Superimposed-Masked-Dataset / generate_occluded_imagenet_single_occluder.py
ArielleE's picture
Upload 4 files
c4d7a2b
raw
history blame
5.69 kB
import os
import random
import numpy as np
import pandas as pd
from PIL import Image
from torchvision import datasets, transforms, io
import torch
def get_random_texture(dataset_occluder):
index = random.randint(0, len(dataset_occluder) - 1)
texture_path, texture_class_index = dataset_occluder.imgs[index]
texture_class = dataset_occluder.classes[texture_class_index]
# Load the texture with the alpha channel
texture = io.read_image(texture_path, mode=io.image.ImageReadMode.RGB_ALPHA)
return texture, texture_class
def resize_occluder(occluder_pil, target_area, image_width, image_height):
alpha = np.array(occluder_pil.getchannel('A'))
non_transparent_area = np.count_nonzero(alpha > 0)
area_scale_factor = target_area / non_transparent_area
width_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.width / occluder_pil.height))
height_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.height / occluder_pil.width))
new_width = occluder_pil.width * width_scale_factor
new_height = occluder_pil.height * height_scale_factor
resized_occluder = occluder_pil.resize((int(new_width), int(new_height)), Image.LANCZOS)
return resized_occluder
def randomly_rotate_occluder(occluder_pil):
angle = random.uniform(-180, 180)
return occluder_pil.rotate(angle, resample=Image.BICUBIC, expand=True)
def try_rotations(occluder_pil, image_pil, target_area):
best_occluder = None
best_area = 0
best_pos = None
for _ in range(10):
rotated = randomly_rotate_occluder(occluder_pil)
resized = resize_occluder(rotated, target_area, image_pil.width, image_pil.height)
if resized.width > image_pil.width or resized.height > image_pil.height:
pos = (image_pil.width // 2 - resized.width // 2,
image_pil.height // 2 - resized.height // 2)
else:
max_x = max(0, image_pil.width - resized.width)
max_y = max(0, image_pil.height - resized.height)
pos = (random.randint(0, max_x), random.randint(0, max_y))
mask = Image.new('1', image_pil.size)
mask.paste(resized.getchannel('A'), pos, resized.getchannel('A'))
area = np.count_nonzero(np.array(mask))
if area > best_area:
best_area = area
best_occluder = resized
best_pos = pos
return best_occluder, best_pos
def occlude_image(image, occluder_tensor, percentage_occlusion, occluded_dir, img_name):
occluder_pil = transforms.ToPILImage(mode='RGBA')(occluder_tensor)
image_pil = transforms.ToPILImage()(image)
target_area = image_pil.width * image_pil.height * percentage_occlusion
occluder_pil, pos = try_rotations(occluder_pil, image_pil, target_area)
image_pil.paste(occluder_pil, pos, occluder_pil)
image_with_occluder_tensor = transforms.ToTensor()(image_pil)
occluder_alpha = occluder_pil.getchannel('A')
binary_mask = Image.new('1', image_pil.size)
binary_mask.paste(occluder_alpha, pos, occluder_alpha)
mask_array = np.array(binary_mask)
mask_path = os.path.join(occluded_dir, f"{img_name}_mask.npy")
np.save(mask_path, mask_array)
return image_with_occluder_tensor, mask_path, pos
def rebuild_display_mask(image_path, mask_path):
image_pil = Image.open(image_path)
binary_mask = Image.new('1', image_pil.size)
mask_array = np.load(mask_path)
mask_indices = np.transpose(np.nonzero(mask_array))
for i, j in mask_indices:
binary_mask.putpixel((j, i), 1)
binary_mask.show()
def build_dataset(data_path, transform):
dataset = datasets.ImageFolder(data_path, transform=transform)
nb_classes = len(dataset.classes)
return dataset, nb_classes
def build_transform():
t = []
t.append(transforms.ToTensor())
return transforms.Compose(t)
def main():
data_dir = 'imagenet1'
texture_dir = 'occluders_segmented'
occluded_data_dir = 'imagenet_occluded'
transform = build_transform()
dataset, nb_classes = build_dataset(data_dir, transform)
dataset_occluder, _ = build_dataset(texture_dir, transform)
occlusion_info = pd.DataFrame(columns=["image_name", "class_name", "occluder_class",
"percentage_occlusion", "mask", "pos"])
for idx in range(len(dataset)):
image, label = dataset[idx]
category = dataset.classes[label]
in_dir = os.path.join(data_dir, category)
occluded_dir = os.path.join(occluded_data_dir, category)
os.makedirs(occluded_dir, exist_ok=True)
img_name = dataset.imgs[idx][0].split('/')[-1].split('.')[0]
occluder_tensor, occluder_class = get_random_texture(dataset_occluder)
occluded_image, mask_path, pos = occlude_image(image, occluder_tensor, 0.3, occluded_dir, img_name)
mask_array = np.load(mask_path)
actual_percentage_occlusion = np.count_nonzero(mask_array) / (image.shape[1] * image.shape[2])
occluded_image_path = os.path.join(occluded_dir, f"{img_name}_occluded.png")
transforms.ToPILImage()(occluded_image).save(occluded_image_path)
new_row = pd.DataFrame({
"image_name": [f"{img_name}_occluded.png"],
"class_name": [category],
"occluder_class": [occluder_class],
"percentage_occlusion": [actual_percentage_occlusion],
"mask": [mask_path],
"pos": [pos]
})
occlusion_info = pd.concat([occlusion_info, new_row], ignore_index=True)
occlusion_info.to_csv(os.path.join(occluded_data_dir, "occlusion_info.csv"), index=False)
if __name__ == "__main__":
main()