Dataset Viewer
Auto-converted to Parquet
id
string
timestamp
sequence
target
sequence
Generation forecast
sequence
System load forecast
sequence
BE
["2011-01-09T00:00:00","2011-01-09T01:00:00","2011-01-09T02:00:00","2011-01-09T03:00:00","2011-01-09(...TRUNCATED)
[32.54,21.55,15.71,10.58,10.32,10.33,9.22,10.0,10.19,30.0,46.02,50.83,53.02,46.62,43.44,36.36,39.22,(...TRUNCATED)
[63065.0,62715.0,61952.0,59262.0,56883.0,56332.0,55096.0,55507.0,58763.0,60500.0,63192.0,64278.0,655(...TRUNCATED)
[63000.0,58800.0,58500.0,54300.0,51900.0,50900.0,50100.0,51000.0,53200.0,54800.0,57800.0,59900.0,619(...TRUNCATED)

Forecast evaluation datasets

This repository contains time series datasets that can be used for evaluation of univariate & multivariate forecasting models.

The main focus of this repository is on datasets that reflect real-world forecasting scenarios, such as those involving covariates, missing values, and other practical complexities.

The datasets follow a format that is compatible with the fev package.

Data format and usage

Each dataset satisfies the following schema:

  • each dataset entry (=row) represents a single univariate or multivariate time series
  • each entry contains
    • 1/ a field of type Sequence(timestamp) that contains the timestamps of observations
    • 2/ at least one field of type Sequence(float) that can be used as the target time series or dynamic covariates
    • 3/ a field of type string that contains the unique ID of each time series
  • all fields of type Sequence have the same length

Datasets can be loaded using the 🤗 datasets library.

import datasets

ds = datasets.load_dataset("autogluon/fev_datasets", "epf_electricity_de", split="train")
ds.set_format("numpy")  # sequences returned as numpy arrays

Example entry in the epf_electricity_de dataset

>>> ds[0]
{'id': 'DE',
 'timestamp': array(['2012-01-09T00:00:00.000000', '2012-01-09T01:00:00.000000',
        '2012-01-09T02:00:00.000000', ..., '2017-12-31T21:00:00.000000',
        '2017-12-31T22:00:00.000000', '2017-12-31T23:00:00.000000'],
       dtype='datetime64[us]'),
 'target': array([34.97, 33.43, 32.74, ...,  5.3 ,  1.86, -0.92], dtype=float32),
 'Ampirion Load Forecast': array([16382. , 15410.5, 15595. , ..., 15715. , 15876. , 15130. ],
       dtype=float32),
 'PV+Wind Forecast': array([ 3569.5276,  3315.275 ,  3107.3076, ..., 29653.008 , 29520.33  ,
        29466.408 ], dtype=float32)}

For more details about the dataset format and usage, check out the fev documentation on GitHub.

Dataset statistics

Disclaimer: These datasets have been converted into a unified format from external sources. Please refer to the original sources for licensing and citation terms. We do not claim any rights to the original data.

config freq # items # obs # dynamic cols # static cols source citation
epf_electricity_be h 1 157248 3 0 https://zenodo.org/records/4624805 [1]
epf_electricity_de h 1 157248 3 0 https://zenodo.org/records/4624805 [1]
epf_electricity_fr h 1 157248 3 0 https://zenodo.org/records/4624805 [1]
epf_electricity_np h 1 157248 3 0 https://zenodo.org/records/4624805 [1]
epf_electricity_pjm h 1 157248 3 0 https://zenodo.org/records/4624805 [1]
favorita_store_sales D 1782 12032064 4 6 https://www.kaggle.com/competitions/store-sales-time-series-forecasting [2]
favorita_transactions D 54 273456 3 5 https://www.kaggle.com/competitions/store-sales-time-series-forecasting [2]
m5_with_covariates D 30490 428849460 9 5 https://www.kaggle.com/competitions/m5-forecasting-accuracy [3]
proenfo_bull h 41 2877216 4 0 https://github.com/Leo-VK/EnFoAV [4]
proenfo_cockatoo h 1 105264 6 0 https://github.com/Leo-VK/EnFoAV [4]
proenfo_covid19 h 1 223384 7 0 https://github.com/Leo-VK/EnFoAV [4]
proenfo_gfc12_load h 11 867108 2 0 https://github.com/Leo-VK/EnFoAV [4]
proenfo_gfc14_load h 1 35040 2 0 https://github.com/Leo-VK/EnFoAV [4]
proenfo_gfc17_load h 8 280704 2 0 https://github.com/Leo-VK/EnFoAV [4]
proenfo_hog h 24 2526336 6 0 https://github.com/Leo-VK/EnFoAV [4]
proenfo_pdb h 1 35040 2 0 https://github.com/Leo-VK/EnFoAV [4]
proenfo_spain h 1 736344 21 0 https://github.com/Leo-VK/EnFoAV [4]

Publications using these datasets

Downloads last month
328