str, default: list): """ Get custom benchmarks shapes from a json file stored in MODIN_ASV_DATASIZE_CONFIG. If `bench_id` benchmark is not found in the file, then the default value will be used. Parameters ---------- bench_id : str Unique benchmark identifier that is used to get shapes. default : list Default shapes. Returns ------- list Benchmark shapes. """ try: from modin.config import AsvDatasizeConfig filename = AsvDatasizeConfig.get() except ImportError: filename = os.environ.get("MODIN_ASV_DATASIZE_CONFIG", None) if filename: global CONFIG_FROM_FILE if not CONFIG_FROM_FILE: # should be json with open(filename) as _f: CONFIG_FROM_FILE = json.load(_f) if bench_id in CONFIG_FROM_FILE: # convert strings to tuples; # example: "omnisci.TimeReadCsvNames": ["(5555, 55)", "(3333, 33)"] shapes = [eval(shape) for shape in CONFIG_FROM_FILE[bench_id]] return shapes return default
def get_benchmarks_shapes(bench_id: str, default: list): """ Get custom benchmark shapes from a json file stored in MODIN_ASV_DATASIZE_CONFIG. If `bench_id` benchmark is not found in the file, then the default value will be used. Parameters ---------- bench_id : str Unique benchmark identifier that is used to get shapes. default : list Default shapes. Returns ------- list Benchmark shapes. """ try: from modin.config import AsvDatasizeConfig filename = AsvDatasizeConfig.get() except ImportError: filename = os.environ.get("MODIN_ASV_DATASIZE_CONFIG", None) if filename: global CONFIG_FROM_FILE if not CONFIG_FROM_FILE: # should be json with open(filename) as _f: CONFIG_FROM_FILE = json.load(_f) if bench_id in CONFIG_FROM_FILE: # convert strings to tuples; # example: "omnisci.TimeReadCsvNames": ["(5555, 55)", "(3333, 33)"] shapes = [eval(shape) for shape in CONFIG_FROM_FILE[bench_id]] return shapes return default
59,640
def args_in_kwargs(args, kwargs): """ Take a list and a dictionary, and determine if any entries in the list are keys in the dictionary. This function is used to determine if one of the required arguments is passed to raise a GMTInvalidInput Error. Parameters ---------- args : list List of required arguments, using the GMT short aliases. kwargs : dict The dictionary of kwargs is the format returned by the _preprocess function in BasePlotting in base_plotting.py. The keys are the GMT short aliases of the parameters. """ for arg in args: if arg in list(kwargs.keys()): return True return False
def args_in_kwargs(args, kwargs): """ Take a list and a dictionary, and determine if any entries in the list are keys in the dictionary. This function is used to determine if one of the required arguments is passed to raise a GMTInvalidInput Error. Parameters ---------- args : list List of required arguments, using the GMT short aliases. kwargs : dict The dictionary of kwargs is the format returned by the _preprocess function in BasePlotting in base_plotting.py. The keys are the GMT short aliases of the parameters. Returns -------- bool If one of the required arguments is in `kwargs`. """ for arg in args: if arg in list(kwargs.keys()): return True return False
38,063
def _load_static_earth_relief(**kwargs): """ Load the static_earth_relief file for internal testing. Returns ------- data : xarray.DataArray A grid of Earth relief for internal tests. """ fname = which("@static_earth_relief.nc", download="c") data = xr.open_dataarray(fname) return data
def _load_static_earth_relief(**kwargs): # pylint: disable=unused-argument """ Load the static_earth_relief file for internal testing. Returns ------- data : xarray.DataArray A grid of Earth relief for internal tests. """ fname = which("@static_earth_relief.nc", download="c") data = xr.open_dataarray(fname) return data
31,574
def fetch_incidents(client, first_fetch, max_fetch): """ This function retrieves new incidents every interval (default is 1 minute). """ now = datetime.timestamp(datetime.utcnow()) last_run_object = demisto.getLastRun() last_run = last_run_object.get('time', None) if last_run_object else None if not last_run: if first_fetch: last_run = float(first_fetch) else: last_run = datetime.timestamp(datetime.utcnow() - timedelta(days=1)) result = client.get_incidents(last_run, now) if not result.get('success'): raise DemistoException(f"ERROR: {result['message']}; last_run: {last_run}; now: {now}") lp_incidents = result.get('incidents') incidents = [] if len(lp_incidents) > max_fetch: next_fetch_time = lp_incidents[max_fetch]['detection_timestamp'] lp_incidents = lp_incidents[:max_fetch] else: next_fetch_time = now demisto.info(f"Executing LogPoint fetch_incidents between {last_run} and {next_fetch_time} Timestamp.") for inc in lp_incidents: detection_ts = inc['detection_timestamp'] dt = datetime.utcfromtimestamp(detection_ts) occurred = dt.strftime('%Y-%m-%dT%H:%M:%S.%fZ') incidents.append({ 'name': inc.get('name', 'LogPoint - No name'), 'occurred': occurred, 'severity': get_demisto_severity(inc.get('risk_level')), 'rawJSON': json.dumps(inc) }) demisto.setLastRun({'time': next_fetch_time}) return incidents
def fetch_incidents(client, first_fetch, max_fetch): """ This function retrieves new incidents every interval (default is 1 minute). """ now = datetime.timestamp(datetime.utcnow()) last_run_object = demisto.getLastRun() last_run = last_run_object.get('time', None) if last_run_object else None if not last_run: if first_fetch: last_run = float(first_fetch) else: last_run = datetime.timestamp(datetime.utcnow() - timedelta(days=1)) result = client.get_incidents(last_run, now) if not result.get('success'): raise DemistoException(f"ERROR: {result.get('message')}; last_run: {last_run}; now: {now}") lp_incidents = result.get('incidents') incidents = [] if len(lp_incidents) > max_fetch: next_fetch_time = lp_incidents[max_fetch]['detection_timestamp'] lp_incidents = lp_incidents[:max_fetch] else: next_fetch_time = now demisto.info(f"Executing LogPoint fetch_incidents between {last_run} and {next_fetch_time} Timestamp.") for inc in lp_incidents: detection_ts = inc['detection_timestamp'] dt = datetime.utcfromtimestamp(detection_ts) occurred = dt.strftime('%Y-%m-%dT%H:%M:%S.%fZ') incidents.append({ 'name': inc.get('name', 'LogPoint - No name'), 'occurred': occurred, 'severity': get_demisto_severity(inc.get('risk_level')), 'rawJSON': json.dumps(inc) }) demisto.setLastRun({'time': next_fetch_time}) return incidents
22,063
def parse_message(xml): """ 解析微信服务器推送的 XML 消息 :param xml: XML 消息 :return: 解析成功返回对应的消息或事件,否则返回 ``UnknownMessage`` """ if not xml: return message = xmltodict.parse(to_text(xml))['xml'] message_type = message['MsgType'].lower() event_type = None if message_type == 'event' or message_type.startswith('device_'): if 'Event' in message: event_type = message['Event'].lower() # special event type for device_event if event_type is None and message_type.startswith('device_'): event_type = message_type elif message_type.startswith('device_'): event_type = 'device_{event}'.format(event=event_type) if event_type == 'subscribe' and message.get('EventKey'): event_key = message['EventKey'] if event_key.startswith(('scanbarcode|', 'scanimage|')): event_type = 'subscribe_scan_product' message['Event'] = event_type elif event_key.startswith('qrscene_'): # Scan to subscribe with scene id event event_type = 'subscribe_scan' message['Event'] = event_type message['EventKey'] = event_key[8:] message_class = EVENT_TYPES.get(event_type, UnknownMessage) else: message_class = MESSAGE_TYPES.get(message_type, UnknownMessage) return message_class(message)
def parse_message(xml): """ 解析微信服务器推送的 XML 消息 :param xml: XML 消息 :return: 解析成功返回对应的消息或事件,否则返回 ``UnknownMessage`` """ if not xml: return message = xmltodict.parse(to_text(xml))['xml'] message_type = message['MsgType'].lower() event_type = None if message_type == 'event' or message_type.startswith('device_'): if 'Event' in message: event_type = message['Event'].lower() # special event type for device_event if event_type is None and message_type.startswith('device_'): event_type = message_type elif message_type.startswith('device_'): event_type = 'device_{event}'.format(event=event_type) if event_type == 'subscribe' and message.get('EventKey'): event_key = message['EventKey'] if event_key.startswith(('scanbarcode|', 'scanimage|')): event_type = 'subscribe_scan_product' message['Event'] = event_type elif event_key.startswith('qrscene_'): # Scan to subscribe with scene id event event_type = 'subscribe_scan' message['Event'] = event_type message['EventKey'] = event_key[len('qrscene_'):] message_class = EVENT_TYPES.get(event_type, UnknownMessage) else: message_class = MESSAGE_TYPES.get(message_type, UnknownMessage) return message_class(message)
39,273
def cell_array(mesh, name): """Return cell scalars of a vtk object.""" vtkarr = mesh.GetCellData().GetAbstractArray(name) return convert_array(vtkarr)
def cell_array(mesh, name): """Return cell array of a vtk object.""" vtkarr = mesh.GetCellData().GetAbstractArray(name) return convert_array(vtkarr)
15,956
def get_resource(domain_name: str, domain_data: ConfigType) -> str: """Return the resource for the specified domain_data.""" if domain_name in ["switch", "light"]: return str(domain_data["output"]) if domain_name in ["binary_sensor", "sensor"]: return str(domain_data["source"]) if domain_name == "cover": return str(domain_data["motor"]) if domain_name == "climate": return f'{domain_data["source"]}.{domain_data["setpoint"]}' if domain_name == "scene": return f'{domain_data["register"]}.{domain_data["scene"]}' raise ValueError("Unknown domain")
def get_resource(domain_name: str, domain_data: ConfigType) -> str: """Return the resource for the specified domain_data.""" if domain_name in ["switch", "light"]: return Cast(str, domain_data["output"]) if domain_name in ["binary_sensor", "sensor"]: return str(domain_data["source"]) if domain_name == "cover": return str(domain_data["motor"]) if domain_name == "climate": return f'{domain_data["source"]}.{domain_data["setpoint"]}' if domain_name == "scene": return f'{domain_data["register"]}.{domain_data["scene"]}' raise ValueError("Unknown domain")
17,652
def _make_github_repos( github_login, github_passwd, github_organization, rinfo, existing, access_protocol, dryrun): res = [] if not rinfo: return res # no need to even try! ncredattempts = 0 # determine the entity under which to create the repos. It might be that # we would need to check a few credentials for entity, cred in _gen_github_entity( github_login, github_passwd, github_organization): lgr.debug("Using entity %s with credential %s", entity, cred) ncredattempts += 1 for ds, reponame in rinfo: lgr.debug("Trying to create %s for %s", reponame, ds) try: res_ = _make_github_repo( github_login, entity, reponame, existing, access_protocol, dryrun) # output will contain whatever is returned by _make_github_repo # but with a dataset prepended to the record res.append((ds,) + assure_tuple_or_list(res_)) except (gh.BadCredentialsException, gh.GithubException) as e: if not isinstance(e, gh.BadCredentialsException) and e.status != 403: # e.g. while deleting a repository, just a generic GithubException is # raised but code is 403. That one we process, the rest - re-rase raise if res: # so we have succeeded with at least one repo already - # we should not try any other credential. # TODO: may be it would make sense to have/use different # credentials for different datasets e.g. if somehow spread # across different organizations? but it is not the case here # IMHO (-- yoh) raise e # things blew up, wipe out cred store, if anything is in it if cred: lgr.warning("Authentication failed using %s.", cred.name) else: lgr.warning("Authentication failed using a token.") break # go to the next attempt to authenticate if res: return res # External loop should stop querying for the next possible way when it succeeds, # so we should never get here if everything worked out if ncredattempts: raise AccessDeniedError( "Tried %d times to get authenticated access to GitHub but kept failing" % ncredattempts ) else: raise RuntimeError("Did not even try to create a repo on github")
def _make_github_repos( github_login, github_passwd, github_organization, rinfo, existing, access_protocol, dryrun): res = [] if not rinfo: return res # no need to even try! ncredattempts = 0 # determine the entity under which to create the repos. It might be that # we would need to check a few credentials for entity, cred in _gen_github_entity( github_login, github_passwd, github_organization): lgr.debug("Using entity %s with credential %s", entity, cred) ncredattempts += 1 for ds, reponame in rinfo: lgr.debug("Trying to create %s for %s", reponame, ds) try: res_ = _make_github_repo( github_login, entity, reponame, existing, access_protocol, dryrun) # output will contain whatever is returned by _make_github_repo # but with a dataset prepended to the record res.append((ds,) + assure_tuple_or_list(res_)) except (gh.BadCredentialsException, gh.GithubException) as e: if not isinstance(e, gh.BadCredentialsException) and e.status != 403: # e.g. while deleting a repository, just a generic GithubException is # raised but code is 403. That one we process, the rest - re-raise raise if res: # so we have succeeded with at least one repo already - # we should not try any other credential. # TODO: may be it would make sense to have/use different # credentials for different datasets e.g. if somehow spread # across different organizations? but it is not the case here # IMHO (-- yoh) raise e # things blew up, wipe out cred store, if anything is in it if cred: lgr.warning("Authentication failed using %s.", cred.name) else: lgr.warning("Authentication failed using a token.") break # go to the next attempt to authenticate if res: return res # External loop should stop querying for the next possible way when it succeeds, # so we should never get here if everything worked out if ncredattempts: raise AccessDeniedError( "Tried %d times to get authenticated access to GitHub but kept failing" % ncredattempts ) else: raise RuntimeError("Did not even try to create a repo on github")
54,444
def test_mean_decrease_impurity_importance_evaluator_max_depth() -> None: # Assumes that `seed` can be fixed to reproduce identical results. study = create_study() study.optimize(objective, n_trials=3) evaluator = MeanDecreaseImpurityImportanceEvaluator(max_depth=1, seed=0) param_importance = evaluator.evaluate(study) evaluator = MeanDecreaseImpurityImportanceEvaluator(max_depth=2, seed=0) param_importance_different_n_trees = evaluator.evaluate(study) assert param_importance != param_importance_different_n_trees
def test_mean_decrease_impurity_importance_evaluator_max_depth() -> None: # Assumes that `seed` can be fixed to reproduce identical results. study = create_study() study.optimize(objective, n_trials=3) evaluator = MeanDecreaseImpurityImportanceEvaluator(max_depth=1, seed=0) param_importance = evaluator.evaluate(study) evaluator = MeanDecreaseImpurityImportanceEvaluator(max_depth=2, seed=0) param_importance_different_max_depth = evaluator.evaluate(study) assert param_importance != param_importance_different_max_depth
45,832
def reproject_disparity_to_3D(disparity_tensor: torch.Tensor, Q_matrix: torch.Tensor) -> torch.Tensor: """ Reproject the disparity tensor to a 3D point cloud. Args: disparity_tensor (torch.Tensor): Disparity tensor of shape :math:`(B, H, W)`. Q_matrix (torch.Tensor): Tensor of Q matrices of shapes :math:`(B, 4, 4)`. Returns: torch.Tensor: The 3D point cloud of shape :math:`(B, H * W, 3)` """ _check_Q_matrix(Q_matrix) _check_disparity_tensor(disparity_tensor) batch_size, rows, cols = disparity_tensor.shape dtype = disparity_tensor.dtype device = disparity_tensor.device homogenous_observation_ndim = 4 euclidian_observation_ndim = homogenous_observation_ndim - 1 # Construct a mesh grid of uv values, i.e. the tensors will contain 1:rows and 1:cols. u, v = torch.meshgrid( torch.arange(rows, dtype=dtype, device=device), torch.arange(cols, dtype=dtype, device=device) ) u, v = u.expand(batch_size, -1, -1), v.expand(batch_size, -1, -1) # The z dimension in homogenous coordinates are just 1. z = torch.ones((batch_size, rows, cols), dtype=dtype, device=device) # Stack the observations into a tensor of shape (batch_size, 4, -1) that contains all # 4 dimensional vectors [u v disparity 1]. uvdz = torch.stack((u, v, disparity_tensor, z), 1).reshape(batch_size, homogenous_observation_ndim, -1) # Matrix multiply all vectors with the Q matrix hom_points = torch.bmm(Q_matrix, uvdz) # Convert from homogenous to euclidian space. z_points = torch.unsqueeze(hom_points[:, euclidian_observation_ndim], 1) points = (hom_points / z_points)[:, :euclidian_observation_ndim] points = points.permute(0, 2, 1) # Final check that everything went well. if not points.shape == (batch_size, rows * cols, euclidian_observation_ndim): raise StereoException( f"Something went wrong in `reproject_disparity_to_3D`. Expected the final output" f"to be of shape {(batch_size, rows * cols, euclidian_observation_ndim)}." f"But the computed point cloud had shape {points.shape}. " f"Please ensure input are correct. If this is an error, please submit an issue." ) return points
def reproject_disparity_to_3D(disparity_tensor: torch.Tensor, Q_matrix: torch.Tensor) -> torch.Tensor: """ Reproject the disparity tensor to a 3D point cloud. Args: disparity_tensor (torch.Tensor): Disparity tensor of shape :math:`(B, 1, H, W)`. Q_matrix (torch.Tensor): Tensor of Q matrices of shapes :math:`(B, 4, 4)`. Returns: torch.Tensor: The 3D point cloud of shape :math:`(B, H * W, 3)` """ _check_Q_matrix(Q_matrix) _check_disparity_tensor(disparity_tensor) batch_size, rows, cols = disparity_tensor.shape dtype = disparity_tensor.dtype device = disparity_tensor.device homogenous_observation_ndim = 4 euclidian_observation_ndim = homogenous_observation_ndim - 1 # Construct a mesh grid of uv values, i.e. the tensors will contain 1:rows and 1:cols. u, v = torch.meshgrid( torch.arange(rows, dtype=dtype, device=device), torch.arange(cols, dtype=dtype, device=device) ) u, v = u.expand(batch_size, -1, -1), v.expand(batch_size, -1, -1) # The z dimension in homogenous coordinates are just 1. z = torch.ones((batch_size, rows, cols), dtype=dtype, device=device) # Stack the observations into a tensor of shape (batch_size, 4, -1) that contains all # 4 dimensional vectors [u v disparity 1]. uvdz = torch.stack((u, v, disparity_tensor, z), 1).reshape(batch_size, homogenous_observation_ndim, -1) # Matrix multiply all vectors with the Q matrix hom_points = torch.bmm(Q_matrix, uvdz) # Convert from homogenous to euclidian space. z_points = torch.unsqueeze(hom_points[:, euclidian_observation_ndim], 1) points = (hom_points / z_points)[:, :euclidian_observation_ndim] points = points.permute(0, 2, 1) # Final check that everything went well. if not points.shape == (batch_size, rows * cols, euclidian_observation_ndim): raise StereoException( f"Something went wrong in `reproject_disparity_to_3D`. Expected the final output" f"to be of shape {(batch_size, rows * cols, euclidian_observation_ndim)}." f"But the computed point cloud had shape {points.shape}. " f"Please ensure input are correct. If this is an error, please submit an issue." ) return points
20,771
def get_different_messages(messages_original: List[Msg], messages_new: List[Msg]) -> List[Msg]: # Return messages that have changed in messages_new different_messages = [] for m_new in messages_new: for m_original in messages_original: if m_new.msgstr != m_original.msgstr \ and m_new.msgid == m_original.msgid and m_new.msgctxt == m_original.msgctxt \ and m_new.msgid != 'msgid ""\n': different_messages.append(m_new) return different_messages
def getDifferentMessages(messages_original: List[Msg], messages_new: List[Msg]) -> List[Msg]: # Return messages that have changed in messages_new different_messages = [] for m_new in messages_new: for m_original in messages_original: if m_new.msgstr != m_original.msgstr \ and m_new.msgid == m_original.msgid and m_new.msgctxt == m_original.msgctxt \ and m_new.msgid != 'msgid ""\n': different_messages.append(m_new) return different_messages
28,585
def plot_mcse( idata, var_names=None, filter_vars=None, coords=None, errorbar=False, grid=None, figsize=None, textsize=None, extra_methods=False, rug=False, rug_kind="diverging", n_points=20, labeller=None, ax=None, rug_kwargs=None, extra_kwargs=None, text_kwargs=None, backend=None, backend_kwargs=None, show=None, **kwargs ): """Plot quantile or local Monte Carlo Standard Error. Parameters ---------- idata: obj Any object that can be converted to an :class:`arviz.InferenceData` object Refer to documentation of :func:`arviz.convert_to_dataset` for details var_names: list of variable names, optional Variables to be plotted. Prefix the variables by ``~`` when you want to exclude them from the plot. filter_vars: {None, "like", "regex"}, optional, default=None If `None` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la `pandas.filter`. coords: dict, optional Coordinates of var_names to be plotted. Passed to :meth:`xarray.Dataset.sel <xarray:xarray.Dataset.sel>` errorbar: bool, optional Plot quantile value +/- mcse instead of plotting mcse. grid : tuple Number of rows and columns. Defaults to None, the rows and columns are automatically inferred. figsize: tuple, optional Figure size. If None it will be defined automatically. textsize: float, optional Text size scaling factor for labels, titles and lines. If None it will be autoscaled based on figsize. extra_methods: bool, optional Plot mean and sd MCSE as horizontal lines. Only taken into account when ``errorbar=False``. rug: bool Plot rug plot of values diverging or that reached the max tree depth. rug_kind: bool Variable in sample stats to use as rug mask. Must be a boolean variable. n_points: int Number of points for which to plot their quantile/local ess or number of subsets in the evolution plot. labeller : labeller instance, optional Class providing the method `make_label_vert` to generate the labels in the plot titles. Read the :ref:`label_guide` for more details and usage examples. ax: numpy array-like of matplotlib axes or bokeh figures, optional A 2D array of locations into which to plot the densities. If not supplied, Arviz will create its own array of plot areas (and return it). rug_kwargs: dict kwargs passed to rug plot in :meth:`mpl:matplotlib.axes.Axes.plot` or :class:`bokeh:bokeh.models.glyphs.Scatter` extra_kwargs: dict, optional kwargs passed as extra method lines in :meth:`mpl:matplotlib.axes.Axes.axhline` or :class:`bokeh:bokeh.models.Span` text_kwargs: dict, optional kwargs passed to :meth:`mpl:matplotlib.axes.Axes.annotate` for extra methods lines labels. It accepts the additional key ``x`` to set ``xy=(text_kwargs["x"], mcse)`` backend: str, optional Select plotting backend {"matplotlib","bokeh"}. Default "matplotlib". backend_kwargs: bool, optional These are kwargs specific to the backend being passed to :func:`matplotlib.create_axes_grid` or :func:`bokeh.create_axes_grid` show: bool, optional Call backend show function. **kwargs Passed as-is to :meth:`mpl:matplotlib.axes.Axes.hist` or :meth:`mpl:matplotlib.axes.Axes.plot` in matplotlib depending on the value of `kind`. Returns ------- axes: matplotlib axes or bokeh figures References ---------- * Vehtari et al. (2019) see https://arxiv.org/abs/1903.08008 Examples -------- Plot quantile Monte Carlo Standard Error. .. plot:: :context: close-figs >>> import arviz as az >>> idata = az.load_arviz_data("centered_eight") >>> coords = {"school": ["Deerfield", "Lawrenceville"]} >>> az.plot_mcse( ... idata, var_names=["mu", "theta"], coords=coords ... ) """ mean_mcse = None sd_mcse = None if coords is None: coords = {} if "chain" in coords or "draw" in coords: raise ValueError("chain and draw are invalid coordinates for this kind of plot") if labeller is None: labeller = BaseLabeller() data = get_coords(convert_to_dataset(idata, group="posterior"), coords) var_names = _var_names(var_names, data, filter_vars) probs = np.linspace(1 / n_points, 1 - 1 / n_points, n_points) mcse_dataset = xr.concat( [mcse(data, var_names=var_names, method="quantile", prob=p) for p in probs], dim="mcse_dim" ) plotters = filter_plotters_list( list(xarray_var_iter(mcse_dataset, var_names=var_names, skip_dims={"mcse_dim"})), "plot_mcse", ) length_plotters = len(plotters) rows, cols = default_grid(length_plotters, grid=grid) if extra_methods: mean_mcse = mcse(data, var_names=var_names, method="mean") sd_mcse = mcse(data, var_names=var_names, method="sd") mcse_kwargs = dict( ax=ax, plotters=plotters, length_plotters=length_plotters, rows=rows, cols=cols, figsize=figsize, errorbar=errorbar, rug=rug, data=data, probs=probs, kwargs=kwargs, extra_methods=extra_methods, mean_mcse=mean_mcse, sd_mcse=sd_mcse, textsize=textsize, labeller=labeller, text_kwargs=text_kwargs, rug_kwargs=rug_kwargs, extra_kwargs=extra_kwargs, idata=idata, rug_kind=rug_kind, backend_kwargs=backend_kwargs, show=show, ) if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() # TODO: Add backend kwargs plot = get_plotting_function("plot_mcse", "mcseplot", backend) ax = plot(**mcse_kwargs) return ax
def plot_mcse( idata, var_names=None, filter_vars=None, coords=None, errorbar=False, grid=None, figsize=None, textsize=None, extra_methods=False, rug=False, rug_kind="diverging", n_points=20, labeller=None, ax=None, rug_kwargs=None, extra_kwargs=None, text_kwargs=None, backend=None, backend_kwargs=None, show=None, **kwargs ): """Plot quantile or local Monte Carlo Standard Error. Parameters ---------- idata: obj Any object that can be converted to an :class:`arviz.InferenceData` object Refer to documentation of :func:`arviz.convert_to_dataset` for details var_names: list of variable names, optional Variables to be plotted. Prefix the variables by ``~`` when you want to exclude them from the plot. filter_vars: {None, "like", "regex"}, optional, default=None If `None` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la `pandas.filter`. coords: dict, optional Coordinates of var_names to be plotted. Passed to :meth:`xarray.Dataset.sel <xarray:xarray.Dataset.sel>` errorbar: bool, optional Plot quantile value +/- mcse instead of plotting mcse. grid : tuple Number of rows and columns. Defaults to None, the rows and columns are automatically inferred. figsize: tuple, optional Figure size. If None it will be defined automatically. textsize: float, optional Text size scaling factor for labels, titles and lines. If None it will be autoscaled based on figsize. extra_methods: bool, optional Plot mean and sd MCSE as horizontal lines. Only taken into account when ``errorbar=False``. rug: bool Plot rug plot of values diverging or that reached the max tree depth. rug_kind: bool Variable in sample stats to use as rug mask. Must be a boolean variable. n_points: int Number of points for which to plot their quantile/local ess or number of subsets in the evolution plot. labeller : labeller instance, optional Class providing the method `make_label_vert` to generate the labels in the plot titles. Read the :ref:`label_guide` for more details and usage examples. ax: numpy array-like of matplotlib axes or bokeh figures, optional A 2D array of locations into which to plot the densities. If not supplied, Arviz will create its own array of plot areas (and return it). rug_kwargs: dict kwargs passed to rug plot in :meth:`mpl:matplotlib.axes.Axes.plot` or :class:`bokeh:bokeh.models.glyphs.Scatter` extra_kwargs: dict, optional kwargs passed as extra method lines in :meth:`mpl:matplotlib.axes.Axes.axhline` or :class:`bokeh:bokeh.models.Span` text_kwargs: dict, optional kwargs passed to :meth:`mpl:matplotlib.axes.Axes.annotate` for extra methods lines labels. It accepts the additional key ``x`` to set ``xy=(text_kwargs["x"], mcse)`` backend: str, optional Select plotting backend {"matplotlib","bokeh"}. Default "matplotlib". backend_kwargs: bool, optional These are kwargs specific to the backend being passed to :func:`matplotlib.pyplot.subplots` or :func:`bokeh.plotting.figure`. show: bool, optional Call backend show function. **kwargs Passed as-is to :meth:`mpl:matplotlib.axes.Axes.hist` or :meth:`mpl:matplotlib.axes.Axes.plot` in matplotlib depending on the value of `kind`. Returns ------- axes: matplotlib axes or bokeh figures References ---------- * Vehtari et al. (2019) see https://arxiv.org/abs/1903.08008 Examples -------- Plot quantile Monte Carlo Standard Error. .. plot:: :context: close-figs >>> import arviz as az >>> idata = az.load_arviz_data("centered_eight") >>> coords = {"school": ["Deerfield", "Lawrenceville"]} >>> az.plot_mcse( ... idata, var_names=["mu", "theta"], coords=coords ... ) """ mean_mcse = None sd_mcse = None if coords is None: coords = {} if "chain" in coords or "draw" in coords: raise ValueError("chain and draw are invalid coordinates for this kind of plot") if labeller is None: labeller = BaseLabeller() data = get_coords(convert_to_dataset(idata, group="posterior"), coords) var_names = _var_names(var_names, data, filter_vars) probs = np.linspace(1 / n_points, 1 - 1 / n_points, n_points) mcse_dataset = xr.concat( [mcse(data, var_names=var_names, method="quantile", prob=p) for p in probs], dim="mcse_dim" ) plotters = filter_plotters_list( list(xarray_var_iter(mcse_dataset, var_names=var_names, skip_dims={"mcse_dim"})), "plot_mcse", ) length_plotters = len(plotters) rows, cols = default_grid(length_plotters, grid=grid) if extra_methods: mean_mcse = mcse(data, var_names=var_names, method="mean") sd_mcse = mcse(data, var_names=var_names, method="sd") mcse_kwargs = dict( ax=ax, plotters=plotters, length_plotters=length_plotters, rows=rows, cols=cols, figsize=figsize, errorbar=errorbar, rug=rug, data=data, probs=probs, kwargs=kwargs, extra_methods=extra_methods, mean_mcse=mean_mcse, sd_mcse=sd_mcse, textsize=textsize, labeller=labeller, text_kwargs=text_kwargs, rug_kwargs=rug_kwargs, extra_kwargs=extra_kwargs, idata=idata, rug_kind=rug_kind, backend_kwargs=backend_kwargs, show=show, ) if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() # TODO: Add backend kwargs plot = get_plotting_function("plot_mcse", "mcseplot", backend) ax = plot(**mcse_kwargs) return ax
54,293
def tmu(mu, data, pdf, init_pars, par_bounds): r""" The test statistic, :math:`t_{\mu}`, for establishing an two-sided intervals on the strength parameter, :math:`\mu`. Args: mu (Number or Tensor): The signal strength parameter data (Tensor): The data to be considered pdf (~pyhf.pdf.Model): The HistFactory statistical model used in the likelihood ratio calculation init_pars (`list`): Values to initialize the model parameters at for the fit par_bounds (`list` of `list`\s or `tuple`\s): The extrema of values the model parameters are allowed to reach in the fit Returns: Float: The calculated test statistic, :math:`q_{\mu}` """ if pdf.config.poi_index is None: raise UnspecifiedPOI( 'No POI is defined. A POI is required for profile likelihood based test statistics.' ) if par_bounds[pdf.config.poi_index][0] == 0: log.warning( 'tmu test statistic used for fit configuration with POI bounded at zero. Use qmutilde.' ) return _tmu_like(mu, data, pdf, init_pars, par_bounds)
def tmu(mu, data, pdf, init_pars, par_bounds): r""" The test statistic, :math:`t_{\mu}`, for establishing an two-sided intervals on the strength parameter, :math:`\mu`. Args: mu (Number or Tensor): The signal strength parameter data (Tensor): The data to be considered pdf (~pyhf.pdf.Model): The HistFactory statistical model used in the likelihood ratio calculation init_pars (`list`): Values to initialize the model parameters at for the fit par_bounds (`list` of `list`\s or `tuple`\s): The extrema of values the model parameters are allowed to reach in the fit Returns: Float: The calculated test statistic, :math:`q_{\mu}` """ if pdf.config.poi_index is None: raise UnspecifiedPOI( 'No POI is defined. A POI is required for profile likelihood based test statistics.' ) if par_bounds[pdf.config.poi_index][0] == 0: log.warning( 'tmu test statistic used for fit configuration with POI bounded at zero.\n' + 'Use the tmu_tilde test statistic (pyhf.infer.test_statistics.tmu_tilde) instead.' ) return _tmu_like(mu, data, pdf, init_pars, par_bounds)
32,570
def denote_file(args): should_continue = True file = demisto.get(args, 'file') feDone = False feSubmissionKeys = {} # profiles = ['win10x64','win7-sp1','win7x64-sp1','winxp-sp3'] profiles = argToList(args['profiles']) analysistype = args.get('analysistype', 0) prefetch = args.get('prefetch', 1) # Make sure fireeye available if demisto.executeCommand('IsIntegrationAvailable', {'brandname': 'fireeye'})[0]['Contents'] != 'yes': feDone = True # Upload file and get submission_key if not feDone: bArgs = {'analysistype': analysistype, 'application': '0', 'force': "true", 'prefetch': prefetch, 'priority': "1", 'timeout': "180", 'upload': file} for profile in profiles: bArgs['profiles'] = profile resp = demisto.executeCommand('fe-submit', bArgs) if isError(resp[0]): demisto.results(resp) should_continue = False break else: feSubmissionKey = demisto.get(resp[0], 'Contents') if isinstance(feSubmissionKey, str): feSubmissionKey = json.loads(feSubmissionKey) feSubmissionKeys[profile] = demisto.get(feSubmissionKey[0], 'ID') else: demisto.results({"Type": entryTypes["error"], "ContentsFormat": formats["text"], "Contents": 'FireEye: Integration not available.'}) should_continue = False if should_continue: poll_stage(feDone, feSubmissionKeys, profiles, file)
def detonate_file(args): should_continue = True file = demisto.get(args, 'file') feDone = False feSubmissionKeys = {} # profiles = ['win10x64','win7-sp1','win7x64-sp1','winxp-sp3'] profiles = argToList(args['profiles']) analysistype = args.get('analysistype', 0) prefetch = args.get('prefetch', 1) # Make sure fireeye available if demisto.executeCommand('IsIntegrationAvailable', {'brandname': 'fireeye'})[0]['Contents'] != 'yes': feDone = True # Upload file and get submission_key if not feDone: bArgs = {'analysistype': analysistype, 'application': '0', 'force': "true", 'prefetch': prefetch, 'priority': "1", 'timeout': "180", 'upload': file} for profile in profiles: bArgs['profiles'] = profile resp = demisto.executeCommand('fe-submit', bArgs) if isError(resp[0]): demisto.results(resp) should_continue = False break else: feSubmissionKey = demisto.get(resp[0], 'Contents') if isinstance(feSubmissionKey, str): feSubmissionKey = json.loads(feSubmissionKey) feSubmissionKeys[profile] = demisto.get(feSubmissionKey[0], 'ID') else: demisto.results({"Type": entryTypes["error"], "ContentsFormat": formats["text"], "Contents": 'FireEye: Integration not available.'}) should_continue = False if should_continue: poll_stage(feDone, feSubmissionKeys, profiles, file)
8,899
def test_list_parse_legacy_coma(): option = types.ListAttribute('foo') assert option.parse("""value 1, # value 2, value 3""") == [ 'value 1', '# value 2', 'value 3', ]
def test_list_parse_legacy_comma(): option = types.ListAttribute('foo') assert option.parse("""value 1, # value 2, value 3""") == [ 'value 1', '# value 2', 'value 3', ]
47,992
def add_page(output_root, parent, *, id=None, path=None, title=None): if parent.tag == 'tab': parent.attrib['type'] = 'usergroup' element = ET.SubElement(parent, 'tab', type='user', title=title, url='@ref ' + id if id else '') if not path: assert title, "title must be specified if path isn't" element.attrib['title'] = title return element output_path = output_root / path output_path.parent.mkdir(parents=True, exist_ok=True) with (OMZ_ROOT / path).open('r', encoding='utf-8') as input_file: lines = input_file.readlines() page = omzdocs.DocumentationPage(''.join(lines)) if page.title is None: raise RuntimeError(f'{path}: must begin with level 1 heading') if not title: title = page.title element.attrib['title'] = title # the only way to override the ID that Doxygen gives Markdown pages # is to add a label to the top-level heading. For simplicity, we hardcode # the assumption that the file immediately begins with that heading. if not lines[0].startswith('# '): raise RuntimeError(f'{path}: line 1 must contain the level 1 heading') assert id, "id must be specified if path is" lines[0] = lines[0].rstrip('\n') + f' {{#{id}}}\n' with (output_root / path).open('w', encoding='utf-8') as output_file: output_file.writelines(lines) # copy all referenced images image_urls = [ref.url for ref in page.external_references() if ref.type == 'image'] for image_url in image_urls: parsed_image_url = urllib.parse.urlparse(image_url) if parsed_image_url.scheme or parsed_image_url.netloc: continue # not a relative URL image_rel_path = path.parent / urllib.request.url2pathname(parsed_image_url.path) image_filename = image_rel_path.name image_abs_path = (OMZ_ROOT / image_rel_path).resolve() if image_filename in all_images_paths and all_images_paths[image_filename] != image_abs_path: raise RuntimeError(f'{path}: Image with "{image_filename}" filename already exists. ' f'Rename "{image_rel_path}" to unique name.') else: all_images_paths[image_filename] = image_abs_path (output_root / image_rel_path.parent).mkdir(parents=True, exist_ok=True) shutil.copyfile(image_abs_path, output_root / image_rel_path) return element
def add_page(output_root, parent, *, id=None, path=None, title=None): if parent.tag == 'tab': parent.attrib['type'] = 'usergroup' element = ET.SubElement(parent, 'tab', type='user', title=title, url='@ref ' + id if id else '') if not path: assert title, "title must be specified if path isn't" element.attrib['title'] = title return element output_path = output_root / path output_path.parent.mkdir(parents=True, exist_ok=True) with (OMZ_ROOT / path).open('r', encoding='utf-8') as input_file: lines = input_file.readlines() page = omzdocs.DocumentationPage(''.join(lines)) if page.title is None: raise RuntimeError(f'{path}: must begin with level 1 heading') if not title: title = page.title element.attrib['title'] = title # the only way to override the ID that Doxygen gives Markdown pages # is to add a label to the top-level heading. For simplicity, we hardcode # the assumption that the file immediately begins with that heading. if not lines[0].startswith('# '): raise RuntimeError(f'{path}: line 1 must contain the level 1 heading') assert id, "id must be specified if path is" lines[0] = lines[0].rstrip('\n') + f' {{#{id}}}\n' with (output_root / path).open('w', encoding='utf-8') as output_file: output_file.writelines(lines) # copy all referenced images image_urls = [ref.url for ref in page.external_references() if ref.type == 'image'] for image_url in image_urls: parsed_image_url = urllib.parse.urlparse(image_url) if parsed_image_url.scheme or parsed_image_url.netloc: continue # not a relative URL image_rel_path = path.parent / urllib.request.url2pathname(parsed_image_url.path) image_filename = image_rel_path.name image_abs_path = (OMZ_ROOT / image_rel_path).resolve() if image_filename in all_images_paths and all_images_paths[image_filename] != image_abs_path: raise RuntimeError(f'{path}: Image with "{image_filename}" filename already exists. ' f'Rename "{image_rel_path}" to unique name.') all_images_paths[image_filename] = image_abs_path (output_root / image_rel_path.parent).mkdir(parents=True, exist_ok=True) shutil.copyfile(image_abs_path, output_root / image_rel_path) return element
31,791
def collect_entries_data_from_response(parsed_feed_data: FeedParserDict, limit: Union[int, None]) -> List[Dict[str, Any]]: """Collects relevant data from the parsed RSS feed entries. Args: parsed_feed_data (FeedParserDict): Parsed RSS feed data. limit (Union[int, None]): Maximum number of results to return. Returns: List[Dict[str, Any]]: The data from the RSS feed relevant for the widget. """ entries_data: List[Dict[str, Any]] = [] if not parsed_feed_data: raise DemistoException("Could not parse feed data.") if not limit: return entries_data for entry in reversed(parsed_feed_data.entries): if entry: published = email.utils.parsedate(entry.published) if not published: continue published_dt = datetime.fromtimestamp(mktime(published)) published_formatted = published_dt.strftime('%B %-d, %Y %-I:%M %p') entries_data.append( { 'timestamp': published_formatted, 'link': entry.get('link'), 'title': entry.get('title'), 'summary': entry.get('summary'), 'author': entry.get('author') } ) if limit != 'all': limit -= 1 if limit == 0: break return entries_data
def collect_entries_data_from_response(parsed_feed_data: FeedParserDict, limit: Union[int, None]) -> List[Dict[str, Any]]: """Collects relevant data from the parsed RSS feed entries. Args: parsed_feed_data (FeedParserDict): Parsed RSS feed data. limit (Union[int, None]): Maximum number of results to return. Returns: List[Dict[str, Any]]: The data from the RSS feed relevant for the widget. """ entries_data: List[Dict[str, Any]] = [] if not parsed_feed_data: raise DemistoException("Could not parse feed data.") if not limit: return entries_data for entry in reversed(parsed_feed_data.entries): if entry: published = email.utils.parsedate(entry.published) if not published: continue published_dt = datetime.fromtimestamp(mktime(published)) published_formatted = published_dt.strftime('%B %-d, %Y %-I:%M %p') entries_data.append( { 'timestamp': published_formatted, 'link': entry.get('link'), 'title': entry.get('title'), 'summary': entry.get('summary'), 'author': entry.get('author'), } ) if limit != 'all': limit -= 1 if limit == 0: break return entries_data
17,396
def to_cftime_datetime(date_str_or_date, calendar=None): cftime_datetime_base = _import_cftime_datetime_base() if isinstance(date_str_or_date, str): if calendar is None: raise ValueError( "If converting a string to a cftime datetime object, " "a calendar type must be provided" ) date, _ = _parse_iso8601_with_reso(get_date_type(calendar), date_str_or_date) return date elif isinstance(date_str_or_date, cftime_datetime_base): return date_str_or_date else: raise TypeError( "date_str_or_date must be a string or a " "subclass of cftime.datetime_base. Instead got " "{!r}.".format(date_str_or_date) )
def to_cftime_datetime(date_str_or_date, calendar=None): cftime_datetime_base = _import_cftime_datetime_base() if isinstance(date_str_or_date, str): if calendar is None: raise ValueError( "If converting a string to a cftime datetime object, " "a calendar type must be provided" ) date, _ = _parse_iso8601_with_reso(get_date_type(calendar), date_str_or_date) return date elif isinstance(date_str_or_date, cftime_datetime_base): return date_str_or_date else: raise TypeError( "date_str_or_date must be a string or a " "subclass of cftime.datetime_base (formerly cftime.datetime). Instead got " "{!r}.".format(date_str_or_date) )
30,920
def main(): args = demisto.args() value = args.get("value") if type(value) == str: try: value = json.loads(value) except Exception as err: return_error("The input is not valid JSON") expression = args.get("expression") result = jmespath_search(expression, value) return_results(result)
def main(): args = demisto.args() value = args.get("value") if isinstance(value, str): try: value = json.loads(value) except Exception as err: return_error("The input is not valid JSON") expression = args.get("expression") result = jmespath_search(expression, value) return_results(result)
17,528
def expand_sdk_name(name): if name in ('latest', 'sdk-latest', 'latest-64bit', 'sdk-latest-64bit'): # This is effectly the default SDK return str(find_latest_releases_sdk('upstream')) elif name in ('latest-fastcomp', 'latest-releases-fastcomp'): return str(find_latest_releases_sdk('fastcomp')) elif name in ('latest-upstream', 'latest-clang-upstream', 'latest-releases-upstream'): return str(find_latest_releases_sdk('upstream')) elif name in ('tot', 'sdk-tot'): return str(find_tot_sdk('upstream')) elif name == 'tot-upstream': return str(find_tot_sdk('upstream')) elif name in ('tot-fastcomp', 'sdk-nightly-latest'): return str(find_tot_sdk('fastcomp')) else: # check if it's a release handled by an emscripten-releases version, # and if so use that by using the right hash. we support a few notations, # x.y.z[-(upstream|fastcomp_]) # sdk-x.y.z[-(upstream|fastcomp_])-64bit # TODO: support short notation for old builds too? backend = None fullname = name if '-upstream' in fullname: fullname = name.replace('-upstream', '') backend = 'upstream' elif '-fastcomp' in fullname: fullname = fullname.replace('-fastcomp', '') backend = 'fastcomp' fullname = fullname.replace('sdk-', '').replace('-64bit', '').replace('tag-', '') releases_info = load_releases_info()['releases'] release_hash = get_release_hash(fullname, releases_info) if release_hash: if backend is None: if version_key(fullname) >= (1, 39, 0): backend = 'upstream' else: backend = 'fastcomp' if backend == 'fastcomp' and version_key(fullname) >= (2, 0, 0): print('Note: fastcomp is not longer available in version 2.0.0 and above') return name return 'sdk-releases-%s-%s-64bit' % (backend, release_hash) return name
def expand_sdk_name(name): if name in ('latest', 'sdk-latest', 'latest-64bit', 'sdk-latest-64bit'): # This is effectly the default SDK return str(find_latest_releases_sdk('upstream')) elif name in ('latest-fastcomp', 'latest-releases-fastcomp'): return str(find_latest_releases_sdk('fastcomp')) elif name in ('latest-upstream', 'latest-clang-upstream', 'latest-releases-upstream'): return str(find_latest_releases_sdk('upstream')) elif name in ('tot', 'sdk-tot'): return str(find_tot_sdk('upstream')) elif name == 'tot-upstream': return str(find_tot_sdk('upstream')) elif name in ('tot-fastcomp', 'sdk-nightly-latest'): return str(find_tot_sdk('fastcomp')) else: # check if it's a release handled by an emscripten-releases version, # and if so use that by using the right hash. we support a few notations, # x.y.z[-(upstream|fastcomp_]) # sdk-x.y.z[-(upstream|fastcomp_])-64bit # TODO: support short notation for old builds too? backend = None fullname = name if '-upstream' in fullname: fullname = name.replace('-upstream', '') backend = 'upstream' elif '-fastcomp' in fullname: fullname = fullname.replace('-fastcomp', '') backend = 'fastcomp' fullname = fullname.replace('sdk-', '').replace('-64bit', '').replace('tag-', '') releases_info = load_releases_info()['releases'] release_hash = get_release_hash(fullname, releases_info) if release_hash: if backend is None: if version_key(fullname) >= (1, 39, 0): backend = 'upstream' else: backend = 'fastcomp' if backend == 'fastcomp' and version_key(fullname) >= (2, 0, 0): print('Note: fastcomp is not longer available in version 2.0.0 and above. please use either the upstream backend, or an earlier fastcomp version') return name return 'sdk-releases-%s-%s-64bit' % (backend, release_hash) return name
30,834
def apply_security_profile_command(): pre_post = demisto.args().get('pre_post') profile_type = demisto.args().get('profile_type') rule_name = demisto.args().get('rule_name') profile_name = demisto.args().get('profile_name') if DEVICE_GROUP: if not pre_post: raise Exception('Please provide the pre_post argument when apply profiles to rules in Panorama instance.') result = apply_security_profile(pre_post, rule_name, profile_type, profile_name) if result['response']['@status'] == 'success': demisto.results(f'The profile {profile_name} has been applied to the rule {rule_name}') else: demisto.results(result['response']['msg'])
def apply_security_profile_command(): pre_post = demisto.args().get('pre_post') profile_type = demisto.args().get('profile_type') rule_name = demisto.args().get('rule_name') profile_name = demisto.args().get('profile_name') if DEVICE_GROUP: if not pre_post: raise Exception('Please provide the pre_post argument when applying profiles to rules in Panorama instance.') result = apply_security_profile(pre_post, rule_name, profile_type, profile_name) if result['response']['@status'] == 'success': demisto.results(f'The profile {profile_name} has been applied to the rule {rule_name}') else: demisto.results(result['response']['msg'])
46,522
def get_max_basic_value(typ: str) -> Any: if typ == 'bool': return True if typ[:4] == 'uint': size = int(typ[4:]) assert size in (8, 16, 32, 64, 128, 256) return 2**size - 1 if typ == 'byte': return 0xff else: raise ValueError("Not a basic type")
def get_max_basic_value(typ: str) -> Any: if typ == 'bool': return True if typ[:4] == 'uint': size = int(typ[4:]) assert size in UINT_SIZES return 2**size - 1 if typ == 'byte': return 0xff else: raise ValueError("Not a basic type")
41,308
def get_metric_name(metric): if isinstance(metric, tuple): names, metric = metric elif hasattr(metric, '__name__'): names = metric.__name__ elif hasattr(metric, '__class__'): names = camel_to_snake(metric.__class__.__name__) else: names = 'unknown_metric' return names, metric
def get_metric_name(metric): if isinstance(metric, tuple): name, metric = metric elif hasattr(metric, '__name__'): names = metric.__name__ elif hasattr(metric, '__class__'): names = camel_to_snake(metric.__class__.__name__) else: names = 'unknown_metric' return names, metric
31,298
def get_indicators(client, indicator_type: List[str], limit: int, last_run_id: Optional[str] = None, tlp_color: Optional[str] = None) -> Tuple[str, list]: """ Retrieving indicators from the API Args: client: OpenCTI Client object. indicator_type: List of indicators types to return. last_run_id: The last id from the previous call to use pagination. limit: the max indicators to fetch tlp_color: traffic Light Protocol color Returns: new_last_run: the id of the last indicator indicators: list of indicators """ indicator_type = build_indicator_list(indicator_type) observables = client.stix_cyber_observable.list(types=indicator_type, first=limit, after=last_run_id, withPagination=True) new_last_run = observables.get('pagination').get('endCursor') indicators = [] for item in observables.get('entities'): indicator = { "value": item['observable_value'], "type": OPENCTI_TYPES_TO_XSOAR.get(item['entity_type'], item['entity_type']), "rawJSON": item, "fields": { "tags": [tag.get('value') for tag in item.get('objectLabel')], "description": item.get('x_opencti_description') } } if tlp_color: indicator['fields']['trafficlightprotocol'] = tlp_color indicators.append(indicator) return new_last_run, indicators
def get_indicators(client, indicator_types: List[str], limit: int, last_run_id: Optional[str] = None, tlp_color: Optional[str] = None) -> Tuple[str, list]: """ Retrieving indicators from the API Args: client: OpenCTI Client object. indicator_type: List of indicators types to return. last_run_id: The last id from the previous call to use pagination. limit: the max indicators to fetch tlp_color: traffic Light Protocol color Returns: new_last_run: the id of the last indicator indicators: list of indicators """ indicator_type = build_indicator_list(indicator_type) observables = client.stix_cyber_observable.list(types=indicator_type, first=limit, after=last_run_id, withPagination=True) new_last_run = observables.get('pagination').get('endCursor') indicators = [] for item in observables.get('entities'): indicator = { "value": item['observable_value'], "type": OPENCTI_TYPES_TO_XSOAR.get(item['entity_type'], item['entity_type']), "rawJSON": item, "fields": { "tags": [tag.get('value') for tag in item.get('objectLabel')], "description": item.get('x_opencti_description') } } if tlp_color: indicator['fields']['trafficlightprotocol'] = tlp_color indicators.append(indicator) return new_last_run, indicators
43,700
def max_independent_set(graph, constrained=True): r"""Returns the QAOA cost Hamiltonian and the recommended mixer corresponding to the MaxIndependentSet problem, for a given graph. The goal of MaxIndependentSet is to find the largest possible independent set of a graph. Given some graph :math:`G`, an independent set of :math:`G` is a set of vertices such that no two of the vertices in the set share a common edge. Args: graph (nx.Graph): a graph defining the pairs of wires on which each term of the Hamiltonian acts constrained (bool): specifies the variant of QAOA that is performed (constrained or unconstrained) Returns: (.Hamiltonian, .Hamiltonian): .. UsageDetails:: There are two variations of QAOA for this problem, constrained and unconstrained: **Constrained** .. note:: This method of constrained QAOA was introduced by Hadfield, Wang, Gorman, Rieffel, Venturelli, and Biswas in `[arXiv:1709.03489] <https://arxiv.org/abs/1709.03489>`__. The constrained MaxIndependentSet cost Hamiltonian is defined as: .. math:: H_C \ = \ \displaystyle\sum_{v \in V(G)} Z_{v} where :math:`V(G)` is the set of vertices of the input graph, and :math:`Z_i` is the Pauli-Z operator applied to the :math:`i`-th vertex. The returned mixer Hamiltonian is `~qaoa.bit_flip_mixer` applied to :math:`G`. .. note:: **Recommended initialization circuit:** Each wire in the :math:`|0\rangle` state **Unconstrained** The unconstrained MaxIndependentSet cost Hamiltonian is defined as: .. math:: H_C \ = \ \frac{(i, j) \in E(G)} (Z_i Z_j \ - \ Z_i \ - \ Z_j) \ + \ \displaystyle\sum_{i \in V(G)} Z_i where :math:`E(G)` is the edges of :math:`G`, :math:`V(G)` is the set of vertices, and :math:`Z_i` is the Pauli-Z operator acting on the :math:`i`-th vertex. The returned mixer Hamiltonian is `~qaoa.x_mixer` applied to all wires. .. note:: **Recommended initialization circuit:** Even superposition over all basis states """ if not isinstance(graph, nx.Graph): raise ValueError("Input graph must be a nx.Graph, got {}".format(type(graph).__name__)) if constrained: return (bit_driver(graph.nodes, 1), qaoa.bit_flip_mixer(graph, 0)) cost_h = edge_driver(graph, ['10', '01', '00']) + bit_driver(graph.nodes, 1) mixer_h = qaoa.x_mixer(graph.nodes) return (cost_h, mixer_h)
def max_independent_set(graph, constrained=True): r"""Returns the QAOA cost Hamiltonian and the recommended mixer corresponding to the MaxIndependentSet problem, for a given graph. The goal of MaxIndependentSet is to find the largest possible independent set of a graph. Given some graph :math:`G`, an independent set of :math:`G` is a set of vertices such that no two of the vertices in the set share a common edge. Args: graph (nx.Graph): a graph defining the pairs of wires on which each term of the Hamiltonian acts constrained (bool): specifies the variant of QAOA that is performed (constrained or unconstrained) Returns: (.Hamiltonian, .Hamiltonian): .. UsageDetails:: There are two variations of QAOA for this problem, constrained and unconstrained: **Constrained** .. note:: This method of constrained QAOA was introduced by Hadfield, Wang, Gorman, Rieffel, Venturelli, and Biswas in `[arXiv:1709.03489] <https://arxiv.org/abs/1709.03489>`__. The constrained MaxIndependentSet cost Hamiltonian is defined as: .. math:: H_C \ = \ \displaystyle\sum_{v \in V(G)} Z_{v} where :math:`V(G)` is the set of vertices of the input graph, and :math:`Z_i` is the Pauli-Z operator applied to the :math:`i`-th vertex. The returned mixer Hamiltonian is `~qaoa.bit_flip_mixer` applied to :math:`G`. .. note:: **Recommended initialization circuit:** Each wire in the :math:`|0\rangle` state **Unconstrained** The unconstrained MaxIndependentSet cost Hamiltonian is defined as: .. math:: H_C \ = \ \frac{(i, j) \in E(G)} (Z_i Z_j \ - \ Z_i \ - \ Z_j) \ + \ \displaystyle\sum_{i \in V(G)} Z_i where :math:`E(G)` is the set of edges of :math:`G`, :math:`V(G)` is the set of vertices, and :math:`Z_i` is the Pauli-Z operator acting on the :math:`i`-th vertex. The returned mixer Hamiltonian is `~qaoa.x_mixer` applied to all wires. .. note:: **Recommended initialization circuit:** Even superposition over all basis states """ if not isinstance(graph, nx.Graph): raise ValueError("Input graph must be a nx.Graph, got {}".format(type(graph).__name__)) if constrained: return (bit_driver(graph.nodes, 1), qaoa.bit_flip_mixer(graph, 0)) cost_h = edge_driver(graph, ['10', '01', '00']) + bit_driver(graph.nodes, 1) mixer_h = qaoa.x_mixer(graph.nodes) return (cost_h, mixer_h)
14,458
def initialize_logger(level=0): """Set up the global logging level based on the verbosity number.""" VERBOSITY_MAP = { 0: logging.NOTSET, 1: logging.INFO, 2: logging.DEBUG } handler = logging.StreamHandler() formatter = logging.Formatter('%(levelname)-8s %(message)s') handler.setFormatter(formatter) logger = logging.getLogger("ansiblelint") logger.addHandler(handler) # unknown logging level is treated as DEBUG logging_level = VERBOSITY_MAP.get(level, logging.DEBUG) logger.setLevel(logging_level) logger.debug("Logging initialized to level %s", logging_level)
def initialize_logger(level=0): """Set up the global logging level based on the verbosity number.""" VERBOSITY_MAP = { 0: logging.NOTSET, 1: logging.INFO, 2: logging.DEBUG } handler = logging.StreamHandler() formatter = logging.Formatter('%(levelname)-8s %(message)s') handler.setFormatter(formatter) logger = logging.getLogger("ansiblelint") logger.addHandler(handler) # unknown logging level is treated as DEBUG logging_level = VERBOSITY_MAP.get(level, logging.DEBUG) logger.setLevel(logging_level) _logger.debug("Logging initialized to level %s", logging_level)
5,296
def _load_fasttext_format(model_file, encoding='utf-8', full_model=True): """Load the input-hidden weight matrix from Facebook's native fasttext `.bin` output files. Parameters ---------- model_file : str Full path to the FastText model file. encoding : str, optional Specifies the file encoding. full_model : boolean, optional If False, skips loading the hidden output matrix. This saves a fair bit of CPU time and RAM, but prevents training continuation. Returns ------- :class: `~gensim.models.fasttext.FastText` The loaded model. """ with utils.open(model_file, 'rb') as fin: m = gensim.models._fasttext_bin.load(fin, encoding=encoding, full_model=full_model) # Here we are checking for unsupported FB FT Modes if m.loss != 1 and m.loss != 2: raise ValueError("Loss paramter value can be either 1 (for Hierarchical Softmax) or 2 (for Negative Sampling)") elif m.model != 1 and m.model != 2: raise ValueError( "Model parameter value can be either 1 (for Continous Bag of Words model) or 2 (for Skip-gram model)") model = FastText( vector_size=m.dim, window=m.ws, epochs=m.epoch, negative=m.neg, hs=int(m.loss == 1), sg=int(m.model == 2), bucket=m.bucket, min_count=m.min_count, sample=m.t, min_n=m.minn, max_n=m.maxn, ) model.corpus_total_words = m.ntokens model.raw_vocab = m.raw_vocab model.nwords = m.nwords model.vocab_size = m.vocab_size # # This is here to fix https://github.com/RaRe-Technologies/gensim/pull/2373. # # We explicitly set min_count=1 regardless of the model's parameters to # ignore the trim rule when building the vocabulary. We do this in order # to support loading native models that were trained with pretrained vectors. # Such models will contain vectors for _all_ encountered words, not only # those occurring more frequently than min_count. # # Native models trained _without_ pretrained vectors already contain the # trimmed raw_vocab, so this change does not affect them. # model.prepare_vocab(update=True, min_count=1) model.num_original_vectors = m.vectors_ngrams.shape[0] model.wv.init_post_load(m.vectors_ngrams) model._init_post_load(m.hidden_output) _check_model(model) model.add_lifecycle_event( "load_fasttext_format", msg=f"loaded {m.vectors_ngrams.shape} weight matrix for fastText model from {fin.name}", ) return model
def _load_fasttext_format(model_file, encoding='utf-8', full_model=True): """Load the input-hidden weight matrix from Facebook's native fasttext `.bin` output files. Parameters ---------- model_file : str Full path to the FastText model file. encoding : str, optional Specifies the file encoding. full_model : boolean, optional If False, skips loading the hidden output matrix. This saves a fair bit of CPU time and RAM, but prevents training continuation. Returns ------- :class: `~gensim.models.fasttext.FastText` The loaded model. """ with utils.open(model_file, 'rb') as fin: m = gensim.models._fasttext_bin.load(fin, encoding=encoding, full_model=full_model) # Here we are checking for unsupported FB FT Modes if m.loss not in (1, 2): raise ValueError("Loss paramter value can be either 1 (for Hierarchical Softmax) or 2 (for Negative Sampling)") elif m.model != 1 and m.model != 2: raise ValueError( "Model parameter value can be either 1 (for Continous Bag of Words model) or 2 (for Skip-gram model)") model = FastText( vector_size=m.dim, window=m.ws, epochs=m.epoch, negative=m.neg, hs=int(m.loss == 1), sg=int(m.model == 2), bucket=m.bucket, min_count=m.min_count, sample=m.t, min_n=m.minn, max_n=m.maxn, ) model.corpus_total_words = m.ntokens model.raw_vocab = m.raw_vocab model.nwords = m.nwords model.vocab_size = m.vocab_size # # This is here to fix https://github.com/RaRe-Technologies/gensim/pull/2373. # # We explicitly set min_count=1 regardless of the model's parameters to # ignore the trim rule when building the vocabulary. We do this in order # to support loading native models that were trained with pretrained vectors. # Such models will contain vectors for _all_ encountered words, not only # those occurring more frequently than min_count. # # Native models trained _without_ pretrained vectors already contain the # trimmed raw_vocab, so this change does not affect them. # model.prepare_vocab(update=True, min_count=1) model.num_original_vectors = m.vectors_ngrams.shape[0] model.wv.init_post_load(m.vectors_ngrams) model._init_post_load(m.hidden_output) _check_model(model) model.add_lifecycle_event( "load_fasttext_format", msg=f"loaded {m.vectors_ngrams.shape} weight matrix for fastText model from {fin.name}", ) return model
9,104
def _complete(): global adobe_glyphs for i in range(256): adobe_glyphs[f"/a{i}"] = chr(i) adobe_glyphs["/.notdef"] = "□"
def _complete() -> None: global adobe_glyphs for i in range(256): adobe_glyphs[f"/a{i}"] = chr(i) adobe_glyphs["/.notdef"] = "□"
4,437
def _TDDR(signal, sample_rate): # This function is the reference implementation for the TDDR algorithm for # motion correction of fNIRS data, as described in: # # Fishburn F.A., Ludlum R.S., Vaidya C.J., & Medvedev A.V. (2019). # Temporal Derivative Distribution Repair (TDDR): A motion correction # method for fNIRS. NeuroImage, 184, 171-179. # https://doi.org/10.1016/j.neuroimage.2018.09.025 # # Usage: # signals_corrected = TDDR( signals , sample_rate ); # # Inputs: # signals: A [sample x channel] matrix of uncorrected optical density or # hb data # sample_rate: A scalar reflecting the rate of acquisition in Hz # # Outputs: # signals_corrected: A [sample x channel] matrix of corrected optical # density data from scipy.signal import butter, filtfilt signal = np.array(signal) if len(signal.shape) != 1: for ch in range(signal.shape[1]): signal[:, ch] = _TDDR(signal[:, ch], sample_rate) return signal # Preprocess: Separate high and low frequencies filter_cutoff = .5 filter_order = 3 Fc = filter_cutoff * 2 / sample_rate signal_mean = np.mean(signal) signal -= signal_mean if Fc < 1: fb, fa = butter(filter_order, Fc) signal_low = filtfilt(fb, fa, signal, padlen=0) else: signal_low = signal signal_high = signal - signal_low # Initialize tune = 4.685 D = np.sqrt(np.finfo(signal.dtype).eps) mu = np.inf iter = 0 # Step 1. Compute temporal derivative of the signal deriv = np.diff(signal_low) # Step 2. Initialize observation weights w = np.ones(deriv.shape) # Step 3. Iterative estimation of robust weights while iter < 50: iter = iter + 1 mu0 = mu # Step 3a. Estimate weighted mean mu = np.sum(w * deriv) / np.sum(w) # Step 3b. Calculate absolute residuals of estimate dev = np.abs(deriv - mu) # Step 3c. Robust estimate of standard deviation of the residuals sigma = 1.4826 * np.median(dev) # Step 3d. Scale deviations by standard deviation and tuning parameter if sigma == 0: break r = dev / (sigma * tune) # Step 3e. Calculate new weights according to Tukey's biweight function w = ((1 - r**2) * (r < 1)) ** 2 # Step 3f. Terminate if new estimate is within # machine-precision of old estimate if abs(mu - mu0) < D * max(abs(mu), abs(mu0)): break # Step 4. Apply robust weights to centered derivative new_deriv = w * (deriv - mu) # Step 5. Integrate corrected derivative signal_low_corrected = np.cumsum(np.insert(new_deriv, 0, 0.0)) # Postprocess: Center the corrected signal signal_low_corrected = signal_low_corrected - np.mean(signal_low_corrected) # Postprocess: Merge back with uncorrected high frequency component signal_corrected = signal_low_corrected + signal_high + signal_mean return signal_corrected
def _TDDR(signal, sample_rate): # This function is the reference implementation for the TDDR algorithm for # motion correction of fNIRS data, as described in: # # Fishburn F.A., Ludlum R.S., Vaidya C.J., & Medvedev A.V. (2019). # Temporal Derivative Distribution Repair (TDDR): A motion correction # method for fNIRS. NeuroImage, 184, 171-179. # https://doi.org/10.1016/j.neuroimage.2018.09.025 # # Usage: # signals_corrected = TDDR( signals , sample_rate ); # # Inputs: # signals: A [sample x channel] matrix of uncorrected optical density or # hemoglobin data # sample_rate: A scalar reflecting the rate of acquisition in Hz # # Outputs: # signals_corrected: A [sample x channel] matrix of corrected optical # density data from scipy.signal import butter, filtfilt signal = np.array(signal) if len(signal.shape) != 1: for ch in range(signal.shape[1]): signal[:, ch] = _TDDR(signal[:, ch], sample_rate) return signal # Preprocess: Separate high and low frequencies filter_cutoff = .5 filter_order = 3 Fc = filter_cutoff * 2 / sample_rate signal_mean = np.mean(signal) signal -= signal_mean if Fc < 1: fb, fa = butter(filter_order, Fc) signal_low = filtfilt(fb, fa, signal, padlen=0) else: signal_low = signal signal_high = signal - signal_low # Initialize tune = 4.685 D = np.sqrt(np.finfo(signal.dtype).eps) mu = np.inf iter = 0 # Step 1. Compute temporal derivative of the signal deriv = np.diff(signal_low) # Step 2. Initialize observation weights w = np.ones(deriv.shape) # Step 3. Iterative estimation of robust weights while iter < 50: iter = iter + 1 mu0 = mu # Step 3a. Estimate weighted mean mu = np.sum(w * deriv) / np.sum(w) # Step 3b. Calculate absolute residuals of estimate dev = np.abs(deriv - mu) # Step 3c. Robust estimate of standard deviation of the residuals sigma = 1.4826 * np.median(dev) # Step 3d. Scale deviations by standard deviation and tuning parameter if sigma == 0: break r = dev / (sigma * tune) # Step 3e. Calculate new weights according to Tukey's biweight function w = ((1 - r**2) * (r < 1)) ** 2 # Step 3f. Terminate if new estimate is within # machine-precision of old estimate if abs(mu - mu0) < D * max(abs(mu), abs(mu0)): break # Step 4. Apply robust weights to centered derivative new_deriv = w * (deriv - mu) # Step 5. Integrate corrected derivative signal_low_corrected = np.cumsum(np.insert(new_deriv, 0, 0.0)) # Postprocess: Center the corrected signal signal_low_corrected = signal_low_corrected - np.mean(signal_low_corrected) # Postprocess: Merge back with uncorrected high frequency component signal_corrected = signal_low_corrected + signal_high + signal_mean return signal_corrected
39,173
def spectrogram( waveform: Tensor, pad: int, window: Tensor, n_fft: int, hop_length: int, win_length: int, power: Optional[float], normalized: bool, center: bool = True, pad_mode: str = "reflect", onesided: bool = True, return_complex: Optional[bool] = None, ) -> Tensor: r"""Create a spectrogram or a batch of spectrograms from a raw audio signal. The spectrogram can be either magnitude-only or complex. Args: waveform (Tensor): Tensor of audio of dimension `(..., time)` pad (int): Two sided padding of signal window (Tensor): Window tensor that is applied/multiplied to each frame/window n_fft (int): Size of FFT hop_length (int): Length of hop between STFT windows win_length (int): Window size power (float or None): Exponent for the magnitude spectrogram, (must be > 0) e.g., 1 for energy, 2 for power, etc. If None, then the complex spectrum is returned instead. normalized (bool): Whether to normalize by magnitude after stft center (bool, optional): whether to pad :attr:`waveform` on both sides so that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. Default: ``True`` pad_mode (string, optional): controls the padding method used when :attr:`center` is ``True``. Default: ``"reflect"`` onesided (bool, optional): controls whether to return half of results to avoid redundancy. Default: ``True`` return_complex (bool, optional): Deprecated and not used. Returns: Tensor: Dimension `(..., freq, time)`, freq is ``n_fft // 2 + 1`` and ``n_fft`` is the number of Fourier bins, and time is the number of window hops (n_frame). """ if return_complex is not None: warnings.warn( "`return_complex` argument is now deprecated and is not effective." "`torchaudio.functional.spectrogram(power=None)` always return tensor with " "complex dtype. Please remove the argument in the function call." ) if pad > 0: # TODO add "with torch.no_grad():" back when JIT supports it waveform = torch.nn.functional.pad(waveform, (pad, pad), "constant") # pack batch shape = waveform.size() waveform = waveform.reshape(-1, shape[-1]) # default values are consistent with librosa.core.spectrum._spectrogram spec_f = torch.stft( input=waveform, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode, normalized=False, onesided=onesided, return_complex=True, ) # unpack batch spec_f = spec_f.reshape(shape[:-1] + spec_f.shape[-2:]) if normalized: spec_f /= window.pow(2.).sum().sqrt() if power is not None: if power == 1.0: return spec_f.abs() return spec_f.abs().pow(power) return spec_f
def spectrogram( waveform: Tensor, pad: int, window: Tensor, n_fft: int, hop_length: int, win_length: int, power: Optional[float], normalized: bool, center: bool = True, pad_mode: str = "reflect", onesided: bool = True, return_complex: Optional[bool] = None, ) -> Tensor: r"""Create a spectrogram or a batch of spectrograms from a raw audio signal. The spectrogram can be either magnitude-only or complex. Args: waveform (Tensor): Tensor of audio of dimension `(..., time)` pad (int): Two sided padding of signal window (Tensor): Window tensor that is applied/multiplied to each frame/window n_fft (int): Size of FFT hop_length (int): Length of hop between STFT windows win_length (int): Window size power (float or None): Exponent for the magnitude spectrogram, (must be > 0) e.g., 1 for energy, 2 for power, etc. If None, then the complex spectrum is returned instead. normalized (bool): Whether to normalize by magnitude after stft center (bool, optional): whether to pad :attr:`waveform` on both sides so that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`. Default: ``True`` pad_mode (string, optional): controls the padding method used when :attr:`center` is ``True``. Default: ``"reflect"`` onesided (bool, optional): controls whether to return half of results to avoid redundancy. Default: ``True`` return_complex (bool, optional): Deprecated and not used. Returns: Tensor: Dimension `(..., freq, time)`, freq is ``n_fft // 2 + 1`` and ``n_fft`` is the number of Fourier bins, and time is the number of window hops (n_frame). """ if return_complex is not None: warnings.warn( "`return_complex` argument is now deprecated and is not effective." "`torchaudio.functional.spectrogram(power=None)` always returns a tensor with " "complex dtype. Please remove the argument in the function call." ) if pad > 0: # TODO add "with torch.no_grad():" back when JIT supports it waveform = torch.nn.functional.pad(waveform, (pad, pad), "constant") # pack batch shape = waveform.size() waveform = waveform.reshape(-1, shape[-1]) # default values are consistent with librosa.core.spectrum._spectrogram spec_f = torch.stft( input=waveform, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, center=center, pad_mode=pad_mode, normalized=False, onesided=onesided, return_complex=True, ) # unpack batch spec_f = spec_f.reshape(shape[:-1] + spec_f.shape[-2:]) if normalized: spec_f /= window.pow(2.).sum().sqrt() if power is not None: if power == 1.0: return spec_f.abs() return spec_f.abs().pow(power) return spec_f
30,933
def panorama_refresh_edl(edl_name: str, edl_type: str, location: str, vsys: str): params = { 'type': 'op', 'key': API_KEY } # if refreshing an EDL on the FW if not edl_type and not location and not vsys: edl = panorama_get_edl(edl_name) edl_type = ''.join(edl['type'].keys()) # if refreshing an EDL on the Panorama else: if not edl_type or not location or not vsys: raise Exception('To refresh an EDL from the Firewall on Panorama' ' please use the: edl_type, location an vsys arguments.') params['cmd'] = f'<request><system><external-list><refresh><type><{edl_type}><name>{edl_name}' \ f'</name></{edl_type}></type></refresh></external-list></system></request>', if location: params['location'] = location if vsys: params['vsys'] = vsys result = http_request( URL, 'POST', body=params, ) return result
def panorama_refresh_edl(edl_name: str, edl_type: str, location: str, vsys: str): params = { 'type': 'op', 'key': API_KEY } # if refreshing an EDL on the FW if not edl_type and not location and not vsys: edl = panorama_get_edl(edl_name) edl_type = ''.join(edl['type'].keys()) # if refreshing an EDL on the Panorama else: if not edl_type or not location or not vsys: raise Exception('To refresh an EDL from the Firewall on Panorama' ' please use the: edl_type, location and vsys arguments.') params['cmd'] = f'<request><system><external-list><refresh><type><{edl_type}><name>{edl_name}' \ f'</name></{edl_type}></type></refresh></external-list></system></request>', if location: params['location'] = location if vsys: params['vsys'] = vsys result = http_request( URL, 'POST', body=params, ) return result
2,894
def density(w, **kwargs): """Compute density of a sparse vector. Parameters ---------- w : array-like The sparse vector. Returns ------- float The density of w, between 0 and 1. """ if kwargs: warnings.warn( "Key arguments will be removed in one of the upcoming versions", FutureWarning, ) if hasattr(w, "toarray"): d = float(w.nnz) / (w.shape[0] * w.shape[1]) else: d = 0 if w is None else float((w != 0).sum()) / w.size return d
def density(w, **kwargs): """Compute density of a sparse vector. Parameters ---------- w : array-like The sparse vector. Returns ------- float The density of w, between 0 and 1. """ if kwargs: warnings.warn( "Additional keyword arguments are deprecated in version 1.2 and will be removed in version 1.4.", FutureWarning, ) if hasattr(w, "toarray"): d = float(w.nnz) / (w.shape[0] * w.shape[1]) else: d = 0 if w is None else float((w != 0).sum()) / w.size return d
24,811
def _has_different_parameters_default_value(original, overridden): """ Check if original and overridden methods arguments have different default values Return True if one of the overridden arguments has a default value different from the default value of the original argument If one of the method doesn't have argument (.args is None) return False """ if original.args is None or overridden.args is None: return False all_args = chain(original.args, original.kwonlyargs) original_param_names = [param.name for param in all_args] default_missing = object() for param_name in original_param_names: try: original_default = original.default_value(param_name) except astroid.exceptions.NoDefault: original_default = default_missing try: overridden_default = overridden.default_value(param_name) except astroid.exceptions.NoDefault: overridden_default = default_missing default_list = [ arg == default_missing for arg in (original_default, overridden_default) ] if any(default_list) and not all(default_list): # Only one arg has no default value return True astroid_type_comparators = { nodes.Const: lambda a, b: a.value == b.value, nodes.ClassDef: lambda a, b: a.name == b.name, nodes.Tuple: lambda a, b: a.elts == b.elts, nodes.List: lambda a, b: a.elts == b.elts, nodes.Dict: lambda a, b: a.items == b.items, nodes.Name: lambda a, b: set(a.infer()) == set(b.infer()), } handled_types = tuple(astroid_type for astroid_type in astroid_type_comparators) original_type = _get_node_type(original_default, handled_types) if original_type: # We handle only astroid types that are inside the dict astroid_type_compared_attr if not isinstance(overridden_default, original_type): # Two args with same name but different types return True if not astroid_type_comparators[original_type]( original_default, overridden_default ): # Two args with same type but different values return True return False
def _has_different_parameters_default_value(original, overridden): """ Check if original and overridden methods arguments have different default values Return True if one of the overridden arguments has a default value different from the default value of the original argument If one of the method doesn't have argument (.args is None) return False """ if original.args is None or overridden.args is None: return False all_args = chain(original.args, original.kwonlyargs) original_param_names = [param.name for param in all_args] default_missing = object() for param_name in original_param_names: try: original_default = original.default_value(param_name) except astroid.exceptions.NoDefault: original_default = default_missing try: overridden_default = overridden.default_value(param_name) except astroid.exceptions.NoDefault: overridden_default = default_missing default_list = [ arg == default_missing for arg in (original_default, overridden_default) ] if any(default_list) and not all(default_list): # Only one arg has no default value return True astroid_type_comparators = { nodes.Const: lambda a, b: a.value == b.value, nodes.ClassDef: lambda a, b: a.name == b.name, nodes.Tuple: lambda a, b: a.elts == b.elts, nodes.List: lambda a, b: a.elts == b.elts, nodes.Dict: lambda a, b: a.items == b.items, nodes.Name: lambda a, b: set(a.infer()) == set(b.infer()), } original_type = _get_node_type(original_default, astroid_type_comparators.keys()) if original_type: # We handle only astroid types that are inside the dict astroid_type_compared_attr if not isinstance(overridden_default, original_type): # Two args with same name but different types return True if not astroid_type_comparators[original_type]( original_default, overridden_default ): # Two args with same type but different values return True return False
41,688
def get_library_output(line: List[str]): """ Check if the command is a linker invocation. If so, return the name of the output file. """ for arg in line: if arg.endswith(".so") and not arg.startswith("-"): return arg
def get_library_output(line: List[str]) -> Optional[str]: """ Check if the command is a linker invocation. If so, return the name of the output file. """ for arg in line: if arg.endswith(".so") and not arg.startswith("-"): return arg
51,896
def _remove(args): initial_sources = spack.bootstrap.bootstrapping_sources() names = [s['name'] for s in initial_sources] if args.name not in names: msg = ('cannot find any bootstrapping source named "{0}". ' 'Run `spack bootstrap list` to see available sources.') raise RuntimeError(msg.format(args.name)) for current_scope in spack.config.scopes(): sources = spack.config.get('bootstrap:sources', scope=current_scope) or [] if args.name in [s['name'] for s in sources]: sources = [s for s in sources if s['name'] != args.name] spack.config.set('bootstrap:sources', sources, scope=current_scope) msg = ('Removed the bootstrapping source named "{0}" from the ' '"{1}" configuration scope.') llnl.util.tty.msg(msg.format(args.name, current_scope)) trusted = spack.config.get('bootstrap:trusted', scope=current_scope) or [] if args.name in trusted: trusted.pop(args.name) spack.config.set('bootstrap:trusted', trusted, scope=current_scope) msg = 'Deleting information on "{0}" from list of trusted sources' llnl.util.tty.msg(msg.format(args.name))
def _remove(args): for current_scope in spack.config.scopes(): sources = spack.config.get('bootstrap:sources', scope=current_scope) or [] if args.name in [s['name'] for s in sources]: sources = [s for s in sources if s['name'] != args.name] spack.config.set('bootstrap:sources', sources, scope=current_scope) msg = ('Removed the bootstrapping source named "{0}" from the ' '"{1}" configuration scope.') llnl.util.tty.msg(msg.format(args.name, current_scope)) trusted = spack.config.get('bootstrap:trusted', scope=current_scope) or [] if args.name in trusted: trusted.pop(args.name) spack.config.set('bootstrap:trusted', trusted, scope=current_scope) msg = 'Deleting information on "{0}" from list of trusted sources' llnl.util.tty.msg(msg.format(args.name)) return # error if we did not find a source of this name msg = ('cannot find any bootstrapping source named "{0}". ' 'Run `spack bootstrap list` to see available sources.') raise RuntimeError(msg.format(args.name))
31,407
def fetch_incidents(client: Client, last_run_violation: dict, first_fetch_violation: str, max_results: str): """ This function will run each interval (default 1 minute) :type client: client :param client: Gamma client :type last_run_violation: dict :param last_run_violation: last violation ID that was queried from Gamma :type first_fetch_violation: int :param first_fetch_violation: if last_violation is None, then begin from this violation ID :type max_results: int :param max_results: the max number of violations to pull, bound by MAX_INCIDENTS_TO_FETCH """ try: first_fetch_violation = int(first_fetch_violation) max_results = int(max_results) except: raise ValueError("first_fetch_violation and max_limit must be integers") if not first_fetch_violation > 0: raise ValueError("first_fetch_violation must be equal to 1 or higher") if not max_results > 0: max_results = 10 elif max_results > MAX_INCIDENTS_TO_FETCH: max_results = MAX_INCIDENTS_TO_FETCH # get the last violation id fetched, if exists starting_violation = last_run_violation.get('starting_violation', first_fetch_violation) most_recent_violation = starting_violation incidents = [] violations = client.get_violation_list(starting_violation, max_results) for item in violations['response']: incident_violation = item['violation_id'] incident_time_ms = item['violation_event_timestamp'] * 1000 if incident_violation <= most_recent_violation: continue incident = { "name": f'Gamma Violation {incident_violation}', "occurred": timestamp_to_datestring(incident_time_ms), "rawJSON": json.dumps(item) } incidents.append(incident) # update last run if violation id is greater than last fetch if incident_violation > most_recent_violation: most_recent_violation = incident_violation next_run_violation = {'starting_violation': most_recent_violation} return next_run_violation, incidents
def fetch_incidents(client: Client, last_run_violation: dict, first_fetch_violation: str, max_results: str): """ This function will run each interval (default 1 minute) :type client: client :param client: Gamma client :type last_run_violation: dict :param last_run_violation: last violation ID that was queried from Gamma :type first_fetch_violation: int :param first_fetch_violation: if last_violation is None, then begin from this violation ID :type max_results: int :param max_results: the max number of violations to pull, bound by MAX_INCIDENTS_TO_FETCH """ try: first_fetch_violation = int(first_fetch_violation) max_results = int(max_results) except: raise ValueError("first_fetch_violation and max_limit must be integers") if first_fetch_violation <= 0: raise ValueError("first_fetch_violation must be equal to 1 or higher") if not max_results > 0: max_results = 10 elif max_results > MAX_INCIDENTS_TO_FETCH: max_results = MAX_INCIDENTS_TO_FETCH # get the last violation id fetched, if exists starting_violation = last_run_violation.get('starting_violation', first_fetch_violation) most_recent_violation = starting_violation incidents = [] violations = client.get_violation_list(starting_violation, max_results) for item in violations['response']: incident_violation = item['violation_id'] incident_time_ms = item['violation_event_timestamp'] * 1000 if incident_violation <= most_recent_violation: continue incident = { "name": f'Gamma Violation {incident_violation}', "occurred": timestamp_to_datestring(incident_time_ms), "rawJSON": json.dumps(item) } incidents.append(incident) # update last run if violation id is greater than last fetch if incident_violation > most_recent_violation: most_recent_violation = incident_violation next_run_violation = {'starting_violation': most_recent_violation} return next_run_violation, incidents
30,586
def fetch_incidents(first_fetch, client): """ Automated fetching of incidents from IllusionBLACK. For first run 2 days is the fixed duration for events. Args: first_fetch: For first fetch the timespan to consider to fetch incidents. Example: 2 days, 5 weeks etc client: IllusionBLACK client Returns: Demisto Incidents """ now = datetime.now(tz=timezone.utc) demisto.info(f"IllusionBLACK: Fetching incidents at {now}") demisto_last_run = demisto.getLastRun() if "last_run" in demisto_last_run: last_run = datetime.fromisoformat(demisto_last_run["last_run"]) else: last_run, _ = parse_date_range(first_fetch, utc=False) if now - last_run < timedelta(minutes=5): return from_time = last_run.replace(microsecond=0).isoformat() to_time = now.replace(microsecond=0).isoformat() demisto.debug(f"IllusionBLACK: Getting raw events from {from_time} to {to_time}") events, all_threat_parse = client.get_events(limit=1000, from_time=from_time, to_time=to_time) raw_incidents = process_events(events, all_threat_parse) incidents = [] for incident_id, raw_incident in raw_incidents.items(): incidents.append(create_incident(raw_incident)) demisto.setLastRun({"last_run": to_time}) return incidents
def fetch_incidents(first_fetch, client): """ Automated fetching of incidents from IllusionBLACK. For first run 2 days is the fixed duration for events. Args: first_fetch: For first fetch the timespan to consider to fetch incidents. Example: 2 days, 5 weeks etc client: IllusionBLACK client Returns: Demisto Incidents """ now = datetime.now(tz=timezone.utc) demisto.info(f"IllusionBLACK: Fetching incidents at {now}") demisto_last_run = demisto.getLastRun() if "last_run" in demisto_last_run: last_run = datetime.fromisoformat(demisto_last_run["last_run"]) else: last_run, _ = parse_date_range(first_fetch, utc=False) if now - last_run < timedelta(minutes=5): return [] from_time = last_run.replace(microsecond=0).isoformat() to_time = now.replace(microsecond=0).isoformat() demisto.debug(f"IllusionBLACK: Getting raw events from {from_time} to {to_time}") events, all_threat_parse = client.get_events(limit=1000, from_time=from_time, to_time=to_time) raw_incidents = process_events(events, all_threat_parse) incidents = [] for incident_id, raw_incident in raw_incidents.items(): incidents.append(create_incident(raw_incident)) demisto.setLastRun({"last_run": to_time}) return incidents
43,886
def _su2su2_to_tensor_products(U): """Given a matrix U = A \otimes B in SU(2) x SU(2), extract the two SU(2) operations A and B. This process has been described in detail in the Appendix of Coffey & Deiotte https://link.springer.com/article/10.1007/s11128-009-0156-3 """ # First, write A = [[a1, a2], [-a2*, a1*]], which we can do for any SU(2) element. # Then, A \otimes B = [[a1 B, a2 B], [-a2*B, a1*B]] = [[C1, C2], [C3, C4]] # where the Ci are 2x2 matrices. C1 = U[0:2, 0:2] C2 = U[0:2, 2:4] C3 = U[2:4, 0:2] C4 = U[2:4, 2:4] # From the definition of A \otimes B, C1 C4^\dag = a1^2 I, so we can extract a1 C14 = qml.math.dot(C1, qml.math.conj(qml.math.T(C4))) a1 = qml.math.sqrt(C14[0, 0]) # Similarly, -C2 C3^\dag = a2^2 I, so we can extract a2 C23 = qml.math.dot(C2, qml.math.conj(qml.math.T(C3))) a2 = qml.math.sqrt(-C23[0, 0]) # This gets us a1, a2 up to a sign. To resolve the sign, ensure that # C1 C2^dag = a1 a2* I C12 = qml.math.dot(C1, qml.math.conj(qml.math.T(C2))) if not qml.math.isclose(a1 * np.conj(a2), C12[0, 0]): a2 *= -1 # Construct A A = qml.math.stack([[a1, a2], [-qml.math.conj(a2), qml.math.conj(a1)]]) # Next, extract B. Can do from any of the C, just need to be careful in # case one of the elements of A is 0. if not qml.math.isclose(A[0, 0], 0.0, atol=1e-8): B = C1 / A[0, 0] else: B = C2 / A[0, 1] return A, B
def _su2su2_to_tensor_products(U): r"""Given a matrix :math:`U = A \otimes B` in SU(2) x SU(2), extract the two SU(2) operations A and B. This process has been described in detail in the Appendix of Coffey & Deiotte https://link.springer.com/article/10.1007/s11128-009-0156-3 """ # First, write A = [[a1, a2], [-a2*, a1*]], which we can do for any SU(2) element. # Then, A \otimes B = [[a1 B, a2 B], [-a2*B, a1*B]] = [[C1, C2], [C3, C4]] # where the Ci are 2x2 matrices. C1 = U[0:2, 0:2] C2 = U[0:2, 2:4] C3 = U[2:4, 0:2] C4 = U[2:4, 2:4] # From the definition of A \otimes B, C1 C4^\dag = a1^2 I, so we can extract a1 C14 = qml.math.dot(C1, qml.math.conj(qml.math.T(C4))) a1 = qml.math.sqrt(C14[0, 0]) # Similarly, -C2 C3^\dag = a2^2 I, so we can extract a2 C23 = qml.math.dot(C2, qml.math.conj(qml.math.T(C3))) a2 = qml.math.sqrt(-C23[0, 0]) # This gets us a1, a2 up to a sign. To resolve the sign, ensure that # C1 C2^dag = a1 a2* I C12 = qml.math.dot(C1, qml.math.conj(qml.math.T(C2))) if not qml.math.isclose(a1 * np.conj(a2), C12[0, 0]): a2 *= -1 # Construct A A = qml.math.stack([[a1, a2], [-qml.math.conj(a2), qml.math.conj(a1)]]) # Next, extract B. Can do from any of the C, just need to be careful in # case one of the elements of A is 0. if not qml.math.isclose(A[0, 0], 0.0, atol=1e-8): B = C1 / A[0, 0] else: B = C2 / A[0, 1] return A, B
74
def get_from_archive_bulk(locator): """ Gets a single binary MARC record from within an Archive.org bulk MARC item, and return the offset and length of the next item. If offset or length are `None`, then there is no next record. :param str locator: Locator ocaid/filename:offset:length :rtype: (str|None, int|None, int|None) :return: (Binary MARC data, Next record offset, Next record length) """ if locator.startswith('marc:'): locator = locator[5:] filename, offset, length = locator.split (":") offset = int(offset) length = int(length) r0, r1 = offset, offset+length-1 # get the next record's length in this request r1 += 5 url = IA_DOWNLOAD_URL + filename assert 0 < length < MAX_MARC_LENGTH f = urlopen_keep_trying(url, {'Range': 'bytes=%d-%d' % (r0, r1)}) data = None if f: data = f.read(MAX_MARC_LENGTH) len_in_rec = int(data[:5]) if len_in_rec != length: data, next_offset, next_length = get_from_archive_bulk('%s:%d:%d' % (filename, offset, len_in_rec)) else: next_length = data[length:] data = data[:length] if len(next_length) == 5: # We have data for the next record next_offset = offset + len_in_rec next_length = int(next_length) else: next_offset = next_length = None return data, next_offset, next_length
def get_from_archive_bulk(locator): """ Gets a single binary MARC record from within an Archive.org bulk MARC item, and return the offset and length of the next item. If offset or length are `None`, then there is no next record. :param str locator: Locator ocaid/filename:offset:length :rtype: (str|None, int|None, int|None) :return: (Binary MARC data, Next record offset, Next record length) """ if locator.startswith('marc:'): locator = locator[5:] filename, offset, length = locator.split (":") offset = int(offset) length = int(length) r0, r1 = offset, offset+length-1 # get the next record's length in this request r1 += 5 url = IA_DOWNLOAD_URL + filename assert 0 < length < MAX_MARC_LENGTH f = urlopen_keep_trying(url, params={'Range': 'bytes=%d-%d' % (r0, r1)}) data = None if f: data = f.read(MAX_MARC_LENGTH) len_in_rec = int(data[:5]) if len_in_rec != length: data, next_offset, next_length = get_from_archive_bulk('%s:%d:%d' % (filename, offset, len_in_rec)) else: next_length = data[length:] data = data[:length] if len(next_length) == 5: # We have data for the next record next_offset = offset + len_in_rec next_length = int(next_length) else: next_offset = next_length = None return data, next_offset, next_length
46,584
def test_pickle_flags_consistency() -> None: cfg = DictConfig({"a": 0}) cfg._set_flag("test", True) assert cfg._get_node("a")._get_flag("test") # type: ignore cfg2 = pickle.loads(pickle.dumps(cfg)) cfg2._set_flag("test", None) assert cfg2._get_flag("test") is None assert cfg2._get_node("a")._get_flag("test") is None
def test_pickle_flags_consistency() -> None: cfg = OmegaConf.create({"a": 0}) cfg._set_flag("test", True) assert cfg._get_node("a")._get_flag("test") # type: ignore cfg2 = pickle.loads(pickle.dumps(cfg)) cfg2._set_flag("test", None) assert cfg2._get_flag("test") is None assert cfg2._get_node("a")._get_flag("test") is None
5,569
def test_parcel_profile_lcl_not_monotonic(): """Test parcel profile with lcl calculation.""" with pytest.raises(InvalidSoundingError): p = np.array([1004., 1000., 943., 925., 928., 850., 839., 749., 700.]) * units.hPa t = np.array([24.2, 24., 20.2, 21.6, 21.4, 20.4, 20.2, 14.4, 13.2]) * units.degC td = np.array([21.9, 22.1, 19.2, 20.5, 20.4, 18.4, 17.4, 8.4, -2.8]) * units.degC pressure, temp, dewp, prof = parcel_profile_with_lcl(p, t, td)
def test_parcel_profile_lcl_not_monotonic(): """Test parcel profile with lcl calculation.""" with pytest.raises(InvalidSoundingError): p = np.array([1004., 1000., 943., 925., 928., 850., 839., 749., 700.]) * units.hPa t = np.array([24.2, 24., 20.2, 21.6, 21.4, 20.4, 20.2, 14.4, 13.2]) * units.degC td = np.array([21.9, 22.1, 19.2, 20.5, 20.4, 18.4, 17.4, 8.4, -2.8]) * units.degC _ = parcel_profile_with_lcl(p, t, td)
34,567
def _request_export_info() -> Tuple[Text, Text, Text]: """Request file path and export stories & nlu data to that path""" # export training data and quit questions = questionary.form( export_stories=questionary.text( message="Export stories to (if file exists, this " "will append the stories)", default=PATHS["stories"], validate=io_utils.file_type_validator( [".md", ".yml"], "Please provide a valid export path for the stories, e.g. 'stories.md'.", ), ), export_nlu=questionary.text( message="Export NLU data to (if file exists, this will " "merge learned data with previous training examples)", default=PATHS["nlu"], validate=io_utils.file_type_validator( [".md", ".json", ".yml"], "Please provide a valid export path for the NLU data, e.g. 'nlu.md'.", ), ), export_domain=questionary.text( message="Export domain file to (if file exists, this " "will be overwritten)", default=PATHS["domain"], validate=io_utils.file_type_validator( [".yml", ".yaml"], "Please provide a valid export path for the domain file, e.g. 'domain.yml'.", ), ), ) answers = questions.ask() if not answers: raise Abort() return answers["export_stories"], answers["export_nlu"], answers["export_domain"]
def _request_export_info() -> Tuple[Text, Text, Text]: """Request file path and export stories & nlu data to that path""" # export training data and quit questions = questionary.form( export_stories=questionary.text( message="Export stories to (if file exists, this " "will append the stories)", default=PATHS["stories"], validate=io_utils.file_type_validator( [".md", ".yml"], "Please provide a valid export path for the stories, e.g. 'stories.yml'.", ), ), export_nlu=questionary.text( message="Export NLU data to (if file exists, this will " "merge learned data with previous training examples)", default=PATHS["nlu"], validate=io_utils.file_type_validator( [".md", ".json", ".yml"], "Please provide a valid export path for the NLU data, e.g. 'nlu.md'.", ), ), export_domain=questionary.text( message="Export domain file to (if file exists, this " "will be overwritten)", default=PATHS["domain"], validate=io_utils.file_type_validator( [".yml", ".yaml"], "Please provide a valid export path for the domain file, e.g. 'domain.yml'.", ), ), ) answers = questions.ask() if not answers: raise Abort() return answers["export_stories"], answers["export_nlu"], answers["export_domain"]
43,997
def edges_to_wires(graph) -> Dict[Tuple, int]: r"""Maps the edges of a graph to corresponding wires. **Example** >>> g = nx.complete_graph(4).to_directed() >>> edges_to_wires(g) {(0, 1): 0, (0, 2): 1, (0, 3): 2, (1, 0): 3, (1, 2): 4, (1, 3): 5, (2, 0): 6, (2, 1): 7, (2, 3): 8, (3, 0): 9, (3, 1): 10, (3, 2): 11} >>> g = rx.generators.directed_mesh_graph(4, [0,1,2,3]) >>> edges_to_wires(g) {(0, 1): 0, (0, 2): 1, (0, 3): 2, (1, 0): 3, (1, 2): 4, (1, 3): 5, (2, 0): 6, (2, 1): 7, (2, 3): 8, (3, 0): 9, (3, 1): 10, (3, 2): 11} Args: graph (nx.Graph or rx.Py(Di)Graph): the graph specifying possible edges Returns: Dict[Tuple, int]: a mapping from graph edges to wires """ if isinstance(graph, nx.Graph): return {edge: i for i, edge in enumerate(graph.edges)} elif isinstance(graph, (rx.PyGraph, rx.PyDiGraph)): gnodes = graph.nodes() return { (gnodes.index(e[0]), gnodes.index(e[1])): i for i, e in enumerate(sorted(graph.edge_list())) } raise ValueError(f"Input graph must be a nx.Graph, rx.Py(Di)Graph, got {type(graph).__name__}")
def edges_to_wires(graph) -> Dict[Tuple, int]: r"""Maps the edges of a graph to corresponding wires. **Example** >>> g = nx.complete_graph(4).to_directed() >>> edges_to_wires(g) {(0, 1): 0, (0, 2): 1, (0, 3): 2, (1, 0): 3, (1, 2): 4, (1, 3): 5, (2, 0): 6, (2, 1): 7, (2, 3): 8, (3, 0): 9, (3, 1): 10, (3, 2): 11} >>> g = rx.generators.directed_mesh_graph(4, [0,1,2,3]) >>> edges_to_wires(g) {(0, 1): 0, (0, 2): 1, (0, 3): 2, (1, 0): 3, (1, 2): 4, (1, 3): 5, (2, 0): 6, (2, 1): 7, (2, 3): 8, (3, 0): 9, (3, 1): 10, (3, 2): 11} Args: graph (nx.Graph or rx.PyGraph or rx.PyDiGraph): the graph specifying possible edges Returns: Dict[Tuple, int]: a mapping from graph edges to wires """ if isinstance(graph, nx.Graph): return {edge: i for i, edge in enumerate(graph.edges)} elif isinstance(graph, (rx.PyGraph, rx.PyDiGraph)): gnodes = graph.nodes() return { (gnodes.index(e[0]), gnodes.index(e[1])): i for i, e in enumerate(sorted(graph.edge_list())) } raise ValueError(f"Input graph must be a nx.Graph, rx.Py(Di)Graph, got {type(graph).__name__}")
2,621
def _preprocess_data( X, y, fit_intercept, normalize=False, copy=True, sample_weight=None, return_mean=False, check_input=True, ): """Center and scale data. Centers data to have mean zero along axis 0. If fit_intercept=False or if the X is a sparse matrix, no centering is done, but normalization can still be applied. The function returns the statistics necessary to reconstruct the input data, which are X_offset, y_offset, X_scale, such that the output X = (X - X_offset) / X_scale X_scale is the L2 norm of X - X_offset. If sample_weight is not None, then the weighted mean of X and y is zero, and not the mean itself. If return_mean=True, the mean, eventually weighted, is returned, independently of whether X was centered (option used for optimization with sparse data in coordinate_descend). This is here because nearly all linear models will want their data to be centered. This function also systematically makes y consistent with X.dtype Returns ------- X_out : {ndarray, sparse matrix} of shape (n_samples, n_features) If copy=True a copy of the input X is triggered, otherwise operations are inplace. If input X is dense, then X_out is centered. If normalize is True, then X_out is rescaled (dense and sparse case) y : {ndarray, sparse matrix} of shape (n_samples,) or (n_samples, n_targets) Centered version of y. Likely performed inplace on input y. X_offset : ndarray of shape (n_features,) The mean per column of input X. y_offset : float or ndarray of shape (n_features,) X_scale : ndarray of shape (n_features,) The standard deviation per column of input X. """ if isinstance(sample_weight, numbers.Number): sample_weight = None if sample_weight is not None: sample_weight = np.asarray(sample_weight) if check_input: X = check_array(X, copy=copy, accept_sparse=["csr", "csc"], dtype=FLOAT_DTYPES) elif copy: if sp.issparse(X): X = X.copy() else: X = X.copy(order="K") y = np.asarray(y, dtype=X.dtype) if fit_intercept: if sp.issparse(X): X_offset, X_var = mean_variance_axis(X, axis=0, weights=sample_weight) if not return_mean: X_offset[:] = X.dtype.type(0) else: if normalize: X_offset, X_var, _ = _incremental_mean_and_var( X, last_mean=0.0, last_variance=0.0, last_sample_count=0.0, sample_weight=sample_weight, ) else: X_offset = np.average(X, axis=0, weights=sample_weight) X_offset = X_offset.astype(X.dtype, copy=False) X -= X_offset if normalize: X_var = X_var.astype(X.dtype, copy=False) # Detect constant features on the computed variance, before taking # the np.sqrt. Otherwise constant features cannot be detected with # sample weights. constant_mask = _is_constant_feature(X_var, X_offset, X.shape[0]) if sample_weight is None: X_var *= X.shape[0] else: X_var *= sample_weight.sum() X_scale = np.sqrt(X_var, out=X_var) X_scale[constant_mask] = 1.0 if sp.issparse(X): inplace_column_scale(X, 1.0 / X_scale) else: X /= X_scale else: X_scale = np.ones(X.shape[1], dtype=X.dtype) y_offset = np.average(y, axis=0, weights=sample_weight) y = y - y_offset else: X_offset = np.zeros(X.shape[1], dtype=X.dtype) X_scale = np.ones(X.shape[1], dtype=X.dtype) if y.ndim == 1: y_offset = X.dtype.type(0) else: y_offset = np.zeros(y.shape[1], dtype=X.dtype) return X, y, X_offset, y_offset, X_scale
def _preprocess_data( X, y, fit_intercept, normalize=False, copy=True, sample_weight=None, return_mean=False, check_input=True, ): """Center and scale data. Centers data to have mean zero along axis 0. If fit_intercept=False or if the X is a sparse matrix, no centering is done, but normalization can still be applied. The function returns the statistics necessary to reconstruct the input data, which are X_offset, y_offset, X_scale, such that the output X = (X - X_offset) / X_scale X_scale is the L2 norm of X - X_offset. If sample_weight is not None, then the weighted mean of X and y is zero, and not the mean itself. If return_mean=True, the mean, eventually weighted, is returned, independently of whether X was centered (option used for optimization with sparse data in coordinate_descend). This is here because nearly all linear models will want their data to be centered. This function also systematically makes y consistent with X.dtype Returns ------- X_out : {ndarray, sparse matrix} of shape (n_samples, n_features) If copy=True a copy of the input X is triggered, otherwise operations are inplace. If input X is dense, then X_out is centered. If normalize is True, then X_out is rescaled (dense and sparse case) y_out : {ndarray, sparse matrix} of shape (n_samples,) or (n_samples, n_targets) Centered version of y. Likely performed inplace on input y. X_offset : ndarray of shape (n_features,) The mean per column of input X. y_offset : float or ndarray of shape (n_features,) X_scale : ndarray of shape (n_features,) The standard deviation per column of input X. """ if isinstance(sample_weight, numbers.Number): sample_weight = None if sample_weight is not None: sample_weight = np.asarray(sample_weight) if check_input: X = check_array(X, copy=copy, accept_sparse=["csr", "csc"], dtype=FLOAT_DTYPES) elif copy: if sp.issparse(X): X = X.copy() else: X = X.copy(order="K") y = np.asarray(y, dtype=X.dtype) if fit_intercept: if sp.issparse(X): X_offset, X_var = mean_variance_axis(X, axis=0, weights=sample_weight) if not return_mean: X_offset[:] = X.dtype.type(0) else: if normalize: X_offset, X_var, _ = _incremental_mean_and_var( X, last_mean=0.0, last_variance=0.0, last_sample_count=0.0, sample_weight=sample_weight, ) else: X_offset = np.average(X, axis=0, weights=sample_weight) X_offset = X_offset.astype(X.dtype, copy=False) X -= X_offset if normalize: X_var = X_var.astype(X.dtype, copy=False) # Detect constant features on the computed variance, before taking # the np.sqrt. Otherwise constant features cannot be detected with # sample weights. constant_mask = _is_constant_feature(X_var, X_offset, X.shape[0]) if sample_weight is None: X_var *= X.shape[0] else: X_var *= sample_weight.sum() X_scale = np.sqrt(X_var, out=X_var) X_scale[constant_mask] = 1.0 if sp.issparse(X): inplace_column_scale(X, 1.0 / X_scale) else: X /= X_scale else: X_scale = np.ones(X.shape[1], dtype=X.dtype) y_offset = np.average(y, axis=0, weights=sample_weight) y = y - y_offset else: X_offset = np.zeros(X.shape[1], dtype=X.dtype) X_scale = np.ones(X.shape[1], dtype=X.dtype) if y.ndim == 1: y_offset = X.dtype.type(0) else: y_offset = np.zeros(y.shape[1], dtype=X.dtype) return X, y, X_offset, y_offset, X_scale
35,069
def generate_project_from_mlf( template_project_dir: typing.Union[pathlib.Path, str], project_dir: typing.Union[pathlib.Path, str], mlf: typing.Union[pathlib.Path, str], options: dict, ): """Generate a project from a platform template and an existing MLF. Parameters ---------- template_project_path : pathlib.Path or str Path to a template project containing a microTVM Project API server. project_dir : pathlib.Path or str Path to a directory where the project will be created. mlf : pathlib.Path or str Path to the Model Library Format archive that will be used when creating the new project. options : dict Project API options given to the microTVM API server for the specified platform. Returns ------- GeneratedProject : A class that wraps the generated project and which can be used to further interact with it. """ template = TemplateProject.from_directory(str(template_project_dir)) return template.generate_project_from_mlf(str(mlf), str(project_dir), options)
def generate_project_from_mlf( template_project_dir: typing.Union[pathlib.Path, str], project_dir: typing.Union[pathlib.Path, str], mlf: typing.Union[pathlib.Path, str], options: dict, ): """Generate a project from a platform template and an existing Model Library Format (MLF) archive. Parameters ---------- template_project_path : pathlib.Path or str Path to a template project containing a microTVM Project API server. project_dir : pathlib.Path or str Path to a directory where the project will be created. mlf : pathlib.Path or str Path to the Model Library Format archive that will be used when creating the new project. options : dict Project API options given to the microTVM API server for the specified platform. Returns ------- GeneratedProject : A class that wraps the generated project and which can be used to further interact with it. """ template = TemplateProject.from_directory(str(template_project_dir)) return template.generate_project_from_mlf(str(mlf), str(project_dir), options)
32,574
def is_html_response(response): if 'text\html' in response.headers.get('Content-Type', ''): return True # look for an html tag in the response text # if re.search("<[^>]+>", response.text): # return True return False
def is_html_response(response): if 'text\html' in response.headers.get('Content-Type', '').lower(): return True # look for an html tag in the response text # if re.search("<[^>]+>", response.text): # return True return False
37,651
def get_entangler_map( num_block_qubits: int, num_circuit_qubits: int, entanglement: str, entanglement_gates: List[Tuple] = None, offset: int = 0, ) -> List[Sequence[int]]: """Get an entangler map for an arbitrary number of qubits. Args: num_block_qubits: The number of qubits of the entangling block. num_circuit_qubits: The number of qubits of the circuit. entanglement: The entanglement strategy. entanglement_gates: List of tuples of entanglement gates and their counts. Used for optimization. offset: The block offset, can be used if the entanglements differ per block. See mode ``sca`` for instance. Returns: The entangler map using mode ``entanglement`` to scatter a block of ``num_block_qubits`` qubits on ``num_circuit_qubits`` qubits. Raises: ValueError: If the entanglement mode ist not supported. """ n, m = num_circuit_qubits, num_block_qubits if m > n: raise ValueError( "The number of block qubits must be smaller or equal to the number of " "qubits in the circuit." ) if entanglement == "pairwise" and num_block_qubits != 2: raise ValueError("Pairwise entanglement is only defined for blocks of 2 qubits.") if entanglement == "full" or entanglement == "full_explicit": # Optimization for CX entanglement_block of size 2, containing only 'cx' gates if entanglement == "full" and m == 2 and entanglement_gates == [("cx", 1)]: return [(n - i - 2, n - i - 1) for i in range(n - 1)] return list(combinations(list(range(n)), m)) if entanglement in ["linear", "circular", "sca", "pairwise"]: linear = [tuple(range(i, i + m)) for i in range(n - m + 1)] # if the number of block qubits is 1, we don't have to add the 'circular' part if entanglement == "linear" or m == 1: return linear if entanglement == "pairwise": return linear[::2] + linear[1::2] # circular equals linear plus top-bottom entanglement (if there's space for it) if n > m: circular = [tuple(range(n - m + 1, n)) + (0,)] + linear else: circular = linear if entanglement == "circular": return circular # sca is circular plus shift and reverse shifted = circular[-offset:] + circular[:-offset] if offset % 2 == 1: # if odd, reverse the qubit indices sca = [ind[::-1] for ind in shifted] else: sca = shifted return sca else: raise ValueError(f"Unsupported entanglement type: {entanglement}")
def get_entangler_map( num_block_qubits: int, num_circuit_qubits: int, entanglement: str, entanglement_gates: Optional[List[Tuple[str, int]]] = None, offset: int = 0, ) -> List[Sequence[int]]: """Get an entangler map for an arbitrary number of qubits. Args: num_block_qubits: The number of qubits of the entangling block. num_circuit_qubits: The number of qubits of the circuit. entanglement: The entanglement strategy. entanglement_gates: List of tuples of entanglement gates and their counts. Used for optimization. offset: The block offset, can be used if the entanglements differ per block. See mode ``sca`` for instance. Returns: The entangler map using mode ``entanglement`` to scatter a block of ``num_block_qubits`` qubits on ``num_circuit_qubits`` qubits. Raises: ValueError: If the entanglement mode ist not supported. """ n, m = num_circuit_qubits, num_block_qubits if m > n: raise ValueError( "The number of block qubits must be smaller or equal to the number of " "qubits in the circuit." ) if entanglement == "pairwise" and num_block_qubits != 2: raise ValueError("Pairwise entanglement is only defined for blocks of 2 qubits.") if entanglement == "full" or entanglement == "full_explicit": # Optimization for CX entanglement_block of size 2, containing only 'cx' gates if entanglement == "full" and m == 2 and entanglement_gates == [("cx", 1)]: return [(n - i - 2, n - i - 1) for i in range(n - 1)] return list(combinations(list(range(n)), m)) if entanglement in ["linear", "circular", "sca", "pairwise"]: linear = [tuple(range(i, i + m)) for i in range(n - m + 1)] # if the number of block qubits is 1, we don't have to add the 'circular' part if entanglement == "linear" or m == 1: return linear if entanglement == "pairwise": return linear[::2] + linear[1::2] # circular equals linear plus top-bottom entanglement (if there's space for it) if n > m: circular = [tuple(range(n - m + 1, n)) + (0,)] + linear else: circular = linear if entanglement == "circular": return circular # sca is circular plus shift and reverse shifted = circular[-offset:] + circular[:-offset] if offset % 2 == 1: # if odd, reverse the qubit indices sca = [ind[::-1] for ind in shifted] else: sca = shifted return sca else: raise ValueError(f"Unsupported entanglement type: {entanglement}")
29,044
def _log_agent_binary_hashes(agent_binary_repository: IAgentBinaryRepository): """ Logs all the hashes of the agent executables for debbuging ease :param agent_binary_repository: Used to retrieve the agent binaries """ AGENT_BINARIES = { "Linux": agent_binary_repository.get_linux_binary(), "Windows": agent_binary_repository.get_windows_binary(), } for os, binary in AGENT_BINARIES.items(): binary_sha256_hash = get_binary_sha256_hash(binary) logger.debug(f"{os}: SHA-256 hash: {binary_sha256_hash}")
def _log_agent_binary_hashes(agent_binary_repository: IAgentBinaryRepository): """ Logs all the hashes of the agent executables for debbuging ease :param agent_binary_repository: Used to retrieve the agent binaries """ AGENT_BINARIES = { "Linux": agent_binary_repository.get_linux_binary(), "Windows": agent_binary_repository.get_windows_binary(), } for os, binary in AGENT_BINARIES.items(): binary_sha256_hash = get_binary_sha256_hash(binary) logger.debug(f"{os} agent: SHA-256 hash: {binary_sha256_hash}")
32,167
def get_test_response(client, method, token): """ Test the integration state :param client: client instance :param method: Requests method to be used :param token: API access token :return: test response """ params = { 'token': token } eventtypes_url = r'/api/v2/events/types' eventTypes = client.get_event_types(method, eventtypes_url, params) if eventTypes is not None: return 'ok' else: demisto.error("Failed to connect") return 'fail'
def get_test_response(client, method, token): """ Test the integration state :param client: client instance :param method: Requests method to be used :param token: API access token :return: test response """ params = { 'token': token } eventtypes_url = r'/api/v2/events/types' eventTypes = client.get_event_types(method, eventtypes_url, params) if eventTypes: return 'ok' else: demisto.error("Failed to connect") return 'fail'
5,029
def date2num(d): """ Convert datetime and timedelta objects to Matplotlib dates. Supported: - `numpy.datetime64`/`numpy.timedelta64` (both including 'nat') - `datetime.datetime`/`datetime.timedelta` - `pandas.Timestamp`/`pandas.Timedelta`/`pandas.NaT` Parameters ---------- d : ``datetime-like`` or ``timedelta-like`` or sequences of these Returns ------- float or sequence of floats For dates: Number of days since the epoch. See `.get_epoch` for the epoch, which can be changed by :rc:`date.epoch` or `.set_epoch`. If the epoch is "1970-01-01T00:00:00" (default) then noon Jan 1 1970 ("1970-01-01T12:00:00") returns 0.5. For timedeltas: Number of days as float Notes ----- The Gregorian calendar is assumed; this is not universal practice. For details see the module docstring. """ if hasattr(d, "values"): # this unpacks pandas series or dataframes... d = d.values # make an iterable, but save state to unpack later: iterable = np.iterable(d) if not iterable: d = [d] d = np.asarray(d) if np.issubdtype(d.dtype, np.timedelta64): # numpy converts this to datetime but not the way we want d = d.astype('timedelta64[us]') elif not np.issubdtype(d.dtype, np.datetime64): # handle everything that is not np.timedelta64 if not d.size: # deals with an empty array... return d tzi = getattr(d[0], 'tzinfo', None) if tzi is not None: # make datetime naive: d = [dt.astimezone(UTC).replace(tzinfo=None) for dt in d] d = np.asarray(d) # try conversion to datetime or timedelta for _dtype in ('datetime64[us]', 'timedelta64[us]'): try: d = d.astype(_dtype) break except ValueError: continue else: # maybe the sequence contained pandas.NaT first = cbook.safe_first_element(d) if hasattr(first, 'to_numpy'): # assume sequence of pandas objects including pandas.NaT # element-wise conversion is required d = _try_pandas_nat_conversion(d) # convert timedelta to datetime now for internal handling if np.issubdtype(d.dtype, np.timedelta64): epoch = np.full_like(d, np.datetime64(get_epoch())) d = (epoch + d).astype('datetime64[us]') d = _dt64_to_ordinalf(d) return d if iterable else d[0]
def date2num(d): """ Convert datetime and timedelta objects to Matplotlib dates. Supported: - `numpy.datetime64`/`numpy.timedelta64` (both including 'nat') - `datetime.datetime`/`datetime.timedelta` - `pandas.Timestamp`/`pandas.Timedelta`/`pandas.NaT` Parameters ---------- d : ``datetime-like`` or ``timedelta-like`` or sequences of these Returns ------- float or sequence of floats For dates: Number of days since the epoch. See `.get_epoch` for the epoch, which can be changed by :rc:`date.epoch` or `.set_epoch`. If the epoch is "1970-01-01T00:00:00" (default) then noon Jan 1 1970 ("1970-01-01T12:00:00") returns 0.5. For timedeltas: Number of days as float Notes ----- The Gregorian calendar is assumed; this is not universal practice. For details see the module docstring. """ if hasattr(d, "values"): # this unpacks pandas series or dataframes... d = d.values # make an iterable, but save state to unpack later: iterable = np.iterable(d) if not iterable: d = [d] d = np.asarray(d) if not np.issubdtype(d.dtype, np.datetime64): # handle everything that is not np.timedelta64 if not d.size: # deals with an empty array... return d tzi = getattr(d[0], 'tzinfo', None) if tzi is not None: # make datetime naive: d = [dt.astimezone(UTC).replace(tzinfo=None) for dt in d] d = np.asarray(d) # try conversion to datetime or timedelta for _dtype in ('datetime64[us]', 'timedelta64[us]'): try: d = d.astype(_dtype) break except ValueError: continue else: # maybe the sequence contained pandas.NaT first = cbook.safe_first_element(d) if hasattr(first, 'to_numpy'): # assume sequence of pandas objects including pandas.NaT # element-wise conversion is required d = _try_pandas_nat_conversion(d) # convert timedelta to datetime now for internal handling if np.issubdtype(d.dtype, np.timedelta64): epoch = np.full_like(d, np.datetime64(get_epoch())) d = (epoch + d).astype('datetime64[us]') d = _dt64_to_ordinalf(d) return d if iterable else d[0]
1,262
def main(args=None): """Main program function.""" parser = _get_parser() opts = parser.parse_args(args) from_img = load(opts.infile) if opts.Volume: computed_volume = mask_volume(from_img, opts.units) print(computed_volume) return computed_volume
def main(args=None): """Main program function.""" parser = _get_parser() opts = parser.parse_args(args) from_img = load(opts.infile) if opts.Volume: computed_volume = mask_volume(from_img, opts.units) print(computed_volume) return 0
25,920
def _validate_admin_password(password, os_type): import re is_linux = (os_type.lower() == 'linux') max_length = 72 if is_linux else 123 min_length = 12 error_msg = ("Rule 1: The password length must be betwween {} and {}\n" "Rule 2: Password must have the 3 of the following: 1 lower case character, " "1 upper case character, 1 number and 1 special character").format(min_length, max_length) if len(password) not in range(min_length, max_length + 1): raise CLIError("Your password is invalid for it violates Rule 1\n{}".format(error_msg)) contains_lower = re.findall('[a-z]+', password) contains_upper = re.findall('[A-Z]+', password) contains_digit = re.findall('[0-9]+', password) contains_special_char = re.findall(r'[ `~!@#$%^&*()=+_\[\]{}\|;:.\/\'\",<>?]+', password) count = len([x for x in [contains_lower, contains_upper, contains_digit, contains_special_char] if x]) # pylint: disable=line-too-long if count < 3: raise CLIError("Your password is invalid for it violates Rule 2\n{}".format(error_msg))
def _validate_admin_password(password, os_type): import re is_linux = (os_type.lower() == 'linux') max_length = 72 if is_linux else 123 min_length = 12 error_msg = ("Rule 1: The password length must be between {} and {}\n" "Rule 2: Password must have the 3 of the following: 1 lower case character, " "1 upper case character, 1 number and 1 special character").format(min_length, max_length) if len(password) not in range(min_length, max_length + 1): raise CLIError("Your password is invalid for it violates Rule 1\n{}".format(error_msg)) contains_lower = re.findall('[a-z]+', password) contains_upper = re.findall('[A-Z]+', password) contains_digit = re.findall('[0-9]+', password) contains_special_char = re.findall(r'[ `~!@#$%^&*()=+_\[\]{}\|;:.\/\'\",<>?]+', password) count = len([x for x in [contains_lower, contains_upper, contains_digit, contains_special_char] if x]) # pylint: disable=line-too-long if count < 3: raise CLIError("Your password is invalid for it violates Rule 2\n{}".format(error_msg))
278
def sample(draws=500, step=None, init='auto', n_init=200000, start=None, trace=None, chain_idx=0, chains=None, cores=None, tune=500, progressbar=True, model=None, random_seed=None, discard_tuned_samples=True, compute_convergence_checks=True, **kwargs): """Draw samples from the posterior using the given step methods. Multiple step methods are supported via compound step methods. Parameters ---------- draws : int The number of samples to draw. Defaults to 500. The number of tuned samples are discarded by default. See `discard_tuned_samples`. step : function or iterable of functions A step function or collection of functions. If there are variables without a step methods, step methods for those variables will be assigned automatically. init : str Initialization method to use for auto-assigned NUTS samplers. * auto : Choose a default initialization method automatically. Currently, this is `'jitter+adapt_diag'`, but this can change in the future. If you depend on the exact behaviour, choose an initialization method explicitly. * adapt_diag : Start with a identity mass matrix and then adapt a diagonal based on the variance of the tuning samples. All chains use the test value (usually the prior mean) as starting point. * jitter+adapt_diag : Same as `adapt_diag`\, but add uniform jitter in [-1, 1] to the starting point in each chain. * advi+adapt_diag : Run ADVI and then adapt the resulting diagonal mass matrix based on the sample variance of the tuning samples. * advi+adapt_diag_grad : Run ADVI and then adapt the resulting diagonal mass matrix based on the variance of the gradients during tuning. This is **experimental** and might be removed in a future release. * advi : Run ADVI to estimate posterior mean and diagonal mass matrix. * advi_map: Initialize ADVI with MAP and use MAP as starting point. * map : Use the MAP as starting point. This is discouraged. * nuts : Run NUTS and estimate posterior mean and mass matrix from the trace. n_init : int Number of iterations of initializer. Only works for 'nuts' and 'ADVI'. If 'ADVI', number of iterations, if 'nuts', number of draws. start : dict, or array of dict Starting point in parameter space (or partial point) Defaults to `trace.point(-1))` if there is a trace provided and model.test_point if not (defaults to empty dict). Initialization methods for NUTS (see `init` keyword) can overwrite the default. For 'SMC' step method, `start` should be a list of dicts of length = `chains`. trace : backend, list, or MultiTrace This should be a backend instance, a list of variables to track, or a MultiTrace object with past values. If a MultiTrace object is given, it must contain samples for the chain number `chain`. If None or a list of variables, the NDArray backend is used. Passing either "text" or "sqlite" is taken as a shortcut to set up the corresponding backend (with "mcmc" used as the base name). Ignored when using 'SMC' as step method. chain_idx : int Chain number used to store sample in backend. If `chains` is greater than one, chain numbers will start here. Ignored when using 'SMC' as step method. chains : int The number of chains to sample. Running independent chains is important for some convergence statistics and can also reveal multiple modes in the posterior. If `None`, then set to either `cores` or 2, whichever is larger. For SMC the number of chains is the number of draws. cores : int The number of chains to run in parallel. If `None`, set to the number of CPUs in the system, but at most 4. When using 'SMC', this parameter will be ignored if running with `pm.SMC(parallel=False)`. Keep in mind that some chains might themselves be multithreaded via openmp or BLAS. In those cases it might be faster to set this to 1. tune : int Number of iterations to tune, defaults to 500. Ignored when using 'SMC'. Samplers adjust the step sizes, scalings or similar during tuning. Tuning samples will be drawn in addition to the number specified in the `draws` argument, and will be discarded unless `discard_tuned_samples` is set to False. progressbar : bool Whether or not to display a progress bar in the command line. The bar shows the percentage of completion, the sampling speed in samples per second (SPS), and the estimated remaining time until completion ("expected time of arrival"; ETA). model : Model (optional if in `with` context) random_seed : int or list of ints A list is accepted if `cores` is greater than one. discard_tuned_samples : bool Whether to discard posterior samples of the tune interval. Ignored when using 'SMC' compute_convergence_checks : bool, default=True Whether to compute sampler statistics like Gelman-Rubin and `effective_n`. Ignored when using 'SMC' Returns ------- trace : pymc3.backends.base.MultiTrace A `MultiTrace` object that contains the samples. Notes ----- Optional keyword arguments can be passed to `sample` to be delivered to the `step_method`s used during sampling. In particular, the NUTS step method accepts a number of arguments. Common options are: * target_accept: float in [0, 1]. The step size is tuned such that we approximate this acceptance rate. Higher values like 0.9 or 0.95 often work better for problematic posteriors. * max_treedepth: The maximum depth of the trajectory tree. * step_scale: float, default 0.25 The initial guess for the step size scaled down by :math:`1/n**(1/4)` You can find a full list of arguments in the docstring of the step methods. Examples -------- .. code:: ipython >>> import pymc3 as pm ... n = 100 ... h = 61 ... alpha = 2 ... beta = 2 .. code:: ipython >>> with pm.Model() as model: # context management ... p = pm.Beta('p', alpha=alpha, beta=beta) ... y = pm.Binomial('y', n=n, p=p, observed=h) ... trace = pm.sample(2000, tune=1000, cores=4) >>> pm.summary(trace) mean sd mc_error hpd_2.5 hpd_97.5 p 0.604625 0.047086 0.00078 0.510498 0.694774 """ model = modelcontext(model) nuts_kwargs = kwargs.pop('nuts_kwargs', None) if nuts_kwargs is not None: warnings.warn("The nuts_kwargs argument has been deprecated. Pass step " "method arguments directly to sample instead", DeprecationWarning) kwargs.update(nuts_kwargs) step_kwargs = kwargs.pop('step_kwargs', None) if step_kwargs is not None: warnings.warn("The step_kwargs argument has been deprecated. Pass step " "method arguments directly to sample instead", DeprecationWarning) kwargs.update(step_kwargs) if cores is None: cores = min(4, _cpu_count()) if isinstance(step, pm.step_methods.smc.SMC): trace = smc.sample_smc(draws=draws, step=step, start=start, cores=cores, progressbar=progressbar, model=model, random_seed=random_seed) else: if 'njobs' in kwargs: cores = kwargs['njobs'] warnings.warn( "The njobs argument has been deprecated. Use cores instead.", DeprecationWarning) if 'nchains' in kwargs: chains = kwargs['nchains'] warnings.warn( "The nchains argument has been deprecated. Use chains instead.", DeprecationWarning) if chains is None: chains = max(2, cores) if isinstance(start, dict): start = [start] * chains if random_seed == -1: random_seed = None if chains == 1 and isinstance(random_seed, int): random_seed = [random_seed] if random_seed is None or isinstance(random_seed, int): if random_seed is not None: np.random.seed(random_seed) random_seed = [np.random.randint(2 ** 30) for _ in range(chains)] if not isinstance(random_seed, Iterable): raise TypeError( 'Invalid value for `random_seed`. Must be tuple, list or int') if 'chain' in kwargs: chain_idx = kwargs['chain'] warnings.warn( "The chain argument has been deprecated. Use chain_idx instead.", DeprecationWarning) if start is not None: for start_vals in start: _check_start_shape(model, start_vals) # small trace warning if draws == 0: msg = "Tuning was enabled throughout the whole trace." _log.warning(msg) elif draws < 500: msg = "Only %s samples in chain." % draws _log.warning(msg) draws += tune if model.ndim == 0: raise ValueError('The model does not contain any free variables.') if step is None and init is not None and all_continuous(model.vars): try: # By default, try to use NUTS _log.info('Auto-assigning NUTS sampler...') start_, step = init_nuts(init=init, chains=chains, n_init=n_init, model=model, random_seed=random_seed, progressbar=progressbar, **kwargs) if start is None: start = start_ except (AttributeError, NotImplementedError, tg.NullTypeGradError): # gradient computation failed _log.info("Initializing NUTS failed. " "Falling back to elementwise auto-assignment.") _log.debug('Exception in init nuts', exec_info=True) step = assign_step_methods(model, step, step_kwargs=kwargs) else: step = assign_step_methods(model, step, step_kwargs=kwargs) if isinstance(step, list): step = CompoundStep(step) if start is None: start = {} if isinstance(start, dict): start = [start] * chains sample_args = {'draws': draws, 'step': step, 'start': start, 'trace': trace, 'chain': chain_idx, 'chains': chains, 'tune': tune, 'progressbar': progressbar, 'model': model, 'random_seed': random_seed, 'cores': cores, } sample_args.update(kwargs) has_population_samplers = np.any([isinstance(m, arraystep.PopulationArrayStepShared) for m in (step.methods if isinstance(step, CompoundStep) else [step])]) parallel = cores > 1 and chains > 1 and not has_population_samplers if parallel: _log.info('Multiprocess sampling ({} chains in {} jobs)'.format(chains, cores)) _print_step_hierarchy(step) try: trace = _mp_sample(**sample_args) except pickle.PickleError: _log.warning("Could not pickle model, sampling singlethreaded.") _log.debug('Pickling error:', exec_info=True) parallel = False except AttributeError as e: if str(e).startswith("AttributeError: Can't pickle"): _log.warning("Could not pickle model, sampling singlethreaded.") _log.debug('Pickling error:', exec_info=True) parallel = False else: raise if not parallel: if has_population_samplers: _log.info('Population sampling ({} chains)'.format(chains)) _print_step_hierarchy(step) trace = _sample_population(**sample_args, parallelize=cores > 1) else: _log.info('Sequential sampling ({} chains in 1 job)'.format(chains)) _print_step_hierarchy(step) trace = _sample_many(**sample_args) discard = tune if discard_tuned_samples else 0 trace = trace[discard:] if compute_convergence_checks: if draws-tune < 100: warnings.warn("The number of samples is too small to check convergence reliably.") else: trace.report._run_convergence_checks(trace, model) trace.report._log_summary() return trace
def sample(draws=500, step=None, init='auto', n_init=200000, start=None, trace=None, chain_idx=0, chains=None, cores=None, tune=500, progressbar=True, model=None, random_seed=None, discard_tuned_samples=True, compute_convergence_checks=True, **kwargs): """Draw samples from the posterior using the given step methods. Multiple step methods are supported via compound step methods. Parameters ---------- draws : int The number of samples to draw. Defaults to 500. The number of tuned samples are discarded by default. See `discard_tuned_samples`. step : function or iterable of functions A step function or collection of functions. If there are variables without a step methods, step methods for those variables will be assigned automatically. init : str Initialization method to use for auto-assigned NUTS samplers. * auto : Choose a default initialization method automatically. Currently, this is `'jitter+adapt_diag'`, but this can change in the future. If you depend on the exact behaviour, choose an initialization method explicitly. * adapt_diag : Start with a identity mass matrix and then adapt a diagonal based on the variance of the tuning samples. All chains use the test value (usually the prior mean) as starting point. * jitter+adapt_diag : Same as `adapt_diag`\, but add uniform jitter in [-1, 1] to the starting point in each chain. * advi+adapt_diag : Run ADVI and then adapt the resulting diagonal mass matrix based on the sample variance of the tuning samples. * advi+adapt_diag_grad : Run ADVI and then adapt the resulting diagonal mass matrix based on the variance of the gradients during tuning. This is **experimental** and might be removed in a future release. * advi : Run ADVI to estimate posterior mean and diagonal mass matrix. * advi_map: Initialize ADVI with MAP and use MAP as starting point. * map : Use the MAP as starting point. This is discouraged. * nuts : Run NUTS and estimate posterior mean and mass matrix from the trace. n_init : int Number of iterations of initializer. Only works for 'nuts' and 'ADVI'. If 'ADVI', number of iterations, if 'nuts', number of draws. start : dict, or array of dict Starting point in parameter space (or partial point) Defaults to `trace.point(-1))` if there is a trace provided and model.test_point if not (defaults to empty dict). Initialization methods for NUTS (see `init` keyword) can overwrite the default. For 'SMC' step method, `start` should be a list of dicts of length = `chains`. trace : backend, list, or MultiTrace This should be a backend instance, a list of variables to track, or a MultiTrace object with past values. If a MultiTrace object is given, it must contain samples for the chain number `chain`. If None or a list of variables, the NDArray backend is used. Passing either "text" or "sqlite" is taken as a shortcut to set up the corresponding backend (with "mcmc" used as the base name). Ignored when using 'SMC' as step method. chain_idx : int Chain number used to store sample in backend. If `chains` is greater than one, chain numbers will start here. Ignored when using 'SMC' as step method. chains : int The number of chains to sample. Running independent chains is important for some convergence statistics and can also reveal multiple modes in the posterior. If `None`, then set to either `cores` or 2, whichever is larger. For SMC the number of chains is the number of draws. cores : int The number of chains to run in parallel. If `None`, set to the number of CPUs in the system, but at most 4. When using 'SMC', this parameter will be ignored if running with ``pm.SMC(parallel=False)``. Keep in mind that some chains might themselves be multithreaded via openmp or BLAS. In those cases it might be faster to set this to 1. tune : int Number of iterations to tune, defaults to 500. Ignored when using 'SMC'. Samplers adjust the step sizes, scalings or similar during tuning. Tuning samples will be drawn in addition to the number specified in the `draws` argument, and will be discarded unless `discard_tuned_samples` is set to False. progressbar : bool Whether or not to display a progress bar in the command line. The bar shows the percentage of completion, the sampling speed in samples per second (SPS), and the estimated remaining time until completion ("expected time of arrival"; ETA). model : Model (optional if in `with` context) random_seed : int or list of ints A list is accepted if `cores` is greater than one. discard_tuned_samples : bool Whether to discard posterior samples of the tune interval. Ignored when using 'SMC' compute_convergence_checks : bool, default=True Whether to compute sampler statistics like Gelman-Rubin and `effective_n`. Ignored when using 'SMC' Returns ------- trace : pymc3.backends.base.MultiTrace A `MultiTrace` object that contains the samples. Notes ----- Optional keyword arguments can be passed to `sample` to be delivered to the `step_method`s used during sampling. In particular, the NUTS step method accepts a number of arguments. Common options are: * target_accept: float in [0, 1]. The step size is tuned such that we approximate this acceptance rate. Higher values like 0.9 or 0.95 often work better for problematic posteriors. * max_treedepth: The maximum depth of the trajectory tree. * step_scale: float, default 0.25 The initial guess for the step size scaled down by :math:`1/n**(1/4)` You can find a full list of arguments in the docstring of the step methods. Examples -------- .. code:: ipython >>> import pymc3 as pm ... n = 100 ... h = 61 ... alpha = 2 ... beta = 2 .. code:: ipython >>> with pm.Model() as model: # context management ... p = pm.Beta('p', alpha=alpha, beta=beta) ... y = pm.Binomial('y', n=n, p=p, observed=h) ... trace = pm.sample(2000, tune=1000, cores=4) >>> pm.summary(trace) mean sd mc_error hpd_2.5 hpd_97.5 p 0.604625 0.047086 0.00078 0.510498 0.694774 """ model = modelcontext(model) nuts_kwargs = kwargs.pop('nuts_kwargs', None) if nuts_kwargs is not None: warnings.warn("The nuts_kwargs argument has been deprecated. Pass step " "method arguments directly to sample instead", DeprecationWarning) kwargs.update(nuts_kwargs) step_kwargs = kwargs.pop('step_kwargs', None) if step_kwargs is not None: warnings.warn("The step_kwargs argument has been deprecated. Pass step " "method arguments directly to sample instead", DeprecationWarning) kwargs.update(step_kwargs) if cores is None: cores = min(4, _cpu_count()) if isinstance(step, pm.step_methods.smc.SMC): trace = smc.sample_smc(draws=draws, step=step, start=start, cores=cores, progressbar=progressbar, model=model, random_seed=random_seed) else: if 'njobs' in kwargs: cores = kwargs['njobs'] warnings.warn( "The njobs argument has been deprecated. Use cores instead.", DeprecationWarning) if 'nchains' in kwargs: chains = kwargs['nchains'] warnings.warn( "The nchains argument has been deprecated. Use chains instead.", DeprecationWarning) if chains is None: chains = max(2, cores) if isinstance(start, dict): start = [start] * chains if random_seed == -1: random_seed = None if chains == 1 and isinstance(random_seed, int): random_seed = [random_seed] if random_seed is None or isinstance(random_seed, int): if random_seed is not None: np.random.seed(random_seed) random_seed = [np.random.randint(2 ** 30) for _ in range(chains)] if not isinstance(random_seed, Iterable): raise TypeError( 'Invalid value for `random_seed`. Must be tuple, list or int') if 'chain' in kwargs: chain_idx = kwargs['chain'] warnings.warn( "The chain argument has been deprecated. Use chain_idx instead.", DeprecationWarning) if start is not None: for start_vals in start: _check_start_shape(model, start_vals) # small trace warning if draws == 0: msg = "Tuning was enabled throughout the whole trace." _log.warning(msg) elif draws < 500: msg = "Only %s samples in chain." % draws _log.warning(msg) draws += tune if model.ndim == 0: raise ValueError('The model does not contain any free variables.') if step is None and init is not None and all_continuous(model.vars): try: # By default, try to use NUTS _log.info('Auto-assigning NUTS sampler...') start_, step = init_nuts(init=init, chains=chains, n_init=n_init, model=model, random_seed=random_seed, progressbar=progressbar, **kwargs) if start is None: start = start_ except (AttributeError, NotImplementedError, tg.NullTypeGradError): # gradient computation failed _log.info("Initializing NUTS failed. " "Falling back to elementwise auto-assignment.") _log.debug('Exception in init nuts', exec_info=True) step = assign_step_methods(model, step, step_kwargs=kwargs) else: step = assign_step_methods(model, step, step_kwargs=kwargs) if isinstance(step, list): step = CompoundStep(step) if start is None: start = {} if isinstance(start, dict): start = [start] * chains sample_args = {'draws': draws, 'step': step, 'start': start, 'trace': trace, 'chain': chain_idx, 'chains': chains, 'tune': tune, 'progressbar': progressbar, 'model': model, 'random_seed': random_seed, 'cores': cores, } sample_args.update(kwargs) has_population_samplers = np.any([isinstance(m, arraystep.PopulationArrayStepShared) for m in (step.methods if isinstance(step, CompoundStep) else [step])]) parallel = cores > 1 and chains > 1 and not has_population_samplers if parallel: _log.info('Multiprocess sampling ({} chains in {} jobs)'.format(chains, cores)) _print_step_hierarchy(step) try: trace = _mp_sample(**sample_args) except pickle.PickleError: _log.warning("Could not pickle model, sampling singlethreaded.") _log.debug('Pickling error:', exec_info=True) parallel = False except AttributeError as e: if str(e).startswith("AttributeError: Can't pickle"): _log.warning("Could not pickle model, sampling singlethreaded.") _log.debug('Pickling error:', exec_info=True) parallel = False else: raise if not parallel: if has_population_samplers: _log.info('Population sampling ({} chains)'.format(chains)) _print_step_hierarchy(step) trace = _sample_population(**sample_args, parallelize=cores > 1) else: _log.info('Sequential sampling ({} chains in 1 job)'.format(chains)) _print_step_hierarchy(step) trace = _sample_many(**sample_args) discard = tune if discard_tuned_samples else 0 trace = trace[discard:] if compute_convergence_checks: if draws-tune < 100: warnings.warn("The number of samples is too small to check convergence reliably.") else: trace.report._run_convergence_checks(trace, model) trace.report._log_summary() return trace
23,021
def test_frame_series_arithmetic_methods(): pdf1 = pd.DataFrame( { "A": np.arange(10), "B": [np.nan, 1, 2, 3, 4] * 2, "C": [np.nan] * 10, "D": np.arange(10), }, index=list("abcdefghij"), columns=list("ABCD"), ) pdf2 = pd.DataFrame( np.random.randn(10, 4), index=list("abcdefghjk"), columns=list("ABCX") ) ps1 = pdf1.A ps2 = pdf2.A ps3 = pd.Series(np.random.randn(10), index=list("ABCDXabcde")) ddf1 = dd.from_pandas(pdf1, 2) ddf2 = dd.from_pandas(pdf2, 2) ds1 = ddf1.A ds2 = ddf2.A s = dd.core.Scalar({("s", 0): 4}, "s", "i8") for l, r, el, er in [ (ddf1, ddf2, pdf1, pdf2), (ds1, ds2, ps1, ps2), (ddf1.repartition(["a", "f", "j"]), ddf2, pdf1, pdf2), (ds1.repartition(["a", "b", "f", "j"]), ds2, ps1, ps2), (ddf1, ddf2.repartition(["a", "k"]), pdf1, pdf2), (ds1, ds2.repartition(["a", "b", "d", "h", "k"]), ps1, ps2), (ddf1, 3, pdf1, 3), (ds1, 3, ps1, 3), (ddf1, s, pdf1, 4), (ds1, s, ps1, 4), ]: # l, r may be repartitioned, test whether repartition keeps original data assert_eq(l, el) assert_eq(r, er) assert_eq(l.add(r, fill_value=0), el.add(er, fill_value=0)) assert_eq(l.sub(r, fill_value=0), el.sub(er, fill_value=0)) assert_eq(l.mul(r, fill_value=0), el.mul(er, fill_value=0)) with warnings.catch_warnings(): # pandas-26793 warnings.simplefilter("ignore", RuntimeWarning) assert_eq(l.div(r, fill_value=0), el.div(er, fill_value=0)) assert_eq(l.divide(r, axis=0), el.divide(er, axis=0)) assert_eq(l.truediv(r, fill_value=0), el.truediv(er, fill_value=0)) assert_eq(l.floordiv(r, fill_value=1), el.floordiv(er, fill_value=1)) assert_eq(l.pow(r, fill_value=0), el.pow(er, fill_value=0)) assert_eq(l.mod(r, fill_value=0), el.mod(er, fill_value=0)) assert_eq(l.radd(r, fill_value=0), el.radd(er, fill_value=0)) assert_eq(l.rsub(r, fill_value=0), el.rsub(er, fill_value=0)) assert_eq(l.rmul(r, fill_value=0), el.rmul(er, fill_value=0)) with warnings.catch_warnings(): # pandas-26793 warnings.simplefilter("ignore", RuntimeWarning) assert_eq(l.rdiv(r, fill_value=0), el.rdiv(er, fill_value=0)) assert_eq(l.rtruediv(r, fill_value=0), el.rtruediv(er, fill_value=0)) assert_eq(l.rfloordiv(r, fill_value=1), el.rfloordiv(er, fill_value=1)) assert_eq(l.rpow(r, fill_value=0), el.rpow(er, fill_value=0)) assert_eq(l.rmod(r, fill_value=0), el.rmod(er, fill_value=0)) for l, r, el, er in [(ddf1, ds2, pdf1, ps2), (ddf1, ddf2.X, pdf1, pdf2.X)]: assert_eq(l, el) assert_eq(r, er) # must specify axis=0 to add Series to each column # axis=1 is not supported (add to each row) assert_eq(l.add(r, axis=0), el.add(er, axis=0)) assert_eq(l.sub(r, axis=0), el.sub(er, axis=0)) assert_eq(l.mul(r, axis=0), el.mul(er, axis=0)) assert_eq(l.div(r, axis=0), el.div(er, axis=0)) assert_eq(l.divide(r, axis=0), el.divide(er, axis=0)) assert_eq(l.truediv(r, axis=0), el.truediv(er, axis=0)) assert_eq(l.floordiv(r, axis=0), el.floordiv(er, axis=0)) assert_eq(l.mod(r, axis=0), el.mod(er, axis=0)) assert_eq(l.pow(r, axis=0), el.pow(er, axis=0)) assert_eq(l.radd(r, axis=0), el.radd(er, axis=0)) assert_eq(l.rsub(r, axis=0), el.rsub(er, axis=0)) assert_eq(l.rmul(r, axis=0), el.rmul(er, axis=0)) assert_eq(l.rdiv(r, axis=0), el.rdiv(er, axis=0)) assert_eq(l.rtruediv(r, axis=0), el.rtruediv(er, axis=0)) assert_eq(l.rfloordiv(r, axis=0), el.rfloordiv(er, axis=0)) assert_eq(l.rmod(r, axis=0), el.rmod(er, axis=0)) assert_eq(l.rpow(r, axis=0), el.rpow(er, axis=0)) pytest.raises(ValueError, lambda: l.add(r, axis=1)) for l, r, el, er in [(ddf1, pdf2, pdf1, pdf2), (ddf1, ps3, pdf1, ps3)]: assert_eq(l, el) assert_eq(r, er) for axis in [0, 1, "index", "columns"]: assert_eq(l.add(r, axis=axis), el.add(er, axis=axis)) assert_eq(l.sub(r, axis=axis), el.sub(er, axis=axis)) assert_eq(l.mul(r, axis=axis), el.mul(er, axis=axis)) assert_eq(l.div(r, axis=axis), el.div(er, axis=axis)) assert_eq(l.divide(r, axis=0), el.divide(er, axis=0)) assert_eq(l.truediv(r, axis=axis), el.truediv(er, axis=axis)) with warnings.catch_warnings(): # https://github.com/pandas-dev/pandas/issues/26793 warnings.simplefilter("ignore", RuntimeWarning) assert_eq(l.floordiv(r, axis=axis), el.floordiv(er, axis=axis)) assert_eq(l.mod(r, axis=axis), el.mod(er, axis=axis)) assert_eq(l.pow(r, axis=axis), el.pow(er, axis=axis)) assert_eq(l.rdiv(r, axis=axis), el.rdiv(er, axis=axis)) assert_eq(l.rtruediv(r, axis=axis), el.rtruediv(er, axis=axis)) assert_eq(l.rfloordiv(r, axis=axis), el.rfloordiv(er, axis=axis)) assert_eq(l.rpow(r, axis=axis), el.rpow(er, axis=axis)) assert_eq(l.rmod(r, axis=axis), el.rmod(er, axis=axis)) assert_eq(l.radd(r, axis=axis), el.radd(er, axis=axis)) assert_eq(l.rsub(r, axis=axis), el.rsub(er, axis=axis)) assert_eq(l.rmul(r, axis=axis), el.rmul(er, axis=axis))
def test_frame_series_arithmetic_methods(): pdf1 = pd.DataFrame( { "A": np.arange(10), "B": [np.nan, 1, 2, 3, 4] * 2, "C": [np.nan] * 10, "D": np.arange(10), }, index=list("abcdefghij"), columns=list("ABCD"), ) pdf2 = pd.DataFrame( np.random.randn(10, 4), index=list("abcdefghjk"), columns=list("ABCX") ) ps1 = pdf1.A ps2 = pdf2.A ps3 = pd.Series(np.random.randn(10), index=list("ABCDXabcde")) ddf1 = dd.from_pandas(pdf1, 2) ddf2 = dd.from_pandas(pdf2, 2) ds1 = ddf1.A ds2 = ddf2.A s = dd.core.Scalar({("s", 0): 4}, "s", "i8") for l, r, el, er in [ (ddf1, ddf2, pdf1, pdf2), (ds1, ds2, ps1, ps2), (ddf1.repartition(["a", "f", "j"]), ddf2, pdf1, pdf2), (ds1.repartition(["a", "b", "f", "j"]), ds2, ps1, ps2), (ddf1, ddf2.repartition(["a", "k"]), pdf1, pdf2), (ds1, ds2.repartition(["a", "b", "d", "h", "k"]), ps1, ps2), (ddf1, 3, pdf1, 3), (ds1, 3, ps1, 3), (ddf1, s, pdf1, 4), (ds1, s, ps1, 4), ]: # l, r may be repartitioned, test whether repartition keeps original data assert_eq(l, el) assert_eq(r, er) assert_eq(l.add(r, fill_value=0), el.add(er, fill_value=0)) assert_eq(l.sub(r, fill_value=0), el.sub(er, fill_value=0)) assert_eq(l.mul(r, fill_value=0), el.mul(er, fill_value=0)) with warnings.catch_warnings(): # pandas-26793 warnings.simplefilter("ignore", RuntimeWarning) assert_eq(l.div(r, fill_value=0), el.div(er, fill_value=0)) assert_eq(l.divide(r, axis=0), el.divide(er, axis=0)) assert_eq(l.truediv(r, fill_value=0), el.truediv(er, fill_value=0)) assert_eq(l.floordiv(r, fill_value=1), el.floordiv(er, fill_value=1)) assert_eq(l.pow(r, fill_value=0), el.pow(er, fill_value=0)) assert_eq(l.mod(r, fill_value=0), el.mod(er, fill_value=0)) assert_eq(l.radd(r, fill_value=0), el.radd(er, fill_value=0)) assert_eq(l.rsub(r, fill_value=0), el.rsub(er, fill_value=0)) assert_eq(l.rmul(r, fill_value=0), el.rmul(er, fill_value=0)) with warnings.catch_warnings(): # pandas-26793 warnings.simplefilter("ignore", RuntimeWarning) assert_eq(l.rdiv(r, fill_value=0), el.rdiv(er, fill_value=0)) assert_eq(l.rtruediv(r, fill_value=0), el.rtruediv(er, fill_value=0)) assert_eq(l.rfloordiv(r, fill_value=1), el.rfloordiv(er, fill_value=1)) assert_eq(l.rpow(r, fill_value=0), el.rpow(er, fill_value=0)) assert_eq(l.rmod(r, fill_value=0), el.rmod(er, fill_value=0)) for l, r, el, er in [(ddf1, ds2, pdf1, ps2), (ddf1, ddf2.X, pdf1, pdf2.X)]: assert_eq(l, el) assert_eq(r, er) # must specify axis=0 to add Series to each column # axis=1 is not supported (add to each row) assert_eq(l.add(r, axis=0), el.add(er, axis=0)) assert_eq(l.sub(r, axis=0), el.sub(er, axis=0)) assert_eq(l.mul(r, axis=0), el.mul(er, axis=0)) assert_eq(l.div(r, axis=0), el.div(er, axis=0)) assert_eq(l.divide(r, axis=0), el.divide(er, axis=0)) assert_eq(l.truediv(r, axis=0), el.truediv(er, axis=0)) assert_eq(l.floordiv(r, axis=0), el.floordiv(er, axis=0)) assert_eq(l.mod(r, axis=0), el.mod(er, axis=0)) assert_eq(l.pow(r, axis=0), el.pow(er, axis=0)) assert_eq(l.radd(r, axis=0), el.radd(er, axis=0)) assert_eq(l.rsub(r, axis=0), el.rsub(er, axis=0)) assert_eq(l.rmul(r, axis=0), el.rmul(er, axis=0)) assert_eq(l.rdiv(r, axis=0), el.rdiv(er, axis=0)) assert_eq(l.rtruediv(r, axis=0), el.rtruediv(er, axis=0)) assert_eq(l.rfloordiv(r, axis=0), el.rfloordiv(er, axis=0)) assert_eq(l.rmod(r, axis=0), el.rmod(er, axis=0)) assert_eq(l.rpow(r, axis=0), el.rpow(er, axis=0)) pytest.raises(ValueError, lambda: l.add(r, axis=1)) for l, r, el, er in [(ddf1, pdf2, pdf1, pdf2), (ddf1, ps3, pdf1, ps3)]: assert_eq(l, el) assert_eq(r, er) for axis in [0, 1, "index", "columns"]: assert_eq(l.add(r, axis=axis), el.add(er, axis=axis)) assert_eq(l.sub(r, axis=axis), el.sub(er, axis=axis)) assert_eq(l.mul(r, axis=axis), el.mul(er, axis=axis)) assert_eq(l.div(r, axis=axis), el.div(er, axis=axis)) assert_eq(l.divide(r, axis=axis), el.divide(er, axis=axis)) assert_eq(l.truediv(r, axis=axis), el.truediv(er, axis=axis)) with warnings.catch_warnings(): # https://github.com/pandas-dev/pandas/issues/26793 warnings.simplefilter("ignore", RuntimeWarning) assert_eq(l.floordiv(r, axis=axis), el.floordiv(er, axis=axis)) assert_eq(l.mod(r, axis=axis), el.mod(er, axis=axis)) assert_eq(l.pow(r, axis=axis), el.pow(er, axis=axis)) assert_eq(l.rdiv(r, axis=axis), el.rdiv(er, axis=axis)) assert_eq(l.rtruediv(r, axis=axis), el.rtruediv(er, axis=axis)) assert_eq(l.rfloordiv(r, axis=axis), el.rfloordiv(er, axis=axis)) assert_eq(l.rpow(r, axis=axis), el.rpow(er, axis=axis)) assert_eq(l.rmod(r, axis=axis), el.rmod(er, axis=axis)) assert_eq(l.radd(r, axis=axis), el.radd(er, axis=axis)) assert_eq(l.rsub(r, axis=axis), el.rsub(er, axis=axis)) assert_eq(l.rmul(r, axis=axis), el.rmul(er, axis=axis))
8,287
def _readcube(rawdata, frame_start_index, frame_list, width, height, channel_number, width_norm, height_norm, rebin_energy, SI_dtype, sweep, frame_shifts, sum_frames, read_em_image, only_valid_data, lazy): # pragma: no cover """ Read spectrum image (and SEM/STEM image) from pts file Parameters ---------- rawdata : numpy.ndarray Spectrum image part of pts file. frame_start_index : np.ndarray of shape (sweep+1, ) or (0, ) The indices of each frame start. If length is zero, the indices will be determined from rawdata. frame_list : list List of frames to be read. width, height : int The navigation dimension. channel_number : int The number of channels. width_norm, height_norm : int Rebin factor of the navigation dimension rebin_energy : int Rebin factor of the energy dimension sweep : int Number of sweep frame_shifts : list The list of image positions [[x0,y0,z0], ...]. The x, y, z values can be negative. The data points outside data cube are ignored. Returns ------- data : numpy.ndarray or dask.array The spectrum image with shape (frame, x, y, energy) if sum_frames is False, otherwise (x, y, energy). If lazy is True, the dask array is a COO sparse array em_data : numpy.ndarray or dask.array The SEM/STEM image with shape (frame, x, y) if sum_frames is False, otherwise (x, y). has_em_image : bool True if the stream contains SEM/STEM images. sweep : int The number of loaded frames. frame_start_index : list The indices of each frame start. max_shift : numpy.ndarray The maximum shifts of the origin in the navigation dimension frame_shifts : numpy.ndarray The shifts of the origin in the navigation dimension for each frame. """ import dask.array as da # In case of sum_frames, spectrum image and SEM/STEM image are summing up to the same frame number. # To avoid overflow on integration of SEM/STEM image, data type of np.uint32 is selected # for 16 frames and over. (range of image intensity in each frame is 0-4095 (0-0xfff)) EM_dtype = np.uint16 frame_step = 1 if sum_frames: frame_step = 0 if sweep >= 16: EM_dtype = np.uint32 n_frames = 1 else: n_frames = sweep + 1 if lazy: hypermap = np.zeros((n_frames), dtype=EM_dtype) # dummy variable, not used data_list = [] else: hypermap = np.zeros((n_frames, height, width, channel_number), dtype=SI_dtype) em_image = np.zeros((n_frames, width, height), dtype=EM_dtype) max_value = np.iinfo(SI_dtype).max frame_shifts = np.asarray(frame_shifts) frame_list = np.asarray(frame_list) max_shift = frame_shifts[frame_list].max(axis=0) min_shift = frame_shifts[frame_list].min(axis=0) # sxyz = np.array([min_shift[0]-max_shift[0], min_shift[1]-max_shift[1],0]) min_shift[2]=0 max_shift[2]=0 sxyz = min_shift-max_shift frame_shifts -= max_shift width += sxyz[1] height += sxyz[0] if lazy: readframe = _readframe_lazy else: readframe = _readframe_dense frame_num = 0 p_start = 0 target_frame_num = 0 eof = rawdata.size countup = 1 has_em_image = False for frame_idx in frame_list: if frame_idx < 0: continue elif frame_start_index[frame_idx] >= 0: # if frame_idx is already indexed p_start = frame_start_index[frame_idx] elif frame_num < frame_idx and frame_start_index[frame_num] < 0: # record start point of frame and skip frame frame_start_index[frame_num] = p_start p_start += _readframe_dummy(rawdata[p_start:]) frame_num += 1 continue else: frame_start_index[frame_idx] = p_start # = end of last frame if frame_idx < frame_shifts.size: fs = frame_shifts[frame_idx] else: fs = np.zeros(3, np.uint16) _logger.info(f"Size of frame_shift array is too small. The frame {frame_idx} is not moved.") length, frame_data, has_em, valid, max_valid = readframe( rawdata[p_start:], 1, hypermap[target_frame_num], em_image[target_frame_num], width, height, channel_number, width_norm, height_norm, rebin_energy, fs[1], fs[0], fs[2], max_value) has_em_image = has_em_image or has_em if length == 0: # no data break if valid or not only_valid_data: # accept last frame if lazy: data_list.append(frame_data) frame_num += 1 target_frame_num += frame_step else: # incomplete data, not accepted if sum_frames: # subtract signal counts of last frame _ = readframe(rawdata[p_start:], -1, hypermap[target_frame_num], em_image[target_frame_num], width, height, channel_number, width_norm, height_norm, rebin_energy, fs[1], fs[0],fs[2], max_value) _logger.info("The last frame (sweep) is incomplete because the acquisition stopped during this frame. The partially acquired frame is ignored. Use 'sum_frames=False, only_valid_data=False' to read all frames individually, including the last partially completed frame.") break # else: # pass p_start += length if not lazy: if sum_frames: # the first frame has integrated intensity return hypermap[0,:height,:width], em_image[0,:height,:width], has_em_image, frame_num, frame_start_index, valid, max_shift, frame_shifts else: return hypermap[:target_frame_num,:height,:width], em_image[:target_frame_num,:height,:width], has_em_image, frame_num, frame_start_index, valid, max_shift, frame_shifts # for lazy loading from hyperspy.misc.io.fei_stream_readers import DenseSliceCOO length = np.sum([len(d) for d in data_list]) # length = number of data points # v : [[frame_no, y, x, energy_channel, 1], ....] v = np.zeros(shape=(5, length), dtype=np.uint16) ptr = 0 frame_count = 0 for d in data_list: # d : data points in one frame d = np.asarray(d) # check if the pixels are in the valid data cube # (frame_shifts make partially integrated area at the rim) valid_cube = np.where((0<=d[:,0]) & (d[:,0]<height) & (0<=d[:,1]) & (d[:,1]<width) & (0<=d[:,2]) & (d[:,2]<channel_number)) d = d[valid_cube] flen = len(d) pv = v[:,ptr:ptr+flen] pv[1:4, :] = np.array(d).transpose() pv[0,:] = frame_count pv[4,:] = 1 ptr += flen frame_count += 1 if sum_frames: data_shape = [height, width, channel_number] ar_s = DenseSliceCOO(v[1:4], v[4], shape=data_shape) else: data_shape = [frame_count, height, width, channel_number] ar_s = DenseSliceCOO(v[0:4], v[4], shape=data_shape) if sum_frames: em_image = em_image[0] return da.from_array(ar_s, asarray=False), em_image, has_em_image, sweep, frame_start_index, valid, max_shift, frame_shifts
def _readcube(rawdata, frame_start_index, frame_list, width, height, channel_number, width_norm, height_norm, rebin_energy, SI_dtype, sweep, frame_shifts, sum_frames, read_em_image, only_valid_data, lazy): # pragma: no cover """ Read spectrum image (and SEM/STEM image) from pts file Parameters ---------- rawdata : numpy.ndarray Spectrum image part of pts file. frame_start_index : np.ndarray of shape (sweep+1, ) or (0, ) The indices of each frame start. If length is zero, the indices will be determined from rawdata. frame_list : list List of frames to be read. width, height : int The navigation dimension. channel_number : int The number of channels. width_norm, height_norm : int Rebin factor of the navigation dimension rebin_energy : int Rebin factor of the energy dimension sweep : int Number of sweep frame_shifts : list The list of image positions [[x0,y0,z0], ...]. The x, y, z values can be negative. The data points outside data cube are ignored. Returns ------- data : numpy.ndarray or dask.array The spectrum image with shape (frame, x, y, energy) if sum_frames is False, otherwise (x, y, energy). If lazy is True, the dask array is a COO sparse array. em_data : numpy.ndarray or dask.array The SEM/STEM image with shape (frame, x, y) if sum_frames is False, otherwise (x, y). has_em_image : bool True if the stream contains SEM/STEM images. sweep : int The number of loaded frames. frame_start_index : list The indices of each frame start. max_shift : numpy.ndarray The maximum shifts of the origin in the navigation dimension frame_shifts : numpy.ndarray The shifts of the origin in the navigation dimension for each frame. """ import dask.array as da # In case of sum_frames, spectrum image and SEM/STEM image are summing up to the same frame number. # To avoid overflow on integration of SEM/STEM image, data type of np.uint32 is selected # for 16 frames and over. (range of image intensity in each frame is 0-4095 (0-0xfff)) EM_dtype = np.uint16 frame_step = 1 if sum_frames: frame_step = 0 if sweep >= 16: EM_dtype = np.uint32 n_frames = 1 else: n_frames = sweep + 1 if lazy: hypermap = np.zeros((n_frames), dtype=EM_dtype) # dummy variable, not used data_list = [] else: hypermap = np.zeros((n_frames, height, width, channel_number), dtype=SI_dtype) em_image = np.zeros((n_frames, width, height), dtype=EM_dtype) max_value = np.iinfo(SI_dtype).max frame_shifts = np.asarray(frame_shifts) frame_list = np.asarray(frame_list) max_shift = frame_shifts[frame_list].max(axis=0) min_shift = frame_shifts[frame_list].min(axis=0) # sxyz = np.array([min_shift[0]-max_shift[0], min_shift[1]-max_shift[1],0]) min_shift[2]=0 max_shift[2]=0 sxyz = min_shift-max_shift frame_shifts -= max_shift width += sxyz[1] height += sxyz[0] if lazy: readframe = _readframe_lazy else: readframe = _readframe_dense frame_num = 0 p_start = 0 target_frame_num = 0 eof = rawdata.size countup = 1 has_em_image = False for frame_idx in frame_list: if frame_idx < 0: continue elif frame_start_index[frame_idx] >= 0: # if frame_idx is already indexed p_start = frame_start_index[frame_idx] elif frame_num < frame_idx and frame_start_index[frame_num] < 0: # record start point of frame and skip frame frame_start_index[frame_num] = p_start p_start += _readframe_dummy(rawdata[p_start:]) frame_num += 1 continue else: frame_start_index[frame_idx] = p_start # = end of last frame if frame_idx < frame_shifts.size: fs = frame_shifts[frame_idx] else: fs = np.zeros(3, np.uint16) _logger.info(f"Size of frame_shift array is too small. The frame {frame_idx} is not moved.") length, frame_data, has_em, valid, max_valid = readframe( rawdata[p_start:], 1, hypermap[target_frame_num], em_image[target_frame_num], width, height, channel_number, width_norm, height_norm, rebin_energy, fs[1], fs[0], fs[2], max_value) has_em_image = has_em_image or has_em if length == 0: # no data break if valid or not only_valid_data: # accept last frame if lazy: data_list.append(frame_data) frame_num += 1 target_frame_num += frame_step else: # incomplete data, not accepted if sum_frames: # subtract signal counts of last frame _ = readframe(rawdata[p_start:], -1, hypermap[target_frame_num], em_image[target_frame_num], width, height, channel_number, width_norm, height_norm, rebin_energy, fs[1], fs[0],fs[2], max_value) _logger.info("The last frame (sweep) is incomplete because the acquisition stopped during this frame. The partially acquired frame is ignored. Use 'sum_frames=False, only_valid_data=False' to read all frames individually, including the last partially completed frame.") break # else: # pass p_start += length if not lazy: if sum_frames: # the first frame has integrated intensity return hypermap[0,:height,:width], em_image[0,:height,:width], has_em_image, frame_num, frame_start_index, valid, max_shift, frame_shifts else: return hypermap[:target_frame_num,:height,:width], em_image[:target_frame_num,:height,:width], has_em_image, frame_num, frame_start_index, valid, max_shift, frame_shifts # for lazy loading from hyperspy.misc.io.fei_stream_readers import DenseSliceCOO length = np.sum([len(d) for d in data_list]) # length = number of data points # v : [[frame_no, y, x, energy_channel, 1], ....] v = np.zeros(shape=(5, length), dtype=np.uint16) ptr = 0 frame_count = 0 for d in data_list: # d : data points in one frame d = np.asarray(d) # check if the pixels are in the valid data cube # (frame_shifts make partially integrated area at the rim) valid_cube = np.where((0<=d[:,0]) & (d[:,0]<height) & (0<=d[:,1]) & (d[:,1]<width) & (0<=d[:,2]) & (d[:,2]<channel_number)) d = d[valid_cube] flen = len(d) pv = v[:,ptr:ptr+flen] pv[1:4, :] = np.array(d).transpose() pv[0,:] = frame_count pv[4,:] = 1 ptr += flen frame_count += 1 if sum_frames: data_shape = [height, width, channel_number] ar_s = DenseSliceCOO(v[1:4], v[4], shape=data_shape) else: data_shape = [frame_count, height, width, channel_number] ar_s = DenseSliceCOO(v[0:4], v[4], shape=data_shape) if sum_frames: em_image = em_image[0] return da.from_array(ar_s, asarray=False), em_image, has_em_image, sweep, frame_start_index, valid, max_shift, frame_shifts
5,692
def binary_search_for_binom_tst(a, d, lo, hi, asc_order=False): while lo < hi: mid = (lo+hi)//2 midval = a(mid) if midval < d: if asc_order: lo = mid+1 else: hi = mid-1 elif midval > d: if asc_order: hi = mid-1 else: lo = mid+1 else: return mid if a(lo)<=d: return lo else: return lo-(asc_order-0.5)*2
def _binary_search_for_binom_tst(a, d, lo, hi, asc_order=False): while lo < hi: mid = (lo+hi)//2 midval = a(mid) if midval < d: if asc_order: lo = mid+1 else: hi = mid-1 elif midval > d: if asc_order: hi = mid-1 else: lo = mid+1 else: return mid if a(lo)<=d: return lo else: return lo-(asc_order-0.5)*2
42,618
def asset_from_gemini(symbol: str) -> Asset: """May raise: - DeserializationError - UnsupportedAsset - UnknownAsset """ if not isinstance(symbol, str): raise DeserializationError(f'Got non-string type {type(symbol)} for gemini asset') if symbol in UNSUPPORTED_GEMENI_ASSETS: raise UnsupportedAsset(symbol) name = GEMENI_TO_WORLD.get(symbol, symbol) return symbol_to_asset_or_token(name)
def asset_from_gemini(symbol: str) -> Asset: """May raise: - DeserializationError - UnsupportedAsset - UnknownAsset """ if not isinstance(symbol, str): raise DeserializationError(f'Got non-string type {type(symbol)} for gemini asset') if symbol in UNSUPPORTED_GEMINI_ASSETS: raise UnsupportedAsset(symbol) name = GEMENI_TO_WORLD.get(symbol, symbol) return symbol_to_asset_or_token(name)
52,840
def lint_inputs(tool_xml, lint_ctx): """Lint parameters in a tool's inputs block.""" datasource = is_datasource(tool_xml) inputs = tool_xml.findall("./inputs//param") num_inputs = 0 for param in inputs: num_inputs += 1 param_attrib = param.attrib has_errors = False if "type" not in param_attrib: lint_ctx.error("Found param input with no type specified.") has_errors = True if "name" not in param_attrib and "argument" not in param_attrib: lint_ctx.error("Found param input with no name specified.") has_errors = True if has_errors: continue param_type = param_attrib["type"] param_name = _parse_name(param_attrib.get("name"), param_attrib.get("argument")) if not is_valid_cheetah_placeholder(param_name): lint_ctx.warn("Param input [%s] is not a valid Cheetah placeholder.", param_name) if param_type == "data": if "format" not in param_attrib: lint_ctx.warn("Param input [%s] with no format specified - 'data' format will be assumed.", param_name) elif param_type == "select": dynamic_options = param.get("dynamic_options", None) if dynamic_options is None: dynamic_options = param.find("options") select_options = param.findall('./option') if any(['value' not in option.attrib for option in select_options]): lint_ctx.error("Select [%s] has option without value", param_name) if dynamic_options is None and len(select_options) == 0: message = "No options defined for select [%s]" % param_name lint_ctx.warn(message) if param_attrib["display"] == "radio": if param_attrib["optional"] == "true": lint_ctx.error('Select [%s] display="radio" is incompatible with optional="true"', param_name) if param_attrib["multiple"] == "true": lint_ctx.error('Select [%s] display="radio" is incompatible with multiple="true"', param_name) # TODO: Validate type, much more... conditional_selects = tool_xml.findall("./inputs//conditional") for conditional in conditional_selects: conditional_name = conditional.get('name') if not conditional_name: lint_ctx.error("Conditional without a name") if conditional.get("value_from"): # Probably only the upload tool use this, no children elements continue first_param = conditional.find("param") if first_param is None: lint_ctx.error("Conditional '%s' has no child <param>" % conditional_name) continue first_param_type = first_param.get('type') if first_param_type not in ['select', 'boolean']: lint_ctx.warn("Conditional '%s' first param should have type=\"select\" /> or type=\"boolean\"" % conditional_name) continue if first_param_type == 'select': select_options = _find_with_attribute(first_param, 'option', 'value') option_ids = [option.get('value') for option in select_options] else: # boolean option_ids = [ first_param.get('truevalue', 'true'), first_param.get('falsevalue', 'false') ] if string_as_bool(first_param.get('optional', False)): lint_ctx.warn("Conditional test parameter cannot be optional") whens = conditional.findall('./when') if any('value' not in when.attrib for when in whens): lint_ctx.error("When without value") when_ids = [w.get('value') for w in whens] for option_id in option_ids: if option_id not in when_ids: lint_ctx.warn(f"No <when /> block found for {first_param_type} option '{option_id}' inside conditional '{conditional_name}'") for when_id in when_ids: if when_id not in option_ids: if first_param_type == 'select': lint_ctx.warn(f"No <option /> found for when block '{when_id}' inside conditional '{conditional_name}'") else: lint_ctx.warn(f"No truevalue/falsevalue found for when block '{when_id}' inside conditional '{conditional_name}'") if datasource: for datasource_tag in ('display', 'uihints'): if not any([param.tag == datasource_tag for param in inputs]): lint_ctx.info("%s tag usually present in data sources" % datasource_tag) if num_inputs: lint_ctx.info("Found %d input parameters.", num_inputs) else: if datasource: lint_ctx.info("No input parameters, OK for data sources") else: lint_ctx.warn("Found no input parameters.")
def lint_inputs(tool_xml, lint_ctx): """Lint parameters in a tool's inputs block.""" datasource = is_datasource(tool_xml) inputs = tool_xml.findall("./inputs//param") num_inputs = 0 for param in inputs: num_inputs += 1 param_attrib = param.attrib has_errors = False if "type" not in param_attrib: lint_ctx.error("Found param input with no type specified.") has_errors = True if "name" not in param_attrib and "argument" not in param_attrib: lint_ctx.error("Found param input with no name specified.") has_errors = True if has_errors: continue param_type = param_attrib["type"] param_name = _parse_name(param_attrib.get("name"), param_attrib.get("argument")) if not is_valid_cheetah_placeholder(param_name): lint_ctx.warn("Param input [%s] is not a valid Cheetah placeholder.", param_name) if param_type == "data": if "format" not in param_attrib: lint_ctx.warn("Param input [%s] with no format specified - 'data' format will be assumed.", param_name) elif param_type == "select": dynamic_options = param.get("dynamic_options", None) if dynamic_options is None: dynamic_options = param.find("options") select_options = param.findall('./option') if any(['value' not in option.attrib for option in select_options]): lint_ctx.error("Select [%s] has option without value", param_name) if dynamic_options is None and len(select_options) == 0: message = "No options defined for select [%s]" % param_name lint_ctx.warn(message) if param_attrib["display"] == "radio": multiple = string_as_bool(param_attrib.get("multiple", False)) if multiple: lint_ctx.error('Select [%s] display="radio" is incompatible with multiple="true"', param_name) if string_as_bool(param_attrib.get("optional", multiple)): lint_ctx.error('Select [%s] display="radio" is incompatible with optional="true"', param_name) # TODO: Validate type, much more... conditional_selects = tool_xml.findall("./inputs//conditional") for conditional in conditional_selects: conditional_name = conditional.get('name') if not conditional_name: lint_ctx.error("Conditional without a name") if conditional.get("value_from"): # Probably only the upload tool use this, no children elements continue first_param = conditional.find("param") if first_param is None: lint_ctx.error("Conditional '%s' has no child <param>" % conditional_name) continue first_param_type = first_param.get('type') if first_param_type not in ['select', 'boolean']: lint_ctx.warn("Conditional '%s' first param should have type=\"select\" /> or type=\"boolean\"" % conditional_name) continue if first_param_type == 'select': select_options = _find_with_attribute(first_param, 'option', 'value') option_ids = [option.get('value') for option in select_options] else: # boolean option_ids = [ first_param.get('truevalue', 'true'), first_param.get('falsevalue', 'false') ] if string_as_bool(first_param.get('optional', False)): lint_ctx.warn("Conditional test parameter cannot be optional") whens = conditional.findall('./when') if any('value' not in when.attrib for when in whens): lint_ctx.error("When without value") when_ids = [w.get('value') for w in whens] for option_id in option_ids: if option_id not in when_ids: lint_ctx.warn(f"No <when /> block found for {first_param_type} option '{option_id}' inside conditional '{conditional_name}'") for when_id in when_ids: if when_id not in option_ids: if first_param_type == 'select': lint_ctx.warn(f"No <option /> found for when block '{when_id}' inside conditional '{conditional_name}'") else: lint_ctx.warn(f"No truevalue/falsevalue found for when block '{when_id}' inside conditional '{conditional_name}'") if datasource: for datasource_tag in ('display', 'uihints'): if not any([param.tag == datasource_tag for param in inputs]): lint_ctx.info("%s tag usually present in data sources" % datasource_tag) if num_inputs: lint_ctx.info("Found %d input parameters.", num_inputs) else: if datasource: lint_ctx.info("No input parameters, OK for data sources") else: lint_ctx.warn("Found no input parameters.")
27,999
def perform_analysis(args, skip_handler, context, actions, metadata_tool, compile_cmd_count): """ Perform static analysis via the given (or if not, all) analyzers, in the given analysis context for the supplied build actions. Additionally, insert statistical information into the metadata dict. """ ctu_reanalyze_on_failure = 'ctu_reanalyze_on_failure' in args and \ args.ctu_reanalyze_on_failure if ctu_reanalyze_on_failure: LOG.warning("Usage of a DEPRECATED FLAG!\n" "The --ctu-reanalyze-on-failure flag will be removed " "in the upcoming releases!") analyzers = args.analyzers if 'analyzers' in args \ else analyzer_types.supported_analyzers analyzers, _ = analyzer_types.check_supported_analyzers( analyzers, context) ctu_collect = False ctu_analyze = False ctu_dir = '' if 'ctu_phases' in args: ctu_dir = os.path.join(args.output_path, 'ctu-dir') args.ctu_dir = ctu_dir if ClangSA.ANALYZER_NAME not in analyzers: LOG.error("CTU can only be used with the clang static analyzer.") return ctu_collect = args.ctu_phases[0] ctu_analyze = args.ctu_phases[1] if 'stats_enabled' in args and args.stats_enabled: if ClangSA.ANALYZER_NAME not in analyzers: LOG.debug("Statistics can only be used with " "the Clang Static Analyzer.") return config_map = analyzer_types.build_config_handlers(args, context, analyzers) available_checkers = set() # Add profile names to the checkers list so we will not warn # if a profile is enabled but there is no checker with that name. available_checkers.update(context.available_profiles.keys()) # Collect all the available checkers from the enabled analyzers. for analyzer in config_map.items(): _, analyzer_cfg = analyzer for analyzer_checker in analyzer_cfg.checks().items(): checker_name, _ = analyzer_checker available_checkers.add(checker_name) if 'ordered_checkers' in args: missing_checkers = checkers.available(args.ordered_checkers, available_checkers) if missing_checkers: LOG.warning("No checker(s) with these names was found:\n%s", '\n'.join(missing_checkers)) LOG.warning("Please review the checker names.\n" "In the next release the analysis will not start " "with invalid checker names.") if 'stats_enabled' in args: config_map[ClangSA.ANALYZER_NAME].set_checker_enabled( SpecialReturnValueCollector.checker_analyze) config_map[ClangSA.ANALYZER_NAME].set_checker_enabled( ReturnValueCollector.checker_analyze) # Statistics collector checkers must be explicitly disabled # as they trash the output. if "clangsa" in analyzers: config_map[ClangSA.ANALYZER_NAME].set_checker_enabled( SpecialReturnValueCollector.checker_collect, False) config_map[ClangSA.ANALYZER_NAME].set_checker_enabled( ReturnValueCollector.checker_collect, False) check_env = env.extend(context.path_env_extra, context.ld_lib_path_extra) # CHECK if any checkers are enabled and only execute that analyzer # where at least one checker is enabled. for analyzer in config_map.items(): analyzer_name, analyzer_cfg = analyzer if not analyzer_cfg.any_checker_enabled(): LOG.warning(f"Disabling {analyzer_name} no checkers were enabled.") analyzers = [a for a in analyzers if a != analyzer_name] actions = prepare_actions(actions, analyzers) # Save some metadata information. for analyzer in analyzers: metadata_info = { 'checkers': {}, 'analyzer_statistics': { "failed": 0, "failed_sources": [], "successful": 0, "version": None}} for check, data in config_map[analyzer].checks().items(): state, _ = data metadata_info['checkers'].update({ check: state == CheckerState.enabled}) version = config_map[analyzer].get_version(check_env) metadata_info['analyzer_statistics']['version'] = version metadata_tool['analyzers'][analyzer] = metadata_info if 'makefile' in args and args.makefile: statistics_data = __get_statistics_data(args) ctu_data = None if ctu_collect or statistics_data: ctu_data = __get_ctu_data(config_map, ctu_dir) makefile_creator = MakeFileCreator(analyzers, args.output_path, config_map, context, skip_handler, ctu_collect, statistics_data, ctu_data) makefile_creator.create(actions) return if ctu_collect: shutil.rmtree(ctu_dir, ignore_errors=True) elif ctu_analyze and not os.path.exists(ctu_dir): LOG.error("CTU directory: '%s' does not exist.", ctu_dir) return start_time = time.time() # Use Manager to create data objects which can be # safely shared between processes. manager = SyncManager() manager.start(__mgr_init) actions_map = create_actions_map(actions, manager) # Setting to not None value will enable statistical analysis features. statistics_data = __get_statistics_data(args) if statistics_data: statistics_data = manager.dict(statistics_data) if ctu_collect or statistics_data: ctu_data = None if ctu_collect or ctu_analyze: ctu_data = manager.dict(__get_ctu_data(config_map, ctu_dir)) pre_analyze = [a for a in actions if a.analyzer_type == ClangSA.ANALYZER_NAME] pre_anal_skip_handler = None # Skip list is applied only in pre-analysis # if --ctu-collect or --stats-collect was called explicitly if ((ctu_collect and not ctu_analyze) or ("stats_output" in args and args.stats_output)): pre_anal_skip_handler = skip_handler clangsa_config = config_map.get(ClangSA.ANALYZER_NAME) if clangsa_config is not None: pre_analysis_manager.run_pre_analysis(pre_analyze, context, clangsa_config, args.jobs, pre_anal_skip_handler, ctu_data, statistics_data, manager) else: LOG.error("Can not run pre analysis without clang " "static analyzer configuration.") if 'stats_output' in args and args.stats_output: return if 'stats_dir' in args and args.stats_dir: statistics_data = manager.dict({'stats_out_dir': args.stats_dir}) if ctu_analyze or statistics_data or (not ctu_analyze and not ctu_collect): LOG.info("Starting static analysis ...") analysis_manager.start_workers(actions_map, actions, context, config_map, args.jobs, args.output_path, skip_handler, metadata_tool, 'quiet' in args, 'capture_analysis_output' in args, args.timeout if 'timeout' in args else None, ctu_reanalyze_on_failure, statistics_data, manager, compile_cmd_count) LOG.info("Analysis finished.") LOG.info("To view results in the terminal use the " "\"CodeChecker parse\" command.") LOG.info("To store results use the \"CodeChecker store\" command.") LOG.info("See --help and the user guide for further options about" " parsing and storing the reports.") LOG.info("----=================----") end_time = time.time() LOG.info("Analysis length: %s sec.", end_time - start_time) metadata_tool['timestamps'] = {'begin': start_time, 'end': end_time} if ctu_collect and ctu_analyze: shutil.rmtree(ctu_dir, ignore_errors=True) manager.shutdown()
def perform_analysis(args, skip_handler, context, actions, metadata_tool, compile_cmd_count): """ Perform static analysis via the given (or if not, all) analyzers, in the given analysis context for the supplied build actions. Additionally, insert statistical information into the metadata dict. """ ctu_reanalyze_on_failure = 'ctu_reanalyze_on_failure' in args and \ args.ctu_reanalyze_on_failure if ctu_reanalyze_on_failure: LOG.warning("Usage of a DEPRECATED FLAG!\n" "The --ctu-reanalyze-on-failure flag will be removed " "in the upcoming releases!") analyzers = args.analyzers if 'analyzers' in args \ else analyzer_types.supported_analyzers analyzers, _ = analyzer_types.check_supported_analyzers( analyzers, context) ctu_collect = False ctu_analyze = False ctu_dir = '' if 'ctu_phases' in args: ctu_dir = os.path.join(args.output_path, 'ctu-dir') args.ctu_dir = ctu_dir if ClangSA.ANALYZER_NAME not in analyzers: LOG.error("CTU can only be used with the clang static analyzer.") return ctu_collect = args.ctu_phases[0] ctu_analyze = args.ctu_phases[1] if 'stats_enabled' in args and args.stats_enabled: if ClangSA.ANALYZER_NAME not in analyzers: LOG.debug("Statistics can only be used with " "the Clang Static Analyzer.") return config_map = analyzer_types.build_config_handlers(args, context, analyzers) available_checkers = set() # Add profile names to the checkers list so we will not warn # if a profile is enabled but there is no checker with that name. available_checkers.update(context.available_profiles.keys()) # Collect all the available checkers from the enabled analyzers. for analyzer in config_map.items(): _, analyzer_cfg = analyzer for analyzer_checker in analyzer_cfg.checks().items(): checker_name, _ = analyzer_checker available_checkers.add(checker_name) if 'ordered_checkers' in args: missing_checkers = checkers.available(args.ordered_checkers, available_checkers) if missing_checkers: LOG.warning("No checker(s) with these names was found:\n%s", '\n'.join(missing_checkers)) LOG.warning("Please review the checker names.\n" "In the next release the analysis will not start " "with invalid checker names.") if 'stats_enabled' in args: config_map[ClangSA.ANALYZER_NAME].set_checker_enabled( SpecialReturnValueCollector.checker_analyze) config_map[ClangSA.ANALYZER_NAME].set_checker_enabled( ReturnValueCollector.checker_analyze) # Statistics collector checkers must be explicitly disabled # as they trash the output. if "clangsa" in analyzers: config_map[ClangSA.ANALYZER_NAME].set_checker_enabled( SpecialReturnValueCollector.checker_collect, False) config_map[ClangSA.ANALYZER_NAME].set_checker_enabled( ReturnValueCollector.checker_collect, False) check_env = env.extend(context.path_env_extra, context.ld_lib_path_extra) # CHECK if any checkers are enabled and only execute that analyzer # where at least one checker is enabled. for analyzer in config_map.items(): analyzer_name, analyzer_cfg = analyzer if not analyzer_cfg.any_checker_enabled(): LOG.warning(f"Disabling {analyzer_name} no checkers were enabled.") analyzers.remove(analyzer_name) actions = prepare_actions(actions, analyzers) # Save some metadata information. for analyzer in analyzers: metadata_info = { 'checkers': {}, 'analyzer_statistics': { "failed": 0, "failed_sources": [], "successful": 0, "version": None}} for check, data in config_map[analyzer].checks().items(): state, _ = data metadata_info['checkers'].update({ check: state == CheckerState.enabled}) version = config_map[analyzer].get_version(check_env) metadata_info['analyzer_statistics']['version'] = version metadata_tool['analyzers'][analyzer] = metadata_info if 'makefile' in args and args.makefile: statistics_data = __get_statistics_data(args) ctu_data = None if ctu_collect or statistics_data: ctu_data = __get_ctu_data(config_map, ctu_dir) makefile_creator = MakeFileCreator(analyzers, args.output_path, config_map, context, skip_handler, ctu_collect, statistics_data, ctu_data) makefile_creator.create(actions) return if ctu_collect: shutil.rmtree(ctu_dir, ignore_errors=True) elif ctu_analyze and not os.path.exists(ctu_dir): LOG.error("CTU directory: '%s' does not exist.", ctu_dir) return start_time = time.time() # Use Manager to create data objects which can be # safely shared between processes. manager = SyncManager() manager.start(__mgr_init) actions_map = create_actions_map(actions, manager) # Setting to not None value will enable statistical analysis features. statistics_data = __get_statistics_data(args) if statistics_data: statistics_data = manager.dict(statistics_data) if ctu_collect or statistics_data: ctu_data = None if ctu_collect or ctu_analyze: ctu_data = manager.dict(__get_ctu_data(config_map, ctu_dir)) pre_analyze = [a for a in actions if a.analyzer_type == ClangSA.ANALYZER_NAME] pre_anal_skip_handler = None # Skip list is applied only in pre-analysis # if --ctu-collect or --stats-collect was called explicitly if ((ctu_collect and not ctu_analyze) or ("stats_output" in args and args.stats_output)): pre_anal_skip_handler = skip_handler clangsa_config = config_map.get(ClangSA.ANALYZER_NAME) if clangsa_config is not None: pre_analysis_manager.run_pre_analysis(pre_analyze, context, clangsa_config, args.jobs, pre_anal_skip_handler, ctu_data, statistics_data, manager) else: LOG.error("Can not run pre analysis without clang " "static analyzer configuration.") if 'stats_output' in args and args.stats_output: return if 'stats_dir' in args and args.stats_dir: statistics_data = manager.dict({'stats_out_dir': args.stats_dir}) if ctu_analyze or statistics_data or (not ctu_analyze and not ctu_collect): LOG.info("Starting static analysis ...") analysis_manager.start_workers(actions_map, actions, context, config_map, args.jobs, args.output_path, skip_handler, metadata_tool, 'quiet' in args, 'capture_analysis_output' in args, args.timeout if 'timeout' in args else None, ctu_reanalyze_on_failure, statistics_data, manager, compile_cmd_count) LOG.info("Analysis finished.") LOG.info("To view results in the terminal use the " "\"CodeChecker parse\" command.") LOG.info("To store results use the \"CodeChecker store\" command.") LOG.info("See --help and the user guide for further options about" " parsing and storing the reports.") LOG.info("----=================----") end_time = time.time() LOG.info("Analysis length: %s sec.", end_time - start_time) metadata_tool['timestamps'] = {'begin': start_time, 'end': end_time} if ctu_collect and ctu_analyze: shutil.rmtree(ctu_dir, ignore_errors=True) manager.shutdown()
281
def sample_prior_predictive(samples=500, model: Optional[Model]=None, vars: Optional[TIterable[str]] = None, var_names: Optional[TIterable[str]] = None, random_seed=None) -> Dict[str, np.ndarray]: """Generate samples from the prior predictive distribution. Parameters ---------- samples : int Number of samples from the prior predictive to generate. Defaults to 500. model : Model (optional if in `with` context) vars : Iterable[str] A list of names of variables for which to compute the posterior predictive samples. *DEPRECATED* - Use `var_names` argument instead. var_names : Iterable[str] A list of names of variables for which to compute the posterior predictive samples. Defaults to `model.named_vars`. random_seed : int Seed for the random number generator. Returns ------- dict Dictionary with variable names as keys. The values are numpy arrays of prior samples. """ model = modelcontext(model) if vars is None and var_names is None: vars = set(model.named_vars.keys()) vars_ = model.named_vars elif vars is None: vars = var_names vars_ = vars elif vars is not None: warnings.warn("vars argument is deprecated in favor of var_names.", DeprecationWarning) vars_ = vars else: raise ValueError("Cannot supply both vars and var_names arguments.") vars = cast(TIterable[str], vars) # tell mypy that vars cannot be None here. if random_seed is not None: np.random.seed(random_seed) names = get_default_varnames(vars_, include_transformed=False) # draw_values fails with auto-transformed variables. transform them later! values = draw_values([model[name] for name in names], size=samples) data = {k: v for k, v in zip(names, values)} if data is None: raise AssertionError("No variables sampled: attempting to sample %s"%names) prior = {} # type: Dict[str, np.ndarray] for var_name in vars: if var_name in data: prior[var_name] = data[var_name] elif is_transformed_name(var_name): untransformed = get_untransformed_name(var_name) if untransformed in data: prior[var_name] = model[untransformed].transformation.forward_val( data[untransformed]) return prior
def sample_prior_predictive(samples=500, model: Optional[Model]=None, vars: Optional[TIterable[str]] = None, var_names: Optional[TIterable[str]] = None, random_seed=None) -> Dict[str, np.ndarray]: """Generate samples from the prior predictive distribution. Parameters ---------- samples : int Number of samples from the prior predictive to generate. Defaults to 500. model : Model (optional if in `with` context) vars : Iterable[str] A list of names of variables for which to compute the posterior predictive samples. *DEPRECATED* - Use `var_names` argument instead. var_names : Iterable[str] A list of names of variables for which to compute the posterior predictive samples. Defaults to ``model.named_vars``. random_seed : int Seed for the random number generator. Returns ------- dict Dictionary with variable names as keys. The values are numpy arrays of prior samples. """ model = modelcontext(model) if vars is None and var_names is None: vars = set(model.named_vars.keys()) vars_ = model.named_vars elif vars is None: vars = var_names vars_ = vars elif vars is not None: warnings.warn("vars argument is deprecated in favor of var_names.", DeprecationWarning) vars_ = vars else: raise ValueError("Cannot supply both vars and var_names arguments.") vars = cast(TIterable[str], vars) # tell mypy that vars cannot be None here. if random_seed is not None: np.random.seed(random_seed) names = get_default_varnames(vars_, include_transformed=False) # draw_values fails with auto-transformed variables. transform them later! values = draw_values([model[name] for name in names], size=samples) data = {k: v for k, v in zip(names, values)} if data is None: raise AssertionError("No variables sampled: attempting to sample %s"%names) prior = {} # type: Dict[str, np.ndarray] for var_name in vars: if var_name in data: prior[var_name] = data[var_name] elif is_transformed_name(var_name): untransformed = get_untransformed_name(var_name) if untransformed in data: prior[var_name] = model[untransformed].transformation.forward_val( data[untransformed]) return prior
42,923
def c_1(clique: list, graph: nx.Graph): """Generates the set :math:`C_1` of nodes that are connected to all but one of the nodes in the input clique subgraph The set :math:`C_1` is defined in :cite:`pullan2006phased` and is used to determine outside nodes that can be swapped with clique nodes to create a new clique. Example usage: .. code-block:: >>> from strawberryfields.apps.graph import utils >>> import networkx as nx >>> graph = nx.wheel_graph(5) >>> subgraph = [0, 1, 2] # these nodes form a clique >>> utils.c_1(subgraph, graph) [(1, 3), (2, 4)] Args: clique (list[int]): A subgraph specified by a list of nodes; the subgraph must be a clique graph (nx.Graph): the input graph Returns: list[int]: A list of tuples. The first node in the tuple is the node in the clique and the second node is the outside node it can be swapped with. """ if not is_clique(graph.subgraph(clique)): raise ValueError("Input subgraph is not a clique") clique = set(clique) c_1_nodes = [] non_clique_nodes = set(graph.nodes) - clique for i in non_clique_nodes: neighbors_in_subgraph = clique.intersection(graph.neighbors(i)) if len(neighbors_in_subgraph) == len(clique) - 1: to_swap = clique - neighbors_in_subgraph (i_clique,) = to_swap c_1_nodes.append((i_clique, i)) return c_1_nodes
def c_1(clique: list, graph: nx.Graph): """Generates the set :math:`C_1` of nodes that are connected to all but one of the nodes in the input clique subgraph The set :math:`C_1` is defined in :cite:`pullan2006phased` and is used to determine outside nodes that can be swapped with clique nodes to create a new clique. Example usage: .. code-block:: >>> from strawberryfields.apps.graph import utils >>> import networkx as nx >>> graph = nx.wheel_graph(5) >>> subgraph = [0, 1, 2] # these nodes form a clique >>> utils.c_1(subgraph, graph) [(1, 3), (2, 4)] Args: clique (list[int]): A subgraph specified by a list of nodes; the subgraph must be a clique graph (nx.Graph): the input graph Returns: list[tuple(int)]: A list of tuples. The first node in the tuple is the node in the clique and the second node is the outside node it can be swapped with. """ if not is_clique(graph.subgraph(clique)): raise ValueError("Input subgraph is not a clique") clique = set(clique) c_1_nodes = [] non_clique_nodes = set(graph.nodes) - clique for i in non_clique_nodes: neighbors_in_subgraph = clique.intersection(graph.neighbors(i)) if len(neighbors_in_subgraph) == len(clique) - 1: to_swap = clique - neighbors_in_subgraph (i_clique,) = to_swap c_1_nodes.append((i_clique, i)) return c_1_nodes
1,139
def loadpkl(infile): """Load a zipped or plain cPickled file.""" infile = Path(infile) fmlogger.debug("Loading pkl: %s", infile) pklopen = gzip.open if infile.suffix == ".pklz" else open t = time() timeout = float(config.get("execution", "job_finished_timeout")) timed_out = True while (time() - t) < timeout: try: glob(str(infile)).pop() timed_out = False break except Exception as e: fmlogger.debug(e) sleep(2) if timed_out: error_message = ( "Ressult file {0} expected, but " "does not exist after ({1}) " "seconds.".format(infile, timeout) ) raise IOError(error_message) with pklopen(str(infile), "rb") as pkl_file: pkl_contents = pkl_file.read() pkl_metadata = None # Look if pkl file contains version metadata idx = pkl_contents.find(b"\n") if idx >= 0: try: pkl_metadata = json.loads(pkl_contents[:idx]) except (UnicodeDecodeError, json.JSONDecodeError): # Could not get version info pass else: # On success, skip JSON metadata pkl_contents = pkl_contents[idx + 1 :] # Pickle files may contain relative paths that must be resolved relative # to the working directory, so use indirectory while attempting to load unpkl = None try: with indirectory(infile.parent): unpkl = pickle.loads(pkl_contents) except UnicodeDecodeError: # Was this pickle created with Python 2.x? with indirectory(infile.parent): unpkl = pickle.loads(pkl_contents, fix_imports=True, encoding="utf-8") fmlogger.info("Successfully loaded pkl in compatibility mode.") # Unpickling problems except Exception as e: if pkl_metadata and "version" in pkl_metadata: from nipype import __version__ as version if pkl_metadata["version"] != version: fmlogger.error( """\ Attempted to open a results file generated by Nipype version %s, \ with an incompatible Nipype version (%s)""", pkl_metadata["version"], version, ) raise e fmlogger.warning( """\ No metadata was found in the pkl file. Make sure you are currently using \ the same Nipype version from the generated pkl.""" ) raise e if unpkl is None: raise ValueError("Loading %s resulted in None." % infile) return unpkl
def loadpkl(infile): """Load a zipped or plain cPickled file.""" infile = Path(infile) fmlogger.debug("Loading pkl: %s", infile) pklopen = gzip.open if infile.suffix == ".pklz" else open t = time() timeout = float(config.get("execution", "job_finished_timeout")) timed_out = True while (time() - t) < timeout: try: glob(str(infile)).pop() timed_out = False break except Exception as e: fmlogger.debug(e) sleep(2) if timed_out: error_message = ( "Result file {0} expected, but " "does not exist after ({1}) " "seconds.".format(infile, timeout) ) raise IOError(error_message) with pklopen(str(infile), "rb") as pkl_file: pkl_contents = pkl_file.read() pkl_metadata = None # Look if pkl file contains version metadata idx = pkl_contents.find(b"\n") if idx >= 0: try: pkl_metadata = json.loads(pkl_contents[:idx]) except (UnicodeDecodeError, json.JSONDecodeError): # Could not get version info pass else: # On success, skip JSON metadata pkl_contents = pkl_contents[idx + 1 :] # Pickle files may contain relative paths that must be resolved relative # to the working directory, so use indirectory while attempting to load unpkl = None try: with indirectory(infile.parent): unpkl = pickle.loads(pkl_contents) except UnicodeDecodeError: # Was this pickle created with Python 2.x? with indirectory(infile.parent): unpkl = pickle.loads(pkl_contents, fix_imports=True, encoding="utf-8") fmlogger.info("Successfully loaded pkl in compatibility mode.") # Unpickling problems except Exception as e: if pkl_metadata and "version" in pkl_metadata: from nipype import __version__ as version if pkl_metadata["version"] != version: fmlogger.error( """\ Attempted to open a results file generated by Nipype version %s, \ with an incompatible Nipype version (%s)""", pkl_metadata["version"], version, ) raise e fmlogger.warning( """\ No metadata was found in the pkl file. Make sure you are currently using \ the same Nipype version from the generated pkl.""" ) raise e if unpkl is None: raise ValueError("Loading %s resulted in None." % infile) return unpkl
14,584
def load_pldata_file(directory, topic): ts_file = os.path.join(directory, topic + "_timestamps.npy") msgpack_file = os.path.join(directory, topic + ".pldata") try: data = collections.deque() topics = collections.deque() data_ts = np.load(ts_file) with open(msgpack_file, "rb") as fh: for topic, payload in msgpack.Unpacker( fh, raw=False, use_list=False, strict_map_key=False ): data.append(Serialized_Dict(msgpack_bytes=payload)) topics.append(topic) except FileNotFoundError: data = [] data_ts = [] topics = [] return PLData(data, data_ts, topics)
def load_pldata_file(directory, topic): ts_file = os.path.join(directory, topic + "_timestamps.npy") msgpack_file = os.path.join(directory, topic + ".pldata") try: data = collections.deque() topics = collections.deque() data_ts = np.load(ts_file) with open(msgpack_file, "rb") as fh: for topic, payload in msgpack.Unpacker( fh, use_list=False, strict_map_key=False ): data.append(Serialized_Dict(msgpack_bytes=payload)) topics.append(topic) except FileNotFoundError: data = [] data_ts = [] topics = [] return PLData(data, data_ts, topics)
42,635
def add_starting_nfts(datahandler): """Adds a time serie for an account owning a NFT""" datahandler.db.add_asset_identifiers(['_nft_pickle']) balances = [ DBAssetBalance( category=BalanceType.ASSET, time=Timestamp(1488326400), asset=Asset('_nft_pickle'), amount='1', usd_value='1000', ), DBAssetBalance( category=BalanceType.ASSET, time=Timestamp(1488426400), asset=Asset('_nft_pickle'), amount='1', usd_value='1000', ), DBAssetBalance( category=BalanceType.ASSET, time=Timestamp(1488526400), asset=Asset('_nft_pickle'), amount='2', usd_value='2000', ), DBAssetBalance( category=BalanceType.ASSET, time=Timestamp(1488626400), asset=Asset('_nft_pickle'), amount='1', usd_value='1000', ), ] datahandler.db.add_multiple_balances(balances) datahandler.db.conn.commit() location_data = [ LocationData( time=Timestamp(1488326400), location=Location.TOTAL.serialize_for_db(), # pylint: disable=no-member usd_value='3000', ), LocationData( time=Timestamp(1488426400), location=Location.TOTAL.serialize_for_db(), # pylint: disable=no-member usd_value='4000', ), LocationData( time=Timestamp(1488526400), location=Location.TOTAL.serialize_for_db(), # pylint: disable=no-member usd_value='5000', ), LocationData( time=Timestamp(1488626400), location=Location.TOTAL.serialize_for_db(), # pylint: disable=no-member usd_value='5500', ), ] datahandler.db.add_multiple_location_data(location_data)
def add_starting_nfts(datahandler): """Adds a time series for an account owning a NFT""" datahandler.db.add_asset_identifiers(['_nft_pickle']) balances = [ DBAssetBalance( category=BalanceType.ASSET, time=Timestamp(1488326400), asset=Asset('_nft_pickle'), amount='1', usd_value='1000', ), DBAssetBalance( category=BalanceType.ASSET, time=Timestamp(1488426400), asset=Asset('_nft_pickle'), amount='1', usd_value='1000', ), DBAssetBalance( category=BalanceType.ASSET, time=Timestamp(1488526400), asset=Asset('_nft_pickle'), amount='2', usd_value='2000', ), DBAssetBalance( category=BalanceType.ASSET, time=Timestamp(1488626400), asset=Asset('_nft_pickle'), amount='1', usd_value='1000', ), ] datahandler.db.add_multiple_balances(balances) datahandler.db.conn.commit() location_data = [ LocationData( time=Timestamp(1488326400), location=Location.TOTAL.serialize_for_db(), # pylint: disable=no-member usd_value='3000', ), LocationData( time=Timestamp(1488426400), location=Location.TOTAL.serialize_for_db(), # pylint: disable=no-member usd_value='4000', ), LocationData( time=Timestamp(1488526400), location=Location.TOTAL.serialize_for_db(), # pylint: disable=no-member usd_value='5000', ), LocationData( time=Timestamp(1488626400), location=Location.TOTAL.serialize_for_db(), # pylint: disable=no-member usd_value='5500', ), ] datahandler.db.add_multiple_location_data(location_data)
36,438
def _create_tree(fullmodule, path, fname, source, tree, inpackage): """Return the tree for a particular module. fullmodule (full module name), inpackage+module, becomes o.module. path is passed to recursive calls of _readmodule. fname becomes o.file. source is tokenized. Imports cause recursive calls to _readmodule. tree is {} or {'__path__': <submodule search locations>}. inpackage, None or string, is passed to recursive calls of _readmodule. The effect of recursive calls is mutation of global _modules. """ f = io.StringIO(source) # stack = [] # Initialize stack of (class, indent) pairs. stack = Stack() # changing the source code so as to get the ending line g = tokenize.generate_tokens(f.readline) try: for tokentype, token, start, _end, _line in g: if tokentype == DEDENT: lineno, thisindent = start # Close previous nested classes and defs. while stack and stack[-1][1] >= thisindent: del stack[-1] elif token == 'def': lineno, thisindent = start # Close previous nested classes and defs. while stack and stack[-1][1] >= thisindent: del stack[-1] tokentype, func_name, start = next(g)[0:3] if tokentype != NAME: continue # Skip def with syntax error. cur_func = None if stack: cur_obj = stack[-1][0] cur_func = _nest_function(cur_obj, func_name, lineno) else: # It is just a function. cur_func = Function(fullmodule, func_name, fname, lineno) tree[func_name] = cur_func stack.append((cur_func, thisindent)) elif token == 'class': lineno, thisindent = start # Close previous nested classes and defs. while stack and stack[-1][1] >= thisindent: del stack[-1] tokentype, class_name, start = next(g)[0:3] if tokentype != NAME: continue # Skip class with syntax error. # Parse what follows the class name. tokentype, token, start = next(g)[0:3] inherit = None if token == '(': names = [] # Initialize list of superclasses. level = 1 super = [] # Tokens making up current superclass. while True: tokentype, token, start = next(g)[0:3] if token in (')', ',') and level == 1: n = "".join(super) if n in tree: # We know this super class. n = tree[n] else: c = n.split('.') if len(c) > 1: # Super class form is module.class: # look in module for class. m = c[-2] c = c[-1] if m in _modules: d = _modules[m] if c in d: n = d[c] names.append(n) super = [] if token == '(': level += 1 elif token == ')': level -= 1 if level == 0: break elif token == ',' and level == 1: pass # Only use NAME and OP (== dot) tokens for type name. elif tokentype in (NAME, OP) and level == 1: super.append(token) # Expressions in the base list are not supported. inherit = names if stack: cur_obj = stack[-1][0] cur_class = _nest_class( cur_obj, class_name, lineno, inherit) else: cur_class = Class(fullmodule, class_name, inherit, fname, lineno) tree[class_name] = cur_class stack.append((cur_class, thisindent)) elif token == 'import' and start[1] == 0: modules = _getnamelist(g) for mod, _mod2 in modules: try: # Recursively read the imported module. if inpackage is None: _readmodule(mod, path) else: try: _readmodule(mod, path, inpackage) except ImportError: _readmodule(mod, []) except: # If we can't find or parse the imported module, # too bad -- don't die here. pass elif token == 'from' and start[1] == 0: mod, token = _getname(g) if not mod or token != "import": continue names = _getnamelist(g) try: # Recursively read the imported module. d = _readmodule(mod, path, inpackage) except: # If we can't find or parse the imported module, # too bad -- don't die here. continue # Add any classes that were defined in the imported module # to our name space if they were mentioned in the list. for n, n2 in names: if n in d: tree[n2 or n] = d[n] elif n == '*': # Don't add names that start with _. for n in d: if n[0] != '_': tree[n] = d[n] except StopIteration: pass f.close() return tree
def _create_tree(fullmodule, path, fname, source, tree, inpackage): """Return the tree for a particular module. fullmodule (full module name), inpackage+module, becomes o.module. path is passed to recursive calls of _readmodule. fname becomes o.file. source is tokenized. Imports cause recursive calls to _readmodule. tree is {} or {'__path__': <submodule search locations>}. inpackage, None or string, is passed to recursive calls of _readmodule. The effect of recursive calls is mutation of global _modules. """ f = io.StringIO(source) # stack = [] # Initialize stack of (class, indent) pairs. stack = Stack() # Initialize stack of (class, indent) pairs. g = tokenize.generate_tokens(f.readline) try: for tokentype, token, start, _end, _line in g: if tokentype == DEDENT: lineno, thisindent = start # Close previous nested classes and defs. while stack and stack[-1][1] >= thisindent: del stack[-1] elif token == 'def': lineno, thisindent = start # Close previous nested classes and defs. while stack and stack[-1][1] >= thisindent: del stack[-1] tokentype, func_name, start = next(g)[0:3] if tokentype != NAME: continue # Skip def with syntax error. cur_func = None if stack: cur_obj = stack[-1][0] cur_func = _nest_function(cur_obj, func_name, lineno) else: # It is just a function. cur_func = Function(fullmodule, func_name, fname, lineno) tree[func_name] = cur_func stack.append((cur_func, thisindent)) elif token == 'class': lineno, thisindent = start # Close previous nested classes and defs. while stack and stack[-1][1] >= thisindent: del stack[-1] tokentype, class_name, start = next(g)[0:3] if tokentype != NAME: continue # Skip class with syntax error. # Parse what follows the class name. tokentype, token, start = next(g)[0:3] inherit = None if token == '(': names = [] # Initialize list of superclasses. level = 1 super = [] # Tokens making up current superclass. while True: tokentype, token, start = next(g)[0:3] if token in (')', ',') and level == 1: n = "".join(super) if n in tree: # We know this super class. n = tree[n] else: c = n.split('.') if len(c) > 1: # Super class form is module.class: # look in module for class. m = c[-2] c = c[-1] if m in _modules: d = _modules[m] if c in d: n = d[c] names.append(n) super = [] if token == '(': level += 1 elif token == ')': level -= 1 if level == 0: break elif token == ',' and level == 1: pass # Only use NAME and OP (== dot) tokens for type name. elif tokentype in (NAME, OP) and level == 1: super.append(token) # Expressions in the base list are not supported. inherit = names if stack: cur_obj = stack[-1][0] cur_class = _nest_class( cur_obj, class_name, lineno, inherit) else: cur_class = Class(fullmodule, class_name, inherit, fname, lineno) tree[class_name] = cur_class stack.append((cur_class, thisindent)) elif token == 'import' and start[1] == 0: modules = _getnamelist(g) for mod, _mod2 in modules: try: # Recursively read the imported module. if inpackage is None: _readmodule(mod, path) else: try: _readmodule(mod, path, inpackage) except ImportError: _readmodule(mod, []) except: # If we can't find or parse the imported module, # too bad -- don't die here. pass elif token == 'from' and start[1] == 0: mod, token = _getname(g) if not mod or token != "import": continue names = _getnamelist(g) try: # Recursively read the imported module. d = _readmodule(mod, path, inpackage) except: # If we can't find or parse the imported module, # too bad -- don't die here. continue # Add any classes that were defined in the imported module # to our name space if they were mentioned in the list. for n, n2 in names: if n in d: tree[n2 or n] = d[n] elif n == '*': # Don't add names that start with _. for n in d: if n[0] != '_': tree[n] = d[n] except StopIteration: pass f.close() return tree
17,690
def diff_dataset( dataset, fr, to, constant_refs, path=None, annex=None, untracked='normal', recursive=False, recursion_limit=None, eval_file_type=True, reporting_order='depth-first', datasets_only=False, ): """Internal helper to diff a dataset Parameters ---------- dataset : Dataset Dataset to perform the diff on. `fr` and `to` parameters are interpreted in the context of this dataset. fr : str Commit-ish to compare from. to : str Commit-ish to compare to. constant_refs : bool If True, `fr` and `to` will be passed on unmodified to diff operations on subdatasets. This can be useful with symbolic references like tags to report subdataset changes independent of superdataset changes. If False, `fr` and `to` will be translated to the subdataset commit-ish that match the given commit-ish in the superdataset. path : Path-like, optional Paths to constrain the diff to (see main diff() command). annex : str, optional Reporting mode for annex properties (see main diff() command). untracked : str, optional Reporting mode for untracked content (see main diff() command). recursive : bool, optional Flag to enable recursive operation (see main diff() command). recursion_limit : int, optional Recursion limit (see main diff() command). eval_file_type : bool, optional Whether to perform file type discrimination between real symlinks and symlinks representing annex'ed files. This can be expensive in datasets with many files. reporting_order : {'depth-first', 'breadth-first', 'bottom-up'}, optional By default, subdataset content records are reported after the record on the subdataset's submodule in a superdataset (depth-first). Alternatively, report all superdataset records first, before reporting any subdataset content records (breadth-first). Both 'depth-first' and 'breadth-first' both report dataset content before considering subdatasets. Alternative 'bottom-up' mode is similar to 'depth-first' but dataset content is reported after reporting on subdatasets. Yields ------ dict DataLad result records. """ if reporting_order not in ('depth-first', 'breadth-first', 'bottom-up'): raise ValueError('Unknown reporting order: {}'.format(reporting_order)) ds = require_dataset( dataset, check_installed=True, purpose='report difference') # we cannot really perform any sorting of paths into subdatasets # or rejecting paths based on the state of the filesystem, as # we need to be able to compare with states that are not represented # in the worktree (anymore) if path: if datasets_only: raise NotImplementedError("Analysis of provided paths in datasets_only mode is not implemnented") ps = [] # sort any path argument into the respective subdatasets for p in sorted(ensure_list(path)): # it is important to capture the exact form of the # given path argument, before any normalization happens # distinguish rsync-link syntax to identify # a dataset as whole (e.g. 'ds') vs its # content (e.g. 'ds/') # special case is the root dataset, always report its content # changes orig_path = str(p) resolved_path = resolve_path(p, dataset) p = \ resolved_path, \ orig_path.endswith(op.sep) or resolved_path == ds.pathobj str_path = str(p[0]) root = get_dataset_root(str_path) if root is None: # no root, not possibly underneath the refds yield dict( action='status', path=str_path, refds=ds.path, status='error', message='path not underneath this dataset', logger=lgr) continue if path_under_rev_dataset(ds, str_path) is None: # nothing we support handling any further # there is only a single refds yield dict( path=str_path, refds=ds.path, action='diff', status='error', message=( "dataset containing given paths is not underneath " "the reference dataset %s: %s", ds, str_path), logger=lgr, ) continue ps.append(p) path = ps # TODO we might want to move away from the single-pass+immediate-yield # paradigm for this command. If we gather all information first, we # could do post-processing and detect when a file (same gitsha, or same # key) was copied/moved from another dataset. Another command (e.g. # save) could act on this information and also move/copy # availability information or at least enhance the respective commit # message with cross-dataset provenance info # cache to help avoid duplicate status queries content_info_cache = {} for res in _diff_ds( ds, fr, to, constant_refs, recursion_limit if recursion_limit is not None and recursive else -1 if recursive else 0, # TODO recode paths to repo path reference origpaths=None if not path else OrderedDict(path), untracked=untracked, annexinfo=annex, eval_file_type=eval_file_type, cache=content_info_cache, order=reporting_order, datasets_only=datasets_only, ): res.update( refds=ds.path, logger=lgr, action='diff', ) yield res
def diff_dataset( dataset, fr, to, constant_refs, path=None, annex=None, untracked='normal', recursive=False, recursion_limit=None, eval_file_type=True, reporting_order='depth-first', datasets_only=False, ): """Internal helper to diff a dataset Parameters ---------- dataset : Dataset Dataset to perform the diff on. `fr` and `to` parameters are interpreted in the context of this dataset. fr : str Commit-ish to compare from. to : str Commit-ish to compare to. constant_refs : bool If True, `fr` and `to` will be passed on unmodified to diff operations on subdatasets. This can be useful with symbolic references like tags to report subdataset changes independent of superdataset changes. If False, `fr` and `to` will be translated to the subdataset commit-ish that match the given commit-ish in the superdataset. path : Path-like, optional Paths to constrain the diff to (see main diff() command). annex : str, optional Reporting mode for annex properties (see main diff() command). untracked : str, optional Reporting mode for untracked content (see main diff() command). recursive : bool, optional Flag to enable recursive operation (see main diff() command). recursion_limit : int, optional Recursion limit (see main diff() command). eval_file_type : bool, optional Whether to perform file type discrimination between real symlinks and symlinks representing annex'ed files. This can be expensive in datasets with many files. reporting_order : {'depth-first', 'breadth-first', 'bottom-up'}, optional By default, subdataset content records are reported after the record on the subdataset's submodule in a superdataset (depth-first). Alternatively, report all superdataset records first, before reporting any subdataset content records (breadth-first). Both 'depth-first' and 'breadth-first' both report dataset content before considering subdatasets. Alternative 'bottom-up' mode is similar to 'depth-first' but dataset content is reported after reporting on subdatasets. Yields ------ dict DataLad result records. """ if reporting_order not in ('depth-first', 'breadth-first', 'bottom-up'): raise ValueError('Unknown reporting order: {}'.format(reporting_order)) ds = require_dataset( dataset, check_installed=True, purpose='report difference') # we cannot really perform any sorting of paths into subdatasets # or rejecting paths based on the state of the filesystem, as # we need to be able to compare with states that are not represented # in the worktree (anymore) if path: if datasets_only: raise NotImplementedError("Analysis of provided paths in datasets_only mode is not implemented") ps = [] # sort any path argument into the respective subdatasets for p in sorted(ensure_list(path)): # it is important to capture the exact form of the # given path argument, before any normalization happens # distinguish rsync-link syntax to identify # a dataset as whole (e.g. 'ds') vs its # content (e.g. 'ds/') # special case is the root dataset, always report its content # changes orig_path = str(p) resolved_path = resolve_path(p, dataset) p = \ resolved_path, \ orig_path.endswith(op.sep) or resolved_path == ds.pathobj str_path = str(p[0]) root = get_dataset_root(str_path) if root is None: # no root, not possibly underneath the refds yield dict( action='status', path=str_path, refds=ds.path, status='error', message='path not underneath this dataset', logger=lgr) continue if path_under_rev_dataset(ds, str_path) is None: # nothing we support handling any further # there is only a single refds yield dict( path=str_path, refds=ds.path, action='diff', status='error', message=( "dataset containing given paths is not underneath " "the reference dataset %s: %s", ds, str_path), logger=lgr, ) continue ps.append(p) path = ps # TODO we might want to move away from the single-pass+immediate-yield # paradigm for this command. If we gather all information first, we # could do post-processing and detect when a file (same gitsha, or same # key) was copied/moved from another dataset. Another command (e.g. # save) could act on this information and also move/copy # availability information or at least enhance the respective commit # message with cross-dataset provenance info # cache to help avoid duplicate status queries content_info_cache = {} for res in _diff_ds( ds, fr, to, constant_refs, recursion_limit if recursion_limit is not None and recursive else -1 if recursive else 0, # TODO recode paths to repo path reference origpaths=None if not path else OrderedDict(path), untracked=untracked, annexinfo=annex, eval_file_type=eval_file_type, cache=content_info_cache, order=reporting_order, datasets_only=datasets_only, ): res.update( refds=ds.path, logger=lgr, action='diff', ) yield res
50,493
def updateChangelog(filename: str, lines: List[str]): newLines = [] nextLine = None for line in lines: if line == "Next Release": line = f"{VERSION} ({time.strftime('%d %B %Y')})" nextLine = "-" * len(line) elif nextLine: line = nextLine nextLine = None newLines.append(line) return newLines
def updateChangelog(filename: str, lines: List[str]): newLines = [] for line in lines: if line == "Next Release": newLines.append(f"{VERSION} ({time.strftime('%d %B %Y')})") else: newLines.append(line) return newLines
53,297
def synthetic_radiograph( obj, size=None, bins=None, ignore_grid=False, optical_density=False ): r""" Calculate a "synthetic radiograph" (particle count histogram in the image plane). Parameters ---------- obj: `dict` or `~plasmapy.diagnostics.charged_particle_radiography.Tracker` Either a `~plasmapy.diagnostics.charged_particle_radiography.Tracker` object that has been run, or an output dictionary created by running `~plasmapy.diagnostics.charged_particle_radiography.Tracker`. size : `~astropy.units.Quantity`, shape ``(2, 2)``, optional The size of the detector array, specified as the minimum and maximum values included in both the horizontal and vertical directions in the detector plane coordinates. Shape is ``((hmin, hmax), (vmin, vmax))``. If not specified, the size will be set to include all particles on the detector. Units must be convertable to meters. bins : array of integers, shape ``(2)`` The number of bins in each direction in the format ``(hbins, vbins)``. The default is ``(200, 200)``. ignore_grid: `bool` If `True`, returns the intensity in the image plane in the absence of simulated fields. optical_density: `bool` If `True`, return the optical density rather than the intensity .. math:: OD = -log_{10}(Intensity/I_0) where :math:`Intensity` is the simulation intensity on the detector plane and :math:`I_0` is the intensity on the detector plane in the absence of simulated fields. Default is `False`. If the `Intensity` histogram contains zeros, `OD` will contain -`~numpy.inf` values. These can be easily replaced with zeros if desired for plotting using `~numpy.nan_to_num` ``OD = np.nan_to_num(OD, neginf=0)`` Returns ------- hax : `~astropy.units.Quantity` array shape ``(hbins,)`` The horizontal axis of the synthetic radiograph in meters. vax : `~astropy.units.Quantity` array shape ``(vbins, )`` The vertical axis of the synthetic radiograph in meters. intensity : `~numpy.ndarray`, shape ``(hbins, vbins)`` The number of particles counted in each bin of the histogram. """ # results_dict will raise an error if the simulation has not been run. if isinstance(obj, Tracker): d = obj.results_dict # Check if dictionary-like (dict or npz file) elif isinstance(obj, dict): d = obj else: raise ValueError( "The first argument of synthetic_radiograph must be " "either a cpr.Tracker or an " "output dictionary from cpr.Tracker" ) if bins is None: bins = [200, 200] # Note that, at the end of the simulation, all particles were moved # into the image plane. # If ignore_grid is True, use the predicted positions in the absence of # simulated fields if ignore_grid: xloc = d["x0"] yloc = d["y0"] else: xloc = d["x"] yloc = d["y"] if size is None: # If a detector size is not given, choose a size based on the # particle positions w = np.max([np.max(np.abs(xloc)), np.max(np.abs(yloc))]) size = np.array([[-w, w], [-w, w]]) * u.m elif not isinstance(size, u.Quantity) or not size.unit.is_equivalent(u.m): raise TypeError( "``size`` must be an `~astropy.units.Quantity` " "object with units convertable to meters." ) elif size.shape != (2, 2): raise ValueError( "``size`` must have shape ``(2,2)`` corresponding to " "``[[xmin, xmax], [ymin, ymax]]``." ) # Generate the histogram intensity, h, v = np.histogram2d(xloc, yloc, range=size.to(u.m).value, bins=bins) # h, v are the bin edges: compute the centers to produce arrays # of the right length (then trim off the extra point) h = ((h + np.roll(h, -1)) / 2)[:-1] v = ((v + np.roll(v, -1)) / 2)[:-1] # Throw a warning if < 50% of the particles are included on the # histogram percentage = np.sum(intensity) / d["nparticles"] if percentage < 0.5: warnings.warn( f"Only {percentage:.2%} of the particles are shown " "on this synthetic radiograph. Consider increasing " "the size to include more.", RuntimeWarning, ) if optical_density: # Generate the null radiograph x, y, I0 = synthetic_radiograph(obj, size=size, bins=bins, ignore_grid=True) # Calculate I0 as the mean of the non-zero values in the null # histogram. Zeros are just outside of the illuminate area. I0 = np.mean(I0[I0 != 0]) # Calculate the optical_density # ignore any errors resulting from zero values in intensity with np.errstate(divide="ignore"): intensity = -np.log10(intensity / I0) return h * u.m, v * u.m, intensity
def synthetic_radiograph( obj, size=None, bins=None, ignore_grid=False, optical_density=False ): r""" Calculate a "synthetic radiograph" (particle count histogram in the image plane). Parameters ---------- obj: `dict` or `~plasmapy.diagnostics.charged_particle_radiography.Tracker` Either a `~plasmapy.diagnostics.charged_particle_radiography.Tracker` object that has been run, or an output dictionary created by running `~plasmapy.diagnostics.charged_particle_radiography.Tracker`. size : `~astropy.units.Quantity`, shape ``(2, 2)``, optional The size of the detector array, specified as the minimum and maximum values included in both the horizontal and vertical directions in the detector plane coordinates. Shape is ``((hmin, hmax), (vmin, vmax))``. If not specified, the size will be set to include all particles on the detector. Units must be convertable to meters. bins : array of integers, shape ``(2)`` The number of bins in each direction in the format ``(hbins, vbins)``. The default is ``(200, 200)``. ignore_grid: `bool` If `True`, returns the intensity in the image plane in the absence of simulated fields. optical_density: `bool` If `True`, return the optical density rather than the intensity .. math:: OD = -log_{10}(Intensity/I_0) where :math:`Intensity` is the simulation intensity on the detector plane and :math:`I_0` is the intensity on the detector plane in the absence of simulated fields. Default is `False`. If the ``Intensity`` histogram contains zeros, ``OD`` will contain -`~numpy.inf` values. These can be easily replaced with zeros if desired for plotting using `~numpy.nan_to_num` .. code-block:: OD = np.nan_to_num(OD, neginf=0) Returns ------- hax : `~astropy.units.Quantity` array shape ``(hbins,)`` The horizontal axis of the synthetic radiograph in meters. vax : `~astropy.units.Quantity` array shape ``(vbins, )`` The vertical axis of the synthetic radiograph in meters. intensity : `~numpy.ndarray`, shape ``(hbins, vbins)`` The number of particles counted in each bin of the histogram. """ # results_dict will raise an error if the simulation has not been run. if isinstance(obj, Tracker): d = obj.results_dict # Check if dictionary-like (dict or npz file) elif isinstance(obj, dict): d = obj else: raise ValueError( "The first argument of synthetic_radiograph must be " "either a cpr.Tracker or an " "output dictionary from cpr.Tracker" ) if bins is None: bins = [200, 200] # Note that, at the end of the simulation, all particles were moved # into the image plane. # If ignore_grid is True, use the predicted positions in the absence of # simulated fields if ignore_grid: xloc = d["x0"] yloc = d["y0"] else: xloc = d["x"] yloc = d["y"] if size is None: # If a detector size is not given, choose a size based on the # particle positions w = np.max([np.max(np.abs(xloc)), np.max(np.abs(yloc))]) size = np.array([[-w, w], [-w, w]]) * u.m elif not isinstance(size, u.Quantity) or not size.unit.is_equivalent(u.m): raise TypeError( "``size`` must be an `~astropy.units.Quantity` " "object with units convertable to meters." ) elif size.shape != (2, 2): raise ValueError( "``size`` must have shape ``(2,2)`` corresponding to " "``[[xmin, xmax], [ymin, ymax]]``." ) # Generate the histogram intensity, h, v = np.histogram2d(xloc, yloc, range=size.to(u.m).value, bins=bins) # h, v are the bin edges: compute the centers to produce arrays # of the right length (then trim off the extra point) h = ((h + np.roll(h, -1)) / 2)[:-1] v = ((v + np.roll(v, -1)) / 2)[:-1] # Throw a warning if < 50% of the particles are included on the # histogram percentage = np.sum(intensity) / d["nparticles"] if percentage < 0.5: warnings.warn( f"Only {percentage:.2%} of the particles are shown " "on this synthetic radiograph. Consider increasing " "the size to include more.", RuntimeWarning, ) if optical_density: # Generate the null radiograph x, y, I0 = synthetic_radiograph(obj, size=size, bins=bins, ignore_grid=True) # Calculate I0 as the mean of the non-zero values in the null # histogram. Zeros are just outside of the illuminate area. I0 = np.mean(I0[I0 != 0]) # Calculate the optical_density # ignore any errors resulting from zero values in intensity with np.errstate(divide="ignore"): intensity = -np.log10(intensity / I0) return h * u.m, v * u.m, intensity
32,865
def set_tags_from_context(span, context): # type: (Span, Dict[str, Any]) -> None """Helper to extract meta values from a Celery Context""" for key, tag_name in TAG_KEYS: value = context.get(key) # Skip this key if it is not set if value is None or value == "": continue # Skip `timelimit` if it is not set (its default/unset value is a # tuple or a list of `None` values if key == "timelimit" and all((_ is None for _ in value)): continue # Skip `retries` if its value is `0` if key == "retries" and value == 0: continue span.set_tag(tag_name, value)
def set_tags_from_context(span, context): # type: (Span, Dict[str, Any]) -> None """Helper to extract meta values from a Celery Context""" for key, tag_name in TAG_KEYS: value = context.get(key) # Skip this key if it is not set if value is None or value == "": continue # Skip `timelimit` if it is not set (its default/unset value is a # tuple or a list of `None` values if key == "timelimit" and all(_ is None for _ in value): continue # Skip `retries` if its value is `0` if key == "retries" and value == 0: continue span.set_tag(tag_name, value)
46,629
def meta_svm(fname_objective: str, fname_cost: str, noise: bool = True) -> Tuple[UserFunctionWrapper, ParameterSpace]: """ Interface to the Meta-SVM benchmark which imitates the hyperparameter optimization of a support vector machine on OpenML like classification datasets. Offline generated function samples can be download here: http://www.ml4aad.org/wp-content/uploads/2019/05/profet_data.tar.gz NOTE: make sure that the index for the objective function and the cost function match, e.g for sample_objective_i.pkl and sample_cost.pkl the index i should be the same. For further information about Profet and the generated meta-surrogate benchmarks see: Meta-Surrogate Benchmarking for Hyperparameter Optimization A. Klein and Z. Dai and F. Hutter and N. Lawrence and J. Gonzalez arXiv:1905.12982 [cs.LG] (2019) :param fname_objective: filename for the objective function :param fname_cost: filename for the cost function :param noise: determines whether to add noise on the function value or not :return: Tuple of user function object and parameter space """ parameter_space = ParameterSpace([ ContinuousParameter('log_C', 0, 1), # scaled to [0, 1], original space was in [-10, 10] ContinuousParameter('log_gamma', 0, 1)]) # scaled to [0, 1] original space was in [-10, 10] data = pickle.load(open(fname_objective, "rb")) x_mean_objective = data["x_mean"] x_std_objective = data["x_std"] task_feature_objective = data["task_feature"] objective = get_default_architecture_classification(x_mean_objective.shape[0]).float() objective.load_state_dict(data["state_dict"]) data = pickle.load(open(fname_cost, "rb")) x_mean_cost = data["x_mean"] x_std_cost = data["x_std"] y_mean_cost = data["y_mean"] y_std_cost = data["y_std"] task_feature_cost = data["task_feature"] cost = get_default_architecture_cost(x_mean_cost.shape[0]).float() cost.load_state_dict(data["state_dict"]) def objective_function(config, with_noise=True): Ht = np.repeat(task_feature_objective[None, :], config.shape[0], axis=0) x = np.concatenate((config, Ht), axis=1) x_norm = torch.from_numpy((x - x_mean_objective) / x_std_objective).float() o = objective.forward(x_norm).data.numpy() m = o[:, 0] log_v = o[:, 1] if with_noise: feval = np.random.randn() * np.sqrt(np.exp(log_v)) + m else: feval = m Ht = np.repeat(task_feature_cost[None, :], config.shape[0], axis=0) x = np.concatenate((config, Ht), axis=1) x_norm = torch.from_numpy((x - x_mean_cost) / x_std_cost).float() o = cost.forward(x_norm).data.numpy() log_m = o[:, 0] * y_std_cost + y_mean_cost log_log_v = o[:, 1] * y_std_cost ** 2 if with_noise: log_c = np.random.randn() * np.sqrt(np.exp(log_log_v)) + log_m else: log_c = log_m return feval[:, None], np.exp(log_c)[:, None] f = partial(objective_function, with_noise=noise) return f, parameter_space
def meta_svm(fname_objective: str, fname_cost: str, noise: bool = True) -> Tuple[UserFunctionWrapper, ParameterSpace]: """ Interface to the Meta-SVM benchmark which imitates the hyperparameter optimization of a support vector machine on OpenML like classification datasets. Offline generated function samples can be download here: http://www.ml4aad.org/wp-content/uploads/2019/05/profet_data.tar.gz NOTE: make sure that the index for the objective function and the cost function match, e.g for sample_objective_i.pkl and sample_cost_i.pkl the index i should be the same. For further information about Profet and the generated meta-surrogate benchmarks see: Meta-Surrogate Benchmarking for Hyperparameter Optimization A. Klein and Z. Dai and F. Hutter and N. Lawrence and J. Gonzalez arXiv:1905.12982 [cs.LG] (2019) :param fname_objective: filename for the objective function :param fname_cost: filename for the cost function :param noise: determines whether to add noise on the function value or not :return: Tuple of user function object and parameter space """ parameter_space = ParameterSpace([ ContinuousParameter('log_C', 0, 1), # scaled to [0, 1], original space was in [-10, 10] ContinuousParameter('log_gamma', 0, 1)]) # scaled to [0, 1] original space was in [-10, 10] data = pickle.load(open(fname_objective, "rb")) x_mean_objective = data["x_mean"] x_std_objective = data["x_std"] task_feature_objective = data["task_feature"] objective = get_default_architecture_classification(x_mean_objective.shape[0]).float() objective.load_state_dict(data["state_dict"]) data = pickle.load(open(fname_cost, "rb")) x_mean_cost = data["x_mean"] x_std_cost = data["x_std"] y_mean_cost = data["y_mean"] y_std_cost = data["y_std"] task_feature_cost = data["task_feature"] cost = get_default_architecture_cost(x_mean_cost.shape[0]).float() cost.load_state_dict(data["state_dict"]) def objective_function(config, with_noise=True): Ht = np.repeat(task_feature_objective[None, :], config.shape[0], axis=0) x = np.concatenate((config, Ht), axis=1) x_norm = torch.from_numpy((x - x_mean_objective) / x_std_objective).float() o = objective.forward(x_norm).data.numpy() m = o[:, 0] log_v = o[:, 1] if with_noise: feval = np.random.randn() * np.sqrt(np.exp(log_v)) + m else: feval = m Ht = np.repeat(task_feature_cost[None, :], config.shape[0], axis=0) x = np.concatenate((config, Ht), axis=1) x_norm = torch.from_numpy((x - x_mean_cost) / x_std_cost).float() o = cost.forward(x_norm).data.numpy() log_m = o[:, 0] * y_std_cost + y_mean_cost log_log_v = o[:, 1] * y_std_cost ** 2 if with_noise: log_c = np.random.randn() * np.sqrt(np.exp(log_log_v)) + log_m else: log_c = log_m return feval[:, None], np.exp(log_c)[:, None] f = partial(objective_function, with_noise=noise) return f, parameter_space
14,265
def _initialise_testbench_(argv_): # The body of this function is split in two because no coverage is collected on # the function that starts the coverage. By splitting it in two we get coverage # on most of the function. global argc, argv argv = argv_ argc = len(argv) root_name = os.getenv("TOPLEVEL") if root_name is not None: root_name = root_name.strip() if root_name == "": root_name = None elif '.' in root_name: # Skip any library component of the toplevel root_name = root_name.split(".", 1)[1] # sys.path normally includes "" (the current directory), but does not appear to when python is embedded. # Add it back because users expect to be able to import files in their test directory. # TODO: move this to gpi_embed.cpp sys.path.insert(0, "") _setup_logging() # From https://www.python.org/dev/peps/pep-0565/#recommended-filter-settings-for-test-runners # If the user doesn't want to see these, they can always change the global # warning settings in their test module. if not sys.warnoptions: warnings.simplefilter("default") from cocotb import simulator global SIM_NAME, SIM_VERSION SIM_NAME = simulator.get_simulator_product().strip() SIM_VERSION = simulator.get_simulator_version().strip() cocotb.log.info(f"Running on {SIM_NAME} version {SIM_VERSION}") memcheck_port = os.getenv('MEMCHECK') if memcheck_port is not None: mem_debug(int(memcheck_port)) log.info("Running tests with cocotb v%s from %s" % (__version__, os.path.dirname(__file__))) # Create the base handle type process_plusargs() global scheduler scheduler = Scheduler() # Seed the Python random number generator to make this repeatable global RANDOM_SEED RANDOM_SEED = os.getenv('RANDOM_SEED') if RANDOM_SEED is None: if 'ntb_random_seed' in plusargs: RANDOM_SEED = eval(plusargs['ntb_random_seed']) elif 'seed' in plusargs: RANDOM_SEED = eval(plusargs['seed']) else: RANDOM_SEED = int(time.time()) log.info("Seeding Python random module with %d" % (RANDOM_SEED)) else: RANDOM_SEED = int(RANDOM_SEED) log.info("Seeding Python random module with supplied seed %d" % (RANDOM_SEED)) random.seed(RANDOM_SEED) # Setup DUT object from cocotb import simulator handle = simulator.get_root_handle(root_name) if not handle: raise RuntimeError(f"Can not find root handle ({root_name})") global top top = cocotb.handle.SimHandle(handle) try: import pytest except ImportError: log.warning( "Install pytest to enable better AssertionError messages") else: try: # Install the assertion rewriting hook, which must be done before we # import the test modules. from _pytest.config import Config from _pytest.assertion import install_importhook pytest_conf = Config.fromdictargs({}, ['--capture=no']) install_importhook(pytest_conf) except Exception: log.exception( "Configuring the assertion rewrite hook using pytest {} failed. " "Please file a bug report!".format(pytest.__version__)) # start Regression Manager global regression_manager regression_manager = RegressionManager.from_discovery(top) regression_manager.execute()
def _initialise_testbench_(argv_): # The body of this function is split in two because no coverage is collected on # the function that starts the coverage. By splitting it in two we get coverage # on most of the function. global argc, argv argv = argv_ argc = len(argv) root_name = os.getenv("TOPLEVEL") if root_name is not None: root_name = root_name.strip() if root_name == "": root_name = None elif '.' in root_name: # Skip any library component of the toplevel root_name = root_name.split(".", 1)[1] # sys.path normally includes "" (the current directory), but does not appear to when python is embedded. # Add it back because users expect to be able to import files in their test directory. # TODO: move this to gpi_embed.cpp sys.path.insert(0, "") _setup_logging() # From https://www.python.org/dev/peps/pep-0565/#recommended-filter-settings-for-test-runners # If the user doesn't want to see these, they can always change the global # warning settings in their test module. if not sys.warnoptions: warnings.simplefilter("default") from cocotb import simulator global SIM_NAME, SIM_VERSION SIM_NAME = simulator.get_simulator_product().strip() SIM_VERSION = simulator.get_simulator_version().strip() cocotb.log.info(f"Running on {SIM_NAME} version {SIM_VERSION}") memcheck_port = os.getenv('MEMCHECK') if memcheck_port is not None: mem_debug(int(memcheck_port)) log.info("Running tests with cocotb v%s from %s" % (__version__, os.path.dirname(__file__))) # Create the base handle type process_plusargs() global scheduler scheduler = Scheduler() # Seed the Python random number generator to make this repeatable global RANDOM_SEED RANDOM_SEED = os.getenv('RANDOM_SEED') if RANDOM_SEED is None: if 'ntb_random_seed' in plusargs: RANDOM_SEED = eval(plusargs['ntb_random_seed']) elif 'seed' in plusargs: RANDOM_SEED = eval(plusargs['seed']) else: RANDOM_SEED = int(time.time()) log.info("Seeding Python random module with %d" % (RANDOM_SEED)) else: RANDOM_SEED = int(RANDOM_SEED) log.info("Seeding Python random module with supplied seed %d" % (RANDOM_SEED)) random.seed(RANDOM_SEED) # Setup DUT object from cocotb import simulator handle = simulator.get_root_handle(root_name) if not handle: raise RuntimeError(f"Can not find root handle ({root_name})") global top top = cocotb.handle.SimHandle(handle) try: import pytest except ImportError: log.info( "Install pytest to enable better AssertionError messages") else: try: # Install the assertion rewriting hook, which must be done before we # import the test modules. from _pytest.config import Config from _pytest.assertion import install_importhook pytest_conf = Config.fromdictargs({}, ['--capture=no']) install_importhook(pytest_conf) except Exception: log.exception( "Configuring the assertion rewrite hook using pytest {} failed. " "Please file a bug report!".format(pytest.__version__)) # start Regression Manager global regression_manager regression_manager = RegressionManager.from_discovery(top) regression_manager.execute()
3,426
def get_project_config(project, full_config=True, project_keys=None): """ Constructs the ProjectConfig information. :param project: The project to load configuration for. Ensure that organization is bound on this object; otherwise it will be loaded from the database. :param full_config: True if only the full config is required, False if only the restricted (for external relays) is required (default True, i.e. full configuration) :param project_keys: Pre-fetched project keys for performance. However, if no project keys are provided it is assumed that the config does not need to contain auth information (this is the case when used in python's StoreView) :return: a ProjectConfig object for the given project """ metrics.incr("sentry.relay.config.get_project_config") with configure_scope() as scope: scope.set_tag("project", project.id) if project.status != ObjectStatus.VISIBLE: return ProjectConfig(project, disabled=True) public_keys = get_public_key_configs(project, full_config, project_keys=project_keys) with Hub.current.start_span(op="get_public_config"): now = datetime.utcnow().replace(tzinfo=utc) cfg = { "disabled": False, "slug": project.slug, "lastFetch": now, "lastChange": project.get_option("sentry:relay-rev-lastchange", now), "rev": project.get_option("sentry:relay-rev", uuid.uuid4().hex), "publicKeys": public_keys, "config": { "allowedDomains": list(get_origins(project)), "trustedRelays": [ r["public_key"] for r in project.organization.get_option("sentry:trusted-relays", []) if r ], "piiConfig": get_pii_config(project), "datascrubbingSettings": get_datascrubbing_settings(project), "features": get_exposed_features(project), }, "organizationId": project.organization_id, "projectId": project.id, # XXX: Unused by Relay, required by Python store } allow_dynamic_sampling = features.has( "organizations:filters-and-sampling", project.organization, ) if allow_dynamic_sampling: dynamic_sampling = project.get_option("sentry:dynamic_sampling") if dynamic_sampling is not None: cfg["config"]["dynamicSampling"] = dynamic_sampling if not full_config: # This is all we need for external Relay processors return ProjectConfig(project, **cfg) if features.has("organizations:performance-ops-breakdown", project.organization): cfg["config"]["breakdownsV2"] = project.get_option("sentry:breakdowns") if features.has("organizations:transaction-metrics-extraction", project.organization): cfg["config"]["transactionMetrics"] = get_transaction_metrics_settings( project, cfg["config"].get("breakdownsV2") ) # This config key is technically not specific to _transaction_ metrics, # is however currently both only applied to transaction metrics in # Relay, and only used to tag transaction metrics in Sentry. try: cfg["config"]["metricConditionalTagging"] = get_metric_conditional_tagging_rules( project ) except Exception: capture_exception() if features.has("organizations:metrics-extraction", project.organization): cfg["config"]["sessionMetrics"] = { "version": 1, "drop": False, } if features.has("projects:performance-suspect-spans-ingestion", project=project): cfg["config"]["spanAttributes"] = project.get_option("sentry:span_attributes") with Hub.current.start_span(op="get_filter_settings"): cfg["config"]["filterSettings"] = get_filter_settings(project) with Hub.current.start_span(op="get_grouping_config_dict_for_project"): cfg["config"]["groupingConfig"] = get_grouping_config_dict_for_project(project) with Hub.current.start_span(op="get_event_retention"): cfg["config"]["eventRetention"] = quotas.get_event_retention(project.organization) with Hub.current.start_span(op="get_all_quotas"): cfg["config"]["quotas"] = get_quotas(project, keys=project_keys) return ProjectConfig(project, **cfg)
def get_project_config(project, full_config=True, project_keys=None): """ Constructs the ProjectConfig information. :param project: The project to load configuration for. Ensure that organization is bound on this object; otherwise it will be loaded from the database. :param full_config: True if only the full config is required, False if only the restricted (for external relays) is required (default True, i.e. full configuration) :param project_keys: Pre-fetched project keys for performance. However, if no project keys are provided it is assumed that the config does not need to contain auth information (this is the case when used in python's StoreView) :return: a ProjectConfig object for the given project """ metrics.incr("sentry.relay.config.get_project_config", sample_rate=1.0) with configure_scope() as scope: scope.set_tag("project", project.id) if project.status != ObjectStatus.VISIBLE: return ProjectConfig(project, disabled=True) public_keys = get_public_key_configs(project, full_config, project_keys=project_keys) with Hub.current.start_span(op="get_public_config"): now = datetime.utcnow().replace(tzinfo=utc) cfg = { "disabled": False, "slug": project.slug, "lastFetch": now, "lastChange": project.get_option("sentry:relay-rev-lastchange", now), "rev": project.get_option("sentry:relay-rev", uuid.uuid4().hex), "publicKeys": public_keys, "config": { "allowedDomains": list(get_origins(project)), "trustedRelays": [ r["public_key"] for r in project.organization.get_option("sentry:trusted-relays", []) if r ], "piiConfig": get_pii_config(project), "datascrubbingSettings": get_datascrubbing_settings(project), "features": get_exposed_features(project), }, "organizationId": project.organization_id, "projectId": project.id, # XXX: Unused by Relay, required by Python store } allow_dynamic_sampling = features.has( "organizations:filters-and-sampling", project.organization, ) if allow_dynamic_sampling: dynamic_sampling = project.get_option("sentry:dynamic_sampling") if dynamic_sampling is not None: cfg["config"]["dynamicSampling"] = dynamic_sampling if not full_config: # This is all we need for external Relay processors return ProjectConfig(project, **cfg) if features.has("organizations:performance-ops-breakdown", project.organization): cfg["config"]["breakdownsV2"] = project.get_option("sentry:breakdowns") if features.has("organizations:transaction-metrics-extraction", project.organization): cfg["config"]["transactionMetrics"] = get_transaction_metrics_settings( project, cfg["config"].get("breakdownsV2") ) # This config key is technically not specific to _transaction_ metrics, # is however currently both only applied to transaction metrics in # Relay, and only used to tag transaction metrics in Sentry. try: cfg["config"]["metricConditionalTagging"] = get_metric_conditional_tagging_rules( project ) except Exception: capture_exception() if features.has("organizations:metrics-extraction", project.organization): cfg["config"]["sessionMetrics"] = { "version": 1, "drop": False, } if features.has("projects:performance-suspect-spans-ingestion", project=project): cfg["config"]["spanAttributes"] = project.get_option("sentry:span_attributes") with Hub.current.start_span(op="get_filter_settings"): cfg["config"]["filterSettings"] = get_filter_settings(project) with Hub.current.start_span(op="get_grouping_config_dict_for_project"): cfg["config"]["groupingConfig"] = get_grouping_config_dict_for_project(project) with Hub.current.start_span(op="get_event_retention"): cfg["config"]["eventRetention"] = quotas.get_event_retention(project.organization) with Hub.current.start_span(op="get_all_quotas"): cfg["config"]["quotas"] = get_quotas(project, keys=project_keys) return ProjectConfig(project, **cfg)
34,261
def validate_files(args): """Validate all files needed for training a model. Fails with a non-zero exit code if there are any errors in the data.""" from rasa.core.validator import Validator from rasa.importers.rasa import RasaFileImporter loop = asyncio.get_event_loop() file_importer = RasaFileImporter( domain_path=args.domain, training_data_paths=args.data ) validator = loop.run_until_complete(Validator.from_importer(file_importer)) domain_is_alright = validator.verify_domain() if not domain_is_alright: sys.exit(1) everything_is_alright = validator.verify_all(not args.fail_on_warnings) sys.exit(0) if everything_is_alright else sys.exit(1)
def validate_files(args): """Validate all files needed for training a model. Fails with a non-zero exit code if there are any errors in the data.""" from rasa.core.validator import Validator from rasa.importers.rasa import RasaFileImporter loop = asyncio.get_event_loop() file_importer = RasaFileImporter( domain_path=args.domain, training_data_paths=args.data ) validator = loop.run_until_complete(Validator.from_importer(file_importer)) domain_is_alright = validator.verify_domain() if not domain_is_valid: sys.exit(1) everything_is_alright = validator.verify_all(not args.fail_on_warnings) sys.exit(0) if everything_is_alright else sys.exit(1)
3,701
def test_fit(Poly): def f(x): return x*(x - 1)*(x - 2) def g(x): return -(x-3)*(x-5)*(x-6) x = np.linspace(0, 3) y, z = f(x), g(x) yz = np.column_stack((y,z)) # check default value of domain and window p = Poly.fit(x, y, 3) assert_almost_equal(p.domain, [0, 3]) assert_almost_equal(p(x), y) assert_equal(p.degree(), 3) [q,r] = Poly.fit(x, yz, 3) assert_almost_equal(r.domain, [0, 3]) assert_almost_equal(q(x), y) assert_almost_equal(r(x), z) assert_equal(r.degree(), 3) print("testing") # check with given domains and window d = Poly.domain + random((2,))*.25 w = Poly.window + random((2,))*.25 p = Poly.fit(x, y, 3, domain=d, window=w) assert_almost_equal(p(x), y) assert_almost_equal(p.domain, d) assert_almost_equal(p.window, w) p = Poly.fit(x, y, [0, 1, 2, 3], domain=d, window=w) assert_almost_equal(p(x), y) assert_almost_equal(p.domain, d) assert_almost_equal(p.window, w) [q,r] = Poly.fit(x, yz, 3, domain=d, window=w) assert_almost_equal(q(x), y) assert_almost_equal(r(x), z) assert_almost_equal(q.domain, d) assert_almost_equal(r.domain, d) assert_almost_equal(q.window, w) assert_almost_equal(r.window, w) [q,r] = Poly.fit(x, yz, [0, 1, 2, 3], domain=d, window=w) assert_almost_equal(q(x), y) assert_almost_equal(r(x), z) assert_almost_equal(q.domain, d) assert_almost_equal(r.domain, d) assert_almost_equal(q.window, w) assert_almost_equal(r.window, w) # check with class domain default p = Poly.fit(x, y, 3, []) assert_equal(p.domain, Poly.domain) assert_equal(p.window, Poly.window) p = Poly.fit(x, y, [0, 1, 2, 3], []) assert_equal(p.domain, Poly.domain) assert_equal(p.window, Poly.window) [q,r] = Poly.fit(x, yz, 3, []) assert_equal(q.domain, Poly.domain) assert_equal(r.domain, Poly.domain) assert_equal(q.window, Poly.window) assert_equal(r.window, Poly.window) [q,r] = Poly.fit(x, yz, [0, 1, 2, 3], []) assert_equal(q.domain, Poly.domain) assert_equal(r.domain, Poly.domain) assert_equal(q.window, Poly.window) assert_equal(r.window, Poly.window) # check that fit accepts weights. w = np.zeros_like(x) z = y + random(y.shape)*.25 w[::2] = 1 p1 = Poly.fit(x[::2], z[::2], 3) p2 = Poly.fit(x, z, 3, w=w) p3 = Poly.fit(x, z, [0, 1, 2, 3], w=w) assert_almost_equal(p1(x), p2(x)) assert_almost_equal(p2(x), p3(x)) yzz = yz + random(yz.shape)*.25 [q1, r1] = Poly.fit(x[::2], yzz[::2,:], 3) [q2, r2] = Poly.fit(x, yzz, 3, w=w) [q3, r3] = Poly.fit(x, yzz, [0, 1, 2, 3], w=w) assert_almost_equal(q1(x), q2(x)) assert_almost_equal(q2(x), q3(x)) assert_almost_equal(r1(x), r2(x)) assert_almost_equal(r2(x), r3(x))
def test_fit(Poly): def f(x): return x*(x - 1)*(x - 2) def g(x): return -(x-3)*(x-5)*(x-6) x = np.linspace(0, 3) y, z = f(x), g(x) yz = np.column_stack((y,z)) # check default value of domain and window p = Poly.fit(x, y, 3) assert_almost_equal(p.domain, [0, 3]) assert_almost_equal(p(x), y) assert_equal(p.degree(), 3) q, r = Poly.fit(x, yz, 3) assert_almost_equal(r.domain, [0, 3]) assert_almost_equal(q(x), y) assert_almost_equal(r(x), z) assert_equal(r.degree(), 3) print("testing") # check with given domains and window d = Poly.domain + random((2,))*.25 w = Poly.window + random((2,))*.25 p = Poly.fit(x, y, 3, domain=d, window=w) assert_almost_equal(p(x), y) assert_almost_equal(p.domain, d) assert_almost_equal(p.window, w) p = Poly.fit(x, y, [0, 1, 2, 3], domain=d, window=w) assert_almost_equal(p(x), y) assert_almost_equal(p.domain, d) assert_almost_equal(p.window, w) [q,r] = Poly.fit(x, yz, 3, domain=d, window=w) assert_almost_equal(q(x), y) assert_almost_equal(r(x), z) assert_almost_equal(q.domain, d) assert_almost_equal(r.domain, d) assert_almost_equal(q.window, w) assert_almost_equal(r.window, w) [q,r] = Poly.fit(x, yz, [0, 1, 2, 3], domain=d, window=w) assert_almost_equal(q(x), y) assert_almost_equal(r(x), z) assert_almost_equal(q.domain, d) assert_almost_equal(r.domain, d) assert_almost_equal(q.window, w) assert_almost_equal(r.window, w) # check with class domain default p = Poly.fit(x, y, 3, []) assert_equal(p.domain, Poly.domain) assert_equal(p.window, Poly.window) p = Poly.fit(x, y, [0, 1, 2, 3], []) assert_equal(p.domain, Poly.domain) assert_equal(p.window, Poly.window) [q,r] = Poly.fit(x, yz, 3, []) assert_equal(q.domain, Poly.domain) assert_equal(r.domain, Poly.domain) assert_equal(q.window, Poly.window) assert_equal(r.window, Poly.window) [q,r] = Poly.fit(x, yz, [0, 1, 2, 3], []) assert_equal(q.domain, Poly.domain) assert_equal(r.domain, Poly.domain) assert_equal(q.window, Poly.window) assert_equal(r.window, Poly.window) # check that fit accepts weights. w = np.zeros_like(x) z = y + random(y.shape)*.25 w[::2] = 1 p1 = Poly.fit(x[::2], z[::2], 3) p2 = Poly.fit(x, z, 3, w=w) p3 = Poly.fit(x, z, [0, 1, 2, 3], w=w) assert_almost_equal(p1(x), p2(x)) assert_almost_equal(p2(x), p3(x)) yzz = yz + random(yz.shape)*.25 [q1, r1] = Poly.fit(x[::2], yzz[::2,:], 3) [q2, r2] = Poly.fit(x, yzz, 3, w=w) [q3, r3] = Poly.fit(x, yzz, [0, 1, 2, 3], w=w) assert_almost_equal(q1(x), q2(x)) assert_almost_equal(q2(x), q3(x)) assert_almost_equal(r1(x), r2(x)) assert_almost_equal(r2(x), r3(x))
9,690
def main(): """Validate BOTMETA""" path = '.github/BOTMETA.yml' try: with open(path, 'r') as f_path: botmeta = yaml.safe_load(f_path) except yaml.error.MarkedYAMLError as ex: print('%s:%d:%d: YAML load failed: %s' % (path, ex.context_mark.line + 1, ex.context_mark.column + 1, re.sub(r'\s+', ' ', str(ex)))) sys.exit() except Exception as ex: print('%s:%d:%d: YAML load failed: %s' % (path, 0, 0, re.sub(r'\s+', ' ', str(ex)))) sys.exit() files_schema = Any( Schema(*string_types), Schema({ 'ignored': Any(list_string_types, *string_types), 'keywords': Any(list_string_types, *string_types), 'labels': Any(list_string_types, *string_types), 'maintainers': Any(list_string_types, *string_types), 'notified': Any(list_string_types, *string_types), 'supershipit': Any(list_string_types, *string_types), 'support': Any("core", "network", "community"), }) ) list_dict_file_schema = [{str_type: files_schema} for str_type in string_types] schema = Schema({ Required('automerge'): bool, Required('files'): Any(None, *list_dict_file_schema), Required('macros'): dict, # Any(*list_macros_schema), }) # Ensure schema is valid try: schema(botmeta) except MultipleInvalid as ex: for error in ex.errors: # No way to get line numbers print('%s:%d:%d: %s' % (path, 0, 0, humanize_error(botmeta, error))) # Ensure botmeta is always support:core botmeta_support = botmeta.get('files', {}).get('.github/BOTMETA.yml', {}).get('support', '') if botmeta_support != 'core': print('%s:%d:%d: .github/BOTMETA.yml MUST be support: core' % (path, 0, 0)) # Find all path (none-team) macros so we can substitute them macros = botmeta.get('macros', {}) path_macros = [] team_macros = [] for macro in macros: if macro.startswith('team_'): team_macros.append('$'+macro) else: path_macros.append(macro) # Validate files for file in botmeta['files']: # maintainers can be: # implicit: $modules/command/shell.py $team_foo # maintainer (string): maintainers: $team_foo fred steve # maintainer (list): maintainers: # - $team_foo # - fred if isinstance(botmeta.get('files', {}).get(file, ''), str): maintainers = botmeta.get('files', {}).get(file, '').split(' ') validate_maintainers(maintainers, team_macros, path, file) elif botmeta.get('files', {}).get(file, '').get('maintainers', ''): if isinstance(botmeta.get('files', {}).get(file, '').get('maintainers', ''), str): maintainers = botmeta.get('files', {}).get(file, '').get('maintainers', '').split(' ') if isinstance(botmeta.get('files', {}).get(file, '').get('maintainers', ''), list): maintainers = botmeta.get('files', {}).get(file, '').get('maintainers', '') validate_maintainers(maintainers, team_macros, path, file) for macro in path_macros: file = file.replace('$' + macro, botmeta.get('macros', {}).get(macro, '')) if not os.path.exists(file): # Not a file or directory, though maybe the prefix to one? # https://github.com/ansible/ansibullbot/pull/1023 if not glob.glob('%s*' % file): print("%s:%d:%d: Can't find '%s.*' in this branch" % (path, 0, 0, file))
def main(): """Validate BOTMETA""" path = '.github/BOTMETA.yml' try: with open(path, 'r') as f_path: botmeta = yaml.safe_load(f_path) except yaml.error.MarkedYAMLError as ex: print('%s:%d:%d: YAML load failed: %s' % (path, ex.context_mark.line + 1, ex.context_mark.column + 1, re.sub(r'\s+', ' ', str(ex)))) sys.exit() except Exception as ex: print('%s:%d:%d: YAML load failed: %s' % (path, 0, 0, re.sub(r'\s+', ' ', str(ex)))) sys.exit() files_schema = Any( Schema(*string_types), Schema({ 'ignored': Any(list_string_types, *string_types), 'keywords': Any(list_string_types, *string_types), 'labels': Any(list_string_types, *string_types), 'maintainers': Any(list_string_types, *string_types), 'notified': Any(list_string_types, *string_types), 'supershipit': Any(list_string_types, *string_types), 'support': Any("core", "network", "community"), }) ) list_dict_file_schema = [{str_type: files_schema} for str_type in string_types] schema = Schema({ Required('automerge'): bool, Required('files'): Any(None, *list_dict_file_schema), Required('macros'): dict, # Any(*list_macros_schema), }) # Ensure schema is valid try: schema(botmeta) except MultipleInvalid as ex: for error in ex.errors: # No way to get line numbers print('%s:%d:%d: %s' % (path, 0, 0, humanize_error(botmeta, error))) # Ensure botmeta is always support:core botmeta_support = botmeta.get('files', {}).get('.github/BOTMETA.yml', {}).get('support', '') if botmeta_support != 'core': print('%s:%d:%d: .github/BOTMETA.yml MUST be support: core' % (path, 0, 0)) # Find all path (none-team) macros so we can substitute them macros = botmeta.get('macros', {}) path_macros = [] team_macros = [] for macro in macros: if macro.startswith('team_'): team_macros.append('$'+macro) else: path_macros.append(macro) # Validate files for file in botmeta['files']: # maintainers can be: # implicit: $modules/command/shell.py $team_foo # maintainer (string): maintainers: $team_foo fred steve # maintainer (list): maintainers: # - $team_foo # - fred if isinstance(botmeta.get('files', {}).get(file, ''), str): maintainers = botmeta.get('files', {}).get(file, '').split(' ') validate_maintainers(maintainers, team_macros, path, file) elif botmeta.get('files', {}).get(file, '').get('maintainers', ''): if isinstance(botmeta.get('files', {}).get(file, '').get('maintainers', ''), str): maintainers = botmeta.get('files', {}).get(file, '').get('maintainers', '').split(' ') if isinstance(botmeta.get('files', {}).get(file, '').get('maintainers', ''), list): maintainers = botmeta.get('files', {}).get(file, '').get('maintainers', '') validate_maintainers(maintainers, team_macros, path, file) for macro in path_macros: file = file.replace('$' + macro, botmeta.get('macros', {}).get(macro, '')) if not os.path.exists(file): # Not a file or directory, though maybe the prefix to one? # https://github.com/ansible/ansibullbot/pull/1023 if not glob.glob('%s*' % file): print("%s:%d:%d: Can't find '%s.*' in this branch" % (path, 0, 0, file))
14,131
def clip(gdf, mask, keep_geom_type=False): """Clip points, lines, or polygon geometries to the mask extent. Both layers must be in the same Coordinate Reference System (CRS). The `gdf` will be clipped to the full extent of the clip object. If there are multiple polygons in mask, data from `gdf` will be clipped to the total boundary of all polygons in mask. If the `mask` is a tuple of `(minx, miny, maxx, maxy)`, a faster rectangle clipping algorithm will be used. Note that this can lead to slightly different results in edge cases, e.g. if a line would be reduced to a point, this point might not be returned. Parameters ---------- gdf : GeoDataFrame or GeoSeries Vector layer (point, line, polygon) to be clipped to mask. mask : GeoDataFrame, GeoSeries, (Multi)Polygon, tuple Polygon vector layer used to clip `gdf`. The mask's geometry is dissolved into one geometric feature and intersected with `gdf`. If the mask is a tuple of `(minx, miny, maxx, maxy)`, `clip` will use a faster rectangle clipping (`.clip_by_rect()`), possibly leading to slightly different results. keep_geom_type : boolean, default False If True, return only geometries of original type in case of intersection resulting in multiple geometry types or GeometryCollections. If False, return all resulting geometries (potentially mixed-types). Returns ------- GeoDataFrame or GeoSeries Vector data (points, lines, polygons) from `gdf` clipped to polygon boundary from mask. See also -------- GeoDataFrame.clip : equivalent GeoDataFrame method GeoSeries.clip : equivalent GeoSeries method Examples -------- Clip points (global cities) with a polygon (the South American continent): >>> world = geopandas.read_file( ... geopandas.datasets.get_path('naturalearth_lowres')) >>> south_america = world[world['continent'] == "South America"] >>> capitals = geopandas.read_file( ... geopandas.datasets.get_path('naturalearth_cities')) >>> capitals.shape (202, 2) >>> sa_capitals = geopandas.clip(capitals, south_america) >>> sa_capitals.shape (12, 2) """ if not isinstance(gdf, (GeoDataFrame, GeoSeries)): raise TypeError( "'gdf' should be GeoDataFrame or GeoSeries, got {}".format(type(gdf)) ) if not isinstance(mask, (GeoDataFrame, GeoSeries, Polygon, MultiPolygon, tuple)): raise TypeError( "'mask' should be GeoDataFrame, GeoSeries," f"(Multi)Polygon or 4 element tuple, got {type(mask)}" ) if isinstance(mask, tuple) and len(mask) != 4: raise TypeError( "If 'mask' is a tuple, it must have four values (minx, miny, maxx, maxy)" ) if isinstance(mask, (GeoDataFrame, GeoSeries)): if not _check_crs(gdf, mask): _crs_mismatch_warn(gdf, mask, stacklevel=3) if isinstance(mask, (GeoDataFrame, GeoSeries)): box_mask = mask.total_bounds elif isinstance(mask, tuple): box_mask = mask else: box_mask = mask.bounds box_gdf = gdf.total_bounds if not ( ((box_mask[0] <= box_gdf[2]) and (box_gdf[0] <= box_mask[2])) and ((box_mask[1] <= box_gdf[3]) and (box_gdf[1] <= box_mask[3])) ): return gdf.iloc[:0] if isinstance(mask, (GeoDataFrame, GeoSeries)): combined_mask = mask.geometry.unary_union else: combined_mask = mask clipped = _clip_gdf_with_mask(gdf, combined_mask) if keep_geom_type: geomcoll_concat = (clipped.geom_type == "GeometryCollection").any() geomcoll_orig = (gdf.geom_type == "GeometryCollection").any() new_collection = geomcoll_concat and not geomcoll_orig if geomcoll_orig: warnings.warn( "keep_geom_type can not be called on a " "GeoDataFrame with GeometryCollection." ) else: polys = ["Polygon", "MultiPolygon"] lines = ["LineString", "MultiLineString", "LinearRing"] points = ["Point", "MultiPoint"] # Check that the gdf for multiple geom types (points, lines and/or polys) orig_types_total = sum( [ gdf.geom_type.isin(polys).any(), gdf.geom_type.isin(lines).any(), gdf.geom_type.isin(points).any(), ] ) # Check how many geometry types are in the clipped GeoDataFrame clip_types_total = sum( [ clipped.geom_type.isin(polys).any(), clipped.geom_type.isin(lines).any(), clipped.geom_type.isin(points).any(), ] ) # Check there aren't any new geom types in the clipped GeoDataFrame more_types = orig_types_total < clip_types_total if orig_types_total > 1: warnings.warn( "keep_geom_type can not be called on a mixed type GeoDataFrame." ) elif new_collection or more_types: orig_type = gdf.geom_type.iloc[0] if new_collection: clipped = clipped.explode(index_parts=False) if orig_type in polys: clipped = clipped.loc[clipped.geom_type.isin(polys)] elif orig_type in lines: clipped = clipped.loc[clipped.geom_type.isin(lines)] return clipped
def clip(gdf, mask, keep_geom_type=False): """Clip points, lines, or polygon geometries to the mask extent. Both layers must be in the same Coordinate Reference System (CRS). The `gdf` will be clipped to the full extent of the clip object. If there are multiple polygons in mask, data from `gdf` will be clipped to the total boundary of all polygons in mask. If the ``mask`` is a tuple of ``(minx, miny, maxx, maxy)``, a faster rectangle clipping algorithm will be used. Note that this can lead to slightly different results in edge cases, e.g. if a line would be reduced to a point, this point might not be returned. Parameters ---------- gdf : GeoDataFrame or GeoSeries Vector layer (point, line, polygon) to be clipped to mask. mask : GeoDataFrame, GeoSeries, (Multi)Polygon, tuple Polygon vector layer used to clip `gdf`. The mask's geometry is dissolved into one geometric feature and intersected with `gdf`. If the mask is a tuple of `(minx, miny, maxx, maxy)`, `clip` will use a faster rectangle clipping (`.clip_by_rect()`), possibly leading to slightly different results. keep_geom_type : boolean, default False If True, return only geometries of original type in case of intersection resulting in multiple geometry types or GeometryCollections. If False, return all resulting geometries (potentially mixed-types). Returns ------- GeoDataFrame or GeoSeries Vector data (points, lines, polygons) from `gdf` clipped to polygon boundary from mask. See also -------- GeoDataFrame.clip : equivalent GeoDataFrame method GeoSeries.clip : equivalent GeoSeries method Examples -------- Clip points (global cities) with a polygon (the South American continent): >>> world = geopandas.read_file( ... geopandas.datasets.get_path('naturalearth_lowres')) >>> south_america = world[world['continent'] == "South America"] >>> capitals = geopandas.read_file( ... geopandas.datasets.get_path('naturalearth_cities')) >>> capitals.shape (202, 2) >>> sa_capitals = geopandas.clip(capitals, south_america) >>> sa_capitals.shape (12, 2) """ if not isinstance(gdf, (GeoDataFrame, GeoSeries)): raise TypeError( "'gdf' should be GeoDataFrame or GeoSeries, got {}".format(type(gdf)) ) if not isinstance(mask, (GeoDataFrame, GeoSeries, Polygon, MultiPolygon, tuple)): raise TypeError( "'mask' should be GeoDataFrame, GeoSeries," f"(Multi)Polygon or 4 element tuple, got {type(mask)}" ) if isinstance(mask, tuple) and len(mask) != 4: raise TypeError( "If 'mask' is a tuple, it must have four values (minx, miny, maxx, maxy)" ) if isinstance(mask, (GeoDataFrame, GeoSeries)): if not _check_crs(gdf, mask): _crs_mismatch_warn(gdf, mask, stacklevel=3) if isinstance(mask, (GeoDataFrame, GeoSeries)): box_mask = mask.total_bounds elif isinstance(mask, tuple): box_mask = mask else: box_mask = mask.bounds box_gdf = gdf.total_bounds if not ( ((box_mask[0] <= box_gdf[2]) and (box_gdf[0] <= box_mask[2])) and ((box_mask[1] <= box_gdf[3]) and (box_gdf[1] <= box_mask[3])) ): return gdf.iloc[:0] if isinstance(mask, (GeoDataFrame, GeoSeries)): combined_mask = mask.geometry.unary_union else: combined_mask = mask clipped = _clip_gdf_with_mask(gdf, combined_mask) if keep_geom_type: geomcoll_concat = (clipped.geom_type == "GeometryCollection").any() geomcoll_orig = (gdf.geom_type == "GeometryCollection").any() new_collection = geomcoll_concat and not geomcoll_orig if geomcoll_orig: warnings.warn( "keep_geom_type can not be called on a " "GeoDataFrame with GeometryCollection." ) else: polys = ["Polygon", "MultiPolygon"] lines = ["LineString", "MultiLineString", "LinearRing"] points = ["Point", "MultiPoint"] # Check that the gdf for multiple geom types (points, lines and/or polys) orig_types_total = sum( [ gdf.geom_type.isin(polys).any(), gdf.geom_type.isin(lines).any(), gdf.geom_type.isin(points).any(), ] ) # Check how many geometry types are in the clipped GeoDataFrame clip_types_total = sum( [ clipped.geom_type.isin(polys).any(), clipped.geom_type.isin(lines).any(), clipped.geom_type.isin(points).any(), ] ) # Check there aren't any new geom types in the clipped GeoDataFrame more_types = orig_types_total < clip_types_total if orig_types_total > 1: warnings.warn( "keep_geom_type can not be called on a mixed type GeoDataFrame." ) elif new_collection or more_types: orig_type = gdf.geom_type.iloc[0] if new_collection: clipped = clipped.explode(index_parts=False) if orig_type in polys: clipped = clipped.loc[clipped.geom_type.isin(polys)] elif orig_type in lines: clipped = clipped.loc[clipped.geom_type.isin(lines)] return clipped
21,655
def _child_events_comparison_key(child: EventBase) -> Tuple[bool, Optional[str], str]: """ Generate a value for comparing two child events for ordering. The rules for ordering are supposed to be: 1. The 'order' key, if it is valid. 2. The 'origin_server_ts' of the 'm.room.create' event. 3. The 'room_id'. But we skip step 2 since we may not have any state from the room. Args: child: The event for generating a comparison key. Returns: The comparison key as a tuple of: False if the ordering is valid. The ordering field. The room ID. """ order = child.content.get("order") # If order is not a string or doesn't meet the requirements, ignore it. if not isinstance(order, str): order = None elif len(order) > 50 or _INVALID_ORDER_CHARS_RE.match(order): order = None # Items without an order come last. return (order is None, order, child.room_id)
def _child_events_comparison_key(child: EventBase) -> Tuple[bool, Optional[str], str]: """ Generate a value for comparing two child events for ordering. The rules for ordering are supposed to be: 1. The 'order' key, if it is valid. 2. The 'origin_server_ts' of the 'm.room.create' event. 3. The 'room_id'. But we skip step 2 since we may not have any state from the room. Args: child: The event for generating a comparison key. Returns: The comparison key as a tuple of: False if the ordering is valid. The ordering field. The room ID. """ order = child.content.get("order") # If order is not a string or doesn't meet the requirements, ignore it. if not isinstance(order, str): order = None elif len(order) > 50 or _INVALID_ORDER_CHARS_RE.search(order): order = None # Items without an order come last. return (order is None, order, child.room_id)
13,764
def _log_and_monitor_expected_errors(request, exception, caller): """ Adds logging and monitoring for expected errors as needed. Arguments: request: The request exception: The exception caller: Either 'middleware' or 'drf` """ expected_error_settings_dict = _get_expected_error_settings_dict() if not expected_error_settings_dict: return # 'module:class', for example, 'django.core.exceptions:PermissionDenied' # Note: `Exception` itself doesn't have a module. exception_module = exception.__module__ if hasattr(exception, '__module__') else '' module_and_class = f'{exception_module}:{exception.__class__.__name__}' # Set checked_error_expected_from custom attribute to potentially help find issues where errors are never processed. set_custom_attribute('checked_error_expected_from', caller) # check if we already added logging/monitoring from a different caller request_cache = RequestCache('openedx.core.lib.request_utils') cached_handled_exception = request_cache.get_cached_response('handled_exception') if cached_handled_exception.is_found: cached_module_and_class = cached_handled_exception.value # exception was already processed by a different caller if cached_handled_exception.value == module_and_class: set_custom_attribute('checked_error_expected_from', 'multiple') return # Currently, it seems unexpected that middleware and drf will both handle different uncaught exceptions. # However, since it is possible, we will add an additional attribute and log message and then continue. set_custom_attribute('unexpected_multiple_exceptions', cached_module_and_class) log.warning( "Unexpected scenario where different exceptions are handled by _log_and_monitor_expected_errors. " "See 'unexpected_multiple_exceptions' custom attribute." ) request_cache.set('handled_exception', module_and_class) if module_and_class not in expected_error_settings_dict: return module_and_class_with_message = f'{exception_module}:{repr(exception)}' set_custom_attribute('error_expected', module_and_class_with_message) expected_error_settings = expected_error_settings_dict[module_and_class] if expected_error_settings['is_ignored']: set_custom_attribute('error_ignored', True) if expected_error_settings['log_error'] or expected_error_settings['log_stack_trace']: print_stack = expected_error_settings['log_stack_trace'] request_path = request.path if hasattr(request, 'path') else 'request-path-unknown' log.info('Expected error seen for %s', request_path, exc_info=exception, stack_info=print_stack)
def _log_and_monitor_expected_errors(request, exception, caller): """ Adds logging and monitoring for expected errors as needed. Arguments: request: The request exception: The exception caller: Either 'middleware' or 'drf` """ expected_error_settings_dict = _get_expected_error_settings_dict() if not expected_error_settings_dict: return # 'module:class', for example, 'django.core.exceptions:PermissionDenied' # Note: `Exception` itself doesn't have a module. exception_module = exception.__module__ if hasattr(exception, '__module__') else '' module_and_class = f'{exception_module}:{exception.__class__.__name__}' # Set checked_error_expected_from custom attribute to potentially help find issues where errors are never processed. set_custom_attribute('checked_error_expected_from', caller) # check if we already added logging/monitoring from a different caller request_cache = RequestCache('openedx.core.lib.request_utils') cached_handled_exception = request_cache.get_cached_response('handled_exception') if cached_handled_exception.is_found: cached_module_and_class = cached_handled_exception.value # exception was already processed by a different caller if cached_handled_exception.value == module_and_class: set_custom_attribute('checked_error_expected_from', 'multiple') return # Currently, it seems unexpected that middleware and drf will both handle different uncaught exceptions. # However, since it is possible, we will add an additional attribute and log message and then continue. set_custom_attribute('unexpected_multiple_exceptions', cached_module_and_class) log.warning( "Unexpected scenario where different exceptions are handled by _log_and_monitor_expected_errors. " "See 'unexpected_multiple_exceptions' custom attribute." ) request_cache.set('handled_exception', module_and_class) if module_and_class not in expected_error_settings_dict: return module_and_class_with_message = f'{exception_module}:{repr(exception)}' set_custom_attribute('error_expected', module_and_class_with_message) expected_error_settings = expected_error_settings_dict[module_and_class] if expected_error_settings['is_ignored']: set_custom_attribute('error_ignored', True) if expected_error_settings['log_error'] or expected_error_settings['log_stack_trace']: print_stack = expected_error_settings['log_stack_trace'] request_path = getattr(request, 'path', default='request-path-unknown') log.info('Expected error seen for %s', request_path, exc_info=exception, stack_info=print_stack)
23,075
def meta_from_array(x, ndim=None, dtype=None): """Normalize an array to appropriate meta object Parameters ---------- x: array-like, callable Either an object that looks sufficiently like a Numpy array, or a callable that accepts shape and dtype keywords ndim: int Number of dimensions of the array dtype: Numpy dtype A valid input for ``np.dtype`` Returns ------- array-like with zero elements of the correct dtype """ # If using x._meta, x must be a Dask Array, some libraries (e.g. zarr) # implement a _meta attribute that are incompatible with Dask Array._meta if hasattr(x, "_meta") and isinstance(x, Array): x = x._meta if dtype is None and x is None: raise ValueError("You must specify the meta or dtype of the array") if np.isscalar(x): x = np.array(x) if x is None: x = np.ndarray if isinstance(x, type): x = x(shape=(0,) * (ndim or 0), dtype=dtype) if ( not hasattr(x, "shape") or not hasattr(x, "dtype") or not isinstance(x.shape, tuple) ): return x if isinstance(x, list) or isinstance(x, tuple): ndims = [ 0 if isinstance(a, numbers.Number) else a.ndim if hasattr(a, "ndim") else len(a) for a in x ] a = [a if nd == 0 else meta_from_array(a, nd) for a, nd in zip(x, ndims)] return a if isinstance(x, list) else tuple(x) if ndim is None: ndim = x.ndim try: meta = x[tuple(slice(0, 0, None) for _ in range(x.ndim))] if meta.ndim != ndim: if ndim > x.ndim: meta = meta[(Ellipsis,) + tuple(None for _ in range(ndim - meta.ndim))] meta = meta[tuple(slice(0, 0, None) for _ in range(meta.ndim))] elif ndim == 0: meta = meta.sum() else: meta = meta.reshape((0,) * ndim) except Exception: meta = np.empty((0,) * ndim, dtype=dtype or x.dtype) if np.isscalar(meta): meta = np.array(meta) if dtype and meta.dtype != dtype: try: meta = meta.astype(dtype) except ValueError as e: if ( any( [ s in str(e) for s in [ "invalid literal", "could not convert string to float", ] ] ) and meta.dtype.kind == "U" ): meta = np.array([]).astype(dtype) else: raise e return meta
def meta_from_array(x, ndim=None, dtype=None): """Normalize an array to appropriate meta object Parameters ---------- x: array-like, callable Either an object that looks sufficiently like a Numpy array, or a callable that accepts shape and dtype keywords ndim: int Number of dimensions of the array dtype: Numpy dtype A valid input for ``np.dtype`` Returns ------- array-like with zero elements of the correct dtype """ # If using x._meta, x must be a Dask Array, some libraries (e.g. zarr) # implement a _meta attribute that are incompatible with Dask Array._meta if hasattr(x, "_meta") and isinstance(x, Array): x = x._meta if dtype is None and x is None: raise ValueError("You must specify the meta or dtype of the array") if np.isscalar(x): x = np.array(x) if x is None: x = np.ndarray if isinstance(x, type): x = x(shape=(0,) * (ndim or 0), dtype=dtype) if ( not hasattr(x, "shape") or not hasattr(x, "dtype") or not isinstance(x.shape, tuple) ): return x if isinstance(x, list) or isinstance(x, tuple): ndims = [ 0 if isinstance(a, numbers.Number) else a.ndim if hasattr(a, "ndim") else len(a) for a in x ] a = [a if nd == 0 else meta_from_array(a, nd) for a, nd in zip(x, ndims)] return a if isinstance(x, list) else tuple(x) if ndim is None: ndim = x.ndim try: meta = x[tuple(slice(0, 0, None) for _ in range(x.ndim))] if meta.ndim != ndim: if ndim > x.ndim: meta = meta[(Ellipsis,) + tuple(None for _ in range(ndim - meta.ndim))] meta = meta[tuple(slice(0, 0, None) for _ in range(meta.ndim))] elif ndim == 0: meta = meta.sum() else: meta = meta.reshape((0,) * ndim) except Exception: meta = np.empty((0,) * ndim, dtype=dtype or x.dtype) if np.isscalar(meta): meta = np.array(meta) if dtype and meta.dtype != dtype: try: meta = meta.astype(dtype) except ValueError as e: if ( any( [ s in str(e) for s in [ "invalid literal", "could not convert string to float", ] ] ) and meta.dtype.kind in "SU" ): meta = np.array([]).astype(dtype) else: raise e return meta
31,797
def test_module(client: Client, feature_mapping_field: str) -> str: result = parse_mappings(feature_mapping_field) if len(result) < 2: return "Mapping Error. Please check feature_mapping field" try: response = client.test_arcanna() demisto.info(f'test_module response={response}') if not response["connected"]: return "Authentication Error. Please check the API Key you provided." else: return "ok" except DemistoException as e: raise e
def test_module(client: Client, feature_mapping_field: str) -> str: result = parse_mappings(feature_mapping_field) if len(result) < 2: return "Arcanna Mapping Error. Please check your feature_mapping field." try: response = client.test_arcanna() demisto.info(f'test_module response={response}') if not response["connected"]: return "Authentication Error. Please check the API Key you provided." else: return "ok" except DemistoException as e: raise e
23,604
def singlediode(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, ivcurve_pnts=None, method='lambertw'): r""" Solve the single-diode model to obtain a photovoltaic IV curve. Singlediode solves the single diode equation [1]_ .. math:: I = I_L - I_0 \left[ \exp \left(\frac{V+I R_s}{n N_s V_{th}} \right)-1 \right] - \frac{V + I R_s}{R_{sh}} for :math:`I` and :math:`V` when given :math:`I_L, I_0, R_s, R_{sh},` and :math:`n N_s V_{th}` which are described later. Returns a DataFrame which contains the 5 points on the I-V curve specified in SAND2004-3535 [3]_. If all :math:`I_L, I_0, R_s, R_{sh},` and :math:`n N_s V_{th}` are scalar, a single curve will be returned, if any are Series (of the same length), multiple IV curves will be calculated. The input parameters can be calculated using :py:func:`~pvlib.pvsystem.calcparams_desoto` from meteorological data. Parameters ---------- photocurrent : numeric Light-generated current :math:`I_L` (photocurrent) under desired IV curve conditions. ``0 <= photocurrent``. [A] saturation_current : numeric Diode saturation :math:`I_0` current under desired IV curve conditions. ``0 < saturation_current``. [A] resistance_series : numeric Series resistance :math:`R_s` under desired IV curve conditions. ``0 <= resistance_series < numpy.inf``. [ohms] resistance_shunt : numeric Shunt resistance :math:`R_{sh}` under desired IV curve conditions. ``0 < resistance_shunt <= numpy.inf``. [ohms] nNsVth : numeric The product of three components. 1) The usual diode ideal factor :math:`n`, 2) the number of cells in series :math:`N_s`, and 3) the cell thermal voltage under the desired IV curve conditions :math:`V_{th}`. The thermal voltage of the cell (in volts) may be calculated as :math:`k_B T_c / q`, where :math:`k_B` is Boltzmann's constant (J/K), :math:`T_c` is the temperature of the p-n junction in Kelvin, and :math:`q` is the charge of an electron (coulombs). ``0 < nNsVth``. [V] ivcurve_pnts : None or int, default None Number of points in the desired IV curve. If None or 0, no IV curves will be produced. method : str, default 'lambertw' Determines the method used to calculate points on the IV curve. The options are ``'lambertw'``, ``'newton'``, or ``'brentq'``. Returns ------- OrderedDict or DataFrame The returned dict-like object always contains the keys/columns: * i_sc - short circuit current in amperes. * v_oc - open circuit voltage in volts. * i_mp - current at maximum power point in amperes. * v_mp - voltage at maximum power point in volts. * p_mp - power at maximum power point in watts. * i_x - current, in amperes, at ``v = 0.5*v_oc``. * i_xx - current, in amperes, at ``V = 0.5*(v_oc+v_mp)``. If ivcurve_pnts is greater than 0, the output dictionary will also include the keys: * i - IV curve current in amperes. * v - IV curve voltage in volts. The output will be an OrderedDict if photocurrent is a scalar, array, or ivcurve_pnts is not None. The output will be a DataFrame if photocurrent is a Series and ivcurve_pnts is None. Notes ----- If the method is ``'lambertw'`` then the solution employed to solve the implicit diode equation utilizes the Lambert W function to obtain an explicit function of :math:`V=f(I)` and :math:`I=f(V)` as shown in [2]_. If the method is ``'newton'`` then the root-finding Newton-Raphson method is used. It should be safe for well behaved IV-curves, but the ``'brentq'`` method is recommended for reliability. If the method is ``'brentq'`` then Brent's bisection search method is used that guarantees convergence by bounding the voltage between zero and open-circuit. If the method is either ``'newton'`` or ``'brentq'`` and ``ivcurve_pnts`` are indicated, then :func:`pvlib.singlediode.bishop88` [4]_ is used to calculate the points on the IV curve points at diode voltages from zero to open-circuit voltage with a log spacing that gets closer as voltage increases. If the method is ``'lambertw'`` then the calculated points on the IV curve are linearly spaced. References ---------- .. [1] S.R. Wenham, M.A. Green, M.E. Watt, "Applied Photovoltaics" ISBN 0 86758 909 4 .. [2] A. Jain, A. Kapoor, "Exact analytical solutions of the parameters of real solar cells using Lambert W-function", Solar Energy Materials and Solar Cells, 81 (2004) 269-277. .. [3] D. King et al, "Sandia Photovoltaic Array Performance Model", SAND2004-3535, Sandia National Laboratories, Albuquerque, NM .. [4] "Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits" JW Bishop, Solar Cell (1988) https://doi.org/10.1016/0379-6787(88)90059-2 See also -------- sapm calcparams_desoto pvlib.singlediode.bishop88 """ # Calculate points on the IV curve using the LambertW solution to the # single diode equation if method.lower() == 'lambertw': out = _singlediode._lambertw( photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, ivcurve_pnts ) i_sc, v_oc, i_mp, v_mp, p_mp, i_x, i_xx = out[:7] if ivcurve_pnts: ivcurve_i, ivcurve_v = out[7:] else: # Calculate points on the IV curve using either 'newton' or 'brentq' # methods. Voltages are determined by first solving the single diode # equation for the diode voltage V_d then backing out voltage args = (photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth) # collect args v_oc = _singlediode.bishop88_v_from_i( 0.0, *args, method=method.lower() ) i_mp, v_mp, p_mp = _singlediode.bishop88_mpp( *args, method=method.lower() ) i_sc = _singlediode.bishop88_i_from_v( 0.0, *args, method=method.lower() ) i_x = _singlediode.bishop88_i_from_v( v_oc / 2.0, *args, method=method.lower() ) i_xx = _singlediode.bishop88_i_from_v( (v_oc + v_mp) / 2.0, *args, method=method.lower() ) # calculate the IV curve if requested using bishop88 if ivcurve_pnts: vd = v_oc * ( (11.0 - np.logspace(np.log10(11.0), 0.0, ivcurve_pnts)) / 10.0 ) ivcurve_i, ivcurve_v, _ = _singlediode.bishop88(vd, *args) out = OrderedDict() out['i_sc'] = i_sc out['v_oc'] = v_oc out['i_mp'] = i_mp out['v_mp'] = v_mp out['p_mp'] = p_mp out['i_x'] = i_x out['i_xx'] = i_xx if ivcurve_pnts: out['v'] = ivcurve_v out['i'] = ivcurve_i if isinstance(photocurrent, pd.Series) and not ivcurve_pnts: out = pd.DataFrame(out, index=photocurrent.index) return out
def singlediode(photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, ivcurve_pnts=None, method='lambertw'): r""" Solve the single-diode model to obtain a photovoltaic IV curve. Solves the single diode equation [1]_ .. math:: I = I_L - I_0 \left[ \exp \left(\frac{V+I R_s}{n N_s V_{th}} \right)-1 \right] - \frac{V + I R_s}{R_{sh}} for :math:`I` and :math:`V` when given :math:`I_L, I_0, R_s, R_{sh},` and :math:`n N_s V_{th}` which are described later. Returns a DataFrame which contains the 5 points on the I-V curve specified in SAND2004-3535 [3]_. If all :math:`I_L, I_0, R_s, R_{sh},` and :math:`n N_s V_{th}` are scalar, a single curve will be returned, if any are Series (of the same length), multiple IV curves will be calculated. The input parameters can be calculated using :py:func:`~pvlib.pvsystem.calcparams_desoto` from meteorological data. Parameters ---------- photocurrent : numeric Light-generated current :math:`I_L` (photocurrent) under desired IV curve conditions. ``0 <= photocurrent``. [A] saturation_current : numeric Diode saturation :math:`I_0` current under desired IV curve conditions. ``0 < saturation_current``. [A] resistance_series : numeric Series resistance :math:`R_s` under desired IV curve conditions. ``0 <= resistance_series < numpy.inf``. [ohms] resistance_shunt : numeric Shunt resistance :math:`R_{sh}` under desired IV curve conditions. ``0 < resistance_shunt <= numpy.inf``. [ohms] nNsVth : numeric The product of three components. 1) The usual diode ideal factor :math:`n`, 2) the number of cells in series :math:`N_s`, and 3) the cell thermal voltage under the desired IV curve conditions :math:`V_{th}`. The thermal voltage of the cell (in volts) may be calculated as :math:`k_B T_c / q`, where :math:`k_B` is Boltzmann's constant (J/K), :math:`T_c` is the temperature of the p-n junction in Kelvin, and :math:`q` is the charge of an electron (coulombs). ``0 < nNsVth``. [V] ivcurve_pnts : None or int, default None Number of points in the desired IV curve. If None or 0, no IV curves will be produced. method : str, default 'lambertw' Determines the method used to calculate points on the IV curve. The options are ``'lambertw'``, ``'newton'``, or ``'brentq'``. Returns ------- OrderedDict or DataFrame The returned dict-like object always contains the keys/columns: * i_sc - short circuit current in amperes. * v_oc - open circuit voltage in volts. * i_mp - current at maximum power point in amperes. * v_mp - voltage at maximum power point in volts. * p_mp - power at maximum power point in watts. * i_x - current, in amperes, at ``v = 0.5*v_oc``. * i_xx - current, in amperes, at ``V = 0.5*(v_oc+v_mp)``. If ivcurve_pnts is greater than 0, the output dictionary will also include the keys: * i - IV curve current in amperes. * v - IV curve voltage in volts. The output will be an OrderedDict if photocurrent is a scalar, array, or ivcurve_pnts is not None. The output will be a DataFrame if photocurrent is a Series and ivcurve_pnts is None. Notes ----- If the method is ``'lambertw'`` then the solution employed to solve the implicit diode equation utilizes the Lambert W function to obtain an explicit function of :math:`V=f(I)` and :math:`I=f(V)` as shown in [2]_. If the method is ``'newton'`` then the root-finding Newton-Raphson method is used. It should be safe for well behaved IV-curves, but the ``'brentq'`` method is recommended for reliability. If the method is ``'brentq'`` then Brent's bisection search method is used that guarantees convergence by bounding the voltage between zero and open-circuit. If the method is either ``'newton'`` or ``'brentq'`` and ``ivcurve_pnts`` are indicated, then :func:`pvlib.singlediode.bishop88` [4]_ is used to calculate the points on the IV curve points at diode voltages from zero to open-circuit voltage with a log spacing that gets closer as voltage increases. If the method is ``'lambertw'`` then the calculated points on the IV curve are linearly spaced. References ---------- .. [1] S.R. Wenham, M.A. Green, M.E. Watt, "Applied Photovoltaics" ISBN 0 86758 909 4 .. [2] A. Jain, A. Kapoor, "Exact analytical solutions of the parameters of real solar cells using Lambert W-function", Solar Energy Materials and Solar Cells, 81 (2004) 269-277. .. [3] D. King et al, "Sandia Photovoltaic Array Performance Model", SAND2004-3535, Sandia National Laboratories, Albuquerque, NM .. [4] "Computer simulation of the effects of electrical mismatches in photovoltaic cell interconnection circuits" JW Bishop, Solar Cell (1988) https://doi.org/10.1016/0379-6787(88)90059-2 See also -------- sapm calcparams_desoto pvlib.singlediode.bishop88 """ # Calculate points on the IV curve using the LambertW solution to the # single diode equation if method.lower() == 'lambertw': out = _singlediode._lambertw( photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth, ivcurve_pnts ) i_sc, v_oc, i_mp, v_mp, p_mp, i_x, i_xx = out[:7] if ivcurve_pnts: ivcurve_i, ivcurve_v = out[7:] else: # Calculate points on the IV curve using either 'newton' or 'brentq' # methods. Voltages are determined by first solving the single diode # equation for the diode voltage V_d then backing out voltage args = (photocurrent, saturation_current, resistance_series, resistance_shunt, nNsVth) # collect args v_oc = _singlediode.bishop88_v_from_i( 0.0, *args, method=method.lower() ) i_mp, v_mp, p_mp = _singlediode.bishop88_mpp( *args, method=method.lower() ) i_sc = _singlediode.bishop88_i_from_v( 0.0, *args, method=method.lower() ) i_x = _singlediode.bishop88_i_from_v( v_oc / 2.0, *args, method=method.lower() ) i_xx = _singlediode.bishop88_i_from_v( (v_oc + v_mp) / 2.0, *args, method=method.lower() ) # calculate the IV curve if requested using bishop88 if ivcurve_pnts: vd = v_oc * ( (11.0 - np.logspace(np.log10(11.0), 0.0, ivcurve_pnts)) / 10.0 ) ivcurve_i, ivcurve_v, _ = _singlediode.bishop88(vd, *args) out = OrderedDict() out['i_sc'] = i_sc out['v_oc'] = v_oc out['i_mp'] = i_mp out['v_mp'] = v_mp out['p_mp'] = p_mp out['i_x'] = i_x out['i_xx'] = i_xx if ivcurve_pnts: out['v'] = ivcurve_v out['i'] = ivcurve_i if isinstance(photocurrent, pd.Series) and not ivcurve_pnts: out = pd.DataFrame(out, index=photocurrent.index) return out
48,648
def _parse_jsonc(json_text: str) -> str: parsed_json_text = re.sub(r"^\s*?//.*?\n", "", json_text, flags=re.RegexFlag.MULTILINE) parsed_json_text = re.sub(r",([\n\s]*?[\}\]])", r"\1", parsed_json_text) return parsed_json_text
def _parse_jsonc(json_text: str) -> str: # strip comments from the file lines = [line for line in text.split('\n') if not line.strip().startswith('//')] # strip trailing commas from the file valid_json = re.sub(r",(\s*?[\}\]])", r"\1", "\n".join(lines)) return valid_json
36,724
def _parsedate_tz(data): """Convert date to extended time tuple. The last (additional) element is the time zone offset in seconds, except if the timezone was specified as -0000. In that case the last element is None. This indicates a UTC timestamp that explicitly declaims knowledge of the source timezone, as opposed to a +0000 timestamp that indicates the source timezone really was UTC. """ if not data: return None data = data.split() if not data: # This happens for whitespace-only input. return None # The FWS after the comma after the day-of-week is optional, so search and # adjust for this. if data[0].endswith(',') or data[0].lower() in _daynames: # There's a dayname here. Skip it del data[0] else: i = data[0].rfind(',') if i >= 0: data[0] = data[0][i+1:] if len(data) == 3: # RFC 850 date, deprecated stuff = data[0].split('-') if len(stuff) == 3: data = stuff + data[1:] if len(data) == 4: s = data[3] i = s.find('+') if i == -1: i = s.find('-') if i > 0: data[3:] = [s[:i], s[i:]] else: data.append('') # Dummy tz if len(data) < 5: return None data = data[:5] [dd, mm, yy, tm, tz] = data if not (dd and mm and yy): return None mm = mm.lower() if mm not in _monthnames: dd, mm = mm, dd.lower() if mm not in _monthnames: return None mm = _monthnames.index(mm) + 1 if mm > 12: mm -= 12 if dd[-1] == ',': dd = dd[:-1] i = yy.find(':') if i > 0: yy, tm = tm, yy if yy[-1] == ',': yy = yy[:-1] if not yy: return None if not yy[0].isdigit(): yy, tz = tz, yy if tm[-1] == ',': tm = tm[:-1] tm = tm.split(':') if len(tm) == 2: [thh, tmm] = tm tss = '0' elif len(tm) == 3: [thh, tmm, tss] = tm elif len(tm) == 1 and '.' in tm[0]: # Some non-compliant MUAs use '.' to separate time elements. tm = tm[0].split('.') if len(tm) == 2: [thh, tmm] = tm tss = 0 elif len(tm) == 3: [thh, tmm, tss] = tm else: return None else: return None try: yy = int(yy) dd = int(dd) thh = int(thh) tmm = int(tmm) tss = int(tss) except ValueError: return None # Check for a yy specified in two-digit format, then convert it to the # appropriate four-digit format, according to the POSIX standard. RFC 822 # calls for a two-digit yy, but RFC 2822 (which obsoletes RFC 822) # mandates a 4-digit yy. For more information, see the documentation for # the time module. if yy < 100: # The year is between 1969 and 1999 (inclusive). if yy > 68: yy += 1900 # The year is between 2000 and 2068 (inclusive). else: yy += 2000 tzoffset = None tz = tz.upper() if tz in _timezones: tzoffset = _timezones[tz] else: try: tzoffset = int(tz) except ValueError: pass if tzoffset==0 and tz.startswith('-'): tzoffset = None # Convert a timezone offset into seconds ; -0500 -> -18000 if tzoffset: if tzoffset < 0: tzsign = -1 tzoffset = -tzoffset else: tzsign = 1 tzoffset = tzsign * ( (tzoffset//100)*3600 + (tzoffset % 100)*60) # Daylight Saving Time flag is set to -1, since DST is unknown. return [yy, mm, dd, thh, tmm, tss, 0, 1, -1, tzoffset]
def _parsedate_tz(data): """Convert date to extended time tuple. The last (additional) element is the time zone offset in seconds, except if the timezone was specified as -0000. In that case the last element is None. This indicates a UTC timestamp that explicitly declaims knowledge of the source timezone, as opposed to a +0000 timestamp that indicates the source timezone really was UTC. """ if not data: return None data = data.split() if not data: # This happens for whitespace-only input. return None # The FWS after the comma after the day-of-week is optional, so search and # adjust for this. if data[0].endswith(',') or data[0].lower() in _daynames: # There's a dayname here. Skip it del data[0] else: i = data[0].rfind(',') if i >= 0: data[0] = data[0][i+1:] if len(data) == 3: # RFC 850 date, deprecated stuff = data[0].split('-') if len(stuff) == 3: data = stuff + data[1:] if len(data) == 4: s = data[3] i = s.find('+') if i == -1: i = s.find('-') if i > 0: data[3:] = [s[:i], s[i:]] else: data.append('') # Dummy tz if len(data) < 5: return None data = data[:5] [dd, mm, yy, tm, tz] = data if not all((dd, mm, yy)): return None mm = mm.lower() if mm not in _monthnames: dd, mm = mm, dd.lower() if mm not in _monthnames: return None mm = _monthnames.index(mm) + 1 if mm > 12: mm -= 12 if dd[-1] == ',': dd = dd[:-1] i = yy.find(':') if i > 0: yy, tm = tm, yy if yy[-1] == ',': yy = yy[:-1] if not yy: return None if not yy[0].isdigit(): yy, tz = tz, yy if tm[-1] == ',': tm = tm[:-1] tm = tm.split(':') if len(tm) == 2: [thh, tmm] = tm tss = '0' elif len(tm) == 3: [thh, tmm, tss] = tm elif len(tm) == 1 and '.' in tm[0]: # Some non-compliant MUAs use '.' to separate time elements. tm = tm[0].split('.') if len(tm) == 2: [thh, tmm] = tm tss = 0 elif len(tm) == 3: [thh, tmm, tss] = tm else: return None else: return None try: yy = int(yy) dd = int(dd) thh = int(thh) tmm = int(tmm) tss = int(tss) except ValueError: return None # Check for a yy specified in two-digit format, then convert it to the # appropriate four-digit format, according to the POSIX standard. RFC 822 # calls for a two-digit yy, but RFC 2822 (which obsoletes RFC 822) # mandates a 4-digit yy. For more information, see the documentation for # the time module. if yy < 100: # The year is between 1969 and 1999 (inclusive). if yy > 68: yy += 1900 # The year is between 2000 and 2068 (inclusive). else: yy += 2000 tzoffset = None tz = tz.upper() if tz in _timezones: tzoffset = _timezones[tz] else: try: tzoffset = int(tz) except ValueError: pass if tzoffset==0 and tz.startswith('-'): tzoffset = None # Convert a timezone offset into seconds ; -0500 -> -18000 if tzoffset: if tzoffset < 0: tzsign = -1 tzoffset = -tzoffset else: tzsign = 1 tzoffset = tzsign * ( (tzoffset//100)*3600 + (tzoffset % 100)*60) # Daylight Saving Time flag is set to -1, since DST is unknown. return [yy, mm, dd, thh, tmm, tss, 0, 1, -1, tzoffset]
32,093
def get_fetch_run_time_with_look_back(last_run, first_fetch, look_back=0, timezone=0, date_format='%Y-%m-%dT%H:%M:%S'): """ Gets the time range for fetch :type last_run: ``dict`` :param last_run: The LastRun object :type first_fetch: ``str`` :param first_fetch: The first time to fetch, used in the first fetch :type look_back: ``int`` :param look_back: The time to look back in fetch in minutes :type timezone: ``int`` :param timezone: The time zone offset in hours :type date_format: ``str`` :param date_format: The date format :return: The time range o fetch in :rtype: ``Tuple`` """ last_run_time = last_run and 'time' in last_run and last_run['time'] now = datetime.utcnow() + timedelta(hours=timezone) if not last_run_time: last_run_time, _ = parse_date_range(first_fetch) else: last_run_time = datetime.strptime(last_run_time, date_format) if look_back > 0: if now - last_run_time < timedelta(minutes=look_back): last_run_time = now - timedelta(minutes=look_back) return last_run_time.strftime(date_format), now.strftime(date_format)
def get_fetch_run_time_range(last_run, first_fetch, look_back=0, timezone=0, date_format='%Y-%m-%dT%H:%M:%S'): """ Gets the time range for fetch :type last_run: ``dict`` :param last_run: The LastRun object :type first_fetch: ``str`` :param first_fetch: The first time to fetch, used in the first fetch :type look_back: ``int`` :param look_back: The time to look back in fetch in minutes :type timezone: ``int`` :param timezone: The time zone offset in hours :type date_format: ``str`` :param date_format: The date format :return: The time range o fetch in :rtype: ``Tuple`` """ last_run_time = last_run and 'time' in last_run and last_run['time'] now = datetime.utcnow() + timedelta(hours=timezone) if not last_run_time: last_run_time, _ = parse_date_range(first_fetch) else: last_run_time = datetime.strptime(last_run_time, date_format) if look_back > 0: if now - last_run_time < timedelta(minutes=look_back): last_run_time = now - timedelta(minutes=look_back) return last_run_time.strftime(date_format), now.strftime(date_format)
8,767
def test_say_long_fit(bot): """Test a long message that fit into the 512 bytes limit.""" text = 'a' * (512 - len('PRIVMSG #sopel :\r\n')) bot.say(text, '#sopel') assert bot.backend.message_sent == rawlist( 'PRIVMSG #sopel :%s' % text, )
def test_say_long_fit(bot): """Test a long message that fits into the 512 bytes limit.""" text = 'a' * (512 - len('PRIVMSG #sopel :\r\n')) bot.say(text, '#sopel') assert bot.backend.message_sent == rawlist( 'PRIVMSG #sopel :%s' % text, )
4,561
def clean(signals, sessions=None, detrend=True, standardize='zscore', confounds=None, standardize_confounds=True, filter="butterworth", low_pass=None, high_pass=None, t_r=2.5, ensure_finite=False): """Improve SNR on masked fMRI signals. This function can do several things on the input signals, in the following order: - detrend - low- and high-pass filter - remove confounds - standardize Low-pass filtering improves specificity. High-pass filtering should be kept small, to keep some sensitivity. Filtering is only meaningful on evenly-sampled signals. According to Lindquist et al. (2018), removal of confounds will be done orthogonally to temporal filters (low- and/or high-pass filters), if both are specified. Parameters ---------- signals: numpy.ndarray Timeseries. Must have shape (instant number, features number). This array is not modified. sessions : numpy array, optional Add a session level to the cleaning process. Each session will be cleaned independently. Must be a 1D array of n_samples elements. confounds: numpy.ndarray, str, DataFrame or list of Confounds timeseries. Shape must be (instant number, confound number), or just (instant number,) The number of time instants in signals and confounds must be identical (i.e. signals.shape[0] == confounds.shape[0]). If a string is provided, it is assumed to be the name of a csv file containing signals as columns, with an optional one-line header. If a list is provided, all confounds are removed from the input signal, as if all were in the same array. t_r: float Repetition time, in second (sampling period). Set to None if not. filter: {'butterworth', False} Filtering methods. 'butterworth': perform butterworth filtering. False : Do not perform filtering. low_pass, high_pass: float Respectively high and low cutoff frequencies, in Hertz. detrend: bool If detrending should be applied on timeseries (before confound removal) standardize: {'zscore', 'psc', False}, default is 'zscore' Strategy to standardize the signal. 'zscore': the signal is z-scored. Timeseries are shifted to zero mean and scaled to unit variance. 'psc': Timeseries are shifted to zero mean value and scaled to percent signal change (as compared to original mean signal). False : Do not standardize the data. standardize_confounds: boolean, optional, default is True If standardize_confounds is True, the confounds are z-scored: their mean is put to 0 and their variance to 1 in the time dimension. ensure_finite: bool If True, the non-finite values (NANs and infs) found in the data will be replaced by zeros. Returns ------- cleaned_signals: numpy.ndarray Input signals, cleaned. Same shape as `signals`. Notes ----- Confounds removal is based on a projection on the orthogonal of the signal space. See `Friston, K. J., A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, et R. S. J. Frackowiak. "Statistical Parametric Maps in Functional Imaging: A General Linear Approach". Human Brain Mapping 2, no 4 (1994): 189-210. <http://dx.doi.org/10.1002/hbm.460020402>`_ Orthogonalization between temporal filters and confound removal is based on suggestions in `Lindquist, M., Geuter, S., Wager, T., & Caffo, B. (2018). Modular preprocessing pipelines can reintroduce artifacts into fMRI data. bioRxiv, 407676. <http://dx.doi.org/10.1101/407676>`_ See Also -------- nilearn.image.clean_img """ # Read confounds and signals signals, confounds = _sanitize_inputs(signals, confounds, ensure_finite) # check if filter paramters are satidfied _ = _check_filter_parameters(filter, low_pass, high_pass, t_r) # Restrict the signal to the orthogonal of the confounds if sessions is not None: signals = _process_session(signals, sessions, detrend, standardize, confounds, low_pass, high_pass, t_r) # Detrend # Detrend and filtering should apply to confounds, if confound presents # keep filters orthogonal (according to Lindquist et al. (2018)) if detrend: mean_signals = signals.mean(axis=0) signals = _standardize(signals, standardize=False, detrend=detrend) if confounds is not None: confounds = _standardize(confounds, standardize=False, detrend=detrend) # Apply low- and high-pass filters if filter == "butterworth" and t_r is not None: # this change enticipate extra fltering methods signals = butterworth(signals, sampling_rate=1. / t_r, low_pass=low_pass, high_pass=high_pass) if confounds is not None: # Apply low- and high-pass filters to keep filters orthogonal # (according to Lindquist et al. (2018)) confounds = butterworth(confounds, sampling_rate=1. / t_r, low_pass=low_pass, high_pass=high_pass) # if filter == "cosine": # ... # Remove confounds if confounds is not None: confounds = _standardize(confounds, standardize=standardize_confounds, detrend=False) if not standardize_confounds: # Improve numerical stability by controlling the range of # confounds. We don't rely on _standardize as it removes any # constant contribution to confounds. confound_max = np.max(np.abs(confounds), axis=0) confound_max[confound_max == 0] = 1 confounds /= confound_max # Pivoting in qr decomposition was added in scipy 0.10 Q, R, _ = linalg.qr(confounds, mode='economic', pivoting=True) Q = Q[:, np.abs(np.diag(R)) > np.finfo(np.float64).eps * 100.] signals -= Q.dot(Q.T).dot(signals) # Standardize if detrend and (standardize == 'psc'): # If the signal is detrended, we have to know the original mean # signal to calculate the psc. signals = _standardize(signals + mean_signals, standardize=standardize, detrend=False) else: signals = _standardize(signals, standardize=standardize, detrend=False) return signals
def clean(signals, sessions=None, detrend=True, standardize='zscore', confounds=None, standardize_confounds=True, filter="butterworth", low_pass=None, high_pass=None, t_r=2.5, ensure_finite=False): """Improve SNR on masked fMRI signals. This function can do several things on the input signals, in the following order: - detrend - low- and high-pass filter - remove confounds - standardize Low-pass filtering improves specificity. High-pass filtering should be kept small, to keep some sensitivity. Filtering is only meaningful on evenly-sampled signals. According to Lindquist et al. (2018), removal of confounds will be done orthogonally to temporal filters (low- and/or high-pass filters), if both are specified. Parameters ---------- signals: numpy.ndarray Timeseries. Must have shape (instant number, features number). This array is not modified. sessions : numpy array, optional Add a session level to the cleaning process. Each session will be cleaned independently. Must be a 1D array of n_samples elements. confounds: numpy.ndarray, str, DataFrame or list of Confounds timeseries. Shape must be (instant number, confound number), or just (instant number,) The number of time instants in signals and confounds must be identical (i.e. signals.shape[0] == confounds.shape[0]). If a string is provided, it is assumed to be the name of a csv file containing signals as columns, with an optional one-line header. If a list is provided, all confounds are removed from the input signal, as if all were in the same array. t_r: float Repetition time, in second (sampling period). Set to None if not. filter: {'butterworth', False} Filtering methods. 'butterworth': perform butterworth filtering. False : Do not perform filtering. low_pass, high_pass: float Respectively high and low cutoff frequencies, in Hertz. detrend: bool If detrending should be applied on timeseries (before confound removal) standardize: {'zscore', 'psc', False}, default is 'zscore' Strategy to standardize the signal. 'zscore': the signal is z-scored. Timeseries are shifted to zero mean and scaled to unit variance. 'psc': Timeseries are shifted to zero mean value and scaled to percent signal change (as compared to original mean signal). False : Do not standardize the data. standardize_confounds: boolean, optional, default is True If standardize_confounds is True, the confounds are z-scored: their mean is put to 0 and their variance to 1 in the time dimension. ensure_finite: bool If True, the non-finite values (NANs and infs) found in the data will be replaced by zeros. Returns ------- cleaned_signals: numpy.ndarray Input signals, cleaned. Same shape as `signals`. Notes ----- Confounds removal is based on a projection on the orthogonal of the signal space. See `Friston, K. J., A. P. Holmes, K. J. Worsley, J.-P. Poline, C. D. Frith, et R. S. J. Frackowiak. "Statistical Parametric Maps in Functional Imaging: A General Linear Approach". Human Brain Mapping 2, no 4 (1994): 189-210. <http://dx.doi.org/10.1002/hbm.460020402>`_ Orthogonalization between temporal filters and confound removal is based on suggestions in `Lindquist, M., Geuter, S., Wager, T., & Caffo, B. (2018). Modular preprocessing pipelines can reintroduce artifacts into fMRI data. bioRxiv, 407676. <http://dx.doi.org/10.1101/407676>`_ See Also -------- nilearn.image.clean_img """ # Read confounds and signals signals, confounds = _sanitize_inputs(signals, confounds, ensure_finite) # check if filter parameters are satisfied _ = _check_filter_parameters(filter, low_pass, high_pass, t_r) # Restrict the signal to the orthogonal of the confounds if sessions is not None: signals = _process_session(signals, sessions, detrend, standardize, confounds, low_pass, high_pass, t_r) # Detrend # Detrend and filtering should apply to confounds, if confound presents # keep filters orthogonal (according to Lindquist et al. (2018)) if detrend: mean_signals = signals.mean(axis=0) signals = _standardize(signals, standardize=False, detrend=detrend) if confounds is not None: confounds = _standardize(confounds, standardize=False, detrend=detrend) # Apply low- and high-pass filters if filter == "butterworth" and t_r is not None: # this change enticipate extra fltering methods signals = butterworth(signals, sampling_rate=1. / t_r, low_pass=low_pass, high_pass=high_pass) if confounds is not None: # Apply low- and high-pass filters to keep filters orthogonal # (according to Lindquist et al. (2018)) confounds = butterworth(confounds, sampling_rate=1. / t_r, low_pass=low_pass, high_pass=high_pass) # if filter == "cosine": # ... # Remove confounds if confounds is not None: confounds = _standardize(confounds, standardize=standardize_confounds, detrend=False) if not standardize_confounds: # Improve numerical stability by controlling the range of # confounds. We don't rely on _standardize as it removes any # constant contribution to confounds. confound_max = np.max(np.abs(confounds), axis=0) confound_max[confound_max == 0] = 1 confounds /= confound_max # Pivoting in qr decomposition was added in scipy 0.10 Q, R, _ = linalg.qr(confounds, mode='economic', pivoting=True) Q = Q[:, np.abs(np.diag(R)) > np.finfo(np.float64).eps * 100.] signals -= Q.dot(Q.T).dot(signals) # Standardize if detrend and (standardize == 'psc'): # If the signal is detrended, we have to know the original mean # signal to calculate the psc. signals = _standardize(signals + mean_signals, standardize=standardize, detrend=False) else: signals = _standardize(signals, standardize=standardize, detrend=False) return signals
31,648
def list_sensors(): target_org = demisto.args().get('target_org', None) r = send_request('GET', '/rest/v1/sensors', target_org=target_org) details = demisto.args().get('details', 'false') keys = ['isAuthorized', 'isNetflowGenerator', # 'lastActive', 'name'] if details != 'true': filtered_r = [] #returning only data in keys for doc in r: s = {k: doc[k] for k in keys} filtered_r.append(s) return filtered_r else: for s in r: del s['lastActive'] return r
def list_sensors(): target_org = demisto.args().get('target_org', None) r = send_request('GET', '/rest/v1/sensors', target_org=target_org) details = argToBoolean(demisto.args().get('details', 'false')) keys = ['isAuthorized', 'isNetflowGenerator', # 'lastActive', 'name'] if details != 'true': filtered_r = [] #returning only data in keys for doc in r: s = {k: doc[k] for k in keys} filtered_r.append(s) return filtered_r else: for s in r: del s['lastActive'] return r
3,848
def geometric_edges(G, radius, p): """Returns edge list of node pairs within `radius` of each other Radius uses Minkowski distance metric `p`. If scipy available, use scipy KDTree to speed computation. """ nodes_pos = G.nodes(data="pos") try: import scipy as sp import scipy.spatial # call as sp.spatial except ImportError: # no scipy KDTree so compute by for-loop radius_p = radius ** p edges = [ (u, v) for (u, pu), (v, pv) in combinations(nodes_pos, 2) if sum(abs(a - b) ** p for a, b in zip(pu, pv)) <= radius_p ] return edges # scipy KDTree is available nodes, coords = list(zip(*nodes_pos)) kdtree = sp.spatial.KDTree(coords) # Cannot provide generator. edge_indexes = kdtree.query_pairs(radius, p) edges = [(nodes[u], nodes[v]) for u, v in edge_indexes] return edges
def geometric_edges(G, radius, p): """Returns edge list of node pairs within `radius` of each other Radius uses Minkowski distance metric `p`. If scipy available, use scipy KDTree to speed computation. """ nodes_pos = G.nodes(data="pos") try: import scipy as sp import scipy.spatial # call as sp.spatial except ImportError: # no scipy KDTree so compute by for-loop radius_p = radius ** p edges = [ (u, v) for (u, pu), (v, pv) in combinations(nodes_pos, 2) if sum(abs(a - b) ** p for a, b in zip(pu, pv)) <= radius_p ] return edges # scipy KDTree is available nodes, coords = list(zip(*nodes_pos)) kdtree = sp.spatial.cKDTree(coords) # Cannot provide generator. edge_indexes = kdtree.query_pairs(radius, p) edges = [(nodes[u], nodes[v]) for u, v in edge_indexes] return edges
5,385
def auth(profile=None, **connection_args): """ Set up keystone credentials. Only intended to be used within Keystone-enabled modules. CLI Example: .. code-block:: bash salt '*' keystone.auth """ __utils__["versions.warn_until"]( "Phosphorous", ( "The keystone module has been deprecated and will be removed in {version}. " "Please update to using the keystoneng module" ), ) kwargs = _get_kwargs(profile=profile, **connection_args) disc = discover.Discover(auth_url=kwargs["auth_url"]) v2_auth_url = disc.url_for("v2.0") v3_auth_url = disc.url_for("v3.0") if v3_auth_url: global _OS_IDENTITY_API_VERSION global _TENANTS _OS_IDENTITY_API_VERSION = 3 _TENANTS = "projects" kwargs["auth_url"] = v3_auth_url else: kwargs["auth_url"] = v2_auth_url kwargs.pop("user_domain_name") kwargs.pop("project_domain_name") auth = generic.Password(**kwargs) sess = session.Session(auth=auth) ks_cl = disc.create_client(session=sess) return ks_cl
def auth(profile=None, **connection_args): """ Set up keystone credentials. Only intended to be used within Keystone-enabled modules. CLI Example: .. code-block:: bash salt '*' keystone.auth """ __utils__["versions.warn_until"]( "Phosphorus", ( "The keystone module has been deprecated and will be removed in {version}. " "Please update to using the keystoneng module" ), ) kwargs = _get_kwargs(profile=profile, **connection_args) disc = discover.Discover(auth_url=kwargs["auth_url"]) v2_auth_url = disc.url_for("v2.0") v3_auth_url = disc.url_for("v3.0") if v3_auth_url: global _OS_IDENTITY_API_VERSION global _TENANTS _OS_IDENTITY_API_VERSION = 3 _TENANTS = "projects" kwargs["auth_url"] = v3_auth_url else: kwargs["auth_url"] = v2_auth_url kwargs.pop("user_domain_name") kwargs.pop("project_domain_name") auth = generic.Password(**kwargs) sess = session.Session(auth=auth) ks_cl = disc.create_client(session=sess) return ks_cl
53,751
def list_to_flat_grid(xs: List[TensorType]): """ :param xs: List with d rank-1 Tensors, with shapes N1, N2, ..., Nd :return: Tensor with shape [N1*N2*...*Nd, dim] representing the flattened D-dimensional grid built from the input tensors xs """ return tf.reshape(tf.stack(tf.meshgrid(*xs), axis=-1), (-1, len(xs)))
def list_to_flat_grid(xs: List[TensorType]): """ :param xs: List with d rank-1 Tensors, with shapes N1, N2, ..., Nd :return: Tensor with shape [N1*N2*...*Nd, d] representing the flattened d-dimensional grid built from the input tensors xs """ return tf.reshape(tf.stack(tf.meshgrid(*xs), axis=-1), (-1, len(xs)))