shchuro commited on
Commit
abbd38c
·
verified ·
1 Parent(s): 64fb846

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md CHANGED
@@ -1,4 +1,14 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: epf_electricity_be
4
  features:
@@ -404,3 +414,64 @@ configs:
404
  - split: train
405
  path: proenfo/spain/train-*
406
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - no-annotation
4
+ license: other
5
+ source_datasets:
6
+ - original
7
+ task_categories:
8
+ - time-series-forecasting
9
+ task_ids:
10
+ - univariate-time-series-forecasting
11
+ - multivariate-time-series-forecasting
12
  dataset_info:
13
  - config_name: epf_electricity_be
14
  features:
 
414
  - split: train
415
  path: proenfo/spain/train-*
416
  ---
417
+
418
+ ## Forecast evaluation datasets
419
+
420
+ This repository contains time series datasets that can be used for evaluation of univariate & multivariate forecasting models.
421
+
422
+ The datasets follow a format that is compatible with the [`fev`](https://github.com/autogluon/fev) package.
423
+
424
+ ## Data format and usage
425
+
426
+ Each dataset satisfies the following schema:
427
+ - each dataset entry (=row) represents a single univariate or multivariate time series
428
+ - each entry contains
429
+ - 1/ a field of type `Sequence(timestamp)` that contains the timestamps of observations
430
+ - 2/ at least one field of type `Sequence(float)` that can be used as the target time series or dynamic covariates
431
+ - 3/ a field of type `string` that contains the unique ID of each time series
432
+ - all fields of type `Sequence` have the same length
433
+
434
+ Datasets can be loaded using the [🤗 `datasets`](https://huggingface.co/docs/datasets/en/index) library.
435
+
436
+ ```python
437
+ import datasets
438
+
439
+ ds = datasets.load_dataset("autogluon/fev_datasets", "epf_electricity_de", split="train")
440
+ ds.set_format("numpy") # sequences returned as numpy arrays
441
+ ```
442
+ Example entry in the `epf_electricity_de` dataset
443
+ ```python
444
+ >>> ds[0]
445
+ {'id': 'DE',
446
+ 'timestamp': array(['2012-01-09T00:00:00.000000', '2012-01-09T01:00:00.000000',
447
+ '2012-01-09T02:00:00.000000', ..., '2017-12-31T21:00:00.000000',
448
+ '2017-12-31T22:00:00.000000', '2017-12-31T23:00:00.000000'],
449
+ dtype='datetime64[us]'),
450
+ 'target': array([34.97, 33.43, 32.74, ..., 5.3 , 1.86, -0.92], dtype=float32),
451
+ 'Ampirion Load Forecast': array([16382. , 15410.5, 15595. , ..., 15715. , 15876. , 15130. ],
452
+ dtype=float32),
453
+ 'PV+Wind Forecast': array([ 3569.5276, 3315.275 , 3107.3076, ..., 29653.008 , 29520.33 ,
454
+ 29466.408 ], dtype=float32)}
455
+ ```
456
+
457
+ For more details about the dataset format and usage, check out the [`fev` documentation on GitHub](https://github.com/autogluon/fev?tab=readme-ov-file#tutorials).
458
+
459
+ ## Dataset statistics
460
+
461
+ | config | freq | # items | # obs | # dynamic cols | # static cols | homepage | license | citation |
462
+ |:----------------------|:-------|----------:|----------:|-----------------:|----------------:|:------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------|
463
+ | `epf_electricity_be` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [Apache 2.0](https://github.com/jeslago/epftoolbox/blob/a93dee7fd784993883374b211a021b706e80a433/LICENSE) | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983) |
464
+ | `epf_electricity_de` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [Apache 2.0](https://github.com/jeslago/epftoolbox/blob/a93dee7fd784993883374b211a021b706e80a433/LICENSE) | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983) |
465
+ | `epf_electricity_fr` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [Apache 2.0](https://github.com/jeslago/epftoolbox/blob/a93dee7fd784993883374b211a021b706e80a433/LICENSE) | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983) |
466
+ | `epf_electricity_np` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [Apache 2.0](https://github.com/jeslago/epftoolbox/blob/a93dee7fd784993883374b211a021b706e80a433/LICENSE) | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983) |
467
+ | `epf_electricity_pjm` | h | 1 | 157248 | 3 | 0 | https://zenodo.org/records/4624805 | [Apache 2.0](https://github.com/jeslago/epftoolbox/blob/a93dee7fd784993883374b211a021b706e80a433/LICENSE) | [[1]](https://doi.org/10.1016/j.apenergy.2021.116983) |
468
+ | `m5_with_covariates` | D | 30490 | 428849460 | 9 | 5 | https://www.kaggle.com/competitions/m5-forecasting-accuracy | [Subject to competition rules](https://www.kaggle.com/competitions/m5-forecasting-accuracy/rules#7.-competition-data.) | [[2]](https://doi.org/10.1016/j.ijforecast.2021.07.007) |
469
+ | `proenfo_bull` | h | 41 | 2877216 | 4 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
470
+ | `proenfo_cockatoo` | h | 1 | 105264 | 6 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
471
+ | `proenfo_covid19` | h | 1 | 223384 | 7 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
472
+ | `proenfo_gfc12_load` | h | 11 | 867108 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
473
+ | `proenfo_gfc14_load` | h | 1 | 35040 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
474
+ | `proenfo_gfc17_load` | h | 8 | 280704 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
475
+ | `proenfo_hog` | h | 24 | 2526336 | 6 | 0 | https://github.com/Leo-VK/EnFoAV | CC0: 1.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
476
+ | `proenfo_pdb` | h | 1 | 35040 | 2 | 0 | https://github.com/Leo-VK/EnFoAV | CC BY 4.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |
477
+ | `proenfo_spain` | h | 1 | 736344 | 21 | 0 | https://github.com/Leo-VK/EnFoAV | CC0: 1.0 | [[3]](https://doi.org/10.48550/arXiv.2307.07191) |