|
|
|
|
|
import os |
|
import numpy as np |
|
|
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
from .classes import IMAGENET2012_CLASSES |
|
|
|
|
|
_CITATION = """\ |
|
@article{BibTeX |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://arielnlee.github.io/PatchMixing/" |
|
|
|
_DESCRIPTION = """\ |
|
SMD is an occluded ImageNet-1K validation set, created to be an additional way to evaluate the impact of occlusion on model performance. This experiment used a variety of occluder objects that are not in the ImageNet-1K label space and are unambiguous in relationship to objects that reside in the label space. |
|
""" |
|
|
|
_DATA_URL = { |
|
"smd": [ |
|
f"https://huggingface.co/datasets/ariellee/Superimposed-Masked-Dataset/resolve/main/smd_{i}.tar.gz" |
|
for i in range(1, 41) |
|
] |
|
} |
|
|
|
_MASK_DATA_URL = { |
|
"smd_masks": [ |
|
f"https://huggingface.co/datasets/ariellee/Superimposed-Masked-Dataset/resolve/main/SMD_masks.tar.gz" |
|
] |
|
} |
|
|
|
class SMD(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 1000 |
|
|
|
def _info(self): |
|
assert len(IMAGENET2012_CLASSES) == 1000 |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(names=list(IMAGENET2012_CLASSES.values())), |
|
"segmentation": datasets.Sequence(datasets.Array2D(shape=(None, None), dtype="float32")) |
|
} |
|
), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[ImageClassification(image_column="image", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
archives = dl_manager.download(_DATA_URL) |
|
mask_archives = dl_manager.download(_MASK_DATA_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="SMD", |
|
gen_kwargs={ |
|
"archives": [dl_manager.iter_archive(archive) for archive in archives["smd"]], |
|
"mask_archives": [dl_manager.iter_archive(archive) for archive in mask_archives["smd_masks"]], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, archives, mask_archives): |
|
"""Yields examples.""" |
|
idx = 0 |
|
for archive, mask_archive in zip(archives, mask_archives): |
|
mask_files = {path: np.load(file) for path, file in mask_archive if path.endswith(".npy")} |
|
for path, file in archive: |
|
if path.endswith(".png"): |
|
synset_id = os.path.basename(os.path.dirname(path)) |
|
label = IMAGENET2012_CLASSES[synset_id] |
|
|
|
mask_file_path = path.replace(".png", "_mask.npy") |
|
segmentation_mask = mask_files.get(mask_file_path, None) |
|
if segmentation_mask is not None: |
|
ex = { |
|
"image": {"path": path, "bytes": file.read()}, |
|
"label": label, |
|
"segmentation": segmentation_mask.tolist() |
|
} |
|
yield idx, ex |
|
idx += 1 |