File size: 3,511 Bytes
4e11427
6f96ffc
 
4e11427
6f96ffc
 
 
 
 
8bf9e70
6f96ffc
 
 
 
 
 
 
 
 
 
 
 
 
 
c11db92
6f96ffc
 
 
 
 
4e11427
 
 
 
 
6f96ffc
 
 
 
 
 
 
 
 
 
 
 
 
 
4e11427
6f96ffc
 
 
 
 
 
 
 
 
e05b334
 
 
6f96ffc
 
4e11427
6f96ffc
e05b334
 
6f96ffc
 
 
e05b334
4e11427
6f96ffc
 
e05b334
 
 
9b2cae2
 
e05b334
 
 
6f96ffc
 
 
e05b334
9b2cae2
4e11427
 
 
 
 
 
 
 
e05b334
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# This script was modified from the imagenet-1k HF dataset repo: https://huggingface.co/datasets/imagenet-1k

import os
import numpy as np

import datasets
from datasets.tasks import ImageClassification

from .classes import IMAGENET2012_CLASSES
from io import BytesIO


_CITATION = """\
@article{BibTeX
}
"""

_HOMEPAGE = "https://arielnlee.github.io/PatchMixing/"

_DESCRIPTION = """\
SMD is an occluded ImageNet-1K validation set, created to be an additional way to evaluate the impact of occlusion on model performance. This experiment used a variety of occluder objects that are not in the ImageNet-1K label space and are unambiguous in relationship to objects that reside in the label space.
"""

_DATA_URL = {
    "smd": [
        f"https://huggingface.co/datasets/ariellee/Superimposed-Masked-Dataset/resolve/main/smd_{i}.tar.gz"
        for i in range(1, 41)
    ]
}

_MASK_DATA_URL = {
    "smd_masks": [
        f"https://huggingface.co/datasets/ariellee/Superimposed-Masked-Dataset/resolve/main/SMD_masks.tar.gz"
    ]
}

class SMD(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    DEFAULT_WRITER_BATCH_SIZE = 1000

    def _info(self):
        assert len(IMAGENET2012_CLASSES) == 1000
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image": datasets.Image(),
                    "label": datasets.ClassLabel(names=list(IMAGENET2012_CLASSES.values())),
                    "segmentation": datasets.Sequence(datasets.Array2D(shape=(None, None), dtype="float32"))
                }
            ),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[ImageClassification(image_column="image", label_column="label")],
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        archives = dl_manager.download_and_extract(_DATA_URL)
        mask_archives = dl_manager.download_and_extract(_MASK_DATA_URL)
    
        return [
            datasets.SplitGenerator(
                name="SMD",
                gen_kwargs={
                    "archives": archives["smd"],
                    "mask_archives": mask_archives["smd_masks"],
                },
            ),
        ]
    
    def _generate_examples(self, archives, mask_archives):
        """Yields examples."""
        idx = 0
        mask_files = {}
        for mask_archive in mask_archives:
            for path, file in dl_manager.iter_archive(mask_archive):
                if path.endswith(".npy"):
                    mask_files[path] = np.load(BytesIO(file.read()))
        
        for archive in archives:
            for path, file in dl_manager.iter_archive(archive):
                if path.endswith(".png"):
                    synset_id = os.path.basename(os.path.dirname(path))
                    label = IMAGENET2012_CLASSES[synset_id]
        
                    mask_file_path = path.replace("_occluded.png", "_mask.npy")
                    segmentation_mask = mask_files.get(mask_file_path, None)
                    if segmentation_mask is not None:
                        ex = {
                            "image": {"path": path, "bytes": file.read()}, 
                            "label": label, 
                            "segmentation": segmentation_mask.tolist()  # Convert numpy array to list
                        }
                        yield idx, ex
                        idx += 1