Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,14 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
dataset_info:
|
3 |
- config_name: epf_electricity_be
|
4 |
features:
|
@@ -404,3 +414,64 @@ configs:
|
|
404 |
- split: train
|
405 |
path: proenfo/spain/train-*
|
406 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- no-annotation
|
4 |
+
license: other
|
5 |
+
source_datasets:
|
6 |
+
- original
|
7 |
+
task_categories:
|
8 |
+
- time-series-forecasting
|
9 |
+
task_ids:
|
10 |
+
- univariate-time-series-forecasting
|
11 |
+
- multivariate-time-series-forecasting
|
12 |
dataset_info:
|
13 |
- config_name: epf_electricity_be
|
14 |
features:
|
|
|
414 |
- split: train
|
415 |
path: proenfo/spain/train-*
|
416 |
---
|
417 |
+
|
418 |
+
## Forecast evaluation datasets
|
419 |
+
|
420 |
+
This repository contains time series datasets that can be used for evaluation of univariate & multivariate forecasting models.
|
421 |
+
|
422 |
+
The datasets follow a format that is compatible with the [`fev`](https://github.com/autogluon/fev) package.
|
423 |
+
|
424 |
+
## Data format and usage
|
425 |
+
|
426 |
+
Each dataset satisfies the following schema:
|
427 |
+
- each dataset entry (=row) represents a single univariate or multivariate time series
|
428 |
+
- each entry contains
|
429 |
+
- 1/ a field of type `Sequence(timestamp)` that contains the timestamps of observations
|
430 |
+
- 2/ at least one field of type `Sequence(float)` that can be used as the target time series or dynamic covariates
|
431 |
+
- 3/ a field of type `string` that contains the unique ID of each time series
|
432 |
+
- all fields of type `Sequence` have the same length
|
433 |
+
|
434 |
+
Datasets can be loaded using the [🤗 `datasets`](https://huggingface.co/docs/datasets/en/index) library.
|
435 |
+
|
436 |
+
```python
|
437 |
+
import datasets
|
438 |
+
|
439 |
+
ds = datasets.load_dataset("autogluon/fev_datasets", "epf_electricity_de", split="train")
|
440 |
+
ds.set_format("numpy") # sequences returned as numpy arrays
|
441 |
+
```
|
442 |
+
Example entry in the `epf_electricity_de` dataset
|
443 |
+
```python
|
444 |
+
>>> ds[0]
|
445 |
+
{'id': 'DE',
|
446 |
+
'timestamp': array(['2012-01-09T00:00:00.000000', '2012-01-09T01:00:00.000000',
|
447 |
+
'2012-01-09T02:00:00.000000', ..., '2017-12-31T21:00:00.000000',
|
448 |
+
'2017-12-31T22:00:00.000000', '2017-12-31T23:00:00.000000'],
|
449 |
+
dtype='datetime64[us]'),
|
450 |
+
'target': array([34.97, 33.43, 32.74, ..., 5.3 , 1.86, -0.92], dtype=float32),
|
451 |
+
'Ampirion Load Forecast': array([16382. , 15410.5, 15595. , ..., 15715. , 15876. , 15130. ],
|
452 |
+
dtype=float32),
|
453 |
+
'PV+Wind Forecast': array([ 3569.5276, 3315.275 , 3107.3076, ..., 29653.008 , 29520.33 ,
|
454 |
+
29466.408 ], dtype=float32)}
|
455 |
+
```
|
456 |
+
|
457 |
+
For more details about the dataset format and usage, check out the [`fev` documentation on GitHub](https://github.com/autogluon/fev?tab=readme-ov-file#tutorials).
|
458 |
+
|
459 |
+
## Dataset statistics
|
460 |
+
|
461 |
+
| config | freq | # items | # obs | # dynamic cols | # static cols | homepage | license | citation |
|
462 |
+
|:----------------------|:-------|----------:|----------:|-----------------:|----------------:|:------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------|
|
463 |
+
| `epf_electricity_be` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [Apache 2.0](https://github.com/jeslago/epftoolbox/blob/a93dee7fd784993883374b211a021b706e80a433/LICENSE) | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983) |
|
464 |
+
| `epf_electricity_de` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [Apache 2.0](https://github.com/jeslago/epftoolbox/blob/a93dee7fd784993883374b211a021b706e80a433/LICENSE) | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983) |
|
465 |
+
| `epf_electricity_fr` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [Apache 2.0](https://github.com/jeslago/epftoolbox/blob/a93dee7fd784993883374b211a021b706e80a433/LICENSE) | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983) |
|
466 |
+
| `epf_electricity_np` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [Apache 2.0](https://github.com/jeslago/epftoolbox/blob/a93dee7fd784993883374b211a021b706e80a433/LICENSE) | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983) |
|
467 |
+
| `epf_electricity_pjm` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [Apache 2.0](https://github.com/jeslago/epftoolbox/blob/a93dee7fd784993883374b211a021b706e80a433/LICENSE) | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983) |
|
468 |
+
| `m5_with_covariates` | D | 30490 | 428849460 | 9 | 5 | https://www.kaggle.com/competitions/m5-forecasting-accuracy | [Subject to competition rules](https://www.kaggle.com/competitions/m5-forecasting-accuracy/rules#7.-competition-data.) | [[2]](https://doi.org/10.1016/j.ijforecast.2021.07.007) |
|
469 |
+
| `proenfo_bull` | h | 41 | 2877216 | 4 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
|
470 |
+
| `proenfo_cockatoo` | h | 1 | 105264 | 6 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
|
471 |
+
| `proenfo_covid19` | h | 1 | 223384 | 7 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
|
472 |
+
| `proenfo_gfc12_load` | h | 11 | 867108 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
|
473 |
+
| `proenfo_gfc14_load` | h | 1 | 35040 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
|
474 |
+
| `proenfo_gfc17_load` | h | 8 | 280704 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
|
475 |
+
| `proenfo_hog` | h | 24 | 2526336 | 6 | 0 | https://github.com/Leo-VK/EnFoAV | CC0: 1.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
|
476 |
+
| `proenfo_pdb` | h | 1 | 35040 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
|
477 |
+
| `proenfo_spain` | h | 1 | 736344 | 21 | 0 | https://github.com/Leo-VK/EnFoAV | CC0: 1.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
|