|
import cv2 |
|
import numpy as np |
|
import os |
|
|
|
image_folder = "masked_loss_training_data/images" |
|
mask_folder = "masked_loss_training_data/conditioning" |
|
|
|
image_files = os.listdir(image_folder) |
|
jpg_files = [f for f in image_files if f.endswith('.jpg')] |
|
|
|
for file_name in jpg_files: |
|
img = cv2.imread(os.path.join(image_folder, file_name), cv2.IMREAD_GRAYSCALE) |
|
_, bw_mask = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) |
|
output_file_path = os.path.join(mask_folder, os.path.splitext(file_name)[0] + '.png') |
|
cv2.imwrite(output_file_path, bw_mask) |
|
|
|
|
|
|