Datasets:
image
imagewidth (px) 224
1.58k
| label
class label 17
classes |
---|---|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
|
0128PSK
|
RadioModRec-1
RadioModRec-1 is an Automatic Modulation Recognition (AMR) simulated dataset carefully curated for fifteen digital modulation schemes consisting of 4QAM, 16QAM, 64QAM, 256QAM, 8PSK, 16PSK, 32PSK, 64PSK, 128PSK, 256PSK, CPFSK, DBPSK, DQPSK, GFSK, and GMSK whose usefulness is predominantly found in modern wireless communication systems. RadioModRec-1 dataset caters for the Rayleigh and the Rician channel models under the Additive White Gaussian Noise (AWGN) from -20dB to +20dB at a step of +5dB.
Dataset Description
- Curated by: [Emmanuel Adetiba and Jamiu R. Olasina]
- Funded by: [Part Funding by Google Award for TensorFlow Outreaches in Colleges]
- Language(s) (AMC): [Automatic Modulation Recognition]
- License: [cc-by-nc-nd-4.0]
Uses
RadioModRec-1 is a vital resource for state-of-the-art Automatic Modulation Recognition (AMR) research in Software Defined and Cognitive Radio Systems.
Citation [optional]
Emmanuel Adetiba and Jamiu R. Olasina, RadioModRec: A Dataset for Automatic Modulation Recognition in Software Defined and Cognitive Radio Research.
Dataset Card Authors [optional]
Emmanuel Adetiba
Dataset Card Contact
- Downloads last month
- 30