logiqa2 / README.md
baber's picture
Add logiqa2_nli data files
bc2f14a verified
|
raw
history blame
2.87 kB
metadata
language:
  - en
  - zh
license: cc-by-sa-4.0
task_categories:
  - multiple-choice
pretty_name: LogiQA2.0
data_splits:
  - train
  - validation
  - test
dataset_info:
  - config_name: logiqa2_nli
    features:
      - name: label
        dtype:
          class_label:
            names:
              '0': not entailed
              '1': entailed
      - name: major_premise
        sequence: string
      - name: minor_premise
        dtype: string
      - name: conclusion
        dtype: string
    splits:
      - name: train
        num_bytes: 17728839
        num_examples: 31531
      - name: test
        num_bytes: 2213492
        num_examples: 3942
      - name: validation
        num_bytes: 2208687
        num_examples: 3941
    download_size: 13273725
    dataset_size: 22151018
  - config_name: logiqa2_zh
    features:
      - name: answer
        dtype: int32
      - name: text
        dtype: string
      - name: question
        dtype: string
      - name: options
        sequence: string
    splits:
      - name: train
        num_bytes: 8820627
        num_examples: 12751
      - name: test
        num_bytes: 1087414
        num_examples: 1594
      - name: validation
        num_bytes: 1107666
        num_examples: 1593
    download_size: 7563394
    dataset_size: 11015707
configs:
  - config_name: logiqa2_nli
    data_files:
      - split: train
        path: logiqa2_nli/train-*
      - split: test
        path: logiqa2_nli/test-*
      - split: validation
        path: logiqa2_nli/validation-*
  - config_name: logiqa2_zh
    data_files:
      - split: train
        path: logiqa2_zh/train-*
      - split: test
        path: logiqa2_zh/test-*
      - split: validation
        path: logiqa2_zh/validation-*

Dataset Card for Dataset Name

Dataset Description

Dataset Summary

Logiqa2.0 dataset - logical reasoning in MRC and NLI tasks

LogiEval: a benchmark suite for testing logical reasoning abilities of instruct-prompt large language models

Licensing Information

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Citation Information

@ARTICLE{10174688, author={Liu, Hanmeng and Liu, Jian and Cui, Leyang and Teng, Zhiyang and Duan, Nan and Zhou, Ming and Zhang, Yue}, journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing}, title={LogiQA 2.0 — An Improved Dataset for Logical Reasoning in Natural Language Understanding}, year={2023}, volume={}, number={}, pages={1-16}, doi={10.1109/TASLP.2023.3293046}}

@misc{liu2023evaluating, title={Evaluating the Logical Reasoning Ability of ChatGPT and GPT-4}, author={Hanmeng Liu and Ruoxi Ning and Zhiyang Teng and Jian Liu and Qiji Zhou and Yue Zhang}, year={2023}, eprint={2304.03439}, archivePrefix={arXiv}, primaryClass={cs.CL} }