|
import os |
|
import random |
|
import numpy as np |
|
import pandas as pd |
|
from PIL import Image |
|
from torchvision import datasets, transforms, io |
|
import torch |
|
|
|
|
|
def get_random_texture(dataset_occluder): |
|
index = random.randint(0, len(dataset_occluder) - 1) |
|
texture_path, texture_class_index = dataset_occluder.imgs[index] |
|
texture_class = dataset_occluder.classes[texture_class_index] |
|
|
|
|
|
texture = io.read_image(texture_path, mode=io.image.ImageReadMode.RGB_ALPHA) |
|
|
|
return texture, texture_class |
|
|
|
def resize_occluder(occluder_pil, target_area, image_width, image_height): |
|
alpha = np.array(occluder_pil.getchannel('A')) |
|
non_transparent_area = np.count_nonzero(alpha > 0) |
|
|
|
area_scale_factor = target_area / non_transparent_area |
|
|
|
width_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.width / occluder_pil.height)) |
|
height_scale_factor = np.sqrt(area_scale_factor * (occluder_pil.height / occluder_pil.width)) |
|
|
|
new_width = occluder_pil.width * width_scale_factor |
|
new_height = occluder_pil.height * height_scale_factor |
|
|
|
resized_occluder = occluder_pil.resize((int(new_width), int(new_height)), Image.LANCZOS) |
|
|
|
return resized_occluder |
|
|
|
def randomly_rotate_occluder(occluder_pil): |
|
angle = random.uniform(-180, 180) |
|
return occluder_pil.rotate(angle, resample=Image.BICUBIC, expand=True) |
|
|
|
def occlude_image(image, occluder_tensor, percentage_occlusion, occluded_dir, img_name): |
|
occluder_pil = transforms.ToPILImage(mode='RGBA')(occluder_tensor) |
|
occluder_pil = randomly_rotate_occluder(occluder_pil) |
|
image_pil = transforms.ToPILImage()(image) |
|
|
|
target_area = image_pil.width * image_pil.height * percentage_occlusion |
|
occluder_pil = resize_occluder(occluder_pil, target_area, image_pil.width, image_pil.height) |
|
|
|
if occluder_pil.width > image_pil.width or occluder_pil.height > image_pil.height: |
|
pos = (image_pil.width // 2 - occluder_pil.width // 2, |
|
image_pil.height // 2 - occluder_pil.height // 2) |
|
else: |
|
max_x = max(0, image_pil.width - occluder_pil.width) |
|
max_y = max(0, image_pil.height - occluder_pil.height) |
|
pos = (random.randint(0, max_x), random.randint(0, max_y)) |
|
|
|
image_pil.paste(occluder_pil, pos, occluder_pil) |
|
image_with_occluder_tensor = transforms.ToTensor()(image_pil) |
|
|
|
occluder_alpha = occluder_pil.getchannel('A') |
|
binary_mask = Image.new('1', image_pil.size) |
|
binary_mask.paste(occluder_alpha, pos, occluder_alpha) |
|
|
|
mask_array = np.array(binary_mask) |
|
mask_path = os.path.join(occluded_dir, f"{img_name}_mask.npy") |
|
np.save(mask_path, mask_array) |
|
|
|
return image_with_occluder_tensor, mask_path, pos |
|
|
|
|
|
def rebuild_display_mask(image_path, mask_path): |
|
image_pil = Image.open(image_path) |
|
binary_mask = Image.new('1', image_pil.size) |
|
|
|
mask_array = np.load(mask_path) |
|
mask_indices = np.transpose(np.nonzero(mask_array)) |
|
|
|
for i, j in mask_indices: |
|
binary_mask.putpixel((j, i), 1) |
|
|
|
binary_mask.show() |
|
|
|
|
|
def build_dataset(data_path, transform): |
|
dataset = datasets.ImageFolder(data_path, transform=transform) |
|
nb_classes = len(dataset.classes) |
|
return dataset, nb_classes |
|
|
|
def build_transform(): |
|
t = [] |
|
t.append(transforms.ToTensor()) |
|
return transforms.Compose(t) |
|
|
|
def main(): |
|
data_dir = 'imagenet1' |
|
texture_dir = 'occluders_segmented' |
|
occluded_data_dir = 'imagenet_occluded' |
|
|
|
transform = build_transform() |
|
dataset, nb_classes = build_dataset(data_dir, transform) |
|
dataset_occluder, _ = build_dataset(texture_dir, transform) |
|
|
|
occlusion_info = pd.DataFrame(columns=["image_name", "class_name", "occluder_class", |
|
"percentage_occlusion", "mask", "pos"]) |
|
|
|
for idx in range(len(dataset)): |
|
image, label = dataset[idx] |
|
category = dataset.classes[label] |
|
|
|
in_dir = os.path.join(data_dir, category) |
|
occluded_dir = os.path.join(occluded_data_dir, category) |
|
|
|
os.makedirs(occluded_dir, exist_ok=True) |
|
|
|
img_name = dataset.imgs[idx][0].split('/')[-1].split('.')[0] |
|
|
|
occluder_tensor, occluder_class = get_random_texture(dataset_occluder) |
|
occluded_image, mask_path, pos = occlude_image(image, occluder_tensor, 0.5, occluded_dir, img_name) |
|
|
|
mask_array = np.load(mask_path) |
|
actual_percentage_occlusion = np.count_nonzero(mask_array) / (image.shape[1] * image.shape[2]) |
|
|
|
occluded_image_path = os.path.join(occluded_dir, f"{img_name}_occluded.png") |
|
transforms.ToPILImage()(occluded_image).save(occluded_image_path) |
|
|
|
new_row = pd.DataFrame({ |
|
"image_name": [f"{img_name}_occluded.png"], |
|
"class_name": [category], |
|
"occluder_class": [occluder_class], |
|
"percentage_occlusion": [actual_percentage_occlusion], |
|
"mask": [mask_path], |
|
"pos": [pos] |
|
}) |
|
|
|
occlusion_info = pd.concat([occlusion_info, new_row], ignore_index=True) |
|
|
|
occlusion_info.to_csv(os.path.join(occluded_data_dir, "occlusion_info.csv"), index=False) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|