seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
38043006452
import cloudinary.uploader import requests # define your S3 bucket name here. S3_BUCKET_NAME = "akshayranganath" def get_file_name(url, transformation): # transformation will be of the format "t_text_removed/jpg". # remove the "/jpg" part and the "t_" part transformation = transformation.rsplit('/',1)[0].split('t_',1)[1] # from the URL, extract the file name. This will be of the format: 1000000010144_7GuardiansoftheTomb_portrait3x4.jpg # For this file name, insert the transformation from above as the last component in the file name file_name = url.rsplit('/',1)[1].replace('.jpg','') # if file name as the format s3_akshayranganath_, remove the prepended file name part # by default, Cloudinary will create the file name like s3_akshayranganath_1000000010144_7GuardiansoftheTomb_portrait3x4 file_name = file_name.replace(f"s3_{S3_BUCKET_NAME}_","") file_name = file_name + '_' + transformation + '.jpg' print(file_name) return file_name def download_and_save(url, file_name): # download the image and save it with the desired file name resp = requests.get(url) with open(file_name, 'wb') as w: w.write(resp.content) def delete_image(public_id): # delete the image since transformation is now complete resp = cloudinary.uploader.destroy( public_id, type='upload', resource_type='image' ) def main(): try: # upload the file. Create the necessary AI based deriviates inline. # no need to wait for any webhook notifications. print("Uploading and transforming image ..") resp = cloudinary.uploader.upload( f's3://{S3_BUCKET_NAME}/1000000010144_7GuardiansoftheTomb_portrait3x4.jpeg', upload_preset='ai_preset' ) print("Done.") # response will contain the URLs for the transformations. # extract these URLs and download the images for transform in resp['eager']: tx = transform['transformation'] url = transform['secure_url'] file_name = get_file_name(url, tx) download_and_save(url, file_name) print("Transformations downloaded successfully") # optional - delete the file once the transformations are download delete_image(resp['public_id']) print(f"Image {resp['public_id']} deleted successfully.") except Exception as e: print(e) if __name__=="__main__": main()
akshay-ranganath/create-and-upload
demo_upload_and_download.py
demo_upload_and_download.py
py
2,558
python
en
code
0
github-code
6
[ { "api_name": "requests.get", "line_number": 25, "usage_type": "call" }, { "api_name": "cloudinary.uploader.uploader.destroy", "line_number": 31, "usage_type": "call" }, { "api_name": "cloudinary.uploader.uploader", "line_number": 31, "usage_type": "attribute" }, { "api_name": "cloudinary.uploader", "line_number": 31, "usage_type": "name" }, { "api_name": "cloudinary.uploader.uploader.upload", "line_number": 42, "usage_type": "call" }, { "api_name": "cloudinary.uploader.uploader", "line_number": 42, "usage_type": "attribute" }, { "api_name": "cloudinary.uploader", "line_number": 42, "usage_type": "name" } ]
32869975011
from fastapi import APIRouter from api.schemes import relations, responses from database import redis def add_relation(rel: relations.Relation, rel_name: str) -> responses.RelationOperations: if redis.add_relation(rel_name, rel.user_id, rel.item_id): return responses.RelationOperations(status="successful") return responses.RelationOperations(status="unsuccessful", action="relate") def rem_relation(rel: relations.Relation, rel_name: str) -> responses.RelationOperations: if redis.rem_relation(rel_name, rel.user_id, rel.item_id): return responses.RelationOperations(status="successful") return responses.RelationOperations(status="unsuccessful", action="unrelate") u2u_router = APIRouter( prefix="/u2u", tags=["User2User API"] ) @u2u_router.post("") def add_user(u2u: relations.User2User) -> responses.RelationOperations: add_relation(rel=u2u, rel_name="u2u") @u2u_router.delete("") def rem_user(u2u: relations.User2User) -> responses.RelationOperations: rem_relation(rel=u2u, rel_name="u2u") u2p_router = APIRouter( prefix="/u2p", tags=["User2Post API"] ) @u2p_router.post("") def add_post(u2p: relations.User2Post) -> responses.RelationOperations: add_relation(rel=u2p, rel_name="u2p") @u2p_router.delete("") def rem_post(u2p: relations.User2Post) -> responses.RelationOperations: rem_relation(rel=u2p, rel_name="u2u") u2c_router = APIRouter( prefix="/u2c", tags=["User2Comm API"] ) @u2c_router.post("") def add_comm(u2c: relations.User2Comm) -> responses.RelationOperations: add_relation(rel=u2c, rel_name="u2c") @u2c_router.delete("") def rem_comm(u2c: relations.User2Comm) -> responses.RelationOperations: rem_relation(rel=u2c, rel_name="u2c")
Muti-Kara/sylvest_recommender
api/routers/relations.py
relations.py
py
1,755
python
en
code
2
github-code
6
[ { "api_name": "api.schemes.relations.Relation", "line_number": 7, "usage_type": "attribute" }, { "api_name": "api.schemes.relations", "line_number": 7, "usage_type": "name" }, { "api_name": "database.redis.add_relation", "line_number": 8, "usage_type": "call" }, { "api_name": "database.redis", "line_number": 8, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 9, "usage_type": "call" }, { "api_name": "api.schemes.responses", "line_number": 9, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 10, "usage_type": "call" }, { "api_name": "api.schemes.responses", "line_number": 10, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 7, "usage_type": "attribute" }, { "api_name": "api.schemes.responses", "line_number": 7, "usage_type": "name" }, { "api_name": "api.schemes.relations.Relation", "line_number": 13, "usage_type": "attribute" }, { "api_name": "api.schemes.relations", "line_number": 13, "usage_type": "name" }, { "api_name": "database.redis.rem_relation", "line_number": 14, "usage_type": "call" }, { "api_name": "database.redis", "line_number": 14, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 15, "usage_type": "call" }, { "api_name": "api.schemes.responses", "line_number": 15, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 16, "usage_type": "call" }, { "api_name": "api.schemes.responses", "line_number": 16, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 13, "usage_type": "attribute" }, { "api_name": "api.schemes.responses", "line_number": 13, "usage_type": "name" }, { "api_name": "fastapi.APIRouter", "line_number": 19, "usage_type": "call" }, { "api_name": "api.schemes.relations.User2User", "line_number": 26, "usage_type": "attribute" }, { "api_name": "api.schemes.relations", "line_number": 26, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 26, "usage_type": "attribute" }, { "api_name": "api.schemes.responses", "line_number": 26, "usage_type": "name" }, { "api_name": "api.schemes.relations.User2User", "line_number": 31, "usage_type": "attribute" }, { "api_name": "api.schemes.relations", "line_number": 31, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 31, "usage_type": "attribute" }, { "api_name": "api.schemes.responses", "line_number": 31, "usage_type": "name" }, { "api_name": "fastapi.APIRouter", "line_number": 35, "usage_type": "call" }, { "api_name": "api.schemes.relations.User2Post", "line_number": 42, "usage_type": "attribute" }, { "api_name": "api.schemes.relations", "line_number": 42, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 42, "usage_type": "attribute" }, { "api_name": "api.schemes.responses", "line_number": 42, "usage_type": "name" }, { "api_name": "api.schemes.relations.User2Post", "line_number": 47, "usage_type": "attribute" }, { "api_name": "api.schemes.relations", "line_number": 47, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 47, "usage_type": "attribute" }, { "api_name": "api.schemes.responses", "line_number": 47, "usage_type": "name" }, { "api_name": "fastapi.APIRouter", "line_number": 51, "usage_type": "call" }, { "api_name": "api.schemes.relations.User2Comm", "line_number": 58, "usage_type": "attribute" }, { "api_name": "api.schemes.relations", "line_number": 58, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 58, "usage_type": "attribute" }, { "api_name": "api.schemes.responses", "line_number": 58, "usage_type": "name" }, { "api_name": "api.schemes.relations.User2Comm", "line_number": 63, "usage_type": "attribute" }, { "api_name": "api.schemes.relations", "line_number": 63, "usage_type": "name" }, { "api_name": "api.schemes.responses.RelationOperations", "line_number": 63, "usage_type": "attribute" }, { "api_name": "api.schemes.responses", "line_number": 63, "usage_type": "name" } ]
15306370520
""" File: eulerCharacteristics.py Description: calculates the characteristics of the 2D Euler equation. This includes the flux and the eigenvectors associated with it Author: Pierre-Yves Taunay Date: November 2018 """ import numpy as np from utils import P_from_Ev GAM = 1.4 def compute_euler_flux(U,direction): rho = U[:,0] u = U[:,1] / rho v = U[:,2] / rho E = U[:,3] / rho P = P_from_Ev(E,rho,u,v) flx = np.zeros(U.shape) if direction == 'dx': flx[:,0] = rho*u flx[:,1] = rho*u**2 + P flx[:,2] = rho*u*v flx[:,3] = rho*E*u + P*u elif direction == 'dy': flx[:,0] = rho*v flx[:,1] = rho*u*v flx[:,2] = rho*v**2 + P flx[:,3] = rho*E*v + P*v return flx def eigenvector_x(u,v,a,q,h,nunk): Rj = np.zeros((nunk,nunk)) Lj = np.zeros((nunk,nunk)) # Right eigenvector Rj[0,:] = np.ones((1,nunk)) Rj[0,-1] = 0 Rj[1,0] = u - a Rj[1,1] = u Rj[1,2] = u + a Rj[1,3] = 0 Rj[2,0:3] = v Rj[2,3] = -1 Rj[3,0] = h - a * u Rj[3,1] = q Rj[3,2] = h + a * u Rj[3,3] = -v # Left eigenvector Lj[0,0] = (GAM-1)*q + a*u Lj[0,1] = (1-GAM)*u - a Lj[0,2] = (1-GAM)*v Lj[0,3] = (GAM-1) Lj[0,:] /= (2*a**2) Lj[1,0] = a**2 - (GAM-1)*q Lj[1,1] = (GAM-1)*u Lj[1,2] = (GAM-1)*v Lj[1,3] = (1-GAM) Lj[1,:] /= a**2 Lj[2,0] = (GAM-1)*q - a*u Lj[2,1] = (1-GAM)*u + a Lj[2,2] = (1-GAM)*v Lj[2,3] = (GAM-1) Lj[2,:] /= (2*a**2) Lj[3,0] = v Lj[3,2] = -1 return Rj, Lj def eigenvector_y(u,v,a,q,h,nunk): Rj = np.zeros((nunk,nunk)) Lj = np.zeros((nunk,nunk)) # Right eigenvector Rj[0,:] = np.ones((1,nunk)) Rj[0,-1] = 0 Rj[1,0:3] = u Rj[1,3] = 1 Rj[2,0] = v - a Rj[2,1] = v Rj[2,2] = v + a Rj[2,3] = 0 Rj[3,0] = h - a * v Rj[3,1] = q Rj[3,2] = h + a * v Rj[3,3] = u # Left eigenvector Lj[0,0] = (GAM-1)*q + a*v Lj[0,1] = (1-GAM)*u Lj[0,2] = (1-GAM)*v - a Lj[0,3] = (GAM-1) Lj[0,:] /= (2*a**2) Lj[1,0] = a**2 - (GAM-1)*q Lj[1,1] = (GAM-1)*u Lj[1,2] = (GAM-1)*v Lj[1,3] = (1-GAM) Lj[1,:] /= a**2 Lj[2,0] = (GAM-1)*q - a*v Lj[2,1] = (1-GAM)*u Lj[2,2] = (1-GAM)*v + a Lj[2,3] = (GAM-1) Lj[2,:] /= (2*a**2) Lj[3,0] = -u Lj[3,1] = 1 return Rj, Lj def compute_eigenvector(U,U0,direction): rho = U[:,0] u = U[:,1] / rho v = U[:,2] / rho E = U[:,3] / rho P = P_from_Ev(E,rho,u,v) nunk = U.shape[1] nelem = U.shape[0] a = np.sqrt(GAM*P/rho) q = 1/2*(u**2 + v**2) # Dynamic pressure h = a**2/(GAM-1) + q # Enthalpy rho0 = U0[:,0] u0 = U0[:,1] / rho0 v0 = U0[:,2] / rho0 E0 = U0[:,3] / rho0 P0 = P_from_Ev(E0,rho0,u0,v0) nunk = U0.shape[1] nelem = U0.shape[0] a0 = np.sqrt(GAM*P0/rho0) q0 = 1/2*(u0**2 + v0**2) # Dynamic pressure h0 = a0**2/(GAM-1) + q0 # Enthalpy Rjlist = [] Ljlist = [] if direction == 'dx': Rlhs0, Llhs0 = eigenvector_x(u0[0],v0[0],a0[0],q0[0],h0[0],nunk) for idx in range(nelem): Rj, Lj = eigenvector_x(u[idx],v[idx],a[idx],q[idx],h[idx],nunk) Rjlist.append(Rj) Ljlist.append(Lj) Rlhs0pre = None Llhs0pre = None elif direction == 'dy': # For the y-direction, the bottom boundary can either be pre or post-shock Rlhs0, Llhs0 = eigenvector_y(u0[0],v0[0],a0[0],q0[0],h0[0],nunk) Rlhs0pre, Llhs0pre = eigenvector_y(u0[-1],v0[-1],a0[-1],q0[-1],h0[-1],nunk) for idx in range(nelem): Rj, Lj = eigenvector_y(u[idx],v[idx],a[idx],q[idx],h[idx],nunk) Rjlist.append(Rj) Ljlist.append(Lj) Rj = Rjlist Lj = Ljlist return Rj,Lj,Rlhs0,Llhs0,Rlhs0pre,Llhs0pre def to_characteristics(U,flx,U0,flx0,order,Lh,alpha,Nx,Ny,direction,options,tc,lambda_calc_char): nelem = U.shape[0] nunk = U.shape[1] # Matrix holders V = np.zeros((nelem,order+1,nunk)) VLF = np.zeros((nelem,order+1,nunk)) H = np.zeros((nelem,order+1,nunk)) # For all elements, evaluate R_{i+1/2}^-1 * [STENCIL] # The conditional work for r = 2 (order 5) # We do the characteristics calculation for all elements for the whole stencil V,H,VLF = lambda_calc_char(U,flx,U0,flx0,order,Lh,alpha,direction,tc) return V,H,VLF
pytaunay/weno-tests
python/euler_2d/eulerCharacteristics.py
eulerCharacteristics.py
py
4,634
python
en
code
1
github-code
6
[ { "api_name": "utils.P_from_Ev", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 84, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 85, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 88, "usage_type": "call" }, { "api_name": "utils.P_from_Ev", "line_number": 135, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 140, "usage_type": "call" }, { "api_name": "utils.P_from_Ev", "line_number": 150, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 155, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 193, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 194, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 195, "usage_type": "call" } ]
12646866981
from django import forms from .models import Reservation, Testimonial class ReservationForm(forms.ModelForm): name = forms.CharField(label='Your Name', widget=forms.TextInput( attrs={ 'class': 'form-control', 'id': 'name', 'placeholder': 'Your Name' } )) email = forms.EmailField(label="Your Email", widget=forms.EmailInput( attrs={ 'class': 'form-control', 'id': 'email', 'placeholder': 'Your Email' } )) reservation_date = forms.DateTimeField(label="Date & Time", widget=forms.DateTimeInput( attrs={ 'class': 'form-control datetimepicker-input', 'id': 'datetime', 'placeholder': 'Date & Time', 'data-target': '#date3', 'data-toggle': 'datetimepicker' } )) people = forms.IntegerField(label="No Of People", widget=forms.NumberInput( attrs={ 'class': 'form-control', 'id': 'people', 'placeholder': 'No Of People' } )) request = forms.CharField(label="Special Request", widget=forms.Textarea( attrs={ 'class': 'form-control', 'id': 'message', 'placeholder': 'Special Request', 'style': 'height: 100px;' } )) class Meta: model = Reservation fields = ( 'name', 'email', 'reservation_date', 'people', 'request' ) class ContactForm(forms.Form): name = forms.CharField(label='Your Name', widget=forms.TextInput( attrs={ 'class': 'form-control', 'id': 'name', 'placeholder': 'Your Name' } )) email = forms.EmailField(label="Your Email", widget=forms.EmailInput( attrs={ 'class': 'form-control', 'id': 'email', 'placeholder': 'Your Email' } )) subject = forms.CharField(label='Subject', widget=forms.TextInput( attrs={ 'class': 'form-control', 'id': 'subject', 'placeholder': 'Subject' } )) message = forms.CharField(label="Message", widget=forms.Textarea( attrs={ 'class': 'form-control', 'id': 'message', 'placeholder': 'Leave a message here', 'style': 'height: 150px;' } )) class FeedbackForm(forms.ModelForm): name = forms.CharField(label='Your Name', widget=forms.TextInput( attrs={ 'class': 'form-control', 'id': 'name', 'placeholder': 'Your Name' } )) profession = forms.CharField(label="Your Profession", widget=forms.TextInput( attrs={ 'class': 'form-control', 'id': 'email', 'placeholder': 'Your Profession' } )) feedback = forms.CharField(label="Feedback", widget=forms.Textarea( attrs={ 'class': 'form-control', 'id': 'message', 'placeholder': 'Feedback...', 'style': 'height: 150px;' } )) photo = forms.FileField(label='Photo', widget=forms.FileInput( attrs={ 'type': 'file', 'class': 'form-control', 'id': 'subject', 'placeholder': 'Photo' } )) class Meta: model = Testimonial fields = ( 'name', 'profession', 'feedback', 'photo' )
Dantes696/restaraunt
res/forms.py
forms.py
py
4,061
python
en
code
0
github-code
6
[ { "api_name": "django.forms.ModelForm", "line_number": 5, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 5, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 6, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 6, "usage_type": "name" }, { "api_name": "django.forms.TextInput", "line_number": 6, "usage_type": "call" }, { "api_name": "django.forms.EmailField", "line_number": 14, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 14, "usage_type": "name" }, { "api_name": "django.forms.EmailInput", "line_number": 14, "usage_type": "call" }, { "api_name": "django.forms.DateTimeField", "line_number": 21, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 21, "usage_type": "name" }, { "api_name": "django.forms.DateTimeInput", "line_number": 22, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 22, "usage_type": "name" }, { "api_name": "django.forms.IntegerField", "line_number": 32, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 32, "usage_type": "name" }, { "api_name": "django.forms.NumberInput", "line_number": 32, "usage_type": "call" }, { "api_name": "django.forms.CharField", "line_number": 40, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 40, "usage_type": "name" }, { "api_name": "django.forms.Textarea", "line_number": 40, "usage_type": "call" }, { "api_name": "models.Reservation", "line_number": 50, "usage_type": "name" }, { "api_name": "django.forms.Form", "line_number": 60, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 60, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 61, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 61, "usage_type": "name" }, { "api_name": "django.forms.TextInput", "line_number": 61, "usage_type": "call" }, { "api_name": "django.forms.EmailField", "line_number": 69, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 69, "usage_type": "name" }, { "api_name": "django.forms.EmailInput", "line_number": 69, "usage_type": "call" }, { "api_name": "django.forms.CharField", "line_number": 77, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 77, "usage_type": "name" }, { "api_name": "django.forms.TextInput", "line_number": 77, "usage_type": "call" }, { "api_name": "django.forms.CharField", "line_number": 84, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 84, "usage_type": "name" }, { "api_name": "django.forms.Textarea", "line_number": 84, "usage_type": "call" }, { "api_name": "django.forms.ModelForm", "line_number": 94, "usage_type": "attribute" }, { "api_name": "django.forms", "line_number": 94, "usage_type": "name" }, { "api_name": "django.forms.CharField", "line_number": 95, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 95, "usage_type": "name" }, { "api_name": "django.forms.TextInput", "line_number": 95, "usage_type": "call" }, { "api_name": "django.forms.CharField", "line_number": 103, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 103, "usage_type": "name" }, { "api_name": "django.forms.TextInput", "line_number": 103, "usage_type": "call" }, { "api_name": "django.forms.CharField", "line_number": 112, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 112, "usage_type": "name" }, { "api_name": "django.forms.Textarea", "line_number": 112, "usage_type": "call" }, { "api_name": "django.forms.FileField", "line_number": 121, "usage_type": "call" }, { "api_name": "django.forms", "line_number": 121, "usage_type": "name" }, { "api_name": "django.forms.FileInput", "line_number": 121, "usage_type": "call" }, { "api_name": "models.Testimonial", "line_number": 131, "usage_type": "name" } ]
7873679939
import numpy as np from multiprocessing import Pool h, w = 1080, 1920 def draw_pixel(): pixel = np.zeros(24, dtype=np.uint8) for i in range(24): pixel[i] = np.random.randint(0, 2) return pixel def draw_row(p): row = np.zeros((24, w), dtype=np.uint8) row[:, 0] = draw_pixel() for j in range(1, w): if np.random.binomial(1, p): row[:, j] = draw_pixel() else: row[:, j] = row[:, j-1] return row def draw(p, pool_size=4, chunk_size=10): with Pool(pool_size) as pool: rows = pool.map(draw_row, [p]*h, chunksize=chunk_size) imgs = np.zeros((24, h, w), dtype=np.uint8) for i, row in enumerate(rows): imgs[:, i, :] = row return imgs def draw_single_process(p): imgs = np.zeros((24, h, w), dtype=np.uint8) for i in range(h): imgs[:, i, :] = draw_row(p) return imgs
e841018/ERLE
rand_img.py
rand_img.py
py
888
python
en
code
2
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 7, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 9, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 13, "usage_type": "attribute" }, { "api_name": "numpy.random.binomial", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 16, "usage_type": "attribute" }, { "api_name": "multiprocessing.Pool", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 25, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 31, "usage_type": "attribute" } ]
40124065659
from pymongo.mongo_client import MongoClient from pymongo.server_api import ServerApi import certifi from pprint import pprint class database: def __init__(self): uri = "mongodb+srv://user:[email protected]/?retryWrites=true&w=majority" # Create a new client and connect to the server self.client = MongoClient(uri, tlsCAFile=certifi.where()) # Send a ping to confirm a successful connection try: self.client.admin.command('ping') print("Pinged your deployment. You successfully connected to MongoDB!") except Exception as e: print(e) self.db = self.client['Harvest-Hero']
SteveHuy/Harvest-Hero
Database+APIs/database.py
database.py
py
721
python
en
code
0
github-code
6
[ { "api_name": "pymongo.mongo_client.MongoClient", "line_number": 11, "usage_type": "call" }, { "api_name": "certifi.where", "line_number": 11, "usage_type": "call" } ]
25097354504
# -*- coding: utf-8 -*- """ Created on Thu Jul 21 13:56:29 2022 @author: maria """ import numpy as np import pandas as pd from numpy import zeros, newaxis import matplotlib.pyplot as plt import scipy as sp from scipy.signal import butter,filtfilt,medfilt import csv import re import functions2022_07_15 as fun #getting the signal, for now using the raw F animal= 'Hedes' date= '2022-07-19' #note: if experiment type not known, put 'suite2p' instead experiment = '1' #the file number of the NiDaq file, not alway experiment-1 because there might have been an issue with a previous acquisition etc file_number = '0' log_number = '0' plane_number = '1' #IMPORTANT: SPECIFY THE FRAME RATE frame_rate = 15 #the total amount of seconds to plot seconds = 5 #specify the cell for single cell plotting res = '' filePathF ='D://Suite2Pprocessedfiles//'+animal+ '//'+date+ '//'+res+'suite2p//plane'+plane_number+'//F.npy' filePathops = 'D://Suite2Pprocessedfiles//'+animal+ '//'+date+ '//'+res+'suite2p//plane'+plane_number+'//ops.npy' filePathmeta = 'Z://RawData//'+animal+ '//'+date+ '//'+experiment+'//NiDaqInput'+file_number+'.bin' filePathlog = 'Z://RawData//'+animal+ '//'+date+ '//'+experiment+'//Log'+log_number+'.csv' filePathArduino = 'Z://RawData//'+animal+ '//'+date+ '//'+experiment+'//ArduinoInput'+file_number+'.csv' signal= np.load(filePathF, allow_pickle=True) filePathiscell = 'D://Suite2Pprocessedfiles//'+animal+ '//'+date+ '//'+res+'suite2p//plane'+plane_number+'//iscell.npy' iscell = np.load(filePathiscell, allow_pickle=True) #loading ops file to get length of first experiment ops = np.load(filePathops, allow_pickle=True) ops = ops.item() #loading ops file to get length of first experiment ops = np.load(filePathops, allow_pickle=True) ops = ops.item() #printing data path to know which data was analysed key_list = list(ops.values()) print(key_list[88]) print("frames per folder:",ops["frames_per_folder"]) exp= np.array(ops["frames_per_folder"]) #getting the first experiment, this is the length of the experiment in frames exp1 = int(exp[0]) #getting second experiment exp2 = int(exp[1]) #getting experiment 3 if exp.shape[0] == 3: exp3 = int(exp[2]) """ Step 1: getting the cell traces I need, here the traces for the first experiment """ #getting the F trace of cells (and not ROIs not classified as cells) using a function I wrote signal_cells = fun.getcells(filePathF= filePathF, filePathiscell= filePathiscell).T #%% # #getting the fluorescence for the first experiment first_exp_F = signal_cells[:, 0:exp1] # to practice will work with one cell for now from one experiment cell = 33 F_onecell = signal[cell, 0:exp1] # fig,ax = plt.subplots() # plt.plot(F_onecell) """ Step 2: getting the times of the stimuli """ #getting metadata info, remember to choose the right number of channels!! for most recent data it's 5 (for data in March but after thr 16th it's 4 and 7 before that) meta = fun.GetMetadataChannels(filePathmeta, numChannels=5) #getting the photodiode info, usually the first column in the meta array photodiode = meta[:,0] #using the function from above to put the times of the photodiode changes (in milliseconds!) photodiode_change = fun.DetectPhotodiodeChanges(photodiode,plot= True,lowPass=30,kernel = 101,fs=1000, waitTime=10000) #the above is indiscriminate photodiode change, when it's on even numbers that is the stim onset stim_on = photodiode_change[1::2] # fig,ax = plt.subplots() # ax.plot(stim_on) """ Step 3: actually aligning the stimuli with the traces (using Liad's function) """ tmeta= meta.T frame_clock = tmeta[1] frame_times = fun.AssignFrameTime(frame_clock, plot = False) # frame_times1 = frame_times[1:] frame_on = frame_times[::2] frames_plane1 = frame_on[1::4] frames_plane2 = frame_on[2::4] #window: specify the range of the window window= np.array([-1000, 4000]).reshape(1,-1) aligned_all = fun.AlignStim(signal= signal_cells, time= frames_plane1, eventTimes= stim_on, window= window,timeLimit=1000) #aligned: thetraces for all the stimuli for all the cells aligned = aligned_all[0] #the actual time, usually 1 second before and 4 seconds after stim onset in miliseconds time = aligned_all[1] #%% """ Step 4: getting the identity of the stimuli """ #need to get the log info file extraction to work #getting stimulus identity Log_list = fun.GetStimulusInfo (filePathlog, props = ["LightOn"]) #converting the list of dictionaries into an array and adding the time of the stimulus #worked easiest by using pandas dataframe log = np.array(pd.DataFrame(Log_list).values).astype(np.float64) #log[0] is the degrees, log[1] would be spatial freq etc (depending on the order in the log list) #no of stimuli specifes the total amount of stim shown nr_stimuli = aligned.shape[1] #%% #getting one neuron for testing and plotting of a random stimulus: neuron = 3 one_neuron = aligned[:,:,neuron] fig,ax = plt.subplots() ax.plot(time,one_neuron[:,]) ax.axvline(x=0, c="red", linestyle="dashed", linewidth = 1)
mariacozan/Analysis_and_Processing
code_archive/2022-07-21-neuronal_classification.py
2022-07-21-neuronal_classification.py
py
5,001
python
en
code
0
github-code
6
[ { "api_name": "numpy.load", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 55, "usage_type": "call" }, { "api_name": "functions2022_07_15.getcells", "line_number": 68, "usage_type": "call" }, { "api_name": "functions2022_07_15.GetMetadataChannels", "line_number": 88, "usage_type": "call" }, { "api_name": "functions2022_07_15.DetectPhotodiodeChanges", "line_number": 93, "usage_type": "call" }, { "api_name": "functions2022_07_15.AssignFrameTime", "line_number": 110, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 117, "usage_type": "call" }, { "api_name": "functions2022_07_15.AlignStim", "line_number": 118, "usage_type": "call" }, { "api_name": "functions2022_07_15.GetStimulusInfo", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 136, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 136, "usage_type": "call" }, { "api_name": "numpy.float64", "line_number": 136, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 146, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 146, "usage_type": "name" } ]
74182080829
#!/usr/bin/env python from __future__ import print_function import boto3 from botocore.exceptions import ClientError import json import argparse import time import random import uuid ALL_POLICY = '''{ "Version": "2012-10-17", "Statement": [ { "Sid": "Stmt''' + str(random.randint(100000, 999999)) +'''", "Effect": "Allow", "Action": "*", "Resource": "*" } ] } ''' def main(args): if args.user_name: attach_policy(args.user_name, 'UserName') put_policy(args.user_name, 'UserName') elif args.role_name: attach_policy(args.role_name, 'RoleName') put_policy(args.role_name, 'RoleName') elif args.group_name: attach_policy(args.group_name, 'GroupName') put_policy(args.group_name, 'GroupName') else: print('No user, role, or group specified. Quitting.') def attach_policy(principal, principal_name): result = False client = boto3.client('iam') attach_policy_funcs = { 'UserName': client.attach_user_policy, 'RoleName': client.attach_role_policy, 'GroupName': client.attach_group_policy } attach_policy_func = attach_policy_funcs[principal_name] try: response = attach_policy_func(**{ principal_name: principal, 'PolicyArn': 'arn:aws:iam::aws:policy/AdministratorAccess' } ) result = True print('AdministratorAccess policy attached successfully to ' + principal) except ClientError as e: print(e.response['Error']['Message']) return result def put_policy(principal, principal_name): result = False client = boto3.client('iam') put_policy_funcs = { 'UserName': client.put_user_policy, 'RoleName': client.put_role_policy, 'GroupName': client.put_group_policy } put_policy_func = put_policy_funcs[principal_name] try: response = put_policy_func(**{ principal_name: principal, 'PolicyName': str(uuid.uuid4()), 'PolicyDocument': ALL_POLICY } ) result = True print('All action policy attached successfully to ' + principal) except ClientError as e: print(e.response['Error']['Message']) return result if __name__ == '__main__': parser = argparse.ArgumentParser(description="Attempts to add an admin and all actions policy to the given role, user, or group.") parser.add_argument('-u', '--user-name') parser.add_argument('-r', '--role-name') parser.add_argument('-g', '--group-name') args = parser.parse_args() main(args)
dagrz/aws_pwn
elevation/add_iam_policy.py
add_iam_policy.py
py
2,724
python
en
code
1,106
github-code
6
[ { "api_name": "random.randint", "line_number": 16, "usage_type": "call" }, { "api_name": "boto3.client", "line_number": 42, "usage_type": "call" }, { "api_name": "botocore.exceptions.ClientError", "line_number": 57, "usage_type": "name" }, { "api_name": "boto3.client", "line_number": 64, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 74, "usage_type": "call" }, { "api_name": "botocore.exceptions.ClientError", "line_number": 80, "usage_type": "name" }, { "api_name": "argparse.ArgumentParser", "line_number": 86, "usage_type": "call" } ]
27673024131
import torch from torch import nn def init_weights_(m: nn.Module, val: float = 3e-3): if isinstance(m, nn.Linear): m.weight.data.uniform_(-val, val) m.bias.data.uniform_(-val, val) class Actor(nn.Module): def __init__(self, state_dim: int, action_dim: int, max_action: float = None, dropout: float = None, hidden_dim: int = 256, uniform_initialization: bool = False) -> None: super().__init__() if dropout is None: dropout = 0 self.max_action = max_action self.actor = nn.Sequential( nn.Linear(state_dim, hidden_dim), nn.Dropout(dropout), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.Dropout(dropout), nn.ReLU(), nn.Linear(hidden_dim, action_dim) ) def forward(self, state: torch.Tensor) -> torch.Tensor: action = self.actor(state) if self.max_action is not None: return self.max_action * torch.tanh(action) return action class Critic(nn.Module): def __init__(self, state_dim: int, action_dim: int, hidden_dim: int = 256, uniform_initialization: bool = False) -> None: super().__init__() self.q1_ = nn.Sequential( nn.Linear(state_dim + action_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1) ) self.q2_ = nn.Sequential( nn.Linear(state_dim + action_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1) ) def forward(self, state: torch.Tensor, action: torch.Tensor): concat = torch.cat([state, action], 1) return self.q1_(concat), self.q2_(concat) def q1(self, state: torch.Tensor, action: torch.Tensor) -> torch.Tensor: return self.q1_(torch.cat([state, action], 1))
zzmtsvv/rl_task
spot/modules.py
modules.py
py
2,231
python
en
code
8
github-code
6
[ { "api_name": "torch.nn.Module", "line_number": 5, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 5, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 7, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 7, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 12, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 12, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 26, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 26, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 27, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 27, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 28, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 28, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 29, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 29, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 30, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 30, "usage_type": "name" }, { "api_name": "torch.nn.Dropout", "line_number": 31, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 31, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 32, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 32, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 33, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 36, "usage_type": "attribute" }, { "api_name": "torch.tanh", "line_number": 40, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 44, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 44, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 52, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 52, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 53, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 53, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 54, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 54, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 55, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 55, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 56, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 56, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 57, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 57, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 60, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 61, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 61, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 62, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 62, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 63, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 64, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 65, "usage_type": "name" }, { "api_name": "torch.Tensor", "line_number": 69, "usage_type": "attribute" }, { "api_name": "torch.Tensor", "line_number": 70, "usage_type": "attribute" }, { "api_name": "torch.cat", "line_number": 71, "usage_type": "call" }, { "api_name": "torch.Tensor", "line_number": 76, "usage_type": "attribute" }, { "api_name": "torch.Tensor", "line_number": 77, "usage_type": "attribute" }, { "api_name": "torch.cat", "line_number": 79, "usage_type": "call" } ]
9651796880
import utils from utils import * # Arguments available def parse_args(): parser = argparse.ArgumentParser(description='Task1') parser.add_argument('--image_path', type=str, default=None, help='Path to an image on which to apply Task1 (absolute or relative path)') parser.add_argument('--save_path', type=str, default=None, help='Path where to save the output of the algorithm (absolute or relative path)') parser.add_argument('--path_dir', type=str, default="./dataset/Task1/", help='Path to the directory where we want to apply Task1 (absolute or relative path)') parser.add_argument('--save_dir', type=str, default='./dataset/predictions/Task1/', help='Path where to save the directory where we want to apply Task1 (absolute or relative path)') parser.add_argument('--no_file', type=str, default=None, help='Apply the algorithm on the image specified by this number, that is located on path_dir. The output is saved on save_dir location') parser.add_argument('--verbose', type=str, default='0', help='Print intermediate output from the algorithm. Choose 0/1') args = parser.parse_args() return args # Computes the logic behind task1. # - first apply get_map to remove the scoring table and non-relevant ice-surfaces. # - it finds and filters multiple circles extracted using houghCircles algorithm. # Finally, it saves the result in the specified file. def task1(image_path, save_path=None, verbose=0): image = cv2.imread(image_path) image = get_map(image=image, verbose=verbose) image_all_circles, image_filtered_circles, circles_dict = get_hough_circles(image=image, min_radius=10, max_radius=25, minDist=30, dp=1, param1=150, param2=15,verbose=verbose) if verbose: utils.show_images([image, image_all_circles, image_filtered_circles], nrows=2, ncols=2) string_to_write_in_file = "\n".join([str(len(circles_dict ["all_circles"])), str(len(circles_dict ["red_circles"])), str(len(circles_dict ["yellow_circles"]))]) if save_path != None and save_path != "": with open(save_path, "w+") as f: f.write(string_to_write_in_file) print("The output was saved at location: {}!".format(save_path)) print(string_to_write_in_file) #image_path = save_path.replace(".txt", ".png") #cv2.imwrite(image_path, image_filtered_circles) return circles_dict if __name__ == "__main__": args = parse_args() verbose = ord(args.verbose) - ord('0') if args.image_path != None: try: task1(image_path=args.image_path, save_path=args.save_path, verbose=verbose) except: raise Exception("An exception occured during the execution of Task1!") else: os.makedirs(args.save_dir, exist_ok=True) if args.no_file != None: try: image_path = os.path.join(args.path_dir, "{}.png".format(args.no_file)) save_path = os.path.join(args.save_dir, "{}_predicted.txt".format(args.no_file)) print("Processing the image located at: {}".format(image_path)) task1(image_path=image_path, verbose=verbose, save_path=save_path) except: raise Exception("An exception occured during the execution of Task1 for the image located at: {}!".format(image_path)) else: for no_file in range(1, 26): try: image_path = os.path.join(args.path_dir, "{}.png".format(no_file)) save_path = os.path.join(args.save_dir, "{}_predicted.txt".format(no_file)) print("Processing the image located at: {}".format(image_path)) task1(image_path=image_path, verbose=verbose, save_path=save_path) except: raise Exception("An exception occured during the execution of Task1 for the image located at: {}!".format(image_path))
SebastianCojocariu/Curling-OpenCV
task_1.py
task_1.py
py
3,759
python
en
code
1
github-code
6
[ { "api_name": "utils.show_images", "line_number": 32, "usage_type": "call" } ]
29788980815
from collections import Counter import numpy as np import pandas as pd import pickle from sklearn import svm, model_selection, neighbors from sklearn.ensemble import VotingClassifier, RandomForestClassifier from sklearn.model_selection import cross_validate, train_test_split # processing data for Machine Learning # groups of companies are likely to move together, some are going to move first # pricing data to % change - will be our features and labels will find target (buy,sell or hold) # ask question to data based on the price changes - within 7 days did the price go up or not (buy if yes, sell if no) # each model is going to be on per company basis def process_data_for_labels(ticker): # next 7 days if price goes up or down hm_days = 7 df = pd.read_csv('sp500_joined_closes.csv', index_col = 0) tickers = df.columns.values.tolist() df.fillna(0, inplace = True) for i in range(1, hm_days+1): # price in 2 days from now - todays price / todays price * 100 df['{}_{}d'.format(ticker, i)] = (df[ticker].shift(-i) - df[ticker]) / df[ticker] # (shift (-i) to move future prices up in table) df.fillna(0, inplace = True) return tickers, df # function to detect buy,sell or hold stocks def buy_sell_hold(*args): cols = [c for c in args] requirement = 0.02 for col in cols: if col > requirement: # buy return 1 if col < -requirement: # sell return -1 return 0 # hold def extract_featuresets(ticker): tickers, df = process_data_for_labels(ticker) # creating maps of either buy, sell or hold for 7 days df['{}_target'.format(ticker)] = list(map( buy_sell_hold, df['{}_1d'.format(ticker)], df['{}_2d'.format(ticker)], df['{}_3d'.format(ticker)], df['{}_4d'.format(ticker)], df['{}_5d'.format(ticker)], df['{}_6d'.format(ticker)], df['{}_7d'.format(ticker)], )) # values are assigned to a list vals = df['{}_target'.format(ticker)].values.tolist() str_vals = [str(i) for i in vals] # Data spread to see the spreads in value and filling spreads in list print ('Data spread: ', Counter(str_vals)) df.fillna(0, inplace=True) # replaces any infinite increase since it may be an IPO to a NaN df = df.replace([np.inf,-np.inf], np.nan) # dropping NaN df.dropna(inplace=True) # values are normalised in % change from yesterday df_vals = df[[ticker for ticker in tickers ]].pct_change() df_vals = df_vals.replace([np.inf,-np.inf], 0) df_vals.fillna(0, inplace=True) # x feature sets, y are labels X = df_vals.values y = df['{}_target'.format(ticker)].values return X,y, df def do_ml(ticker): # where x is our target values and y is the value from buy_sell_hold() either 0,1,-1 X, y, df = extract_featuresets(ticker) # training x and y using train_test_split with test_size of 25% X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25) # creating a classifier # clf = neighbors.KNeighborsClassifier() clf = VotingClassifier([('lsvc',svm.LinearSVC()), ('knn', neighbors.KNeighborsClassifier()), ('rfor', RandomForestClassifier(n_estimators=100))]) # fit x and y train into classifier clf.fit(X_train, y_train) # to know confidence of the data confidence = clf.score(X_test, y_test) print('Accuracy: ', confidence) # predictions predicts x_test(futuresets) predictions = clf.predict(X_test) print('Predicted spread:', Counter(predictions)) return confidence do_ml('TWTR')
mihir13/python_for_finance
PythonForFinance9.py
PythonForFinance9.py
py
3,409
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_csv", "line_number": 19, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.inf", "line_number": 63, "usage_type": "attribute" }, { "api_name": "numpy.nan", "line_number": 63, "usage_type": "attribute" }, { "api_name": "numpy.inf", "line_number": 69, "usage_type": "attribute" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 84, "usage_type": "call" }, { "api_name": "sklearn.ensemble.VotingClassifier", "line_number": 90, "usage_type": "call" }, { "api_name": "sklearn.svm.LinearSVC", "line_number": 90, "usage_type": "call" }, { "api_name": "sklearn.svm", "line_number": 90, "usage_type": "name" }, { "api_name": "sklearn.neighbors.KNeighborsClassifier", "line_number": 90, "usage_type": "call" }, { "api_name": "sklearn.neighbors", "line_number": 90, "usage_type": "name" }, { "api_name": "sklearn.ensemble.RandomForestClassifier", "line_number": 91, "usage_type": "call" }, { "api_name": "collections.Counter", "line_number": 104, "usage_type": "call" } ]
2542812722
import os import json import logging from infy_bordered_table_extractor import bordered_table_extractor from infy_bordered_table_extractor.bordered_table_extractor import OutputFileFormat from infy_bordered_table_extractor.providers.tesseract_data_service_provider import TesseractDataServiceProvider from infy_bordered_table_extractor.bordered_table_extractor import LineDetectionMethod def __create_new_instance(): if not os.path.exists("./logs"): os.makedirs("./logs") logging.basicConfig( filename=("./logs" + "/app_log.log"), format="%(asctime)s- %(levelname)s- %(message)s", level=logging.INFO, datefmt="%d-%b-%y %H:%M:%S", ) logger = logging.getLogger() TESSERACT_PATH = os.environ['TESSERACT_PATH'] provider = TesseractDataServiceProvider(TESSERACT_PATH) # input files path temp_folderpath = './data/temp' img_filepath = os.path.abspath( './data/sample_1.png') table_object = bordered_table_extractor.BorderedTableExtractor( provider, provider, temp_folderpath, logger, True) return table_object, img_filepath def test_bordered_table_extractor_bbox_RGBLineDetect(): """test method""" table_object, img_filepath = __create_new_instance() save_folder_path = os.path.abspath('./data/output') result = table_object.extract_all_fields( img_filepath, within_bbox=[73, 2001, 4009, 937], config_param_dict={ 'output': {'path': save_folder_path, 'format': [OutputFileFormat.EXCEL]} } ) __pretty_print(result) assert result['error'] is None assert __get_summary(result) == { 'table_count': 1, 'row_count': 5, 'col_count': [4, 4, 4, 4, 4] } def test_bordered_table_extractor_bbox_OpenCVLineDetect(): """test method""" table_object, img_filepath = __create_new_instance() result = table_object.extract_all_fields( img_filepath, within_bbox=[73, 2001, 4009, 937], config_param_dict={'line_detection_method': [ LineDetectionMethod.OPENCV_LINE_DETECT]}) __pretty_print(result) assert result['error'] is None assert __get_summary(result) == { 'table_count': 1, 'row_count': 5, 'col_count': [4, 4, 4, 4, 4] } def test_bordered_table_extractor_with_custom_cells(): """test method""" table_object, img_filepath = __create_new_instance() result = table_object.extract_all_fields( img_filepath, within_bbox=[73, 2001, 4009, 937], config_param_dict={ 'custom_cells': [ {'rows': [1], 'columns':[1]}, {'rows': [2], 'columns':[2]}] } ) __pretty_print(result) assert result['error'] is None assert __get_summary(result) == { 'table_count': 1, 'row_count': 2, 'col_count': [3, 3] } def __get_summary(api_result): row_count = -1 col_counts = [] for table in api_result['fields']: rows = table['table_value'] row_count = len(rows) for row in rows: col_counts.append(len(row)) return { 'table_count': len(api_result['fields']), 'row_count': row_count, 'col_count': col_counts } def __pretty_print(dictionary): p = json.dumps(dictionary, indent=4) print(p.replace('\"', '\''))
Infosys/Document-Extraction-Libraries
infy_bordered_table_extractor/tests/test_border_table_img.py
test_border_table_img.py
py
3,357
python
en
code
6
github-code
6
[ { "api_name": "os.path.exists", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 12, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 13, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 16, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 19, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 20, "usage_type": "attribute" }, { "api_name": "infy_bordered_table_extractor.providers.tesseract_data_service_provider.TesseractDataServiceProvider", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "infy_bordered_table_extractor.bordered_table_extractor.BorderedTableExtractor", "line_number": 26, "usage_type": "call" }, { "api_name": "infy_bordered_table_extractor.bordered_table_extractor", "line_number": 26, "usage_type": "name" }, { "api_name": "os.path.abspath", "line_number": 35, "usage_type": "call" }, { "api_name": "os.path", "line_number": 35, "usage_type": "attribute" }, { "api_name": "infy_bordered_table_extractor.bordered_table_extractor.OutputFileFormat.EXCEL", "line_number": 39, "usage_type": "attribute" }, { "api_name": "infy_bordered_table_extractor.bordered_table_extractor.OutputFileFormat", "line_number": 39, "usage_type": "name" }, { "api_name": "infy_bordered_table_extractor.bordered_table_extractor.LineDetectionMethod.OPENCV_LINE_DETECT", "line_number": 58, "usage_type": "attribute" }, { "api_name": "infy_bordered_table_extractor.bordered_table_extractor.LineDetectionMethod", "line_number": 58, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 105, "usage_type": "call" } ]
23088053555
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Code by: Magnus Øye, Dated: 12.11-2018 Contact: [email protected] Website: https://github.com/magnusoy/Balancing-Platform """ # Importing packages import numpy as np from numpy import sqrt, sin, cos, pi, arccos import matplotlib.pylab as plt # Plot style plt.style.use("bmh") # Constants L = 45 # Length of one side Z0 = 8.0 # Start lifting height A = 4.0 # Center offset r = 9.0 # Radius countsPerRev = 400000 # Motor counts per revolution pitch = 0 # Movement in Y-axis roll = 0 # Movement in X-axis anglesPitch = np.linspace(-0.139626, 0.139626, num=50) # Array of linearly spaced angels from -8, 8 degrees anglesRoll = np.linspace(-0.139626, 0.139626, num=50) # Array of linearly spaced angels from -8, 8 degrees # Lists for holding simulation data X = [] Y1 = [] Y2 = [] Y3 = [] # Simulating platform movements for angle in anglesPitch: deg = angle * 180 / pi pitch = angle roll = 0 # Motor lift height z1 = ((sqrt(3) * L) / 6) * sin(pitch) * cos(roll) + ((L/2)*sin(roll)) + Z0 z2 = ((sqrt(3) * L) / 6) * sin(pitch) * cos(roll) - ((L/2)*sin(roll)) + Z0 z3 = -((sqrt(3) * L) / 3) * sin(pitch) * cos(roll) + Z0 # Motor angles in radians angleM1 = arccos(((z1**2) + (A**2) - (r**2)) / (2.0 * A * z1)) angleM2 = arccos(((z2**2) + (A**2) - (r**2)) / (2.0 * A * z2)) angleM3 = arccos(((z3**2) + (A**2) - (r**2)) / (2.0 * A * z3)) # Motor angles in degrees degreeM1 = (angleM1 * 180.0) / pi degreeM2 = (angleM2 * 180.0) / pi degreeM3 = (angleM3 * 180.0) / pi # Motor position in counts outM1 = angleM1 * (countsPerRev / 2 * pi) outM2 = angleM2 * (countsPerRev / 2 * pi) outM3 = angleM3 * (countsPerRev / 2 * pi) # Adding values in array for visual representation X.append(deg) Y1.append(z1) Y2.append(z2) Y3.append(z3) # Plotting values fig, axes = plt.subplots(1, 3, constrained_layout=True) fig.suptitle('Pitch +/- 8 grader | Roll +/- 0 grader', size=16) ax_m1 = axes[0] ax_m2 = axes[1] ax_m3 = axes[2] ax_m1.set_title('Motor 1 løftehøyde') ax_m2.set_title('Motor 2 løftehøyde') ax_m3.set_title('Motor 3 løftehøyde') ax_m1.set_xlabel('Rotasjon [Grader]') ax_m2.set_xlabel('Rotasjon [Grader]') ax_m3.set_xlabel('Rotasjon [Grader]') ax_m1.set_ylabel('Høyde [cm]') ax_m2.set_ylabel('Høyde [cm]') ax_m3.set_ylabel('Høyde [cm]') ax_m1.set_xlim(-8, 8) ax_m2.set_xlim(-8, 8) ax_m3.set_xlim(-8, 8) ax_m1.set_ylim(0, 15) ax_m2.set_ylim(0, 15) ax_m3.set_ylim(0, 15) ax_m1.plot(X, Y1, label='M1') ax_m2.plot(X, Y2, label='M2') ax_m3.plot(X, Y3, label='M3') ax_m1.legend() ax_m2.legend() ax_m3.legend() # Showing values plt.show()
magnusoy/Balancing-Platform
src/balancing_platform/util/graphs.py
graphs.py
py
2,702
python
en
code
7
github-code
6
[ { "api_name": "matplotlib.pylab.style.use", "line_number": 16, "usage_type": "call" }, { "api_name": "matplotlib.pylab.style", "line_number": 16, "usage_type": "attribute" }, { "api_name": "matplotlib.pylab", "line_number": 16, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 26, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 37, "usage_type": "name" }, { "api_name": "numpy.sqrt", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.arccos", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.arccos", "line_number": 48, "usage_type": "call" }, { "api_name": "numpy.arccos", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 52, "usage_type": "name" }, { "api_name": "numpy.pi", "line_number": 53, "usage_type": "name" }, { "api_name": "numpy.pi", "line_number": 54, "usage_type": "name" }, { "api_name": "numpy.pi", "line_number": 57, "usage_type": "name" }, { "api_name": "numpy.pi", "line_number": 58, "usage_type": "name" }, { "api_name": "numpy.pi", "line_number": 59, "usage_type": "name" }, { "api_name": "matplotlib.pylab.subplots", "line_number": 69, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 69, "usage_type": "name" }, { "api_name": "matplotlib.pylab.show", "line_number": 98, "usage_type": "call" }, { "api_name": "matplotlib.pylab", "line_number": 98, "usage_type": "name" } ]
30272112886
from .views import * from django.urls import path urlpatterns = [ path('', home, name='home'), path('login/', login_user, name='login'), path('contact/', contact, name='contact'), path('api/<str:userid>/', api, name='api'), path('logout/', logout_user, name='logout'), path('register/', register, name='register'), path('server-maintenance/', freeze, name='freeze'), path('exam-status/<str:user>/', exam_end, name='exam_end'), path('exam-credential/', exam_authentication, name='exam_auth'), path('exam-credential/auth-user/exam/<str:userid>/', exam, name='exam'), path('activate/<uidb64>/<token>/<details>/', user_verification, name='activate') ]
supratim531/hetc-web
scholarship/urls.py
urls.py
py
693
python
en
code
0
github-code
6
[ { "api_name": "django.urls.path", "line_number": 5, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 6, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 11, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 12, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 14, "usage_type": "call" }, { "api_name": "django.urls.path", "line_number": 15, "usage_type": "call" } ]
20921293526
import numpy as np import matplotlib.pyplot as plt def plot_results(results, range_param, label='', color='r', marker='o'): mean_results = np.mean(results, axis=1) min_results = np.mean(results, axis=1) - np.std(results, axis=1) max_results = np.mean(results, axis=1) + np.std(results, axis=1) plt.plot(range_param, mean_results, marker=marker, color=color, label=label) plt.fill_between(range_param, min_results, max_results, facecolor=color, interpolate=True, alpha=.2) def save_results(results, range_param, directory, file_name): file = open(directory + file_name, "w") for i in range_param: file.write(str(i) + " ") file.write("\n") for result_list in results: for result in result_list: file.write(str(result) + " ") file.write(str("\n")) file.close() def load_results(directory, file_name): file = open(directory + file_name, "r") range_param = [] results = [] for i, line in enumerate(file): if i == 0: range_param = map(float, line.split()) else: results.append(map(float, line.split())) return range_param, results def save_clusters(G, clusters, label, directory, file_name): clusters_sorted = sorted(clusters, key=len, reverse=True) file = open(directory + file_name, "w") for i, c in enumerate(clusters_sorted): c_sorted = sorted(c, key=G.degree, reverse=True) file.write("\n\nCluster " + str(i) + " (" + str(len(c)) +" nodes)") for u in c_sorted: file.write("\n" + str(u) + ": " + label[u]) file.close()
sharpenb/Multi-Scale-Modularity-Graph-Clustering
Scripts/experiments/results_manager.py
results_manager.py
py
1,613
python
en
code
2
github-code
6
[ { "api_name": "numpy.mean", "line_number": 6, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 8, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 8, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 9, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 9, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.fill_between", "line_number": 10, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 10, "usage_type": "name" } ]
71588771707
import pytest from pytest import approx from brownie import chain from brownie.test import given, strategy from decimal import Decimal from .utils import RiskParameter, transform_snapshot @pytest.fixture(autouse=True) def isolation(fn_isolation): pass @given( initial_fraction=strategy('decimal', min_value='0.001', max_value='0.500', places=3), peek_fraction=strategy('decimal', min_value='0.001', max_value='0.500', places=3), dt=strategy('uint256', min_value='10', max_value='600')) def test_volume_bid(state, market, feed, initial_fraction, peek_fraction, dt, ovl, bob): # have bob initially build a short to init volume cap_notional = market.params(RiskParameter.CAP_NOTIONAL.value) input_collateral = initial_fraction * cap_notional input_leverage = 1000000000000000000 input_is_long = False input_price_limit = 0 # approve max for bob ovl.approve(market, 2**256-1, {"from": bob}) # build position for bob market.build(input_collateral, input_leverage, input_is_long, input_price_limit, {"from": bob}) # mine the chain forward chain.mine(timedelta=dt) fraction = int(peek_fraction * Decimal(1e18)) snap = market.snapshotVolumeBid() data = feed.latest() (_, micro_window, _, _, _, _, _, _) = data # calculate what the volume bid should be given snapshot value timestamp = chain[-1]['timestamp'] window = micro_window value = fraction snap = transform_snapshot(snap, timestamp, window, value) (_, _, accumulator) = snap expect = int(accumulator) actual = int(state.volumeBid(market, fraction)) assert expect == approx(actual) @given( initial_fraction=strategy('decimal', min_value='0.001', max_value='0.500', places=3), peek_fraction=strategy('decimal', min_value='0.001', max_value='0.500', places=3), dt=strategy('uint256', min_value='10', max_value='600')) def test_volume_ask(state, market, feed, initial_fraction, peek_fraction, dt, ovl, alice): # have alice initially build a long to init volume cap_notional = market.params(RiskParameter.CAP_NOTIONAL.value) input_collateral = initial_fraction * cap_notional input_leverage = 1000000000000000000 input_is_long = True input_price_limit = 2**256 - 1 # approve max for alice ovl.approve(market, 2**256-1, {"from": alice}) # build position for alice market.build(input_collateral, input_leverage, input_is_long, input_price_limit, {"from": alice}) # mine the chain forward chain.mine(timedelta=dt) fraction = int(peek_fraction * Decimal(1e18)) snap = market.snapshotVolumeAsk() data = feed.latest() (_, micro_window, _, _, _, _, _, _) = data # calculate what the volume ask should be given snapshot value timestamp = chain[-1]['timestamp'] window = micro_window value = fraction snap = transform_snapshot(snap, timestamp, window, value) (_, _, accumulator) = snap expect = int(accumulator) actual = int(state.volumeAsk(market, fraction)) assert expect == approx(actual) @given( initial_fraction_alice=strategy('decimal', min_value='0.001', max_value='0.500', places=3), initial_fraction_bob=strategy('decimal', min_value='0.001', max_value='0.500', places=3), dt=strategy('uint256', min_value='10', max_value='600')) def test_volumes(state, market, feed, ovl, alice, bob, initial_fraction_alice, initial_fraction_bob, dt): # have alice and bob initially build a long and short to init volume cap_notional = market.params(RiskParameter.CAP_NOTIONAL.value) input_collateral_alice = initial_fraction_alice * cap_notional input_leverage_alice = 1000000000000000000 input_is_long_alice = True input_price_limit_alice = 2**256 - 1 input_collateral_bob = initial_fraction_bob * cap_notional input_leverage_bob = 1000000000000000000 input_is_long_bob = False input_price_limit_bob = 0 # approve max for alice and bob ovl.approve(market, 2**256-1, {"from": alice}) ovl.approve(market, 2**256-1, {"from": bob}) # build positions for alice and bob market.build(input_collateral_alice, input_leverage_alice, input_is_long_alice, input_price_limit_alice, {"from": alice}) market.build(input_collateral_bob, input_leverage_bob, input_is_long_bob, input_price_limit_bob, {"from": bob}) # mine the chain forward chain.mine(timedelta=dt) data = feed.latest() (_, micro_window, _, _, _, _, _, _) = data # calculate what the bid should be given snapshot value snap_bid = market.snapshotVolumeBid() timestamp_bid = chain[-1]['timestamp'] window_bid = micro_window snap_bid = transform_snapshot(snap_bid, timestamp_bid, window_bid, 0) (_, _, accumulator_bid) = snap_bid # calculate what the ask should be given snapshot value snap_ask = market.snapshotVolumeAsk() timestamp_ask = chain[-1]['timestamp'] window_ask = micro_window snap_ask = transform_snapshot(snap_ask, timestamp_ask, window_ask, 0) (_, _, accumulator_ask) = snap_ask expect_volume_bid = int(accumulator_bid) expect_volume_ask = int(accumulator_ask) (actual_volume_bid, actual_volume_ask) = state.volumes(market) assert expect_volume_bid == approx(int(actual_volume_bid)) assert expect_volume_ask == approx(int(actual_volume_ask))
overlay-market/v1-periphery
tests/state/test_volume.py
test_volume.py
py
5,680
python
en
code
3
github-code
6
[ { "api_name": "pytest.fixture", "line_number": 10, "usage_type": "call" }, { "api_name": "utils.RiskParameter.CAP_NOTIONAL", "line_number": 24, "usage_type": "attribute" }, { "api_name": "utils.RiskParameter", "line_number": 24, "usage_type": "name" }, { "api_name": "brownie.chain.mine", "line_number": 38, "usage_type": "call" }, { "api_name": "brownie.chain", "line_number": 38, "usage_type": "name" }, { "api_name": "decimal.Decimal", "line_number": 40, "usage_type": "call" }, { "api_name": "brownie.chain", "line_number": 46, "usage_type": "name" }, { "api_name": "utils.transform_snapshot", "line_number": 49, "usage_type": "call" }, { "api_name": "pytest.approx", "line_number": 55, "usage_type": "call" }, { "api_name": "brownie.test.given", "line_number": 15, "usage_type": "call" }, { "api_name": "brownie.test.strategy", "line_number": 16, "usage_type": "call" }, { "api_name": "brownie.test.strategy", "line_number": 18, "usage_type": "call" }, { "api_name": "brownie.test.strategy", "line_number": 20, "usage_type": "call" }, { "api_name": "utils.RiskParameter.CAP_NOTIONAL", "line_number": 67, "usage_type": "attribute" }, { "api_name": "utils.RiskParameter", "line_number": 67, "usage_type": "name" }, { "api_name": "brownie.chain.mine", "line_number": 81, "usage_type": "call" }, { "api_name": "brownie.chain", "line_number": 81, "usage_type": "name" }, { "api_name": "decimal.Decimal", "line_number": 83, "usage_type": "call" }, { "api_name": "brownie.chain", "line_number": 89, "usage_type": "name" }, { "api_name": "utils.transform_snapshot", "line_number": 92, "usage_type": "call" }, { "api_name": "pytest.approx", "line_number": 98, "usage_type": "call" }, { "api_name": "brownie.test.given", "line_number": 58, "usage_type": "call" }, { "api_name": "brownie.test.strategy", "line_number": 59, "usage_type": "call" }, { "api_name": "brownie.test.strategy", "line_number": 61, "usage_type": "call" }, { "api_name": "brownie.test.strategy", "line_number": 63, "usage_type": "call" }, { "api_name": "utils.RiskParameter.CAP_NOTIONAL", "line_number": 111, "usage_type": "attribute" }, { "api_name": "utils.RiskParameter", "line_number": 111, "usage_type": "name" }, { "api_name": "brownie.chain.mine", "line_number": 133, "usage_type": "call" }, { "api_name": "brownie.chain", "line_number": 133, "usage_type": "name" }, { "api_name": "brownie.chain", "line_number": 140, "usage_type": "name" }, { "api_name": "utils.transform_snapshot", "line_number": 142, "usage_type": "call" }, { "api_name": "brownie.chain", "line_number": 147, "usage_type": "name" }, { "api_name": "utils.transform_snapshot", "line_number": 149, "usage_type": "call" }, { "api_name": "pytest.approx", "line_number": 157, "usage_type": "call" }, { "api_name": "pytest.approx", "line_number": 158, "usage_type": "call" }, { "api_name": "brownie.test.given", "line_number": 101, "usage_type": "call" }, { "api_name": "brownie.test.strategy", "line_number": 102, "usage_type": "call" }, { "api_name": "brownie.test.strategy", "line_number": 104, "usage_type": "call" }, { "api_name": "brownie.test.strategy", "line_number": 106, "usage_type": "call" } ]
1306545281
import os, datetime def call_msra(): terr = input('код территории: ') if terr == "": print() call_msra() comp = input('номер АРМа: ') if comp == "": print() call_msra() else: os.system(r'C:\Windows\System32\msra.exe /offerra kmr-' + terr + '-' + comp) try: logging(1) except BaseException: print("Ошибка при запоси в log.txt") print() call_msra() # чтение файла log.exe и запись в него счетчика открытых АРМов # cnt - количество добавленных в лог элементов def logging(cnt): today = str(datetime.date.today()) # проверка, что файл существует. Если нет - то создается try: outputFile = open("log.txt", "r") except FileNotFoundError: outputFile = open("log.txt", "w+") print("", file=outputFile) # запись строк файла в lines lines = [] for line in outputFile: if line.rstrip() != "": lines.append(line.rstrip()) outputFile.close() # проверка, что файл не пустой, и что присутствует шапка if len(lines) == 0: lines.insert(0, "Date Count") lastLine = lines[-1] elif lines[0] != "Date Count": lines.insert(0, "Date Count") lastLine = lines[-1] else: lastLine = lines[-1] # проверка, есть ли текущая дата в файле # если нет, то добавляем ее со счетчиком 1 # если есть, то считвываем и увеличиваем значение счетчика if lastLine.split()[0] != today: lines.append(today + " 1") f = open("log.txt", "w") for line in lines: if line != "": print(line, file=f) f.close() else: # проверка, что в счетчике на сегодня число try: oldCount = int(lastLine.split()[1]) except ValueError: oldCount = 0 print("\n Счетчик за сегодня сброшен из-за нечислового значения!\n") lines[-1] = today + " " + str(oldCount + cnt) f = open("log.txt", "w") for line in lines: if line != "": print(line, file=f) f.close() print('Данная программа открывает msra c параметром /offerra kmr-????-???') call_msra()
Aarghe/some_scripts
msra/msra.py
msra.py
py
2,782
python
ru
code
0
github-code
6
[ { "api_name": "os.system", "line_number": 14, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 27, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 27, "usage_type": "attribute" } ]
5405379024
# -*- coding: utf-8 -*- """ Spyder Editor This is a temporary script file. """ import random # imports relevant libraries import operator import matplotlib.pyplot import agentframework import csv import matplotlib.animation num_of_agents = 10 num_of_iterations = 100 neighbourhood = 20 f = open('datain.txt') # opens csv file from directory reader = csv.reader(f, quoting=csv.QUOTE_NONNUMERIC) # reads csv and ensures any non mueric characters quoted environment = [] #creates empty list to hold all data for environment agents = [] #make list called agents for row in reader: # A list of rows rowlist = [] #creates empty list for rows for value in row: # A list of value rowlist.append(value) #move row values to row list environment.append(rowlist) # append row lists to environment list #print(environment) # Floats matplotlib.pyplot.imshow(environment) #use this library to display raster values from environment list matplotlib.pyplot.show() f.close() # closes reader def distance_between(agent0, agent1): #new function created to call pythhagorus calc for all looped agents return (((agent0.x - agent1.x)**2) + ((agent0.y - agent1.y)**2))**0.5 # Make the agents. for i in range(num_of_agents): agents.append(agentframework.Agent(environment,agents)) # Move the agents. for j in range(num_of_iterations): for i in range(num_of_agents): agents[i].move() agents[i].eat() agents[i].share_with_neighbours(neighbourhood) matplotlib.pyplot.ylim(0, 99) matplotlib.pyplot.xlim(0, 99) matplotlib.pyplot.imshow(environment) for i in range(num_of_agents): matplotlib.pyplot.scatter(agents[i].x, agents[i].y) matplotlib.pyplot.show() for agent0 in agents: for agent1 in agents: distance = distance_between(agent0, agent1)
cman2000/Portfolioabm
model.py
model.py
py
1,832
python
en
code
0
github-code
6
[ { "api_name": "csv.reader", "line_number": 20, "usage_type": "call" }, { "api_name": "csv.QUOTE_NONNUMERIC", "line_number": 20, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.pyplot.imshow", "line_number": 31, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pyplot", "line_number": 31, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 31, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.pyplot.show", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pyplot", "line_number": 32, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "agentframework.Agent", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pyplot.ylim", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pyplot", "line_number": 54, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.pyplot.xlim", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pyplot", "line_number": 55, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.pyplot.imshow", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pyplot", "line_number": 56, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.pyplot.scatter", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pyplot", "line_number": 58, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.pyplot.show", "line_number": 59, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.pyplot", "line_number": 59, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot", "line_number": 59, "usage_type": "name" } ]
14698252975
from flask import Flask, request, jsonify from SSAPI import app, api, db, guard from flask_restplus import Resource, reqparse, inputs import flask_praetorian from SSAPI.models import * @api.route('/Scrimmages') class ScrimmageList(Resource): @flask_praetorian.auth_required def get(self): """ Returns a list of Scrimmages """ current_id = flask_praetorian.current_user().id current_user_roles = flask_praetorian.current_user().roles # Filtering/sorting parser = reqparse.RequestParser() parser.add_argument('role', type=str) # role (advisor or presenter) parser.add_argument('all', type=inputs.boolean) # all admin only parser.add_argument('scrimmage_complete', type=inputs.boolean) # Completed? args = parser.parse_args() query = None if args["all"]: if "admin" in current_user_roles: query = Scrimmage.query else: query = Scrimmage.query.filter( (Scrimmage.advisors.any(User.id == current_id)) | (Scrimmage.presenters.any(User.id == current_id))) else: query = Scrimmage.query.filter( (Scrimmage.advisors.any(User.id == current_id)) | (Scrimmage.presenters.any(User.id == current_id))) if args["role"]: if "advisor" in args["role"]: query = query.filter( Scrimmage.advisors.any(User.id == current_id)) if "presenter" in args["role"]: query = query.filter(Scrimmage.presenters.any( User.id == current_id)) if args["scrimmage_complete"] is not None: query = query.filter( Scrimmage.scrimmage_complete == args["scrimmage_complete"]) ret = [] result = query.all() for i in result: ret.append(i.as_dict()) resp = jsonify(ret) return resp @flask_praetorian.auth_required def post(self): """ Create a new Scrimmage """ parser = reqparse.RequestParser() parser.add_argument('subject', required=True, type=str) parser.add_argument('schedule', required=True, type=str) parser.add_argument('scrimmage_type', required=True, type=str) parser.add_argument('presenters', required=True, type=list, location="json") parser.add_argument('max_advisors', type=int) args = parser.parse_args() if not args["max_advisors"]: args["max_advisors"] = 5 new_scrimmage = Scrimmage(subject=args["subject"], schedule=args["schedule"], scrimmage_complete=False, scrimmage_type=args["scrimmage_type"], max_advisors=args["max_advisors"]) for i in args["presenters"]: scrimmage_user = User.query.filter_by(id=i).first() if "presenter" in scrimmage_user.roles: new_scrimmage.presenters.append(scrimmage_user) else: resp = jsonify({"message": "Unable to locate or invalid user for presenter"}) resp.status_code = 400 return resp db.session.add(new_scrimmage) db.session.commit() resp = jsonify(new_scrimmage.as_dict()) resp.status_code = 200 return resp @api.route('/Scrimmages/<int:id>') class Scrimmages(Resource): @flask_praetorian.auth_required def get(self, id): """ Returns info about a Scrimmage """ scrimmage = Scrimmage.query.filter_by(id=id).first() return jsonify(scrimmage.as_dict()) @flask_praetorian.auth_required def post(self, id): """ Updates a scrimmage """ scrimmage = Scrimmage.query.filter_by(id=id).first() parser = reqparse.RequestParser() parser.add_argument('subject', type=str) parser.add_argument('schedule', type=str) parser.add_argument('scrimmage_type', type=str) parser.add_argument('presenters', type=list, location="json") parser.add_argument('advisors', type=list, location="json") parser.add_argument('max_advisors', type=int) parser.add_argument('scrimmage_complete', type=inputs.boolean) args = parser.parse_args() # If I am an admin, OR one of the presenters, I can modify user_id = flask_praetorian.current_user().id user = User.query.filter_by(id=user_id).first() if (user in scrimmage.presenters or 'admin' in flask_praetorian.current_user().roles): update_dict = {} for param in args.keys(): if args[param]: new_presenters = [] new_advisors = [] if "presenters" in param: for i in args[param]: new_presenter = User.query.filter_by(id=i).first() if new_presenter and 'presenter' in new_presenter.roles: new_presenters.append(new_presenter) else: resp = jsonify({"message": "Unable to locate or invalid user for presenter"}) resp.status_code = 400 return resp scrimmage.presenters = new_presenters elif "advisors" in param: for i in args[param]: new_advisor = User.query.filter_by(id=i).first() if new_advisor and 'advisor' in new_advisor.roles: new_advisors.append(new_advisor) else: resp = jsonify({"message": "Unable to locate or invalid user for advisor"}) resp.status_code = 400 return resp scrimmage.advisors = new_advisors else: update_dict[param] = args[param] if update_dict: Scrimmage.query.filter_by(id=id).update(update_dict) db.session.commit() else: resp = jsonify({"message": "Unauthorized to update"}) resp.status_code = 401 return resp resp = jsonify(scrimmage.as_dict()) resp.status_code = 200 return resp @flask_praetorian.auth_required def delete(self, id): """ Delete a Scrimmage """ # If I am an admin, OR one of the presenters, I can delete user_id = flask_praetorian.current_user().id user = User.query.filter_by(id=user_id).first() scrimmage = Scrimmage.query.filter_by(id=id).first() if (user in scrimmage.presenters or 'admin' in flask_praetorian.current_user().roles): Scrimmage.query.filter_by(id=id).delete() db.session.commit() return 'Scrimmage Deleted', 204 return 'UNAUTHORIZED', 401
ktelep/SSAPI
SSAPI/scrimmage_views.py
scrimmage_views.py
py
7,157
python
en
code
0
github-code
6
[ { "api_name": "flask_restplus.Resource", "line_number": 9, "usage_type": "name" }, { "api_name": "flask_praetorian.current_user", "line_number": 13, "usage_type": "call" }, { "api_name": "flask_praetorian.current_user", "line_number": 14, "usage_type": "call" }, { "api_name": "flask_restplus.reqparse.RequestParser", "line_number": 17, "usage_type": "call" }, { "api_name": "flask_restplus.reqparse", "line_number": 17, "usage_type": "name" }, { "api_name": "flask_restplus.inputs.boolean", "line_number": 19, "usage_type": "attribute" }, { "api_name": "flask_restplus.inputs", "line_number": 19, "usage_type": "name" }, { "api_name": "flask_restplus.inputs.boolean", "line_number": 20, "usage_type": "attribute" }, { "api_name": "flask_restplus.inputs", "line_number": 20, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 54, "usage_type": "call" }, { "api_name": "flask_praetorian.auth_required", "line_number": 10, "usage_type": "attribute" }, { "api_name": "flask_restplus.reqparse.RequestParser", "line_number": 60, "usage_type": "call" }, { "api_name": "flask_restplus.reqparse", "line_number": 60, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 82, "usage_type": "call" }, { "api_name": "SSAPI.db.session.add", "line_number": 86, "usage_type": "call" }, { "api_name": "SSAPI.db.session", "line_number": 86, "usage_type": "attribute" }, { "api_name": "SSAPI.db", "line_number": 86, "usage_type": "name" }, { "api_name": "SSAPI.db.session.commit", "line_number": 87, "usage_type": "call" }, { "api_name": "SSAPI.db.session", "line_number": 87, "usage_type": "attribute" }, { "api_name": "SSAPI.db", "line_number": 87, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 89, "usage_type": "call" }, { "api_name": "flask_praetorian.auth_required", "line_number": 57, "usage_type": "attribute" }, { "api_name": "SSAPI.api.route", "line_number": 8, "usage_type": "call" }, { "api_name": "SSAPI.api", "line_number": 8, "usage_type": "name" }, { "api_name": "flask_restplus.Resource", "line_number": 95, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 100, "usage_type": "call" }, { "api_name": "flask_praetorian.auth_required", "line_number": 96, "usage_type": "attribute" }, { "api_name": "flask_restplus.reqparse.RequestParser", "line_number": 106, "usage_type": "call" }, { "api_name": "flask_restplus.reqparse", "line_number": 106, "usage_type": "name" }, { "api_name": "flask_restplus.inputs.boolean", "line_number": 113, "usage_type": "attribute" }, { "api_name": "flask_restplus.inputs", "line_number": 113, "usage_type": "name" }, { "api_name": "flask_praetorian.current_user", "line_number": 117, "usage_type": "call" }, { "api_name": "flask_praetorian.current_user", "line_number": 121, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 133, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 143, "usage_type": "call" }, { "api_name": "SSAPI.db.session.commit", "line_number": 153, "usage_type": "call" }, { "api_name": "SSAPI.db.session", "line_number": 153, "usage_type": "attribute" }, { "api_name": "SSAPI.db", "line_number": 153, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 156, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 160, "usage_type": "call" }, { "api_name": "flask_praetorian.auth_required", "line_number": 102, "usage_type": "attribute" }, { "api_name": "flask_praetorian.current_user", "line_number": 168, "usage_type": "call" }, { "api_name": "flask_praetorian.current_user", "line_number": 173, "usage_type": "call" }, { "api_name": "SSAPI.db.session.commit", "line_number": 175, "usage_type": "call" }, { "api_name": "SSAPI.db.session", "line_number": 175, "usage_type": "attribute" }, { "api_name": "SSAPI.db", "line_number": 175, "usage_type": "name" }, { "api_name": "flask_praetorian.auth_required", "line_number": 164, "usage_type": "attribute" }, { "api_name": "SSAPI.api.route", "line_number": 94, "usage_type": "call" }, { "api_name": "SSAPI.api", "line_number": 94, "usage_type": "name" } ]
42132347145
import math import numpy as np from scipy.stats import bernoulli simlen = 1000000 pmf = np.full(10,0.1) def cdf(k): if(k>10): return 1 elif(k<=0): return 0 else: return k*0.1 print("Value equal to 7:") p1 = pmf[7] data_bern1 = bernoulli.rvs(size=simlen,p=p1) err_ind1 = np.nonzero(data_bern1 == 1) print("Probability-simulation,actual:",round(np.size(err_ind1)/simlen,4),round(p1,2)) #print("Simulated values: ", data_bern1) print("Value greater than 7:") p2 = cdf(10)-cdf(7) data_bern2 = bernoulli.rvs(size=simlen ,p=p2) err_ind2 = np.nonzero(data_bern2 == 1) print("Probability-simulation,actual:",round(np.size(err_ind2)/simlen,4),round(p2,2)) #print("Simulated values: ", data_bern2) print("Value less than 7:") p3 = cdf(6) data_bern3 = bernoulli.rvs(size=simlen ,p=p3) err_ind3 = np.nonzero(data_bern3 == 1) print("Probability-simulation,actual:",round(np.size(err_ind3)/simlen, 4),round(p3,2)) #print("Simulated values: ", data_bern3)
gadepall/digital-communication
exemplar/10/13/3/30/codes/code.py
code.py
py
984
python
en
code
7
github-code
6
[ { "api_name": "numpy.full", "line_number": 7, "usage_type": "call" }, { "api_name": "scipy.stats.bernoulli.rvs", "line_number": 19, "usage_type": "call" }, { "api_name": "scipy.stats.bernoulli", "line_number": 19, "usage_type": "name" }, { "api_name": "numpy.nonzero", "line_number": 20, "usage_type": "call" }, { "api_name": "numpy.size", "line_number": 21, "usage_type": "call" }, { "api_name": "scipy.stats.bernoulli.rvs", "line_number": 26, "usage_type": "call" }, { "api_name": "scipy.stats.bernoulli", "line_number": 26, "usage_type": "name" }, { "api_name": "numpy.nonzero", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.size", "line_number": 28, "usage_type": "call" }, { "api_name": "scipy.stats.bernoulli.rvs", "line_number": 33, "usage_type": "call" }, { "api_name": "scipy.stats.bernoulli", "line_number": 33, "usage_type": "name" }, { "api_name": "numpy.nonzero", "line_number": 34, "usage_type": "call" }, { "api_name": "numpy.size", "line_number": 35, "usage_type": "call" } ]
38740337725
import pytest import numpy as np from uncoverml import patch @pytest.mark.parametrize('make_multi_patch', ['make_patch_31', 'make_patch_11'], indirect=True) def test_grid_patch(make_multi_patch): timg, pwidth, tpatch, tx, ty = make_multi_patch patches = patch.grid_patches(timg, pwidth) assert np.allclose(patches, tpatch) def test_point_patches(make_points): timg, pwidth, points, tpatch = make_points patches = np.array(list(patch.point_patches(timg, pwidth, points))) assert np.allclose(patches, tpatch)
GeoscienceAustralia/uncover-ml
tests/test_patch.py
test_patch.py
py
593
python
en
code
32
github-code
6
[ { "api_name": "uncoverml.patch.grid_patches", "line_number": 14, "usage_type": "call" }, { "api_name": "uncoverml.patch", "line_number": 14, "usage_type": "name" }, { "api_name": "numpy.allclose", "line_number": 16, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 7, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 7, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 23, "usage_type": "call" }, { "api_name": "uncoverml.patch.point_patches", "line_number": 23, "usage_type": "call" }, { "api_name": "uncoverml.patch", "line_number": 23, "usage_type": "name" }, { "api_name": "numpy.allclose", "line_number": 25, "usage_type": "call" } ]
43984207586
# gdpyt-analysis: test.test_fit_3dsphere """ Notes """ # imports from os.path import join import math import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from correction import correct from utils import fit, plotting, functions # read dataframe fp = '/Users/mackenzie/Desktop/gdpyt-characterization/experiments/02.07.22_membrane_characterization/analysis/tests/compare-interior-particles-per-test/' \ 'df_id11.xlsx' df = pd.read_excel(fp) microns_per_pixel = 1.6 correctX = df.x.to_numpy() correctY = df.y.to_numpy() correctZ = df.z_corr.to_numpy() raw_data = np.stack([correctX, correctY, correctZ]).T xc = 498 * microns_per_pixel yc = 253 * microns_per_pixel zc = 3 r_edge = 500 * microns_per_pixel # fit a sphere to 3D points def fit_sphere(spX, spY, spZ): # Assemble the A matrix spX = np.array(spX) spY = np.array(spY) spZ = np.array(spZ) A = np.zeros((len(spX), 4)) A[:, 0] = spX * 2 A[:, 1] = spY * 2 A[:, 2] = spZ * 2 A[:, 3] = 1 # Assemble the f matrix f = np.zeros((len(spX), 1)) f[:, 0] = (spX * spX) + (spY * spY) + (spZ * spZ) C, residules, rank, singval = np.linalg.lstsq(A, f) # solve for the radius t = (C[0] * C[0]) + (C[1] * C[1]) + (C[2] * C[2]) + C[3] radius = math.sqrt(t) return radius, C[0], C[1], C[2] # fit a sphere to 3D points def fit_spherexy(spX, spY, spZ, xc, yc): # Assemble the A matrix spX = np.array(spX) spY = np.array(spY) spZ = np.array(spZ) A = np.zeros((len(spX), 2)) A[:, 0] = spZ * 2 A[:, 1] = 1 # Assemble the f matrix f = np.zeros((len(spX), 1)) f[:, 0] = (spX * spX) + (spY * spY) + (spZ * spZ) - (2 * spX * xc) - (2 * spY * yc) # + xc ** 2 + yc ** 2 # least squares fit C, residules, rank, singval = np.linalg.lstsq(A, f) # solve for the radius t = (xc**2) + (yc**2) + (C[0] * C[0]) + C[1] radius = math.sqrt(t) return radius, C[0] def fit_ellipsoid_from_center(X, Y, Z, xc, yc, zc, r): X = np.array(X) Y = np.array(Y) Z = np.array(Z) f = np.zeros((len(X), 1)) f[:, 0] = -1 * ((Z * Z) - (2 * zc * Z) + (zc * zc)) A = np.zeros((len(X), 1)) A[:, 0] = ((X * X) - (2 * xc * X) + (xc * xc) + (Y * Y) - (2 * yc * Y) + (yc * yc)) / (r * r) - 1 # least squares fit C, residules, rank, singval = np.linalg.lstsq(A, f) # solve for radius in z-dir. r_z = math.sqrt(C[0]) return r_z def calc_spherical_angle(r, xyz): """ Given a point (x, y, z) approx. on a sphere of radius (r), return the angle phi and theta of that point. :param r: :param xyz: :return: """ x, y, z = xyz[0], xyz[1], xyz[2] if np.abs(z) > r: return np.nan, np.nan else: phi = np.arccos(z / r) if x < 0 and y < 0: theta_half = np.arccos(x / (r * np.sin(phi))) theta_diff = np.pi - theta_half theta = np.pi + theta_diff else: theta = np.arccos(x / (r * np.sin(phi))) return phi, theta # fit 3d ellipsoid r_z = fit_ellipsoid_from_center(correctX, correctY, correctZ, xc, yc, zc, r_edge) # general 3d sphere fit rr, xx0, yy0, zz0 = fit_sphere(correctX, correctY, correctZ) # custom 3d sphere fit r, z0 = fit_spherexy(correctX, correctY, correctZ, xc, yc) x0, y0 = xc, yc phis = [] thetas = [] for i in range(raw_data.shape[0]): x, y, z, = raw_data[i, 0], raw_data[i, 1], raw_data[i, 2] dx = x - x0 dy = y - y0 dz = z - z0 if x < x0 * 0.5: phi, theta = calc_spherical_angle(r, xyz=(dx, dy, dz)) if any([np.isnan(phi), np.isnan(theta)]): continue else: # phis.append(phi) thetas.append(theta) if x < x0: phi, theta = calc_spherical_angle(r, xyz=(dx, dy, dz)) if any([np.isnan(phi), np.isnan(theta)]): continue else: phis.append(phi) phis = np.array(phis) thetas = np.array(thetas) # ----------------------------------- PLOTTING ELLIPSOID custom_ellipsoid = True if custom_ellipsoid: u = np.linspace(thetas.min(), thetas.max(), 20) v = np.linspace(0, np.pi/2, 20) u, v = np.meshgrid(u, v) xe = r_edge * np.cos(u) * np.sin(v) ye = r_edge * np.sin(u) * np.sin(v) ze = r_z * np.cos(v) xe = xe.flatten() + xc ye = ye.flatten() + yc ze = ze.flatten() + zc # --- plot sphere fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(x, y, z, color="r") #ax.plot_surface(xe, ye, ze, cmap='coolwarm', alpha=0.5) ax.scatter(xe, ye, ze, zdir='z', s=20, c='r', rasterized=True) ax.scatter(correctX, correctY, correctZ, zdir='z', s=2, c='b', rasterized=True, alpha=0.25) ax.set_xlabel(r'$x \: (\mu m)$') ax.set_ylabel(r'$y \: (\mu m)$') ax.set_zlabel(r'$z \: (\mu m)$') ax.view_init(15, 255) plt.show() raise ValueError('ah') # ----------------------------------- PLOTTING SPHERES gen_sphere, custom_sphere = True, True # --- calculate points on sphere if custom_sphere: u, v = np.mgrid[thetas.min():thetas.max():20j, 0:phis.max():20j] x=np.cos(u)*np.sin(v)*r y=np.sin(u)*np.sin(v)*r z=np.cos(v)*r x = x + x0 y = y + y0 z = z + z0 # --- plot sphere fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # ax.plot_wireframe(x, y, z, color="r") ax.plot_surface(x, y, z, cmap='coolwarm', alpha=0.5) ax.scatter(correctX, correctY, correctZ, zdir='z', s=20, c='b', rasterized=True) ax.set_xlabel(r'$x \: (\mu m)$') ax.set_ylabel(r'$y \: (\mu m)$') ax.set_zlabel(r'$z \: (\mu m)$') ax.view_init(15, 255) plt.show() # plot sphere viewed from above fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(x, y, z, cmap='coolwarm', alpha=0.5) ax.scatter(correctX, correctY, correctZ, zdir='z', s=20, c='b', rasterized=True) ax.set_xlabel(r'$x \: (\mu m)$') ax.set_ylabel(r'$y \: (\mu m)$') ax.set_zlabel(r'$z \: (\mu m)$') ax.view_init(90, 255) plt.show() if gen_sphere: x2 = np.cos(u) * np.sin(v) * rr y2 = np.sin(u) * np.sin(v) * rr z2 = np.cos(v) * rr x2 = x2 + xx0 y2 = y2 + yy0 z2 = z2 + zz0 # plot spheres fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot_surface(x, y, z, cmap='coolwarm', alpha=0.5) ax.plot_surface(x2, y2, z2, cmap='cool', alpha=0.5) # ax.scatter(correctX, correctY, correctZ, zdir='z', s=20, c='b', rasterized=True) ax.set_xlabel(r'$x \: (\mu m)$') ax.set_ylabel(r'$y \: (\mu m)$') zlabel = ax.set_zlabel(r'$z \: (\mu m)$') ax.view_init(15, 255) plt.show() j = 1
sean-mackenzie/gdpyt-analysis
test/test_fit_3dsphere.py
test_fit_3dsphere.py
py
6,764
python
en
code
0
github-code
6
[ { "api_name": "pandas.read_excel", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.linalg.lstsq", "line_number": 51, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 51, "usage_type": "attribute" }, { "api_name": "math.sqrt", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 63, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 65, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 72, "usage_type": "call" }, { "api_name": "numpy.linalg.lstsq", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 76, "usage_type": "attribute" }, { "api_name": "math.sqrt", "line_number": 80, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 85, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 86, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 87, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 89, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.linalg.lstsq", "line_number": 96, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 96, "usage_type": "attribute" }, { "api_name": "math.sqrt", "line_number": 99, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 115, "usage_type": "attribute" }, { "api_name": "numpy.arccos", "line_number": 117, "usage_type": "call" }, { "api_name": "numpy.arccos", "line_number": 120, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 120, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 121, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 122, "usage_type": "attribute" }, { "api_name": "numpy.arccos", "line_number": 124, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 124, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 149, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 157, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 162, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 163, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 169, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 170, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 170, "usage_type": "attribute" }, { "api_name": "numpy.meshgrid", "line_number": 171, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 173, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 173, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 174, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 175, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 182, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 182, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 194, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 194, "usage_type": "name" }, { "api_name": "numpy.mgrid", "line_number": 204, "usage_type": "attribute" }, { "api_name": "numpy.cos", "line_number": 205, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 205, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 206, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 207, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 213, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 213, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 222, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 222, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 225, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 225, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 233, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 233, "usage_type": "name" }, { "api_name": "numpy.cos", "line_number": 236, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 236, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 237, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 238, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 244, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 244, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 253, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 253, "usage_type": "name" } ]
15306305960
""" WENO Lax-Friedrichs Author: Pierre-Yves Taunay Date: November 2018 """ import numpy as np import matplotlib.pyplot as plt ############### #### SETUP #### ############### # Grid npt = 200 L = 2 dz = L/npt zvec = np.linspace(-L/2 + dz/2,L/2-dz/2,npt) EPS = 1e-16 # Time dt = dz / 1 * 0.4 tmax = 2000 tc = 0 # Scheme # Flux can be 'LF', 'LW', 'FORCE' ,'FLIC' order = 5 flux_type = 'FORCE' # Data holders #uvec = np.ones(len(zvec)) uvec = np.zeros(len(zvec)) def f_0(u): # -0.8 < x < -0.6 b = (zvec>=-0.8) & (zvec<=-0.6) z = zvec[b] u[b] = np.exp(-np.log(2)*(z+0.7)**2/9e-4) # -0.4 < x < -0.2 b = (zvec>=-0.4) & (zvec<=-0.2) u[b] = 1 # 0 < x < 0.2 b = (zvec>=0) & (zvec<=0.2) z = zvec[b] u[b] = 1 - np.abs(10*z-1) # 0.4 < x < 0.6 b = (zvec>=0.4) & (zvec<=0.6) z = zvec[b] u[b] = np.sqrt(1- 100*(z-0.5)**2) # b = (zvec>=-0.5) & (zvec<=0.5) # u[b] = 0 f_0(uvec) u0 = uvec ####################### #### TIME MARCHING #### ####################### idx = 0 ### WENO 3 # vi+1/2[0]^L : 1/2 v_i + 1/2 v_{i+1} # vi+1/2[1]^L : -1/2 v_{i-1} + 3/2 v_i # vi-1/2[0]^R : 3/2 v_i - 1/2 v_{i+1} # vi-1/2[1]^R : 1/2 v_{i-1} + 1/2 v_i def compute_weights(up1,u,um1): if order == 3: d0 = 2/3 d1 = 1/3 beta0 = (up1-u)**2 beta1 = (u-um1)**2 alpha0 = d0 / (EPS+beta0)**2 alpha1 = d1 / (EPS+beta1)**2 alphat0 = d1 / (EPS+beta0)**2 alphat1 = d0 / (EPS+beta1)**2 alphasum = alpha0+alpha1 alphatsum = alphat0 + alphat1 w0 = alpha0 / alphasum w1 = alpha1 / alphasum wt0 = alphat0 / alphatsum wt1 = alphat1 / alphatsum return w0,w1,wt0,wt1 elif order == 5: up2 = np.roll(u,-2) um2 = np.roll(u,2) d0 = 3/10 d1 = 3/5 d2 = 1/10 beta0 = 13/12*(u-2*up1+up2)**2 + 1/4*(3*u-4*up1+up2)**2 beta1 = 13/12*(um1-2*u+up1)**2 + 1/4*(um1-up1)**2 beta2 = 13/12*(um2-2*um1+u)**2 + 1/4*(um2-4*um1+3*u)**2 alpha0 = d0/(EPS+beta0)**2 alpha1 = d1/(EPS+beta1)**2 alpha2 = d2/(EPS+beta2)**2 alphat0 = d2/(EPS+beta0)**2 alphat1 = d1/(EPS+beta1)**2 alphat2 = d0/(EPS+beta2)**2 alphasum = alpha0 + alpha1 + alpha2 alphatsum = alphat0 + alphat1 + alphat2 w0 = alpha0/alphasum w1 = alpha1/alphasum w2 = alpha2/alphasum wt0 = alphat0/alphatsum wt1 = alphat1/alphatsum wt2 = alphat2/alphatsum return w0,w1,w2,wt0,wt1,wt2 def compute_lr(up1,u,um1): if order == 3: u0p = 1/2*u + 1/2*up1 u1p = -1/2*um1 + 3/2*u u0m = 3/2*u - 1/2*up1 u1m = 1/2*um1 + 1/2*u w0,w1,wt0,wt1 = compute_weights(up1,u,um1) uL = w0*u0p + w1*u1p uR = wt0*u0m + wt1*u1m elif order == 5: up2 = np.roll(up1,-1) um2 = np.roll(um1,1) u0m = 11/6*u - 7/6*up1 + 1/3*up2 u1m = 1/3*um1 + 5/6*u - 1/6*up1 u2m = -1/6*um2 + 5/6*um1 + 1/3*u u0p = 1/3*u + 5/6*up1 - 1/6*up2 u1p = -1/6*um1 + 5/6*u + 1/3*up1 u2p = 1/3*um2 -7/6*um1 + 11/6*u w0,w1,w2,wt0,wt1,wt2 = compute_weights(up1,u,um1) uL = w0*u0p + w1*u1p + w2*u2p uR = wt0*u0m + wt1*u1m + wt2*u2m return uL,uR def flux(u): return u def compute_flux(u): # u_{i+1}, u_{i-1} up1 = np.roll(u,-1) um1 = np.roll(u,1) # Reconstruct the data on the stencil uL, uR = compute_lr(up1,u,um1) # Compute the RHS flux up1h = np.roll(uR,-1) # This will contain u_{i+1/2}^R um1h = np.roll(uL,1) # This will contain u_{i-1/2}^L fpR = 0 fpL = 0 if flux_type == 'LF': fpR = compute_flux_lf(uL,up1h) fpL = compute_flux_lf(um1h,uR) elif flux_type == 'LW': fpR = compute_flux_lw(uL,up1h) fpL = compute_flux_lw(um1h,uR) elif flux_type == 'FORCE': fpR = compute_flux_force(uL,up1h) fpL = compute_flux_force(um1h,uR) return -1/dz * (fpR-fpL) def compute_flux_lf(uL,uR): ### Left, right fL = flux(uL) fR = flux(uR) alpha = 1 # Derivative of flux return 1/2*(fL+fR-alpha*(uR-uL)) def compute_flux_lw(uL,uR): alpha = 1 u_lw = 1/2 * (uL+uR) - 1/2*alpha*(flux(uR)-flux(uL)) return flux(u_lw) def compute_flux_force(uL,uR): f_lf = compute_flux_lf(uL,uR) f_lw = compute_flux_lw(uL,uR) return 1/2*(f_lf + f_lw) while tc<tmax: u = uvec u1 = u + dt * compute_flux(u) u2 = 3/4*u + 1/4*u1 + 1/4* dt * compute_flux(u1) unp1 = 1/3*u + 2/3*u2 + 2/3 * dt * compute_flux(u2) uvec = unp1 tc = tc+dt plt.plot(zvec,u0,'-') plt.plot(zvec,uvec,'o') print("L1:",np.sum(np.abs(u0-uvec)/len(u0)))
pytaunay/weno-tests
python/advection_1d/weno-advection.py
weno-advection.py
py
5,051
python
en
code
1
github-code
6
[ { "api_name": "numpy.linspace", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 49, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.roll", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.roll", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.roll", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.roll", "line_number": 143, "usage_type": "call" }, { "api_name": "numpy.roll", "line_number": 165, "usage_type": "call" }, { "api_name": "numpy.roll", "line_number": 166, "usage_type": "call" }, { "api_name": "numpy.roll", "line_number": 172, "usage_type": "call" }, { "api_name": "numpy.roll", "line_number": 173, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 223, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 223, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 224, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 224, "usage_type": "name" }, { "api_name": "numpy.sum", "line_number": 226, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 226, "usage_type": "call" } ]
75163149306
# -*- coding: utf-8 -*- """ Flask Skeleton """ from flask import Blueprint, request, redirect, url_for, render_template, flash, session from pymongo import errors as mongo_errors from bson.objectid import ObjectId from flask_login import login_required import datetime from app import mongo, login_manager from app.usuario.model import Usuario @login_manager.user_loader def load_user(usuario_id): return Usuario.get_by_id(usuario_id) post = Blueprint('post', __name__) @post.route('/blogs/<blog_id>/posts/novo', methods=['GET']) @login_required def get_novo(blog_id): data_cadastro = datetime.datetime.utcnow() return render_template('blog/form-post.html', data_cadastro=data_cadastro, blog_id=blog_id) @post.route('/blogs/<blog_id>/posts/novo', methods=['POST']) @login_required def post_novo(blog_id): data_cadastro = datetime.datetime.utcnow() try: post = mongo.db.blog.update_one( {"_id": ObjectId(blog_id)}, {"$push": { "posts": { "_id": ObjectId(), "titulo": request.form['titulo'], "data_cadastro": data_cadastro, "secoes": [{ "titulo": request.form['titulo'], "data_cadastro": data_cadastro, "conteudo": request.form['conteudo'], "secoes": [] }] } }}) except mongo_errors.OperationFailure as e: return render_template('db_error.html', error=e) return redirect(url_for('blog.get_blog', blog_id=blog_id)) # (?) @post.route('/posts/<post_id>', methods=['GET']) @post.route('/blogs/<blog_id>/posts/<post_id>', methods=['GET']) def get_post(blog_id, post_id): """Detalha um post específico """ try: blog = mongo.db.blog.find_one( { '_id': ObjectId(blog_id), 'posts': {'$elemMatch': {'_id': ObjectId(post_id)}} }, {'titulo': 1, 'posts.$': 1} ) except mongo_errors.OperationFailure as e: return render_template('db_error.html', error=e) # print(blog) return render_template('blog/post-detalhe.html', blog=blog, blog_id=blog_id)
e-ruiz/big-data
01-NoSQL/atividade-04/src/app/blog/posts.py
posts.py
py
2,268
python
en
code
1
github-code
6
[ { "api_name": "app.usuario.model.Usuario.get_by_id", "line_number": 18, "usage_type": "call" }, { "api_name": "app.usuario.model.Usuario", "line_number": 18, "usage_type": "name" }, { "api_name": "app.login_manager.user_loader", "line_number": 16, "usage_type": "attribute" }, { "api_name": "app.login_manager", "line_number": 16, "usage_type": "name" }, { "api_name": "flask.Blueprint", "line_number": 21, "usage_type": "call" }, { "api_name": "datetime.datetime.utcnow", "line_number": 27, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 27, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 28, "usage_type": "call" }, { "api_name": "flask_login.login_required", "line_number": 25, "usage_type": "name" }, { "api_name": "datetime.datetime.utcnow", "line_number": 34, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 34, "usage_type": "attribute" }, { "api_name": "app.mongo.db.blog.update_one", "line_number": 37, "usage_type": "call" }, { "api_name": "app.mongo.db", "line_number": 37, "usage_type": "attribute" }, { "api_name": "app.mongo", "line_number": 37, "usage_type": "name" }, { "api_name": "bson.objectid.ObjectId", "line_number": 38, "usage_type": "call" }, { "api_name": "bson.objectid.ObjectId", "line_number": 41, "usage_type": "call" }, { "api_name": "flask.request.form", "line_number": 42, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 42, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 45, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 45, "usage_type": "name" }, { "api_name": "flask.request.form", "line_number": 47, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 47, "usage_type": "name" }, { "api_name": "pymongo.errors.OperationFailure", "line_number": 52, "usage_type": "attribute" }, { "api_name": "pymongo.errors", "line_number": 52, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 53, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 55, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 55, "usage_type": "call" }, { "api_name": "flask_login.login_required", "line_number": 32, "usage_type": "name" }, { "api_name": "app.mongo.db.blog.find_one", "line_number": 65, "usage_type": "call" }, { "api_name": "app.mongo.db", "line_number": 65, "usage_type": "attribute" }, { "api_name": "app.mongo", "line_number": 65, "usage_type": "name" }, { "api_name": "bson.objectid.ObjectId", "line_number": 67, "usage_type": "call" }, { "api_name": "bson.objectid.ObjectId", "line_number": 68, "usage_type": "call" }, { "api_name": "pymongo.errors.OperationFailure", "line_number": 72, "usage_type": "attribute" }, { "api_name": "pymongo.errors", "line_number": 72, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 73, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 76, "usage_type": "call" } ]
2026773879
import json import os import pathlib import time from selenium import webdriver from selenium.webdriver import ActionChains driver = webdriver.Chrome() targetUrl = 'https://www.douban.com/' username = "" psw = "" def login_zhi_hu(): loginurl = targetUrl # 登录页面 # 加载webdriver驱动,用于获取登录页面标签属性 # driver = webdriver.Chrome() driver.get(loginurl) # 请求登录页面 # time.sleep(50) # driver.implicitly_wait(10) driver.switch_to.frame(driver.find_elements_by_tag_name('iframe')[0]) bottom = driver.find_element_by_xpath('/html/body/div[1]/div[1]/ul[1]/li[2]') # 获取用户名输入框,并先清空 # bottom = driver.find_element_by_class_name('account-tab-account on') bottom.click() driver.find_element_by_name('username').send_keys(username) # 输入用户名 driver.find_element_by_name('password').clear() # 获取密码框,并清空 driver.find_element_by_name('password').send_keys(psw) # 输入密码 # # time.sleep(5) bottom = driver.find_element_by_class_name('account-form-field-submit ') bottom.click() time.sleep(4) auth_frame = driver.find_element_by_id('tcaptcha_iframe') driver.switch_to.frame(auth_frame) element = driver.find_element_by_xpath('//*[@id="tcaptcha_drag_thumb"]') ActionChains(driver).click_and_hold(on_element=element).perform() ActionChains(driver).move_to_element_with_offset(to_element=element, xoffset=180, yoffset=0).perform() tracks = get_tracks(25) # 识别滑动验证码设置了个随意值,失败概率很大,网上方案抓取缺口图片分析坐标,成功率提高,考虑智能识别为最佳方案 for track in tracks: # 开始移动move_by_offset() ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 7.延迟释放鼠标:release() time.sleep(0.5) ActionChains(driver).release().perform() def get_tracks(distance): """ 拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速 匀变速运动基本公式: ①v = v0+at ②s = v0t+1/2at^2 """ # 初速度 v = 0 # 单位时间为0.3s来统计轨迹,轨迹即0.3内的位移 t = 0.31 # 位置/轨迹列表,列表内的一个元素代表0.3s的位移 tracks = [] # 当前位移 current = 0 # 到达mid值开始减速 mid = distance * 4 / 5 while current < distance: if current < mid: # 加速度越小,单位时间内的位移越小,模拟的轨迹就越多越详细 a = 2.3 else: a = -3 # 初速度 v0 = v # 0.3秒内的位移 s = v0 * t + 0.5 * a * (t ** 2) # 当前的位置 current += s # 添加到轨迹列表 tracks.append(round(s)) # 速度已经到达v,该速度作为下次的初速度 v = v0 + a * t return tracks def login_with_cookies(): driver.get(targetUrl) with open("cookies.txt", "r") as fp: cookies = json.load(fp) for cookie in cookies: driver.add_cookie(cookie) driver.get(targetUrl) update_cookies() def update_cookies(): f = open("cookies.txt", 'w') f.truncate() cookies = driver.get_cookies() with open("cookies.txt", "w") as fp: json.dump(cookies, fp) def is_file_exit(): path = pathlib.Path('cookies.txt') if not os.path.getsize(path): return False return path.is_file() if __name__ == '__main__': if is_file_exit(): login_with_cookies() else: login_zhi_hu() time.sleep(4) cookies = driver.get_cookies() with open("cookies.txt", "w") as fp: json.dump(cookies, fp)
Nienter/mypy
personal/douban.py
douban.py
py
3,789
python
en
code
0
github-code
6
[ { "api_name": "selenium.webdriver.Chrome", "line_number": 9, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 9, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 30, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 33, "usage_type": "call" }, { "api_name": "selenium.webdriver.ActionChains", "line_number": 37, "usage_type": "call" }, { "api_name": "selenium.webdriver.ActionChains", "line_number": 38, "usage_type": "call" }, { "api_name": "selenium.webdriver.ActionChains", "line_number": 42, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 44, "usage_type": "call" }, { "api_name": "selenium.webdriver.ActionChains", "line_number": 45, "usage_type": "call" }, { "api_name": "json.load", "line_number": 88, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 100, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 104, "usage_type": "call" }, { "api_name": "os.path.getsize", "line_number": 105, "usage_type": "call" }, { "api_name": "os.path", "line_number": 105, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 115, "usage_type": "call" }, { "api_name": "json.dump", "line_number": 118, "usage_type": "call" } ]
19400090459
from typing import List class Solution: def minFallingPathSum(self, A: List[List[int]]) -> int: h = len(A) w = len(A[0]) for i in range(1,h): for j in range(w): if j == 0: A[i][j] = min(A[i-1][j] + A[i][j],A[i-1][j+1] + A[i][j]) elif j == w - 1: A[i][j] = min(A[i-1][j-1] + A[i][j],A[i-1][j] + A[i][j]) else: A[i][j] = min(A[i-1][j-1] + A[i][j],A[i-1][j] + A[i][j],A[i-1][j+1] + A[i][j]) print(A) return min(A[-1]) A = [[51,24],[-50,82]] r = Solution().minFallingPathSum(A) print(r)
Yigang0622/LeetCode
minFallingPathSum.py
minFallingPathSum.py
py
653
python
en
code
1
github-code
6
[ { "api_name": "typing.List", "line_number": 5, "usage_type": "name" } ]
2502699508
# To manage matrices correctly # At deployment, check if new matrices have been added to old batch sizes import grid import orjson import sys # VERSION_FILE VERSION_FILE = "versioning.json" def readable_string(batch, num_infected, infection_rate): m,n = grid.parse_batch(batch) return f'{n} Samples (with {m} tests. Upto {num_infected} positives)' def update_cache(mlabels, matrices, codenames, jfile): old_data = {} f = {} try: with open(jfile, 'rb') as reader: old_data = orjson.loads(reader.read()) except Exception as e: print(f'Error : {e}') for batch in mlabels: print(batch) m,n,i = mlabels[batch] mat = matrices[m] g, c = grid.generate_grid_and_cell_data(batch, mat) f[batch] = {m : {"num_infected" : n, "infection_rate" : i, "readable" : readable_string(batch, n, i), "gridData" : g, "cellData" : c, "matrix" : m, "codename" : codenames[m]}} ob = set(old_data) nb = set(f) for batch in old_data: od = old_data[batch] # Batch does not exist in new data if batch not in f or not f[batch]: print(f"Batch {batch} not in new matrix data, marking as inactive") od["metadata"]["active"] = False continue nd = f[batch] oa = od["metadata"]["active"] oam = od["metadata"]["matrices"][-1] if oam in nd: # Currently active matrix in old data is same as new data if not oa: od["metadata"]["active"] = True od[m] = nd[m] continue # If old batch is not active, check if there is a key in new data if not oa: for m in nd: # Mark m as active, increment version, add to od od["metadata"]["latest_version"] += 1 od["metadata"]["matrices"].append(m) od["metadata"]["active"] = True od[m] = nd[m] continue # Make matrix in new data active for m in nd: # Mark m as active, increment version, add to od od["metadata"]["latest_version"] += 1 od["metadata"]["matrices"].append(m) od["metadata"]["active"] = True od[m] = nd[m] # New batches can be safely added to old_data for batch in nb - ob: print(f"New batch added - {batch}") od = {"metadata" : {}} od["metadata"]["active"] = True od["metadata"]["latest_version"] = 0 nd = f[batch] for m in nd: od["metadata"]["matrices"] = [m] od[m] = nd[m] old_data[batch] = od jstr = orjson.dumps(old_data) with open(jfile, "wb") as outfile: outfile.write(jstr) def load_cache(): data = {} try: with open(VERSION_FILE, 'rb') as reader: data = orjson.loads(reader.read()) except Exception as e: raise active_batches = {} all_batches = {} for batch in data: meta = data[batch]["metadata"] mats = meta["matrices"] is_active = meta["active"] mat_names = set(data[batch]) - {"metadata"} curr_version = len(mats) - 1 for i, m in enumerate(mats): all_batches[f'{batch}_v{i}'] = data[batch][m] if i == curr_version and is_active: active_batches[f'{batch}_v{i}'] = data[batch][m] # Active batches to be sorted by number of samples sorted_bnames = sorted((grid.parse_batch(b)[1], b) for b in active_batches) sorted_active_batches = {b : active_batches[b] for n, b in sorted_bnames} bbs = {b : grid.batch_size_from_batch_name(b) for b in all_batches} batch_size_to_batch = {} for bn, bs in bbs.items(): batch_size_to_batch[bs] = batch_size_to_batch.get(bs, []) batch_size_to_batch[bs].append({bn : all_batches[bn]["codename"]}) return sorted_active_batches, all_batches, batch_size_to_batch if __name__ == '__main__': from compute_wrapper import get_matrix_sizes_and_labels, get_matrix_labels_and_matrices, get_matrix_codenames update_cache(get_matrix_sizes_and_labels(), get_matrix_labels_and_matrices(), get_matrix_codenames(), VERSION_FILE)
Aakriti28/tapestry-server
old-server/matrix_manager.py
matrix_manager.py
py
4,223
python
en
code
0
github-code
6
[ { "api_name": "grid.parse_batch", "line_number": 12, "usage_type": "call" }, { "api_name": "orjson.loads", "line_number": 20, "usage_type": "call" }, { "api_name": "grid.generate_grid_and_cell_data", "line_number": 27, "usage_type": "call" }, { "api_name": "orjson.dumps", "line_number": 74, "usage_type": "call" }, { "api_name": "orjson.loads", "line_number": 82, "usage_type": "call" }, { "api_name": "grid.parse_batch", "line_number": 98, "usage_type": "call" }, { "api_name": "grid.batch_size_from_batch_name", "line_number": 100, "usage_type": "call" }, { "api_name": "compute_wrapper.get_matrix_sizes_and_labels", "line_number": 109, "usage_type": "call" }, { "api_name": "compute_wrapper.get_matrix_labels_and_matrices", "line_number": 109, "usage_type": "call" }, { "api_name": "compute_wrapper.get_matrix_codenames", "line_number": 109, "usage_type": "call" } ]
8063903284
import logging import subprocess from subprocess import Popen, PIPE def run(command: str) -> None: """ :param command: shell statement :return: """ logging.debug(command) subprocess.call(command, shell=True, universal_newlines=True) def call(command: str) -> str: """ :param command: shell statement :return the result of execute the shell statement """ logging.debug(command) with Popen(command, shell=True, stdout=PIPE, stderr=PIPE, universal_newlines=True) as fd: out, err = fd.communicate() if fd.returncode: raise Exception(err.strip()) logging.debug(out.strip()) return out.strip() def ssh_call(address: str, work_dir: str, command: str) -> str: """ :param address: the remote server ip :param work_dir: the remote server dir :param command: the shell statement :return the result of execute the shell statement """ return call( """ ssh -q {address} 'cd {work_dir} && {command}' """ .format(address=address, work_dir=work_dir, command=command) )
leaderli/li_py
li/li_bash.py
li_bash.py
py
1,123
python
en
code
0
github-code
6
[ { "api_name": "logging.debug", "line_number": 11, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 12, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 20, "usage_type": "call" }, { "api_name": "subprocess.Popen", "line_number": 21, "usage_type": "call" }, { "api_name": "subprocess.PIPE", "line_number": 21, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 25, "usage_type": "call" } ]
24769179889
squaredWeight = None def performCollection(cityLevel, filename): import os if cityLevel: outputDir = 'GoogleTrendsCity/' if not os.path.exists(outputDir): os.mkdir(outputDir) else: outputDir = 'GoogleTrendsCountry/' if not os.path.exists(outputDir): os.mkdir(outputDir) import pickle infile = open(filename,'rb') kw_list = pickle.load(infile) infile.close() import time from pytrends.request import TrendReq pytrends = TrendReq() count = 0 for keyword in kw_list: count += 1 if not '/' in keyword: filename = outputDir+ keyword + '.pickle' from os import path if not path.exists(filename): pytrends.build_payload([keyword]) if cityLevel: df = pytrends.interest_by_region(resolution='CITY', inc_low_vol=True, inc_geo_code=False) else: df = pytrends.interest_by_region(resolution='COUNTRY', inc_low_vol=True, inc_geo_code=False) import pickle outfile = open(filename,'wb') pickle.dump(df,outfile) outfile.close() #time.sleep(3) print(count) def formCityList(filename): filenameToWriteTo = "allCities.pickle" from os import path if not path.exists(filenameToWriteTo): outputDir = 'GoogleTrendsCity/' import pickle infile = open(filename,'rb') kw_list = pickle.load(infile) infile.close() count = 0 allCities = {} for keyword in kw_list: print(count) if count != 897: filename = outputDir+ keyword + '.pickle' from os import path if path.exists(filename): import pickle infile = open(filename,'rb') df = pickle.load(infile) infile.close() if len(df) != 0: cities = list(df['geoName']) latLong = list(df['coordinates']) for i in range(0, len(cities), 1): cityName = cities[i] if not cityName.lower() in allCities: allCities[cityName.lower()] = latLong[i] count += 1 import pickle outfile = open(filenameToWriteTo,'wb') pickle.dump(allCities, outfile) outfile.close() def averageAndStdDevAcrossAssociationsMadeByGoogle(cityLevel, filename): import os if cityLevel: outputDir = 'GoogleTrendsCity/' if not os.path.exists(outputDir): os.mkdir(outputDir) else: outputDir = 'GoogleTrendsCountry/' if not os.path.exists(outputDir): os.mkdir(outputDir) import os import pickle infile = open(filename,'rb') kw_list = pickle.load(infile) infile.close() print(len(kw_list)) count = 0 valuesReturned = [] zeroValueCount = 0 for keyword in kw_list: if keyword != 'con': filename = outputDir+ keyword + '.pickle' from os import path if path.exists(filename): import pickle infile = open(filename,'rb') df = pickle.load(infile) infile.close() try: valuesReturned.append(len(df)) except: zeroValueCount += 1 count += 1 import numpy as np print(np.average(valuesReturned)) print(np.std(valuesReturned)) print(zeroValueCount) print(count) def assignRegion(cityLevel, filename, outputFile): import os outputDirAssignRegion = 'AssignRegion/' if not os.path.exists(outputDirAssignRegion): os.mkdir(outputDirAssignRegion) outputDirAssignRegion = 'AssignRegionWeightSquared/' if not os.path.exists(outputDirAssignRegion): os.mkdir(outputDirAssignRegion) outputDirAssignRegion = 'AssignRegion/' if squaredWeight: outputDirAssignRegion = 'AssignRegionWeightSquared/' isoToLat, isoToLong = getCountryInfo() print(isoToLat) print(isoToLong) import os if cityLevel: outputDir = 'GoogleTrendsCity/' if not os.path.exists(outputDir): os.mkdir(outputDir) else: outputDir = 'GoogleTrendsCountry/' if not os.path.exists(outputDir): os.mkdir(outputDir) import pickle infile = open(filename,'rb') kw_list = pickle.load(infile) infile.close() noData = 0 noWeightsOver0 = 0 rows = [['keyword', 'using top 1', 'using top 3', 'using weight > 50', 'all']] keywordToRegion1 = {} keywordToRegion2 = {} keywordToRegion3 = {} keywordToRegion4 = {} for keyword in kw_list: if keyword != 'con': filename = outputDir+ keyword + '.pickle' from os import path if path.exists(filename): import pickle infile = open(filename,'rb') df = pickle.load(infile) infile.close() dataReturnedByTrends = False try: weights = list(df['value']) weightsValues = [] for value in weights: weightsValues.append(value[0]) df['weights'] = weightsValues df = df.loc[df['weights'] > 0] dataReturnedByTrends = True except: noData += 1 if dataReturnedByTrends: if len(df) > 0: df1 = df.nlargest(1, 'weights') df2 = df.nlargest(3, 'weights') df3 = df.loc[df['weights'] > 50] df4 = df label1 = predictRegion(cityLevel, df1, isoToLong) if label1 != None: keywordToRegion1[keyword] = label1 label2 = predictRegion(cityLevel, df2, isoToLong) if label2 != None: keywordToRegion2[keyword] = label2 label3 = predictRegion(cityLevel, df3, isoToLong) if label3 != None: keywordToRegion3[keyword] = label3 label4 = predictRegion(cityLevel, df4, isoToLong) if label4 != None: keywordToRegion4[keyword] = label4 if label1 != None or label2 != None or label3 != None or label4 != None: rows.append([keyword, label1, label2, label3, label4]) else: noWeightsOver0 += 1 print(str(noData) + " out of " + str(len(kw_list)) + " tokens had no data.") print(str(noWeightsOver0) + " out of " + str(len(kw_list)) + " tokens had no weights.") writeRowsToCSV(rows, outputDirAssignRegion+outputFile) rows = [['Resriction', 'Predictions', 'NA_SA', 'AF_EUR', 'AS_OC', 'Total Accuracy', 'Total Predictions']] rows.append(['using top 1']+evaluatePredictions(keywordToRegion1)) rows.append(['using top 3']+evaluatePredictions(keywordToRegion2)) rows.append(['using weight > 50']+evaluatePredictions(keywordToRegion3)) rows.append(['all']+evaluatePredictions(keywordToRegion4)) writeRowsToCSV(rows, outputDirAssignRegion+"Performance"+outputFile) def predictRegion(cityLevel, df, isoToLong): import numpy as np if cityLevel: geoNameToCoordinates = dict(zip(list(df["geoName"]), list(df['coordinates']))) geoNameToWeight = dict(zip(list(df["geoName"]), list(df['weights']))) label = None l1 = 0 l2 = 0 l3 = 0 for geoName in geoNameToCoordinates: coordinate = geoNameToCoordinates[geoName] weight = geoNameToWeight[geoName] if squaredWeight: weight = weight*weight long = coordinate['lng'] if long <= -25: l1 += weight elif long <= 65: l2 += weight else: l3 += weight Americas = l1 Africa_Europe = l2 Asia_Australia = l3 total = l1+l2+l3 if total > 0: ratioAmericas = float(Americas)/float(total) ratioAfrica_Europe = float(Africa_Europe)/float(total) ratioAsia_Australia = float(Asia_Australia)/float(total) ratioMax = np.max([ratioAmericas, ratioAfrica_Europe, ratioAsia_Australia]) label = None if ratioAmericas == ratioMax: label = "Americas" elif ratioAfrica_Europe == ratioMax: label = "Africa_Europe" else: label = "Asia_Australia" else: label = None else: countryISOCodeToWeight = dict(zip(list(df["geoCode"]), list(df['weights']))) label = None l1 = 0 l2 = 0 l3 = 0 for countryISOCode in countryISOCodeToWeight: weight = countryISOCodeToWeight[countryISOCode] long = isoToLong[countryISOCode] if long <= -25: l1 += weight elif long <= 65: l2 += weight else: l3 += weight Americas = l1 Africa_Europe = l2 Asia_Australia = l3 total = l1+l2+l3 if total > 0: ratioAmericas = float(Americas)/float(total) ratioAfrica_Europe = float(Africa_Europe)/float(total) ratioAsia_Australia = float(Asia_Australia)/float(total) ratioMax = np.max([ratioAmericas, ratioAfrica_Europe, ratioAsia_Australia]) label = None if ratioAmericas == ratioMax: label = "Americas" elif ratioAfrica_Europe == ratioMax: label = "Africa_Europe" else: label = "Asia_Australia" else: label = None return label def getCountryInfo(): #file with average lat, long for each country #country info from: https://gist.github.com/tadast/8827699#file-countries_codes_and_coordinates-csv import pandas as pd filePath = 'countries_codes_and_coordinates.csv' df=pd.read_csv(filePath, encoding='utf-8') print(df.columns) temp = list(df["Alpha-2 code"]) countryList = [] for isoCode in temp: countryList.append(str(isoCode).strip().replace('"', '')) latitudeList = [] temp = list(df['Latitude (average)']) for s in temp: latitudeList.append(float(s.strip().replace('"', ''))) longitudeList = [] temp = list(df['Longitude (average)']) for s in temp: longitudeList.append(float(s.strip().replace('"', ''))) isoToLat = dict(zip(countryList, latitudeList)) isoToLong = dict(zip(countryList, longitudeList)) isoToLat['CW'] = 12.1696 isoToLong['CW'] = -68.9900 isoToLat['XK'] = 42.6026 isoToLong['XK'] = 20.9030 isoToLat['SX'] = 18.0425 isoToLong['SX'] = -63.0548 isoToLat['MF'] = 18.0826 isoToLong['MF'] = -63.0523 isoToLat['AX'] = 60.1785 isoToLong['AX'] = 19.9156 isoToLat['BL'] = 17.9000 isoToLong['BL'] = -62.8333 isoToLat['BQ'] = 12.1684 isoToLong['BQ'] = -68.3082 return isoToLat, isoToLong def writeRowsToCSV(rows, fileToWriteToCSV): import csv if len(rows) > 0: with open(fileToWriteToCSV, "w", encoding='utf-8') as fp: a = csv.writer(fp, delimiter=',') a.writerows(rows) fp.close() print("Written " + str(len(rows)) + " rows to: " + fileToWriteToCSV) def evaluatePredictions(tokenToPrediction): import pandas as pd filePath = "Input/combineDBsCoordinateGroundTruthDiv3.csv" df=pd.read_csv(filePath, encoding='utf-8') tokenToLabel = dict(zip(list(df["id"]), list(df['label']))) l1 = 0 l2 = 0 l3 = 0 for token in tokenToPrediction: prediction = tokenToPrediction[token] if prediction == 'Americas': l1 += 1 elif prediction == 'Africa_Europe': l2 += 1 else: l3 += 1 print(str(l1) + ", " + str(l2) + ", " + str(l3) + " Americas vs. Africa_Europe vs. Asia_Australia") correct = {'Americas':0,'Africa_Europe':0,'Asia_Australia':0} wrong = {'Americas':0,'Africa_Europe':0,'Asia_Australia':0} for token in tokenToPrediction: label = tokenToLabel[token] prediction = tokenToPrediction[token] if label == prediction: if label == 'Americas': correct['Americas'] += 1 elif label == 'Africa_Europe': correct['Africa_Europe'] += 1 elif label == 'Asia_Australia': correct['Asia_Australia'] += 1 else: print("unknown label") import sys sys.exit() else: if label == 'Americas': wrong['Americas'] += 1 elif label == 'Africa_Europe': wrong['Africa_Europe'] += 1 elif label == 'Asia_Australia': wrong['Asia_Australia'] += 1 else: print("unknown label") import sys sys.exit() import numpy as np accuracy = float(np.sum(list(correct.values())))/float(np.sum(list(correct.values()))+np.sum(list(wrong.values()))) row = [] predictions = [] for key in ['Americas', 'Africa_Europe', 'Asia_Australia']: predictions.append(float(correct[key]+wrong[key])) precision = [] for key in ['Americas', 'Africa_Europe', 'Asia_Australia']: precision.append(round(float(correct[key])/float(correct[key]+wrong[key])*100,2)) row = [str(predictions)]+precision row += [round(accuracy*100, 2), float(np.sum(list(correct.values()))+np.sum(list(wrong.values())))] return row def compareQueryCityLocationVsTopTrendingCityLocation(): rows = [['query city', 'query city geo', 'top Google Trends city', 'top city geo', 'distance between two']] distanceBetweenGoogleQueryCityAndTopCityFromGoogleTrends = [] noWeightsOver0 = 0 noData = 0 filename = "allCities.pickle" import pickle infile = open(filename,'rb') cityToLatLong = pickle.load(infile) infile.close() count = 0 for cityName in cityToLatLong: if not '/' in cityName: queryCityCoordinates = (cityToLatLong[cityName]['lat'], cityToLatLong[cityName]['lng']) queryCityName = cityName outputDir = 'GoogleTrendsCity/' filename = outputDir+ cityName + '.pickle' from os import path if path.exists(filename): count += 1 import pickle infile = open(filename,'rb') df = pickle.load(infile) infile.close() try: weights = list(df['value']) weightsValues = [] for value in weights: weightsValues.append(value[0]) df['weights'] = weightsValues df = df.loc[df['weights'] > 0] if len(df) > 0: df1 = df.nlargest(1, 'weights') topGoogleTrendCityCoordinates = list(df1['coordinates'])[0] topGoogleTrendCityName = list(df1['geoName'])[0] topGoogleTrendCityCoordinates = (topGoogleTrendCityCoordinates['lat'], topGoogleTrendCityCoordinates['lng']) from geopy.distance import geodesic from geopy.distance import great_circle distanceBetweenTheTwo = geodesic(queryCityCoordinates, topGoogleTrendCityCoordinates).miles distanceBetweenGoogleQueryCityAndTopCityFromGoogleTrends.append(distanceBetweenTheTwo) rows.append([queryCityName, str(queryCityCoordinates), topGoogleTrendCityName, str(topGoogleTrendCityCoordinates), distanceBetweenTheTwo]) else: noWeightsOver0 += 1 except: noData += 1 print(str(noData) + " out of " + str(count) + " tokens had no data.") print(str(noWeightsOver0) + " out of " + str(count) + " tokens had no weights.") import numpy as np print(np.average(distanceBetweenGoogleQueryCityAndTopCityFromGoogleTrends)) print(np.std(distanceBetweenGoogleQueryCityAndTopCityFromGoogleTrends)) writeRowsToCSV(rows, 'topCityAnalysis.csv') if __name__ == '__main__': pass step1 = False if step1: performCollection(True, 'Input/459.pickle') #Google Trends at city level performCollection(True, 'Input/3183.pickle') #Google Trends at city level performCollection(False, 'Input/459.pickle') #Google Trends at country level performCollection(False, 'Input/3183.pickle') #Google Trends at country level '''Google Trends does not always return the same number of cities the following code examines average/standard deviation for the number of cities returned''' if False: averageAndStdDevAcrossAssociationsMadeByGoogle(True, 'Input/459.pickle') averageAndStdDevAcrossAssociationsMadeByGoogle(True, 'Input/3183.pickle') averageAndStdDevAcrossAssociationsMadeByGoogle(False, 'Input/459.pickle') averageAndStdDevAcrossAssociationsMadeByGoogle(False, 'Input/3183.pickle') step2 = True if step2: squaredWeight = True #This parameter raises the weight associated by Google via weight=weight*weight filename = 'Input/459.pickle' outputFilename = '459.csv' assignRegion(True, filename, str(True)+outputFilename) assignRegion(False, filename, str(False)+outputFilename) filename = 'Input/3183.pickle' outputFilename = '3183.csv' assignRegion(True, filename, str(True)+outputFilename) assignRegion(False, filename, str(False)+outputFilename) '''Google Trends at city resolution associates tokens with city locations For each city, the city name and its coordinates are stored in file "allCities.pickle" Next we send each city name to Google Trends and utilize the top city result For example 'chicago' is sent and the top city result from Google Trends is returned The coordinates for both city query and the Google trend city are known These coordinates are used to compute distance in miles. Over 4789 cities on average the top city result from Google Trends is 362 miles away +/- 1335 miles. So Google Trends not same as geocoding, but for query such as Moscow Google is able to capture that this query is not likely to be utilized by Russian speakers in Moscow since those would like utilize Cyrilis version. The results of comparison for each city stored in: topCityAnalysis.csv''' step3 = False if step3: formCityList('Input/3183.pickle') #forms list of cities from Google Trend Associations, stores into "allCities.pickle" performCollection(True, "allCities.pickle") #Google Trends at city level compareQueryCityLocationVsTopTrendingCityLocation()
apanasyu/GoogleTrends
Main.py
Main.py
py
20,395
python
en
code
0
github-code
6
[ { "api_name": "os.path.exists", "line_number": 6, "usage_type": "call" }, { "api_name": "os.path", "line_number": 6, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 7, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 11, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 15, "usage_type": "call" }, { "api_name": "pytrends.request", "line_number": 20, "usage_type": "name" }, { "api_name": "pytrends.request.TrendReq", "line_number": 20, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path", "line_number": 27, "usage_type": "name" }, { "api_name": "pytrends.request.build_payload", "line_number": 28, "usage_type": "call" }, { "api_name": "pytrends.request", "line_number": 28, "usage_type": "name" }, { "api_name": "pytrends.request.interest_by_region", "line_number": 31, "usage_type": "call" }, { "api_name": "pytrends.request", "line_number": 31, "usage_type": "name" }, { "api_name": "pytrends.request.interest_by_region", "line_number": 33, "usage_type": "call" }, { "api_name": "pytrends.request", "line_number": 33, "usage_type": "name" }, { "api_name": "pickle.dump", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path", "line_number": 45, "usage_type": "name" }, { "api_name": "pickle.load", "line_number": 50, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path", "line_number": 60, "usage_type": "name" }, { "api_name": "pickle.load", "line_number": 63, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 77, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 84, "usage_type": "call" }, { "api_name": "os.path", "line_number": 84, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 85, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 88, "usage_type": "call" }, { "api_name": "os.path", "line_number": 88, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 89, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 94, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 104, "usage_type": "call" }, { "api_name": "os.path", "line_number": 104, "usage_type": "name" }, { "api_name": "pickle.load", "line_number": 107, "usage_type": "call" }, { "api_name": "numpy.average", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 117, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 124, "usage_type": "call" }, { "api_name": "os.path", "line_number": 124, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 125, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 127, "usage_type": "call" }, { "api_name": "os.path", "line_number": 127, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 128, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 139, "usage_type": "call" }, { "api_name": "os.path", "line_number": 139, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 140, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 143, "usage_type": "call" }, { "api_name": "os.path", "line_number": 143, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 144, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 148, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 162, "usage_type": "call" }, { "api_name": "os.path", "line_number": 162, "usage_type": "name" }, { "api_name": "pickle.load", "line_number": 165, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 246, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 280, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 297, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 336, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 344, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 377, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 388, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 391, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 401, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 413, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 424, "usage_type": "call" }, { "api_name": "os.path", "line_number": 424, "usage_type": "name" }, { "api_name": "pickle.load", "line_number": 428, "usage_type": "call" }, { "api_name": "geopy.distance.geodesic", "line_number": 449, "usage_type": "call" }, { "api_name": "numpy.average", "line_number": 460, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 461, "usage_type": "call" } ]
37164877474
import torch import numpy import pandas import sys import os import copy import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #Global option defaults that can be changed later by command line gcm_folder_path : str = "gcms" target_folder_path : str = "targets" class_index = "cat5" use_cuda : bool = False train_split: float = 0.8 test_split: float = 0.1 validation_split: float = 0.1 batch_size: int = 10 max_training_epochs: int = 200 CMD_HELP : str = """Options: --cuda uses nVidia CUDA acceleration for tensor calculations (recommended) --batch-size <batch size> sets the mini-batch size to use for training. Defaults to 10 if not supplied --gcms-path <folder/directory path> sets the path for the GCM CSV files to use as input. Defaults to ./gcms if not supplied --targets_path <folder/directory path> sets the path for the CSV files that contains the "cat5" class label column. Defaults to ./targets if not supplied. Note that a model is trained for each file that is found. --validation_percentage sets the percentage of instances to use as the validation set --test_percentage sets the percentage of instances to use as the final test set """ torch.set_printoptions(precision = 10) def normalise(t: torch.tensor): max: float = t.max() min: float = t.min() t = ((t - min) / (max - min)) #implicit broadcasting applied on scalars return t def parse_command_line(): i = 1 #sys.argv[0] contains the script name itself and can be ignored while i < len(sys.argv): if sys.argv[i] == "-h" or sys.argv[i] == "--help": print(CMD_HELP) sys.exit() elif sys.argv[i] == "--gcms-path": i += 1 global gcm_folder_path gcm_folder_path = sys.argv[i] elif sys.argv[i] == "--classlabel": i += 1 global class_index class_index = sys.argv[i] elif sys.argv[i] == "--cuda": global use_cuda use_cuda = True elif sys.argv[i] == "--targets-path": i += 1 global target_folder_path target_folder_path = sys.argv[i] elif sys.argv[i] == "--test-percentage": i += 1 global test_split test_percentage = float(sys.argv[i]) / 100.0 elif sys.argv[i] == "--validation-percentage": i += 1 global validation_split validation_percentage = float(sys.argv[i]) / 100.0 elif sys.argv[i] == "--batch-size": i += 1 global batch_size batch_size = int(sys.argv[i]) elif sys.argv[i] == "--max-epochs": i += 1 global max_training_epochs max_training_epochs = int(sys.argv[i]) else: print("Unknown argument: " + sys.argv[i] + "\n Use \"gcm-cnn -h\" to see valid commands") sys.exit() i += 1 global train_split train_split = 1.0 - test_split - validation_split assert(train_split > 0), "No instances left for training. Did the sum of your test and validation holdout percentages exceed 100%?" assert(batch_size > 0), "Batch size can't be negative!!!" def read_gcm_folder(path: str): #returns a folder of GCM CSVs as a 4-channel PyTorch Tensors filenames = os.listdir(path) files = [] for i in range(0, len(filenames)): nextfile = pandas.read_csv((path + "/" + filenames[i]), sep=",", skiprows=3, header=None) #explicitly skip 3 rows to discard header, longitude, latitude nextfile = nextfile.drop(nextfile.columns[0], axis=1) nextfile = torch.from_numpy(nextfile.values).type(torch.FloatTensor) if use_cuda == True: nextfile = nextfile.cuda() nextfile = nextfile.reshape(288,131,360) nextfile = normalise(nextfile) files.append(nextfile) return torch.stack(files, dim=1) def read_target_folder(path: str): #returns a folder of CSVs containing the class label as a list of PyTorch Tensors filenames = os.listdir(path) files = [] for i in range(0, len(filenames)): nextfile = pandas.read_csv((path + "/" + filenames[i]), sep=",") nextfile = nextfile[class_index] + 2 nextfile = torch.from_numpy(nextfile.values).type(torch.LongTensor) if use_cuda == True: nextfile = nextfile.cuda() files.append(nextfile) return files class Network(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(in_channels=len(os.listdir(gcm_folder_path)), out_channels=6, kernel_size=5) self.conv2 = nn.Conv2d(in_channels=6, out_channels=12, kernel_size=5) self.fc1 = nn.Linear(in_features= 30276, out_features=120) self.fc2 = nn.Linear(in_features=120, out_features=60) self.out = nn.Linear(in_features=60, out_features=5) #note hyperparameter choice is arbitrary except initial in and final out #they are dependant on the colour channels (3 since 3 GCMs) and output classes (5 since 5 classes on cat5) respectively def forward(self, t): # implement the forward pass # (1) input layer t = t #usually omitted since this is obviously trivial; size 360*131 # (2) hidden conv layer t = self.conv1(t) #Haven't implemented wrapping - so after a 5x5 convolution, discard borders meaning feature maps are now 6 * 127 * 356 (Channels * height * width) t = F.relu(t) t = F.avg_pool2d(t, kernel_size=2, stride=2) #pooling 2x2 with stride 2 - reduces to 6 * 178 * 63 # (3) hidden conv layer t = self.conv2(t) t = F.relu(t) t = F.avg_pool2d(t, kernel_size=2, stride=2) #pooling 2x2 with stride 2 - reduces to 12 * 29 * 87 # (4) hidden linear layer t = t.reshape(-1, 12 * 29 * 87) t = self.fc1(t) t = F.relu(t) # (5) hidden linear layer t = self.fc2(t) t = F.relu(t) # (6) output layer t = self.out(t) #t = F.softmax(t, dim=1) #implicitly performed by F.cross_entropy() return t #Setting options from command line parse_command_line() #print(target_tensors[0].size()[0]) #Reading files from disk into PyTorch tensors label_tensors = read_target_folder(target_folder_path) gcm_tensor = read_gcm_folder(gcm_folder_path) #Split the gcm_tensor into train, validation, test tensors instances = gcm_tensor.size()[0] train_tensor = gcm_tensor[:int(instances * train_split)] #note int() truncates/floors validation_tensor = gcm_tensor[int(instances * train_split):int(instances * (train_split + validation_split))] test_tensor = gcm_tensor[int(instances * (train_split + validation_split)):] #Now we set up a loop to train a network for each label file that was present for n in range(0, len(label_tensors)): #Creating pytorch dataset and dataloader for easy access to minibatch sampling without replacement in randomnised order train_set = torch.utils.data.TensorDataset(train_tensor, (label_tensors[n])[ : int(instances * train_split)]) train_loader = torch.utils.data.DataLoader(train_set, batch_size = batch_size, shuffle=True) validation_set = torch.utils.data.TensorDataset(validation_tensor, (label_tensors[n])[int(instances * train_split) : int(instances * (train_split + validation_split))]) validation_loader = torch.utils.data.DataLoader(validation_set, batch_size=validation_tensor.size()[0], shuffle = False) test_set = torch.utils.data.TensorDataset(test_tensor, (label_tensors[n])[int(instances * (train_split + validation_split)) : ]) test_loader = torch.utils.data.DataLoader(test_set, batch_size = test_tensor.size()[0], shuffle = False) #Initialising the CNN and gradient descender (optimizer) network = Network() if use_cuda == True: network = network.cuda() optimizer = optim.SGD(network.parameters(), lr = 0.01) #running the training loop epoch_correct : int = 0 epoch_loss : float = 0 lowest_valid_loss : float = float('inf') epochs_without_improvement = 0 best_network = copy.deepcopy(network) print("results for", os.listdir(target_folder_path)[n]) for epoch in range(0, max_training_epochs): previous_epoch_loss = epoch_loss epoch_correct = 0 epoch_loss = 0 for images, labels in train_loader: #Getting predictions before any training on this batch has occurred predictions = network(images) loss = F.cross_entropy(predictions, labels) #making the gradient step for this batch optimizer.zero_grad() loss.backward() optimizer.step() epoch_correct += predictions.argmax(dim=1).eq(labels).int().sum().item() epoch_loss += loss.item() valid_preds = network(validation_tensor) valid_loss = F.cross_entropy(valid_preds, label_tensors[n][int(instances * train_split) : int(instances * (train_split + validation_split))]) if (lowest_valid_loss > valid_loss) : lowest_valid_loss = valid_loss best_network = copy.deepcopy(network) epochs_without_improvement = 0 else: epochs_without_improvement += 1 if (epochs_without_improvement > 10) : print("stopping early") break print("epoch: ", epoch, "\ttrain_loss: ", round(epoch_loss, 5), "\ttrain_correct: ", epoch_correct, "\tvalidation_loss: ", round(valid_loss.item(),5), sep='' ) test_preds = best_network(test_tensor) test_loss = F.cross_entropy(test_preds, label_tensors[n][int(instances * (train_split + validation_split)) : ]) test_correct = test_preds.argmax(dim=1).eq(label_tensors[n][int(instances * (train_split + validation_split)) : ]).int().sum().item() print("test_correct: ", test_correct, "/", test_preds.size()[0], "\ttest_loss: ", round(test_loss.item(), 5), sep='' )
tigerwxu/gcm-cnn
gcm-cnn.py
gcm-cnn.py
py
10,296
python
en
code
0
github-code
6
[ { "api_name": "torch.set_printoptions", "line_number": 42, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 44, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 52, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 53, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 55, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 56, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 59, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 60, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 63, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 64, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 67, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 70, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 71, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 74, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 75, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 78, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 79, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 82, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 83, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 86, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 88, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 89, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 97, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 102, "usage_type": "call" }, { "api_name": "torch.FloatTensor", "line_number": 102, "usage_type": "attribute" }, { "api_name": "torch.stack", "line_number": 109, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 112, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 115, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 117, "usage_type": "call" }, { "api_name": "torch.LongTensor", "line_number": 117, "usage_type": "attribute" }, { "api_name": "torch.nn.Module", "line_number": 124, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 124, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 127, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 127, "usage_type": "name" }, { "api_name": "os.listdir", "line_number": 127, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 128, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 128, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 130, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 130, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 131, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 131, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 132, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 132, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 145, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 145, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool2d", "line_number": 146, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 146, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 151, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 151, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool2d", "line_number": 152, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 152, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 158, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 158, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 162, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 162, "usage_type": "name" }, { "api_name": "torch.utils.data.TensorDataset", "line_number": 190, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 190, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 191, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 191, "usage_type": "attribute" }, { "api_name": "torch.utils.data.TensorDataset", "line_number": 192, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 192, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 193, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 193, "usage_type": "attribute" }, { "api_name": "torch.utils.data.TensorDataset", "line_number": 194, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 194, "usage_type": "attribute" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 195, "usage_type": "call" }, { "api_name": "torch.utils", "line_number": 195, "usage_type": "attribute" }, { "api_name": "torch.optim.SGD", "line_number": 201, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 201, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 208, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 210, "usage_type": "call" }, { "api_name": "torch.nn.functional.cross_entropy", "line_number": 219, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 219, "usage_type": "name" }, { "api_name": "torch.nn.functional.cross_entropy", "line_number": 231, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 231, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 235, "usage_type": "call" }, { "api_name": "torch.nn.functional.cross_entropy", "line_number": 247, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 247, "usage_type": "name" } ]
36066284113
#%% from PIL import Image import numpy as np import onnxruntime import torch import cv2 def preprocess_image(image_path, height, width, channels=3): image = Image.open(image_path) image = image.resize((width, height), Image.LANCZOS) image_data = np.asarray(image).astype(np.float32) image_data = image_data.transpose([2, 0, 1]) # transpose to CHW mean = np.array([0.079, 0.05, 0]) + 0.406 std = np.array([0.005, 0, 0.001]) + 0.224 for channel in range(image_data.shape[0]): image_data[channel, :, :] = (image_data[channel, :, :] / 255 - mean[channel]) / std[channel] image_data = np.expand_dims(image_data, 0) return image_data #%% def softmax(x): """Compute softmax values for each sets of scores in x.""" e_x = np.exp(x - np.max(x)) return e_x / e_x.sum() def run_sample(session, image_file, categories): output = session.run([], {'input':preprocess_image(image_file, 224, 224)})[0] output = output.flatten() output = softmax(output) # this is optional top5_catid = np.argsort(-output)[:5] for catid in top5_catid: print(categories[catid], output[catid]) # write the result to a file with open("result.txt", "w") as f: for catid in top5_catid: f.write(categories[catid] + " " + str(output[catid]) + " \r") #%% # create main function if __name__ == "__main__": # Read the categories with open("imagenet_classes.txt", "r") as f: categories = [s.strip() for s in f.readlines()] # Create Inference Session session = onnxruntime.InferenceSession("mobilenet_v2_float.onnx") # get image from camera cap = cv2.VideoCapture(0) cap.set(3,640) # set Width cap.set(4,480) # set Height # capture image from camera ret, frame = cap.read() frame = cv2.flip(frame, -1) # Flip camera vertically cv2.imwrite('capture.jpg', frame) cap.release() cv2.destroyAllWindows() run_sample(session, 'capture.jpg', categories) # %%
cassiebreviu/onnxruntime-raspberrypi
inference_mobilenet.py
inference_mobilenet.py
py
2,000
python
en
code
4
github-code
6
[ { "api_name": "PIL.Image.open", "line_number": 9, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 9, "usage_type": "name" }, { "api_name": "PIL.Image.LANCZOS", "line_number": 10, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 10, "usage_type": "name" }, { "api_name": "numpy.asarray", "line_number": 11, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 11, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 13, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 14, "usage_type": "call" }, { "api_name": "numpy.expand_dims", "line_number": 17, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 31, "usage_type": "call" }, { "api_name": "onnxruntime.InferenceSession", "line_number": 49, "usage_type": "call" }, { "api_name": "cv2.VideoCapture", "line_number": 52, "usage_type": "call" }, { "api_name": "cv2.flip", "line_number": 58, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 59, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 61, "usage_type": "call" } ]
30117142033
import numpy as np from PIL import Image class predict_day_night_algos: def __init__(self,img_path,algorithm_choice): self.img_path = img_path self.algorithm_choice = algorithm_choice def select_algorithm(self): """ the function selects which algorithm, based on the user input """ algo_choices = ["intensity_based","pixel_based"] if algo_choices[self.algorithm_choice] == "intensity_based": print("Using Intensity based method") intensity_value = self.intensity_algorithm() if intensity_value >= 0.35: return "day" else: return "night" elif algo_choices[self.algorithm_choice] == "pixel_based": print("Using pixel based method") percentage_darker_pixels = self.pixel_percentage_algorithm() if percentage_darker_pixels > 0.75: return "night" else: return "day" def intensity_algorithm(self): """ description :the function calculates the intensity based on HSI model, intensity = (R+G+B)/3, where R,G,B are all normalised arrays/bands input params : the image path return : intensity value of the image(single value) """ ### Reading the images #### img = Image.open(self.img_path) ###converting to numpy array### arr = np.array(img) ###normalising the bands individually### Rn,Gn,Bn = (arr[:,:,0]/255),(arr[:,:,1]/255),(arr[:,:,2]/255) ###calculating the Intensity based on HSI model#### intensity_arr = (Rn+Gn+Bn)/3 #### taking average of the intensity array based on number of pixels in the intensity array ## intensity_value = np.sum(intensity_arr)/(intensity_arr.shape[0]*intensity_arr.shape[1]) return intensity_value def pixel_percentage_algorithm(self): """ description : this function calculates the percentage of darker pixels, more the darker pixels tends to darker intensity in the image. input params : the image path return : percentage of number of pixels """ ### Reading the images #### img = Image.open(self.img_path) ###converting to numpy array### arr = np.array(img) ### Calculating the number of pixels in the range 0--40, pixels in this range refer to darker intensity ### num_darker_pixels = np.sum(np.unique(arr,return_counts=True)[1][0:40]) ###Calculating the percentage #### percentage_darker_pixels = (num_darker_pixels)/(arr.shape[0]*arr.shape[1]*arr.shape[2]) ##### Rounding the percentage value ##### percentage_darker_pixels = round(percentage_darker_pixels,2) return percentage_darker_pixels
shivargha98/shivargha_bandopadhyay
predict_day_night.py
predict_day_night.py
py
2,888
python
en
code
0
github-code
6
[ { "api_name": "PIL.Image.open", "line_number": 42, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 42, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 50, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 62, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 62, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 66, "usage_type": "call" } ]
30669751378
import os import cv2 dir = "/Users/sunxiaofei/PycharmProjects/remote-server-projects/unlabeled_dataset/data" for i, eachVid in enumerate(os.listdir(dir)): vPath = os.path.join(dir, eachVid) vname = vPath.split("/")[-1][:-4] print(vname) print(vPath) vidcap = cv2.VideoCapture(vPath) success,image = vidcap.read() count = 0 valid_count = 0 save_path = "./pic_data/"+vname if not os.path.exists(save_path): os.makedirs(save_path) while success: if count%40==0: valid_count += 1 cv2.imwrite("./pic_data/"+vname+"/"+str(valid_count)+".jpg", image) # save frame as JPEG file success,image = vidcap.read() print('Read a new frame: ', success) count += 1
sxfduter/python_utils
video_frame_extraction.py
video_frame_extraction.py
py
709
python
en
code
0
github-code
6
[ { "api_name": "os.listdir", "line_number": 6, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 7, "usage_type": "call" }, { "api_name": "os.path", "line_number": 7, "usage_type": "attribute" }, { "api_name": "cv2.VideoCapture", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.imwrite", "line_number": 21, "usage_type": "call" } ]
4828707472
from fastapi.security import OAuth2PasswordBearer from sqlalchemy.orm import Session from models import Quote, Title, Year from schemas import QuoteBase, QuoteCreate, TitleBase, TitleCreate, YearBase, YearCreate import random import auth import models import schemas oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") def create_quote(db: Session, quote: QuoteCreate, title_text: str, year_text: str): db_title = db.query(Title).filter(Title.text == title_text).first() if not db_title: db_title = Title(text=title_text) db.add(db_title) db.commit() db.refresh(db_title) db_year = db.query(Year).filter(Year.text == year_text).first() if not db_year: db_year = Year(text=year_text) db.add(db_year) db.commit() db.refresh(db_year) db_quote = Quote(text=quote.text, name=db_title, periode=db_year) db.add(db_quote) db.commit() db.refresh(db_quote) return db_quote #get quote by id def get_quote(db: Session, quote_id: int): return db.query(Quote).filter(Quote.id == quote_id).first() #get random quote between the first and the 10th def get_quote_random(db:Session): id = 6 return db.query(Quote).filter(Quote.id == 6) #update quote by id def update_quote(db: Session, quote_id: int, quote: QuoteBase): db_quote = db.query(Quote).filter(Quote.id == quote_id).first() db_quote.text = quote.text db.commit() db.refresh(db_quote) return db_quote #delete quote by id def delete_quote(db: Session, quote_id: int): db_quote = db.query(Quote).filter(Quote.id == quote_id).first() db.delete(db_quote) db.commit() return {"message": "Quote deleted"} # def get_title(db: Session, title_id: int): return db.query(Title).filter(Title.id == title_id).first() def delete_title(db: Session, title_id: int): db_title = db.query(Title).filter(Title.id == title_id).first() db.delete(db_title) db.commit() return {"message": "Title deleted"} def get_year(db: Session, year_id: int): return db.query(Year).filter(Year.id == year_id).first() def delete_year(db: Session, year_id: int): db_year = db.query(Year).filter(Year.id == year_id).first() db.delete(db_year) db.commit() return {"message": "Year deleted"} def get_all_quotes(db: Session,skip:int=0,limit:int=50): all_quotes = db.query(models.Quote).offset(skip).limit(limit).all() return all_quotes def get_all_titles(db: Session): return db.query(Title).all() def get_all_years(db: Session): return db.query(Year).all() # create admin def create_admin(db: Session, admin: schemas.AdminCreate): hashed_password = auth.get_password_hash(admin.password) db_admin = models.Admin(username=admin.username, hashed_password=hashed_password) adminexists = db.query(models.Admin).filter(models.Admin.username == admin.username).first() if adminexists: adminerror = { "username": "error", "id": 0, } return adminerror else: db.add(db_admin) db.commit() db.refresh(db_admin) return db_admin # get admin by username def get_admin_username(db: Session, username: str): admin = db.query(models.Admin).filter(models.Admin.username == username).first() return admin # delete admin by username def delete_admin(db: Session, admin: schemas.Admin): admin = db.query(models.Admin).filter(models.Admin.username == admin.username).first() db.delete(admin) db.commit() return admin
rubenpinxten/herexamen_API
myProject/crud.py
crud.py
py
3,543
python
en
code
0
github-code
6
[ { "api_name": "fastapi.security.OAuth2PasswordBearer", "line_number": 10, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 12, "usage_type": "name" }, { "api_name": "schemas.QuoteCreate", "line_number": 12, "usage_type": "name" }, { "api_name": "models.Title", "line_number": 13, "usage_type": "argument" }, { "api_name": "models.Title.text", "line_number": 13, "usage_type": "attribute" }, { "api_name": "models.Title", "line_number": 15, "usage_type": "call" }, { "api_name": "models.Year", "line_number": 20, "usage_type": "argument" }, { "api_name": "models.Year.text", "line_number": 20, "usage_type": "attribute" }, { "api_name": "models.Year", "line_number": 22, "usage_type": "call" }, { "api_name": "models.Quote", "line_number": 27, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 35, "usage_type": "name" }, { "api_name": "models.Quote", "line_number": 36, "usage_type": "argument" }, { "api_name": "models.Quote.id", "line_number": 36, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 39, "usage_type": "name" }, { "api_name": "models.Quote", "line_number": 41, "usage_type": "argument" }, { "api_name": "models.Quote.id", "line_number": 41, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 44, "usage_type": "name" }, { "api_name": "schemas.QuoteBase", "line_number": 44, "usage_type": "name" }, { "api_name": "models.Quote", "line_number": 45, "usage_type": "argument" }, { "api_name": "models.Quote.id", "line_number": 45, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 52, "usage_type": "name" }, { "api_name": "models.Quote", "line_number": 53, "usage_type": "argument" }, { "api_name": "models.Quote.id", "line_number": 53, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 59, "usage_type": "name" }, { "api_name": "models.Title", "line_number": 60, "usage_type": "argument" }, { "api_name": "models.Title.id", "line_number": 60, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 62, "usage_type": "name" }, { "api_name": "models.Title", "line_number": 63, "usage_type": "argument" }, { "api_name": "models.Title.id", "line_number": 63, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 68, "usage_type": "name" }, { "api_name": "models.Year", "line_number": 69, "usage_type": "argument" }, { "api_name": "models.Year.id", "line_number": 69, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 71, "usage_type": "name" }, { "api_name": "models.Year", "line_number": 72, "usage_type": "argument" }, { "api_name": "models.Year.id", "line_number": 72, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 77, "usage_type": "name" }, { "api_name": "models.Quote", "line_number": 78, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 81, "usage_type": "name" }, { "api_name": "models.Title", "line_number": 82, "usage_type": "argument" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 84, "usage_type": "name" }, { "api_name": "models.Year", "line_number": 85, "usage_type": "argument" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 88, "usage_type": "name" }, { "api_name": "schemas.AdminCreate", "line_number": 88, "usage_type": "attribute" }, { "api_name": "auth.get_password_hash", "line_number": 89, "usage_type": "call" }, { "api_name": "models.Admin", "line_number": 90, "usage_type": "call" }, { "api_name": "models.Admin", "line_number": 91, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 105, "usage_type": "name" }, { "api_name": "models.Admin", "line_number": 106, "usage_type": "attribute" }, { "api_name": "sqlalchemy.orm.Session", "line_number": 110, "usage_type": "name" }, { "api_name": "schemas.Admin", "line_number": 110, "usage_type": "attribute" }, { "api_name": "models.Admin", "line_number": 111, "usage_type": "attribute" } ]
42319245603
from setuptools import setup, find_packages import codecs import os import re here = os.path.abspath(os.path.dirname(__file__)) import prefetch_generator # loading README long_description = prefetch_generator.__doc__ version_string = '1.0.2' setup( name="prefetch_generator", version=version_string, description="a simple tool to compute arbitrary generator in a background thread", long_description=long_description, # Author details author_email="[email protected]", url="https://github.com/justheuristic/prefetch_generator", # Choose your license license='The Unlicense', packages=find_packages(), classifiers=[ # Indicate who your project is intended for 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Science/Research', 'Intended Audience :: Developers', 'Topic :: Scientific/Engineering', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: The Unlicense (Unlicense)', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', ], # What does your project relate to? keywords='background generator, prefetch generator, parallel generator, prefetch, background,' + \ 'deep learning, theano, tensorflow, lasagne, blocks', # List run-time dependencies here. These will be installed by pip when your project is installed. install_requires=[ #nothing ], )
justheuristic/prefetch_generator
setup.py
setup.py
py
1,969
python
en
code
260
github-code
6
[ { "api_name": "os.path.abspath", "line_number": 6, "usage_type": "call" }, { "api_name": "os.path", "line_number": 6, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 6, "usage_type": "call" }, { "api_name": "prefetch_generator.__doc__", "line_number": 10, "usage_type": "attribute" }, { "api_name": "setuptools.setup", "line_number": 14, "usage_type": "call" }, { "api_name": "setuptools.find_packages", "line_number": 26, "usage_type": "call" } ]
29457712632
#! /usr/bin/env python # -*- coding: utf-8 -*- '''translate.translate: provides main() entry point.''' __version__ = '0.1.3' import logging import argparse import requests from bs4 import BeautifulSoup from terminaltables import AsciiTable logging.basicConfig( filename = '.log', filemode = 'a+', level = logging.INFO, format = '%(asctime)s | %(levelname)s | %(message)s', datefmt = '%m/%d/%Y %H:%M:%S' ) def main(): ''' Parse the arguments and start running what needs to be running ''' parser = argparse.ArgumentParser() parser.add_argument( 'dictionary', nargs='?', type=str, default='', help='Dictionary to use for translation. To translate from english to french, it should take the value enfr, for english to italian, enit, etc.' ) parser.add_argument( 'word', nargs='?', type=str, default='', help='Word to be translated' ) parser.add_argument( '-l', '--list', action='store_true', help='Returns the list of available dictionaries.' ) args = parser.parse_args() logging.info('Arguments parsed') dictionaries = get_dictionaries() if args.list: logging.info('Attempting to print the list of available dictionaries') print('') print('**** Available dictionaries:') print(dictionaries.table) logging.info('Printed the list of available dictionaries') if args.word and args.dictionary: translate_word(args.dictionary, args.word) else: if not args.list: logging.info('User didn\'t pass the correct arguments. Displaying the help message and shutting down') print('Please enter a dictionary and a word.') print('\tEnter -l or --list to get a list of all available dictionaries.') print('Enter -h or --help for help.') def get_dictionaries(): ''' Requests wordreference.com homepage and parse the list of availables dictionaries ''' url = 'http://www.wordreference.com' logging.info('Requesting {} for parsing'.format(url)) r = requests.get(url) if r.status_code != 200: logging.info('Request failed with status {}'.format(r.status_code)) return -1 logging.info('Request for {} successful'.format(url)) logging.info('Attempting to parse the html and extract the list of dictionaries') soup = BeautifulSoup(r.content, 'html.parser') options = soup.find_all('option') dictionaries = [ ['Key', 'Dictionary'] ] dictionaries += [ [option['id'], option.get_text()] for option in options if option['id'][:2] != option['id'][2:4] # No definition option and len(option['id']) == 4 # No synonyms or conjugation option ] logging.info('List of dictionaries extracted') table = AsciiTable(dictionaries) return table def translate_word(dictionary, word): ''' Requests the page for the translation of "word" using the dictionary "dictionary". Print a formatted version of the response ''' # Iniital checks if not isinstance(dictionary, str) or len(dictionary) != 4: raise TypeError('''The "dictionary" argument must be a string of length 4, with the first two letters being the acronym of the original language, and the last two letters, the acronym of the language you would like to translate to.''') if not isinstance(word, str): raise TypeError('The "word" argument must be a string (type {} passed)'.format(type(word))) # Building the url (and formatting it) and get the html from GET base_url = 'http://www.wordreference.com/' url = base_url + dictionary + '/' + word.replace(' ', '%20') logging.info('Requesting {} for parsing'.format(url)) r = requests.get(url) if r.status_code != 200: logging.info('Request failed with status {}'.format(r.status_code)) return -1 logging.info('Request for {} successful'.format(url)) # Parsing the html to extract the data # I kept it to what matters: # * Original word/expression # * Translation # Because who really cares if it is an intransitive verb or a noun? logging.info('Attempting to parse the html and extract the translations') soup = BeautifulSoup(r.content, 'html.parser') table_single_form = soup.find_all('table', {'class': 'WRD'})[0] try: data_single_form = parse_translation_table(table_single_form) except IndexError: logging.warning('The word passed doesn\'t have any translation') return -1 logging.info('Translations extracted') # print the results in a pretty way print_results(word, data_single_form) def parse_translation_table(table): ''' Given the table of translations extracted with BeautifulSoup, returns a list of lists containing the various translations. ''' data = [ ['Original Language', 'Translation'] ] rows = table.find_all('tr') for row in rows: cells = row.find_all('td') if len(cells) == 3: if cells[2].em is None: continue cells[2].em.decompose() if cells[0].get_text(strip=True) == '': data[-1][1] += u'\n{}'.format(cells[2].get_text()) else: data += [[ cells[0].find('strong').get_text(), cells[2].get_text() ]] return data def print_results(word, data_single_form): ''' Pretty print of the translation results ''' print('') print('**** Translations for {}:'.format(word)) print(AsciiTable(data_single_form).table) print('')
alvarolopez/translate-term
translate/translate.py
translate.py
py
5,821
python
en
code
1
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 17, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 20, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 29, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 43, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 47, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 51, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 57, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 70, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 71, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 73, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 75, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 77, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 78, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 86, "usage_type": "call" }, { "api_name": "terminaltables.AsciiTable", "line_number": 87, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 111, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 112, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 114, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 116, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 123, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 124, "usage_type": "call" }, { "api_name": "logging.warning", "line_number": 129, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 132, "usage_type": "call" }, { "api_name": "terminaltables.AsciiTable", "line_number": 167, "usage_type": "call" } ]
15512669243
import pygame #Impordime pygame'i #Defineerime funktsiooni, mis joonistab ruudustiku def draw_grid(screen, ruudu_suurus, read, veerud, joone_värv): for i in range(read): #Esimene tsükel, mis käib läbi kõik read for j in range(veerud): #Teine tsükel, mis käib läbi kõik veerud rect = pygame.Rect(j * ruudu_suurus, i * ruudu_suurus, ruudu_suurus, ruudu_suurus) #Loon rect objekti (x-koordinaat, y-koordinaat, laius ja kõrgus) pygame.draw.rect(screen, joone_värv, rect, 1) #Joonistab kasti (ekraani väärtus, joone värv, kast ja joone laius) # Loome Pygame'i ekraani pygame.init() #Algatan pygame'i screen = pygame.display.set_mode((640, 480)) #Määrab akna suuruse pygame.display.set_caption("Ruudustik") #Määrab praeguse akna pealkirja # Määrame parameetrid ruudu_suurus = 20 #Määrab ruudu suuruse read = 24 #Määrab ridade arvu veerud = 32 #Määrab veergude arvu joone_värv = (255, 0, 0) #Määrab joone värvi #Ristist sulgemine running = True while running: for event in pygame.event.get(): if event.type == pygame.QUIT: running = False #Joonistame ekraani täis ruute screen.fill((150, 255, 150)) #Roheline värv taustaks draw_grid(screen, ruudu_suurus, read, veerud, joone_värv) #Joonistab ekraanile ruudustiku pygame.display.update() #Uuendab ekranni #Lõpetame Pygame'i pygame.quit()
KermoV/Ulesanne_3
Ülesanne_3.py
Ülesanne_3.py
py
1,403
python
et
code
0
github-code
6
[ { "api_name": "pygame.Rect", "line_number": 7, "usage_type": "call" }, { "api_name": "pygame.draw.rect", "line_number": 8, "usage_type": "call" }, { "api_name": "pygame.draw", "line_number": 8, "usage_type": "attribute" }, { "api_name": "pygame.init", "line_number": 12, "usage_type": "call" }, { "api_name": "pygame.display.set_mode", "line_number": 13, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 13, "usage_type": "attribute" }, { "api_name": "pygame.display.set_caption", "line_number": 14, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 14, "usage_type": "attribute" }, { "api_name": "pygame.event.get", "line_number": 25, "usage_type": "call" }, { "api_name": "pygame.event", "line_number": 25, "usage_type": "attribute" }, { "api_name": "pygame.QUIT", "line_number": 26, "usage_type": "attribute" }, { "api_name": "pygame.display.update", "line_number": 32, "usage_type": "call" }, { "api_name": "pygame.display", "line_number": 32, "usage_type": "attribute" }, { "api_name": "pygame.quit", "line_number": 35, "usage_type": "call" } ]
14374871985
# coding=utf-8 """Unit tests for activitypub.py.""" from base64 import b64encode import copy from datetime import datetime, timedelta from hashlib import sha256 import logging from unittest import skip from unittest.mock import patch from flask import g from google.cloud import ndb from granary import as2, microformats2 from httpsig import HeaderSigner from oauth_dropins.webutil.testutil import requests_response from oauth_dropins.webutil.util import json_dumps, json_loads import requests from urllib3.exceptions import ReadTimeoutError from werkzeug.exceptions import BadGateway # import first so that Fake is defined before URL routes are registered from .testutil import Fake, TestCase import activitypub from activitypub import ActivityPub, postprocess_as2 import common from models import Follower, Object import protocol from web import Web # have to import module, not attrs, to avoid circular import from . import test_web ACTOR = { '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'https://mas.to/users/swentel', 'type': 'Person', 'inbox': 'http://mas.to/inbox', 'name': 'Mrs. ☕ Foo', 'icon': {'type': 'Image', 'url': 'https://user.com/me.jpg'}, 'image': {'type': 'Image', 'url': 'https://user.com/me.jpg'}, } ACTOR_BASE = { '@context': [ 'https://www.w3.org/ns/activitystreams', 'https://w3id.org/security/v1', ], 'type': 'Person', 'id': 'http://localhost/user.com', 'url': 'http://localhost/r/https://user.com/', 'preferredUsername': 'user.com', 'summary': '', 'inbox': 'http://localhost/user.com/inbox', 'outbox': 'http://localhost/user.com/outbox', 'following': 'http://localhost/user.com/following', 'followers': 'http://localhost/user.com/followers', 'endpoints': { 'sharedInbox': 'http://localhost/ap/sharedInbox', }, 'publicKey': { 'id': 'http://localhost/user.com#key', 'owner': 'http://localhost/user.com', 'publicKeyPem': 'populated in setUp()', }, } ACTOR_BASE_FULL = { **ACTOR_BASE, 'name': 'Ms. ☕ Baz', 'attachment': [{ 'name': 'Web site', 'type': 'PropertyValue', 'value': '<a rel="me" href="https://user.com/"><span class="invisible">https://</span>user.com<span class="invisible">/</span></a>', }], } REPLY_OBJECT = { '@context': 'https://www.w3.org/ns/activitystreams', 'type': 'Note', 'content': 'A ☕ reply', 'id': 'http://mas.to/reply/id', 'url': 'http://mas.to/reply', 'inReplyTo': 'https://user.com/post', 'to': [as2.PUBLIC_AUDIENCE], } REPLY_OBJECT_WRAPPED = copy.deepcopy(REPLY_OBJECT) REPLY_OBJECT_WRAPPED['inReplyTo'] = 'http://localhost/r/https://user.com/post' REPLY = { '@context': 'https://www.w3.org/ns/activitystreams', 'type': 'Create', 'id': 'http://mas.to/reply/as2', 'object': REPLY_OBJECT, } NOTE_OBJECT = { '@context': 'https://www.w3.org/ns/activitystreams', 'type': 'Note', 'content': '☕ just a normal post', 'id': 'http://mas.to/note/id', 'url': 'http://mas.to/note', 'to': [as2.PUBLIC_AUDIENCE], 'cc': [ 'https://mas.to/author/followers', 'https://masto.foo/@other', 'http://localhost/target', # redirect-wrapped ], } NOTE = { '@context': 'https://www.w3.org/ns/activitystreams', 'type': 'Create', 'id': 'http://mas.to/note/as2', 'actor': 'https://masto.foo/@author', 'object': NOTE_OBJECT, } MENTION_OBJECT = copy.deepcopy(NOTE_OBJECT) MENTION_OBJECT.update({ 'id': 'http://mas.to/mention/id', 'url': 'http://mas.to/mention', 'tag': [{ 'type': 'Mention', 'href': 'https://masto.foo/@other', 'name': '@[email protected]', }, { 'type': 'Mention', 'href': 'http://localhost/tar.get', # redirect-wrapped 'name': '@[email protected]', }], }) MENTION = { '@context': 'https://www.w3.org/ns/activitystreams', 'type': 'Create', 'id': 'http://mas.to/mention/as2', 'object': MENTION_OBJECT, } # based on example Mastodon like: # https://github.com/snarfed/bridgy-fed/issues/4#issuecomment-334212362 # (reposts are very similar) LIKE = { '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'http://mas.to/like#ok', 'type': 'Like', 'object': 'https://user.com/post', 'actor': 'https://mas.to/actor', } LIKE_WRAPPED = copy.deepcopy(LIKE) LIKE_WRAPPED['object'] = 'http://localhost/r/https://user.com/post' LIKE_ACTOR = { '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'https://mas.to/actor', 'type': 'Person', 'name': 'Ms. Actor', 'preferredUsername': 'msactor', 'icon': {'type': 'Image', 'url': 'https://user.com/pic.jpg'}, 'image': [ {'type': 'Image', 'url': 'https://user.com/thumb.jpg'}, {'type': 'Image', 'url': 'https://user.com/pic.jpg'}, ], } LIKE_WITH_ACTOR = { **LIKE, 'actor': LIKE_ACTOR, } # repost, should be delivered to followers if object is a fediverse post, # translated to webmention if object is an indieweb post REPOST = { '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'https://mas.to/users/alice/statuses/654/activity', 'type': 'Announce', 'actor': ACTOR['id'], 'object': NOTE_OBJECT['id'], 'published': '2023-02-08T17:44:16Z', 'to': ['https://www.w3.org/ns/activitystreams#Public'], } REPOST_FULL = { **REPOST, 'actor': ACTOR, 'object': NOTE_OBJECT, } FOLLOW = { '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'https://mas.to/6d1a', 'type': 'Follow', 'actor': ACTOR['id'], 'object': 'https://user.com/', } FOLLOW_WRAPPED = copy.deepcopy(FOLLOW) FOLLOW_WRAPPED['object'] = 'http://localhost/user.com' FOLLOW_WITH_ACTOR = copy.deepcopy(FOLLOW) FOLLOW_WITH_ACTOR['actor'] = ACTOR FOLLOW_WRAPPED_WITH_ACTOR = copy.deepcopy(FOLLOW_WRAPPED) FOLLOW_WRAPPED_WITH_ACTOR['actor'] = ACTOR FOLLOW_WITH_OBJECT = copy.deepcopy(FOLLOW) FOLLOW_WITH_OBJECT['object'] = ACTOR ACCEPT_FOLLOW = copy.deepcopy(FOLLOW_WITH_ACTOR) del ACCEPT_FOLLOW['@context'] del ACCEPT_FOLLOW['actor']['@context'] ACCEPT_FOLLOW['actor']['image'] = {'type': 'Image', 'url': 'https://user.com/me.jpg'} ACCEPT_FOLLOW['object'] = 'http://localhost/user.com' ACCEPT = { '@context': 'https://www.w3.org/ns/activitystreams', 'type': 'Accept', 'id': 'http://localhost/web/user.com/followers#accept-https://mas.to/6d1a', 'actor': 'http://localhost/user.com', 'object': { **ACCEPT_FOLLOW, 'url': 'https://mas.to/users/swentel#followed-https://user.com/', 'to': ['https://www.w3.org/ns/activitystreams#Public'], }, 'to': ['https://www.w3.org/ns/activitystreams#Public'], } UNDO_FOLLOW_WRAPPED = { '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'https://mas.to/6d1b', 'type': 'Undo', 'actor': 'https://mas.to/users/swentel', 'object': FOLLOW_WRAPPED, } DELETE = { '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'https://mas.to/users/swentel#delete', 'type': 'Delete', 'actor': 'https://mas.to/users/swentel', 'object': 'https://mas.to/users/swentel', } UPDATE_PERSON = { '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'https://a/person#update', 'type': 'Update', 'actor': 'https://mas.to/users/swentel', 'object': { 'type': 'Person', 'id': 'https://a/person', }, } UPDATE_NOTE = { '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'https://a/note#update', 'type': 'Update', 'actor': 'https://mas.to/users/swentel', 'object': { 'type': 'Note', 'id': 'https://a/note', }, } WEBMENTION_DISCOVERY = requests_response( '<html><head><link rel="webmention" href="/webmention"></html>') HTML = requests_response('<html></html>', headers={ 'Content-Type': common.CONTENT_TYPE_HTML, }) HTML_WITH_AS2 = requests_response("""\ <html><meta> <link href='http://as2' rel='alternate' type='application/activity+json'> </meta></html> """, headers={ 'Content-Type': common.CONTENT_TYPE_HTML, }) AS2_OBJ = {'foo': ['bar']} AS2 = requests_response(AS2_OBJ, headers={ 'Content-Type': as2.CONTENT_TYPE, }) NOT_ACCEPTABLE = requests_response(status=406) @patch('requests.post') @patch('requests.get') @patch('requests.head') class ActivityPubTest(TestCase): def setUp(self): super().setUp() self.request_context.push() self.user = self.make_user('user.com', has_hcard=True, has_redirects=True, obj_as2={**ACTOR, 'id': 'https://user.com/'}) self.swentel_key = ndb.Key(ActivityPub, 'https://mas.to/users/swentel') self.masto_actor_key = ndb.Key(ActivityPub, 'https://mas.to/actor') ACTOR_BASE['publicKey']['publicKeyPem'] = self.user.public_pem().decode() self.key_id_obj = Object(id='http://my/key/id', as2={ **ACTOR, 'publicKey': { 'id': 'http://my/key/id#unused', 'owner': 'http://own/er', 'publicKeyPem': self.user.public_pem().decode(), }, }) self.key_id_obj.put() def assert_object(self, id, **props): props.setdefault('delivered_protocol', 'web') return super().assert_object(id, **props) def sign(self, path, body): """Constructs HTTP Signature, returns headers.""" digest = b64encode(sha256(body.encode()).digest()).decode() headers = { 'Date': 'Sun, 02 Jan 2022 03:04:05 GMT', 'Host': 'localhost', 'Content-Type': as2.CONTENT_TYPE, 'Digest': f'SHA-256={digest}', } hs = HeaderSigner('http://my/key/id#unused', self.user.private_pem().decode(), algorithm='rsa-sha256', sign_header='signature', headers=('Date', 'Host', 'Digest', '(request-target)')) return hs.sign(headers, method='POST', path=path) def post(self, path, json=None): """Wrapper around self.client.post that adds signature.""" body = json_dumps(json) return self.client.post(path, data=body, headers=self.sign(path, body)) def test_actor_fake(self, *_): self.make_user('user.com', cls=Fake, obj_as2={ 'type': 'Person', 'id': 'https://user.com/', }) got = self.client.get('/ap/fake/user.com') self.assertEqual(200, got.status_code, got.get_data(as_text=True)) type = got.headers['Content-Type'] self.assertTrue(type.startswith(as2.CONTENT_TYPE), type) self.assertEqual({ '@context': ['https://w3id.org/security/v1'], 'type': 'Person', 'id': 'http://bf/fake/user.com/ap', 'preferredUsername': 'user.com', 'url': 'http://localhost/r/user.com', 'summary': '', 'inbox': 'http://bf/fake/user.com/ap/inbox', 'outbox': 'http://bf/fake/user.com/ap/outbox', 'following': 'http://bf/fake/user.com/ap/following', 'followers': 'http://bf/fake/user.com/ap/followers', 'endpoints': {'sharedInbox': 'http://localhost/ap/sharedInbox'}, 'publicKey': { 'id': 'http://localhost/user.com#key', 'owner': 'http://localhost/user.com', 'publicKeyPem': self.user.public_pem().decode(), }, }, got.json) def test_actor_web(self, *_): """Web users are special cased to drop the /web/ prefix.""" got = self.client.get('/user.com') self.assertEqual(200, got.status_code) type = got.headers['Content-Type'] self.assertTrue(type.startswith(as2.CONTENT_TYPE), type) self.assertEqual({ **ACTOR_BASE, 'name': 'Mrs. ☕ Foo', 'icon': {'type': 'Image', 'url': 'https://user.com/me.jpg'}, 'image': {'type': 'Image', 'url': 'https://user.com/me.jpg'}, }, got.json) def test_actor_blocked_tld(self, _, __, ___): got = self.client.get('/foo.json') self.assertEqual(404, got.status_code) def test_actor_new_user_fetch(self, _, mock_get, __): self.user.obj_key.delete() self.user.key.delete() protocol.objects_cache.clear() mock_get.return_value = requests_response(test_web.ACTOR_HTML) got = self.client.get('/user.com') self.assertEqual(200, got.status_code) self.assert_equals(ACTOR_BASE_FULL, got.json, ignore=['publicKeyPem']) def test_actor_new_user_fetch_no_mf2(self, _, mock_get, __): self.user.obj_key.delete() self.user.key.delete() protocol.objects_cache.clear() mock_get.return_value = requests_response('<html></html>') got = self.client.get('/user.com') self.assertEqual(200, got.status_code) self.assert_equals(ACTOR_BASE, got.json, ignore=['publicKeyPem']) def test_actor_new_user_fetch_fails(self, _, mock_get, __): mock_get.side_effect = ReadTimeoutError(None, None, None) got = self.client.get('/nope.com') self.assertEqual(504, got.status_code) def test_individual_inbox_no_user(self, mock_head, mock_get, mock_post): self.user.key.delete() mock_get.side_effect = [self.as2_resp(LIKE_ACTOR)] reply = { **REPLY, 'actor': LIKE_ACTOR, } self._test_inbox_reply(reply, mock_head, mock_get, mock_post) self.assert_user(ActivityPub, 'https://mas.to/actor', obj_as2=LIKE_ACTOR, direct=True) def test_inbox_activity_without_id(self, *_): note = copy.deepcopy(NOTE) del note['id'] resp = self.post('/ap/sharedInbox', json=note) self.assertEqual(400, resp.status_code) def test_inbox_reply_object(self, mock_head, mock_get, mock_post): self._test_inbox_reply(REPLY_OBJECT, mock_head, mock_get, mock_post) self.assert_object('http://mas.to/reply/id', source_protocol='activitypub', our_as1=as2.to_as1(REPLY_OBJECT), type='comment') # auto-generated post activity self.assert_object( 'http://mas.to/reply/id#bridgy-fed-create', source_protocol='activitypub', our_as1={ **as2.to_as1(REPLY), 'id': 'http://mas.to/reply/id#bridgy-fed-create', 'published': '2022-01-02T03:04:05+00:00', }, status='complete', delivered=['https://user.com/post'], type='post', notify=[self.user.key], ) def test_inbox_reply_object_wrapped(self, mock_head, mock_get, mock_post): self._test_inbox_reply(REPLY_OBJECT_WRAPPED, mock_head, mock_get, mock_post) self.assert_object('http://mas.to/reply/id', source_protocol='activitypub', our_as1=as2.to_as1(REPLY_OBJECT), type='comment') # auto-generated post activity self.assert_object( 'http://mas.to/reply/id#bridgy-fed-create', source_protocol='activitypub', our_as1={ **as2.to_as1(REPLY), 'id': 'http://mas.to/reply/id#bridgy-fed-create', 'published': '2022-01-02T03:04:05+00:00', }, status='complete', delivered=['https://user.com/post'], type='post', notify=[self.user.key], ) def test_inbox_reply_create_activity(self, mock_head, mock_get, mock_post): self._test_inbox_reply(REPLY, mock_head, mock_get, mock_post) self.assert_object('http://mas.to/reply/id', source_protocol='activitypub', our_as1=as2.to_as1({ **REPLY_OBJECT, 'author': None, }), type='comment') # sent activity self.assert_object( 'http://mas.to/reply/as2', source_protocol='activitypub', as2=REPLY, status='complete', delivered=['https://user.com/post'], type='post', notify=[self.user.key], ) def _test_inbox_reply(self, reply, mock_head, mock_get, mock_post): mock_head.return_value = requests_response(url='https://user.com/post') mock_get.side_effect = ( (list(mock_get.side_effect) if mock_get.side_effect else []) + [ requests_response(test_web.NOTE_HTML), requests_response(test_web.NOTE_HTML), WEBMENTION_DISCOVERY, ]) mock_post.return_value = requests_response() got = self.post('/ap/web/user.com/inbox', json=reply) self.assertEqual(200, got.status_code, got.get_data(as_text=True)) self.assert_req(mock_get, 'https://user.com/post') convert_id = reply['id'].replace('://', ':/') if reply['type'] != 'Create': convert_id += '%23bridgy-fed-create' self.assert_req( mock_post, 'https://user.com/webmention', headers={'Accept': '*/*'}, allow_redirects=False, data={ 'source': f'https://ap.brid.gy/convert/web/{convert_id}', 'target': 'https://user.com/post', }, ) def test_inbox_reply_to_self_domain(self, *mocks): self._test_inbox_ignore_reply_to('http://localhost/mas.to', *mocks) def test_inbox_reply_to_in_blocklist(self, *mocks): self._test_inbox_ignore_reply_to('https://twitter.com/foo', *mocks) def _test_inbox_ignore_reply_to(self, reply_to, mock_head, mock_get, mock_post): reply = copy.deepcopy(REPLY_OBJECT) reply['inReplyTo'] = reply_to mock_head.return_value = requests_response(url='http://mas.to/') mock_get.side_effect = [ # actor fetch self.as2_resp(ACTOR), # protocol inference requests_response(test_web.NOTE_HTML), requests_response(test_web.NOTE_HTML), ] got = self.post('/user.com/inbox', json=reply) self.assertEqual(204, got.status_code, got.get_data(as_text=True)) mock_post.assert_not_called() def test_individual_inbox_create_obj(self, *mocks): self._test_inbox_create_obj('/user.com/inbox', *mocks) def test_shared_inbox_create_obj(self, *mocks): self._test_inbox_create_obj('/inbox', *mocks) def _test_inbox_create_obj(self, path, mock_head, mock_get, mock_post): swentel = self.make_user('https://mas.to/users/swentel', cls=ActivityPub) Follower.get_or_create(to=swentel, from_=self.user) bar = self.make_user('fake:bar', cls=Fake, obj_id='fake:bar') Follower.get_or_create(to=self.make_user('https://other.actor', cls=ActivityPub), from_=bar) baz = self.make_user('fake:baz', cls=Fake, obj_id='fake:baz') Follower.get_or_create(to=swentel, from_=baz) baj = self.make_user('fake:baj', cls=Fake, obj_id='fake:baj') Follower.get_or_create(to=swentel, from_=baj, status='inactive') mock_head.return_value = requests_response(url='http://target') mock_get.return_value = self.as2_resp(ACTOR) # source actor mock_post.return_value = requests_response() got = self.post(path, json=NOTE) self.assertEqual(200, got.status_code, got.get_data(as_text=True)) expected_obj = { **as2.to_as1(NOTE_OBJECT), 'author': {'id': 'https://masto.foo/@author'}, } self.assert_object(NOTE_OBJECT['id'], source_protocol='activitypub', our_as1=expected_obj, type='note', feed=[self.user.key, baz.key]) expected_create = as2.to_as1(common.redirect_unwrap(NOTE)) expected_create.update({ 'actor': as2.to_as1(ACTOR), 'object': expected_obj, }) self.assert_object('http://mas.to/note/as2', source_protocol='activitypub', our_as1=expected_create, users=[ndb.Key(ActivityPub, 'https://masto.foo/@author')], type='post', object_ids=[NOTE_OBJECT['id']], status='complete', delivered=['shared:target'], delivered_protocol='fake') def test_repost_of_indieweb(self, mock_head, mock_get, mock_post): mock_head.return_value = requests_response(url='https://user.com/orig') mock_get.return_value = WEBMENTION_DISCOVERY mock_post.return_value = requests_response() # webmention orig_url = 'https://user.com/orig' note = { **NOTE_OBJECT, 'id': 'https://user.com/orig', } del note['url'] Object(id=orig_url, mf2=microformats2.object_to_json(as2.to_as1(note)), source_protocol='web').put() repost = copy.deepcopy(REPOST_FULL) repost['object'] = f'http://localhost/r/{orig_url}' got = self.post('/user.com/inbox', json=repost) self.assertEqual(200, got.status_code, got.get_data(as_text=True)) convert_id = REPOST['id'].replace('://', ':/') self.assert_req( mock_post, 'https://user.com/webmention', headers={'Accept': '*/*'}, allow_redirects=False, data={ 'source': f'https://ap.brid.gy/convert/web/{convert_id}', 'target': orig_url, }, ) self.assert_object(REPOST_FULL['id'], source_protocol='activitypub', status='complete', as2={ **REPOST, 'actor': ACTOR, 'object': orig_url, }, users=[self.swentel_key], delivered=['https://user.com/orig'], type='share', object_ids=['https://user.com/orig']) def test_shared_inbox_repost_of_fediverse(self, mock_head, mock_get, mock_post): Follower.get_or_create(to=ActivityPub.get_or_create(ACTOR['id']), from_=self.user) baz = self.make_user('fake:baz', cls=Fake, obj_id='fake:baz') Follower.get_or_create(to=ActivityPub.get_or_create(ACTOR['id']), from_=baz) baj = self.make_user('fake:baj', cls=Fake, obj_id='fake:baj') Follower.get_or_create(to=ActivityPub.get_or_create(ACTOR['id']), from_=baj, status='inactive') mock_head.return_value = requests_response(url='http://target') mock_get.side_effect = [ self.as2_resp(ACTOR), # source actor self.as2_resp(NOTE_OBJECT), # object of repost # protocol inference requests_response(test_web.NOTE_HTML), requests_response(test_web.NOTE_HTML), HTML, # no webmention endpoint ] got = self.post('/ap/sharedInbox', json=REPOST) self.assertEqual(200, got.status_code, got.get_data(as_text=True)) mock_post.assert_not_called() # no webmention self.assert_object(REPOST['id'], source_protocol='activitypub', status='complete', our_as1=as2.to_as1({**REPOST, 'actor': ACTOR}), users=[self.swentel_key], feed=[self.user.key, baz.key], delivered=['shared:target'], delivered_protocol='fake', type='share', object_ids=[REPOST['object']]) def test_inbox_no_user(self, mock_head, mock_get, mock_post): mock_get.side_effect = [ # source actor self.as2_resp(LIKE_WITH_ACTOR['actor']), # protocol inference requests_response(test_web.NOTE_HTML), requests_response(test_web.NOTE_HTML), # target post webmention discovery HTML, ] got = self.post('/ap/sharedInbox', json={ **LIKE, 'object': 'http://nope.com/post', }) self.assertEqual(204, got.status_code) self.assert_object('http://mas.to/like#ok', # no nope.com Web user key since it didn't exist source_protocol='activitypub', status='ignored', our_as1=as2.to_as1({ **LIKE_WITH_ACTOR, 'object': 'http://nope.com/post', }), type='like', notify=[self.user.key], users=[self.masto_actor_key], object_ids=['http://nope.com/post']) def test_inbox_not_public(self, mock_head, mock_get, mock_post): Follower.get_or_create(to=ActivityPub.get_or_create(ACTOR['id']), from_=self.user) mock_head.return_value = requests_response(url='http://target') mock_get.return_value = self.as2_resp(ACTOR) # source actor not_public = copy.deepcopy(NOTE) del not_public['object']['to'] got = self.post('/user.com/inbox', json=not_public) self.assertEqual(200, got.status_code, got.get_data(as_text=True)) self.assertIsNone(Object.get_by_id(not_public['id'])) self.assertIsNone(Object.get_by_id(not_public['object']['id'])) def test_inbox_like(self, mock_head, mock_get, mock_post): mock_head.return_value = requests_response(url='https://user.com/post') mock_get.side_effect = [ # source actor self.as2_resp(LIKE_WITH_ACTOR['actor']), requests_response(test_web.NOTE_HTML), requests_response(test_web.NOTE_HTML), WEBMENTION_DISCOVERY, ] mock_post.return_value = requests_response() got = self.post('/user.com/inbox', json=LIKE) self.assertEqual(200, got.status_code) self.assertIn(self.as2_req('https://mas.to/actor'), mock_get.mock_calls) self.assertIn(self.req('https://user.com/post'), mock_get.mock_calls) args, kwargs = mock_post.call_args self.assertEqual(('https://user.com/webmention',), args) self.assertEqual({ 'source': 'https://ap.brid.gy/convert/web/http:/mas.to/like%23ok', 'target': 'https://user.com/post', }, kwargs['data']) self.assert_object('http://mas.to/like#ok', notify=[self.user.key], users=[self.masto_actor_key], source_protocol='activitypub', status='complete', our_as1=as2.to_as1(LIKE_WITH_ACTOR), delivered=['https://user.com/post'], type='like', object_ids=[LIKE['object']]) def test_inbox_like_indirect_user_creates_User(self, mock_get, *_): self.user.direct = False self.user.put() mock_get.return_value = self.as2_resp(LIKE_ACTOR) self.test_inbox_like() self.assert_user(ActivityPub, 'https://mas.to/actor', obj_as2=LIKE_ACTOR, direct=True) def test_inbox_follow_accept_with_id(self, *mocks): self._test_inbox_follow_accept(FOLLOW_WRAPPED, ACCEPT, 200, *mocks) follow = { **FOLLOW_WITH_ACTOR, 'url': 'https://mas.to/users/swentel#followed-https://user.com/', } self.assert_object('https://mas.to/6d1a', users=[self.swentel_key], notify=[self.user.key], source_protocol='activitypub', status='complete', our_as1=as2.to_as1(follow), delivered=['https://user.com/'], type='follow', object_ids=[FOLLOW['object']]) def test_inbox_follow_accept_with_object(self, *mocks): follow = { **FOLLOW, 'object': { 'id': FOLLOW['object'], 'url': FOLLOW['object'], }, } self._test_inbox_follow_accept(follow, ACCEPT, 200, *mocks) follow.update({ 'actor': ACTOR, 'url': 'https://mas.to/users/swentel#followed-https://user.com/', }) self.assert_object('https://mas.to/6d1a', users=[self.swentel_key], notify=[self.user.key], source_protocol='activitypub', status='complete', our_as1=as2.to_as1(follow), delivered=['https://user.com/'], type='follow', object_ids=[FOLLOW['object']]) def test_inbox_follow_accept_shared_inbox(self, *mocks): self._test_inbox_follow_accept(FOLLOW_WRAPPED, ACCEPT, 200, *mocks, inbox_path='/ap/sharedInbox') url = 'https://mas.to/users/swentel#followed-https://user.com/' self.assert_object('https://mas.to/6d1a', users=[self.swentel_key], notify=[self.user.key], source_protocol='activitypub', status='complete', our_as1=as2.to_as1({**FOLLOW_WITH_ACTOR, 'url': url}), delivered=['https://user.com/'], type='follow', object_ids=[FOLLOW['object']]) def test_inbox_follow_accept_webmention_fails(self, mock_head, mock_get, mock_post): mock_post.side_effect = [ requests_response(), # AP Accept requests.ConnectionError(), # webmention ] self._test_inbox_follow_accept(FOLLOW_WRAPPED, ACCEPT, 502, mock_head, mock_get, mock_post) url = 'https://mas.to/users/swentel#followed-https://user.com/' self.assert_object('https://mas.to/6d1a', users=[self.swentel_key], notify=[self.user.key], source_protocol='activitypub', status='failed', our_as1=as2.to_as1({**FOLLOW_WITH_ACTOR, 'url': url}), delivered=[], failed=['https://user.com/'], type='follow', object_ids=[FOLLOW['object']]) def _test_inbox_follow_accept(self, follow_as2, accept_as2, expected_status, mock_head, mock_get, mock_post, inbox_path='/user.com/inbox'): # this should makes us make the follower ActivityPub as direct=True self.user.direct = False self.user.put() mock_head.return_value = requests_response(url='https://user.com/') mock_get.side_effect = [ # source actor self.as2_resp(ACTOR), WEBMENTION_DISCOVERY, ] if not mock_post.return_value and not mock_post.side_effect: mock_post.return_value = requests_response() got = self.post(inbox_path, json=follow_as2) self.assertEqual(expected_status, got.status_code) mock_get.assert_has_calls(( self.as2_req(FOLLOW['actor']), )) # check AP Accept self.assertEqual(2, len(mock_post.call_args_list)) args, kwargs = mock_post.call_args_list[0] self.assertEqual(('http://mas.to/inbox',), args) self.assertEqual(accept_as2, json_loads(kwargs['data'])) # check webmention args, kwargs = mock_post.call_args_list[1] self.assertEqual(('https://user.com/webmention',), args) self.assertEqual({ 'source': 'https://ap.brid.gy/convert/web/https:/mas.to/6d1a', 'target': 'https://user.com/', }, kwargs['data']) # check that we stored Follower and ActivityPub user for the follower self.assert_entities_equal( Follower(to=self.user.key, from_=ActivityPub(id=ACTOR['id']).key, status='active', follow=Object(id=FOLLOW['id']).key), Follower.query().fetch(), ignore=['created', 'updated']) self.assert_user(ActivityPub, 'https://mas.to/users/swentel', obj_as2=ACTOR, direct=True) self.assert_user(Web, 'user.com', direct=False, has_hcard=True, has_redirects=True) def test_inbox_follow_use_instead_strip_www(self, mock_head, mock_get, mock_post): self.make_user('www.user.com', use_instead=self.user.key) mock_head.return_value = requests_response(url='https://www.user.com/') mock_get.side_effect = [ # source actor self.as2_resp(ACTOR), # target post webmention discovery requests_response('<html></html>'), ] mock_post.return_value = requests_response() got = self.post('/user.com/inbox', json=FOLLOW_WRAPPED) self.assertEqual(204, got.status_code) follower = Follower.query().get() self.assert_entities_equal( Follower(to=self.user.key, from_=ActivityPub(id=ACTOR['id']).key, status='active', follow=Object(id=FOLLOW['id']).key), follower, ignore=['created', 'updated']) # double check that Follower doesn't have www self.assertEqual('user.com', follower.to.id()) # double check that follow Object doesn't have www self.assertEqual('active', follower.status) self.assertEqual('https://mas.to/users/swentel#followed-https://user.com/', follower.follow.get().as2['url']) def test_inbox_undo_follow(self, mock_head, mock_get, mock_post): follower = Follower(to=self.user.key, from_=ActivityPub.get_or_create(ACTOR['id']).key, status='active') follower.put() mock_get.side_effect = [ self.as2_resp(ACTOR), WEBMENTION_DISCOVERY, ] mock_post.return_value = requests_response() got = self.post('/user.com/inbox', json=UNDO_FOLLOW_WRAPPED) self.assertEqual(200, got.status_code) # check that the Follower is now inactive self.assertEqual('inactive', follower.key.get().status) def test_inbox_follow_inactive(self, mock_head, mock_get, mock_post): follower = Follower.get_or_create(to=self.user, from_=ActivityPub.get_or_create(ACTOR['id']), status='inactive') mock_head.return_value = requests_response(url='https://user.com/') mock_get.side_effect = [ # source actor self.as2_resp(FOLLOW_WITH_ACTOR['actor']), WEBMENTION_DISCOVERY, ] mock_post.return_value = requests_response() got = self.post('/user.com/inbox', json=FOLLOW_WRAPPED) self.assertEqual(200, got.status_code) # check that the Follower is now active self.assertEqual('active', follower.key.get().status) def test_inbox_undo_follow_doesnt_exist(self, mock_head, mock_get, mock_post): mock_head.return_value = requests_response(url='https://user.com/') mock_get.side_effect = [ self.as2_resp(ACTOR), WEBMENTION_DISCOVERY, ] mock_post.return_value = requests_response() got = self.post('/user.com/inbox', json=UNDO_FOLLOW_WRAPPED) self.assertEqual(200, got.status_code) def test_inbox_undo_follow_inactive(self, mock_head, mock_get, mock_post): mock_head.return_value = requests_response(url='https://user.com/') mock_get.side_effect = [ self.as2_resp(ACTOR), WEBMENTION_DISCOVERY, ] mock_post.return_value = requests_response() follower = Follower.get_or_create(to=self.user, from_=ActivityPub.get_or_create(ACTOR['id']), status='inactive') got = self.post('/user.com/inbox', json=UNDO_FOLLOW_WRAPPED) self.assertEqual(200, got.status_code) self.assertEqual('inactive', follower.key.get().status) def test_inbox_undo_follow_composite_object(self, mock_head, mock_get, mock_post): mock_head.return_value = requests_response(url='https://user.com/') mock_get.side_effect = [ self.as2_resp(ACTOR), WEBMENTION_DISCOVERY, ] mock_post.return_value = requests_response() follower = Follower.get_or_create(to=self.user, from_=ActivityPub.get_or_create(ACTOR['id']), status='inactive') undo_follow = copy.deepcopy(UNDO_FOLLOW_WRAPPED) undo_follow['object']['object'] = {'id': undo_follow['object']['object']} got = self.post('/user.com/inbox', json=undo_follow) self.assertEqual(200, got.status_code) self.assertEqual('inactive', follower.key.get().status) def test_inbox_unsupported_type(self, *_): got = self.post('/user.com/inbox', json={ '@context': ['https://www.w3.org/ns/activitystreams'], 'id': 'https://xoxo.zone/users/aaronpk#follows/40', 'type': 'Block', 'actor': 'https://xoxo.zone/users/aaronpk', 'object': 'http://snarfed.org/', }) self.assertEqual(501, got.status_code) def test_inbox_bad_object_url(self, mock_head, mock_get, mock_post): # https://console.cloud.google.com/errors/detail/CMKn7tqbq-GIRA;time=P30D?project=bridgy-federated mock_get.return_value = self.as2_resp(ACTOR) # source actor id = 'https://mas.to/users/tmichellemoore#likes/56486252' bad_url = 'http://localhost/r/Testing \u2013 Brid.gy \u2013 Post to Mastodon 3' bad = { '@context': 'https://www.w3.org/ns/activitystreams', 'id': id, 'type': 'Like', 'actor': ACTOR['id'], 'object': bad_url, } got = self.post('/user.com/inbox', json=bad) # bad object, should ignore activity self.assertEqual(204, got.status_code) mock_post.assert_not_called() self.assert_object(id, our_as1={ **as2.to_as1(bad), 'actor': as2.to_as1(ACTOR), }, users=[self.swentel_key], source_protocol='activitypub', status='ignored', ) self.assertIsNone(Object.get_by_id(bad_url)) @patch('activitypub.logger.info', side_effect=logging.info) @patch('common.logger.info', side_effect=logging.info) @patch('oauth_dropins.webutil.appengine_info.DEBUG', False) def test_inbox_verify_http_signature(self, mock_common_log, mock_activitypub_log, _, mock_get, ___): # actor with a public key self.key_id_obj.key.delete() protocol.objects_cache.clear() actor_as2 = { **ACTOR, 'publicKey': { 'id': 'http://my/key/id#unused', 'owner': 'http://own/er', 'publicKeyPem': self.user.public_pem().decode(), }, } mock_get.return_value = self.as2_resp(actor_as2) # valid signature body = json_dumps(NOTE) headers = self.sign('/ap/sharedInbox', json_dumps(NOTE)) resp = self.client.post('/ap/sharedInbox', data=body, headers=headers) self.assertEqual(204, resp.status_code, resp.get_data(as_text=True)) mock_get.assert_has_calls(( self.as2_req('http://my/key/id'), )) mock_activitypub_log.assert_any_call('HTTP Signature verified!') # valid signature, Object has no key self.key_id_obj.as2 = ACTOR self.key_id_obj.put() resp = self.client.post('/ap/sharedInbox', data=body, headers=headers) self.assertEqual(401, resp.status_code, resp.get_data(as_text=True)) # valid signature, Object has our_as1 instead of as2 self.key_id_obj.clear() self.key_id_obj.our_as1 = as2.to_as1(actor_as2) self.key_id_obj.put() resp = self.client.post('/ap/sharedInbox', data=body, headers=headers) self.assertEqual(204, resp.status_code, resp.get_data(as_text=True)) mock_activitypub_log.assert_any_call('HTTP Signature verified!') # invalid signature, missing keyId protocol.seen_ids.clear() obj_key = ndb.Key(Object, NOTE['id']) obj_key.delete() resp = self.client.post('/ap/sharedInbox', data=body, headers={ **headers, 'signature': headers['signature'].replace( 'keyId="http://my/key/id#unused",', ''), }) self.assertEqual(401, resp.status_code) self.assertEqual({'error': 'HTTP Signature missing keyId'}, resp.json) mock_common_log.assert_any_call('Returning 401: HTTP Signature missing keyId', exc_info=None) # invalid signature, content changed protocol.seen_ids.clear() obj_key = ndb.Key(Object, NOTE['id']) obj_key.delete() resp = self.client.post('/ap/sharedInbox', json={**NOTE, 'content': 'z'}, headers=headers) self.assertEqual(401, resp.status_code) self.assertEqual({'error': 'Invalid Digest header, required for HTTP Signature'}, resp.json) mock_common_log.assert_any_call('Returning 401: Invalid Digest header, required for HTTP Signature', exc_info=None) # invalid signature, header changed protocol.seen_ids.clear() obj_key.delete() resp = self.client.post('/ap/sharedInbox', data=body, headers={**headers, 'Date': 'X'}) self.assertEqual(401, resp.status_code) self.assertEqual({'error': 'HTTP Signature verification failed'}, resp.json) mock_common_log.assert_any_call('Returning 401: HTTP Signature verification failed', exc_info=None) # no signature protocol.seen_ids.clear() obj_key.delete() resp = self.client.post('/ap/sharedInbox', json=NOTE) self.assertEqual(401, resp.status_code, resp.get_data(as_text=True)) self.assertEqual({'error': 'No HTTP Signature'}, resp.json) mock_common_log.assert_any_call('Returning 401: No HTTP Signature', exc_info=None) def test_delete_actor(self, *mocks): follower = Follower.get_or_create( to=self.user, from_=ActivityPub.get_or_create(DELETE['actor'])) followee = Follower.get_or_create( to=ActivityPub.get_or_create(DELETE['actor']), from_=Fake.get_or_create('snarfed.org')) # other unrelated follower other = Follower.get_or_create( to=self.user, from_=ActivityPub.get_or_create('https://mas.to/users/other')) self.assertEqual(3, Follower.query().count()) got = self.post('/ap/sharedInbox', json=DELETE) self.assertEqual(204, got.status_code) self.assertEqual('inactive', follower.key.get().status) self.assertEqual('inactive', followee.key.get().status) self.assertEqual('active', other.key.get().status) def test_delete_actor_not_fetchable(self, _, mock_get, ___): self.key_id_obj.key.delete() protocol.objects_cache.clear() mock_get.return_value = requests_response(status=410) got = self.post('/ap/sharedInbox', json={**DELETE, 'object': 'http://my/key/id'}) self.assertEqual(202, got.status_code) def test_delete_actor_empty_deleted_object(self, _, mock_get, ___): self.key_id_obj.as2 = None self.key_id_obj.deleted = True self.key_id_obj.put() protocol.objects_cache.clear() got = self.post('/ap/sharedInbox', json={**DELETE, 'object': 'http://my/key/id'}) self.assertEqual(202, got.status_code) mock_get.assert_not_called() def test_delete_note(self, _, mock_get, ___): obj = Object(id='http://an/obj') obj.put() mock_get.side_effect = [ self.as2_resp(ACTOR), ] delete = { **DELETE, 'object': 'http://an/obj', } resp = self.post('/ap/sharedInbox', json=delete) self.assertEqual(204, resp.status_code) self.assertTrue(obj.key.get().deleted) self.assert_object(delete['id'], our_as1={ **as2.to_as1(delete), 'actor': as2.to_as1(ACTOR), }, type='delete', source_protocol='activitypub', status='ignored', users=[ActivityPub(id='https://mas.to/users/swentel').key]) obj.populate(deleted=True, as2=None) self.assert_entities_equal(obj, protocol.objects_cache['http://an/obj'], ignore=['expire', 'created', 'updated']) def test_update_note(self, *mocks): Object(id='https://a/note', as2={}).put() self._test_update(*mocks) def test_update_unknown(self, *mocks): self._test_update(*mocks) def _test_update(self, _, mock_get, ___): mock_get.side_effect = [ self.as2_resp(ACTOR), ] resp = self.post('/ap/sharedInbox', json=UPDATE_NOTE) self.assertEqual(204, resp.status_code) note_as1 = as2.to_as1({ **UPDATE_NOTE['object'], 'author': {'id': 'https://mas.to/users/swentel'}, }) self.assert_object('https://a/note', type='note', our_as1=note_as1, source_protocol='activitypub') update_as1 = { **as2.to_as1(UPDATE_NOTE), 'object': note_as1, 'actor': as2.to_as1(ACTOR), } self.assert_object(UPDATE_NOTE['id'], source_protocol='activitypub', type='update', status='ignored', our_as1=update_as1, users=[self.swentel_key]) self.assert_entities_equal(Object.get_by_id('https://a/note'), protocol.objects_cache['https://a/note']) def test_inbox_webmention_discovery_connection_fails(self, mock_head, mock_get, mock_post): mock_get.side_effect = [ # source actor self.as2_resp(LIKE_WITH_ACTOR['actor']), # protocol inference requests_response(test_web.NOTE_HTML), requests_response(test_web.NOTE_HTML), # target post webmention discovery ReadTimeoutError(None, None, None), ] got = self.post('/user.com/inbox', json=LIKE) self.assertEqual(502, got.status_code) def test_inbox_no_webmention_endpoint(self, mock_head, mock_get, mock_post): mock_get.side_effect = [ # source actor self.as2_resp(LIKE_WITH_ACTOR['actor']), # protocol inference requests_response(test_web.NOTE_HTML), requests_response(test_web.NOTE_HTML), # target post webmention discovery HTML, ] got = self.post('/user.com/inbox', json=LIKE) self.assertEqual(204, got.status_code) self.assert_object('http://mas.to/like#ok', notify=[self.user.key], users=[self.masto_actor_key], source_protocol='activitypub', status='ignored', our_as1=as2.to_as1(LIKE_WITH_ACTOR), type='like', object_ids=[LIKE['object']]) def test_inbox_id_already_seen(self, *mocks): obj_key = Object(id=FOLLOW_WRAPPED['id'], as2={}).put() got = self.post('/user.com/inbox', json=FOLLOW_WRAPPED) self.assertEqual(204, got.status_code) self.assertEqual(0, Follower.query().count()) # second time should use in memory cache obj_key.delete() got = self.post('/user.com/inbox', json=FOLLOW_WRAPPED) self.assertEqual(204, got.status_code) self.assertEqual(0, Follower.query().count()) def test_followers_collection_unknown_user(self, *_): resp = self.client.get('/nope.com/followers') self.assertEqual(404, resp.status_code) def test_followers_collection_empty(self, *_): resp = self.client.get('/user.com/followers') self.assertEqual(200, resp.status_code) self.assertEqual({ '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'http://localhost/user.com/followers', 'type': 'Collection', 'summary': "user.com's followers", 'totalItems': 0, 'first': { 'type': 'CollectionPage', 'partOf': 'http://localhost/user.com/followers', 'items': [], }, }, resp.json) def store_followers(self): follow = Object(id=FOLLOW_WITH_ACTOR['id'], as2=FOLLOW_WITH_ACTOR).put() Follower.get_or_create( to=self.user, from_=self.make_user('http://bar', cls=ActivityPub, obj_as2=ACTOR), follow=follow) Follower.get_or_create( to=self.make_user('https://other.actor', cls=ActivityPub), from_=self.user) Follower.get_or_create( to=self.user, from_=self.make_user('http://baz', cls=ActivityPub, obj_as2=ACTOR), follow=follow) Follower.get_or_create( to=self.user, from_=self.make_user('http://baj', cls=Fake), status='inactive') def test_followers_collection_fake(self, *_): self.make_user('foo.com', cls=Fake) resp = self.client.get('/ap/fake/foo.com/followers') self.assertEqual(200, resp.status_code) self.assertEqual({ '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'http://localhost/ap/fake/foo.com/followers', 'type': 'Collection', 'summary': "foo.com's followers", 'totalItems': 0, 'first': { 'type': 'CollectionPage', 'partOf': 'http://localhost/ap/fake/foo.com/followers', 'items': [], }, }, resp.json) def test_followers_collection(self, *_): self.store_followers() resp = self.client.get('/user.com/followers') self.assertEqual(200, resp.status_code) self.assertEqual({ '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'http://localhost/user.com/followers', 'type': 'Collection', 'summary': "user.com's followers", 'totalItems': 2, 'first': { 'type': 'CollectionPage', 'partOf': 'http://localhost/user.com/followers', 'items': [ACTOR, ACTOR], }, }, resp.json) @patch('models.PAGE_SIZE', 1) def test_followers_collection_page(self, *_): self.store_followers() before = (datetime.utcnow() + timedelta(seconds=1)).isoformat() next = Follower.query(Follower.from_ == ActivityPub(id='http://baz').key, Follower.to == self.user.key, ).get().updated.isoformat() resp = self.client.get(f'/user.com/followers?before={before}') self.assertEqual(200, resp.status_code) self.assertEqual({ '@context': 'https://www.w3.org/ns/activitystreams', 'id': f'http://localhost/user.com/followers?before={before}', 'type': 'CollectionPage', 'partOf': 'http://localhost/user.com/followers', 'next': f'http://localhost/user.com/followers?before={next}', 'prev': f'http://localhost/user.com/followers?after={before}', 'items': [ACTOR], }, resp.json) def test_following_collection_unknown_user(self, *_): resp = self.client.get('/nope.com/following') self.assertEqual(404, resp.status_code) def test_following_collection_empty(self, *_): resp = self.client.get('/user.com/following') self.assertEqual(200, resp.status_code) self.assertEqual({ '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'http://localhost/user.com/following', 'summary': "user.com's following", 'type': 'Collection', 'totalItems': 0, 'first': { 'type': 'CollectionPage', 'partOf': 'http://localhost/user.com/following', 'items': [], }, }, resp.json) def store_following(self): follow = Object(id=FOLLOW_WITH_ACTOR['id'], as2=FOLLOW_WITH_ACTOR).put() Follower.get_or_create( to=self.make_user('http://bar', cls=ActivityPub, obj_as2=ACTOR), from_=self.user, follow=follow) Follower.get_or_create( to=self.user, from_=self.make_user('https://other.actor', cls=ActivityPub)) Follower.get_or_create( to=self.make_user('http://baz', cls=ActivityPub, obj_as2=ACTOR), from_=self.user, follow=follow) Follower.get_or_create( to=self.make_user('http://baj', cls=ActivityPub), from_=self.user, status='inactive') def test_following_collection(self, *_): self.store_following() resp = self.client.get('/user.com/following') self.assertEqual(200, resp.status_code) self.assertEqual({ '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'http://localhost/user.com/following', 'summary': "user.com's following", 'type': 'Collection', 'totalItems': 2, 'first': { 'type': 'CollectionPage', 'partOf': 'http://localhost/user.com/following', 'items': [ACTOR, ACTOR], }, }, resp.json) @patch('models.PAGE_SIZE', 1) def test_following_collection_page(self, *_): self.store_following() after = datetime(1900, 1, 1).isoformat() prev = Follower.query(Follower.to == ActivityPub(id='http://baz').key, Follower.from_ == self.user.key, ).get().updated.isoformat() resp = self.client.get(f'/user.com/following?after={after}') self.assertEqual(200, resp.status_code) self.assertEqual({ '@context': 'https://www.w3.org/ns/activitystreams', 'id': f'http://localhost/user.com/following?after={after}', 'type': 'CollectionPage', 'partOf': 'http://localhost/user.com/following', 'prev': f'http://localhost/user.com/following?after={prev}', 'next': f'http://localhost/user.com/following?before={after}', 'items': [ACTOR], }, resp.json) def test_outbox_fake(self, *_): self.make_user('foo.com', cls=Fake) resp = self.client.get(f'/ap/fake/foo.com/outbox') self.assertEqual(200, resp.status_code) self.assertEqual({ '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'http://localhost/ap/fake/foo.com/outbox', 'summary': "foo.com's outbox", 'type': 'OrderedCollection', 'totalItems': 0, 'first': { 'type': 'CollectionPage', 'partOf': 'http://localhost/ap/fake/foo.com/outbox', 'items': [], }, }, resp.json) def test_outbox_web(self, *_): resp = self.client.get(f'/user.com/outbox') self.assertEqual(200, resp.status_code) self.assertEqual({ '@context': 'https://www.w3.org/ns/activitystreams', 'id': 'http://localhost/user.com/outbox', 'summary': "user.com's outbox", 'type': 'OrderedCollection', 'totalItems': 0, 'first': { 'type': 'CollectionPage', 'partOf': 'http://localhost/user.com/outbox', 'items': [], }, }, resp.json) class ActivityPubUtilsTest(TestCase): def setUp(self): super().setUp() g.user = self.make_user('user.com', has_hcard=True, obj_as2=ACTOR) def test_put_validates_id(self, *_): for bad in ( '', 'not a url', 'ftp://not.web/url', 'https:///no/domain', 'https://fed.brid.gy/foo', 'https://ap.brid.gy/foo', 'http://localhost/foo', ): with self.assertRaises(AssertionError): ActivityPub(id=bad).put() def test_owns_id(self): self.assertIsNone(ActivityPub.owns_id('http://foo')) self.assertIsNone(ActivityPub.owns_id('https://bar/baz')) self.assertFalse(ActivityPub.owns_id('at://did:plc:foo/bar/123')) self.assertFalse(ActivityPub.owns_id('e45fab982')) self.assertFalse(ActivityPub.owns_id('https://twitter.com/foo')) self.assertFalse(ActivityPub.owns_id('https://fed.brid.gy/foo')) def test_postprocess_as2_multiple_in_reply_tos(self): self.assert_equals({ 'id': 'http://localhost/r/xyz', 'inReplyTo': 'foo', 'to': [as2.PUBLIC_AUDIENCE], }, postprocess_as2({ 'id': 'xyz', 'inReplyTo': ['foo', 'bar'], })) def test_postprocess_as2_multiple_url(self): self.assert_equals({ 'id': 'http://localhost/r/xyz', 'url': ['http://localhost/r/foo', 'http://localhost/r/bar'], 'to': [as2.PUBLIC_AUDIENCE], }, postprocess_as2({ 'id': 'xyz', 'url': ['foo', 'bar'], })) def test_postprocess_as2_multiple_image(self): self.assert_equals({ 'id': 'http://localhost/r/xyz', 'attachment': [{'url': 'http://r/foo'}, {'url': 'http://r/bar'}], 'image': [{'url': 'http://r/foo'}, {'url': 'http://r/bar'}], 'to': [as2.PUBLIC_AUDIENCE], }, postprocess_as2({ 'id': 'xyz', 'image': [{'url': 'http://r/foo'}, {'url': 'http://r/bar'}], })) def test_postprocess_as2_actor_attributedTo(self): g.user = Fake(id='site') self.assert_equals({ 'actor': { 'id': 'baj', 'preferredUsername': 'site', 'url': 'http://localhost/r/site', 'inbox': 'http://bf/fake/site/ap/inbox', 'outbox': 'http://bf/fake/site/ap/outbox', }, 'attributedTo': [{ 'id': 'bar', 'preferredUsername': 'site', 'url': 'http://localhost/r/site', 'inbox': 'http://bf/fake/site/ap/inbox', 'outbox': 'http://bf/fake/site/ap/outbox', }, { 'id': 'baz', 'preferredUsername': 'site', 'url': 'http://localhost/r/site', 'inbox': 'http://bf/fake/site/ap/inbox', 'outbox': 'http://bf/fake/site/ap/outbox', }], 'to': [as2.PUBLIC_AUDIENCE], }, postprocess_as2({ 'attributedTo': [{'id': 'bar'}, {'id': 'baz'}], 'actor': {'id': 'baj'}, })) def test_postprocess_as2_note(self): self.assert_equals({ 'id': 'http://localhost/r/xyz', 'type': 'Note', 'to': [as2.PUBLIC_AUDIENCE], }, postprocess_as2({ 'id': 'xyz', 'type': 'Note', })) def test_postprocess_as2_hashtag(self): """https://github.com/snarfed/bridgy-fed/issues/45""" self.assert_equals({ 'tag': [ {'type': 'Hashtag', 'name': '#bar', 'href': 'bar'}, {'type': 'Hashtag', 'name': '#baz', 'href': 'http://localhost/hashtag/baz'}, {'type': 'Mention', 'href': 'foo'}, ], 'to': ['https://www.w3.org/ns/activitystreams#Public'], }, postprocess_as2({ 'tag': [ {'name': 'bar', 'href': 'bar'}, {'type': 'Tag', 'name': '#baz'}, # should leave alone {'type': 'Mention', 'href': 'foo'}, ], })) def test_postprocess_as2_url_attachments(self): got = postprocess_as2(as2.from_as1({ 'objectType': 'person', 'urls': [ { 'value': 'https://user.com/about-me', 'displayName': 'Mrs. \u2615 Foo', }, { 'value': 'https://user.com/', 'displayName': 'should be ignored', }, { 'value': 'http://one', 'displayName': 'one text', }, { 'value': 'https://two', 'displayName': 'two title', }, ] })) self.assert_equals([{ 'type': 'PropertyValue', 'name': 'Mrs. ☕ Foo', 'value': '<a rel="me" href="https://user.com/about-me"><span class="invisible">https://</span>user.com/about-me<span class="invisible"></span></a>', }, { 'type': 'PropertyValue', 'name': 'Web site', 'value': '<a rel="me" href="https://user.com/"><span class="invisible">https://</span>user.com<span class="invisible">/</span></a>', }, { 'type': 'PropertyValue', 'name': 'one text', 'value': '<a rel="me" href="http://one"><span class="invisible">http://</span>one<span class="invisible"></span></a>', }, { 'type': 'PropertyValue', 'name': 'two title', 'value': '<a rel="me" href="https://two"><span class="invisible">https://</span>two<span class="invisible"></span></a>', }], got['attachment']) def test_postprocess_as2_preserves_preferredUsername(self): # preferredUsername stays y.z despite user's username. since Mastodon # queries Webfinger for [email protected] # https://github.com/snarfed/bridgy-fed/issues/77#issuecomment-949955109 self.assertEqual('user.com', postprocess_as2({ 'type': 'Person', 'url': 'https://user.com/about-me', 'preferredUsername': 'nick', 'attachment': [{ 'type': 'PropertyValue', 'name': 'nick', 'value': '<a rel="me" href="https://user.com/about-me"><span class="invisible">https://</span>user.com/about-me<span class="invisible"></span></a>', }], })['preferredUsername']) # TODO: make these generic and use Fake @patch('requests.get') def test_load_http(self, mock_get): mock_get.return_value = AS2 id = 'http://the/id' self.assertIsNone(Object.get_by_id(id)) # first time fetches over HTTP got = ActivityPub.load(id) self.assert_equals(id, got.key.id()) self.assert_equals(AS2_OBJ, got.as2) mock_get.assert_has_calls([self.as2_req(id)]) # second time is in cache got.key.delete() mock_get.reset_mock() got = ActivityPub.load(id) self.assert_equals(id, got.key.id()) self.assert_equals(AS2_OBJ, got.as2) mock_get.assert_not_called() @patch('requests.get') def test_load_datastore(self, mock_get): id = 'http://the/id' stored = Object(id=id, as2=AS2_OBJ) stored.put() protocol.objects_cache.clear() # first time loads from datastore got = ActivityPub.load(id) self.assert_entities_equal(stored, got) mock_get.assert_not_called() # second time is in cache stored.key.delete() got = ActivityPub.load(id) self.assert_entities_equal(stored, got) mock_get.assert_not_called() @patch('requests.get') def test_load_preserves_fragment(self, mock_get): stored = Object(id='http://the/id#frag', as2=AS2_OBJ) stored.put() protocol.objects_cache.clear() got = ActivityPub.load('http://the/id#frag') self.assert_entities_equal(stored, got) mock_get.assert_not_called() @patch('requests.get') def test_load_datastore_no_as2(self, mock_get): """If the stored Object has no as2, we should fall back to HTTP.""" id = 'http://the/id' stored = Object(id=id, as2={}, status='in progress') stored.put() protocol.objects_cache.clear() mock_get.return_value = AS2 got = ActivityPub.load(id) mock_get.assert_has_calls([self.as2_req(id)]) self.assert_equals(id, got.key.id()) self.assert_equals(AS2_OBJ, got.as2) mock_get.assert_has_calls([self.as2_req(id)]) self.assert_object(id, as2=AS2_OBJ, as1={**AS2_OBJ, 'id': id}, source_protocol='activitypub', # check that it reused our original Object status='in progress') @patch('requests.get') def test_signed_get_redirects_manually_with_new_sig_headers(self, mock_get): mock_get.side_effect = [ requests_response(status=302, redirected_url='http://second', allow_redirects=False), requests_response(status=200, allow_redirects=False), ] activitypub.signed_get('https://first') first = mock_get.call_args_list[0][1] second = mock_get.call_args_list[1][1] self.assertNotEqual(first['headers'], second['headers']) @patch('requests.get') def test_signed_get_redirects_to_relative_url(self, mock_get): mock_get.side_effect = [ # redirected URL is relative, we have to resolve it requests_response(status=302, redirected_url='/second', allow_redirects=False), requests_response(status=200, allow_redirects=False), ] activitypub.signed_get('https://first') self.assertEqual(('https://first/second',), mock_get.call_args_list[1][0]) first = mock_get.call_args_list[0][1] second = mock_get.call_args_list[1][1] # headers are equal because host is the same self.assertEqual(first['headers'], second['headers']) self.assertEqual( first['auth'].header_signer.sign(first['headers'], method='GET', path='/'), second['auth'].header_signer.sign(second['headers'], method='GET', path='/')) @patch('requests.post') def test_signed_post_ignores_redirect(self, mock_post): mock_post.side_effect = [ requests_response(status=302, redirected_url='http://second', allow_redirects=False), ] resp = activitypub.signed_post('https://first') mock_post.assert_called_once() self.assertEqual(302, resp.status_code) @patch('requests.get') def test_fetch_direct(self, mock_get): mock_get.return_value = AS2 obj = Object(id='http://orig') ActivityPub.fetch(obj) self.assertEqual(AS2_OBJ, obj.as2) mock_get.assert_has_calls(( self.as2_req('http://orig'), )) @patch('requests.get') def test_fetch_direct_ld_content_type(self, mock_get): mock_get.return_value = requests_response(AS2_OBJ, headers={ 'Content-Type': 'application/ld+json; profile="https://www.w3.org/ns/activitystreams"', }) obj = Object(id='http://orig') ActivityPub.fetch(obj) self.assertEqual(AS2_OBJ, obj.as2) mock_get.assert_has_calls(( self.as2_req('http://orig'), )) @patch('requests.get') def test_fetch_via_html(self, mock_get): mock_get.side_effect = [HTML_WITH_AS2, AS2] obj = Object(id='http://orig') ActivityPub.fetch(obj) self.assertEqual(AS2_OBJ, obj.as2) mock_get.assert_has_calls(( self.as2_req('http://orig'), self.as2_req('http://as2', headers=as2.CONNEG_HEADERS), )) @patch('requests.get') def test_fetch_only_html(self, mock_get): mock_get.return_value = HTML obj = Object(id='http://orig') self.assertFalse(ActivityPub.fetch(obj)) self.assertIsNone(obj.as1) @patch('requests.get') def test_fetch_not_acceptable(self, mock_get): mock_get.return_value = NOT_ACCEPTABLE obj = Object(id='http://orig') self.assertFalse(ActivityPub.fetch(obj)) self.assertIsNone(obj.as1) @patch('requests.get') def test_fetch_ssl_error(self, mock_get): mock_get.side_effect = requests.exceptions.SSLError with self.assertRaises(BadGateway): ActivityPub.fetch(Object(id='http://orig')) @patch('requests.get') def test_fetch_no_content(self, mock_get): mock_get.return_value = self.as2_resp('') with self.assertRaises(BadGateway): ActivityPub.fetch(Object(id='http://the/id')) mock_get.assert_has_calls([self.as2_req('http://the/id')]) @patch('requests.get') def test_fetch_not_json(self, mock_get): mock_get.return_value = self.as2_resp('XYZ not JSON') with self.assertRaises(BadGateway): ActivityPub.fetch(Object(id='http://the/id')) mock_get.assert_has_calls([self.as2_req('http://the/id')]) def test_fetch_non_url(self): obj = Object(id='x y z') self.assertFalse(ActivityPub.fetch(obj)) self.assertIsNone(obj.as1) @skip def test_serve(self): obj = Object(id='http://orig', as2=LIKE) self.assertEqual((LIKE_WRAPPED, {'Content-Type': 'application/activity+json'}), ActivityPub.serve(obj)) def test_postprocess_as2_idempotent(self): g.user = self.make_user('foo.com') for obj in (ACTOR, REPLY_OBJECT, REPLY_OBJECT_WRAPPED, REPLY, NOTE_OBJECT, NOTE, MENTION_OBJECT, MENTION, LIKE, LIKE_WRAPPED, REPOST, FOLLOW, FOLLOW_WRAPPED, ACCEPT, UNDO_FOLLOW_WRAPPED, DELETE, UPDATE_NOTE, # TODO: these currently fail # LIKE_WITH_ACTOR, REPOST_FULL, FOLLOW_WITH_ACTOR, # FOLLOW_WRAPPED_WITH_ACTOR, FOLLOW_WITH_OBJECT, UPDATE_PERSON, ): with self.subTest(obj=obj): obj = copy.deepcopy(obj) self.assert_equals(postprocess_as2(obj), postprocess_as2(postprocess_as2(obj)), ignore=['to']) def test_ap_address(self): user = ActivityPub(obj=Object(id='a', as2={**ACTOR, 'preferredUsername': 'me'})) self.assertEqual('@[email protected]', user.ap_address()) self.assertEqual('@[email protected]', user.readable_id) user.obj.as2 = ACTOR self.assertEqual('@[email protected]', user.ap_address()) self.assertEqual('@[email protected]', user.readable_id) user = ActivityPub(id='https://mas.to/users/alice') self.assertEqual('@[email protected]', user.ap_address()) self.assertEqual('@[email protected]', user.readable_id) def test_ap_actor(self): user = self.make_user('http://foo/actor', cls=ActivityPub) self.assertEqual('http://foo/actor', user.ap_actor()) def test_web_url(self): user = self.make_user('http://foo/actor', cls=ActivityPub) self.assertEqual('http://foo/actor', user.web_url()) user.obj = Object(id='a', as2=copy.deepcopy(ACTOR)) # no url self.assertEqual('http://foo/actor', user.web_url()) user.obj.as2['url'] = ['http://my/url'] self.assertEqual('http://my/url', user.web_url()) def test_readable_id(self): user = self.make_user('http://foo', cls=ActivityPub) self.assertIsNone(user.readable_id) self.assertEqual('http://foo', user.readable_or_key_id()) user.obj = Object(id='a', as2=ACTOR) self.assertEqual('@[email protected]', user.readable_id) self.assertEqual('@[email protected]', user.readable_or_key_id()) @skip def test_target_for_not_activitypub(self): with self.assertRaises(AssertionError): ActivityPub.target_for(Object(source_protocol='web')) def test_target_for_actor(self): self.assertEqual(ACTOR['inbox'], ActivityPub.target_for( Object(source_protocol='ap', as2=ACTOR))) actor = copy.deepcopy(ACTOR) del actor['inbox'] self.assertIsNone(ActivityPub.target_for( Object(source_protocol='ap', as2=actor))) actor['publicInbox'] = 'so-public' self.assertEqual('so-public', ActivityPub.target_for( Object(source_protocol='ap', as2=actor))) # sharedInbox self.assertEqual('so-public', ActivityPub.target_for( Object(source_protocol='ap', as2=actor), shared=True)) actor['endpoints'] = { 'sharedInbox': 'so-shared', } self.assertEqual('so-public', ActivityPub.target_for( Object(source_protocol='ap', as2=actor))) self.assertEqual('so-shared', ActivityPub.target_for( Object(source_protocol='ap', as2=actor), shared=True)) def test_target_for_object(self): obj = Object(as2=NOTE_OBJECT, source_protocol='ap') self.assertIsNone(ActivityPub.target_for(obj)) Object(id=ACTOR['id'], as2=ACTOR).put() obj.as2 = { **NOTE_OBJECT, 'author': ACTOR['id'], } self.assertEqual('http://mas.to/inbox', ActivityPub.target_for(obj)) del obj.as2['author'] obj.as2['actor'] = copy.deepcopy(ACTOR) obj.as2['actor']['url'] = [obj.as2['actor'].pop('id')] self.assertEqual('http://mas.to/inbox', ActivityPub.target_for(obj)) @patch('requests.get') def test_target_for_object_fetch(self, mock_get): mock_get.return_value = self.as2_resp(ACTOR) obj = Object(as2={ **NOTE_OBJECT, 'author': 'http://the/author', }, source_protocol='ap') self.assertEqual('http://mas.to/inbox', ActivityPub.target_for(obj)) mock_get.assert_has_calls([self.as2_req('http://the/author')]) @patch('requests.get') def test_target_for_author_is_object_id(self, mock_get): obj = self.store_object(id='http://the/author', our_as1={ 'author': 'http://the/author', }) # test is that we short circuit out instead of infinite recursion self.assertIsNone(ActivityPub.target_for(obj)) @patch('requests.post') def test_send_blocklisted(self, mock_post): self.assertFalse(ActivityPub.send(Object(as2=NOTE), 'https://fed.brid.gy/ap/sharedInbox')) mock_post.assert_not_called()
snarfed/bridgy-fed
tests/test_activitypub.py
test_activitypub.py
py
76,984
python
en
code
219
github-code
6
[ { "api_name": "granary.as2.PUBLIC_AUDIENCE", "line_number": 82, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 82, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 84, "usage_type": "call" }, { "api_name": "granary.as2.PUBLIC_AUDIENCE", "line_number": 98, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 98, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 112, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 142, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 185, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 187, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 189, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 191, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 194, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 248, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 251, "usage_type": "call" }, { "api_name": "common.CONTENT_TYPE_HTML", "line_number": 252, "usage_type": "attribute" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 254, "usage_type": "call" }, { "api_name": "common.CONTENT_TYPE_HTML", "line_number": 259, "usage_type": "attribute" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 262, "usage_type": "call" }, { "api_name": "granary.as2.CONTENT_TYPE", "line_number": 263, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 263, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 265, "usage_type": "call" }, { "api_name": "testutil.TestCase", "line_number": 271, "usage_type": "name" }, { "api_name": "google.cloud.ndb.Key", "line_number": 279, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 279, "usage_type": "argument" }, { "api_name": "google.cloud.ndb", "line_number": 279, "usage_type": "name" }, { "api_name": "google.cloud.ndb.Key", "line_number": 280, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 280, "usage_type": "argument" }, { "api_name": "google.cloud.ndb", "line_number": 280, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 284, "usage_type": "call" }, { "api_name": "base64.b64encode", "line_number": 300, "usage_type": "call" }, { "api_name": "hashlib.sha256", "line_number": 300, "usage_type": "call" }, { "api_name": "granary.as2.CONTENT_TYPE", "line_number": 304, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 304, "usage_type": "name" }, { "api_name": "httpsig.HeaderSigner", "line_number": 307, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.util.json_dumps", "line_number": 314, "usage_type": "call" }, { "api_name": "testutil.Fake", "line_number": 318, "usage_type": "name" }, { "api_name": "granary.as2.CONTENT_TYPE", "line_number": 326, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 326, "usage_type": "name" }, { "api_name": "granary.as2.CONTENT_TYPE", "line_number": 351, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 351, "usage_type": "name" }, { "api_name": "protocol.objects_cache.clear", "line_number": 366, "usage_type": "call" }, { "api_name": "protocol.objects_cache", "line_number": 366, "usage_type": "attribute" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 368, "usage_type": "call" }, { "api_name": "protocol.objects_cache.clear", "line_number": 377, "usage_type": "call" }, { "api_name": "protocol.objects_cache", "line_number": 377, "usage_type": "attribute" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 379, "usage_type": "call" }, { "api_name": "urllib3.exceptions.ReadTimeoutError", "line_number": 386, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 401, "usage_type": "argument" }, { "api_name": "copy.deepcopy", "line_number": 405, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 415, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 415, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 422, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 422, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 437, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 437, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 444, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 444, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 459, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 459, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 476, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 480, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 481, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 484, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 512, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 515, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 520, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 521, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 535, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 536, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 536, "usage_type": "name" }, { "api_name": "testutil.Fake", "line_number": 537, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 538, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 538, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 539, "usage_type": "name" }, { "api_name": "testutil.Fake", "line_number": 541, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 542, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 542, "usage_type": "name" }, { "api_name": "testutil.Fake", "line_number": 543, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 544, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 544, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 546, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 548, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 554, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 554, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 563, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 563, "usage_type": "name" }, { "api_name": "common.redirect_unwrap", "line_number": 563, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 565, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 565, "usage_type": "name" }, { "api_name": "google.cloud.ndb.Key", "line_number": 571, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 571, "usage_type": "argument" }, { "api_name": "google.cloud.ndb", "line_number": 571, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 579, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 581, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 589, "usage_type": "call" }, { "api_name": "granary.microformats2.object_to_json", "line_number": 589, "usage_type": "call" }, { "api_name": "granary.microformats2", "line_number": 589, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 589, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 589, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 592, "usage_type": "call" }, { "api_name": "models.Follower.get_or_create", "line_number": 623, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 623, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.get_or_create", "line_number": 623, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 623, "usage_type": "name" }, { "api_name": "testutil.Fake", "line_number": 625, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 626, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 626, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.get_or_create", "line_number": 626, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 626, "usage_type": "name" }, { "api_name": "testutil.Fake", "line_number": 627, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 628, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 628, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.get_or_create", "line_number": 628, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 628, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 631, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 636, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 637, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 649, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 649, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 662, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 663, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 678, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 678, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 688, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 688, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.get_or_create", "line_number": 688, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 688, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 691, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 694, "usage_type": "call" }, { "api_name": "models.Object.get_by_id", "line_number": 700, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 700, "usage_type": "name" }, { "api_name": "models.Object.get_by_id", "line_number": 701, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 701, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 704, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 708, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 709, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 712, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 732, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 732, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 744, "usage_type": "argument" }, { "api_name": "granary.as2.to_as1", "line_number": 759, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 759, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 783, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 783, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 798, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 798, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 806, "usage_type": "call" }, { "api_name": "requests.ConnectionError", "line_number": 807, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 818, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 818, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 831, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 838, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.util.json_loads", "line_number": 851, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 863, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 864, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 866, "usage_type": "call" }, { "api_name": "models.Follower.query", "line_number": 867, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 867, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 870, "usage_type": "argument" }, { "api_name": "web.Web", "line_number": 872, "usage_type": "argument" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 878, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 883, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 885, "usage_type": "call" }, { "api_name": "models.Follower.query", "line_number": 890, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 890, "usage_type": "name" }, { "api_name": "models.Follower", "line_number": 892, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 893, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 895, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 908, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.get_or_create", "line_number": 909, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 909, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 917, "usage_type": "call" }, { "api_name": "models.Follower.get_or_create", "line_number": 926, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 926, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.get_or_create", "line_number": 927, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 927, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 930, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 936, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 945, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 950, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 956, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 961, "usage_type": "call" }, { "api_name": "models.Follower.get_or_create", "line_number": 963, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 963, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.get_or_create", "line_number": 964, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 964, "usage_type": "name" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 972, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 977, "usage_type": "call" }, { "api_name": "models.Follower.get_or_create", "line_number": 979, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 979, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.get_or_create", "line_number": 980, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 980, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 983, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 1020, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 1020, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 1021, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 1021, "usage_type": "name" }, { "api_name": "models.Object.get_by_id", "line_number": 1027, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1027, "usage_type": "name" }, { "api_name": "protocol.objects_cache.clear", "line_number": 1036, "usage_type": "call" }, { "api_name": "protocol.objects_cache", "line_number": 1036, "usage_type": "attribute" }, { "api_name": "oauth_dropins.webutil.util.json_dumps", "line_number": 1048, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.util.json_dumps", "line_number": 1049, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 1065, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 1065, "usage_type": "name" }, { "api_name": "protocol.seen_ids.clear", "line_number": 1072, "usage_type": "call" }, { "api_name": "protocol.seen_ids", "line_number": 1072, "usage_type": "attribute" }, { "api_name": "google.cloud.ndb.Key", "line_number": 1073, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1073, "usage_type": "argument" }, { "api_name": "google.cloud.ndb", "line_number": 1073, "usage_type": "name" }, { "api_name": "protocol.seen_ids.clear", "line_number": 1086, "usage_type": "call" }, { "api_name": "protocol.seen_ids", "line_number": 1086, "usage_type": "attribute" }, { "api_name": "google.cloud.ndb.Key", "line_number": 1087, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1087, "usage_type": "argument" }, { "api_name": "google.cloud.ndb", "line_number": 1087, "usage_type": "name" }, { "api_name": "protocol.seen_ids.clear", "line_number": 1097, "usage_type": "call" }, { "api_name": "protocol.seen_ids", "line_number": 1097, "usage_type": "attribute" }, { "api_name": "protocol.seen_ids.clear", "line_number": 1106, "usage_type": "call" }, { "api_name": "protocol.seen_ids", "line_number": 1106, "usage_type": "attribute" }, { "api_name": "unittest.mock.patch", "line_number": 1029, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 1029, "usage_type": "attribute" }, { "api_name": "unittest.mock.patch", "line_number": 1030, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 1030, "usage_type": "attribute" }, { "api_name": "unittest.mock.patch", "line_number": 1031, "usage_type": "call" }, { "api_name": "models.Follower.get_or_create", "line_number": 1114, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1114, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.get_or_create", "line_number": 1115, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1115, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 1116, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1116, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.get_or_create", "line_number": 1117, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1117, "usage_type": "name" }, { "api_name": "testutil.Fake.get_or_create", "line_number": 1118, "usage_type": "call" }, { "api_name": "testutil.Fake", "line_number": 1118, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 1120, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1120, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.get_or_create", "line_number": 1121, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1121, "usage_type": "name" }, { "api_name": "models.Follower.query", "line_number": 1122, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1122, "usage_type": "name" }, { "api_name": "protocol.objects_cache.clear", "line_number": 1132, "usage_type": "call" }, { "api_name": "protocol.objects_cache", "line_number": 1132, "usage_type": "attribute" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 1134, "usage_type": "call" }, { "api_name": "protocol.objects_cache.clear", "line_number": 1142, "usage_type": "call" }, { "api_name": "protocol.objects_cache", "line_number": 1142, "usage_type": "attribute" }, { "api_name": "models.Object", "line_number": 1149, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 1165, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 1165, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 1166, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 1166, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 1171, "usage_type": "call" }, { "api_name": "protocol.objects_cache", "line_number": 1175, "usage_type": "attribute" }, { "api_name": "models.Object", "line_number": 1179, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 1193, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 1193, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 1203, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 1203, "usage_type": "name" }, { "api_name": "granary.as2.to_as1", "line_number": 1205, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 1205, "usage_type": "name" }, { "api_name": "models.Object.get_by_id", "line_number": 1214, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1214, "usage_type": "name" }, { "api_name": "protocol.objects_cache", "line_number": 1215, "usage_type": "attribute" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 1223, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 1224, "usage_type": "call" }, { "api_name": "urllib3.exceptions.ReadTimeoutError", "line_number": 1226, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 1237, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 1238, "usage_type": "call" }, { "api_name": "granary.as2.to_as1", "line_number": 1251, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 1251, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1256, "usage_type": "call" }, { "api_name": "models.Follower.query", "line_number": 1260, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1260, "usage_type": "name" }, { "api_name": "models.Follower.query", "line_number": 1266, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1266, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1289, "usage_type": "call" }, { "api_name": "models.Follower.get_or_create", "line_number": 1291, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1291, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 1293, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 1295, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1295, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 1296, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 1298, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1298, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 1300, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 1302, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1302, "usage_type": "name" }, { "api_name": "testutil.Fake", "line_number": 1304, "usage_type": "name" }, { "api_name": "testutil.Fake", "line_number": 1308, "usage_type": "name" }, { "api_name": "datetime.datetime.utcnow", "line_number": 1346, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 1346, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 1346, "usage_type": "call" }, { "api_name": "models.Follower.query", "line_number": 1347, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1347, "usage_type": "name" }, { "api_name": "models.Follower.from_", "line_number": 1347, "usage_type": "attribute" }, { "api_name": "activitypub.ActivityPub", "line_number": 1347, "usage_type": "call" }, { "api_name": "models.Follower.to", "line_number": 1348, "usage_type": "attribute" }, { "api_name": "models.Follower", "line_number": 1348, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1343, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1384, "usage_type": "call" }, { "api_name": "models.Follower.get_or_create", "line_number": 1386, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1386, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 1387, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 1390, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1390, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 1392, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 1393, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1393, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 1394, "usage_type": "name" }, { "api_name": "models.Follower.get_or_create", "line_number": 1396, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1396, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 1397, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 1422, "usage_type": "call" }, { "api_name": "models.Follower.query", "line_number": 1423, "usage_type": "call" }, { "api_name": "models.Follower", "line_number": 1423, "usage_type": "name" }, { "api_name": "models.Follower.to", "line_number": 1423, "usage_type": "attribute" }, { "api_name": "activitypub.ActivityPub", "line_number": 1423, "usage_type": "call" }, { "api_name": "models.Follower.from_", "line_number": 1424, "usage_type": "attribute" }, { "api_name": "models.Follower", "line_number": 1424, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1419, "usage_type": "call" }, { "api_name": "testutil.Fake", "line_number": 1440, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 268, "usage_type": "call" }, { "api_name": "unittest.mock.patch", "line_number": 269, "usage_type": "call" }, { "api_name": "unittest.mock.patch", "line_number": 270, "usage_type": "call" }, { "api_name": "testutil.TestCase", "line_number": 1473, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 1476, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 1476, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 1489, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.owns_id", "line_number": 1492, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1492, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.owns_id", "line_number": 1493, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1493, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.owns_id", "line_number": 1494, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1494, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.owns_id", "line_number": 1495, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1495, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.owns_id", "line_number": 1497, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1497, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.owns_id", "line_number": 1498, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1498, "usage_type": "name" }, { "api_name": "granary.as2.PUBLIC_AUDIENCE", "line_number": 1504, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 1504, "usage_type": "name" }, { "api_name": "activitypub.postprocess_as2", "line_number": 1505, "usage_type": "call" }, { "api_name": "granary.as2.PUBLIC_AUDIENCE", "line_number": 1514, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 1514, "usage_type": "name" }, { "api_name": "activitypub.postprocess_as2", "line_number": 1515, "usage_type": "call" }, { "api_name": "granary.as2.PUBLIC_AUDIENCE", "line_number": 1525, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 1525, "usage_type": "name" }, { "api_name": "activitypub.postprocess_as2", "line_number": 1526, "usage_type": "call" }, { "api_name": "flask.g.user", "line_number": 1532, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 1532, "usage_type": "name" }, { "api_name": "testutil.Fake", "line_number": 1532, "usage_type": "call" }, { "api_name": "granary.as2.PUBLIC_AUDIENCE", "line_number": 1554, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 1554, "usage_type": "name" }, { "api_name": "activitypub.postprocess_as2", "line_number": 1555, "usage_type": "call" }, { "api_name": "granary.as2.PUBLIC_AUDIENCE", "line_number": 1564, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 1564, "usage_type": "name" }, { "api_name": "activitypub.postprocess_as2", "line_number": 1565, "usage_type": "call" }, { "api_name": "activitypub.postprocess_as2", "line_number": 1579, "usage_type": "call" }, { "api_name": "activitypub.postprocess_as2", "line_number": 1589, "usage_type": "call" }, { "api_name": "granary.as2.from_as1", "line_number": 1589, "usage_type": "call" }, { "api_name": "granary.as2", "line_number": 1589, "usage_type": "name" }, { "api_name": "activitypub.postprocess_as2", "line_number": 1631, "usage_type": "call" }, { "api_name": "models.Object.get_by_id", "line_number": 1648, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1648, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.load", "line_number": 1651, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1651, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.load", "line_number": 1660, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1660, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1643, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1668, "usage_type": "call" }, { "api_name": "protocol.objects_cache.clear", "line_number": 1670, "usage_type": "call" }, { "api_name": "protocol.objects_cache", "line_number": 1670, "usage_type": "attribute" }, { "api_name": "activitypub.ActivityPub.load", "line_number": 1673, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1673, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.load", "line_number": 1679, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1679, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1665, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1685, "usage_type": "call" }, { "api_name": "protocol.objects_cache.clear", "line_number": 1687, "usage_type": "call" }, { "api_name": "protocol.objects_cache", "line_number": 1687, "usage_type": "attribute" }, { "api_name": "activitypub.ActivityPub.load", "line_number": 1689, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1689, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1683, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1697, "usage_type": "call" }, { "api_name": "protocol.objects_cache.clear", "line_number": 1699, "usage_type": "call" }, { "api_name": "protocol.objects_cache", "line_number": 1699, "usage_type": "attribute" }, { "api_name": "activitypub.ActivityPub.load", "line_number": 1702, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1702, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1693, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 1719, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 1721, "usage_type": "call" }, { "api_name": "activitypub.signed_get", "line_number": 1723, "usage_type": "call" }, { "api_name": "unittest.mock.patch", "line_number": 1716, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 1733, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 1735, "usage_type": "call" }, { "api_name": "activitypub.signed_get", "line_number": 1737, "usage_type": "call" }, { "api_name": "unittest.mock.patch", "line_number": 1729, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 1753, "usage_type": "call" }, { "api_name": "activitypub.signed_post", "line_number": 1757, "usage_type": "call" }, { "api_name": "unittest.mock.patch", "line_number": 1750, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1764, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.fetch", "line_number": 1765, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1765, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1761, "usage_type": "call" }, { "api_name": "oauth_dropins.webutil.testutil.requests_response", "line_number": 1774, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1777, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.fetch", "line_number": 1778, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1778, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1772, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1788, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.fetch", "line_number": 1789, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1789, "usage_type": "name" }, { "api_name": "granary.as2.CONNEG_HEADERS", "line_number": 1794, "usage_type": "attribute" }, { "api_name": "granary.as2", "line_number": 1794, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1785, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1801, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.fetch", "line_number": 1802, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1802, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1797, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1809, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.fetch", "line_number": 1810, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1810, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1805, "usage_type": "call" }, { "api_name": "requests.exceptions", "line_number": 1815, "usage_type": "attribute" }, { "api_name": "werkzeug.exceptions.BadGateway", "line_number": 1816, "usage_type": "argument" }, { "api_name": "activitypub.ActivityPub.fetch", "line_number": 1817, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1817, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1817, "usage_type": "call" }, { "api_name": "unittest.mock.patch", "line_number": 1813, "usage_type": "call" }, { "api_name": "werkzeug.exceptions.BadGateway", "line_number": 1823, "usage_type": "argument" }, { "api_name": "activitypub.ActivityPub.fetch", "line_number": 1824, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1824, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1824, "usage_type": "call" }, { "api_name": "unittest.mock.patch", "line_number": 1819, "usage_type": "call" }, { "api_name": "werkzeug.exceptions.BadGateway", "line_number": 1832, "usage_type": "argument" }, { "api_name": "activitypub.ActivityPub.fetch", "line_number": 1833, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1833, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1833, "usage_type": "call" }, { "api_name": "unittest.mock.patch", "line_number": 1828, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1838, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.fetch", "line_number": 1839, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1839, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1844, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.serve", "line_number": 1846, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1846, "usage_type": "name" }, { "api_name": "unittest.skip", "line_number": 1842, "usage_type": "name" }, { "api_name": "flask.g.user", "line_number": 1849, "usage_type": "attribute" }, { "api_name": "flask.g", "line_number": 1849, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 1860, "usage_type": "call" }, { "api_name": "activitypub.postprocess_as2", "line_number": 1861, "usage_type": "call" }, { "api_name": "activitypub.postprocess_as2", "line_number": 1862, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1866, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1866, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1874, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1879, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub", "line_number": 1883, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1886, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 1886, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1893, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1897, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1904, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1904, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1904, "usage_type": "call" }, { "api_name": "unittest.skip", "line_number": 1901, "usage_type": "name" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1907, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1907, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1908, "usage_type": "call" }, { "api_name": "copy.deepcopy", "line_number": 1910, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1912, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1912, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1913, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1916, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1916, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1917, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1920, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1920, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1921, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1925, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1925, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1926, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1927, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1927, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1928, "usage_type": "call" }, { "api_name": "models.Object", "line_number": 1931, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1932, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1932, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1934, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1939, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1939, "usage_type": "name" }, { "api_name": "copy.deepcopy", "line_number": 1942, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1944, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1944, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1950, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1954, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1954, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1946, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.target_for", "line_number": 1963, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1963, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 1957, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub.send", "line_number": 1967, "usage_type": "call" }, { "api_name": "activitypub.ActivityPub", "line_number": 1967, "usage_type": "name" }, { "api_name": "models.Object", "line_number": 1967, "usage_type": "call" }, { "api_name": "unittest.mock.patch", "line_number": 1965, "usage_type": "call" } ]
27679859460
# Things to show # Name, Orbital Radius, Gravity, Mass, Distance, Planet Type, Goldilock, Discovery Date, Mass of hoststar from flask import Flask, jsonify, make_response from pandas import read_csv app = Flask(__name__) data = read_csv("csv/display.csv") @app.get("/") def index(): to_send = [] i = 1 while True: res = get_data(i) if res[0] == False: break to_send.append(res[1]) i += 1 return cors(jsonify(to_send)) @app.route("/home") def get_home(): to_send = [] columns = data.columns[1:] columns_to_share = ["name", "planet_type"] i = 0 while True: try: planet_data = {} response = data.iloc[i].to_json(orient='records')[1:-1].split(",")[1:] for j, item in enumerate(response): if columns[j] in columns_to_share: planet_data.update({ columns[j]: item.replace("\"", "").replace("\"", "") }) planet_data.update({ "index": i }) to_send.append(planet_data) except: break i += 1 return to_send @app.route("/get/<int:i>") def get_data_end_point(i): return cors(jsonify(get_data(i))) def get_data(i): try: to_send = {} columns = data.columns[1:] response = data.iloc[i].to_json(orient='records')[1:-1].split(",")[1:] for j, item in enumerate(response): to_send.update({ columns[j]: item.replace("\"", "").replace("\"", "") }) return [True, to_send] except: return [False, {}] def cors(res): res.headers.add("Access-Control-Allow-Origin", "*") return res if __name__ == "__main__": app.run()
CometConnect/python
api.py
api.py
py
1,549
python
en
code
0
github-code
6
[ { "api_name": "flask.Flask", "line_number": 6, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 8, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 20, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 45, "usage_type": "call" } ]
71186923
import boto3 import uuid import json from jwcrypto import jwt, jwk DDB_CLIENT = boto3.client('dynamodb') ddb_table = "iowt-devices" def create_new_device(): id = str(uuid.uuid4()) key = jwk.JWK(generate="oct", size=256) key_data = json.loads(key.export())['k'] token = jwt.JWT(header={"alg": "A256KW", "enc": "A256CBC-HS512"}, claims={"device_id": id}) token.make_encrypted_token(key) return id, key_data, token.serialize() device_id, key, token = create_new_device() db_item = dict() db_item['id'] = {'S': device_id} db_item['deviceLocation'] = {'S': "Not Set"} db_item['deviceName'] = {'S': "Not Set"} db_item['deviceKey'] = {'S': key} db_item['deviceToken'] = {'S': token} db_item['deviceStatus'] = {'S': "new"} db_item['deviceOwner'] = {'S': "none"} DDB_CLIENT.put_item(TableName=ddb_table, Item=db_item)
wilsonc101/iowt
www/create_device.py
create_device.py
py
886
python
en
code
0
github-code
6
[ { "api_name": "boto3.client", "line_number": 6, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 13, "usage_type": "call" }, { "api_name": "jwcrypto.jwk.JWK", "line_number": 14, "usage_type": "call" }, { "api_name": "jwcrypto.jwk", "line_number": 14, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 15, "usage_type": "call" }, { "api_name": "jwcrypto.jwt.JWT", "line_number": 16, "usage_type": "call" }, { "api_name": "jwcrypto.jwt", "line_number": 16, "usage_type": "name" } ]
42896164462
import jax import numpy as np import pytest import hilbert_sort.jax as jax_backend import hilbert_sort.numba as np_backend @pytest.fixture(scope="module", autouse=True) def config_pytest(): jax.config.update("jax_enable_x64", True) @pytest.mark.parametrize("dim_x", [2, 3, 4]) @pytest.mark.parametrize("N", [150, 250]) @pytest.mark.parametrize("seed", [0, 42, 666]) def test_random_agree(dim_x, N, seed): np.random.seed(seed) x = np.random.randn(N, dim_x) np_res = np_backend.hilbert_sort(x) jax_res = jax_backend.hilbert_sort(x) np.testing.assert_allclose(np_res, jax_res) @pytest.mark.parametrize("nDests", [2, 3, 4, 5]) @pytest.mark.parametrize("N", [150, 250]) @pytest.mark.parametrize("seed", [0, 42, 666]) def test_transpose_bits(nDests, N, seed): np.random.seed(seed) x = np.random.randint(0, 150021651, (5,)) np_res = np_backend.transpose_bits(x, nDests) jax_res = jax_backend.transpose_bits(x, nDests) np.testing.assert_allclose(np_res, jax_res) @pytest.mark.parametrize("nDests", [5, 7, 12]) @pytest.mark.parametrize("N", [150, 250]) @pytest.mark.parametrize("seed", [0, 42, 666]) def test_unpack_coords(nDests, N, seed): np.random.seed(seed) x = np.random.randint(0, 150021651, (nDests,)) max_int = 150021651 np_res = np_backend.unpack_coords(x) jax_res = jax_backend.unpack_coords(x, max_int) np.testing.assert_allclose(np_res, jax_res) def test_gray_decode(): for n in range(5, 1_000): np_res = np_backend.gray_decode(n) jax_res = jax_backend.gray_decode(n) np.testing.assert_allclose(np_res, jax_res)
AdrienCorenflos/parallel-Hilbert
tests/test_agree.py
test_agree.py
py
1,622
python
en
code
1
github-code
6
[ { "api_name": "jax.config.update", "line_number": 11, "usage_type": "call" }, { "api_name": "jax.config", "line_number": 11, "usage_type": "attribute" }, { "api_name": "pytest.fixture", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.random.seed", "line_number": 18, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 18, "usage_type": "attribute" }, { "api_name": "numpy.random.randn", "line_number": 19, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 19, "usage_type": "attribute" }, { "api_name": "hilbert_sort.numba.hilbert_sort", "line_number": 20, "usage_type": "call" }, { "api_name": "hilbert_sort.numba", "line_number": 20, "usage_type": "name" }, { "api_name": "hilbert_sort.jax.hilbert_sort", "line_number": 21, "usage_type": "call" }, { "api_name": "hilbert_sort.jax", "line_number": 21, "usage_type": "name" }, { "api_name": "numpy.testing.assert_allclose", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.testing", "line_number": 22, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 14, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 14, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 15, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 16, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 16, "usage_type": "attribute" }, { "api_name": "numpy.random.seed", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 29, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 30, "usage_type": "attribute" }, { "api_name": "hilbert_sort.numba.transpose_bits", "line_number": 31, "usage_type": "call" }, { "api_name": "hilbert_sort.numba", "line_number": 31, "usage_type": "name" }, { "api_name": "hilbert_sort.jax.transpose_bits", "line_number": 32, "usage_type": "call" }, { "api_name": "hilbert_sort.jax", "line_number": 32, "usage_type": "name" }, { "api_name": "numpy.testing.assert_allclose", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.testing", "line_number": 33, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 25, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 25, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 26, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 26, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 27, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 27, "usage_type": "attribute" }, { "api_name": "numpy.random.seed", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 40, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 41, "usage_type": "attribute" }, { "api_name": "hilbert_sort.numba.unpack_coords", "line_number": 43, "usage_type": "call" }, { "api_name": "hilbert_sort.numba", "line_number": 43, "usage_type": "name" }, { "api_name": "hilbert_sort.jax.unpack_coords", "line_number": 44, "usage_type": "call" }, { "api_name": "hilbert_sort.jax", "line_number": 44, "usage_type": "name" }, { "api_name": "numpy.testing.assert_allclose", "line_number": 45, "usage_type": "call" }, { "api_name": "numpy.testing", "line_number": 45, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 36, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 36, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 37, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 37, "usage_type": "attribute" }, { "api_name": "pytest.mark.parametrize", "line_number": 38, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 38, "usage_type": "attribute" }, { "api_name": "hilbert_sort.numba.gray_decode", "line_number": 50, "usage_type": "call" }, { "api_name": "hilbert_sort.numba", "line_number": 50, "usage_type": "name" }, { "api_name": "hilbert_sort.jax.gray_decode", "line_number": 51, "usage_type": "call" }, { "api_name": "hilbert_sort.jax", "line_number": 51, "usage_type": "name" }, { "api_name": "numpy.testing.assert_allclose", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.testing", "line_number": 52, "usage_type": "attribute" } ]
29099504157
import xml.etree.ElementTree as ET from datetime import date from pathlib import Path def _convert_dict(temp_dict): """ Convert one dict to a new one :param temp_dict: A temporary dict :type temp_dict: dict :return: The same dict in a new formate that fits with the database :rtype: dict """ data_dict = {} for transferee in temp_dict: counter = 0 for transferee_counter in temp_dict[transferee]["transferees"]: temp_name = f"{transferee}_{counter}" data_dict[temp_name] = {} # for info in data_dict[transferee]["transferees"][transferee_counter]: data_dict[temp_name]["SourceBarcode"] = temp_dict[transferee]["source"] data_dict[temp_name]["SourceWell"] = temp_dict[transferee]["transferees"][transferee_counter]["source_well"] data_dict[temp_name]["DestinationBarcode"] = temp_dict[transferee]["destination"] data_dict[temp_name]["DestinationWell"] = temp_dict[transferee]["transferees"][transferee_counter]["destination_well"] data_dict[temp_name]["Volume"] = temp_dict[transferee]["transferees"][transferee_counter]["transferee_volume"] counter += 1 return data_dict def _get_transferee_dict(file_list): """ Translate XML file_lise in to two dict :param file_list: A list of files :type file_list: list :return: - transferee: what have been transfereed - destination_plates: What plate the transferee have gone to :rtype: - dict - dict """ transferee = {} destination_plates = {} # source_plate = {} for i in file_list: doc = ET.parse(i) root = doc.getroot() for dates in root.iter("transfer"): date_running = dates.get("date") date_str = f"plate_production_{date_running}" transferee[date_str] = {} # finds barcode for source and destination for plates in root.iter("plate"): source_destination = plates.get("type") barcode = plates.get("barcode") transferee[date_str][source_destination] = barcode # if plates.get("type") == "source": # source_plate[barcode] = {} # source_plate[barcode]["SourceBarcode"] = barcode # source_plate[barcode]["date"] = date.today() if plates.get("type") == "destination": destination_plates[barcode] = {} destination_plates[barcode]["DestinationBarcode"] = barcode destination_plates[barcode]["date"] = date.today() # find source, destination and volume for each transferee for wells_t in root.iter("printmap"): wells_transferee = int(wells_t.get("total")) transferee[date_str]["transferees"] = {} for counter in range(wells_transferee): temp_str = f"Transferee_{counter + 1}" transferee[date_str]["transferees"][temp_str] = {} wells_source = wells_t[counter].get("n") wells_destination = wells_t[counter].get("dn") transferee_volume = float(wells_t[counter].get("vt")) * 10e-6 transferee[date_str]["transferees"][temp_str]["source_well"] = wells_source transferee[date_str]["transferees"][temp_str]["destination_well"] = wells_destination transferee[date_str]["transferees"][temp_str]["transferee_volume"] = transferee_volume # find source, destination and reason for each skipped well for wells in root.iter("skippedwells"): wells_skipped = int(wells.get("total")) transferee[date_str]["Skipped"] = {} # finds destination and source wells data for z in range(wells_skipped): temp_str = f"Skipped_{z + 1}" transferee[date_str]["Skipped"][temp_str] = {} wells_destination = wells[z].get("dn") wells_source = wells[z].get("n") reason = wells[z].get("reason") transferee[date_str]["Skipped"][temp_str]["source_well"] = wells_source transferee[date_str]["Skipped"][temp_str]["destination_well"] = wells_destination transferee[date_str]["Skipped"][temp_str]["reason"] = reason return transferee, destination_plates def xml_controller(file_list): """ Controls the XML reader :param file_list: List of files with XML data :type file_list: list :return: - transferee: what have been transfereed - destination_plates: What plate the transferee have gone to :rtype: - dict - dict """ transferee_dict, destination_plates = _get_transferee_dict(file_list) data_dict = _convert_dict(transferee_dict) return data_dict, destination_plates def convert_echo_to_db(files): echo_to_db = {} transfer_counter = 0 for file_index, files in enumerate(files): files = Path(files) if files.name.startswith("Transfer"): doc = ET.parse(files) root = doc.getroot() # for counting plates and transferees for plates in root.iter("plate"): barcode = plates.get("barcode") source_destination = plates.get("type") if source_destination == "destination": temp_d_barcode = barcode if source_destination == "source": temp_s_barcode = barcode try: echo_to_db[temp_d_barcode] except KeyError: echo_to_db[temp_d_barcode] = {"skipped_wells": {}, "transferred_wells": {}} for wells in root.iter("printmap"): wells_transferred = wells.get("total") if int(wells_transferred) != 0: for z in range(int(wells_transferred)): destination_well = wells[z].get("dn") source_well = wells[z].get("n") vol = wells[z].get("vt") echo_to_db[temp_d_barcode]["transferred_wells"][destination_well] = { "mp_source_plate": temp_s_barcode, "mp_source_well": source_well, "vol": vol} for wells in root.iter("skippedwells"): wells_skipped = wells.get("total") if int(wells_skipped) != 0: transfer_counter += 1 for z in range(int(wells_skipped)): destination_well = wells[z].get("dn") source_well = wells[z].get("n") reason = wells[z].get("reason") reason = reason.split(":")[0] echo_to_db[temp_d_barcode]["skipped_wells"][destination_well] = { "mp_source_plate": temp_s_barcode, "mp_source_well": source_well, "reason": reason} return echo_to_db if __name__ == "__main__": path = "2022-03-03" from file_handler import get_file_list file_list = get_file_list(path) data, test = xml_controller(file_list) print(data)
ZexiDilling/structure_search
xml_handler.py
xml_handler.py
py
7,386
python
en
code
0
github-code
6
[ { "api_name": "xml.etree.ElementTree.parse", "line_number": 52, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 52, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 75, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 75, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 138, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree.parse", "line_number": 140, "usage_type": "call" }, { "api_name": "xml.etree.ElementTree", "line_number": 140, "usage_type": "name" }, { "api_name": "file_handler.get_file_list", "line_number": 192, "usage_type": "call" } ]
39001711691
import csv import MySQLdb mydb= MySQLdb.connect(host='localhost', user='root', db='celebal') cursor=mydb.cursor() with open('dataset1.csv', 'r') as csvfile: csv_data1 = csv.reader(csvfile, delimiter=',') next(csv_data1) cursor.execute("TRUNCATE TABLE data1") for row in csv_data1: cursor.execute("INSERT INTO data1(ID,Cities,Pincode,Office_ID) VALUES(%s,%s,%s,%s)",row) mydb.commit() with open('dataset2.csv','r') as csvfile2: csv_data2 = csv.reader(csvfile2,delimiter=',') next(csv_data2) cursor.execute("TRUNCATE TABLE data2") for row in csv_data2: cursor.execute("INSERT INTO data2(ID,Office_ID,Population) VALUES(%s,%s,%s)",row) mydb.commit() cursor.execute("DROP TABLE new_records") sql=("CREATE TABLE new_records AS SELECT d.ID,d.Office_ID,d.Cities,d.Pincode,dd.population from data1 d join data2 dd on d.Office_ID=dd.Office_ID;") cursor.execute(sql) cursor.close() print("Done")
shauryaa/CelebalAssignment1
try.py
try.py
py
910
python
en
code
0
github-code
6
[ { "api_name": "MySQLdb.connect", "line_number": 4, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 10, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 17, "usage_type": "call" } ]
36637137136
import tkinter as tk from tkinter import ttk from tkinter import * import numpy as np from PIL import ImageTk, Image from os import listdir from os.path import isfile, join from PIL.Image import Resampling from hopfield_clouds import HopfieldClouds # root.columnconfigure(0, weight=1) # root.columnconfigure(1, weight=3) class GUI: def __init__(self): self.picture_size = 420 self.network = HopfieldClouds(130 ** 2) self.root = tk.Tk() self.root.geometry('1280x500') self.root.title('Hopfield Clouds') self.next_button = ttk.Button(self.root, text='>', command=self.next_image) self.next_button.grid(row=1, column=0, sticky=tk.E) self.prev_button = ttk.Button(self.root, text='<', command=self.prev_image) self.prev_button.grid(row=1, column=0, sticky=tk.W) self.original_img = self.network.get_current_image() self.original_img = self.original_img.resize((self.picture_size, self.picture_size), Resampling.LANCZOS) self.img_tk = ImageTk.PhotoImage(self.original_img) original_frame = Frame(self.root, width=self.picture_size, height=self.picture_size) original_frame.grid(row=0, columnspan=1, sticky='we') self.original_image_label = Label(original_frame, image=self.img_tk) self.original_image_label.grid(row=1, column=0) self.cropped_img = Image.fromarray(np.uint8(np.zeros((self.picture_size, self.picture_size, 3)))) self.cropped_img = ImageTk.PhotoImage(self.cropped_img) self.cropped_frame = Frame(self.root, width=self.picture_size, height=self.picture_size) self.cropped_frame.grid(row=0, column=1, sticky='we') self.cropped_image_label = Label(self.cropped_frame, image=self.cropped_img) self.cropped_image_label.grid(row=1, column=1) self.current_value = tk.DoubleVar() # slider self.slider = ttk.Scale(self.root, from_=1, to=99, orient='horizontal', command=self.slider_changed, variable=self.current_value) self.slider.set(50) self.slider.bind('<ButtonRelease-1>', self.slider_up) self.slider_label = Label(self.root, text='Percentage to crop:') self.slider_label.grid(row=1, column=1, columnspan=1, sticky='we') self.slider.grid(column=1, columnspan=1, row=2, sticky='we') self.value_label = ttk.Label(self.root, text=self.get_current_value()) self.value_label.grid(row=3, column=1, columnspan=1, sticky='n') self.reconstructed_img = Image.fromarray(np.uint8(np.zeros((self.picture_size, self.picture_size, 3)))) self.reconstructed_img = ImageTk.PhotoImage(self.reconstructed_img) self.reconstructed_frame = Frame(self.root, width=self.picture_size, height=self.picture_size) self.reconstructed_frame.grid(row=0, column=2, columnspan=1, sticky='n') self.reconstructed_image_label = Label(self.reconstructed_frame, image=self.reconstructed_img) self.reconstructed_image_label.grid(row=1, column=2, columnspan=1) self.reconstruct_button = ttk.Button(self.root, text='Reconstruct', command=self.reconstruct) self.reconstruct_button.grid(row=1, column=2, sticky='n') self.slider_up(None) self.root.mainloop() def slider_changed(self, event): self.value_label.configure(text=self.get_current_value()) def get_current_value(self): return '{: .2f}'.format(self.current_value.get()) def next_image(self): img = self.network.next_image() self.original_img = img.resize((self.picture_size, self.picture_size), Resampling.LANCZOS) self.img_tk = ImageTk.PhotoImage(self.original_img) self.original_image_label.configure(image=self.img_tk) self.slider_up(None) def prev_image(self): img = self.network.prev_image() self.original_img = img.resize((self.picture_size,self.picture_size), Resampling.LANCZOS) self.img_tk = ImageTk.PhotoImage(self.original_img) self.original_image_label.configure(image=self.img_tk) self.slider_up(None) def reconstruct(self): cropped, reconstructed = self.network.get_current_image_predictions(int(self.current_value.get())) self.reconstructed_img = reconstructed self.reconstructed_img = self.reconstructed_img.resize((self.picture_size, self.picture_size), Resampling.LANCZOS) self.reconstructed_img = ImageTk.PhotoImage(self.reconstructed_img) self.reconstructed_image_label.configure(image=self.reconstructed_img) def slider_up(self, event): cropped = self.network.get_current_cropped(int(self.current_value.get())) self.cropped_img = cropped self.cropped_img = self.cropped_img.resize((self.picture_size, self.picture_size), Resampling.LANCZOS) self.cropped_img = ImageTk.PhotoImage(self.cropped_img) self.cropped_image_label.configure(image=self.cropped_img) gui = GUI()
behenate/hopfield-reconstruction
gui.py
gui.py
py
5,007
python
en
code
0
github-code
6
[ { "api_name": "hopfield_clouds.HopfieldClouds", "line_number": 21, "usage_type": "call" }, { "api_name": "tkinter.Tk", "line_number": 22, "usage_type": "call" }, { "api_name": "tkinter.ttk.Button", "line_number": 26, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 26, "usage_type": "name" }, { "api_name": "tkinter.E", "line_number": 27, "usage_type": "attribute" }, { "api_name": "tkinter.ttk.Button", "line_number": 29, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 29, "usage_type": "name" }, { "api_name": "tkinter.W", "line_number": 30, "usage_type": "attribute" }, { "api_name": "PIL.Image.Resampling.LANCZOS", "line_number": 33, "usage_type": "attribute" }, { "api_name": "PIL.Image.Resampling", "line_number": 33, "usage_type": "name" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 34, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 34, "usage_type": "name" }, { "api_name": "PIL.Image.fromarray", "line_number": 41, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 41, "usage_type": "name" }, { "api_name": "numpy.uint8", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 41, "usage_type": "call" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 42, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 42, "usage_type": "name" }, { "api_name": "tkinter.DoubleVar", "line_number": 48, "usage_type": "call" }, { "api_name": "tkinter.ttk.Scale", "line_number": 50, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 50, "usage_type": "name" }, { "api_name": "tkinter.ttk.Label", "line_number": 58, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 58, "usage_type": "name" }, { "api_name": "PIL.Image.fromarray", "line_number": 61, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 61, "usage_type": "name" }, { "api_name": "numpy.uint8", "line_number": 61, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 61, "usage_type": "call" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 62, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 62, "usage_type": "name" }, { "api_name": "tkinter.ttk.Button", "line_number": 67, "usage_type": "call" }, { "api_name": "tkinter.ttk", "line_number": 67, "usage_type": "name" }, { "api_name": "PIL.Image.Resampling.LANCZOS", "line_number": 83, "usage_type": "attribute" }, { "api_name": "PIL.Image.Resampling", "line_number": 83, "usage_type": "name" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 84, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 84, "usage_type": "name" }, { "api_name": "PIL.Image.Resampling.LANCZOS", "line_number": 90, "usage_type": "attribute" }, { "api_name": "PIL.Image.Resampling", "line_number": 90, "usage_type": "name" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 91, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 91, "usage_type": "name" }, { "api_name": "PIL.Image.Resampling.LANCZOS", "line_number": 99, "usage_type": "attribute" }, { "api_name": "PIL.Image.Resampling", "line_number": 99, "usage_type": "name" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 100, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 100, "usage_type": "name" }, { "api_name": "PIL.Image.Resampling.LANCZOS", "line_number": 106, "usage_type": "attribute" }, { "api_name": "PIL.Image.Resampling", "line_number": 106, "usage_type": "name" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 107, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 107, "usage_type": "name" } ]
15598819292
import sys sys.path.append('..') import torch from torch import nn from torch.nn import functional as F from ssd import config as cfg from basenet.vgg import vgg_feat from basenet.resnet import resnet101_feat from ssd.utils_ssd.priorbox import PriorBox from ssd.utils_ssd.L2Norm import L2Norm from ssd.utils_ssd.detect import Detect extras_vgg = {'300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256]} extras_res = {'300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256]} l_vgg = [23, 512] l_res = [11, 512] mbox_vgg = {'300': [(512, 4), (1024, 6), (512, 6), (256, 6), (256, 4), (256, 4)]} mbox_res = {'300': [(512, 4), (2048, 6), (512, 6), (256, 6), (256, 4), (256, 4)]} # extend vgg: 5 "additional" feature parts def add_extras(i, cfg=extras_vgg, vgg=True): fc7 = [nn.MaxPool2d(3, 1, 1), nn.Conv2d(512, 1024, 3, 1, 6, 6), nn.ReLU(inplace=True), nn.Conv2d(1024, 1024, 1), nn.ReLU(inplace=True)] if vgg else [] layers = [] in_channels = i flag = False for k, v in enumerate(cfg): if in_channels != 'S': if v == 'S': layers += [nn.Conv2d(in_channels, cfg[k + 1], kernel_size=(1, 3)[flag], stride=2, padding=1)] else: layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])] flag = not flag in_channels = v return fc7, layers # feature map to loc+conf def multibox(num_classes=21, cfg=mbox_vgg): loc_layers = [] conf_layers = [] for channel, n in cfg: loc_layers += [nn.Conv2d(channel, n * 4, 3, 1, 1)] conf_layers += [nn.Conv2d(channel, n * num_classes, 3, 1, 1)] return loc_layers, conf_layers # single shot multibox detector class SSD(nn.Module): def __init__(self, phase, base, extras, loc, conf, num_classes, l=l_vgg): super(SSD, self).__init__() self.phase = phase self.num_classes = num_classes self.priors = PriorBox(cfg.v2)() self.size = 300 self.l = l[0] self.bone = nn.ModuleList(base) self.l2norm = L2Norm(l[1], 20) self.extras = nn.ModuleList(extras) self.loc, self.conf = nn.ModuleList(loc), nn.ModuleList(conf) if phase == 'test': self.detect = Detect(num_classes, cfg.top_k, cfg.conf_thresh, cfg.nms_thresh) def forward(self, x): source, loc, conf = list(), list(), list() for k in range(self.l): x = self.bone[k](x) source.append(self.l2norm(x)) for k in range(self.l, len(self.bone)): x = self.bone[k](x) source.append(x) for k, v in enumerate(self.extras): x = F.relu(v(x), inplace=True) if k % 2 == 1: source.append(x) # apply multibox head to source layers for (x, l, c) in zip(source, self.loc, self.conf): loc.append(l(x).permute(0, 2, 3, 1).contiguous()) conf.append(c(x).permute(0, 2, 3, 1).contiguous()) loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1) conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1) if not self.priors.is_cuda and loc.is_cuda: self.priors = self.priors.cuda() if self.phase == 'test': output = self.detect( loc.view(loc.size(0), -1, 4), F.softmax(conf.view(conf.size(0), -1, self.num_classes), dim=2), self.priors ) else: output = ( loc.view(loc.size(0), -1, 4), conf.view(conf.size(0), -1, self.num_classes), self.priors ) return output def build_ssd(phase, size=300, num_classes=21, bone='vgg'): if phase != 'test' and phase != 'train': assert "Error: Phase not recognized" if size != 300: assert "Error: Only SSD300 us supported" if bone == 'vgg': base_ = vgg_feat() fc7_, extras_ = add_extras(1024, extras_vgg['300']) loc_, conf_ = multibox(num_classes, mbox_vgg['300']) l = l_vgg elif bone == 'res101': base_ = resnet101_feat() fc7_, extras_ = add_extras(2048, extras_res['300'], False) loc_, conf_ = multibox(num_classes, mbox_res['300']) l = l_res else: raise IOError("only vgg or res101") return SSD(phase, base_ + fc7_, extras_, loc_, conf_, num_classes, l) if __name__ == '__main__': net = build_ssd('train', bone='vgg') img = torch.randn((1, 3, 300, 300)) out = net(img) print(out[1])
AceCoooool/detection-pytorch
ssd/ssd300.py
ssd300.py
py
4,567
python
en
code
24
github-code
6
[ { "api_name": "sys.path.append", "line_number": 3, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 3, "usage_type": "attribute" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 25, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.nn.ReLU", "line_number": 25, "usage_type": "call" }, { "api_name": "torch.nn.Conv2d", "line_number": 26, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 26, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 26, "usage_type": "call" }, { "api_name": "ssd.config", "line_number": 30, "usage_type": "argument" }, { "api_name": "torch.nn.Conv2d", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 33, "usage_type": "name" }, { "api_name": "ssd.config", "line_number": 33, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 36, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 36, "usage_type": "name" }, { "api_name": "ssd.config", "line_number": 46, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 47, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 47, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 48, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 48, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 53, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 53, "usage_type": "name" }, { "api_name": "ssd.utils_ssd.priorbox.PriorBox", "line_number": 58, "usage_type": "call" }, { "api_name": "ssd.config.v2", "line_number": 58, "usage_type": "attribute" }, { "api_name": "ssd.config", "line_number": 58, "usage_type": "name" }, { "api_name": "torch.nn.ModuleList", "line_number": 62, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 62, "usage_type": "name" }, { "api_name": "ssd.utils_ssd.L2Norm.L2Norm", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.nn.ModuleList", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 64, "usage_type": "name" }, { "api_name": "torch.nn.ModuleList", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 65, "usage_type": "name" }, { "api_name": "ssd.utils_ssd.detect.Detect", "line_number": 68, "usage_type": "call" }, { "api_name": "ssd.config.top_k", "line_number": 68, "usage_type": "attribute" }, { "api_name": "ssd.config", "line_number": 68, "usage_type": "name" }, { "api_name": "ssd.config.conf_thresh", "line_number": 68, "usage_type": "attribute" }, { "api_name": "ssd.config.nms_thresh", "line_number": 68, "usage_type": "attribute" }, { "api_name": "torch.nn.functional.relu", "line_number": 79, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 79, "usage_type": "name" }, { "api_name": "torch.cat", "line_number": 86, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 87, "usage_type": "call" }, { "api_name": "torch.nn.functional.softmax", "line_number": 93, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 93, "usage_type": "name" }, { "api_name": "basenet.vgg.vgg_feat", "line_number": 111, "usage_type": "call" }, { "api_name": "basenet.resnet.resnet101_feat", "line_number": 116, "usage_type": "call" }, { "api_name": "torch.randn", "line_number": 127, "usage_type": "call" } ]
1360530890
import Utils.Data as data from Utils.Data.DatasetUtils import is_test_or_val_set, get_train_set_id_from_test_or_val_set, \ get_test_or_val_set_id_from_train from Utils.Data.Features.Feature import Feature from Utils.Data.Features.Generated.EnsemblingFeature.MatrixEnsembling import ItemCBFMatrixEnsembling from Utils.Data.Features.Generated.EnsemblingFeature.XGBEnsembling import XGBEnsembling from Utils.Data.Features.Generated.GeneratedFeature import GeneratedFeaturePickle import pathlib as pl import numpy as np import pandas as pd import hashlib from Utils.Data.Sparse.CSR.CreatorTweetMatrix import CreatorTweetMatrix from Utils.Data.Sparse.CSR.HashtagMatrix import HashtagMatrix from Utils.Data.Sparse.CSR.URM import URM class HashtagSimilarityFoldEnsembling(GeneratedFeaturePickle): def __init__(self, dataset_id: str, label: str, number_of_folds: int = 5 ): feature_name = f"hashtag_similarity_fold_ensembling_{label}" super().__init__(feature_name, dataset_id) self.pck_path = pl.Path( f"{Feature.ROOT_PATH}/{self.dataset_id}/generated/similarity_ensembling/{self.feature_name}.pck.gz") # self.csv_path = pl.Path( # f"{Feature.ROOT_PATH}/{self.dataset_id}/similarity_ensembling/{self.feature_name}.csv.gz") # self.number_of_folds = number_of_folds # self.engager_features = [ # "mapped_feature_engager_id", # "mapped_feature_tweet_id", # f"tweet_feature_engagement_is_{label}" # ] # self.creator_features = [ # "mapped_feature_creator_id", # "mapped_feature_tweet_id" # ] def create_feature(self): raise Exception("This feature is created externally. See gen_hashtag_similarity...py") # # Load the hashtag similarity # sim = HashtagMatrix().load_similarity().tocsr() # # # Check if the dataset id is train or test # if not is_test_or_val_set(self.dataset_id): # # Compute train and test dataset ids # train_dataset_id = self.dataset_id # # # Load the dataset and shuffle it # X_train = data.Data.get_dataset(features=self.engager_features, # dataset_id=train_dataset_id).sample(frac=1) # # creator_X_train = data.Data.get_dataset(features=self.creator_features, # dataset_id=train_dataset_id) # # # Create the ctm 'creator tweet matrix' # ctm = CreatorTweetMatrix(creator_X_train).get_as_urm().astype(np.uint8) # # # Compute the folds # X_train_folds = np.array_split(X_train, self.number_of_folds) # # # Declare list of scores (of each folds) # # used for aggregating results # scores = [] # # # Train multiple models with 1-fold out strategy # for i in range(self.number_of_folds): # # Compute the train set # X_train = pd.concat([X_train_folds[x].copy() for x in range(self.number_of_folds) if x is not i]) # X_train.columns = [ # "mapped_feature_engager_id", # "mapped_feature_tweet_id", # "engagement" # ] # # # # Compute the test set # X_test = X_train_folds[i].copy() # # # Generate the dataset id for this fold # fold_dataset_id = f"{self.feature_name}_{self.dataset_id}_fold_{i}" # # # Load the urm # urm = URM(X_train).get_as_urm().astype(np.uint8) # urm = urm + ctm # # # Create the sub-feature # feature = ItemCBFMatrixEnsembling(self.feature_name, fold_dataset_id, urm, sim, X_train) # # # Retrieve the scores # scores.append(pd.DataFrame(feature.load_or_create())) # print(X_test.index) # print(scores.index) # # # Compute the resulting dataframe and sort the results # result = pd.concat(scores).sort_index() # # # Save it as a feature # self.save_feature(result) # # else: # test_dataset_id = self.dataset_id # train_dataset_id = get_train_set_id_from_test_or_val_set(test_dataset_id) # # creator_X_train = data.Data.get_dataset(features=self.creator_features, # dataset_id=train_dataset_id) # creator_X_test = data.Data.get_dataset(features=self.creator_features, # dataset_id=test_dataset_id) # creator_X = pd.concat([creator_X_train, creator_X_test]) # # # Create the ctm 'creator tweet matrix' # ctm = CreatorTweetMatrix(creator_X).get_as_urm().astype(np.uint8) # # # Load the train dataset # X_train = data.Data.get_dataset(features=self.engager_features, dataset_id=train_dataset_id) # X_train.columns = [ # "mapped_feature_engager_id", # "mapped_feature_tweet_id", # "engagement" # ] # # Load the urm # urm = URM(X_train).get_as_urm().astype(np.uint8) # urm = urm + ctm # # # Load the test dataset # X_test = data.Data.get_dataset(features=self.engager_features, dataset_id=test_dataset_id) # X_test.columns = ["user", "item", "engagement"] # # # Create the sub-feature # feature = ItemCBFMatrixEnsembling(self.feature_name, self.dataset_id, urm, sim, X_test.copy()) # # # Retrieve the scores # result = pd.DataFrame(feature.load_or_create(), index=X_test.index) # # # Save it as a feature # self.save_feature(result) class DomainSimilarityFoldEnsembling(GeneratedFeaturePickle): def __init__(self, dataset_id: str, label: str, number_of_folds: int = 5 ): feature_name = f"domain_similarity_fold_ensembling_{label}" super().__init__(feature_name, dataset_id) self.pck_path = pl.Path( f"{Feature.ROOT_PATH}/{self.dataset_id}/generated/similarity_ensembling/{self.feature_name}.pck.gz") def create_feature(self): raise Exception("This feature is created externally. See gen_hashtag_similarity...py") class LinkSimilarityFoldEnsembling(GeneratedFeaturePickle): def __init__(self, dataset_id: str, label: str, number_of_folds: int = 5 ): feature_name = f"link_similarity_fold_ensembling_{label}" super().__init__(feature_name, dataset_id) self.pck_path = pl.Path( f"{Feature.ROOT_PATH}/{self.dataset_id}/generated/similarity_ensembling/{self.feature_name}.pck.gz") def create_feature(self): raise Exception("This feature is created externally. See gen_hashtag_similarity...py")
MaurizioFD/recsys-challenge-2020-twitter
Utils/Data/Features/Generated/EnsemblingFeature/SimilarityFoldEnsembling.py
SimilarityFoldEnsembling.py
py
7,398
python
en
code
39
github-code
6
[ { "api_name": "Utils.Data.Features.Generated.GeneratedFeature.GeneratedFeaturePickle", "line_number": 18, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 27, "usage_type": "call" }, { "api_name": "Utils.Data.Features.Feature.Feature.ROOT_PATH", "line_number": 28, "usage_type": "attribute" }, { "api_name": "Utils.Data.Features.Feature.Feature", "line_number": 28, "usage_type": "name" }, { "api_name": "Utils.Data.Features.Generated.GeneratedFeature.GeneratedFeaturePickle", "line_number": 141, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 150, "usage_type": "call" }, { "api_name": "Utils.Data.Features.Feature.Feature.ROOT_PATH", "line_number": 151, "usage_type": "attribute" }, { "api_name": "Utils.Data.Features.Feature.Feature", "line_number": 151, "usage_type": "name" }, { "api_name": "Utils.Data.Features.Generated.GeneratedFeature.GeneratedFeaturePickle", "line_number": 157, "usage_type": "name" }, { "api_name": "pathlib.Path", "line_number": 166, "usage_type": "call" }, { "api_name": "Utils.Data.Features.Feature.Feature.ROOT_PATH", "line_number": 167, "usage_type": "attribute" }, { "api_name": "Utils.Data.Features.Feature.Feature", "line_number": 167, "usage_type": "name" } ]
75136926587
import pytest import tgalice from dialog_manager import QuizDialogManager @pytest.fixture def default_dialog_manager(): return QuizDialogManager.from_yaml('texts/quiz.yaml') def make_context(text='', prev_response=None, new_session=False): if prev_response is not None: user_object = prev_response.updated_user_object else: user_object = {} if new_session: metadata = {'new_session': True} else: metadata = {} return tgalice.dialog_manager.Context(user_object=user_object, metadata=metadata, message_text=text) def test_start(default_dialog_manager): r0 = default_dialog_manager.respond(make_context(new_session=True)) assert 'Йоу!' in r0.text # substring in string assert 'да' in r0.suggests # string in list of strings assert 'нет' in r0.suggests # string in list of strings def test_randomization(default_dialog_manager): r0 = default_dialog_manager.respond(make_context(new_session=True)) r1 = default_dialog_manager.respond(make_context(text='да', prev_response=r0)) chosen_options = set() for i in range(100): r2 = default_dialog_manager.respond( make_context(text='какая-то безумная хрень которая точно не матчится', prev_response=r1) ) chosen_options.add(r2.updated_user_object['form']['sex']) assert chosen_options == {'м', 'ж'}
avidale/musiquiz
test_scenarios.py
test_scenarios.py
py
1,432
python
en
code
0
github-code
6
[ { "api_name": "dialog_manager.QuizDialogManager.from_yaml", "line_number": 9, "usage_type": "call" }, { "api_name": "dialog_manager.QuizDialogManager", "line_number": 9, "usage_type": "name" }, { "api_name": "pytest.fixture", "line_number": 7, "usage_type": "attribute" }, { "api_name": "tgalice.dialog_manager.Context", "line_number": 21, "usage_type": "call" }, { "api_name": "tgalice.dialog_manager", "line_number": 21, "usage_type": "attribute" } ]
160637604
import numpy as np import pandas as pd #Setting the recent season match yrBefore = np.arange(1900,2023) yrAfter = np.arange(1901,2024) yrBefore_list = [] yrAfter_list = [] for s in yrBefore: a = str(s) yrBefore_list.append(a) for j in yrAfter: b = str(j) yrAfter_list.append(b) season_list = [] for f in range (len(yrBefore)): season = yrBefore_list[f] + '/' + yrAfter_list[f] season_list.append(season) #Getting Table from online df_bt = pd.read_html("https://www.soccerbase.com/teams/team.sd?team_id=2898&team2_id=376&teamTabs=h2h") #Picking Table From Source sdf= df_bt[2] startingYear = sdf.columns[0] if startingYear in season_list: x = startingYear else: print ('No past record of the teams') y = x r = x + '.1' n = x + '.2' m = x + '.7' l = x + '.8' p = x + '.9' new_df = sdf[sdf[r].apply(lambda x: x[4])!= '/'] new_df.drop(y, axis = 1, inplace = True) new_df.set_index(r,inplace= True) new_df.drop([n, m,l,p], axis = 1, inplace = True) new_df.columns = ['Home', 'Scores', 'Away', 'Result'] new_df.index.names = ['Date'] new_df['ScoresH'] = new_df['Scores'].apply(lambda x: x[0]) new_df['ScoresA'] = new_df['Scores'].apply(lambda x: x[4]) new_df['ScoresH'] = new_df['ScoresH'].apply(lambda x: int(x)) new_df['ScoresA'] = new_df['ScoresA'].apply(lambda x: int(x)) new_df['ResultN'] = new_df['ScoresH'] - new_df['ScoresA'] new_df['Result'][new_df['ResultN']>0]=new_df['Home'] new_df['Result'][new_df['ResultN']<0]=new_df['Away'] new_df['Result'][new_df['ResultN']==0]='Draw' new_df['Result']= new_df['Result'] + ' Wins' Result = pd.get_dummies(new_df['Result']) Home = pd.get_dummies(new_df['Home']) Away = pd.get_dummies(new_df['Away']) new_df.drop(['Home','Scores', 'Away'], axis = 1,inplace = True) ddf= pd.concat([new_df,Result,Home,Away],axis = 1) from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report,confusion_matrix for i in Result: x = i print(x.upper()) X_train, X_test, y_train, y_test = train_test_split(ddf.drop([x,'Result'],axis=1), ddf[x], test_size=0.30, random_state=101) logmodel = LogisticRegression() logmodel.fit(X_train,y_train) predictions = logmodel.predict(X_test) print(classification_report(y_test,predictions)) print(confusion_matrix(y_test,predictions))
Taofeek26/Taofeek26
btttt.py
btttt.py
py
2,577
python
en
code
0
github-code
6
[ { "api_name": "numpy.arange", "line_number": 5, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 6, "usage_type": "call" }, { "api_name": "pandas.read_html", "line_number": 25, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 68, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 69, "usage_type": "call" }, { "api_name": "pandas.get_dummies", "line_number": 70, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 74, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 82, "usage_type": "call" }, { "api_name": "sklearn.linear_model.LogisticRegression", "line_number": 86, "usage_type": "call" }, { "api_name": "sklearn.metrics.classification_report", "line_number": 89, "usage_type": "call" }, { "api_name": "sklearn.metrics.confusion_matrix", "line_number": 90, "usage_type": "call" } ]
19809314779
import os from PIL import Image from typing import Dict, List from preprocessing.image_metadata import ImageMetadata class ImagesReader: def __init__(self, base_path: str) -> None: self.__basePath = base_path def read_train_images(self) -> Dict[str, List[ImageMetadata]]: images = {} dataset_dir = os.path.join(self.__basePath, 'train') for root, dirs, files in os.walk(dataset_dir, topdown=False): if root not in [self.__basePath, dataset_dir]: files = [img for img in files if img.endswith('.jpg') or img.endswith('.JPEG')] class_id = self.__get_class_id__(root) images[class_id] = [] for name in files: image = self.__get_image_metadata__(os.path.join(root, name)) images[class_id].append(image) return images def read_test_images(self) -> List[ImageMetadata]: images = [] dataset_dir = os.path.join(self.__basePath, 'test') files = [img for img in os.listdir(dataset_dir) if img.endswith('.jpg') or img.endswith('.JPEG')] for name in files: image = self.__get_image_metadata__(os.path.join(dataset_dir, name)) images.append(image) return images @staticmethod def __get_image_metadata__(image_path: str) -> ImageMetadata: image = Image.open(image_path) return ImageMetadata(image.filename, (image.width, image.height), image.layers, image.mode) @staticmethod def __get_class_id__(dir_path: str) -> str: class_id = dir_path.split(os.sep)[-1].split('.')[0] return class_id
sachokFoX/caltech_256
code/preprocessing/images_reader.py
images_reader.py
py
1,666
python
en
code
0
github-code
6
[ { "api_name": "os.path.join", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path", "line_number": 13, "usage_type": "attribute" }, { "api_name": "os.walk", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 22, "usage_type": "call" }, { "api_name": "os.path", "line_number": 22, "usage_type": "attribute" }, { "api_name": "typing.Dict", "line_number": 11, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 11, "usage_type": "name" }, { "api_name": "preprocessing.image_metadata.ImageMetadata", "line_number": 11, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path", "line_number": 29, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 34, "usage_type": "call" }, { "api_name": "os.path", "line_number": 34, "usage_type": "attribute" }, { "api_name": "typing.List", "line_number": 27, "usage_type": "name" }, { "api_name": "preprocessing.image_metadata.ImageMetadata", "line_number": 27, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 41, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 41, "usage_type": "name" }, { "api_name": "preprocessing.image_metadata.ImageMetadata", "line_number": 42, "usage_type": "call" }, { "api_name": "preprocessing.image_metadata.ImageMetadata", "line_number": 40, "usage_type": "name" }, { "api_name": "os.sep", "line_number": 46, "usage_type": "attribute" } ]
22002934531
""" Interfaces for Deep Q-Network. """ import random import numpy as np import tensorflow as tf from collections import deque from scipy.misc import imresize from qnet import QNet class DeepQLearner(object): """ Provides wrapper around TensorFlow for Deep Q-Network. """ def __init__(self, actions, weight_save_path, weight_restore_path, log_path, weight_save_frequency, update_frequency, log_frequency, batch_size, learning_rate, burn_in_duration, exploration_duration, exploration_end_rate, replay_max_size, discount_rate, action_repeat, state_frames, frame_height, frame_width, dueling, pooling, training): """ Intializes the TensorFlow graph. Args: actions: List of viable actions learner can make. (Must be PyGame constants.) checkpoint_path: File path to store saved weights. save: If true, will save weights regularly. restore: If true, will restore weights right away from checkpoint_path. """ # Save allowed actions. self.actions = actions # Handle network save/restore. self.weight_save_path = weight_save_path self.weight_restore_path = weight_restore_path self.log_path = log_path # Save training parameters. self.weight_save_frequency = weight_save_frequency self.update_frequency = update_frequency self.log_frequency = log_frequency self.batch_size = batch_size self.learning_rate = learning_rate self.burn_in_duration = burn_in_duration self.exploration_duration = exploration_duration self.exploration_rate = 1. self.exploration_end_rate = exploration_end_rate self.replay_max_size = replay_max_size self.discount_rate = discount_rate self.action_repeat = action_repeat self.state_frames = state_frames self.frame_height = frame_height self.frame_width = frame_width self.dueling = dueling self.pooling = pooling self.training = training # Initialize variables. self.iteration = -1 self.actions_taken = 0 self.repeating_action_rewards = 0 self.update_count = 0 # Create network. self.net = QNet(self.state_frames, self.frame_height, self.frame_width, len(actions), self.learning_rate) # Restore weights if needed. if self.weight_restore_path: try: self.__restore() except: pass if self.log_path: open(self.log_path, 'w').close() # Store all previous transitions in a deque to allow for efficient # popping from the front and to allow for size management. # # Transitions are dictionaries of the following form: # { # 'state_in': The Q-network input state of this instance. # 'action': The action index (indices) taken at this frame. # 'reward': The reward from this action. # 'terminal': True if the action led to a terminal state. # 'state_out': The state resulting from the transition action and initial state. # } self.transitions = deque(maxlen=self.replay_max_size) def __normalize_frame(self, frame): """ Normalizes the screen array to be 84x84x1, with floating point values in the range [0, 1]. Args: frame: The pixel values from the screen. Returns: An 84x84x1 floating point numpy array. """ return np.reshape( np.mean(imresize(frame, (self.frame_height, self.frame_width)), axis=2), (self.frame_height, self.frame_width, 1)) def __preprocess(self, frame): """ Resize image, pool across color channels, and normalize pixels. Args: frame: The frame to process. Returns: The preprocessed frame. """ proc_frame = self.__normalize_frame(frame) if not len(self.transitions): return np.repeat(proc_frame, self.state_frames, axis=2) else: return np.concatenate( (proc_frame, self.transitions[-1]['state_in'][:, :, -(self.state_frames-1):]), axis=2) def __remember_transition(self, pre_frame, action, terminal): """ Returns the transition dictionary for the given data. Defer recording the reward and resulting state until they are observed. Args: pre_frame: The frame at the current time. action: The index of the action(s) taken at current time. terminal: True if the action at current time led to episode termination. """ self.transitions.append({ 'state_in': pre_frame, 'action': self.actions.index(action), 'terminal': terminal}) def __observe_result(self, resulting_state, reward): """ Records the resulting state and reward from the previous action. Args: resulting_state: The (preprocessed) state resulting from the previous action. reward: The reward from the previous transition. """ if not len(self.transitions): return self.transitions[-1]['reward'] = reward self.transitions[-1]['state_out'] = resulting_state def __is_burning_in(self): """ Returns true if the network is still burning in (observing transitions).""" return self.iteration < self.burn_in_duration def __do_explore(self): """ Returns true if a random action should be taken, false otherwise. Decays the exploration rate if the final exploration frame has not been reached. """ if not self.__is_burning_in() and self.exploration_rate > self.exploration_end_rate: self.exploration_rate = max(self.exploration_end_rate, (self.exploration_duration - self.update_count) / (self.exploration_duration)) return random.random() < self.exploration_rate or self.__is_burning_in() def __best_action(self, frame): """ Returns the best action to perform. Args: frame: The current (preprocessed) frame. """ return self.actions[np.argmax(self.net.compute_q(frame))] def __random_action(self): """ Returns a random action to perform. """ return self.actions[int(random.random() * len(self.actions))] def __compute_target_reward(self, trans): """ Computes the target reward for the given transition. Args: trans: The transition for which to compute the target reward. Returns: The target reward. """ target_reward = trans['reward'] if not trans['terminal']: target_reward += self.discount_rate * np.amax(self.net.compute_q(trans['state_out'])) return target_reward def step(self, frame, reward, terminal, score_ratio=None): """ Steps the training algorithm given the current frame and previous reward. Assumes that the reward is a consequence of the previous action. Args: frame: Current game frame. reward: Reward value from previous action. terminal: True if the previous action was termnial. Returns: The next action to perform. """ self.iteration += 1 # Log if necessary. if self.iteration % self.log_frequency == 0: self.__log_status(score_ratio) # Repeat previous action for some number of iterations. # If we ARE repeating an action, we pretend that we did not see # this frame and just keep doing what we're doing. if self.iteration % self.action_repeat != 0: self.repeating_action_rewards += reward return [self.transitions[-1]['action']] # Observe the previous reward. proc_frame = self.__preprocess(frame) self.__observe_result(proc_frame, self.repeating_action_rewards) if self.training: # Save network if necessary before updating. if self.weight_save_path and self.iteration % self.weight_save_frequency == 0 and self.iteration > 0: self.__save() # If not burning in, update the network. if not self.__is_burning_in() and self.actions_taken % self.update_frequency == 0: self.update_count += 1 # Update network from the previous action. minibatch = random.sample(self.transitions, self.batch_size) batch_frames = [trans['state_in'] for trans in minibatch] batch_actions = [trans['action'] for trans in minibatch] batch_targets = [self.__compute_target_reward(trans) for trans in minibatch] self.net.update(batch_frames, batch_actions, batch_targets) # Select the next action. action = self.__random_action() if self.__do_explore() else self.__best_action(proc_frame) self.actions_taken += 1 # Remember the action and the input frames, reward to be observed later. self.__remember_transition(proc_frame, action, terminal) # Reset rewards counter for each group of 4 frames. self.repeating_action_rewards = 0 return [action] def __log_status(self, score_ratio=None): """ Print the current status of the Q-DQN. Args: score_ratio: Score ratio given by the PyGamePlayer. """ print(' Iteration : %d' % self.iteration) if self.update_count > 0: print(' Update count : %d' % self.update_count) if self.__is_burning_in() or len(self.transitions) < self.replay_max_size: print(' Replay capacity : %d' % len(self.transitions)) if self.exploration_rate > self.exploration_end_rate and not self.__is_burning_in(): print(' Exploration rate: %0.20f' % self.exploration_rate) # If we're using the network, print a sample of the output. if not self.__is_burning_in(): print(' Sample Q output :', self.net.compute_q(self.transitions[-1]['state_in'])) if score_ratio: print(' Score ratio : %0.20f' % score_ratio) print('==============================================================================') # Write to log file. open(self.log_path, "a").write(str(score_ratio) + '\n') def __save(self): """ Save the current network parameters in the checkpoint path. """ self.net.saver.save(self.net.sess, self.weight_save_path, global_step=self.iteration) def __restore(self): """ Restore the network from the checkpoint path. """ if not os.path.exists(self.weight_restore_path): raise Exception('No such checkpoint path %s!' % self.weight_restore_path) # Get path to weights. path = tf.train.get_checkpoint_state(self.weight_restore_path).model_checkpoint_path # Restore iteration number. self.iteration = int(path[(path.rfind('-')+1):]) - 1 # Restore exploration rate. self.exploration_rate = max(self.exploration_end_rate, (self.exploration_duration - self.iteration / self.update_frequency / self.action_repeat) / (self.exploration_duration)) # Restore network weights. self.net.saver.restore(self.net.sess, path) print("Network weights, exploration rate, and iteration number restored!")
TianyiWu96/DQN
src/qlearn.py
qlearn.py
py
11,988
python
en
code
0
github-code
6
[ { "api_name": "qnet.QNet", "line_number": 85, "usage_type": "call" }, { "api_name": "collections.deque", "line_number": 109, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 122, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 123, "usage_type": "call" }, { "api_name": "scipy.misc.imresize", "line_number": 123, "usage_type": "call" }, { "api_name": "numpy.repeat", "line_number": 138, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 140, "usage_type": "call" }, { "api_name": "random.random", "line_number": 184, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 193, "usage_type": "call" }, { "api_name": "random.random", "line_number": 199, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 213, "usage_type": "call" }, { "api_name": "random.sample", "line_number": 258, "usage_type": "call" }, { "api_name": "tensorflow.train.get_checkpoint_state", "line_number": 320, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 320, "usage_type": "attribute" } ]
71579186747
""" Optimizes GPST model hyperparameters via Optuna. """ import os import time import json import shutil import logging import argparse import tempfile import datetime import optuna from train import train from lumber import get_log from arguments import get_args def main() -> None: """ Run an Optuna study. """ datestring = str(datetime.datetime.now()) datestring = datestring.replace(" ", "_") log_path = get_log("snow") logging.getLogger().setLevel(logging.INFO) # Setup the root logger. logging.getLogger().addHandler(logging.FileHandler(log_path)) optuna.logging.enable_propagation() # Propagate logs to the root logger. optuna.logging.disable_default_handler() # Stop showing logs in stderr. study = optuna.create_study() logging.getLogger().info("Start optimization.") study.optimize(objective, n_trials=100) def objective(trial: optuna.Trial) -> float: """ Optuna objective function. Should never be called explicitly. Parameters ---------- trial : ``optuna.Trial``, required. The trial with which we define our hyperparameter suggestions. Returns ------- loss : ``float``. The output from the model call after the timeout value specified in ``snow.sh``. """ parser = argparse.ArgumentParser() parser = get_args(parser) args = parser.parse_args() # Set arguments. args.num_train_epochs = 10000 args.stationarize = False args.normalize = False args.seq_norm = False args.seed = 42 args.max_grad_norm = 3 args.adam_epsilon = 7.400879524874149e-08 args.warmup_proportion = 0.0 args.sep = "," batch_size = 64 n_positions = 30 agg_size = 1 # Commented-out trial suggestions should be placed at top of block. # args.stationarize = trial.suggest_categorical("stationarize", [True, False]) # agg_size = trial.suggest_discrete_uniform("agg_size", 1, 40, 5) # args.warmup_proportion = trial.suggest_uniform("warmup_proportion", 0.05, 0.4) # batch_size = trial.suggest_discrete_uniform("train_batch_size", 4, 64, 4) args.weight_decay = trial.suggest_loguniform("weight_decay", 0.0001, 0.01) args.learning_rate = trial.suggest_loguniform("learning_rate", 8e-7, 5e-3) args.train_batch_size = int(batch_size) args.aggregation_size = int(agg_size) logging.getLogger().info(str(args)) # Set config. config = {} config["initializer_range"] = 0.02 config["n_head"] = 8 config["n_embd"] = 256 config["n_layer"] = 6 config["input_dim"] = 300 config["orderbook_depth"] = 6 config["horizon"] = 30 config["modes"] = [ "bid_classification", "bid_increase", "bid_decrease", "ask_classification", "ask_increase", "ask_decrease", ] # Commented-out trial suggestions should be placed at top of block. # config["n_head"] = int(trial.suggest_discrete_uniform("n_head", 4, 16, 4)) # config["n_embd"] = int(trial.suggest_discrete_uniform("n_embd", 64, 128, 8)) # config["n_layer"] = trial.suggest_int("n_layer", 4, 8) n_positions = int(trial.suggest_discrete_uniform("n_ctx", 60, 600, 30)) config["layer_norm_epsilon"] = trial.suggest_loguniform("layer_eps", 1e-5, 1e-3) config["resid_pdrop"] = trial.suggest_loguniform("resid_pdrop", 0.01, 0.15) config["attn_pdrop"] = trial.suggest_loguniform("attn_pdrop", 0.1, 0.3) config["initializer_range"] = trial.suggest_loguniform("initrange", 0.005, 0.04) config["n_positions"] = n_positions config["n_ctx"] = n_positions dirpath = tempfile.mkdtemp() config_filename = str(time.time()) + ".json" config_filepath = os.path.join(dirpath, config_filename) with open(config_filepath, "w") as path: json.dump(config, path) args.gpst_model = config_filepath args.model_name = "optuna" args.trial = trial loss = train(args) shutil.rmtree(dirpath) return loss if __name__ == "__main__": main()
langfield/spred
spred/gpst/optimize.py
optimize.py
py
4,018
python
en
code
3
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 21, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 21, "usage_type": "attribute" }, { "api_name": "lumber.get_log", "line_number": 23, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 24, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 24, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 25, "usage_type": "call" }, { "api_name": "logging.FileHandler", "line_number": 25, "usage_type": "call" }, { "api_name": "optuna.logging.enable_propagation", "line_number": 26, "usage_type": "call" }, { "api_name": "optuna.logging", "line_number": 26, "usage_type": "attribute" }, { "api_name": "optuna.logging.disable_default_handler", "line_number": 27, "usage_type": "call" }, { "api_name": "optuna.logging", "line_number": 27, "usage_type": "attribute" }, { "api_name": "optuna.create_study", "line_number": 29, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 30, "usage_type": "call" }, { "api_name": "optuna.Trial", "line_number": 34, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 48, "usage_type": "call" }, { "api_name": "arguments.get_args", "line_number": 49, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 76, "usage_type": "call" }, { "api_name": "tempfile.mkdtemp", "line_number": 108, "usage_type": "call" }, { "api_name": "time.time", "line_number": 109, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 110, "usage_type": "call" }, { "api_name": "os.path", "line_number": 110, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 112, "usage_type": "call" }, { "api_name": "train.train", "line_number": 117, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 119, "usage_type": "call" } ]
72255300348
from __future__ import annotations import json import re from typing import TYPE_CHECKING import asyncpg import discord import pandas as pd from tweepy.asynchronous import AsyncClient from ..helpers import add_prefix if TYPE_CHECKING: from bot import Bot async def setup_cache(bot: Bot): prefixes = await bot.pool.fetch("SELECT * FROM guild_prefixes") for record in prefixes: add_prefix(bot, record["guild_id"], record["prefix"]) guild_settings = await bot.pool.fetch("SELECT * FROM guild_settings") for guild in guild_settings: if guild["poketwo"]: await bot.redis.sadd("poketwo_guilds", guild["guild_id"]) if guild["auto_download"]: await bot.redis.sadd("auto_download_channels", guild["auto_download"]) if guild["auto_reactions"]: await bot.redis.sadd("auto_reactions", guild["guild_id"]) blacklisted = await bot.pool.fetch("SELECT snowflake FROM block_list") for snowflake in blacklisted: await bot.redis.sadd("block_list", snowflake["snowflake"]) afk = await bot.pool.fetch("SELECT * FROM afk") for row in afk: await bot.redis.sadd("afk_users", row["user_id"]) covers = await bot.pool.fetch("SELECT * FROM nsfw_covers") for row in covers: await bot.redis.sadd("nsfw_covers", row["album_id"]) opted_out = await bot.pool.fetch("SELECT * FROM opted_out") for row in opted_out: for item in row["items"]: await bot.redis.sadd(f"opted_out:{row['user_id']}", item) user_settings = await bot.pool.fetch("SELECT * FROM user_settings") for row in user_settings: if row["fm_autoreact"]: await bot.redis.sadd("fm_autoreactions", row["user_id"]) if row["mudae_pokemon"]: await bot.redis.sadd("mudae_pokemon_reminders", row["user_id"]) async def setup_webhooks(bot: Bot): for name, webhook in bot.config["webhooks"].items(): bot.webhooks[name] = discord.Webhook.from_url(url=webhook, session=bot.session) for name, webhook in bot.config["avatar_webhooks"].items(): bot.avatar_webhooks[name] = discord.Webhook.from_url( url=webhook, session=bot.session ) for name, webhook in bot.config["image_webhooks"].items(): bot.image_webhooks[name] = discord.Webhook.from_url( url=webhook, session=bot.session ) for name, webhook in bot.config["icon-webhooks"].items(): bot.icon_webhooks[name] = discord.Webhook.from_url( url=webhook, session=bot.session ) async def setup_pokemon(bot: Bot): url = "https://raw.githubusercontent.com/poketwo/data/master/csv/pokemon.csv" data = pd.read_csv(url) pokemon = [str(p).lower() for p in data["name.en"]] for p in pokemon: if re.search(r"[\U00002640\U0000fe0f|\U00002642\U0000fe0f]", p): pokemon[pokemon.index(p)] = re.sub( "[\U00002640\U0000fe0f|\U00002642\U0000fe0f]", "", p ) if re.search(r"[\U000000e9]", p): pokemon[pokemon.index(p)] = re.sub("[\U000000e9]", "e", p) bot.pokemon = pokemon async def setup_accounts(bot: Bot): accounts = await bot.pool.fetch("SELECT * FROM accounts") for record in accounts: if record["osu"]: await bot.redis.hset(f"accounts:{record['user_id']}", "osu", record["osu"]) if record["lastfm"]: await bot.redis.hset( f"accounts:{record['user_id']}", "lastfm", record["lastfm"] ) if record["steam"]: await bot.redis.hset( f"accounts:{record['user_id']}", "steam", record["steam"] ) if record["roblox"]: await bot.redis.hset( f"accounts:{record['user_id']}", "roblox", record["roblox"] ) if record["genshin"]: await bot.redis.hset( f"accounts:{record['user_id']}", "genshin", record["genshin"] ) async def create_pool(bot: Bot, connection_url: str): def _encode_jsonb(value): return json.dumps(value) def _decode_jsonb(value): return json.loads(value) async def init(con): await con.set_type_codec( "jsonb", schema="pg_catalog", encoder=_encode_jsonb, decoder=_decode_jsonb, format="text", ) connection = await asyncpg.create_pool(connection_url, init=init) if connection is None: raise Exception("Failed to connect to database") bot.pool = connection
LeoCx1000/fish
src/utils/core/startup.py
startup.py
py
4,587
python
en
code
0
github-code
6
[ { "api_name": "typing.TYPE_CHECKING", "line_number": 14, "usage_type": "name" }, { "api_name": "bot.Bot", "line_number": 18, "usage_type": "name" }, { "api_name": "bot.pool.fetch", "line_number": 19, "usage_type": "call" }, { "api_name": "bot.pool", "line_number": 19, "usage_type": "attribute" }, { "api_name": "helpers.add_prefix", "line_number": 21, "usage_type": "call" }, { "api_name": "bot.pool.fetch", "line_number": 23, "usage_type": "call" }, { "api_name": "bot.pool", "line_number": 23, "usage_type": "attribute" }, { "api_name": "bot.redis.sadd", "line_number": 26, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 26, "usage_type": "attribute" }, { "api_name": "bot.redis.sadd", "line_number": 28, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 28, "usage_type": "attribute" }, { "api_name": "bot.redis.sadd", "line_number": 31, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 31, "usage_type": "attribute" }, { "api_name": "bot.pool.fetch", "line_number": 33, "usage_type": "call" }, { "api_name": "bot.pool", "line_number": 33, "usage_type": "attribute" }, { "api_name": "bot.redis.sadd", "line_number": 35, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 35, "usage_type": "attribute" }, { "api_name": "bot.pool.fetch", "line_number": 37, "usage_type": "call" }, { "api_name": "bot.pool", "line_number": 37, "usage_type": "attribute" }, { "api_name": "bot.redis.sadd", "line_number": 39, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 39, "usage_type": "attribute" }, { "api_name": "bot.pool.fetch", "line_number": 41, "usage_type": "call" }, { "api_name": "bot.pool", "line_number": 41, "usage_type": "attribute" }, { "api_name": "bot.redis.sadd", "line_number": 43, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 43, "usage_type": "attribute" }, { "api_name": "bot.pool.fetch", "line_number": 45, "usage_type": "call" }, { "api_name": "bot.pool", "line_number": 45, "usage_type": "attribute" }, { "api_name": "bot.redis.sadd", "line_number": 48, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 48, "usage_type": "attribute" }, { "api_name": "bot.pool.fetch", "line_number": 50, "usage_type": "call" }, { "api_name": "bot.pool", "line_number": 50, "usage_type": "attribute" }, { "api_name": "bot.redis.sadd", "line_number": 53, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 53, "usage_type": "attribute" }, { "api_name": "bot.redis.sadd", "line_number": 56, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 56, "usage_type": "attribute" }, { "api_name": "bot.Bot", "line_number": 59, "usage_type": "name" }, { "api_name": "bot.config", "line_number": 60, "usage_type": "attribute" }, { "api_name": "bot.webhooks", "line_number": 61, "usage_type": "attribute" }, { "api_name": "discord.Webhook.from_url", "line_number": 61, "usage_type": "call" }, { "api_name": "discord.Webhook", "line_number": 61, "usage_type": "attribute" }, { "api_name": "bot.session", "line_number": 61, "usage_type": "attribute" }, { "api_name": "bot.config", "line_number": 63, "usage_type": "attribute" }, { "api_name": "bot.avatar_webhooks", "line_number": 64, "usage_type": "attribute" }, { "api_name": "discord.Webhook.from_url", "line_number": 64, "usage_type": "call" }, { "api_name": "discord.Webhook", "line_number": 64, "usage_type": "attribute" }, { "api_name": "bot.session", "line_number": 65, "usage_type": "attribute" }, { "api_name": "bot.config", "line_number": 68, "usage_type": "attribute" }, { "api_name": "bot.image_webhooks", "line_number": 69, "usage_type": "attribute" }, { "api_name": "discord.Webhook.from_url", "line_number": 69, "usage_type": "call" }, { "api_name": "discord.Webhook", "line_number": 69, "usage_type": "attribute" }, { "api_name": "bot.session", "line_number": 70, "usage_type": "attribute" }, { "api_name": "bot.config", "line_number": 73, "usage_type": "attribute" }, { "api_name": "bot.icon_webhooks", "line_number": 74, "usage_type": "attribute" }, { "api_name": "discord.Webhook.from_url", "line_number": 74, "usage_type": "call" }, { "api_name": "discord.Webhook", "line_number": 74, "usage_type": "attribute" }, { "api_name": "bot.session", "line_number": 75, "usage_type": "attribute" }, { "api_name": "bot.Bot", "line_number": 79, "usage_type": "name" }, { "api_name": "pandas.read_csv", "line_number": 81, "usage_type": "call" }, { "api_name": "re.search", "line_number": 85, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 86, "usage_type": "call" }, { "api_name": "re.search", "line_number": 89, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 90, "usage_type": "call" }, { "api_name": "bot.pokemon", "line_number": 92, "usage_type": "attribute" }, { "api_name": "bot.Bot", "line_number": 95, "usage_type": "name" }, { "api_name": "bot.pool.fetch", "line_number": 96, "usage_type": "call" }, { "api_name": "bot.pool", "line_number": 96, "usage_type": "attribute" }, { "api_name": "bot.redis.hset", "line_number": 99, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 99, "usage_type": "attribute" }, { "api_name": "bot.redis.hset", "line_number": 101, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 101, "usage_type": "attribute" }, { "api_name": "bot.redis.hset", "line_number": 105, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 105, "usage_type": "attribute" }, { "api_name": "bot.redis.hset", "line_number": 109, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 109, "usage_type": "attribute" }, { "api_name": "bot.redis.hset", "line_number": 113, "usage_type": "call" }, { "api_name": "bot.redis", "line_number": 113, "usage_type": "attribute" }, { "api_name": "bot.Bot", "line_number": 118, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 120, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 123, "usage_type": "call" }, { "api_name": "asyncpg.create_pool", "line_number": 134, "usage_type": "call" }, { "api_name": "bot.pool", "line_number": 139, "usage_type": "attribute" } ]
31957026711
from __future__ import annotations import asyncio from typing import TYPE_CHECKING, Any, Union, Optional, TypedDict, final from datetime import datetime import attr import ujson from tomodachi.utils import helpers from tomodachi.core.enums import ActionType if TYPE_CHECKING: from tomodachi.core.bot import Tomodachi __all__ = ["Action", "ActionScheduler"] class ReminderExtras(TypedDict): content: str class InfractionExtras(TypedDict): target_id: int reason: str def convert_action_type(val: Any) -> ActionType: if isinstance(val, ActionType): return val return ActionType(val) def convert_extra(val: Any) -> Optional[dict]: if val is None: return None if isinstance(val, dict): return val return ujson.loads(val) @attr.s(slots=True, auto_attribs=True) class Action: id: Optional[int] = None action_type: Optional[ActionType] = attr.ib(converter=convert_action_type, default=ActionType.REMINDER) created_at: Optional[datetime] = attr.ib(factory=helpers.utcnow) trigger_at: Optional[datetime] = attr.ib(factory=helpers.utcnow) author_id: Optional[int] = None guild_id: Optional[int] = None channel_id: Optional[int] = None message_id: Optional[int] = None extra: Optional[Union[ReminderExtras, InfractionExtras]] = attr.ib(converter=convert_extra, default=None) @final class ActionScheduler: def __init__(self, bot: Tomodachi): self.bot = bot self.cond = asyncio.Condition() self.task = asyncio.create_task(self.dispatcher()) self.active: Optional[Action] = None async def dispatcher(self): async with self.cond: action = self.active = await self.get_action() if not action: await self.cond.wait() await self.redispatch() now = helpers.utcnow() if action.trigger_at >= now: delta = (action.trigger_at - now).total_seconds() await asyncio.sleep(delta) await self.trigger_action(action) await self.redispatch() async def redispatch(self): if not self.task.cancelled() or self.task.done(): self.task.cancel() self.task = asyncio.create_task(self.dispatcher()) async with self.cond: self.cond.notify_all() async def get_action(self): async with self.bot.db.pool.acquire() as conn: query = """SELECT * FROM actions WHERE (CURRENT_TIMESTAMP + '28 days'::interval) > actions.trigger_at ORDER BY actions.trigger_at LIMIT 1;""" stmt = await conn.prepare(query) record = await stmt.fetchrow() if not record: return None return Action(**record) async def schedule(self, a: Action): now = helpers.utcnow() delta = (a.trigger_at - now).total_seconds() if delta <= 60 and a.action_type is not ActionType.INFRACTION: asyncio.create_task(self.trigger_short_action(delta, a)) return a async with self.bot.db.pool.acquire() as conn: await conn.set_type_codec("jsonb", encoder=ujson.dumps, decoder=ujson.loads, schema="pg_catalog") query = """INSERT INTO actions (action_type, trigger_at, author_id, guild_id, channel_id, message_id, extra) VALUES ($1, $2, $3, $4, $5, $6, $7) RETURNING *;""" stmt = await conn.prepare(query) record = await stmt.fetchrow( a.action_type.name, a.trigger_at, a.author_id, a.guild_id, a.channel_id, a.message_id, a.extra, ) a = Action(**record) # Once the new action created dispatcher has to be restarted # but only if the currently active action happens later than new if (self.active and self.active.trigger_at >= a.trigger_at) or self.active is None: asyncio.create_task(self.redispatch()) return a async def trigger_action(self, action: Action): if action.action_type is ActionType.INFRACTION: infraction = await self.bot.infractions.get_by_action(action.id) self.bot.dispatch("expired_infraction", infraction=infraction) else: self.bot.dispatch("triggered_action", action=action) await self.bot.db.pool.execute("DELETE FROM actions WHERE id = $1;", action.id) async def trigger_short_action(self, seconds, action: Action): await asyncio.sleep(seconds) self.bot.dispatch("triggered_action", action=action)
httpolar/tomodachi
tomodachi/core/actions.py
actions.py
py
4,732
python
en
code
4
github-code
6
[ { "api_name": "typing.TYPE_CHECKING", "line_number": 13, "usage_type": "name" }, { "api_name": "typing.TypedDict", "line_number": 19, "usage_type": "name" }, { "api_name": "typing.TypedDict", "line_number": 23, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 28, "usage_type": "name" }, { "api_name": "tomodachi.core.enums.ActionType", "line_number": 29, "usage_type": "argument" }, { "api_name": "tomodachi.core.enums.ActionType", "line_number": 31, "usage_type": "call" }, { "api_name": "tomodachi.core.enums.ActionType", "line_number": 28, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 34, "usage_type": "name" }, { "api_name": "ujson.loads", "line_number": 39, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 34, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 44, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 45, "usage_type": "name" }, { "api_name": "tomodachi.core.enums.ActionType", "line_number": 45, "usage_type": "name" }, { "api_name": "attr.ib", "line_number": 45, "usage_type": "call" }, { "api_name": "tomodachi.core.enums.ActionType.REMINDER", "line_number": 45, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 46, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 46, "usage_type": "name" }, { "api_name": "attr.ib", "line_number": 46, "usage_type": "call" }, { "api_name": "tomodachi.utils.helpers.utcnow", "line_number": 46, "usage_type": "attribute" }, { "api_name": "tomodachi.utils.helpers", "line_number": 46, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 47, "usage_type": "name" }, { "api_name": "datetime.datetime", "line_number": 47, "usage_type": "name" }, { "api_name": "attr.ib", "line_number": 47, "usage_type": "call" }, { "api_name": "tomodachi.utils.helpers.utcnow", "line_number": 47, "usage_type": "attribute" }, { "api_name": "tomodachi.utils.helpers", "line_number": 47, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 48, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 49, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 50, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 51, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 52, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 52, "usage_type": "name" }, { "api_name": "attr.ib", "line_number": 52, "usage_type": "call" }, { "api_name": "attr.s", "line_number": 42, "usage_type": "call" }, { "api_name": "tomodachi.core.bot.Tomodachi", "line_number": 57, "usage_type": "name" }, { "api_name": "asyncio.Condition", "line_number": 59, "usage_type": "call" }, { "api_name": "asyncio.create_task", "line_number": 60, "usage_type": "call" }, { "api_name": "typing.Optional", "line_number": 61, "usage_type": "name" }, { "api_name": "tomodachi.utils.helpers.utcnow", "line_number": 71, "usage_type": "call" }, { "api_name": "tomodachi.utils.helpers", "line_number": 71, "usage_type": "name" }, { "api_name": "asyncio.sleep", "line_number": 74, "usage_type": "call" }, { "api_name": "asyncio.create_task", "line_number": 83, "usage_type": "call" }, { "api_name": "tomodachi.utils.helpers.utcnow", "line_number": 104, "usage_type": "call" }, { "api_name": "tomodachi.utils.helpers", "line_number": 104, "usage_type": "name" }, { "api_name": "tomodachi.core.enums.ActionType.INFRACTION", "line_number": 107, "usage_type": "attribute" }, { "api_name": "tomodachi.core.enums.ActionType", "line_number": 107, "usage_type": "name" }, { "api_name": "asyncio.create_task", "line_number": 108, "usage_type": "call" }, { "api_name": "ujson.dumps", "line_number": 112, "usage_type": "attribute" }, { "api_name": "ujson.loads", "line_number": 112, "usage_type": "attribute" }, { "api_name": "asyncio.create_task", "line_number": 132, "usage_type": "call" }, { "api_name": "tomodachi.core.enums.ActionType.INFRACTION", "line_number": 137, "usage_type": "attribute" }, { "api_name": "tomodachi.core.enums.ActionType", "line_number": 137, "usage_type": "name" }, { "api_name": "asyncio.sleep", "line_number": 147, "usage_type": "call" }, { "api_name": "typing.final", "line_number": 55, "usage_type": "name" } ]
14200847696
import discord import asyncio from discord.ext import commands class Channels(commands.Cog): def __init__(self, bot): self.bot = bot self.role_bot_id = int(self.bot.config['Zone']['role_bot_id']) self.channel_private_id = int(self.bot.config['Zone']['channel_private_id']) self.category_private_id = int(self.bot.config['Zone']['category_private_id']) @commands.command() async def create(self, ctx): guild = ctx.guild role_bot = guild.get_role(self.role_bot_id) category_private = guild.get_channel(self.category_private_id) if role_bot and category_private: if ctx.channel.id == self.channel_private_id: if f'room-{ctx.author.name}' in [ch.name for ch in guild.text_channels]: e_msg = discord.Embed(title=f'チャンネルは既に作成されています') await ctx.reply(embed=e_msg, allowed_mentions=discord.AllowedMentions.none()) else: overwrites = { guild.default_role: discord.PermissionOverwrite(view_channel=False), ctx.author: discord.PermissionOverwrite(view_channel=True), role_bot: discord.PermissionOverwrite(view_channel=True) } channel = await guild.create_text_channel(f'room-{ctx.author.name}', overwrites=overwrites, category=category_private) s_msg = discord.Embed(title='プライベートチャンネルを作成しました', description=f'チャンネル: {channel.mention}') await ctx.reply(embed=s_msg, allowed_mentions=discord.AllowedMentions.none()) @commands.command() async def clean(self, ctx): guild = ctx.guild category_private = guild.get_channel(self.category_private_id) if category_private: if ctx.channel.id == self.channel_private_id: user_channel = [ch for ch in guild.text_channels if ch.name == f'room-{ctx.author.name}'] if user_channel: e_msg = discord.Embed(title=f'チャンネの再生成', description="再生成する場合は`y`、キャンセルする場合は`n`を送信してください") re_msg = await ctx.reply(embed=e_msg, allowed_mentions=discord.AllowedMentions.none()) def check(message): if message.author == ctx.author and (message.content in ["y", "n"]): return message.content try: msg = await self.bot.wait_for('message', timeout=15.0, check=check) except asyncio.TimeoutError: await re_msg.edit(discord.Embed(description='時間切れです')) if msg.content == 'y': await msg.delete() new_channel = await user_channel[0].clone(name=f'room-{ctx.author.name}') await user_channel[0].delete() await re_msg.edit(embed=discord.Embed(title='再生成しました', description=f'チャンネル: {new_channel.mention}')) elif msg.content == 'n': await msg.delete() await re_msg.edit(embed=discord.Embed(description='キャンセルしました')) else: pass else: await ctx.reply(embed=discord.Embed(description="プライベートチャンネルが見つかりません"), allowed_mentions=discord.AllowedMentions.none()) def setup(bot): bot.add_cog(Channels(bot))
yutarou12/bot-zone
cogs/channels.py
channels.py
py
3,982
python
en
code
0
github-code
6
[ { "api_name": "discord.ext.commands.Cog", "line_number": 6, "usage_type": "attribute" }, { "api_name": "discord.ext.commands", "line_number": 6, "usage_type": "name" }, { "api_name": "discord.Embed", "line_number": 22, "usage_type": "call" }, { "api_name": "discord.AllowedMentions.none", "line_number": 23, "usage_type": "call" }, { "api_name": "discord.AllowedMentions", "line_number": 23, "usage_type": "attribute" }, { "api_name": "discord.PermissionOverwrite", "line_number": 26, "usage_type": "call" }, { "api_name": "discord.PermissionOverwrite", "line_number": 27, "usage_type": "call" }, { "api_name": "discord.PermissionOverwrite", "line_number": 28, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 33, "usage_type": "call" }, { "api_name": "discord.AllowedMentions.none", "line_number": 34, "usage_type": "call" }, { "api_name": "discord.AllowedMentions", "line_number": 34, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.command", "line_number": 13, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 13, "usage_type": "name" }, { "api_name": "discord.Embed", "line_number": 45, "usage_type": "call" }, { "api_name": "discord.AllowedMentions.none", "line_number": 47, "usage_type": "call" }, { "api_name": "discord.AllowedMentions", "line_number": 47, "usage_type": "attribute" }, { "api_name": "asyncio.TimeoutError", "line_number": 54, "usage_type": "attribute" }, { "api_name": "discord.Embed", "line_number": 55, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 61, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 65, "usage_type": "call" }, { "api_name": "discord.Embed", "line_number": 69, "usage_type": "call" }, { "api_name": "discord.AllowedMentions.none", "line_number": 70, "usage_type": "call" }, { "api_name": "discord.AllowedMentions", "line_number": 70, "usage_type": "attribute" }, { "api_name": "discord.ext.commands.command", "line_number": 36, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 36, "usage_type": "name" } ]
18091289859
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('account', '0045_auto_20150130_0558'), ] operations = [ migrations.AlterField( model_name='basicmemberinformation', name='auth_key', field=models.CharField(default='43f9a685bc7146b4ecc63bdf9bc3e5136b7543f436a42e4a2f2ae749ffb0c6db', max_length=64), preserve_default=True, ), ]
hongdangodori/slehome
slehome/account/migrations/0046_auto_20150130_0600.py
0046_auto_20150130_0600.py
py
531
python
en
code
0
github-code
6
[ { "api_name": "django.db.migrations.Migration", "line_number": 7, "usage_type": "attribute" }, { "api_name": "django.db.migrations", "line_number": 7, "usage_type": "name" }, { "api_name": "django.db.migrations.AlterField", "line_number": 14, "usage_type": "call" }, { "api_name": "django.db.migrations", "line_number": 14, "usage_type": "name" }, { "api_name": "django.db.models.CharField", "line_number": 17, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 17, "usage_type": "name" } ]
17435023939
# coding: utf-8 """ Simple multithread task manager __author_ = 'naubull2 ([email protected])' """ import logging import random import json import time import atexit from queue import Queue from threading import Thread logger = logging.getLogger("dialog-tool") class Worker(Thread): """ Thread executing tasks from a given tasks queue """ def __init__(self, tasks): Thread.__init__(self) self.tasks = tasks # run as daemon thread in background self.daemon = True self.start() def run(self): while True: func, kwargs = self.tasks.get() try: func(**kwargs) except Exception as e: # pylint: disable=broad-except logger.error(f"Evaluator Error: {str(e)}") finally: # Mark this task as done, whether an exception happened or not self.tasks.task_done() class ThreadPool(object): """ Pool of threads consuming tasks from a queue - add_task() : Worker thread runs func(**kwargs) : busy waiting for a task - graceful_stop() : Wait until all running jobs are done """ def __init__(self, num_threads): self.tasks = Queue(num_threads) for _ in range(num_threads): Worker(self.tasks) def add_task(self, handler, **kwargs): """ Add a task to the queue """ self.tasks.put((handler, kwargs)) def graceful_stop(self): """ Wait for completion of all the tasks in the queue """ self.tasks.join() class EvaluationTaskManager(object): """ Class for centralized managing of new evaluation tasks """ def __init__(self, pool_size=5): self.pool = ThreadPool(pool_size) atexit.register(self.finalize) def add_task(self, handler, **kwargs): """ Runs handler function with **kwargs """ self.pool.add_task(handler, **kwargs) def finalize(self): """ Registered as 'atexit' handler """ logger.info("MANAGER: Waiting for all jobs to finish") self.pool.graceful_stop() # wait until all evaluations are finished logger.info("MANAGER: all jobs are finished") if __name__ == "__main__": import requests ############################################################################### # NOTE Last task is finished the last, check that threads are gracefully joined # # Success in handler api1: Sup. # Success in handler api2: Sleep tight. # MANAGER: Waiting for all jobs to finish # Success in handler api3: Yeah lets meet after lunch # MANAGER: all jobs are finished ############################################################################### task_manager = EvaluationTaskManager(pool_size=2) def sample_handler(name, url, q): """make a delayed call to the given API url, print output response to the logger""" time.sleep(random.random() * 10) try: ret = requests.get(url, params={"q": q}).json() except Exception as e: logger.error(f"Error in handler {name}: {str(e)}") else: logger.info(f'Success in handler {name}: {ret["output"]}') # Supoose localhost is running a conversation API on port 8988 task_manager.add_task( sample_handler, name="api1", url="http://localhost:8988/chat", q="Hey what's up" ) task_manager.add_task( sample_handler, name="api2", url="http://localhost:8988/chat", q="Good night" ) task_manager.add_task( sample_handler, name="api3", url="http://localhost:8988/chat", q="We had a lunch meeting tommorow?", ) time.sleep(10)
naubull2/codingtests
frequent_subjects/task_manager.py
task_manager.py
py
3,836
python
en
code
0
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 14, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 17, "usage_type": "name" }, { "api_name": "threading.Thread.__init__", "line_number": 23, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 23, "usage_type": "name" }, { "api_name": "queue.Queue", "line_number": 54, "usage_type": "call" }, { "api_name": "atexit.register", "line_number": 78, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 112, "usage_type": "call" }, { "api_name": "random.random", "line_number": 112, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 114, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 139, "usage_type": "call" } ]
73643617788
from __future__ import absolute_import import math from collections import OrderedDict import torch import torchvision from torch import nn from torch.nn import functional as F import torch.utils.model_zoo as model_zoo from .res2net import res2net50_26w_4s __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'TempoAvgPooling', 'TempoWeightedSum', 'TempoRNN'] model_urls = { 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', } def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class TempoAvgPooling(nn.Module): """ Temporal Average Pooling """ def __init__(self, num_classes): super(TempoAvgPooling, self).__init__() # resnet50 = torchvision.models.resnet50(pretrained=True) resnet50 = res2net50_26w_4s(pretrained=True) self.backbone = nn.Sequential(*list(resnet50.children())[:-2]) self.last_layer_ch = 2048 self.classifier = nn.Linear(self.last_layer_ch, num_classes, bias=False) nn.init.normal_(self.classifier.weight, std=0.01) def forward(self, x): """ Args: x: (b t 3 H W) """ b, t = x.size(0), x.size(1) x = x.view(b * t, x.size(2), x.size(3), x.size(4)) x = self.backbone(x) # (b*t c h w) x = F.avg_pool2d(x, x.size()[2:]) x = x.view(b, t, -1).permute(0, 2, 1) # (b t c) to (b c t) feature = F.avg_pool1d(x, t) # (b c 1) feature = feature.view(b, self.last_layer_ch) if not self.training: return feature logits = self.classifier(feature) return logits, feature class TempoWeightedSum(nn.Module): def __init__(self, num_classes): super(TempoWeightedSum, self).__init__() resnet50 = torchvision.models.resnet50(pretrained=True) self.backbone = nn.Sequential(*list(resnet50.children())[:-2]) self.att_gen = 'softmax' # method for attention generation: softMax or sigmoid self.last_layer_ch = 2048 # feature dimension self.middle_dim = 256 # middle layer dimension self.classifier = nn.Linear(self.last_layer_ch, num_classes, bias=False) nn.init.normal_(self.classifier.weight, std=0.01) # (7,4) corresponds to (224, 112) input image size self.spatial_attn = nn.Conv2d(self.last_layer_ch, self.middle_dim, kernel_size=[7, 4]) self.temporal_attn = nn.Conv1d(self.middle_dim, 1, kernel_size=3, padding=1) def forward(self, x): b, t = x.size(0), x.size(1) x = x.view(b * t, x.size(2), x.size(3), x.size(4)) featmaps = self.backbone(x) # (b*t c h w) attn = F.relu(self.spatial_attn(featmaps)).view(b, t, -1).permute(0, 2, 1) # (b*t c 1 1) to (b t c) to (b c t) attn = F.relu(self.temporal_attn(attn)).view(b, t) # (b 1 t) to (b t) if self.att_gen == 'softmax': attn = F.softmax(attn, dim=1) elif self.att_gen == 'sigmoid': attn = F.sigmoid(attn) attn = F.normalize(attn, p=1, dim=1) else: raise KeyError("Unsupported attention generation function: {}".format(self.att_gen)) feature = F.avg_pool2d(featmaps, featmaps.size()[2:]).view(b, t, -1) # (b*t c 1 1) to (b t c) att_x = feature * attn.unsqueeze(attn, dim=-1) # (b t c) att_x = torch.sum(att_x, dim=1) feature = att_x.view(b, -1) # (b c) if not self.training: return feature logits = self.classifier(feature) return logits, feature class TempoRNN(nn.Module): def __init__(self, num_classes): super(TempoRNN, self).__init__() resnet50 = torchvision.models.resnet50(pretrained=True) self.base = nn.Sequential(*list(resnet50.children())[:-2]) self.hidden_dim = 512 self.feat_dim = 2048 self.classifier = nn.Linear(self.hidden_dim, num_classes, bias=False) nn.init.normal_(self.classifier.weight, std=0.01) self.lstm = nn.LSTM(input_size=self.feat_dim, hidden_size=self.hidden_dim, num_layers=1, batch_first=True) def forward(self, x): b = x.size(0) t = x.size(1) x = x.view(b * t, x.size(2), x.size(3), x.size(4)) x = self.base(x) x = F.avg_pool2d(x, x.size()[2:]) x = x.view(b, t, -1) output, (h_n, c_n) = self.lstm(x) output = output.permute(0, 2, 1) f = F.avg_pool1d(output, t) f = f.view(b, self.hidden_dim) if not self.training: return f y = self.classifier(f) return y, f class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, conv1_ch=3, conv5_stride=1, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(conv1_ch, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=conv5_stride) self.avgpool = nn.AvgPool2d(7, stride=1) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion)) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) return model def resnet34(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) return model def resnet50(pretrained=False, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) return model def resnet101(pretrained=False, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) return model def resnet152(pretrained=False, **kwargs): """Constructs a ResNet-152 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) return model if __name__ == '__main__': model = resnet50() print(model) for block in model.layer2: print(block)
DeepAlchemist/video-person-reID
lib/model/resnet.py
resnet.py
py
11,011
python
en
code
1
github-code
6
[ { "api_name": "torch.nn.Conv2d", "line_number": 27, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 27, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 31, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 31, "usage_type": "name" }, { "api_name": "res2net.res2net50_26w_4s", "line_number": 37, "usage_type": "call" }, { "api_name": "torch.nn.Sequential", "line_number": 38, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 38, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 40, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 40, "usage_type": "name" }, { "api_name": "torch.nn.init.normal_", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 41, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 41, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool2d", "line_number": 51, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 51, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool1d", "line_number": 53, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 53, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 64, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 64, "usage_type": "name" }, { "api_name": "torchvision.models.resnet50", "line_number": 67, "usage_type": "call" }, { "api_name": "torchvision.models", "line_number": 67, "usage_type": "attribute" }, { "api_name": "torch.nn.Sequential", "line_number": 68, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 68, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 72, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 72, "usage_type": "name" }, { "api_name": "torch.nn.init.normal_", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 73, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 73, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 76, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 76, "usage_type": "name" }, { "api_name": "torch.nn.Conv1d", "line_number": 77, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 77, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 83, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 83, "usage_type": "name" }, { "api_name": "torch.nn.functional.relu", "line_number": 84, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 84, "usage_type": "name" }, { "api_name": "torch.nn.functional.softmax", "line_number": 87, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 87, "usage_type": "name" }, { "api_name": "torch.nn.functional.sigmoid", "line_number": 89, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 89, "usage_type": "name" }, { "api_name": "torch.nn.functional.normalize", "line_number": 90, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 90, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool2d", "line_number": 94, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 94, "usage_type": "name" }, { "api_name": "torch.sum", "line_number": 96, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 108, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 108, "usage_type": "name" }, { "api_name": "torchvision.models.resnet50", "line_number": 111, "usage_type": "call" }, { "api_name": "torchvision.models", "line_number": 111, "usage_type": "attribute" }, { "api_name": "torch.nn.Sequential", "line_number": 112, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 112, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 115, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 115, "usage_type": "name" }, { "api_name": "torch.nn.init.normal_", "line_number": 116, "usage_type": "call" }, { "api_name": "torch.nn.init", "line_number": 116, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 116, "usage_type": "name" }, { "api_name": "torch.nn.LSTM", "line_number": 118, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 118, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool2d", "line_number": 125, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 125, "usage_type": "name" }, { "api_name": "torch.nn.functional.avg_pool1d", "line_number": 129, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 129, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 138, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 138, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 144, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 144, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 145, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 145, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 147, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 147, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 170, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 170, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 175, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 175, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 176, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 176, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 177, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 177, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 179, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 179, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 180, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 180, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 181, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 181, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 182, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 182, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 208, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 208, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 212, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 212, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 214, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 214, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 215, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 215, "usage_type": "name" }, { "api_name": "torch.nn.MaxPool2d", "line_number": 216, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 216, "usage_type": "name" }, { "api_name": "torch.nn.AvgPool2d", "line_number": 221, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 221, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 222, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 222, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 225, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 225, "usage_type": "name" }, { "api_name": "math.sqrt", "line_number": 227, "usage_type": "call" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 228, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 228, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 235, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 235, "usage_type": "name" }, { "api_name": "torch.nn.Conv2d", "line_number": 236, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 236, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm2d", "line_number": 238, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 238, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 246, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 246, "usage_type": "name" }, { "api_name": "torch.utils.model_zoo.load_url", "line_number": 274, "usage_type": "call" }, { "api_name": "torch.utils.model_zoo", "line_number": 274, "usage_type": "name" }, { "api_name": "torch.utils.model_zoo.load_url", "line_number": 286, "usage_type": "call" }, { "api_name": "torch.utils.model_zoo", "line_number": 286, "usage_type": "name" }, { "api_name": "torch.utils.model_zoo.load_url", "line_number": 298, "usage_type": "call" }, { "api_name": "torch.utils.model_zoo", "line_number": 298, "usage_type": "name" }, { "api_name": "torch.utils.model_zoo.load_url", "line_number": 310, "usage_type": "call" }, { "api_name": "torch.utils.model_zoo", "line_number": 310, "usage_type": "name" }, { "api_name": "torch.utils.model_zoo.load_url", "line_number": 322, "usage_type": "call" }, { "api_name": "torch.utils.model_zoo", "line_number": 322, "usage_type": "name" } ]
71877607227
#pyautogui 라이브러리 추가 #pip install pyautogui import pyautogui #듀얼모니터는 인식 안됨 #마우스 현재 좌표 출력 #pyautogui.position() #해당 좌표로 마우스 이동 #pyautogui.moveTo(40, 154) #이미지 추출 라이브러리 추가 #pip install opencv-python #해당하는 이미지와 유사한 화면이 존재하는 위치로 이동(출력결과 : x축 값, y축 값 , 가로 길이, 세로 길이) #pyautogui.locateOnScreen('') #좌표, 저장될 이미지 길이(x축 값, y축 값, 가로 길이, 세로 길이)를 지정하면 해당 좌표를 스크린샷 후 특정 이름으로 저장 pyautogui.screenshot('1.png', region=(1584, 613, 30, 30)) #해당 경로에 존재하는 이미지와 유사한 화면 위치 정가운데로 이동(출력결과 : x축 값 y축 값) num1 = pyautogui.locateCenterOnScreen('1.png') num7 = pyautogui.locateCenterOnScreen('7.png') #마우스 클릭 이벤트(값이 없으면 마우스 현재 위치 클릭) pyautogui.click(num1) pyautogui.click(num7)
BrokenMental/Python-Study
pyautogui.py
pyautogui.py
py
1,032
python
ko
code
0
github-code
6
[ { "api_name": "pyautogui.screenshot", "line_number": 18, "usage_type": "call" }, { "api_name": "pyautogui.locateCenterOnScreen", "line_number": 21, "usage_type": "call" }, { "api_name": "pyautogui.locateCenterOnScreen", "line_number": 22, "usage_type": "call" }, { "api_name": "pyautogui.click", "line_number": 25, "usage_type": "call" }, { "api_name": "pyautogui.click", "line_number": 26, "usage_type": "call" } ]
73743939389
import os from os import walk, getcwd from PIL import Image """ Class label (BDD) """ # same order with yolo format class annotation classes = [ "bike" , "bus" , "car", "motor", "person", "rider", "traffic light", "traffic sign", "train", "truck"] """ Inverse convert function """ def i_convert(size, box): x = box[0]*size[0] y = box[1]*size[1] w = box[2]*size[0] h = box[3]*size[1] xmin = x - w/2 xmax = x + w/2 ymin = y - h/2 ymax = y + h/2 return (xmin, xmax, ymin, ymax) mypath = "./labels/100k/train/" # txt file path wd = getcwd() txt_outfile =open('gt_bdd_train.json','w') # output json file name txt_outfile.write("[\n") """ Get input text file list """ txt_name_list = [] for (dirpath, dirnames, filenames) in walk(mypath): txt_name_list.extend(filenames) break """ Process """ start = 0 for txt_name in txt_name_list: """ Open input text files """ txt_path = mypath + txt_name txt_file = open(txt_path, "r") lines = txt_file.read().splitlines() """ Open input image file """ img_path = txt_path.replace("labels","images") img_path = img_path.replace("txt", "jpg") img = Image.open(img_path) img_size = img.size """ Convert the YOLO format to BDD evaluation format """ for line in lines: if(len(line) > 0): if start != 0: txt_outfile.write(",\n") else : start = 1 elems = line.split() cls_id = int(elems[0]) x = elems[1] y = elems[2] w = elems[3] h = elems[4] box = (float(x), float(y), float(w), float(h)) xmin, xmax, ymin, ymax = i_convert(img_size, box) txt_outfile.write("\t{\n\t\t\"name\":\"%s\",\n\t\t\"category\":\"%s\",\n\t\t\"bbox\":[%f,%f,%f,%f]\n\t}" %(os.path.splitext(txt_name)[0],classes[cls_id],xmin,ymin,xmax,ymax)) txt_outfile.write("\n]") txt_outfile.close()
jwchoi384/Gaussian_YOLOv3
bdd_evaluation/convert_txt_to_bdd_eval_json.py
convert_txt_to_bdd_eval_json.py
py
2,038
python
en
code
660
github-code
6
[ { "api_name": "os.getcwd", "line_number": 23, "usage_type": "call" }, { "api_name": "os.walk", "line_number": 29, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 45, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 45, "usage_type": "name" }, { "api_name": "os.path.splitext", "line_number": 64, "usage_type": "call" }, { "api_name": "os.path", "line_number": 64, "usage_type": "attribute" } ]
36818284421
import pytest from database import Model, ModelAttribute pytestmark = pytest.mark.asyncio class A(Model): a = ModelAttribute() b = ModelAttribute() c = ModelAttribute() @pytest.mark.parametrize('count', (10, 15)) async def test_insert_find(db, count): c_true_count = 0 for i in range(count): is_three_mod = i % 3 == 0 await db.store(A(a=i, b=i*2, c=is_three_mod)) c_true_count += is_three_mod assert (await db.find_one(A, b=2)).a == 1 async for item in db.find(A): assert item.a * 2 == item.b processed = 0 limit = count // 6 async for item in db.choose(A, {'c': True}, {'c': False}, limit_=limit): assert item.c is False assert item.a % 3 == 0 processed += 1 assert processed == min(limit, count) assert await db.count(A) == count assert await db.count(A, {'c': True}) == c_true_count - processed assert await db.count(A, {'c': False}) == count - (c_true_count - processed)
AzaubaevViktor/vk_grabber
src/database/tests/test_no_uid.py
test_no_uid.py
py
1,000
python
en
code
1
github-code
6
[ { "api_name": "pytest.mark", "line_number": 6, "usage_type": "attribute" }, { "api_name": "database.Model", "line_number": 9, "usage_type": "name" }, { "api_name": "database.ModelAttribute", "line_number": 10, "usage_type": "call" }, { "api_name": "database.ModelAttribute", "line_number": 11, "usage_type": "call" }, { "api_name": "database.ModelAttribute", "line_number": 12, "usage_type": "call" }, { "api_name": "pytest.mark.parametrize", "line_number": 15, "usage_type": "call" }, { "api_name": "pytest.mark", "line_number": 15, "usage_type": "attribute" } ]
39713348458
from os.path import join, dirname, realpath, exists from PIL import Image, ImageDraw, ImageFont import numpy import base64 from io import BytesIO # info: image (PNG, JPG) to base64 conversion (string), learn about base64 on wikipedia https://en.wikipedia.org/wiki/Base64 def image_base64(img, img_type): with BytesIO() as buffer: img.save(buffer, img_type) return base64.b64encode(buffer.getvalue()).decode() # info: formatter preps base64 string for inclusion, ie <img src=[this return value] ... /> def image_formatter(img, img_type): return "data:image/" + img_type + ";base64," + image_base64(img, img_type) # text on an image def drawFile(file, img_dict): if exists(join(dirname(realpath(__file__)), f"static/design/drawn_images/{img_dict['file']}")): print('file exists using drawn') return join(dirname(realpath(__file__)), f"static/design/drawn_images/{img_dict['file']}") else: print('making file') new_img = Image.open(join(dirname(realpath(__file__)), file)) d1 = ImageDraw.Draw(new_img) font = ImageFont.truetype(join(dirname(realpath(__file__)), 'static/Roboto-MediumItalic.ttf'), 20) d1.text((0, 0), f"{img_dict['label']}", font=font, fill=(255, 0, 0)) new_img.save(join(dirname(realpath(__file__)), f"static/design/drawn_images/{img_dict['file']}")) drawn_file = join(dirname(realpath(__file__)), f"static/design/drawn_images/{img_dict['file']}") return drawn_file # info: color_data prepares a series of images for data analysis def image_data(path="static/design/", img_list=None): # info: path of static images is defaulted if img_list is None: # info: color_dict is defined with defaults and these are the images showing up img_list = [ {'source': "Katie's Phone", 'label': "Katie Hickman", 'file': "katiergb.jpg"}, {'source': "Shreya's Phone", 'label': "Shreya Ahuja", 'file': "banff.jpg"}, {'source': "Derek's Phone", 'label': "Derek Bokelman", 'file': "derekrgb.jpeg"}, {'source': "Kian's Phone", 'label': "Kian Pasokhi", 'file': "kianplane2.jpg"}, ] # info: gather analysis data and meta data for each image, adding attributes to each row in table for img_dict in img_list: # to fix static images img_dict['path'] = '/' + path file = path + img_dict['file'] print(file) img_reference = Image.open(drawFile(file, img_dict)) img_data = img_reference.getdata() # https://www.geeksforgeeks.org/python-pil-image-getdata/ img_dict['format'] = img_reference.format img_dict['mode'] = img_reference.mode img_dict['size'] = img_reference.size # info: Conversion of original Image to Base64, a string format that serves HTML nicely img_dict['base64'] = image_formatter(img_reference, img_dict['format']) # info: Numpy is used to allow easy access to data of image, python list img_dict['data'] = numpy.array(img_data) img_dict['hex_array'] = [] img_dict['binary_array'] = [] img_dict['gray_data'] = [] # info: 'data' is a list of RGB data, the list is traversed and hex and binary lists are calculated and formatted for pixel in img_dict['data']: # hexadecimal conversions hex_value = hex(pixel[0])[-2:] + hex(pixel[1])[-2:] + hex(pixel[2])[-2:] hex_value = hex_value.replace("x", "0") img_dict['hex_array'].append("#" + hex_value) # binary conversions bin_value = bin(pixel[0])[2:].zfill(8) + " " + bin(pixel[1])[2:].zfill(8) + " " + bin(pixel[2])[2:].zfill(8) img_dict['binary_array'].append(bin_value) # info: create gray scale of image, ref: https://www.geeksforgeeks.org/convert-a-numpy-array-to-an-image/ # for pixel in img_dict['data']: we changed this to a # to make it more efficient based on big O notation (deleting second loop) average = (pixel[0] + pixel[1] + pixel[2]) // 3 if len(pixel) > 3: img_dict['gray_data'].append((average, average, average, pixel[3])) else: img_dict['gray_data'].append((average, average, average)) # end for loop for pixel img_reference.putdata(img_dict['gray_data']) img_dict['base64_GRAY'] = image_formatter(img_reference, img_dict['format']) # for hex and binary values img_dict['hex_array_GRAY'] = [] img_dict['binary_array_GRAY'] = [] # for grayscale binary/hex changes for pixel in img_dict['gray_data']: # hexadecimal conversions hex_value = hex(pixel[0])[-2:] + hex(pixel[1])[-2:] + hex(pixel[2])[-2:] hex_value = hex_value.replace("x", "0") img_dict['hex_array_GRAY'].append("#" + hex_value) # binary conversions bin_value = bin(pixel[0])[2:].zfill(8) + " " + bin(pixel[1])[2:].zfill(8) + " " + bin(pixel[2])[2:].zfill(8) img_dict['binary_array_GRAY'].append(bin_value) return img_list # list is returned with all the attributes for each image dictionary # run this as standalone tester to see data printed in terminal # if __name__ == "__main__": # local_path = "./static/img/" # img_test = [ # {'source': "iconsdb.com", 'label': "Blue square", 'file': "blue-square-16.png"}, # ] # web = False # items = image_data(local_path, img_test, web) # path of local run # for row in items: # # print some details about the image so you can validate that it looks like it is working # # meta data # print("---- meta data -----") # print(row['label']) # print(row['format']) # print(row['mode']) # print(row['size']) # # data # print("---- data -----") # print(row['data']) # print("---- gray data -----") # print(row['gray_data']) # print("---- hex of data -----") # print(row['hex_array']) # print("---- bin of data -----") # print(row['binary_array']) # # base65 # print("---- base64 -----") # print(row['base64']) # # display image # print("---- render and write in image -----") # filename = local_path + row['file'] # image_ref = Image.open(filename) # draw = ImageDraw.Draw(image_ref) # draw.text((0, 0), "Size is {0} X {1}".format(*row['size'])) # draw in image # image_ref.show() # print()
katiehickman/m224_seals
image.py
image.py
py
6,588
python
en
code
1
github-code
6
[ { "api_name": "io.BytesIO", "line_number": 10, "usage_type": "call" }, { "api_name": "base64.b64encode", "line_number": 12, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 23, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 26, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 26, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 26, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 26, "usage_type": "call" }, { "api_name": "PIL.ImageDraw.Draw", "line_number": 27, "usage_type": "call" }, { "api_name": "PIL.ImageDraw", "line_number": 27, "usage_type": "name" }, { "api_name": "PIL.ImageFont.truetype", "line_number": 28, "usage_type": "call" }, { "api_name": "PIL.ImageFont", "line_number": 28, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 28, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 31, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 52, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 52, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 62, "usage_type": "call" } ]
6387062201
from jupyterthemes import install_theme, get_themes from jupyterthemes import stylefx def install_themes(): themes = get_themes() for t in themes: try: install_theme(theme=t, monofont=mf, nbfont=nf, tcfont=tc) except Exception: return False return True def install_fonts(): fonts = stylefx.stored_font_dicts('', get_all=True) fontvals = [list(fonts[ff]) for ff in ['mono', 'sans', 'serif']] monotest, sanstest, seriftest = [fv[:4] for fv in fontvals] for i in range(4): mono, sans, serif = monotest[i], sanstest[i], seriftest[i] try: install_theme(theme=t, monofont=mono, nbfont=sans, tcfont=serif) except Exception: return False try: install_theme(theme=t, monofont=mono, nbfont=serif, tcfont=sans) except Exception: return False return True install_themes() install_fonts()
dunovank/jupyter-themes
tests/test_themes.py
test_themes.py
py
939
python
en
code
9,665
github-code
6
[ { "api_name": "jupyterthemes.get_themes", "line_number": 5, "usage_type": "call" }, { "api_name": "jupyterthemes.install_theme", "line_number": 8, "usage_type": "call" }, { "api_name": "jupyterthemes.stylefx.stored_font_dicts", "line_number": 14, "usage_type": "call" }, { "api_name": "jupyterthemes.stylefx", "line_number": 14, "usage_type": "name" }, { "api_name": "jupyterthemes.install_theme", "line_number": 20, "usage_type": "call" }, { "api_name": "jupyterthemes.install_theme", "line_number": 24, "usage_type": "call" } ]
31678929018
# import and necessary libraries import dask.distributed import dask.utils import numpy as np import planetary_computer as pc import xarray as xr from IPython.display import display from pystac_client import Client import matplotlib.pyplot as plt import folium from odc.stac import configure_rio, stac_load # Function to configure the data loading priocess def configure_asset(): configuration = { "sentinel-2-l2a": { # we specify the name of the data collection "assets": { # call the asset dictionary under the data collection and load the sub-dictionaries "*": {"data_type": "uint16", "nodata": 0}, "SCL": {"data_type": "uint8", "nodata": 0}, "visual": {"data_type": "uint8", "nodata": 0}, }, }, "*": {"warnings": "ignore"},# applies this to all assets within the data collection } return configuration # Function to manage and coordinate distributed computation using dask def client_info(): client = dask.distributed.Client() # create a dask disrtributed client which allows to manage and coordinate distributed computations. configure_rio(cloud_defaults=True, client=client) display(client) #display client return client # Function to pull image data collection def get_data_collection(client, collection, date, tile_id): data_catalog = client # client data source query = data_catalog.search( collections= [collection],# call the data collection, this time we want to call the sentinel 2 data collection datetime= date, # cloudfree date query={"s2:mgrs_tile": dict(eq= tile_id)}, # we select a specific tile from northern parts of Ghana, 'Janga' ) # list the number of dataset, but this time we only need one images = list(query.items()) # print the number of datasets found print(f"Found;{len(images):d} datasets") # we expect a single dataset since we selected a single day return images # Function to Lazy load entire bands in data collection def load_dataset_with_resolution(images, configuration, resolution): # specify the parameters dataset = stac_load( images, chunks={"x":2048, "y":2048}, stac_cfg=configuration, patch_url=pc.sign, resolution=resolution, ) # list the bands in the dataset print(f"Bands: {','.join(list(dataset.data_vars))}") #display the dataset display(dataset) return dataset # Function to select specific bands def select_bands(images, configuration, resolution): dataset = stac_load( images, bands=["red", "green", "blue", "nir", "SCL"],# select needed bands chunks={"x":2048, "y":2048}, stac_cfg=configuration, patch_url=pc.sign, resolution=resolution, ) # List the selected bands print(f"Bands: {','.join(list(dataset.data_vars))}") # Display the dataset display(dataset) return dataset # Function to convert data to float def to_float(dataset): dataset_float_1 = dataset.astype("float32") nodata_1= dataset_float_1.attrs.pop("nodata", None) if nodata_1 is None: return dataset_float_1 return dataset_float_1.where(dataset != nodata_1)
Christobaltobbin/OpenDataCube
Scripts/odc_utils.py
odc_utils.py
py
3,287
python
en
code
0
github-code
6
[ { "api_name": "dask.distributed.distributed.Client", "line_number": 30, "usage_type": "call" }, { "api_name": "dask.distributed.distributed", "line_number": 30, "usage_type": "attribute" }, { "api_name": "dask.distributed", "line_number": 30, "usage_type": "name" }, { "api_name": "odc.stac.configure_rio", "line_number": 31, "usage_type": "call" }, { "api_name": "IPython.display.display", "line_number": 32, "usage_type": "call" }, { "api_name": "odc.stac.stac_load", "line_number": 56, "usage_type": "call" }, { "api_name": "planetary_computer.sign", "line_number": 58, "usage_type": "attribute" }, { "api_name": "IPython.display.display", "line_number": 66, "usage_type": "call" }, { "api_name": "odc.stac.stac_load", "line_number": 72, "usage_type": "call" }, { "api_name": "planetary_computer.sign", "line_number": 75, "usage_type": "attribute" }, { "api_name": "IPython.display.display", "line_number": 83, "usage_type": "call" } ]
35257204680
import minerl from minerl.data import BufferedBatchIter import numpy as np import random from itertools import combinations from actions import action_names import cv2 import numpy as np import torch ''' The mineRL framework models actions as dictionaries of individual actions. Player recorded demonstration data has multiple combinations of actions. The number of feasible combinations is too high and this would make it very hard for the agent to generalize. Instead, we limit the agent to a smaller set of possible actions and their combinations. These basic actions and their combinations are listed below. While training, we use frame skipping. Hence, one state is a combination of k frames and their k actions. Action aggregation combines these k actions into one and action mapping maps this combined action to one of the actions that the agent can perform. ''' basic_actions = {'forward', 'back', 'left', 'right', 'attack', 'jump', 'look-left', 'look-right', 'look-up', 'look-down'} action_combos = [{'forward', 'left'}, {'forward', 'right'}, {'forward', 'jump'}, {'forward', 'attack'}] def get_aggregate_action(actions, cam_threshold=2.0): ''' Function to aggregate actions from k transitions into one combined action NOTE: Threshold is set to discount any micro-adjustments and only count camera movements for directional navigation ''' # Removing spring and sneak from the actions dict actions.pop('sneak') actions.pop('sprint') aggregate_action = actions for key in aggregate_action.keys(): # Sum up the occurences of all actions other than the camera movement action if not key=='camera': aggregate_action[key] = np.sum(actions[key], axis=0) else: # For the camera action, instead of simply adding up movements, we compare the movement angle to a threshold # The absolute maximum angle from one camera movement marks the direction of camera motion (l, r, u, d) # We create a list with the camera movements from all k transitions called heading heading = [0,0,0,0] # left, right, up, down for i in list(actions[key]): idx = np.argmax(np.abs(i)) if abs(i[idx]) > cam_threshold: if idx == 0: # Left OR Right if i[idx] > 0: # Left heading[0] += 1 else: # Right heading[1] += 1 if idx == 1: # Up OR Down if i[idx] > 0: # Up heading[2] += 1 else: # Down heading[3] += 1 aggregate_action[key] = np.array(heading) # Set camera movement to the direction that was chosen the most often. If multiple exist then choose one randomly max_idx = [i for i, x in enumerate(heading) if x == max(heading)] cam_dir = random.choice(max_idx) # 0,1,2,3 corresponds to l,r,u,d # The 'camera' key now has the max number of direction occurences and the occured direction aggregate_action['camera'] = [max(heading) ,cam_dir] # Popping out any action that was not chosen noop_list = [] for key, value in aggregate_action.items(): if not key=='camera': if value == 0: noop_list.append(key) else: if value[0] == 0: noop_list.append(key) for key in noop_list: aggregate_action.pop(key) # Mapping camera directions to the movement and dropping out the 'camera' key cam_dirs = {0:'look-left', 1:'look-right', 2:'look-up', 3:'look-down'} if 'camera' in aggregate_action: cam = aggregate_action.pop('camera') aggregate_action[cam_dirs[cam[1]]] = cam[0] # print(aggregate_action) return aggregate_action def map_aggregate_action(aggregate_action): ''' Function to map an aggregate action to one of the agent's available actions ''' # If empty then select no-operation action if len(aggregate_action.keys()) == 0: action = 'noop' # If there is only one action then pick that one elif len(aggregate_action.keys()) == 1: if list(aggregate_action.keys())[0] in basic_actions: action = list(aggregate_action.keys())[0] # If there are two actions then check if that pair is possible. Pick the pair if it is, else pick the most occuring one elif len(aggregate_action.keys()) == 2: if set(aggregate_action.keys()) in action_combos: action = list(aggregate_action.keys())[0] + "_" + list(aggregate_action.keys())[1] else: max_idx = [i for i, x in enumerate(aggregate_action.values()) if x == max(aggregate_action.values())] action = list(aggregate_action.keys())[random.choice(max_idx)] # If there are more than 2 actions then check all pairs. Pick a pair with the max total occurence count elif len(aggregate_action.keys()) > 2: action_pairs = list(combinations(aggregate_action.keys(), 2)) max_occurences = 0 action = None pair_match = False for pair in action_pairs: if set(pair) in action_combos: pair_match = True if aggregate_action[pair[0]] + aggregate_action[pair[1]] > max_occurences: max_occurences = aggregate_action[pair[0]] + aggregate_action[pair[1]] action = pair[0] + "_" + pair[1] if not pair_match: max_idx = [i for i, x in enumerate(aggregate_action.values()) if x == max(aggregate_action.values())] action = list(aggregate_action.keys())[random.choice(max_idx)] return action def sample_demo_batch(demo_replay_memory, batch_size, grayscale=True): ''' Returns batch_size number of transitions containing frame_stack in-game transitions. One transition here has frame_stack number of in-game frames (because of frame-skipping and concatenation of observation images) ''' # Setting up empty lists and zero arrays to store batch_size number of transitions batch_states = [] batch_next_states = [] # if grayscale == True: # batch_states = np.zeros((batch_size, 2, 64, 64)) # batch_next_states = np.zeros((batch_size, 2, 64, 64)) # else: # batch_states = np.zeros((batch_size, 2, 64, 64, 3)) # batch_next_states = np.zeros((batch_size, 2, 64, 64, 3)) batch_actions = [] batch_rewards = [] batch_dones = [] # batch_actions = np.zeros((batch_size)) # batch_rewards = np.zeros((batch_size)) # batch_dones = np.zeros((batch_size)) count = 0 for current_states, actions, rewards, next_states, dones in demo_replay_memory: if count == batch_size: break count +=1 # for i in range(batch_size): # current_states, actions, rewards, next_states, dones = next(demo_replay_memory) # Grayscale if grayscale==True: current_states_gray = np.zeros((current_states['pov'].shape[:-1])) next_states_gray = np.zeros((next_states['pov'].shape[:-1])) for j in range(current_states['pov'].shape[0]): # current_states_gray = np.zeros((current_states['pov'].shape[:-1])) # next_states_gray = np.zeros((next_states['pov'].shape[:-1])) current_states_gray[j] = cv2.cvtColor(current_states['pov'][j], cv2.COLOR_BGR2GRAY) next_states_gray[j] = cv2.cvtColor(next_states['pov'][j], cv2.COLOR_BGR2GRAY) batch_states.append(current_states_gray) batch_next_states.append(next_states_gray) # batch_states[i] = current_states_gray # batch_next_states[i] = next_states_gray else: batch_states.append(current_states['pov']) batch_next_states.append(next_states['pov']) # batch_states[i] = current_states['pov'] # batch_next_states[i] = next_states['pov'] batch_rewards.append(np.sum(rewards)) # batch_rewards[i] = np.sum(rewards) aggregate_action = get_aggregate_action(actions) agent_action = map_aggregate_action(aggregate_action) action_idx = action_names[agent_action] batch_actions.append(action_idx) # batch_actions[i] = action_idx if np.sum(dones) > 0: batch_dones.append(1) # batch_dones[i] = 1 else: batch_dones.append(0) # batch_dones[i] = 0 batch_states = torch.tensor(np.array(batch_states), dtype=torch.float32, requires_grad=True) batch_next_states = torch.tensor(np.array(batch_next_states), dtype=torch.float32, requires_grad=True) batch_actions = torch.tensor(np.array(batch_actions)) batch_rewards = torch.tensor(np.array(batch_rewards), dtype=torch.float32, requires_grad=True) batch_dones = torch.tensor(np.array(batch_dones)) # batch_states = torch.tensor(batch_states, dtype=torch.float32, requires_grad=True) # batch_next_states = torch.tensor(batch_next_states, dtype=torch.float32, requires_grad=True) # batch_actions = torch.tensor(batch_actions) # batch_rewards = torch.tensor(batch_rewards, dtype=torch.float32, requires_grad=True) # batch_dones = torch.tensor(batch_dones) return batch_states, batch_actions, batch_rewards, batch_next_states, batch_dones
anishhdiwan/DQfD_Minecraft
demo_sampling.py
demo_sampling.py
py
8,704
python
en
code
0
github-code
6
[ { "api_name": "actions.pop", "line_number": 31, "usage_type": "call" }, { "api_name": "actions.pop", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 37, "usage_type": "call" }, { "api_name": "numpy.argmax", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 62, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 65, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 117, "usage_type": "call" }, { "api_name": "itertools.combinations", "line_number": 121, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 175, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 176, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 180, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 180, "usage_type": "attribute" }, { "api_name": "cv2.cvtColor", "line_number": 181, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 181, "usage_type": "attribute" }, { "api_name": "numpy.sum", "line_number": 195, "usage_type": "call" }, { "api_name": "actions.action_names", "line_number": 200, "usage_type": "name" }, { "api_name": "numpy.sum", "line_number": 204, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 211, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 211, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 211, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 212, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 212, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 212, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 213, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 213, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 214, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 214, "usage_type": "call" }, { "api_name": "torch.float32", "line_number": 214, "usage_type": "attribute" }, { "api_name": "torch.tensor", "line_number": 215, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 215, "usage_type": "call" } ]
156567587
#-*- coding: utf-8 -*- import numpy as np from sklearn.cluster import AgglomerativeClustering as sk_AgglomerativeClustering from sklearn.externals.joblib import Memory from .clustering import Clustering class AgglomerativeClustering(Clustering): """docstring for AgglomerativeClustering.""" def __init__(self, data, n_clusters = 2, affinity = 'euclidean', memory = Memory(cachedir = None), connectivity = None, compute_full_tree = 'auto', linkage = 'ward', pooling_func = np.mean): super(AgglomerativeClustering, self).__init__() self.data = data self.n_clusters = n_clusters self.affinity = affinity self.memory = memory self.connectivity = connectivity self.compute_full_tree = compute_full_tree self.linkage = linkage self.pooling_func = pooling_func def execute(self): """Constroi o modelo de clusterizacao.""" self.model = sk_AgglomerativeClustering(n_clusters = self.n_clusters, affinity = self.affinity, memory = self.memory, connectivity = self.connectivity, compute_full_tree = self.compute_full_tree, linkage = self.linkage, pooling_func = self.pooling_func).fit(self.data) self.clusters = super().make_clusters(self.data, self.model.labels_) @property def labels_(self): """Retorna os labels dos elementos do dataset.""" return self.model.labels_ @property def clusters_(self): """Retorna um dicionaro onde os indices dos grupos sao as chaves.""" return self.clusters @property def model_(self): """Retorna o modelo de agrupamento.""" return self.model
netoaraujjo/hal
clustering/agglomerative_clustering.py
agglomerative_clustering.py
py
1,946
python
en
code
0
github-code
6
[ { "api_name": "clustering.Clustering", "line_number": 7, "usage_type": "name" }, { "api_name": "sklearn.externals.joblib.Memory", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 12, "usage_type": "attribute" }, { "api_name": "sklearn.cluster.AgglomerativeClustering", "line_number": 27, "usage_type": "call" } ]
32638070044
def voto(ano): from datetime import datetime atual = datetime.now().year idade = atual - ano if 16 <= idade <= 17 or idade > 60: return idade, 'VOTO OPCIONAL!' elif 18 <= idade < 60: return idade, 'VOTO OBRIGATÓRIO!' else: return idade, 'NÃO VOTA!' nas = int(input('Em que ano voce nasceu? ')) print(f'Com {voto(nas)[0]} anos: {voto(nas)[1]}')
LeoWshington/Exercicios_CursoEmVideo_Python
ex101.py
ex101.py
py
396
python
pt
code
0
github-code
6
[ { "api_name": "datetime.datetime.now", "line_number": 3, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 3, "usage_type": "name" } ]
7769213718
import numpy as np import torch import random from PIL import Image #---------------------------------------------------------# # 将图像转换成RGB图像,防止灰度图在预测时报错。 # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB #---------------------------------------------------------# def cvtColor(image): if len(np.shape(image)) == 3 and np.shape(image)[2] == 3: return image else: image = image.convert('RGB') return image #---------------------------------------------------# # 对输入图像进行resize #---------------------------------------------------# def resize_image(image, size, letterbox_image): iw, ih = image.size w, h = size if letterbox_image: scale = min(w/iw, h/ih) nw = int(iw*scale) nh = int(ih*scale) image = image.resize((nw,nh), Image.BICUBIC) new_image = Image.new('RGB', size, (128,128,128)) new_image.paste(image, ((w-nw)//2, (h-nh)//2)) else: new_image = image.resize((w, h), Image.BICUBIC) return new_image def get_num_classes(annotation_path): with open(annotation_path) as f: dataset_path = f.readlines() labels = [] for path in dataset_path: path_split = path.split(";") labels.append(int(path_split[0])) num_classes = np.max(labels) + 1 return num_classes #---------------------------------------------------# # 获得学习率 #---------------------------------------------------# def get_lr(optimizer): for param_group in optimizer.param_groups: return param_group['lr'] def preprocess_input(image): image /= 255.0 return image def show_config(**kwargs): print('Configurations:') print('-' * 70) print('|%25s | %40s|' % ('keys', 'values')) print('-' * 70) for key, value in kwargs.items(): print('|%25s | %40s|' % (str(key), str(value))) print('-' * 70) def random_crop(image, crop_shape, padding=None): oshape = np.shape(image) if padding: oshape = (oshape[2] + 2 * padding, oshape[3] + 2 * padding) npad = ((0, 0), (0, 0), (padding, padding), (padding, padding)) image_pad = np.lib.pad(image, pad_width=npad, mode='constant', constant_values=0) nh = random.randint(0, oshape[0] - crop_shape[0]) nw = random.randint(0, oshape[1] - crop_shape[1]) image_crop = image_pad[:, :, nh:nh + crop_shape[0], nw:nw + crop_shape[1]] return image_crop else: print("WARNING!!! nothing to do!!!") return image def load_pretrained_model(net, resume_net): print('Loading resume network...') state_dict = torch.load(resume_net) # create new OrderedDict that does not contain `module.` from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): head = k[:7] if head == 'module.': name = k[7:] # remove `module.` else: name = k new_state_dict[name] = v net.load_state_dict(new_state_dict) def load_pretrained_model_Filter(net, state_dict): from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): head = k[:7] if head == 'module.': name = k[7:] # remove `module.` else: name = k new_state_dict[name] = v net.load_state_dict(new_state_dict)
yangshunzhi1994/SCD
object verification/utils/utils.py
utils.py
py
3,489
python
en
code
0
github-code
6
[ { "api_name": "numpy.shape", "line_number": 11, "usage_type": "call" }, { "api_name": "PIL.Image.BICUBIC", "line_number": 28, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 28, "usage_type": "name" }, { "api_name": "PIL.Image.new", "line_number": 29, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 29, "usage_type": "name" }, { "api_name": "PIL.Image.BICUBIC", "line_number": 32, "usage_type": "attribute" }, { "api_name": "PIL.Image", "line_number": 32, "usage_type": "name" }, { "api_name": "numpy.max", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.shape", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.lib.pad", "line_number": 74, "usage_type": "call" }, { "api_name": "numpy.lib", "line_number": 74, "usage_type": "attribute" }, { "api_name": "random.randint", "line_number": 75, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 76, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 87, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 90, "usage_type": "call" }, { "api_name": "collections.OrderedDict", "line_number": 102, "usage_type": "call" } ]
31528905029
#!/usr/bin/env python # -*- coding: iso-8859-1 -*- # $Id: setup.py 30 2005-10-30 07:24:38Z oli $ import os, sys from setuptools import setup, find_packages sys.path.insert(0, 'package/lib') from scapy import VERSION PACKAGE_NAME = 'scapy' DESCRIPTION="""Packet manipulation tool, packet generator, network scanner, packet sniffer, and much more.""" LONG_DESCRIPTION="""Powerful interactive packet... manipulation tool, packet generator, \ network... scanner, network discovery tool, and packet... sniffer.""" def find_data_files(): files = [ ('/usr/local/share/doc/scapy/', ['package/doc/LICENSE']), ('/usr/local/share/doc/scapy/', ['package/doc/ChangeLog']), ('/usr/local/share/doc/scapy/', ['package/doc/TODO']), ('/usr/local/bin/', ['package/usr/bin/iscapy']) ] if os.path.exists('package/doc/scapy.info.gz'): files.append( ('/usr/local/info/', ['package/doc/scapy.info.gz']) ) if os.path.exists('package/doc/scapy.1.gz'): files.append( ('/usr/local/man/man1', ['package/doc/scapy.1.gz']) ) return files setup(name=PACKAGE_NAME, version=VERSION, license = """GNU General Public License (GPL)""", platforms = ['POSIX'], description = DESCRIPTION, long_description = LONG_DESCRIPTION, url = "http://www.secdev.org/projects/scapy/", download_url = "http://www.secdev.org/projects/scapy/files/scapy.py", author = "Philippe Biondi", author_email = "[email protected]", classifiers = ["""Development Status :: 4 - Beta""", """Environment :: Console""", """Intended Audience :: Developers""", """Intended Audience :: Education""", """Intended Audience :: End Users/Desktop""", """Intended Audience :: Information Technology""", """Intended Audience :: Other Audience""", """Intended Audience :: Science/Research""", """Intended Audience :: System Administrators""", """License :: OSI Approved :: GNU General Public License (GPL)""", """Natural Language :: English""", """Operating System :: POSIX""", """Programming Language :: Python""", """Topic :: Education :: Testing""", """Topic :: Internet""", """Topic :: Scientific/Engineering :: Interface Engine/Protocol Translator""", """Topic :: Security""", """Topic :: Software Development :: Libraries :: Python Modules""", """Topic :: Software Development :: Testing""", """Topic :: Software Development :: Testing :: Traffic Generation""", """Topic :: System""", """Topic :: System :: Networking""", """Topic :: System :: Networking :: Firewalls""", """Topic :: System :: Networking :: Monitoring"""], package_dir = {'':'package/lib'}, py_modules = ['scapy'], zip_safe=True, data_files = find_data_files() )
BackupTheBerlios/gruik-svn
trunk/projects/packaging_scapy/setup.py
setup.py
py
3,232
python
en
code
0
github-code
6
[ { "api_name": "sys.path.insert", "line_number": 9, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 9, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 25, "usage_type": "call" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path", "line_number": 27, "usage_type": "attribute" }, { "api_name": "setuptools.setup", "line_number": 32, "usage_type": "call" }, { "api_name": "scapy.VERSION", "line_number": 33, "usage_type": "name" } ]
32661723209
from decimal import Decimal from fractions import Fraction from typing import Generator from numeric_methods.language import TRANSLATE from numeric_methods.language.docs.one_variable import SECANT_METHOD_DOCS from numeric_methods.mathematics import compare, convert, widest_type NUMBER = Decimal | float | Fraction @TRANSLATE.documentation(SECANT_METHOD_DOCS) def secant_method(function, x_prev: NUMBER, x: NUMBER, epsilon: NUMBER) -> Generator[tuple[NUMBER] | NUMBER, None, None]: # Type normalization Number = widest_type(x_prev, x, epsilon) x_prev = convert(x_prev, Number) x = convert(x, Number) epsilon = convert(epsilon, Number) step = 1 next_x = x - (x - x_prev) * function(x) / (function(x) - function(x_prev)) yield step, next_x while not compare(abs(next_x - x), "<", epsilon): step += 1 x_prev = x x = next_x next_x = x - (x - x_prev) * function(x) / (function(x) - function(x_prev)) yield step, next_x yield next_x
helltraitor/numeric-methods
numeric_methods/one_variable/secant_method.py
secant_method.py
py
1,013
python
en
code
0
github-code
6
[ { "api_name": "decimal.Decimal", "line_number": 10, "usage_type": "name" }, { "api_name": "fractions.Fraction", "line_number": 10, "usage_type": "name" }, { "api_name": "numeric_methods.mathematics.widest_type", "line_number": 16, "usage_type": "call" }, { "api_name": "numeric_methods.mathematics.convert", "line_number": 17, "usage_type": "call" }, { "api_name": "numeric_methods.mathematics.convert", "line_number": 18, "usage_type": "call" }, { "api_name": "numeric_methods.mathematics.convert", "line_number": 19, "usage_type": "call" }, { "api_name": "numeric_methods.mathematics.compare", "line_number": 24, "usage_type": "call" }, { "api_name": "numeric_methods.language.TRANSLATE.documentation", "line_number": 13, "usage_type": "call" }, { "api_name": "numeric_methods.language.docs.one_variable.SECANT_METHOD_DOCS", "line_number": 13, "usage_type": "argument" }, { "api_name": "numeric_methods.language.TRANSLATE", "line_number": 13, "usage_type": "name" }, { "api_name": "typing.Generator", "line_number": 14, "usage_type": "name" } ]
40687305933
import argparse import json from typing import List from google.protobuf import json_format from load_tests.common import ( benchmark_grpc_request, make_full_request_type, make_output_file_path, ) from magma.common.service_registry import ServiceRegistry from orc8r.protos.common_pb2 import Void from orc8r.protos.directoryd_pb2 import ( DeleteRecordRequest, DirectoryRecord, GetDirectoryFieldRequest, UpdateRecordRequest, ) from orc8r.protos.directoryd_pb2_grpc import GatewayDirectoryServiceStub DIRECTORYD_SERVICE_NAME = 'directoryd' DIRECTORYD_SERVICE_RPC_PATH = 'magma.orc8r.GatewayDirectoryService' DIRECTORYD_PORT = '127.0.0.1:50067' PROTO_PATH = 'orc8r/protos/directoryd.proto' def _load_subs(num_subs: int) -> List[DirectoryRecord]: """Load directory records""" client = GatewayDirectoryServiceStub( ServiceRegistry.get_rpc_channel( DIRECTORYD_SERVICE_NAME, ServiceRegistry.LOCAL, ), ) sids = [] for i in range(num_subs): mac_addr = (str(i) * 2 + ":") * 5 + (str(i) * 2) ipv4_addr = str(i) * 3 + "." + str(i) * 3 + "." + str(i) * 3 + "." + str(i) * 3 fields = {"mac-addr": mac_addr, "ipv4_addr": ipv4_addr} sid = UpdateRecordRequest( fields=fields, id=str(i).zfill(15), location=str(i).zfill(15), ) client.UpdateRecord(sid) sids.append(sid) return sids def _cleanup_subs(): """Clear directory records""" client = GatewayDirectoryServiceStub( ServiceRegistry.get_rpc_channel( DIRECTORYD_SERVICE_NAME, ServiceRegistry.LOCAL, ), ) for record in client.GetAllDirectoryRecords(Void()).records: sid = DeleteRecordRequest( id=record.id, ) client.DeleteRecord(sid) def _build_update_records_data(num_requests: int, input_file: str): update_record_reqs = [] for i in range(num_requests): id = str(i).zfill(15) location = str(i).zfill(15) request = UpdateRecordRequest( id=id, location=location, ) request_dict = json_format.MessageToDict(request) update_record_reqs.append(request_dict) with open(input_file, 'w') as file: json.dump(update_record_reqs, file, separators=(',', ':')) def _build_delete_records_data(record_list: list, input_file: str): delete_record_reqs = [] for index, record in enumerate(record_list): request = DeleteRecordRequest( id=record.id, ) request_dict = json_format.MessageToDict(request) delete_record_reqs.append(request_dict) with open(input_file, 'w') as file: json.dump(delete_record_reqs, file, separators=(',', ':')) def _build_get_record_data(record_list: list, input_file: str): get_record_reqs = [] for index, record in enumerate(record_list): request = GetDirectoryFieldRequest( id=record.id, field_key="mac-addr", ) request_dict = json_format.MessageToDict(request) get_record_reqs.append(request_dict) with open(input_file, 'w') as file: json.dump(get_record_reqs, file, separators=(',', ':')) def _build_get_all_record_data(record_list: list, input_file: str): request = Void() get_all_record_reqs = json_format.MessageToDict(request) with open(input_file, 'w') as file: json.dump(get_all_record_reqs, file, separators=(',', ':')) def update_record_test(args): input_file = 'update_record.json' _build_update_records_data(args.num_of_requests, input_file) request_type = 'UpdateRecord' benchmark_grpc_request( proto_path=PROTO_PATH, full_request_type=make_full_request_type( DIRECTORYD_SERVICE_RPC_PATH, request_type, ), input_file=input_file, output_file=make_output_file_path(request_type), num_reqs=args.num_of_requests, address=DIRECTORYD_PORT, import_path=args.import_path, ) _cleanup_subs() def delete_record_test(args): input_file = 'delete_record.json' record_list = _load_subs(args.num_of_requests) _build_delete_records_data(record_list, input_file) request_type = 'DeleteRecord' benchmark_grpc_request( proto_path=PROTO_PATH, full_request_type=make_full_request_type( DIRECTORYD_SERVICE_RPC_PATH, request_type, ), input_file=input_file, output_file=make_output_file_path(request_type), num_reqs=args.num_of_requests, address=DIRECTORYD_PORT, import_path=args.import_path, ) _cleanup_subs() def get_record_test(args): input_file = 'get_record.json' record_list = _load_subs(args.num_of_requests) _build_get_record_data(record_list, input_file) request_type = 'GetDirectoryField' benchmark_grpc_request( proto_path=PROTO_PATH, full_request_type=make_full_request_type( DIRECTORYD_SERVICE_RPC_PATH, request_type, ), input_file=input_file, output_file=make_output_file_path(request_type), num_reqs=args.num_of_requests, address=DIRECTORYD_PORT, import_path=args.import_path, ) _cleanup_subs() def get_all_records_test(args): input_file = 'get_all_records.json' record_list = _load_subs(args.num_of_requests) _build_get_all_record_data(record_list, input_file) request_type = 'GetAllDirectoryRecords' benchmark_grpc_request( proto_path=PROTO_PATH, full_request_type=make_full_request_type( DIRECTORYD_SERVICE_RPC_PATH, request_type, ), input_file=input_file, output_file=make_output_file_path(request_type), num_reqs=2000, address=DIRECTORYD_PORT, import_path=args.import_path, ) _cleanup_subs() def create_parser(): """ Creates the argparse subparser for all args """ parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) subparsers = parser.add_subparsers(title='subcommands', dest='cmd') parser_update_record = subparsers.add_parser( 'update_record', help='Update record in directory', ) parser_delete_record = subparsers.add_parser( 'delete_record', help='Delete record in directory', ) parser_get_record = subparsers.add_parser( 'get_record', help='Get specific record in directory', ) parser_get_all_records = subparsers.add_parser( 'get_all_records', help='Get all records in directory', ) for subcmd in [ parser_update_record, parser_delete_record, parser_get_record, parser_get_all_records, ]: subcmd.add_argument( '--num_of_requests', help='Number of total records in directory', type=int, default=2000, ) subcmd.add_argument( '--import_path', default=None, help='Protobuf import path directory', ) parser_update_record.set_defaults(func=update_record_test) parser_delete_record.set_defaults(func=delete_record_test) parser_get_record.set_defaults(func=get_record_test) parser_get_all_records.set_defaults(func=get_all_records_test) return parser def main(): parser = create_parser() # Parse the args args = parser.parse_args() if not args.cmd: parser.print_usage() exit(1) # Execute the subcommand function args.func(args) if __name__ == "__main__": main()
magma/magma
lte/gateway/python/load_tests/loadtest_directoryd.py
loadtest_directoryd.py
py
7,544
python
en
code
1,605
github-code
6
[ { "api_name": "orc8r.protos.directoryd_pb2_grpc.GatewayDirectoryServiceStub", "line_number": 29, "usage_type": "call" }, { "api_name": "magma.common.service_registry.ServiceRegistry.get_rpc_channel", "line_number": 30, "usage_type": "call" }, { "api_name": "magma.common.service_registry.ServiceRegistry", "line_number": 30, "usage_type": "name" }, { "api_name": "magma.common.service_registry.ServiceRegistry.LOCAL", "line_number": 31, "usage_type": "attribute" }, { "api_name": "magma.common.service_registry.ServiceRegistry", "line_number": 31, "usage_type": "name" }, { "api_name": "orc8r.protos.directoryd_pb2.UpdateRecordRequest", "line_number": 39, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 27, "usage_type": "name" }, { "api_name": "orc8r.protos.directoryd_pb2.DirectoryRecord", "line_number": 27, "usage_type": "name" }, { "api_name": "orc8r.protos.directoryd_pb2_grpc.GatewayDirectoryServiceStub", "line_number": 51, "usage_type": "call" }, { "api_name": "magma.common.service_registry.ServiceRegistry.get_rpc_channel", "line_number": 52, "usage_type": "call" }, { "api_name": "magma.common.service_registry.ServiceRegistry", "line_number": 52, "usage_type": "name" }, { "api_name": "magma.common.service_registry.ServiceRegistry.LOCAL", "line_number": 53, "usage_type": "attribute" }, { "api_name": "magma.common.service_registry.ServiceRegistry", "line_number": 53, "usage_type": "name" }, { "api_name": "orc8r.protos.common_pb2.Void", "line_number": 56, "usage_type": "call" }, { "api_name": "orc8r.protos.directoryd_pb2.DeleteRecordRequest", "line_number": 57, "usage_type": "call" }, { "api_name": "orc8r.protos.directoryd_pb2.UpdateRecordRequest", "line_number": 68, "usage_type": "call" }, { "api_name": "google.protobuf.json_format.MessageToDict", "line_number": 72, "usage_type": "call" }, { "api_name": "google.protobuf.json_format", "line_number": 72, "usage_type": "name" }, { "api_name": "json.dump", "line_number": 75, "usage_type": "call" }, { "api_name": "orc8r.protos.directoryd_pb2.DeleteRecordRequest", "line_number": 81, "usage_type": "call" }, { "api_name": "google.protobuf.json_format.MessageToDict", "line_number": 84, "usage_type": "call" }, { "api_name": "google.protobuf.json_format", "line_number": 84, "usage_type": "name" }, { "api_name": "json.dump", "line_number": 87, "usage_type": "call" }, { "api_name": "orc8r.protos.directoryd_pb2.GetDirectoryFieldRequest", "line_number": 93, "usage_type": "call" }, { "api_name": "google.protobuf.json_format.MessageToDict", "line_number": 97, "usage_type": "call" }, { "api_name": "google.protobuf.json_format", "line_number": 97, "usage_type": "name" }, { "api_name": "json.dump", "line_number": 100, "usage_type": "call" }, { "api_name": "orc8r.protos.common_pb2.Void", "line_number": 104, "usage_type": "call" }, { "api_name": "google.protobuf.json_format.MessageToDict", "line_number": 105, "usage_type": "call" }, { "api_name": "google.protobuf.json_format", "line_number": 105, "usage_type": "name" }, { "api_name": "json.dump", "line_number": 107, "usage_type": "call" }, { "api_name": "load_tests.common.benchmark_grpc_request", "line_number": 114, "usage_type": "call" }, { "api_name": "load_tests.common.make_full_request_type", "line_number": 116, "usage_type": "call" }, { "api_name": "load_tests.common.make_output_file_path", "line_number": 120, "usage_type": "call" }, { "api_name": "load_tests.common.benchmark_grpc_request", "line_number": 133, "usage_type": "call" }, { "api_name": "load_tests.common.make_full_request_type", "line_number": 135, "usage_type": "call" }, { "api_name": "load_tests.common.make_output_file_path", "line_number": 139, "usage_type": "call" }, { "api_name": "load_tests.common.benchmark_grpc_request", "line_number": 151, "usage_type": "call" }, { "api_name": "load_tests.common.make_full_request_type", "line_number": 153, "usage_type": "call" }, { "api_name": "load_tests.common.make_output_file_path", "line_number": 157, "usage_type": "call" }, { "api_name": "load_tests.common.benchmark_grpc_request", "line_number": 169, "usage_type": "call" }, { "api_name": "load_tests.common.make_full_request_type", "line_number": 171, "usage_type": "call" }, { "api_name": "load_tests.common.make_output_file_path", "line_number": 175, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 186, "usage_type": "call" }, { "api_name": "argparse.ArgumentDefaultsHelpFormatter", "line_number": 187, "usage_type": "attribute" } ]
24274585662
# ----------------------------------------------------------- # Creates the views for the database. # This views are called when user navigates to a certain url. # They are responsible for either rendering an HTML template or the API data that are requested # For example: Navigating to the url 'api/operations/' will trigger the OperationListCreateAPIView class # Reference: https://docs.djangoproject.com/en/4.0/topics/class-based-views/ # ----------------------------------------------------------- import csv import decimal import json import logging import os import shutil import sys import threading import time import zipfile from datetime import datetime from decimal import Decimal import numpy as np import open3d as o3d import pandas as pd import pytz from django.conf import settings from django.contrib import messages from django.contrib.auth import authenticate, get_user_model, login, logout from django.contrib.auth.decorators import login_required from django.contrib.auth.forms import AuthenticationForm from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.gis.geos import point from django.core import serializers as core_serializers from django.core.exceptions import PermissionDenied from django.core.files.storage import default_storage from django.db.models import Avg from django.forms.models import model_to_dict from django.http import (FileResponse, Http404, HttpResponse, HttpResponseNotFound, HttpResponseRedirect, JsonResponse) from django.shortcuts import (get_list_or_404, get_object_or_404, redirect, render) from django.urls import resolve, reverse, reverse_lazy from django.views import View, generic from django.views.decorators.csrf import csrf_exempt, csrf_protect from formtools.wizard.views import SessionWizardView from guardian.shortcuts import assign_perm from json2html import * from logic import utils from logic.algorithms.ballistic import ballistic from logic.algorithms.build_map import (build_map_request_handler, img_georeference) from logic.algorithms.flying_report import flying_report from logic.algorithms.lidar_point_cloud import lidar_points from logic.algorithms.mission import mission_request_handler from logic.algorithms.range_detection import range_detection from logic.algorithms.water_collector import water_collector from logic.algorithms.weather_station import (weather_station_ros_publisher, weather_station_ros_subscriber) from logic.Constants import Constants from PIL import Image from rest_framework import generics, permissions, status from rest_framework.decorators import api_view from rest_framework.response import Response from rest_framework.views import APIView from .factories import * from .forms import FlyingReportForm, JoinOperationForm, NewUserForm from .models import Operation from .permissions import IsOwnerOrReadOnly from .serializers import * logger = logging.getLogger(__name__) # Function for creating Thread instances with stop function and timer function class MyThread(threading.Thread): """Thread class with a stop() method. The thread itself has to check regularly for the stopped() condition.""" def __init__(self, *args, **kwargs): super(MyThread, self).__init__(*args, **kwargs) self._stop = threading.Event() self._time = 0 def stop(self): self._stop.set() def stopped(self): return self._stop.isSet() def time(self, seconds): self._time = seconds def get_time(self): return self._time # SAASAS class DatabaseFiller(APIView): ''' A class that populates the database with dummy data. It utilizes the Factory notion, using the Factory Boy library Reference: https://factoryboy.readthedocs.io/en/stable/orms.html ''' def get(self, request): UserFactory.create_batch(20) UserLogFactory.create_batch(20) OperationFactory.create_batch(20) mission_points = MissionPointFactory.create_batch(10) MissionFactory.create_batch(20, mission_points=tuple(mission_points)) mission = Mission.objects.all().first() drones = DroneFactory.create_batch(20) DroneToOperationLogFactory.create_batch(20) WeatherStationFactory.create_batch(50) TelemetryFactory.create_batch(50) LiveStreamSessionFactory.create_batch(20) RawFrameFactory.create_batch(20) DetectionFactory.create_batch(20) DetectionSessionFactory.create_batch(50) DetectionFrameFactory.create_batch(20) DetectedObjectFactory.create_batch(20) AlgorithmFactory.create_batch(20) WaterSamplerFactory.create_batch(20) ErrorMessageFactory.create_batch(20) FrontEndUserInputFactory.create_batch(20) LoraTransmitterFactory.create_batch(20) LoraTransmitterLocationFactory.create_batch(20) LidarPointSessionFactory.create_batch(20) LidarPointFactory.create_batch(20) BuildMapImageFactory.create_batch(50) BuildMapSessionFactory.create_batch(20) ControlDeviceFactory.create_batch(20) MissionLogFactory.create_batch(20) return redirect('login') class OperationListCreateAPIView(LoginRequiredMixin, generics.ListCreateAPIView): ''' List all operations or create new one. The get and create methods are inherited, using the generics.ListCreateAPIView. Tutorial Reference: https://www.django-rest-framework.org/tutorial/3-class-based-views/ ''' queryset = Operation.objects.all() serializer_class = OperationSerializer ''' Ensure that authenticated requests get read-write access, and unauthenticated requests get read-only access ''' permission_classes = [permissions.IsAuthenticatedOrReadOnly, IsOwnerOrReadOnly] def perform_create(self, serializer): ''' Allows us to modify how the instance save is managed, and handle any information that is implicit in the incoming request or requested URL. ''' serializer.save( operator=self.request.user) # Operations are associated with the user that created them class DroneListCreateAPIView(LoginRequiredMixin, generics.ListCreateAPIView): serializer_class = DroneSerializer def get_queryset(self): operation_name = self.kwargs.get("operation_name") return Drone.objects.filter(operation__operation_name=operation_name) def post(self, request, *args, **kwargs): return self.create(request, *args, **kwargs) class DroneRetrieveAPIView(LoginRequiredMixin, generics.RetrieveUpdateDestroyAPIView): """ Retrieve, update (patch) or delete a drone instance """ queryset = Drone.objects.all() serializer_class = DroneSerializer lookup_field = 'drone_name' def get_object(self): operation_name = self.kwargs.get("operation_name") drone_name = self.kwargs.get("drone_name") obj = Drone.objects.get(drone_name=drone_name) if obj is None: raise Http404 return obj def patch(self, request, *args, **kwargs): ''' Partially update the attributes of a drone. This is useful for example in case the drone is connected/disconnected from the platform, we update (patch) the "is_drone_active" field to true/false. OR we can update its DroneDetection field ''' operation_name = self.kwargs.get("operation_name") operation_obj = Operation.objects.filter( operator=request.user, active=True) drone_name = self.kwargs.get("drone_name") qs = Drone.objects.filter( name=drone_name, operation__operation_name=operation_name) obj = get_object_or_404(qs) serializer = DroneSerializer( obj, data=json.loads(request.body), partial=True) if serializer.is_valid(): serializer.save() return Response(serializer.data) class DetectionRetrieveAPIView(LoginRequiredMixin, generics.RetrieveUpdateDestroyAPIView): """ Retrieve, update (patch) or delete a detection drone instance """ queryset = Drone.objects.all() serializer_class = DetectionDroneSerializer lookup_field = 'drone_name' def patch(self, request, *args, **kwargs): ''' Partially update the attributes of a detection drone. This is useful when we just want to change the detection status of the drone ''' operation_name = self.kwargs.get("operation_name") drone_name = self.kwargs.get("drone_name") qs = Detection.objects.filter( name=drone_name, operation__operation_name=operation_name) obj = get_object_or_404(qs) serializer = DetectionSerializer( obj, data=json.loads(request.body), partial=True) if serializer.is_valid(): serializer.save() return Response(serializer.data) class MissionListCreateAPIView(LoginRequiredMixin, generics.ListCreateAPIView): queryset = Mission.objects.all() serializer_class = MissionSerializer def mission_save_to_db(missionObj, dronePK, userPK, operationPK): serializer = MissionSerializer(data=missionObj) if serializer.is_valid(): createdMission = serializer.save() Drone.objects.filter(pk=dronePK).update(mission=createdMission.pk) logger.info('Mission with id {} is created successfully.'.format( createdMission.pk)) MissionLoggerListCreateAPIView.mission_logger_save_to_db( 'START_MISSION', createdMission, userPK, operationPK, dronePK) return True else: msg = 'Mission is not valid and is not created. Error: {}.'.format( serializer.errors) from .consumers import ErrorMsg ErrorMsg.set_message_and_error(logger, Drone.objects.get( pk=dronePK).operation.operation_name, msg) return False class MissionLoggerListCreateAPIView(LoginRequiredMixin, generics.ListCreateAPIView): queryset = MissionLog.objects.all() serializer_class = MissionLoggerSerializer def mission_logger_save_to_db(action, mission, userPK, operationPK, dronePK): if Mission.objects.get(pk=mission.pk).mission_type == 'SEARCH_AND_RESCUE_MISSION': algorithm = Algorithm.objects.filter( algorithm_name='CALCULATE_SEARCH_AND_RESCUE_MISSION_PATHS_ALGORITHM', user=userPK, operation=operationPK).last() algorithmPK = algorithm.pk else: algorithmPK = None missionLoggerData = { 'action': action, 'mission': Mission.objects.get(pk=mission.pk).pk, 'user': userPK, 'operation': operationPK, 'drone': dronePK, 'algorithm': algorithmPK } serializerMissionLogger = MissionLoggerSerializer( data=missionLoggerData) if serializerMissionLogger.is_valid(): createdMissionLogger = serializerMissionLogger.save() logger.info('Mission Logger is saved successfully.') else: msg = 'Mission Logger is not valid. Error: {}.'.format( serializerMissionLogger.errors) from .consumers import ErrorMsg ErrorMsg.set_message_and_error(logger, Drone.objects.get( pk=dronePK).operation.operation_name, msg) class MissionRetrieveAPIView(LoginRequiredMixin, generic.ListView): model = MissionLog # fields = ('__all__') template_name = 'aiders/missions.html' queryset = MissionLog.objects.all() success_url = reverse_lazy('home') # def get(self, request, *args, **kwargs): # context = self.get_context_data() # return self.render_to_response(context) # # # self.object = self.get_object() # # context = self.get_context_data(object=self.object) # # return self.render_to_response(context) def get_context_data(self, **kwargs): # Call the base implementation first to get the context operation = Operation.objects.get( operation_name=self.kwargs.get('operation_name')) if not self.request.user.has_perm('join_operation', Operation.objects.filter(operation_name=self.kwargs.get('operation_name'))[0]): raise PermissionDenied( "You do not have permission to join the operation.") context = super(MissionRetrieveAPIView, self).get_context_data(**kwargs) missions = list(MissionLog.objects.filter( action="START_MISSION", operation=operation)) missionRemoveList = [] for mission in missions: if not list(MissionLog.objects.filter(mission=mission.mission, action="FINISH_MISSION", operation=operation)): missionRemoveList.append(mission) for mission in missionRemoveList: missions.remove(mission) context['mission_results'] = missions context['operation_name'] = self.kwargs.get('operation_name') # Create any data and add it to the context return context # working on Replay mission database to front end class ReplayMissionOnlineAPIView(LoginRequiredMixin, View): def format_time(date, prev_date=0): edit_date = date.astimezone(pytz.timezone( settings.TIME_ZONE)).strftime("%Y-%m-%dT%H:%M:%S.%f") if prev_date == edit_date[:-4]+'Z': edit_date = edit_date[:-5]+str(int(edit_date[-6])+1)+'Z' else: edit_date = edit_date[:-4]+'Z' return edit_date def save_data(table, time_field_name, description, save_table): prev_date = 0 time_field_name_edit = time_field_name for data in table: time_field_name = time_field_name_edit if isinstance(time_field_name, list): for time_field in time_field_name[1:]: data[time_field] = ReplayMissionOnlineAPIView.format_time( data[time_field]) time_field_name = time_field_name[0] data[time_field_name] = ReplayMissionOnlineAPIView.format_time( data[time_field_name], prev_date) if data[time_field_name] in save_table: if description in save_table[data[time_field_name]]: number = 1 while True: if description+' '+str(number) in save_table[data[time_field_name]]: number = number+1 else: save_table[data[time_field_name] ][description+' '+str(number)] = data break else: save_table[data[time_field_name]][description] = data else: save_table[data[time_field_name]] = {} save_table[data[time_field_name]][description] = data prev_date = data[time_field_name] return save_table def edit_drone_data(drone_list): for drone in drone_list: drone['drone_name'] = Drone.objects.get( pk=drone['drone']).drone_name return drone_list def get(self, request, *args, **kwargs): replay_data = {} time_series_data = {} operation_name = self.kwargs.get('operation_name') mission_id = self.kwargs.get('mission_id') mission = Mission.objects.get(id=mission_id) Mission_start = MissionLog.objects.filter( mission=mission, action="START_MISSION")[0] Mission_end = MissionLog.objects.filter( mission=mission, action="FINISH_MISSION").last() replay_data.update({"start_time": ReplayMissionOnlineAPIView.format_time( Mission_start.executed_at), "end_time": ReplayMissionOnlineAPIView.format_time(Mission_end.executed_at)}) DronesInOperation = list(Telemetry.objects.filter(operation=Operation.objects.get(operation_name=operation_name), received_at__range=( Mission_start.executed_at, Mission_end.executed_at)).values('drone').annotate(n=models.Count("pk"))) TelemetryInOperation = list(Telemetry.objects.filter(operation=Operation.objects.get( operation_name=operation_name), received_at__range=(Mission_start.executed_at, Mission_end.executed_at)).values()) BuildMapSessionInOperation = list(BuildMapSession.objects.filter(operation=Operation.objects.get( operation_name=operation_name), start_time__range=(Mission_start.executed_at, Mission_end.executed_at)).values()) WeatherStationInOperation = list(WeatherStation.objects.filter(operation=Operation.objects.get( operation_name=operation_name), current_time__range=(Mission_start.executed_at, Mission_end.executed_at)).values()) ErrorMessageInOperation = list(ErrorMessage.objects.filter(operation=Operation.objects.get( operation_name=operation_name), time__range=(Mission_start.executed_at, Mission_end.executed_at)).values()) DetectionSessionInOperation = list(DetectionSession.objects.filter( operation=Operation.objects.get(operation_name=operation_name)).values()) AlgorithmInOperation = list(Algorithm.objects.filter(operation=Operation.objects.get( operation_name=operation_name), executed_at__range=(Mission_start.executed_at, Mission_end.executed_at)).values()) FrontEndUserInputInOperation = list(FrontEndUserInput.objects.filter(operation=Operation.objects.get( operation_name=operation_name), time__range=(Mission_start.executed_at, Mission_end.executed_at)).values()) Missions = list(Telemetry.objects.filter(operation=Operation.objects.get(operation_name=operation_name), received_at__range=( Mission_start.executed_at, Mission_end.executed_at)).values('mission_log').annotate(n=models.Count("mission_log__mission"))) missionList = [] for current_mission_data in Missions: if current_mission_data['mission_log'] != None: mission = MissionLog.objects.get( pk=current_mission_data['mission_log']).mission mission_points = list(mission.mission_points.values()) for mission_point in mission_points: for field in mission_point: if isinstance(mission_point[field], point.Point): mission_point[field] = [float(mission_point[field].coords[0]), float( mission_point[field].coords[1])] mission_object = Mission.objects.filter( id=mission.pk).values().last() mission_object['mission_points'] = mission_points mission_object['executed_at'] = ReplayMissionOnlineAPIView.format_time( mission_object['executed_at']) mission_object['dronePK'] = MissionLog.objects.get( pk=current_mission_data['mission_log']).drone.pk missionList.append(mission_object) replay_data.update({"mission_data": missionList}) replay_data.update( {"drone_available": ReplayMissionOnlineAPIView.edit_drone_data(DronesInOperation)}) if TelemetryInOperation != []: time_series_data = ReplayMissionOnlineAPIView.save_data( TelemetryInOperation, 'received_at', 'telemetry', time_series_data) if BuildMapSessionInOperation != []: all_images = [] for session in BuildMapSessionInOperation: BuildMapImageInOperation = list( BuildMapImage.objects.filter(session=session['id']).values()) all_images = all_images+BuildMapImageInOperation for image in all_images: for field in image: if isinstance(image[field], decimal.Decimal): image[field] = float(image[field]) if isinstance(image[field], point.Point): image[field] = [float(image[field].coords[0]), float( image[field].coords[1])] time_series_data = ReplayMissionOnlineAPIView.save_data( all_images, 'time', 'build_map_image', time_series_data) if DetectionSessionInOperation != []: for session in DetectionSessionInOperation: DetectionFrameInOperation = list(DetectionFrame.objects.filter( detection_session=session['id'], saved_at__range=(Mission_start.executed_at, Mission_end.executed_at)).values()) for frame in DetectionFrameInOperation: frame['drone_id'] = Drone.objects.get( id=session['drone_id']).drone_name time_series_data = ReplayMissionOnlineAPIView.save_data( DetectionFrameInOperation, 'saved_at', 'detection_frame', time_series_data) DetectionObjectsInOperation = list(DetectedObject.objects.filter( detection_session=session['id'], detected_at__range=(Mission_start.executed_at, Mission_end.executed_at)).values()) for objects in DetectionObjectsInOperation: objects['drone_id'] = Drone.objects.get( id=session['drone_id']).drone_name time_series_data = ReplayMissionOnlineAPIView.save_data( DetectionObjectsInOperation, 'detected_at', 'detected_object', time_series_data) if WeatherStationInOperation != []: time_series_data = ReplayMissionOnlineAPIView.save_data( WeatherStationInOperation, 'current_time', 'weather_station', time_series_data) if AlgorithmInOperation != []: time_series_data = ReplayMissionOnlineAPIView.save_data( AlgorithmInOperation, 'executed_at', 'algorithm', time_series_data) if ErrorMessageInOperation != []: time_series_data = ReplayMissionOnlineAPIView.save_data( ErrorMessageInOperation, 'time', 'error', time_series_data) if FrontEndUserInputInOperation != []: time_series_data = ReplayMissionOnlineAPIView.save_data( FrontEndUserInputInOperation, 'time', 'user_input', time_series_data) for drone in DronesInOperation: RawFrameInOperation = list(RawFrame.objects.filter( live_stream_session__drone=Drone.objects.get(drone_name=drone['drone_name']), saved_at__range=( Mission_start.executed_at, Mission_end.executed_at)).values()) time_series_data = ReplayMissionOnlineAPIView.save_data( RawFrameInOperation, 'saved_at', 'video_frame', time_series_data) replay_data.update({"time_series_data": time_series_data}) use_online_map = UserPreferences.objects.get( user=request.user).use_online_map return render(request, "aiders/replay_mission.html", { "replay_data": replay_data, "operation_name": operation_name, 'operation': Operation.objects.get(operation_name=operation_name), 'mission_drone': Mission_start.drone.drone_name, 'use_online_map': use_online_map }) class TelemetryListCreateAPIView(LoginRequiredMixin, generics.ListCreateAPIView): queryset = Telemetry.objects.all().order_by('-received_at')[:10] serializer_class = TelemetrySerializer class ControlDeviceDataAPIView(LoginRequiredMixin, generics.ListCreateAPIView): def control_device_save_data_to_db(jetsonObj): try: ControlDevice.objects.create( drone=jetsonObj['drone'], cpu_usage=jetsonObj['cpu_usage'], cpu_core_usage=jetsonObj['cpu_core_usage'], cpu_core_frequency=jetsonObj['cpu_core_frequency'], cpu_temp=jetsonObj['cpu_temp'], cpu_fan_RPM=jetsonObj['cpu_fan_RPM'], gpu_usage=jetsonObj['gpu_usage'], gpu_frequency=jetsonObj['gpu_frequency'], gpu_temp=jetsonObj['gpu_temp'], ram_usage=jetsonObj['ram_usage'], swap_usage=jetsonObj['swap_usage'], swap_cache=jetsonObj['swap_cache'], emc_usage=jetsonObj['emc_usage'], ) except Exception as e: logger.error('Control Device {} Serializer data are not valid. Error: {}.'.format( jetsonObj["drone"].drone_name, e)) class TelemetryRetrieveAPIView(LoginRequiredMixin, generics.RetrieveUpdateDestroyAPIView): # queryset = Telemetry.objects.all().select_related('drone') serializer_class = TelemetrySerializer def get_object(self): operation_name = self.kwargs.get("operation_name") drone_name = self.kwargs.get("drone_name") ''' The following query set makes use of the "Lookups that span relationships # lookups-that-span-relationships Reference: https://docs.djangoproject.com/en/1.11/topics/db/queries/ ''' obj = Telemetry.objects.filter(drone__drone_name=drone_name).last() if obj is None: raise Http404 self.check_object_permissions(self.request, obj) return obj def save_telemetry_in_db(telemetryObj): telemetryObj['water_sampler_in_water'] = water_collector.water_sampler_under_water serializer = TelemetrySerializer(data=telemetryObj) if serializer.is_valid(): serializer.save() else: msg = 'Telemetry Serializer data are not valid. Error: {}.'.format( serializer.error) from .consumers import ErrorMsg ErrorMsg.set_message_and_error(logger, Drone.objects.get( pk=telemetryObj.drone).operation.operation_name, msg) def save_error_drone_data_in_db(errorObj): serializer = ErrorMessageSerializer(data=errorObj) if serializer.is_valid(): serializer.save() else: logger.error('Error Message Serializer data are not valid. Error: {}.'.format( serializer.error)) class MissionPointsListCreateAPIView(LoginRequiredMixin, generics.ListCreateAPIView): queryset = MissionPoint.objects.all() serializer_class = MissionPointSerializer def list(self, request, *args, **kwargs): ''' Overriding the default method. We want a special use case here. We want to list the mission points for a particular mission for which the specified drone is part od Args: request: *args: **kwargs: Returns: ''' operation_name = self.kwargs.get("operation_name") drone_name = self.kwargs.get("drone_name") # Get the mission points for the mission that this drone is currently participating qs = Drone.objects.filter(drone_name=drone_name, operation=Operation.objects.get( operation_name=operation_name)) drone = get_object_or_404(qs) mission = drone.mission if (not mission): raise Http404( "This drone is not in any active missions at the moment") mission_points = mission.mission_points.all() queryset = self.filter_queryset(mission_points) page = self.paginate_queryset(queryset) if page is not None: serializer = self.get_serializer(page, many=True) return self.get_paginated_response(serializer.data) serializer = self.get_serializer(queryset, many=True) return Response(serializer.data) class UserList(LoginRequiredMixin, generics.ListAPIView): queryset = get_user_model().objects.all() serializer_class = UserSerializer def get(self, request, *args, **kwargs): users = User.objects.exclude(username="AnonymousUser") return render(request, 'aiders/users.html', {'users': users}) class DroneList(LoginRequiredMixin, generics.ListAPIView): queryset = Drone.objects.all() serializer_class = DroneSerializer def get(self, request, *args, **kwargs): drones = Drone.objects.all() return render(request, 'aiders/drones.html', {'drones': drones}) def save_drone_to_db(droneObj): serializer = DroneSerializer(data=droneObj) if serializer.is_valid(): drone = serializer.save() logger.info('Drone Serializer id {} is saved.'.format(drone.pk)) else: logger.error( 'Drone Serializer data are not valid. Error: {}.'.format(serializer.errors)) class UserDetail(LoginRequiredMixin, generics.RetrieveAPIView): queryset = get_user_model().objects.all() serializer_class = UserSerializer class AlgorithmRetrieveView(LoginRequiredMixin, View): queryset = Algorithm.objects.all() serializer_class = AlgorithmSerializer def get(self, request, *args, **kwargs): attribute = self.kwargs.get("attr") ''' Retrieve the algorithm with the specified id but only the "input" or "output" attribute ''' if attribute != "input" and attribute != "output": return Response(status=status.HTTP_400_BAD_REQUEST) pk = self.kwargs.get("pk") algorithm = get_object_or_404(Algorithm.objects.filter(pk=pk)) serializer = AlgorithmSerializer(algorithm) # res = Response(serializer.data) # attr = res.data.get(attribute) # res.data = attr attr_json = serializer.data.get(attribute) attr_html_tbale = json2html.convert(json=attr_json) return render(request, 'aiders/algorithm_info.html', {'attr_name': attribute, 'attr_object_html_format': attr_html_tbale}) # return serializer.data.get(attribute) # if (attribute == 'input'): # serializer = AlgorithmSerializer(algorithm) # res = Response(serializer.data) # return res # elif (attribute == 'output'): # return Response(status=status.HTTP_404_NOT_FOUND) # qs = Algorithm.objects.filter(pk=pk).only('output').values() # obj = get_object_or_404(qs) # self.check_object_permissions(self.request, obj) # return obj # Get first object from all objects on Algorithm # obj = Algorithm.objects.all().first() # self.check_object_permissions(self.request, obj) # return obj def save_algorithm_to_db(algorithmObj): serializer = AlgorithmSerializer(data=algorithmObj) if serializer.is_valid(): serializer.save() logger.info('Algorithm Serializer is saved.') else: logger.error('Algorithm Serializer data are not valid. Error: {}.'.format( serializer.errors)) class ManageOperationsView(LoginRequiredMixin, View): def get(self, request, *args, **kwargs): operations = Operation.objects.all() users = User.objects.all() return render(request, 'aiders/manage_operations.html', {'operations': operations, 'users': users, 'use_online_maps': False}) # class JoinOperationView(LoginRequiredMixin,View): # def get(self, request, *args, **kwargs): # operation_id = self.kwargs.get("operation_id") # operation = Operation.objects.get(pk=operation_id) # return render(request, 'aiders/join_operation.html', {'operation': operation}) class ManagePermissionsView(LoginRequiredMixin, generic.UpdateView): def get(self, request, *args, **kwargs): if not request.user.has_perm('aiders.edit_permissions'): raise PermissionDenied( "You do not have permission to read the permissions.") users = User.objects.exclude(username="AnonymousUser") for user in users: user.permission_edit_permissions = user.has_perm( 'aiders.edit_permissions') user.permission_create_operations = user.has_perm( 'aiders.create_operations') user.save() operation_groups = '' all_groups = Group.objects.all() for group in all_groups: if(str(group.name).__contains__(' operation join')): operation_groups = operation_groups + \ (group.name).replace(' operation join', '')+',' return render(request, 'aiders/manage_permissions.html', {'users': users, 'all_groups': operation_groups}) def post(self, request, *args, **kwargs): if not request.user.has_perm('aiders.edit_permissions'): raise PermissionDenied( "You do not have permission to change the permissions.") for user in User.objects.exclude(username="AnonymousUser"): User.update_permissions(user.id, 'permission_edit_permissions', str( user.id) in request.POST.getlist('permission_edit_permissions')) User.update_permissions(user.id, 'permission_create_operations', str( user.id) in request.POST.getlist('permission_create_operations')) users = User.objects.exclude(username="AnonymousUser") for user in users: user.permission_edit_permissions = user.has_perm( 'aiders.edit_permissions') user.permission_create_operations = user.has_perm( 'aiders.create_operations') user.save() operation_groups = '' all_groups = Group.objects.all() for group in all_groups: if(str(group.name).__contains__(' operation join')): operation_groups = operation_groups + \ (group.name).replace(' operation join', '')+',' return render(request, 'aiders/manage_permissions.html', {'users': users, 'all_groups': operation_groups}, status=status.HTTP_202_ACCEPTED) class ManageUserPermissionsView(LoginRequiredMixin, generic.UpdateView): def post(self, request, *args, **kwargs): if not request.user.has_perm('aiders.edit_permissions'): raise PermissionDenied( "You do not have permission to change the permissions.") user_name = self.kwargs.get("user_name") group_list = request.POST.get('selected') group_list = group_list.split(',') for group in Group.objects.all(): if(str(group.name).__contains__(' operation join')): User.objects.filter(username=user_name)[0].groups.remove(group) for group_name in group_list: group_object = Group.objects.filter( name=group_name+" operation join").last() User.objects.filter(username=user_name)[0].groups.add(group_object) return HttpResponse(status=status.HTTP_200_OK) def index(request): ''' Triggered when the main page of the web app is loaded on browser :param request: ''' context = {'auth_form': AuthenticationForm} if request.user.is_authenticated: for drone in Drone.objects.filter(water_sampler_available=True): p = threading.Thread( target=water_collector.check_sensor, args=(drone.drone_name,)) p.start() userQuery = User.objects.filter(pk=request.user.id) user = get_object_or_404(userQuery) joined_op_obj = user.joined_operation if (joined_op_obj): if request.method == 'POST': previous_page = resolve( request.POST.get('next', '/')).func.view_class ''' If we got here on the main page after a POST request, that means user posted some data from a form ''' if (previous_page == AlgorithmListView): ''' Check if we got here after user selected to show results for some algorithms (That is, if we got here from aiders/algorithms.html) If this is the case, save the results to the request session and then redirect again to this page This is because if we don't redirect, the "POST" request will persist. Reference: https://stackoverflow.com/a/49178154/15290071 ''' algorithm_result_ids = request.POST.getlist( 'checkedAlgoResultIDs') request.session['checkedAlgoResultIDs'] = algorithm_result_ids return HttpResponseRedirect(reverse('home')) if (previous_page == MissionRetrieveAPIView): mission_ids = request.POST.getlist('checkedMissionIDs') request.session['checkedMissionIDs'] = mission_ids return HttpResponseRedirect(reverse('home')) elif request.method == 'GET': context = {'operation': joined_op_obj, 'net_ip': os.environ.get("NET_IP", "localhost")} ''' Check if there are any results to show for the algorithms ''' user_wants_to_load_algorithm_results_on_map = True if request.session.get( 'checkedAlgoResultIDs') != None else False user_wants_to_load_missions_on_map = True if request.session.get( 'checkedMissionIDs') != None else False if (user_wants_to_load_algorithm_results_on_map): algorithm_result_ids = request.session.get( 'checkedAlgoResultIDs') try: qs = Algorithm.objects.filter( pk__in=algorithm_result_ids) algorithm_results = get_list_or_404(qs) algorithm_results = core_serializers.serialize( 'json', algorithm_results, fields=('pk', 'algorithm_name', 'output')) context['algorithm_results'] = algorithm_results del request.session['checkedAlgoResultIDs'] except: ''' Remove the algorithm results from context if the user doesn't select an algorithm ''' context.pop("algorithm_results", None) else: ''' Remove the algorithm results from context if they exist. user does not want to load any results on the map e.g If the previous screen was the 'login' page, user just wants to log in, not to display any algorithm results ''' context.pop("algorithm_results", None) else: context = {'join_operation_form': JoinOperationForm} use_online_map = UserPreferences.objects.get( user=request.user).use_online_map # context = {'auth_form': AuthenticationForm,'use_online_map':use_online_map} context['use_online_map'] = use_online_map return render(request, 'aiders/index.html', context) return render(request, 'aiders/login.html', context) class DroneModifyOperationView(LoginRequiredMixin, generic.UpdateView): def get(self, request, *args, **kwargs): drone_name = self.kwargs.get("drone_name") response = Operation.objects.filter( drones_to_operate=Drone.objects.get(drone_name=drone_name).pk) response = core_serializers.serialize('json', response) drone_data = Drone.objects.get(drone_name=drone_name) response = json.loads(response) for data in response: if str(data['fields']['operation_name']) == str(drone_data.operation): data['fields'].update({'Selected': 'Selected'}) response = json.dumps(response) return HttpResponse(response) def post(self, request, *args, **kwargs): operation_name = request.POST['operation_name'] drone_name = self.kwargs.get('drone_name') drone = Drone.objects.get(drone_name=drone_name) if operation_name == "None": drone.operation = None drone.save() else: try: drone.operation = Operation.objects.get( operation_name=operation_name) drone.save() except: return HttpResponseNotFound("Operation not found", status=status.HTTP_400_BAD_REQUEST) return HttpResponse(drone_name, status=status.HTTP_202_ACCEPTED) class BuildMapAPIView(LoginRequiredMixin, generic.UpdateView): def post(self, request, *args, **kwargs): operation_name = self.kwargs.get('operation_name') drone_name = request.POST.get('drone_id') start_build_map = request.POST.get('start_build_map_boolean') multispectral_build_map = request.POST.get( 'start_multispectral_build_map') overlap = request.POST.get("overlap") if start_build_map == 'true': build_map_request_handler.buildMapPublisherSingleMessage( drone_name, True, overlap) logger.info( 'User sending build map request Start for drone {}.'.format(drone_name)) buildSessionActive = BuildMapSession.objects.filter(user=User.objects.get(username=request.user.username), operation=Operation.objects.get( operation_name=operation_name), drone=Drone.objects.get(drone_name=drone_name)).last() droneActive = Drone.objects.get( drone_name=drone_name).build_map_activated if buildSessionActive == None: BuildMapSession.objects.create(user=User.objects.get(username=request.user.username), operation=Operation.objects.get( operation_name=operation_name), drone=Drone.objects.get(drone_name=drone_name), folder_path=Constants.BUILD_MAP_DIR_PREFIX + drone_name + "_") drone = Drone.objects.get(drone_name=drone_name) drone.build_map_activated = True drone.save() return HttpResponse(status=status.HTTP_202_ACCEPTED) else: if buildSessionActive.is_active != True and droneActive != True: BuildMapSession.objects.create(user=User.objects.get(username=request.user.username), operation=Operation.objects.get( operation_name=operation_name), drone=Drone.objects.get(drone_name=drone_name), folder_path=Constants.BUILD_MAP_DIR_PREFIX + drone_name + "_") drone = Drone.objects.get(drone_name=drone_name) drone.build_map_activated = True drone.save() return HttpResponse(status=status.HTTP_202_ACCEPTED) elif start_build_map == 'false': build_map_request_handler.buildMapPublisherSingleMessage( drone_name, False, overlap) logger.info( 'User sending build map request Stop for drone {}.'.format(drone_name)) drone = Drone.objects.get(drone_name=drone_name) drone.build_map_activated = False drone.save() BuildMapSession.objects.filter(operation=Operation.objects.get(operation_name=operation_name), drone=Drone.objects.get( drone_name=drone_name), is_active=True).update(end_time=datetime.datetime.now(tz=Constants.CYPRUS_TIMEZONE_OBJ), is_active=False) return HttpResponse(status=status.HTTP_202_ACCEPTED) logger.error( 'Encounter an error when user send a build map request for drone {}.'.format(drone_name)) return HttpResponse(status=status.HTTP_400_BAD_REQUEST) class LidarPointsAPIView(LoginRequiredMixin, generic.UpdateView): def save_point_in_db(data, dji_name, lidar_session): if LidarPointSession.objects.get(id=lidar_session.id).is_active == True: LidarPoint.objects.create( points=data, lat=None, lon=None, drone=Drone.objects.get(drone_name=dji_name), lidar_point_session=lidar_session ) class BuildMapGetLastImageAPIView(LoginRequiredMixin, generic.UpdateView): def post(self, request, *args, **kwargs): operation_name = self.kwargs.get('operation_name') drone_name = request.POST.get('drone_id') Session = BuildMapSession.objects.filter(operation=Operation.objects.get(operation_name=operation_name), drone=Drone.objects.get( drone_name=drone_name)).last() # operation=Operation.objects.get(operation_name=operation_name), try: image = Session.images.all().last() image = model_to_dict(image) except: logger.error( 'Encounter an error while searching for a Build Map image for drone {}.'.format(drone_name)) return HttpResponse('', status=status.HTTP_404_NOT_FOUND) image['top_left'] = [float(image['top_left'].coords[0]), float( image['top_left'].coords[1])] image['top_right'] = [float(image['top_right'].coords[0]), float( image['top_right'].coords[1])] image['bottom_left'] = [float(image['bottom_left'].coords[0]), float( image['bottom_left'].coords[1])] image['bottom_right'] = [float(image['bottom_right'].coords[0]), float( image['bottom_right'].coords[1])] image['centre'] = [float(image['centre'].coords[0]), float( image['centre'].coords[1])] image['altitude'] = float(image['altitude']) image['bearing'] = float(image['bearing']) logger.info( 'Found Build Map Image Successfully for drone {}.'.format(drone_name)) return HttpResponse(json.dumps(image), status=status.HTTP_202_ACCEPTED) class BuildMapGetLastAPIView(LoginRequiredMixin, generic.UpdateView): def post(self, request, *args, **kwargs): operation_name = self.kwargs.get('operation_name') drone_name = request.POST.get('drone_id') buildMapSession = BuildMapSession.objects.filter(operation=Operation.objects.get( operation_name=operation_name), drone=Drone.objects.get(drone_name=drone_name)).last() if buildMapSession == None: logger.error( 'Encounter an error while getting last image from Build Map Session for drone {}.'.format(drone_name)) return HttpResponse(status=status.HTTP_404_NOT_FOUND) dictionary = {} dictionary['id'] = buildMapSession.pk dictionary['user'] = buildMapSession.user.username dictionary['drone_id'] = buildMapSession.drone.drone_name dictionary['start_time'] = str( buildMapSession.start_time.date())+" "+str(buildMapSession.start_time.time()) response = json.dumps(dictionary) logger.info( 'Found Build Map Session Successfully for drone {}.'.format(drone_name)) return HttpResponse(response, status=status.HTTP_202_ACCEPTED) @ csrf_exempt def BuildMapImageView(request): if request.method == 'POST': img_file = request.FILES.get('image_file') img_name = request.POST.get('image_name') drone_name = request.POST.get('drone_name') drone_bearing = float(request.POST.get('bearing')) drone_alt = float(request.POST.get('alt')) drone_lat = float(request.POST.get('lat')) drone_lon = float(request.POST.get('lon')) extra_data = False try: d_roll = float(request.POST.get('d_roll')) d_pitch = float(request.POST.get('d_pitch')) d_yaw = float(request.POST.get('d_yaw')) g_roll = float(request.POST.get('g_roll')) g_pitch = float(request.POST.get('g_pitch')) g_yaw = float(request.POST.get('g_yaw')) extra_data = True except: extra_data = False drone_instance = Drone.objects.get(drone_name=drone_name) # if extra_data: # # drone_bearing=drone_bearing+5 # drone_lat, drone_lon=img_georeference.high_accuracy_image_center(drone_lat, drone_lon, drone_alt, d_pitch, d_roll, drone_bearing) destinations = img_georeference.calcPoints( drone_lat, drone_lon, drone_bearing, drone_alt, img_name, drone_instance.model, drone_instance.camera_model) try: if drone_instance.is_connected_with_platform and drone_instance.build_map_activated: Session = BuildMapSession.objects.filter( drone=Drone.objects.get(drone_name=drone_name)).last() Image.open(img_file) file_name = default_storage.save(os.path.join( Session.folder_path, img_file.name), img_file) if extra_data: image = BuildMapImage.objects.create( path=Session.folder_path+'/'+img_name, top_left=Point( destinations[2].longitude, destinations[2].latitude), top_right=Point( destinations[0].longitude, destinations[0].latitude), bottom_left=Point( destinations[1].longitude, destinations[1].latitude), bottom_right=Point( destinations[3].longitude, destinations[3].latitude), centre=Point(drone_lon, drone_lat), altitude=Decimal(drone_alt), bearing=Decimal(drone_bearing), d_roll=d_roll, d_pitch=d_pitch, d_yaw=d_yaw, g_roll=g_roll, g_pitch=g_pitch, g_yaw=g_yaw, session=Session, ) else: image = BuildMapImage.objects.create( path=Session.folder_path+'/'+img_name, top_left=Point( destinations[2].longitude, destinations[2].latitude), top_right=Point( destinations[0].longitude, destinations[0].latitude), bottom_left=Point( destinations[1].longitude, destinations[1].latitude), bottom_right=Point( destinations[3].longitude, destinations[3].latitude), centre=Point(drone_lon, drone_lat), altitude=Decimal(drone_alt), bearing=Decimal(drone_bearing), d_roll=None, d_pitch=None, d_yaw=None, g_roll=None, g_pitch=None, g_yaw=None, session=Session, ) logger.info( 'Saved Image Successfully for Build Map Session {}.'.format(Session.id)) return HttpResponse({'status:success'}, status=status.HTTP_200_OK) except Exception as e: print(e) return HttpResponse({'status:failed'}, status=status.HTTP_400_BAD_REQUEST) class BuildMapLoadAPIView(LoginRequiredMixin, generic.UpdateView): def get(self, request, *args, **kwargs): operation = Operation.objects.get( operation_name=self.kwargs['operation_name']) list_of_operation = list(operation.buildmapsession_set.all()) response = [] for data in list_of_operation: dictionary = {} dictionary['id'] = data.pk dictionary['user'] = data.user.username dictionary['drone_id'] = data.drone.drone_name dictionary['start_time'] = str( data.start_time.date())+" "+str(data.start_time.time()) dictionary['end_time'] = str( data.end_time.date())+" " + str(data.end_time.time()) # Checks if the Session haves images if list(BuildMapImage.objects.filter(session=data)) != []: response.append(dictionary) json_string = json.dumps(response) return HttpResponse(json_string) def post(self, request, *args, **kwargs): try: build_map_id = json.loads( request.body.decode('utf-8'))['build_map_id'] except: return HttpResponse(status=status.HTTP_400_BAD_REQUEST) print(build_map_id) map_build = list(BuildMapImage.objects.filter( session_id=build_map_id).values()) print(map_build) for data in map_build: data['time'] = str(data['time']) data['top_left'] = [float(data['top_left'].coords[0]), float( data['top_left'].coords[1])] data['top_right'] = [float(data['top_right'].coords[0]), float( data['top_right'].coords[1])] data['bottom_left'] = [float(data['bottom_left'].coords[0]), float( data['bottom_left'].coords[1])] data['bottom_right'] = [float(data['bottom_right'].coords[0]), float( data['bottom_right'].coords[1])] data['centre'] = [float(data['centre'].coords[0]), float( data['centre'].coords[1])] data['altitude'] = float(data['altitude']) data['bearing'] = float(data['bearing']) json_string = json.dumps(map_build) return HttpResponse(json_string, status=status.HTTP_201_CREATED) class FirePredictionCreateAPIView(LoginRequiredMixin, generic.UpdateView): def post(self, request, *args, **kwargs): for jsonPostData in request: try: PostData = json.loads(jsonPostData) if PostData['user']: operation = Operation.objects.get( operation_name=self.kwargs['operation_name']) operationPK = operation.pk user = User.objects.get(username=PostData['user']) userPK = user.pk algorithmName = 'FIRE_PROPAGATION_ALGORITHM' canBeLoadedOnMap = True input = PostData del input['user'] try: output = utils.handleAlgorithmExecution( operationPK, input, canBeLoadedOnMap, algorithmName, userPK) except Exception as e: print(e) return HttpResponse(status=status.HTTP_400_BAD_REQUEST) response = '['+str(output)+']' return HttpResponse(response, status=status.HTTP_201_CREATED) except: pass raise Http404 def login_view(request): if request.method == 'GET': redirect_to = request.GET.get('next') if request.user.is_authenticated: if redirect_to != None: return HttpResponseRedirect(redirect_to) return HttpResponseRedirect(reverse('manage_operations')) return render(request, 'aiders/login.html', {'auth_form': AuthenticationForm, 'next': redirect_to}) if request.method == 'POST': username = request.POST['username'] password = request.POST['password'] redirect_to = request.POST['next'] user = authenticate(request, username=username, password=password) if user is not None: if user.is_active: if request.META.get('HTTP_X_FORWARDED_FOR'): ip = request.META.get('HTTP_X_FORWARDED_FOR') else: ip = request.META.get('REMOTE_ADDR') from user_agents import parse user_agent = parse(request.META.get('HTTP_USER_AGENT')) ''' When user logs in, save a few data that concern their machine ''' terminal = Terminal(ip_address=ip, user=user, os=user_agent.os.family, device=user_agent.device.family, logged_in=True, browser=user_agent.browser.family) terminal.save() if not UserPreferences.objects.filter(user=user).exists(): UserPreferences.objects.create( use_online_map=True, user=user) login(request, user, backend='django.contrib.auth.backends.ModelBackend') if redirect_to != "None": return HttpResponseRedirect(redirect_to) return redirect('manage_operations') else: messages.error(request, 'Wrong username or password!') return render(request, 'aiders/login.html', {'auth_form': AuthenticationForm, 'next': redirect_to}) def logout_view(request): logout(request) # Redirect to a success page return redirect('login') class NewOperationForm(LoginRequiredMixin, SessionWizardView): template_name = 'aiders/operation_new_wizard.html' def get_form_initial(self, step): if not self.request.user.has_perm('aiders.create_operations'): raise PermissionDenied( "You do not have permission to create the operation.") def done(self, form_list, form_dict, **kwargs): wizard_form = {k: v for form in form_list for k, v in form.cleaned_data.items()} operation_instance = Operation.objects.none() wizard_form["operator"] = self.request.user operation_instance = Operation.objects.create( operation_name=wizard_form["operation_name"], location=wizard_form["location"], description=wizard_form["description"], operator=wizard_form["operator"], ) drone_allow_list = Drone.objects.none() for drone_id in form_list[1].data.getlist('Drones in'): drone_allow_list = drone_allow_list | Drone.objects.filter( pk=drone_id) if form_list[1].data.getlist('drone_operation') == ['True']: print(Drone.objects.get(pk=drone_id).operation) if Drone.objects.get(pk=drone_id).operation == None or Drone.objects.get(pk=drone_id).is_connected_with_platform == False: Drone.objects.filter(pk=drone_id).update( operation=operation_instance) operation_instance.drones_to_operate.set(drone_allow_list) group_join_operation = Group.objects.create( name=operation_instance.operation_name+" operation join") group_edit_operation = Group.objects.create( name=operation_instance.operation_name+" operation edit") assign_perm('join_operation', group_join_operation, operation_instance) assign_perm('edit_operation', group_edit_operation, operation_instance) for user_id in form_list[1].data.getlist('Users in'): User.objects.filter(pk=user_id)[0].groups.add(group_join_operation) wizard_form["operator"].groups.add(group_edit_operation) logger.info('Operation with id {} is created successfully.'.format( operation_instance.pk)) return redirect('manage_operations') class EditOperationForm(LoginRequiredMixin, SessionWizardView): template_name = 'aiders/operation_edit_wizard.html' def get_form_initial(self, step): operation_name = self.kwargs['operation_name'] operation = Operation.objects.get(operation_name=operation_name) if self.request.user.has_perm('edit_operation', operation): if 'operation_name' in self.kwargs and step == '0': operation_dict = model_to_dict(operation) return operation_dict else: return self.initial_dict.get(step, {}) else: raise PermissionDenied( "You do not have permission to change the operation.") def get_context_data(self, form, **kwargs): context = super(EditOperationForm, self).get_context_data( form=form, **kwargs) if self.steps.current == '1': initial = { 'users_in': [], 'users_out': [], } operation_name = self.kwargs['operation_name'] operation = Operation.objects.get(operation_name=operation_name) operation_drones_dict = model_to_dict(operation) all_drones = list(Drone.objects.all()) for user in User.objects.all(): # Don't display the 'AnonymousUser' on the user list. We don't care about anonymous users if not user.username == 'AnonymousUser': if user.has_perm('join_operation', operation): initial['users_in'].append(user) else: initial['users_out'].append(user) context.update({'drones_allow': set(all_drones) & set( operation_drones_dict['drones_to_operate'])}) context.update({'drones_all': set(all_drones) ^ set( operation_drones_dict['drones_to_operate'])}) context.update({'users_allow': initial['users_in']}) context.update({'users_all': initial['users_out']}) context.update({'edit_form': True}) return context def done(self, form_list, form_dict, **kwargs): wizard_form = {k: v for form in form_list for k, v in form.cleaned_data.items()} drone_allow_list = Drone.objects.none() operation_name = self.kwargs['operation_name'] operation_instance = Operation.objects.get( operation_name=operation_name) for drone_id in form_list[1].data.getlist('Drones in'): drone_allow_list = drone_allow_list | Drone.objects.filter( pk=drone_id) if form_list[1].data.getlist('drone_operation') == ['True']: print(Drone.objects.get(pk=drone_id).operation) if Drone.objects.get(pk=drone_id).operation == None or Drone.objects.get(pk=drone_id).is_connected_with_platform == False: Drone.objects.filter(pk=drone_id).update( operation=operation_instance) operation_instance.location = wizard_form['location'] operation_instance.description = wizard_form['description'] operation_instance.drones_to_operate.set(drone_allow_list) operation_instance.save() Group.objects.get( name=operation_instance.operation_name+" operation join").delete() group = Group.objects.create( name=operation_instance.operation_name+" operation join") assign_perm('join_operation', group, operation_instance) for user_id in form_list[1].data.getlist('Users in'): User.objects.filter(pk=user_id)[0].groups.add(group) # Iterate over the drones that are NOT allowed on this operation. # If these drones were until now joined on this operation, kick them out notAllowedDrones = form_list[1].data.getlist('Drones out') for dronePK in notAllowedDrones: droneInstance = Drone.objects.get(pk=dronePK) if droneInstance.operation == operation_instance: Drone.objects.filter( drone_name=droneInstance.drone_name).update(operation=None) return redirect('manage_operations') class ExecuteAlgorithmAPIView(LoginRequiredMixin, APIView): def post(self, request, *args, **kwargs): operation_name = kwargs['operation_name'] operation = Operation.objects.get(operation_name=operation_name) userPK = request.user.pk operationPK = operation.pk algorithmDetails = request.data algorithmName = algorithmDetails['algorithmName'] input = algorithmDetails['input'] canBeLoadedOnMap = algorithmDetails['canBeLoadedOnMap'] output = utils.handleAlgorithmExecution( operationPK, input, canBeLoadedOnMap, algorithmName, userPK) return Response(output) class ExecuteMissionAPIView(LoginRequiredMixin, APIView): def get(self, request, *args, **kwargs): operation_name = kwargs['operation_name'] drone_name = kwargs['drone_name'] user = request.user operation = Operation.objects.get(operation_name=operation_name) drone = Drone.objects.get(drone_name=drone_name) mission_log = MissionLog.objects.filter( action='START_MISSION', user=user.pk, drone=drone, operation=operation).last() return Response(mission_log.mission.mission_type) def post(self, request, *args, **kwargs): # print("Request of the Execute Mission:", request, "\nand kwargs:", kwargs) operation_name = kwargs['operation_name'] drone_name = kwargs['drone_name'] actionDetails = request.data user_name = request.user.username operation = Operation.objects.get(operation_name=operation_name) User = get_user_model() action = actionDetails['action'] grid = actionDetails['grid'] captureAndStoreImages = actionDetails['captureAndStoreImages'] missionPath = actionDetails['mission_points'] dronePK = Drone.objects.get(drone_name=drone_name).pk try: missionType = actionDetails['mission_type'] except: missionType = None # if missionType == Mission.NORMAL_MISSION: mission_request_handler.publishMissionToRos( operation.pk, missionType, drone_name, grid, captureAndStoreImages, missionPath, action, request.user.pk, dronePK) # elif missionType == Mission.SEARCH_AND_RESCUE_MISSION: # utils.handleAlgorithmExecution(operation.pk, input, canBeLoadedOnMap, userPK, algorithmName) # pass return Response(status=status.HTTP_200_OK) class AlgorithmListView(LoginRequiredMixin, generic.ListView): model = Algorithm # fields = ('__all__') template_name = 'aiders/algorithms.html' queryset = Algorithm.objects.all() success_url = reverse_lazy('home') # def get(self, request, *args, **kwargs): # context = self.get_context_data() # return self.render_to_response(context) # # # self.object = self.get_object() # # context = self.get_context_data(object=self.object) # # return self.render_to_response(context) def get_context_data(self, **kwargs): # Call the base implementation first to get the context operation = Operation.objects.get( operation_name=self.kwargs.get('operation_name')) if not self.request.user.has_perm('join_operation', Operation.objects.filter(operation_name=self.kwargs.get('operation_name'))[0]): raise PermissionDenied( "You do not have permission to join the operation.") # User has to join the operation in order to view the operation's algorithms User.objects.filter(pk=self.request.user.id).update( joined_operation=operation) context = super(AlgorithmListView, self).get_context_data(**kwargs) context['algorithm_results'] = operation.algorithm_set.all() context['operation_name'] = self.kwargs.get('operation_name') # Create any data and add it to the context return context @ login_required @ csrf_protect def stop_operation_view(request, operation_name): if request.method == 'GET': opQuery = Operation.objects.filter(operation_name=operation_name) if (opQuery.exists()): operation = get_object_or_404(opQuery) if (operation.active): operation.active = False operation.save() return redirect('manage_operations') @ login_required @ csrf_protect def leave_operation_view(request): if request.method == 'GET': get_user_model().objects.filter(pk=request.user.id).update(joined_operation=None) return redirect('manage_operations') # if (userQuery.exists()): # get_object_or_404(userQuery).update(joined_operation=None) # user.joined_operation = None # user.save() # return redirect('home') @ login_required @ csrf_protect def join_operation_view(request, operation_name): if not request.user.has_perm('join_operation', Operation.objects.filter(operation_name=operation_name)[0]): raise PermissionDenied( "You do not have permission to join the operation.") if request.method == 'POST': opQuery = Operation.objects.filter(operation_name=operation_name) if (opQuery.exists()): operation = get_object_or_404(opQuery) if (operation.active): User.objects.filter(pk=request.user.id).update( joined_operation=operation) # get_object_or_404(user_query) return redirect('home') else: raise Http404('Operation Not Found') else: raise Http404('Operation Not Found') return JsonResponse({'success': False}) @ csrf_protect def register_request(request): if request.method == 'POST': form = NewUserForm(request.POST) if form.is_valid(): user = form.save() login(request, user, backend='django.contrib.auth.backends.ModelBackend') return redirect('manage_operations') else: form = NewUserForm() return render(request=request, template_name='aiders/register.html', context={"register_form": form}) class DetectionAPIOperations(): @ staticmethod def create_detection_session_on_db(user, operation, drone): return DetectionSession.objects.create( user=user, operation=operation, drone=drone ) @ staticmethod def save_frame_to_db(frame_file, detection_session): detFrame = DetectionFrame.objects.create( frame=frame_file, detection_session=detection_session, ) return detFrame @ staticmethod def update_detection_status_on_db(drone, detection_status, detection_type_str): qs = Detection.objects.filter(drone__drone_name=drone.drone_name).update( detection_status=detection_status, detection_type_str=detection_type_str) @ staticmethod def update_detection_session_end_time(detection_session): end_time = datetime.datetime.now(tz=Constants.CYPRUS_TIMEZONE_OBJ) DetectionSession.objects.filter(pk=detection_session.id).update( end_time=end_time, is_active=False) @ staticmethod def update_latest_frame(detection_session, latest_frame_url): DetectionSession.objects.filter(pk=detection_session.id).\ update(latest_frame_url=latest_frame_url) @ staticmethod def save_detected_object_to_db(detection_session, detectedObj, frame): DetectedObject.objects.create( track_id=detectedObj.trk_id, label=detectedObj.label, lat=detectedObj.lat, lon=detectedObj.lon, detection_session=detection_session, distance_from_drone=detectedObj.distFromDrone, frame=frame ) class LiveStreamAPIOperations(LoginRequiredMixin, generics.RetrieveAPIView): # def get(self, request, *args, **kwargs): # operation_name=self.kwargs.get('operation_name') # drone_name = self.kwargs.get('drone_name') @ staticmethod def create_live_stream_session_on_db(drone): return LiveStreamSession.objects.create( drone=drone ) @ staticmethod def save_raw_frame_to_db(frame_file, drone_name, live_stream_session): detFrame = RawFrame.objects.create( frame=frame_file, drone=Drone.objects.get(drone_name=drone_name), live_stream_session=live_stream_session, ) return detFrame @ staticmethod def update_latest_raw_frame(live_stream_session, latest_frame_url): LiveStreamSession.objects.filter(pk=live_stream_session.id).\ update(latest_frame_url=latest_frame_url) @ api_view(['GET']) def objects_detected_on_last_frame_api_view(request, operation_name, drone_name): if request.method == 'GET': try: active_detection_session = DetectionSession.objects.filter( is_active=True, operation__operation_name=operation_name, drone__drone_name=drone_name) active_detection_session = DetectionSession.objects.get( is_active=True, operation__operation_name=operation_name, drone__drone_name=drone_name) # Get the last frame object for the active detection session latest_frame = DetectionFrame.objects.filter( detection_session=active_detection_session).last() # Get the detected objects that appear on the last frame detected_objects = DetectedObject.objects.filter( frame=latest_frame) except DetectionSession.DoesNotExist: return Response({'error': Constants.NO_ACTIVE_DETECTION_SESSION_ERROR_MESSAGE}) if detected_objects == None: return Response({'error': "No objects detected on last frame"}) serializer = DetectedObjectSerializer(detected_objects, many=True) return Response(serializer.data) return Response(status=status.HTTP_400_BAD_REQUEST) @ api_view(['GET']) def last_detection_frame_api_view(request, operation_name, drone_name): if request.method == 'GET': try: active_detection_session = DetectionSession.objects.get( is_active=True, drone__drone_name=drone_name) except DetectionSession.DoesNotExist: return Response({'latest_frame_url': Constants.NO_ACTIVE_DETECTION_SESSION_ERROR_MESSAGE}) serializer = DetectionSessionSerializer(active_detection_session) return Response(serializer.data) return Response(status=status.HTTP_400_BAD_REQUEST) @ api_view(['GET']) def last_raw_frame_api_view(request, operation_name, drone_name): if request.method == 'GET': try: active_detection_session = LiveStreamSession.objects.get( is_active=True, drone__drone_name=drone_name) except LiveStreamSession.DoesNotExist: return Response({'latest_frame_url': Constants.NO_ACTIVE_LIVE_STREAM_SESSION_ERROR_MESSAGE}) serializer = LiveStreamSessionSerializer(active_detection_session) return Response(serializer.data) return Response(status=status.HTTP_400_BAD_REQUEST) @ api_view(['GET']) def detection_types_api_view(request, operation_name): if request.method == 'GET': from logic.algorithms.object_detection.src.models.label import \ get_labels_all return Response({'detection_types': list(get_labels_all())}) return Response(status=status.HTTP_400_BAD_REQUEST) @ api_view(['GET']) def live_stream_status_api_view(request, operation_name, drone_name): if request.method == 'GET': liveStreamSession = LiveStreamSession.objects.get( drone__drone_name=drone_name) if (liveStreamSession.is_active): return Response({'is_live_stream_active': True}) else: return Response({'is_live_stream_active': False}) return Response(status=status.HTTP_400_BAD_REQUEST) class WeatherLiveAPIView(LoginRequiredMixin, APIView): def post(self, request, *args, **kwargs): ThreadRunningPub = False ThreadRunningSub = False threadName = [] for thread in threading.enumerate(): if thread.name == 'MainWeatherPublisher': threadName.append(thread) ThreadRunningPub = True elif thread.name == 'MainWeatherSubscriber': threadName.append(thread) ThreadRunningSub = True if request.data['state'] == 'true': operation_name = self.kwargs.get('operation_name') operation_name = operation_name.replace(' ', '~') if ThreadRunningPub == False: publisherThread = MyThread(name='MainWeatherPublisher', target=weather_station_ros_publisher.main, args=( operation_name, 'MainWeatherPublisher')) sys.argv = Constants.START_WEATHER_DATA_PUBLISHER_SCRIPT[1:] publisherThread.start() if ThreadRunningSub == False: subscriberThread = MyThread(name='MainWeatherSubscriber', target=weather_station_ros_subscriber.main, args=( operation_name, 'MainWeatherSubscriber')) subscriberThread.start() else: for thread in threadName: thread.stop() return HttpResponse('Threads up', status=status.HTTP_200_OK) class WeatherStationAPIView(LoginRequiredMixin, generics.RetrieveAPIView): queryset = WeatherStation.objects.all() serializer_class = WeatherStationSerializer def addWeatherStationDataToDB(data, object_name): object_name = object_name.replace('~', ' ') try: operation_name = Operation.objects.get(operation_name=object_name) WeatherStation.objects.create( wind_speed=data.speed, wind_direction=data.direction, temperature=data.temperature, pressure=data.pressure, humidity=data.humidity, heading=data.heading, operation=Operation.objects.get(operation_name=operation_name), drone=None, ) except Operation.DoesNotExist: operation_name = None try: drone_name = Drone.objects.get(drone_name=object_name) WeatherStation.objects.create( wind_speed=data.speed, wind_direction=data.direction, temperature=data.temperature, pressure=data.pressure, humidity=data.humidity, heading=data.heading, operation=None, drone=Drone.objects.get(drone_name=drone_name), ) except Drone.DoesNotExist: drone_name = None def system_monitoring_save_to_db(cpu_usage, cpu_core_usage, cpu_temp, gpu_usage, gpu_memory, gpu_temp, ram_usage, swap_memory_usage, temp, mb_new_sent, mb_new_received, mb_new_total, disk_read, disk_write, battery_percentage): SystemMonitoring.objects.create( cpu_usage=cpu_usage, cpu_core_usage=cpu_core_usage, cpu_temp=cpu_temp, gpu_usage=gpu_usage, gpu_memory=gpu_memory, gpu_temp=gpu_temp, ram_usage=ram_usage, swap_memory_usage=swap_memory_usage, temp=temp, upload_speed=mb_new_sent, download_speed=mb_new_received, total_network=mb_new_total, disk_read=disk_read, disk_write=disk_write, battery_percentage=battery_percentage ) class buildMapSessionsAPIView(LoginRequiredMixin, generic.ListView): model = BuildMapSession template_name = 'aiders/buildMapSession.html' queryset = BuildMapSession.objects.all() def get_context_data(self, **kwargs): # Call the base implementation first to get the context operation = Operation.objects.get( operation_name=self.kwargs.get('operation_name')) if not self.request.user.has_perm('join_operation', Operation.objects.filter(operation_name=self.kwargs.get('operation_name'))[0]): raise PermissionDenied( "You do not have permission to join the operation.") context = super(buildMapSessionsAPIView, self).get_context_data(**kwargs) context['MapSession_results'] = list( operation.buildmapsession_set.all()) index = 0 urlList = [] list_non_zero_images = list(BuildMapImage.objects.filter().values( 'session').annotate(n=models.Count("pk"))) while index < len(context['MapSession_results']): element = context['MapSession_results'][index] save = False for session_non_zero_images in list_non_zero_images: if session_non_zero_images['session'] == context['MapSession_results'][index].id: context['MapSession_results'][index].images = session_non_zero_images['n'] save = True if save == False: context['MapSession_results'].remove(element) else: urlList.append(self.request.build_absolute_uri(reverse( 'build_map_session_share', args=[self.kwargs.get('operation_name'), element.id]))) index += 1 context['operation_name'] = self.kwargs.get('operation_name') context['urls'] = urlList return context class buildMapSessionsShareAPIView(LoginRequiredMixin, View): def get(self, request, *args, **kwargs): self.kwargs.get('pk') buildMapSessionObject = BuildMapSession.objects.get( pk=self.kwargs.get('pk')) fileList = [] with open('buildMapSession.csv', 'w') as csvFile: fileWriter = csv.writer( csvFile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) fileWriter.writerow( [f.name for f in BuildMapSession._meta.get_fields()]) dataList = [] for key in [f.name for f in BuildMapSession._meta.get_fields()]: try: dataList.append(getattr(buildMapSessionObject, key)) except: dataList.append("") fileWriter.writerow(dataList) with open('buildMapImages.csv', 'w') as csvFile2: fileWriter = csv.writer( csvFile2, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) fileWriter.writerow( [f.name for f in BuildMapImage._meta.get_fields()]) for data in BuildMapImage.objects.filter(session=self.kwargs.get('pk')): dataList = [] for key in [f.name for f in BuildMapImage._meta.get_fields()]: try: if isinstance(getattr(data, key), point.Point): dataList.append(str(getattr(data, key).coords[0])+' '+str( getattr(data, key).coords[1])) else: dataList.append(getattr(data, key)) except: dataList.append("") fileWriter.writerow(dataList) try: if not os.path.exists(default_storage.path('')+'/temp/'): os.makedirs(default_storage.path('')+'/temp/') else: shutil.rmtree(default_storage.path('')+'/temp/') os.makedirs(default_storage.path('')+'/temp/') shutil.move('buildMapSession.csv', default_storage.path( '')+'/temp/buildMapSession.csv') shutil.move('buildMapImages.csv', default_storage.path( '')+'/temp/buildMapImages.csv') os.mkdir(default_storage.path('')+'/temp/' + BuildMapImage.objects.filter(session=self.kwargs.get('pk')).last().path.split('/')[0]) for data in BuildMapImage.objects.filter(session=self.kwargs.get('pk')): shutil.copyfile(default_storage.path(data.path), default_storage.path('')+'/temp/'+data.path) except Exception as e: pass try: zip_file = zipfile.ZipFile(default_storage.path( 'build_map_session_share.zip'), 'w') for root, dirs, files in os.walk(default_storage.path('temp')): for f in files: zip_file.write(os.path.join(root, f), f) zip_file.close() zip_file = open(default_storage.path( 'build_map_session_share.zip'), 'rb') return FileResponse(zip_file) except Exception as e: return HttpResponse(status=status.HTTP_404_NOT_FOUND) class waterCollectionActivatedAPIView(LoginRequiredMixin, View): def post(self, request, *args, **kwargs): drone_name = request.POST.get('drone_id') operation_name = kwargs.get('operation_name') if Drone.objects.get(drone_name=drone_name).water_sampler_available: try: water_collector.publish_message(drone_name, 1) WaterSampler.objects.create( drone=Drone.objects.get(drone_name=drone_name), operation=Operation.objects.get( operation_name=operation_name), user=User.objects.get(pk=request.user.pk), telemetry=Telemetry.objects.filter( drone=Drone.objects.get(drone_name=drone_name)).last(), ) logger.info( 'Water sampler activated for drone {}.'.format(drone_name)) return HttpResponse('Sending message to drone.', status=status.HTTP_200_OK) except Exception as e: logger.error( 'Water sampler encounter an error for drone {}. Error: {}'.format(drone_name, e)) return HttpResponse('Water sampler encounter an error for drone {}.'.format(drone_name), status=status.HTTP_200_OK) class ballisticActivatedAPIView(LoginRequiredMixin, View): def post(self, request, *args, **kwargs): drone_name = request.POST.get('drone_id') operation_name = kwargs.get('operation_name') if Drone.objects.get(drone_name=drone_name).ballistic_available: try: ballistic.publish_message(drone_name, 1) Ballistic.objects.create( drone=Drone.objects.get(drone_name=drone_name), operation=Operation.objects.get( operation_name=operation_name), user=User.objects.get(pk=request.user.pk), telemetry=Telemetry.objects.filter( drone=Drone.objects.get(drone_name=drone_name)).last(), ) logger.info( 'Ballistic activated for drone {}.'.format(drone_name)) return HttpResponse('Sending message to drone.', status=status.HTTP_200_OK) except Exception as e: logger.error( 'Ballistic encounter an error for drone {}. Error: {}'.format(drone_name, e)) return HttpResponse('Ballistic encounter an error for drone {}.'.format(drone_name), status=status.HTTP_200_OK) class rangeFinderAPIView(LoginRequiredMixin, View): def post(self, request, *args, **kwargs): drone_name = request.POST.get('drone_id') start_stop = request.POST.get('start_stop') operation_name = kwargs.get('operation_name') if Drone.objects.get(drone_name=drone_name).camera_model: try: range_detection.buildMapPublisherSingleMessage( drone_name, start_stop) logger.info( 'Range Finder activated for drone {}.'.format(drone_name)) return HttpResponse('Sending message to drone.', status=status.HTTP_200_OK) except Exception as e: logger.error( 'Range Finder encounter an error for drone {}. Error: {}'.format(drone_name, e)) return HttpResponse('Range Finder an error for drone {}.'.format(drone_name), status=status.HTTP_200_OK) class frontEndUserInputAPIView(LoginRequiredMixin, View): def post(self, request, *args, **kwargs): element = request.POST.get('elementId') value = None if request.POST.get('active') == "true": active = True elif request.POST.get('active') == "false": active = False else: active = True value = request.POST.get('active') operation_name = kwargs.get('operation_name') try: FrontEndUserInput.objects.create( operation=Operation.objects.get(operation_name=operation_name), element_name=element, active=active, value=value ) return HttpResponse('Action Saved Successful.', status=status.HTTP_200_OK) except Exception as e: logger.error(e) return HttpResponse("Action Not Saved Successful.", status=status.HTTP_200_OK) class SystemMonitoringView(LoginRequiredMixin, View): def get(self, request, *args, **kwargs): if request.user.is_superuser: return render(request, 'aiders/monitoring-platform.html', {}) return HttpResponse(status=status.HTTP_401_UNAUTHORIZED) class ControlDevicesMonitoringView(LoginRequiredMixin, View): def get(self, request, *args, **kwargs): if request.user.is_superuser: drones = Drone.objects.all() available_drones = list(ControlDevice.objects.filter().values( 'drone').annotate(n=models.Count("pk"))) temp = [] for drones_temp in available_drones: temp.append(Drone.objects.get(id=drones_temp['drone'])) available_drones = temp return render(request, 'aiders/monitoring-control-devices.html', {'drones': drones, 'available_drones': available_drones}) return HttpResponse(status=status.HTTP_401_UNAUTHORIZED) class ControlDeviceMonitoringView(LoginRequiredMixin, View): def post(self, request, *args, **kwargs): print(kwargs.get('control_device')) if request.user.is_superuser: drone_name = kwargs.get('control_device') available_drones = list(ControlDevice.objects.filter().values( 'drone').annotate(n=models.Count("pk"))) temp = [] for drones_temp in available_drones: temp.append(drones_temp['drone']) available_drones = temp if not Drone.objects.get(drone_name=drone_name).id in available_drones: return HttpResponse(status=status.HTTP_404_NOT_FOUND) return render(request, 'aiders/monitoring-control-device.html', {'drone_name': drone_name}) return HttpResponse(status=status.HTTP_401_UNAUTHORIZED) def test_my_high_accuracy(self, lat, long, altitude, pitch, roll, heading): import math from geopy.distance import geodesic pitch = pitch roll = roll distance_pitch = altitude * math.tan(pitch*math.pi/180) # lat distance_roll = altitude * math.tan(roll*math.pi/180) # long destination_pitch = geodesic( kilometers=distance_pitch/1000).destination((0, 0), heading+0) destination_roll = geodesic( kilometers=distance_roll/1000).destination((0, 0), heading+270) newLat = lat+destination_pitch.latitude+destination_roll.latitude newLong = long+destination_pitch.longitude+destination_roll.longitude return(newLat, newLong) class LoraTransmitterLocationRetrieveAPIView(LoginRequiredMixin, generics.RetrieveAPIView): queryset = LoraTransmitterLocation.objects.all() serializer_class = LoraTransmitterLocationSerializer lookup_field = 'tagName' def get_object(self): tag_name = self.kwargs.get("lora_device_name") qs = LoraTransmitterLocation.objects.filter( loraTransmitter__tagName=tag_name) if not qs.exists(): raise Http404('Object not found') return qs.last() # Return the most recent information about this lora device class LoraTransmiterListAPIView(LoginRequiredMixin, generics.ListAPIView): queryset = LoraTransmitter.objects.all() serializer_class = LoraTransmitterSerializer class Lidar3DMesh(LoginRequiredMixin, generics.ListAPIView): def get(self, request, *args, **kwargs): lidar_session_list = list(LidarPointSession.objects.filter(operation=Operation.objects.get( operation_name=self.kwargs.get("operation_name")), is_process=True, is_active=False).values()) for session in lidar_session_list: session['start_time'] = str(session['start_time']) if session['end_time'] != None: session['end_time'] = str(session['end_time']) lidar_session_list = json.dumps(lidar_session_list) return HttpResponse(lidar_session_list) def post(self, request, *args, **kwargs): mesh_id = request.POST.get('mesh_id') data_return = {} data_return['id'] = mesh_id data_return['file_path'] = 'triangle_mesh/'+str(mesh_id)+'.glb' lat = LidarPoint.objects.filter(lidar_point_session=mesh_id).aggregate( Avg('telemetry__lat')) lon = LidarPoint.objects.filter( lidar_point_session=mesh_id).aggregate(Avg('telemetry__lon')) data_return['long'] = lon['telemetry__lon__avg'] data_return['lat'] = lat['telemetry__lat__avg'] data_return['height'] = 0 data_return['heading'] = LidarPoint.objects.filter( lidar_point_session=mesh_id)[0].telemetry.heading data_return = json.dumps(data_return) return HttpResponse(data_return) class Lidar3DPoints(LoginRequiredMixin, generics.ListAPIView): def get(self, request, *args, **kwargs): lidar_session_list = list(LidarPointSession.objects.filter(operation=Operation.objects.get( operation_name=self.kwargs.get("operation_name")), is_active=False).values()) for session in lidar_session_list: session['start_time'] = str(session['start_time']) if session['end_time'] != None: session['end_time'] = str(session['end_time']) lidar_session_list = json.dumps(lidar_session_list) return HttpResponse(lidar_session_list) def post(self, request, *args, **kwargs): mesh_id = request.POST.get('mesh_id') list_lidar_points = list(LidarPoint.objects.filter( lidar_point_session=mesh_id)) point_dict = self.point_db_to_json(list_lidar_points) point_dict = {'data': point_dict} lat = LidarPoint.objects.filter(lidar_point_session=mesh_id).aggregate( Avg('telemetry__lat')) lon = LidarPoint.objects.filter( lidar_point_session=mesh_id).aggregate(Avg('telemetry__lon')) point_dict['coordinates'] = [ lat['telemetry__lat__avg'], lon['telemetry__lon__avg']] # print(point_dict['data']['0']['coordinates']) # lidar_points.lidar_points_to_long_lat(0, 0, 0, 0, 0, 0) point_dict = json.dumps(point_dict) return HttpResponse(point_dict) def point_db_to_json(self, points): point_id = 0 point_dict = {} list_colors = [] for point in points: data_point = point.points.split('|') for loop_data in data_point: data = loop_data.split(',') if data != ['']: list_colors.append(int(data[3])) list_colors.append(int(data[4])) list_colors.append(int(data[5])) color_max = max(list_colors) color_min = min(list_colors) for point in points: data_point = point.points.split('|') for loop_data in data_point: data = loop_data.split(',') if data != ['']: data = [float(x) for x in data] point_dict[str(point_id)] = {} point_dict[str(point_id)]['coordinates'] = data[0:3] point_dict[str(point_id)]['color'] = [ (int(data[3]) - color_min), (int(data[4]) - color_min), (int(data[5]) - color_min)] point_id = point_id+1 return point_dict class Lidar_process_cloud_points(LoginRequiredMixin, generics.ListAPIView): def post(self, request, *args, **kwargs): mesh_id = request.POST.get('mesh_id') mesh_object = LidarPointSession.objects.get(id=mesh_id) works = self.run_lidar_point_triangle(mesh_object) if works == True: mesh_object_update = LidarPointSession.objects.filter(id=mesh_id) mesh_object_update.update(is_process=True) return HttpResponse(200, status=status.HTTP_200_OK) return HttpResponse(500, status=status.HTTP_200_OK) def get(self, request, *args, **kwargs): lidar_session_list = list(LidarPointSession.objects.filter(operation=Operation.objects.get( operation_name=self.kwargs.get("operation_name")), is_process=False, is_active=False).values()) for session in lidar_session_list: session['start_time'] = str(session['start_time']) if session['end_time'] != None: session['end_time'] = str(session['end_time']) lidar_session_list = json.dumps(lidar_session_list) return HttpResponse(lidar_session_list) def run_lidar_point_triangle(self, lidar_object): list_all_points = [] list_all_color_points = [] list_of_lidar_points = list( LidarPoint.objects.filter(lidar_point_session=lidar_object)) list_colors = [] for point in list_of_lidar_points: data_point = point.points.split('|') for loop_data in data_point: data = loop_data.split(',') if data != ['']: list_colors.append(int(data[3])) list_colors.append(int(data[4])) list_colors.append(int(data[5])) color_max = max(list_colors) color_min = min(list_colors) for point in list_of_lidar_points: data_point = point.points.split('|') for loop_data in data_point: data = loop_data.split(',') if data != ['']: data = [float(x) for x in data] list_all_points.append( [data[0], data[1], data[2]]) list_all_color_points.append([ (int(data[3]) - color_min) / (color_max-color_min), (int(data[4]) - color_min) / (color_max-color_min), (int(data[5]) - color_min) / (color_max-color_min)]) for loop_data in list_all_points: loop_data = np.asarray(loop_data) list_all_points = np.asarray(list_all_points) for loop_data in list_all_color_points: loop_data = np.asarray(loop_data) list_all_color_points = np.asarray(list_all_color_points) try: pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(list_all_points) pcd.colors = o3d.utility.Vector3dVector(list_all_color_points) # o3d.visualization.draw_geometries([pcd], point_show_normal=True) alpha = 0.1 tetra_mesh, pt_map = o3d.geometry.TetraMesh.create_from_point_cloud( pcd) mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape( pcd, alpha, tetra_mesh, pt_map) # mesh.vertex_colors = o3d.utility.Vector3dVector( # list_all_color_points) if not mesh.has_vertex_normals(): mesh.compute_vertex_normals() if not mesh.has_triangle_normals(): mesh.compute_triangle_normals() # o3d.visualization.draw_geometries([mesh], mesh_show_back_face=True) if not os.path.exists(default_storage.path('triangle_mesh')): os.makedirs(default_storage.path('triangle_mesh')) if os.path.exists(default_storage.path('triangle_mesh/'+str(lidar_object.id)+'.glb')): os.remove(default_storage.path( 'triangle_mesh/'+str(lidar_object.id)+'.glb')) o3d.io.write_triangle_mesh( default_storage.path('triangle_mesh/'+str(lidar_object.id)+'.glb'), mesh) return True except Exception as e: print(e) return False class FlyingReportAPIView(LoginRequiredMixin, generics.ListAPIView): def get(self, request, *args, **kwargs): operation_name = self.kwargs.get("operation_name") AvailableDroneList = list(Drone.objects.filter( operation__operation_name=operation_name).values()) listDrones = [] for drone in AvailableDroneList: listDrones.append({"drone_name": drone['drone_name'], "latitude": Telemetry.objects.filter(drone__drone_name=drone['drone_name']).last().lat, "longitude": Telemetry.objects.filter(drone__drone_name=drone['drone_name']).last().lon}) return render(request, 'aiders/flying_report.html', {'list_of_drones': listDrones, 'available_drones': json.dumps(listDrones), 'operation_name': operation_name, 'form': FlyingReportForm()}) def post(self, request, *args, **kwargs): user = request.user.username if request.POST.get('form_selection') != 'custom': drone = request.POST.get('form_selection') else: drone = 'Unknown' operation_name = self.kwargs.get("operation_name") form = FlyingReportForm(request.POST) if form.is_valid(): latitude = request.POST.get('latitude') longitude = request.POST.get('longitude') altitude = request.POST.get('altitude') radius = request.POST.get('radius') buffer_altitude = request.POST.get('buffer_altitude') buffer_radius = request.POST.get('buffer_radius') start_date = request.POST.get('start_date_time') end_date = request.POST.get('end_date_time') start_date = datetime.datetime.strptime( start_date, '%Y-%m-%dT%H:%M') end_date = datetime.datetime.strptime( end_date, '%Y-%m-%dT%H:%M') path = 'daily_fly_notams/notams' + \ str(len(FlyingReport.objects.all()))+'.pdf' flying_report.main(user, drone, operation_name, latitude, longitude, altitude, radius, buffer_altitude, buffer_radius, start_date, end_date, path) try: drone = Drone.objects.get(drone_name=drone) except Drone.DoesNotExist: drone = None FlyingReport.objects.create(user=request.user, drone=drone, operation=Operation.objects.get(operation_name=operation_name), latitude=latitude, longitude=longitude, altitude=altitude, radius=radius, buffer_altitude=buffer_altitude, buffer_radius=buffer_radius, start_date_time=start_date, end_date_time=end_date, file_path=path) response = open(default_storage.path(path), 'rb') return FileResponse(response) operation_name = self.kwargs.get("operation_name") AvailableDroneList = list(Drone.objects.filter( operation__operation_name=operation_name).values()) listDrones = [] for drone in AvailableDroneList: listDrones.append({"drone_name": drone['drone_name'], "latitude": Telemetry.objects.filter(drone__drone_name=drone['drone_name']).last().lat, "longitude": Telemetry.objects.filter(drone__drone_name=drone['drone_name']).last().lon}) return render(request, 'aiders/flying_report.html', {'list_of_drones': listDrones, 'available_drones': json.dumps(listDrones), 'operation_name': operation_name, 'form': form}) class FlyingReportTableAPIView(LoginRequiredMixin, generics.ListAPIView): def get(self, request, *args, **kwargs): operation_name = self.kwargs.get("operation_name") fly_reports = FlyingReport.objects.filter( operation=Operation.objects.get(operation_name=operation_name)) return render(request, 'aiders/flying_reports.html', {'flying_reports': fly_reports, 'operation_name': operation_name}) class DroneMovementAPIView(LoginRequiredMixin, generics.ListAPIView): def create_data_to_db(data, drone_name): if(DroneMovement.objects.get(seq=data.seq, uid=data.uid, time_stamp=data.time_stamp) != None): DroneMovement.objects.create( seq=data.seq, uid=data.uid, time_stamp=data.timestamp, drone=Drone.objects.get(drone_name=drone_name), flight_logic_state=data.flight_logic_state, wind_speed=data.wind_speed, wind_angle=data.wind_angle, battery_voltage=data.battery_voltage, battery_current=data.battery_current, position_x=data.position_x, position_y=data.position_y, position_z=data.position_z, altitude=data.altitude, orientation_x=data.orientation_x, orientation_y=data.orientation_y, orientation_z=data.orientation_z, orientation_w=data.orientation_w, velocity_x=data.velocity_x, velocity_y=data.velocity_y, velocity_z=data.velocity_z, angular_x=data.angular_x, angular_y=data.angular_y, angular_z=data.angular_z, linear_acceleration_x=data.linear_acceleration_x, linear_acceleration_y=data.linear_acceleration_y, linear_acceleration_z=data.linear_acceleration_z, payload=data.payload, ) def settings_view(request): if request.user.is_authenticated: if request.method == 'GET': use_online_map = UserPreferences.objects.get( user=request.user).use_online_map return render(request, 'aiders/settings.html', {'use_online_map': use_online_map}) elif request.method == 'POST': selectedVal = request.POST.get('map_mode_dropdown') use_online_map = True if selectedVal == Constants.ONLINE_MAP_MODE else False UserPreferences.objects.filter(user=request.user).update( use_online_map=use_online_map) return render(request, 'aiders/settings.html', {'use_online_map': use_online_map}) # Delete later class TestingBuildMap(LoginRequiredMixin, View): def get(self, request, *args, **kwargs): with open('aiders/buildmapimages_db.csv', newline='') as csvfile: spamreader = csv.reader(csvfile, delimiter=' ', quotechar='|') active = True for row in spamreader: my_list = " ".join(row).split(",") # if my_list[1] == 'matrice300_5807/16650632878898530304.jpeg': # active = True # if my_list[1] == 'matrice300_5807/16650634753086040064.jpeg': # active = False # # print(active) print(my_list[1]) print(my_list[1] == 'matrice300_5807/16680725277336719360.jpeg') if my_list[1] == 'Build_Maps_matrice300_5807_2022-11-10_11.28.46/16680725277336719360.jpeg': if active: newBearing = (float(my_list[8])+float(my_list[14]))/2 long_lat = my_list[6].split(" ") long_lat[1] = float(long_lat[1]) long_lat[0] = float(long_lat[0]) # long_lat[1], long_lat[0]=self.test_my_high_accuracy(float(long_lat[1]),float(long_lat[0]), float(my_list[7]), float(my_list[10]), float(my_list[9]), newBearing) print(long_lat[1], long_lat[0]) destinations = img_georeference.calcPoints(float(long_lat[1]), float( long_lat[0]), newBearing, float(my_list[7]), my_list[1], 'none', 'Zenmuse_H20T') # print(destinations) # print(float(my_list[8])+newBearing) # print(float(my_list[10]), float(my_list[9])) try: print( Point(float(long_lat[0]), float(long_lat[1]))) image = BuildMapImage.objects.create( path=my_list[1], top_left=Point( destinations[2].longitude, destinations[2].latitude), top_right=Point( destinations[0].longitude, destinations[0].latitude), bottom_left=Point( destinations[1].longitude, destinations[1].latitude), bottom_right=Point( destinations[3].longitude, destinations[3].latitude), centre=Point( float(long_lat[0]), float(long_lat[1])), altitude=Decimal(my_list[7]), bearing=Decimal( (float(my_list[8])+float(my_list[14]))/2), d_roll=None, d_pitch=None, d_yaw=None, g_roll=None, g_pitch=None, g_yaw=None, session_id=1 ) print('working') # active=False except Exception as e: print(e) return HttpResponse(status=status.HTTP_200_OK)
KIOS-Research/AIDERS
aidersplatform/django_api/aiders/views.py
views.py
py
110,716
python
en
code
4
github-code
6
[ { "api_name": "logging.getLogger", "line_number": 72, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 77, "usage_type": "attribute" }, { "api_name": "threading.Event", "line_number": 83, "usage_type": "call" }, { "api_name": "rest_framework.views.APIView", "line_number": 101, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 137, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 140, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListCreateAPIView", "line_number": 140, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 140, "usage_type": "name" }, { "api_name": "models.Operation.objects.all", "line_number": 147, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 147, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 147, "usage_type": "name" }, { "api_name": "rest_framework.permissions.IsAuthenticatedOrReadOnly", "line_number": 153, "usage_type": "attribute" }, { "api_name": "rest_framework.permissions", "line_number": 153, "usage_type": "name" }, { "api_name": "permissions.IsOwnerOrReadOnly", "line_number": 154, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 165, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListCreateAPIView", "line_number": 165, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 165, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 177, "usage_type": "name" }, { "api_name": "rest_framework.generics.RetrieveUpdateDestroyAPIView", "line_number": 177, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 177, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 191, "usage_type": "name" }, { "api_name": "models.Operation.objects.filter", "line_number": 201, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 201, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 201, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 206, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 208, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 211, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 214, "usage_type": "name" }, { "api_name": "rest_framework.generics.RetrieveUpdateDestroyAPIView", "line_number": 214, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 214, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 231, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 233, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 236, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 239, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListCreateAPIView", "line_number": 239, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 239, "usage_type": "name" }, { "api_name": "consumers.ErrorMsg.set_message_and_error", "line_number": 257, "usage_type": "call" }, { "api_name": "consumers.ErrorMsg", "line_number": 257, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 262, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListCreateAPIView", "line_number": 262, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 262, "usage_type": "name" }, { "api_name": "consumers.ErrorMsg.set_message_and_error", "line_number": 290, "usage_type": "call" }, { "api_name": "consumers.ErrorMsg", "line_number": 290, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 294, "usage_type": "name" }, { "api_name": "django.views.generic.ListView", "line_number": 294, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 294, "usage_type": "name" }, { "api_name": "django.urls.reverse_lazy", "line_number": 299, "usage_type": "call" }, { "api_name": "models.Operation.objects.get", "line_number": 311, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 311, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 311, "usage_type": "name" }, { "api_name": "models.Operation.objects.filter", "line_number": 314, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 314, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 314, "usage_type": "name" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 315, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 338, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 338, "usage_type": "name" }, { "api_name": "pytz.timezone", "line_number": 340, "usage_type": "call" }, { "api_name": "django.conf.settings.TIME_ZONE", "line_number": 341, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 341, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 396, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 396, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 396, "usage_type": "name" }, { "api_name": "models.Count", "line_number": 397, "usage_type": "call" }, { "api_name": "models.Operation.objects.get", "line_number": 398, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 398, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 398, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 400, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 400, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 400, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 402, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 402, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 402, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 404, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 404, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 404, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 407, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 407, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 407, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 408, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 408, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 408, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 410, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 410, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 410, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 412, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 412, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 412, "usage_type": "name" }, { "api_name": "models.Count", "line_number": 413, "usage_type": "call" }, { "api_name": "django.contrib.gis.geos.point.Point", "line_number": 422, "usage_type": "attribute" }, { "api_name": "django.contrib.gis.geos.point", "line_number": 422, "usage_type": "name" }, { "api_name": "decimal.Decimal", "line_number": 448, "usage_type": "attribute" }, { "api_name": "django.contrib.gis.geos.point.Point", "line_number": 450, "usage_type": "attribute" }, { "api_name": "django.contrib.gis.geos.point", "line_number": 450, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 492, "usage_type": "call" }, { "api_name": "models.Operation.objects.get", "line_number": 495, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 495, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 495, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 501, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListCreateAPIView", "line_number": 501, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 501, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 506, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListCreateAPIView", "line_number": 506, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 506, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 529, "usage_type": "name" }, { "api_name": "rest_framework.generics.RetrieveUpdateDestroyAPIView", "line_number": 529, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 529, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 545, "usage_type": "name" }, { "api_name": "logic.algorithms.water_collector.water_collector.water_sampler_under_water", "line_number": 550, "usage_type": "attribute" }, { "api_name": "logic.algorithms.water_collector.water_collector", "line_number": 550, "usage_type": "name" }, { "api_name": "consumers.ErrorMsg.set_message_and_error", "line_number": 558, "usage_type": "call" }, { "api_name": "consumers.ErrorMsg", "line_number": 558, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 570, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListCreateAPIView", "line_number": 570, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 570, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 588, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 588, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 588, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 590, "usage_type": "call" }, { "api_name": "django.http.Http404", "line_number": 593, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 605, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 608, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListAPIView", "line_number": 608, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 608, "usage_type": "name" }, { "api_name": "django.contrib.auth.get_user_model", "line_number": 609, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 614, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 617, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListAPIView", "line_number": 617, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 617, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 623, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 635, "usage_type": "name" }, { "api_name": "rest_framework.generics.RetrieveAPIView", "line_number": 635, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 635, "usage_type": "name" }, { "api_name": "django.contrib.auth.get_user_model", "line_number": 636, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 640, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 640, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 652, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 652, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 652, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 655, "usage_type": "call" }, { "api_name": "json2html.convert", "line_number": 661, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 663, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 691, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 691, "usage_type": "name" }, { "api_name": "models.Operation.objects.all", "line_number": 693, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 693, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 693, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 695, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 704, "usage_type": "name" }, { "api_name": "django.views.generic.UpdateView", "line_number": 704, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 704, "usage_type": "name" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 707, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 722, "usage_type": "call" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 726, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 747, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_202_ACCEPTED", "line_number": 747, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 747, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 750, "usage_type": "name" }, { "api_name": "django.views.generic.UpdateView", "line_number": 750, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 750, "usage_type": "name" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 753, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 765, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 765, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 765, "usage_type": "name" }, { "api_name": "django.contrib.auth.forms.AuthenticationForm", "line_number": 773, "usage_type": "name" }, { "api_name": "threading.Thread", "line_number": 776, "usage_type": "call" }, { "api_name": "logic.algorithms.water_collector.water_collector.check_sensor", "line_number": 777, "usage_type": "attribute" }, { "api_name": "logic.algorithms.water_collector.water_collector", "line_number": 777, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 780, "usage_type": "call" }, { "api_name": "django.urls.resolve", "line_number": 784, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 799, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 799, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 804, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 804, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 808, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 808, "usage_type": "attribute" }, { "api_name": "django.shortcuts.get_list_or_404", "line_number": 822, "usage_type": "call" }, { "api_name": "django.core.serializers.serialize", "line_number": 823, "usage_type": "call" }, { "api_name": "django.core.serializers", "line_number": 823, "usage_type": "name" }, { "api_name": "forms.JoinOperationForm", "line_number": 841, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 847, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 849, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 852, "usage_type": "name" }, { "api_name": "django.views.generic.UpdateView", "line_number": 852, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 852, "usage_type": "name" }, { "api_name": "models.Operation.objects.filter", "line_number": 855, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 855, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 855, "usage_type": "name" }, { "api_name": "django.core.serializers.serialize", "line_number": 857, "usage_type": "call" }, { "api_name": "django.core.serializers", "line_number": 857, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 859, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 863, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 864, "usage_type": "call" }, { "api_name": "models.Operation.objects.get", "line_number": 875, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 875, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 875, "usage_type": "name" }, { "api_name": "django.http.HttpResponseNotFound", "line_number": 879, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 879, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 879, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 880, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_202_ACCEPTED", "line_number": 880, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 880, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 883, "usage_type": "name" }, { "api_name": "django.views.generic.UpdateView", "line_number": 883, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 883, "usage_type": "name" }, { "api_name": "logic.algorithms.build_map.build_map_request_handler.buildMapPublisherSingleMessage", "line_number": 892, "usage_type": "call" }, { "api_name": "logic.algorithms.build_map.build_map_request_handler", "line_number": 892, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 896, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 896, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 896, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 901, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 901, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 901, "usage_type": "name" }, { "api_name": "logic.Constants.Constants.BUILD_MAP_DIR_PREFIX", "line_number": 902, "usage_type": "attribute" }, { "api_name": "logic.Constants.Constants", "line_number": 902, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 906, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_202_ACCEPTED", "line_number": 906, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 906, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 909, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 909, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 909, "usage_type": "name" }, { "api_name": "logic.Constants.Constants.BUILD_MAP_DIR_PREFIX", "line_number": 910, "usage_type": "attribute" }, { "api_name": "logic.Constants.Constants", "line_number": 910, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 914, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_202_ACCEPTED", "line_number": 914, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 914, "usage_type": "name" }, { "api_name": "logic.algorithms.build_map.build_map_request_handler.buildMapPublisherSingleMessage", "line_number": 916, "usage_type": "call" }, { "api_name": "logic.algorithms.build_map.build_map_request_handler", "line_number": 916, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 923, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 923, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 923, "usage_type": "name" }, { "api_name": "datetime.datetime.datetime.now", "line_number": 924, "usage_type": "call" }, { "api_name": "datetime.datetime.datetime", "line_number": 924, "usage_type": "attribute" }, { "api_name": "datetime.datetime", "line_number": 924, "usage_type": "name" }, { "api_name": "logic.Constants.Constants.CYPRUS_TIMEZONE_OBJ", "line_number": 924, "usage_type": "attribute" }, { "api_name": "logic.Constants.Constants", "line_number": 924, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 925, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_202_ACCEPTED", "line_number": 925, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 925, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 928, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 928, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 928, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 931, "usage_type": "name" }, { "api_name": "django.views.generic.UpdateView", "line_number": 931, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 931, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 943, "usage_type": "name" }, { "api_name": "django.views.generic.UpdateView", "line_number": 943, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 943, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 947, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 947, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 947, "usage_type": "name" }, { "api_name": "django.forms.models.model_to_dict", "line_number": 951, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 955, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_404_NOT_FOUND", "line_number": 955, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 955, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 971, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 971, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_202_ACCEPTED", "line_number": 971, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 971, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 974, "usage_type": "name" }, { "api_name": "django.views.generic.UpdateView", "line_number": 974, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 974, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 978, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 978, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 978, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 983, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_404_NOT_FOUND", "line_number": 983, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 983, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 990, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 993, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_202_ACCEPTED", "line_number": 993, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 993, "usage_type": "name" }, { "api_name": "logic.algorithms.build_map.img_georeference.calcPoints", "line_number": 1021, "usage_type": "call" }, { "api_name": "logic.algorithms.build_map.img_georeference", "line_number": 1021, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 1028, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 1028, "usage_type": "name" }, { "api_name": "django.core.files.storage.default_storage.save", "line_number": 1029, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1029, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 1029, "usage_type": "call" }, { "api_name": "os.path", "line_number": 1029, "usage_type": "attribute" }, { "api_name": "decimal.Decimal", "line_number": 1043, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 1044, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 1065, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 1066, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 1077, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 1077, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1077, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1080, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 1080, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1080, "usage_type": "name" }, { "api_name": "django.views.decorators.csrf.csrf_exempt", "line_number": 996, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1083, "usage_type": "name" }, { "api_name": "django.views.generic.UpdateView", "line_number": 1083, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 1083, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 1085, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1085, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1085, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 1102, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 1103, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 1107, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 1110, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 1110, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1110, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 1129, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 1130, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_201_CREATED", "line_number": 1130, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1130, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1133, "usage_type": "name" }, { "api_name": "django.views.generic.UpdateView", "line_number": 1133, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 1133, "usage_type": "name" }, { "api_name": "json.loads", "line_number": 1137, "usage_type": "call" }, { "api_name": "models.Operation.objects.get", "line_number": 1139, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1139, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1139, "usage_type": "name" }, { "api_name": "logic.utils.handleAlgorithmExecution", "line_number": 1149, "usage_type": "call" }, { "api_name": "logic.utils", "line_number": 1149, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1153, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 1153, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1153, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1155, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_201_CREATED", "line_number": 1155, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1155, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 1158, "usage_type": "name" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 1166, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 1167, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 1167, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 1168, "usage_type": "call" }, { "api_name": "django.contrib.auth.forms.AuthenticationForm", "line_number": 1168, "usage_type": "name" }, { "api_name": "django.contrib.auth.authenticate", "line_number": 1173, "usage_type": "call" }, { "api_name": "user_agents.parse", "line_number": 1182, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 1197, "usage_type": "call" }, { "api_name": "django.http.HttpResponseRedirect", "line_number": 1201, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 1202, "usage_type": "call" }, { "api_name": "django.contrib.messages.error", "line_number": 1204, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 1204, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 1205, "usage_type": "call" }, { "api_name": "django.contrib.auth.forms.AuthenticationForm", "line_number": 1205, "usage_type": "name" }, { "api_name": "django.contrib.auth.logout", "line_number": 1209, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 1211, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1214, "usage_type": "name" }, { "api_name": "formtools.wizard.views.SessionWizardView", "line_number": 1214, "usage_type": "name" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 1219, "usage_type": "call" }, { "api_name": "models.Operation.objects.none", "line_number": 1226, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1226, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1226, "usage_type": "name" }, { "api_name": "models.Operation.objects.create", "line_number": 1229, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1229, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1229, "usage_type": "name" }, { "api_name": "guardian.shortcuts.assign_perm", "line_number": 1250, "usage_type": "call" }, { "api_name": "guardian.shortcuts.assign_perm", "line_number": 1251, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 1259, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1262, "usage_type": "name" }, { "api_name": "formtools.wizard.views.SessionWizardView", "line_number": 1262, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 1267, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1267, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1267, "usage_type": "name" }, { "api_name": "django.forms.models.model_to_dict", "line_number": 1270, "usage_type": "call" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 1275, "usage_type": "call" }, { "api_name": "models.Operation.objects.get", "line_number": 1288, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1288, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1288, "usage_type": "name" }, { "api_name": "django.forms.models.model_to_dict", "line_number": 1289, "usage_type": "call" }, { "api_name": "models.Operation.objects.get", "line_number": 1313, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1313, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1313, "usage_type": "name" }, { "api_name": "guardian.shortcuts.assign_perm", "line_number": 1332, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 1345, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1348, "usage_type": "name" }, { "api_name": "rest_framework.views.APIView", "line_number": 1348, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 1351, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1351, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1351, "usage_type": "name" }, { "api_name": "logic.utils.handleAlgorithmExecution", "line_number": 1358, "usage_type": "call" }, { "api_name": "logic.utils", "line_number": 1358, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 1360, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1363, "usage_type": "name" }, { "api_name": "rest_framework.views.APIView", "line_number": 1363, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 1368, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1368, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1368, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 1373, "usage_type": "call" }, { "api_name": "models.Operation.objects.get", "line_number": 1381, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1381, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1381, "usage_type": "name" }, { "api_name": "django.contrib.auth.get_user_model", "line_number": 1383, "usage_type": "call" }, { "api_name": "logic.algorithms.mission.mission_request_handler.publishMissionToRos", "line_number": 1394, "usage_type": "call" }, { "api_name": "logic.algorithms.mission.mission_request_handler", "line_number": 1394, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 1399, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 1399, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1399, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1402, "usage_type": "name" }, { "api_name": "django.views.generic.ListView", "line_number": 1402, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 1402, "usage_type": "name" }, { "api_name": "django.urls.reverse_lazy", "line_number": 1407, "usage_type": "call" }, { "api_name": "models.Operation.objects.get", "line_number": 1419, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1419, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1419, "usage_type": "name" }, { "api_name": "models.Operation.objects.filter", "line_number": 1422, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1422, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1422, "usage_type": "name" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 1423, "usage_type": "call" }, { "api_name": "models.Operation.objects.filter", "line_number": 1441, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1441, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1441, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 1444, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 1449, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 1437, "usage_type": "name" }, { "api_name": "django.views.decorators.csrf.csrf_protect", "line_number": 1438, "usage_type": "name" }, { "api_name": "django.contrib.auth.get_user_model", "line_number": 1456, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 1457, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 1452, "usage_type": "name" }, { "api_name": "django.views.decorators.csrf.csrf_protect", "line_number": 1453, "usage_type": "name" }, { "api_name": "models.Operation.objects.filter", "line_number": 1468, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1468, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1468, "usage_type": "name" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 1469, "usage_type": "call" }, { "api_name": "models.Operation.objects.filter", "line_number": 1472, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1472, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1472, "usage_type": "name" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 1474, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 1479, "usage_type": "call" }, { "api_name": "django.http.Http404", "line_number": 1481, "usage_type": "call" }, { "api_name": "django.http.Http404", "line_number": 1483, "usage_type": "call" }, { "api_name": "django.http.JsonResponse", "line_number": 1484, "usage_type": "call" }, { "api_name": "django.contrib.auth.decorators.login_required", "line_number": 1465, "usage_type": "name" }, { "api_name": "django.views.decorators.csrf.csrf_protect", "line_number": 1466, "usage_type": "name" }, { "api_name": "forms.NewUserForm", "line_number": 1490, "usage_type": "call" }, { "api_name": "django.contrib.auth.login", "line_number": 1493, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 1494, "usage_type": "call" }, { "api_name": "forms.NewUserForm", "line_number": 1496, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 1497, "usage_type": "call" }, { "api_name": "django.views.decorators.csrf.csrf_protect", "line_number": 1487, "usage_type": "name" }, { "api_name": "datetime.datetime.datetime.now", "line_number": 1525, "usage_type": "call" }, { "api_name": "datetime.datetime.datetime", "line_number": 1525, "usage_type": "attribute" }, { "api_name": "datetime.datetime", "line_number": 1525, "usage_type": "name" }, { "api_name": "logic.Constants.Constants.CYPRUS_TIMEZONE_OBJ", "line_number": 1525, "usage_type": "attribute" }, { "api_name": "logic.Constants.Constants", "line_number": 1525, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1547, "usage_type": "name" }, { "api_name": "rest_framework.generics.RetrieveAPIView", "line_number": 1547, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 1547, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 1590, "usage_type": "call" }, { "api_name": "logic.Constants.Constants.NO_ACTIVE_DETECTION_SESSION_ERROR_MESSAGE", "line_number": 1590, "usage_type": "attribute" }, { "api_name": "logic.Constants.Constants", "line_number": 1590, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 1592, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 1594, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 1596, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 1596, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1596, "usage_type": "name" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 1574, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 1606, "usage_type": "call" }, { "api_name": "logic.Constants.Constants.NO_ACTIVE_DETECTION_SESSION_ERROR_MESSAGE", "line_number": 1606, "usage_type": "attribute" }, { "api_name": "logic.Constants.Constants", "line_number": 1606, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 1608, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 1610, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 1610, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1610, "usage_type": "name" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 1599, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 1620, "usage_type": "call" }, { "api_name": "logic.Constants.Constants.NO_ACTIVE_LIVE_STREAM_SESSION_ERROR_MESSAGE", "line_number": 1620, "usage_type": "attribute" }, { "api_name": "logic.Constants.Constants", "line_number": 1620, "usage_type": "name" }, { "api_name": "rest_framework.response.Response", "line_number": 1622, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 1624, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 1624, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1624, "usage_type": "name" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 1613, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 1632, "usage_type": "call" }, { "api_name": "logic.algorithms.object_detection.src.models.label.get_labels_all", "line_number": 1632, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 1634, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 1634, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1634, "usage_type": "name" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 1627, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 1643, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 1645, "usage_type": "call" }, { "api_name": "rest_framework.response.Response", "line_number": 1646, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_400_BAD_REQUEST", "line_number": 1646, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1646, "usage_type": "name" }, { "api_name": "rest_framework.decorators.api_view", "line_number": 1637, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1649, "usage_type": "name" }, { "api_name": "rest_framework.views.APIView", "line_number": 1649, "usage_type": "name" }, { "api_name": "threading.enumerate", "line_number": 1654, "usage_type": "call" }, { "api_name": "logic.algorithms.weather_station.weather_station_ros_publisher.main", "line_number": 1665, "usage_type": "attribute" }, { "api_name": "logic.algorithms.weather_station.weather_station_ros_publisher", "line_number": 1665, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 1667, "usage_type": "attribute" }, { "api_name": "logic.Constants.Constants.START_WEATHER_DATA_PUBLISHER_SCRIPT", "line_number": 1667, "usage_type": "attribute" }, { "api_name": "logic.Constants.Constants", "line_number": 1667, "usage_type": "name" }, { "api_name": "logic.algorithms.weather_station.weather_station_ros_subscriber.main", "line_number": 1670, "usage_type": "attribute" }, { "api_name": "logic.algorithms.weather_station.weather_station_ros_subscriber", "line_number": 1670, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1676, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 1676, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1676, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1679, "usage_type": "name" }, { "api_name": "rest_framework.generics.RetrieveAPIView", "line_number": 1679, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 1679, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 1686, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1686, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1686, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 1694, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1694, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1694, "usage_type": "name" }, { "api_name": "models.Operation.DoesNotExist", "line_number": 1697, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1697, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1735, "usage_type": "name" }, { "api_name": "django.views.generic.ListView", "line_number": 1735, "usage_type": "attribute" }, { "api_name": "django.views.generic", "line_number": 1735, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 1743, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1743, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1743, "usage_type": "name" }, { "api_name": "models.Operation.objects.filter", "line_number": 1746, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1746, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1746, "usage_type": "name" }, { "api_name": "django.core.exceptions.PermissionDenied", "line_number": 1747, "usage_type": "call" }, { "api_name": "models.Count", "line_number": 1757, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 1768, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1776, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 1776, "usage_type": "name" }, { "api_name": "csv.writer", "line_number": 1785, "usage_type": "call" }, { "api_name": "csv.QUOTE_MINIMAL", "line_number": 1786, "usage_type": "attribute" }, { "api_name": "csv.writer", "line_number": 1798, "usage_type": "call" }, { "api_name": "csv.QUOTE_MINIMAL", "line_number": 1799, "usage_type": "attribute" }, { "api_name": "django.contrib.gis.geos.point.Point", "line_number": 1806, "usage_type": "attribute" }, { "api_name": "django.contrib.gis.geos.point", "line_number": 1806, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 1816, "usage_type": "call" }, { "api_name": "os.path", "line_number": 1816, "usage_type": "attribute" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1816, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1816, "usage_type": "name" }, { "api_name": "os.makedirs", "line_number": 1817, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1817, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1817, "usage_type": "name" }, { "api_name": "shutil.rmtree", "line_number": 1819, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1819, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1819, "usage_type": "name" }, { "api_name": "os.makedirs", "line_number": 1820, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1820, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1820, "usage_type": "name" }, { "api_name": "shutil.move", "line_number": 1821, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1821, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1821, "usage_type": "name" }, { "api_name": "shutil.move", "line_number": 1823, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1823, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1823, "usage_type": "name" }, { "api_name": "os.mkdir", "line_number": 1825, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1825, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1825, "usage_type": "name" }, { "api_name": "shutil.copyfile", "line_number": 1828, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1828, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1828, "usage_type": "name" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1829, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1829, "usage_type": "name" }, { "api_name": "zipfile.ZipFile", "line_number": 1834, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1834, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1834, "usage_type": "name" }, { "api_name": "os.walk", "line_number": 1836, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1836, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1836, "usage_type": "name" }, { "api_name": "os.path.join", "line_number": 1838, "usage_type": "call" }, { "api_name": "os.path", "line_number": 1838, "usage_type": "attribute" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 1840, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 1840, "usage_type": "name" }, { "api_name": "django.http.FileResponse", "line_number": 1842, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 1844, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_404_NOT_FOUND", "line_number": 1844, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1844, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1847, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 1847, "usage_type": "name" }, { "api_name": "logic.algorithms.water_collector.water_collector.publish_message", "line_number": 1853, "usage_type": "call" }, { "api_name": "logic.algorithms.water_collector.water_collector", "line_number": 1853, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 1856, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1856, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1856, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1864, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 1864, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1864, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1868, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 1868, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1868, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1871, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 1871, "usage_type": "name" }, { "api_name": "logic.algorithms.ballistic.ballistic.publish_message", "line_number": 1877, "usage_type": "call" }, { "api_name": "logic.algorithms.ballistic.ballistic", "line_number": 1877, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 1880, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1880, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1880, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1888, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 1888, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1888, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1892, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 1892, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1892, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1895, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 1895, "usage_type": "name" }, { "api_name": "logic.algorithms.range_detection.range_detection.buildMapPublisherSingleMessage", "line_number": 1902, "usage_type": "call" }, { "api_name": "logic.algorithms.range_detection.range_detection", "line_number": 1902, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1906, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 1906, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1906, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1910, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 1910, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1910, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1913, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 1913, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 1927, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 1927, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 1927, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1932, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 1932, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1932, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 1935, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 1935, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1935, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1938, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 1938, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 1941, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 1942, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_401_UNAUTHORIZED", "line_number": 1942, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1942, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1945, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 1945, "usage_type": "name" }, { "api_name": "models.Count", "line_number": 1950, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 1955, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 1956, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_401_UNAUTHORIZED", "line_number": 1956, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1956, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1959, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 1959, "usage_type": "name" }, { "api_name": "models.Count", "line_number": 1965, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 1971, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_404_NOT_FOUND", "line_number": 1971, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1971, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 1972, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 1973, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_401_UNAUTHORIZED", "line_number": 1973, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 1973, "usage_type": "name" }, { "api_name": "math.tan", "line_number": 1981, "usage_type": "call" }, { "api_name": "math.pi", "line_number": 1981, "usage_type": "attribute" }, { "api_name": "math.tan", "line_number": 1982, "usage_type": "call" }, { "api_name": "math.pi", "line_number": 1982, "usage_type": "attribute" }, { "api_name": "geopy.distance.geodesic", "line_number": 1983, "usage_type": "call" }, { "api_name": "geopy.distance.geodesic", "line_number": 1985, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 1992, "usage_type": "name" }, { "api_name": "rest_framework.generics.RetrieveAPIView", "line_number": 1992, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 1992, "usage_type": "name" }, { "api_name": "django.http.Http404", "line_number": 2002, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 2006, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListAPIView", "line_number": 2006, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 2006, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 2011, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListAPIView", "line_number": 2011, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 2011, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 2013, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 2013, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 2013, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 2019, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 2020, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 2028, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 2030, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 2036, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 2037, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 2040, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListAPIView", "line_number": 2040, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 2040, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 2042, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 2042, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 2042, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 2048, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 2049, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 2058, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 2060, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 2065, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 2066, "usage_type": "call" }, { "api_name": "django.contrib.gis.geos.point", "line_number": 2072, "usage_type": "name" }, { "api_name": "django.contrib.gis.geos.point.points.split", "line_number": 2073, "usage_type": "call" }, { "api_name": "django.contrib.gis.geos.point.points", "line_number": 2073, "usage_type": "attribute" }, { "api_name": "django.contrib.gis.geos.point", "line_number": 2073, "usage_type": "name" }, { "api_name": "django.contrib.gis.geos.point", "line_number": 2082, "usage_type": "name" }, { "api_name": "django.contrib.gis.geos.point.points.split", "line_number": 2083, "usage_type": "call" }, { "api_name": "django.contrib.gis.geos.point.points", "line_number": 2083, "usage_type": "attribute" }, { "api_name": "django.contrib.gis.geos.point", "line_number": 2083, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 2096, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListAPIView", "line_number": 2096, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 2096, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 2104, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 2104, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 2104, "usage_type": "name" }, { "api_name": "django.http.HttpResponse", "line_number": 2105, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 2105, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 2105, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 2108, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 2108, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 2108, "usage_type": "name" }, { "api_name": "json.dumps", "line_number": 2114, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 2115, "usage_type": "call" }, { "api_name": "django.contrib.gis.geos.point", "line_number": 2123, "usage_type": "name" }, { "api_name": "django.contrib.gis.geos.point.points.split", "line_number": 2124, "usage_type": "call" }, { "api_name": "django.contrib.gis.geos.point.points", "line_number": 2124, "usage_type": "attribute" }, { "api_name": "django.contrib.gis.geos.point", "line_number": 2124, "usage_type": "name" }, { "api_name": "django.contrib.gis.geos.point", "line_number": 2133, "usage_type": "name" }, { "api_name": "django.contrib.gis.geos.point.points.split", "line_number": 2134, "usage_type": "call" }, { "api_name": "django.contrib.gis.geos.point.points", "line_number": 2134, "usage_type": "attribute" }, { "api_name": "django.contrib.gis.geos.point", "line_number": 2134, "usage_type": "name" }, { "api_name": "numpy.asarray", "line_number": 2145, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 2146, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 2149, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 2150, "usage_type": "call" }, { "api_name": "open3d.geometry.PointCloud", "line_number": 2153, "usage_type": "call" }, { "api_name": "open3d.geometry", "line_number": 2153, "usage_type": "attribute" }, { "api_name": "open3d.utility.Vector3dVector", "line_number": 2154, "usage_type": "call" }, { "api_name": "open3d.utility", "line_number": 2154, "usage_type": "attribute" }, { "api_name": "open3d.utility.Vector3dVector", "line_number": 2155, "usage_type": "call" }, { "api_name": "open3d.utility", "line_number": 2155, "usage_type": "attribute" }, { "api_name": "open3d.geometry.TetraMesh.create_from_point_cloud", "line_number": 2159, "usage_type": "call" }, { "api_name": "open3d.geometry", "line_number": 2159, "usage_type": "attribute" }, { "api_name": "open3d.geometry.TriangleMesh.create_from_point_cloud_alpha_shape", "line_number": 2162, "usage_type": "call" }, { "api_name": "open3d.geometry", "line_number": 2162, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 2171, "usage_type": "call" }, { "api_name": "os.path", "line_number": 2171, "usage_type": "attribute" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 2171, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 2171, "usage_type": "name" }, { "api_name": "os.makedirs", "line_number": 2172, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 2172, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 2172, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 2173, "usage_type": "call" }, { "api_name": "os.path", "line_number": 2173, "usage_type": "attribute" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 2173, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 2173, "usage_type": "name" }, { "api_name": "os.remove", "line_number": 2174, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 2174, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 2174, "usage_type": "name" }, { "api_name": "open3d.io.write_triangle_mesh", "line_number": 2176, "usage_type": "call" }, { "api_name": "open3d.io", "line_number": 2176, "usage_type": "attribute" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 2177, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 2177, "usage_type": "name" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 2184, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListAPIView", "line_number": 2184, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 2184, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 2194, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 2194, "usage_type": "call" }, { "api_name": "forms.FlyingReportForm", "line_number": 2194, "usage_type": "call" }, { "api_name": "forms.FlyingReportForm", "line_number": 2203, "usage_type": "call" }, { "api_name": "datetime.datetime.datetime.strptime", "line_number": 2213, "usage_type": "call" }, { "api_name": "datetime.datetime.datetime", "line_number": 2213, "usage_type": "attribute" }, { "api_name": "datetime.datetime", "line_number": 2213, "usage_type": "name" }, { "api_name": "datetime.datetime.datetime.strptime", "line_number": 2215, "usage_type": "call" }, { "api_name": "datetime.datetime.datetime", "line_number": 2215, "usage_type": "attribute" }, { "api_name": "datetime.datetime", "line_number": 2215, "usage_type": "name" }, { "api_name": "logic.algorithms.flying_report.flying_report.main", "line_number": 2219, "usage_type": "call" }, { "api_name": "logic.algorithms.flying_report.flying_report", "line_number": 2219, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 2226, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 2226, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 2226, "usage_type": "name" }, { "api_name": "django.core.files.storage.default_storage.path", "line_number": 2228, "usage_type": "call" }, { "api_name": "django.core.files.storage.default_storage", "line_number": 2228, "usage_type": "name" }, { "api_name": "django.http.FileResponse", "line_number": 2229, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 2238, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 2238, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 2241, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListAPIView", "line_number": 2241, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 2241, "usage_type": "name" }, { "api_name": "models.Operation.objects.get", "line_number": 2245, "usage_type": "call" }, { "api_name": "models.Operation.objects", "line_number": 2245, "usage_type": "attribute" }, { "api_name": "models.Operation", "line_number": 2245, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 2246, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 2249, "usage_type": "name" }, { "api_name": "rest_framework.generics.ListAPIView", "line_number": 2249, "usage_type": "attribute" }, { "api_name": "rest_framework.generics", "line_number": 2249, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 2288, "usage_type": "call" }, { "api_name": "logic.Constants.Constants.ONLINE_MAP_MODE", "line_number": 2291, "usage_type": "attribute" }, { "api_name": "logic.Constants.Constants", "line_number": 2291, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 2294, "usage_type": "call" }, { "api_name": "django.contrib.auth.mixins.LoginRequiredMixin", "line_number": 2298, "usage_type": "name" }, { "api_name": "django.views.View", "line_number": 2298, "usage_type": "name" }, { "api_name": "csv.reader", "line_number": 2301, "usage_type": "call" }, { "api_name": "logic.algorithms.build_map.img_georeference.calcPoints", "line_number": 2321, "usage_type": "call" }, { "api_name": "logic.algorithms.build_map.img_georeference", "line_number": 2321, "usage_type": "name" }, { "api_name": "decimal.Decimal", "line_number": 2341, "usage_type": "call" }, { "api_name": "decimal.Decimal", "line_number": 2342, "usage_type": "call" }, { "api_name": "django.http.HttpResponse", "line_number": 2356, "usage_type": "call" }, { "api_name": "rest_framework.status.HTTP_200_OK", "line_number": 2356, "usage_type": "attribute" }, { "api_name": "rest_framework.status", "line_number": 2356, "usage_type": "name" } ]
11165153113
from uuid import uuid4 from demo.data_loading.data_fetching import get_countries_data from demo.data_loading.fixes import fix_alpha2_value, fix_alpha3_value, fix_string_value from demo.server.config import get_pyorient_client def load_countries_and_regions(countries_df): graph = get_pyorient_client() country_cls = graph.registry['Country'] region_cls = graph.registry['Region'] subarea_cls = graph.registry['GeographicArea_SubArea'] area_name_and_type_to_vertex = dict() # Create all countries. for _, country_item in countries_df.iterrows(): name = fix_string_value(country_item['CLDR display name']) uuid = str(uuid4()) alpha2 = fix_alpha2_value(country_item['ISO3166-1-Alpha-2']) alpha3 = fix_alpha3_value(country_item['ISO3166-1-Alpha-3']) props = { 'name': name, 'uuid': uuid, 'alpha2': alpha2, 'alpha3': alpha3, } vertex = graph.create_vertex(country_cls, **props) area_name_and_type_to_vertex[(name, 'Country')] = vertex # Create all non-country regions. for _, country_item in countries_df.iterrows(): for region_column in ('Intermediate Region Name', 'Sub-region Name', 'Region Name'): name = fix_string_value(country_item[region_column]) if name is None or (name, 'Region') in area_name_and_type_to_vertex: # Don't create regions with no name, or regions that were already added. continue uuid = str(uuid4()) props = { 'name': name, 'uuid': uuid, } vertex = graph.create_vertex(region_cls, **props) area_name_and_type_to_vertex[(name, 'Region')] = vertex # Create all relationships between countries/regions. created_edges = set() for _, country_item in countries_df.iterrows(): hierarchy_order = ( ('CLDR display name', 'Country'), ('Intermediate Region Name', 'Region'), ('Sub-region Name', 'Region'), ('Region Name', 'Region'), ) regions_in_order = [ (region_name, kind) for region_name, kind in ( (fix_string_value(country_item[column_name]), kind) for column_name, kind in hierarchy_order ) if region_name is not None ] for index, (parent_region_name, parent_region_kind) in enumerate(regions_in_order): if index == 0: continue child_region_name, child_region_kind = regions_in_order[index - 1] uniqueness_key = ( parent_region_name, parent_region_kind, child_region_name, child_region_kind, ) if uniqueness_key not in created_edges: graph.create_edge( subarea_cls, area_name_and_type_to_vertex[(parent_region_name, parent_region_kind)], area_name_and_type_to_vertex[(child_region_name, child_region_kind)]) created_edges.add(uniqueness_key) # Link all currently parent-less regions to the World region. all_region_names = set(area_name_and_type_to_vertex.keys()) all_regions_with_parents = { (child_region_name, child_region_kind) for _, _, child_region_name, child_region_kind in created_edges } all_regions_without_parents = all_region_names - all_regions_with_parents world_vertex = graph.create_vertex(region_cls, name='World', uuid=str(uuid4())) for region_name, region_kind in all_regions_without_parents: graph.create_edge( subarea_cls, world_vertex, area_name_and_type_to_vertex[(region_name, region_kind)]) def orientdb_load_all(): countries_df = get_countries_data() load_countries_and_regions(countries_df) if __name__ == '__main__': orientdb_load_all()
obi1kenobi/graphql-compiler-cross-db-example
demo/data_loading/orientdb_loading.py
orientdb_loading.py
py
4,019
python
en
code
3
github-code
6
[ { "api_name": "demo.server.config.get_pyorient_client", "line_number": 9, "usage_type": "call" }, { "api_name": "demo.data_loading.fixes.fix_string_value", "line_number": 19, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 20, "usage_type": "call" }, { "api_name": "demo.data_loading.fixes.fix_alpha2_value", "line_number": 21, "usage_type": "call" }, { "api_name": "demo.data_loading.fixes.fix_alpha3_value", "line_number": 22, "usage_type": "call" }, { "api_name": "demo.data_loading.fixes.fix_string_value", "line_number": 36, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 41, "usage_type": "call" }, { "api_name": "demo.data_loading.fixes.fix_string_value", "line_number": 62, "usage_type": "call" }, { "api_name": "uuid.uuid4", "line_number": 95, "usage_type": "call" }, { "api_name": "demo.data_loading.data_fetching.get_countries_data", "line_number": 104, "usage_type": "call" } ]
27264187100
""" GenT2_Rulebase.py Created 9/1/2022 """ from juzzyPython.generalType2zSlices.system.GenT2Engine_Intersection import GenT2Engine_Intersection from juzzyPython.generalType2zSlices.system.GenT2Engine_Union import GenT2Engine_Union from juzzyPython.generalType2zSlices.system.GenT2_Rule import GenT2_Rule from juzzyPython.intervalType2.system.IT2_Rulebase import IT2_Rulebase from juzzyPython.generalType2zSlices.system.GenT2_Antecedent import GenT2_Antecedent from typing import List, OrderedDict from juzzyPython.testing.timeRecorder import timeDecorator class GenT2_Rulebase(): """ Class GenT2_Rulebase Keeps track of rules and generates results Parameters: None Functions: addRule addRules getRules getFuzzyLogicType get_GenT2zEngine_Intersection get_GenT2zEngineUnion getOverallOutput evaluateGetCentroid evaluate getIT2Rulebases getRule changeRule removeRule getNumberOfRules containsRule getRulesWithAntecedents getImplicationMethod setImplicationMethod toString """ def __init__(self) -> None: self.rules = [] self.outputs = [] self.DEBUG = False self.CENTEROFSETS = 0 self.CENTROID = 1 self.implicationMethod = 1 self.PRODUCT = 0 self.MINIMUM = 1 self.gzEU = GenT2Engine_Union() self.gzEI = GenT2Engine_Intersection() def addRule(self,r: GenT2_Rule) -> None: """Add a new rule to the rule set""" self.rules.append(r) it = r.getConsequents() for i in it: o = i.getOutput() if not o in self.outputs: self.outputs.append(o) def addRules(self,r: List[GenT2_Rule]) -> None: """Add multiple new rules to the rule set""" for i in range(len(r)): self.addRule(i) def getRules(self) -> List[GenT2_Rule]: """Return all the rules in the set""" return self.rules def getRule(self,ruleNum: int) -> GenT2_Rule: """Return a specific rule""" return self.rules[ruleNum] def getNumberOfRules(self) -> int: """Get the number of rules in the set""" return len(self.rules) def getFuzzyLogicType(self) -> int: """Returns the type of fuzzy logic that is employed. return 0: type-1, 1: interval type-2, 2: zSlices based general type-2""" return 2 def containsRule(self,rule: GenT2_Rule) -> bool: """Check if a rule in the ruleset""" return rule in self.rules def getGenT2zEngineIntersection(self) -> GenT2Engine_Intersection: """Return the intersection engine""" return self.gzEI def getGenT2zEngineUnion(self) -> GenT2Engine_Union: """Return the union engine""" return self.gzEU def removeRule(self,ruleNumber: int) -> None: """Remove a rule based on its index""" del self.rules[ruleNumber] def getImplicationMethod(self) -> str: """Return if the implication is product or minimum""" if self.implicationMethod == self.PRODUCT: return "product" else: return "minimum" def setImplicationMethod(self,implicationMethod: int) -> None: """Sets the implication method, where by implication, we mean the implementation of the AND logical connective between parts of the antecedent. The desired implication method is applied for all rules.""" if implicationMethod == self.PRODUCT: self.implicationMethod = self.PRODUCT elif implicationMethod == self.MINIMUM: self.implicationMethod = self.MINIMUM else: raise Exception("Only product (0) and minimum (1) implication is currently supported.") def toString(self) -> str: """Convert the class to string""" s = "General Type-2 Fuzzy Logic System with "+str(self.getNumberOfRules())+" rules:\n" for i in range(self.getNumberOfRules()): s += str(self.rules[i].toString())+"\n" return s def getOverallOutput(self) -> dict: """Return the overall output of the rules""" returnValue = OrderedDict() for r in range(len(self.rules)): temp = self.rules[r].getRawOutput() for o in self.outputs: if r == 0: returnValue[o] = temp[o] else: returnValue[o] = self.gzEU.getUnion(returnValue.get(o),temp.get(o)) return returnValue def evaluateGetCentroid(self,typeReductionType: int) -> dict: """Returns the output of the FLS after type-reduction, i.e. the centroid. param: typeReductionType return: A TreeMap where Output is used as key and the value is an Object[] where Object[0] is a Tuple[] (the centroids, one per zLevel) and Object[1] is a Double holding the associated yValues for the centroids. If not rule fired for the given input(s), then null is returned as an Object[].""" returnValue = OrderedDict() rbsIT2 = self.getIT2Rulebases() zValues = self.rules[0].getAntecedents()[0].getSet().getZValues() for i in range(len(rbsIT2)): temp = rbsIT2[i].evaluateGetCentroid(typeReductionType) for o in temp.keys(): if i == 0: returnValue[o] = [[],[]] returnValue[o][0].append(temp[o][0]) returnValue[o][1].append(zValues[i]) return returnValue def evaluate(self,typeReductionType: int) -> dict: """The current evaluate function is functional but inefficient. It creates an IT2 version of all the rules in the rulebase and computes each IT2 rule separately... param typeReductionType: 0: Center Of Sets, 1: Centroid param discretizationLevel: The discretization level on the xAxis""" returnValue = OrderedDict() rbsIT2 = self.getIT2Rulebases() rawOutputValues = [] for i in range(len(rbsIT2)): rawOutputValues.append(rbsIT2[i].evaluate(typeReductionType)) zValues = self.rules[0].getAntecedents()[0].getSet().getZValues() for o in self.outputs: i=0 numerator = 0.0 denominator = 0.0 for outputValue in rawOutputValues: numerator += outputValue[o] * zValues[i] denominator += zValues[i] i+= 1 returnValue[o] = numerator/denominator return returnValue def getIT2Rulebases(self) -> List[IT2_Rulebase]: """Returns the whole zSlices based rulebase as a series of interval type-2 rule bases (one per zLevel) which can then be computed in parallel. param typeReductionMethod: The type-reduction method to be used at the IT2 level 0: Center Of Sets, 1: Centroid. param discretizationLevelXAxis: The number of discretizations to be used at the IT2 level.""" rbs = [0] * self.rules[0].getAntecedents()[0].getSet().getNumberOfSlices() for i in range(len(rbs)): rbs[i] = IT2_Rulebase() for currentRule in range(self.getNumberOfRules()): rbs[i].addRule(self.rules[currentRule].getRuleasIT2Rules()[i]) rbs[i].setImplicationMethod(self.implicationMethod) return rbs def getRulesWithAntecedents(self,antecedents: List[GenT2_Antecedent]) -> List[GenT2_Rule]: """ Returns all rules with a matching (i.e. equal) set of antecedents.""" matches = [] for i in range(len(self.rules)): if self.rules[i].getAntecedents()==antecedents: matches.append(self.rules[i]) return matches
LUCIDresearch/JuzzyPython
juzzyPython/generalType2zSlices/system/GenT2_Rulebase.py
GenT2_Rulebase.py
py
7,915
python
en
code
4
github-code
6
[ { "api_name": "juzzyPython.generalType2zSlices.system.GenT2Engine_Union.GenT2Engine_Union", "line_number": 54, "usage_type": "call" }, { "api_name": "juzzyPython.generalType2zSlices.system.GenT2Engine_Intersection.GenT2Engine_Intersection", "line_number": 55, "usage_type": "call" }, { "api_name": "juzzyPython.generalType2zSlices.system.GenT2_Rule.GenT2_Rule", "line_number": 57, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 66, "usage_type": "name" }, { "api_name": "juzzyPython.generalType2zSlices.system.GenT2_Rule.GenT2_Rule", "line_number": 66, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 71, "usage_type": "name" }, { "api_name": "juzzyPython.generalType2zSlices.system.GenT2_Rule.GenT2_Rule", "line_number": 71, "usage_type": "name" }, { "api_name": "juzzyPython.generalType2zSlices.system.GenT2_Rule.GenT2_Rule", "line_number": 75, "usage_type": "name" }, { "api_name": "juzzyPython.generalType2zSlices.system.GenT2_Rule.GenT2_Rule", "line_number": 88, "usage_type": "name" }, { "api_name": "juzzyPython.generalType2zSlices.system.GenT2Engine_Intersection.GenT2Engine_Intersection", "line_number": 92, "usage_type": "name" }, { "api_name": "juzzyPython.generalType2zSlices.system.GenT2Engine_Union.GenT2Engine_Union", "line_number": 96, "usage_type": "name" }, { "api_name": "typing.OrderedDict", "line_number": 131, "usage_type": "call" }, { "api_name": "typing.OrderedDict", "line_number": 147, "usage_type": "call" }, { "api_name": "typing.OrderedDict", "line_number": 165, "usage_type": "call" }, { "api_name": "juzzyPython.intervalType2.system.IT2_Rulebase.IT2_Rulebase", "line_number": 193, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 185, "usage_type": "name" }, { "api_name": "juzzyPython.intervalType2.system.IT2_Rulebase.IT2_Rulebase", "line_number": 185, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 199, "usage_type": "name" }, { "api_name": "juzzyPython.generalType2zSlices.system.GenT2_Antecedent.GenT2_Antecedent", "line_number": 199, "usage_type": "name" }, { "api_name": "juzzyPython.generalType2zSlices.system.GenT2_Rule.GenT2_Rule", "line_number": 199, "usage_type": "name" } ]
40319534507
from ansible.module_utils.basic import AnsibleModule from ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.api import \ Session from ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.cls import GeneralModule class General(GeneralModule): CMDS = { 'set': 'set', 'search': 'get', } API_KEY_PATH = 'proxy.forward' API_KEY_PATH_REQ = API_KEY_PATH API_MOD = 'proxy' API_CONT = 'settings' API_CONT_REL = 'service' API_CMD_REL = 'reconfigure' FIELDS_CHANGE = [ 'interfaces', 'port', 'port_ssl', 'transparent', 'ssl_inspection', 'ssl_inspection_sni_only', 'ssl_ca', 'ssl_exclude', 'ssl_cache_mb', 'ssl_workers', 'allow_interface_subnets', 'snmp', 'port_snmp', 'snmp_password', 'interfaces_ftp', 'port_ftp', 'transparent_ftp', ] FIELDS_ALL = FIELDS_CHANGE FIELDS_TRANSLATE = { 'port_ssl': 'sslbumpport', 'transparent': 'transparentMode', 'ssl_inspection': 'sslbump', 'ssl_inspection_sni_only': 'sslurlonly', 'ssl_ca': 'sslcertificate', 'ssl_exclude': 'sslnobumpsites', 'ssl_cache_mb': 'ssl_crtd_storage_max_size', 'ssl_workers': 'sslcrtd_children', 'allow_interface_subnets': 'addACLforInterfaceSubnets', 'snmp': 'snmp_enable', 'port_snmp': 'snmp_port', 'interfaces_ftp': 'ftpInterfaces', 'port_ftp': 'ftpPort', 'transparent_ftp': 'ftpTransparentMode', } FIELDS_TYPING = { 'bool': [ 'transparent_ftp', 'snmp', 'allow_interface_subnets', 'ssl_inspection_sni_only', 'ssl_inspection', 'transparent', ], 'list': ['interfaces', 'ssl_exclude', 'interfaces_ftp'], 'int': ['port', 'port_ssl', 'ssl_cache_mb', 'ssl_workers', 'port_snmp'], 'select': ['ssl_ca'], } FIELDS_IGNORE = ['acl', 'icap', 'authentication'] INT_VALIDATIONS = { 'ssl_workers': {'min': 1, 'max': 32}, 'ssl_cache_mb': {'min': 1, 'max': 65535}, 'port': {'min': 1, 'max': 65535}, 'port_ssl': {'min': 1, 'max': 65535}, 'port_snmp': {'min': 1, 'max': 65535}, } FIELDS_DIFF_EXCLUDE = ['snmp_password'] def __init__(self, module: AnsibleModule, result: dict, session: Session = None): GeneralModule.__init__(self=self, m=module, r=result, s=session)
ansibleguy/collection_opnsense
plugins/module_utils/main/webproxy_forward.py
webproxy_forward.py
py
2,388
python
en
code
158
github-code
6
[ { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.cls.GeneralModule", "line_number": 8, "usage_type": "name" }, { "api_name": "ansible.module_utils.basic.AnsibleModule", "line_number": 61, "usage_type": "name" }, { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.api.Session", "line_number": 61, "usage_type": "name" }, { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.cls.GeneralModule.__init__", "line_number": 62, "usage_type": "call" }, { "api_name": "ansible_collections.ansibleguy.opnsense.plugins.module_utils.base.cls.GeneralModule", "line_number": 62, "usage_type": "name" } ]
71913785148
import qrcode as qr from PIL import Image q=qr.QRCode(version=1, error_correction=qr.constants.ERROR_CORRECT_H, box_size=10, border=4,) q.add_data("https://youtu.be/NaQ_4ZvCbOE") q.make(fit=True) img= q.make_image(fill_color='darkblue', back_color='steelblue') img.save("x.png")
Xander1540/Python-Projects
QRcode/QRcode.py
QRcode.py
py
316
python
en
code
0
github-code
6
[ { "api_name": "qrcode.QRCode", "line_number": 3, "usage_type": "call" }, { "api_name": "qrcode.constants", "line_number": 4, "usage_type": "attribute" } ]
73730161788
import torch import torch.optim as optim from torch.utils.data import DataLoader from torchvision import transforms from torchvision.datasets import MNIST from dae.dae import DAE from beta_vae.beta_vae import BetaVAE from history import History # hyperparameters num_epochs = 100 batch_size = 128 lr = 1e-4 beta = 4 save_iter = 20 shape = (28, 28) n_obs = shape[0] * shape[1] # create DAE and ß-VAE and their training history dae = DAE(n_obs, num_epochs, batch_size, 1e-3, save_iter, shape) beta_vae = BetaVAE(n_obs, num_epochs, batch_size, 1e-4, beta, save_iter, shape) history = History() # fill autoencoder training history with examples print('Filling history...', end='', flush=True) transformation = transforms.Compose([ transforms.ColorJitter(), transforms.ToTensor() ]) dataset = MNIST('data', transform=transformation) dataloader = DataLoader(dataset, batch_size=1, shuffle=True) for data in dataloader: img, _ = data img = img.view(img.size(0), -1).numpy().tolist() history.store(img) print('DONE') # train DAE dae.train(history) # train ß-VAE beta_vae.train(history, dae)
BCHoagland/DARLA
train.py
train.py
py
1,115
python
en
code
8
github-code
6
[ { "api_name": "dae.dae", "line_number": 22, "usage_type": "name" }, { "api_name": "dae.dae.DAE", "line_number": 22, "usage_type": "call" }, { "api_name": "beta_vae.beta_vae", "line_number": 23, "usage_type": "name" }, { "api_name": "beta_vae.beta_vae.BetaVAE", "line_number": 23, "usage_type": "call" }, { "api_name": "history.History", "line_number": 24, "usage_type": "call" }, { "api_name": "torchvision.transforms.Compose", "line_number": 29, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 29, "usage_type": "name" }, { "api_name": "torchvision.transforms.ColorJitter", "line_number": 30, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 30, "usage_type": "name" }, { "api_name": "torchvision.transforms.ToTensor", "line_number": 31, "usage_type": "call" }, { "api_name": "torchvision.transforms", "line_number": 31, "usage_type": "name" }, { "api_name": "torchvision.datasets.MNIST", "line_number": 34, "usage_type": "call" }, { "api_name": "torch.utils.data.DataLoader", "line_number": 35, "usage_type": "call" }, { "api_name": "history.store", "line_number": 40, "usage_type": "call" }, { "api_name": "dae.dae.train", "line_number": 44, "usage_type": "call" }, { "api_name": "dae.dae", "line_number": 44, "usage_type": "name" }, { "api_name": "beta_vae.beta_vae.train", "line_number": 47, "usage_type": "call" }, { "api_name": "dae.dae", "line_number": 47, "usage_type": "argument" }, { "api_name": "beta_vae.beta_vae", "line_number": 47, "usage_type": "name" } ]
23012946135
import pandas as pd import numpy as np import geopandas as gpd from helper_functions import add_subset_address_cols, interpolate_polygon from data_constants import default_crs, make_data_dict from name_parsing import combine_names from address_parsing import clean_parse_address from helper_functions import make_panel from pathos.multiprocessing import ProcessingPool as Pool import re import fiona import warnings warnings.filterwarnings("ignore", 'This pattern has match groups') # function for reading in corrupted gdb files. really only relevant for LA CAMS data def readShp_nrow(path, numRows): fiona_obj = fiona.open(str(path)) toReturn = gpd.GeoDataFrame.from_features(fiona_obj[0:numRows]) toReturn.crs = fiona_obj.crs return (toReturn) # classify & clean name columns+ clean & parse primary and mailing addresses # function that runs code in parallel def parallelize_dataframe(df:pd.DataFrame, func, n_cores=4) -> pd.DataFrame: df_split = np.array_split(df, n_cores) pool = Pool(n_cores) df = pd.concat(pool.map(func, df_split)) pool.close() pool.join() # have to include this to prevent leakage and allow multiple parallel function calls pool.terminate() pool.restart() return df # wrapper function to run each city in parallel def clean_parse_parallel(df:pd.DataFrame) -> pd.DataFrame: df = clean_parse_address( dataframe=df, address_col='address_fa',st_name="address_sn", st_sfx="address_ss", st_d="address_sd", unit='address_u', st_num='address_n1', country='address_country', state='address_state', st_num2 ='address_n2',city='address_city', zipcode='address_zip', prefix2='parsed_', prefix1='cleaned_' ) return df # ADDRESS CLEANING FUNCTIONS # # takes an address df (geopandas or pandas), stanardizes and cleans it and returns a standardized pandas dataframe # these functions get address dataframes to be in standardized formats (renamed columns, added variables, etc) # such that the dataframe can be passed to clean_parse_parallel and exported # see address cols in data constants for full list of necessary columns needed for clean_parse_parallel # ill note if there is anything special with the function, but otherwise assume that it follows a standard flow of # 1. rename columns -> add columns -> subset to only needed columns -> clean_parse_parrallel -> return # chicago cleaning functions: # chicago address files come in two seperate files that together represent a full set of addresses in cook county # clean chi_add_points cleans a points file that represents centroid points for cook county parcel polygons def clean_chi_add_points(df): chicago_rename_dict = { 'ADDRNOCOM': 'address_n1', 'STNAMEPRD': 'address_sd', 'STNAME': 'address_sn', 'STNAMEPOT': 'address_ss', 'PLACENAME': 'address_city', 'ZIP5': 'address_zip', 'CMPADDABRV': 'address_fa', 'PIN': 'parcelID', 'XPOSITION': 'long', 'YPOSITION': 'lat' } df.rename(columns=chicago_rename_dict, inplace=True) df = add_subset_address_cols(df) df = parallelize_dataframe(df=df, func=clean_parse_parallel, n_cores=2) return df # basically the same as address points, but these are for parcel polygons (lat long are centroid points, so it is # basically equivalent, these just have some addresses not in the other df and vice versa def clean_chi_add_parcels(df): chicago_rename_dict = { 'property_address':'address_fa', 'property_city': 'address_city', 'property_zip': 'address_zip', 'pin': 'parcelID', 'latitude': 'lat', 'longitude': 'long' } df.rename(columns=chicago_rename_dict, inplace=True) df = add_subset_address_cols(df) df = parallelize_dataframe(df=df, func=clean_parse_parallel, n_cores=4) return df def concat_chi_add(df1, df2): df1 = df1.append(df2).drop_duplicates(subset = [ 'parcelID', "parsed_addr_n1", "parsed_addr_sn", "parsed_addr_ss", "parsed_city" ]) return df1 # saint louis is a little strange because they provide parcel polygons for entire streets # eg main st 100-900. This is fine for small streets as its not problematic to take centroid polygons, but # it becomes an issue for larger streets. For larger streets I take a best guess on which way the street runs and # linearly interpolate lat long between the bottom and top range of the address span # so if main st 100-900 runs nw that means it has its smallest numbers in the south east and increases going north west def clean_stl_add(df): df = df.rename( columns = { "STREETNAME": "address_sn", "STREETTYPE": "address_ss", "PREDIR": "address_sd", "ZIP_CODE": "address_zip" } ) df['index'] = np.arange(df.shape[0]) df = df.to_crs(default_crs) df.crs = default_crs bounds = df.bounds df['address_city'] = 'saint louis' df['latitude_min'] = bounds["miny"] df['latitude_max'] = bounds["maxy"] df['longitude_min'] = bounds["minx"] df['longitude_max'] = bounds["maxx"] df['direction'] = np.where( ((df['FROMLEFT'] < df['TOLEFT']) & (df['FROMRIGHT'] < df['TORIGHT'])), "NE", np.where( ((df['FROMLEFT'] < df['TOLEFT']) & (df['FROMRIGHT'] > df['TORIGHT'])), "NW", np.where( ((df['FROMLEFT'] > df['TOLEFT']) & (df['FROMRIGHT'] < df['TORIGHT'])), "SE", np.where( ((df['FROMLEFT'] > df['TOLEFT']) & (df['FROMRIGHT'] > df['TORIGHT'])), "SW", "SW" ) ) ) ) df_r = df[[col for col in df.columns if not bool(re.search("LEFT", col))]] df_r['address_n1'] = np.where( df_r['FROMRIGHT'] > df_r['TORIGHT'], df_r['TORIGHT'], df_r['FROMRIGHT'] ) df_r['address_n2'] = np.where( df_r['TORIGHT'] > df_r['FROMRIGHT'], df_r['TORIGHT'], df_r['FROMRIGHT'] ) df_l = df[[col for col in df.columns if not bool(re.search("RIGHT", col))]] df_l['address_n1'] = np.where( df_l['FROMLEFT'] > df_l['TOLEFT'], df_l['TOLEFT'], df_l['FROMLEFT'] ) df_l['address_n2'] = np.where( df_l['TOLEFT'] > df_l['FROMLEFT'], df_l['TOLEFT'], df_l['FROMLEFT'] ) df = pd.concat([df_r, df_l]) df = df[~((df['address_n1'] <= 0) & (df['address_n1'] <= 0))] df = make_panel(df,start_year="address_n1", end_year="address_n2", current_year=df['address_n2'], evens_and_odds=True ).rename(columns = {'year': 'address_n1'}) # interpolate lat long df = interpolate_polygon(df, "index", "direction") df['lat'] = df['lat_interpolated'] df['long'] = df["long_interpolated"] df = add_subset_address_cols(df) df = parallelize_dataframe(df=df, func=clean_parse_parallel, n_cores=2) return df def clean_la_add(df): la_rename_dict = { 'AIN': 'parcelID', 'UnitName': 'address_u', 'Number': 'address_n1', 'PostType': 'address_ss', 'PreDirAbbr': 'address_sd', 'ZipCode': 'address_zip', 'LegalComm': 'address_city', } df.rename(columns=la_rename_dict, inplace=True) combine_names(df, name_cols=['PreType', 'StArticle', 'StreetName'], newCol="address_sn") df = df.to_crs(default_crs) df.crs = default_crs df['long'] = df.geometry.centroid.x df['lat'] = df.geometry.centroid.y df = add_subset_address_cols(df) df = parallelize_dataframe(df=df, func=clean_parse_parallel, n_cores=2) return df def clean_sd_add(df): sd_rename_dict = { 'addrunit': 'address_u', 'addrnmbr': 'address_n1', 'addrpdir':'address_sd', 'addrname': 'address_sn', 'addrsfx': 'address_ss', 'addrzip': 'address_zip', 'community': 'address_city', 'PIN': 'parcelID', } df.rename(columns=sd_rename_dict, inplace=True) df = df.to_crs(default_crs) df.crs = default_crs df['long'] = df.geometry.centroid.x df['lat'] = df.geometry.centroid.y df = add_subset_address_cols(df) df = parallelize_dataframe(df=df, func=clean_parse_parallel, n_cores=2) return df def clean_sf_add(df): sf_rename_dict = { "Parcel Number": 'parcelID', 'Unit Number': 'address_u', 'Address Number': 'address_n1', 'Street Name': 'address_sn', 'Street Type': 'address_ss', 'ZIP Code': 'address_zip', 'Address': 'address_fa', #'PIN': 'parcelID', 'Longitude': 'long', 'Latitude': 'lat' } df.rename(columns=sf_rename_dict, inplace=True) df['address_city'] = "San Francisco" df = add_subset_address_cols(df) df = parallelize_dataframe(df=df, func=clean_parse_parallel, n_cores=2) return df def clean_seattle_add(df): seattle_rename_dict = { 'PIN': 'parcelID', 'ADDR_NUM': 'address_n1', 'ADDR_SN': 'address_sn', 'ADDR_ST': 'address_ss', 'ADDR_SD': 'address_sd', 'ZIP5': 'address_zip', 'CTYNAME': 'address_city', 'ADDR_FULL': 'address_fa', 'LON': 'long', 'LAT': 'lat' } df.rename(columns=seattle_rename_dict, inplace=True) df = add_subset_address_cols(df) df = parallelize_dataframe(df=df, func=clean_parse_parallel, n_cores=2) return df def clean_orlando_add(df): orlando_rename_dict = { 'OFFICIAL_P': 'parcelID', "COMPLETE_A": 'address_fa', "ADDRESS__1": 'address_n1', "ADDRESS__2": "address_n2", "BASENAME": "address_sn", "POST_TYPE":"address_ss", "POST_DIREC": "address_sd", "MUNICIPAL_": 'address_city', "ZIPCODE": "address_zip", "LATITUDE": "lat", "LONGITUDE": "long", } df.rename(columns=orlando_rename_dict, inplace=True) df = add_subset_address_cols(df) df = parallelize_dataframe(df=df, func=clean_parse_parallel, n_cores=2) return df def clean_baton_rouge_add(df): baton_rouge_rename_dict = { 'ADDRNOCOM': 'address_n1', 'ASTREET PREFIX DIRECTION': 'address_sd', 'STREET NAME': 'address_sn', 'STREET SUFFIX TYPE': 'address_ss', 'CITY': 'address_city', 'ZIP': 'address_zip', 'FULL ADDRESS': 'address_fa' } df.rename(columns=baton_rouge_rename_dict, inplace=True) lat_long = df['GEOLOCATION'].str.extract('([0-9\.]+),([0-9\.]+)') df['lat'] = lat_long.iloc[:,0] df['long'] = lat_long.iloc[:,1] df = add_subset_address_cols(df) df = parallelize_dataframe(df=df, func=clean_parse_parallel, n_cores=4) return df def merge_sac_parcel_id(sac_add = pd.DataFrame, xwalk = pd.DataFrame): return pd.merge( sac_add, xwalk[xwalk['Parcel_Number'].notna()][["Address_ID", "Parcel_Number"]].drop_duplicates(), left_on = "Address_ID", right_on = "Address_ID", how = "left" ) def clean_sac_add(df): sac_rename_dict = { 'APN': 'parcelID', "Address_Number": 'address_n1', "Street_Name": "address_sn", "Street_Suffix":"address_ss", "Pre_Directiona;": "address_sd", "Postal_City": 'address_city', "Zip_Code": "address_zip", "Latitude_Y": "lat", "Longitude_X": "long", } df.rename(columns=sac_rename_dict, inplace=True) df = add_subset_address_cols(df) df = parallelize_dataframe(df=df, func=clean_parse_parallel, n_cores=2) return df # used to reclean data in the event that you dont want to read in a shapefile # mostly uses because its faster to read in a csv than a shp def clean_int_addresses(df): df = add_subset_address_cols(df) df = parallelize_dataframe(df=df, func=clean_parse_parallel, n_cores=2) return df if __name__ == "__main__": print("hello") data_dict = make_data_dict(use_seagate=False) # stl_add = gpd.read_file(data_dict['raw']['stl']['parcel'] + 'streets/tgr_str_cl.shp') # stl_add = clean_stl_add(stl_add) # stl_add.to_csv(data_dict['intermediate']['stl']['parcel'] + 'addresses.csv', index=False) # baton_rouge_add = pd.read_csv( # data_dict['raw']['baton_rouge']['parcel'] + 'addresses_Property_Information_ebrp.csv') # baton_rouge_add = clean_baton_rouge_add(baton_rouge_add) # baton_rouge_add.to_csv(data_dict['intermediate']['baton_rouge']['parcel'] + 'addresses.csv', index=False) # chicago_add1 = pd.read_csv(data_dict['raw']['chicago']['parcel'] + 'Cook_County_Assessor_s_Property_Locations.csv') # chicago_add2 = pd.read_csv(data_dict['raw']['chicago']['parcel'] + 'Address_Points_cook_county.csv') # orlando_add = gpd.read_file(data_dict['raw']['orlando']['parcel'] + "Address Points/ADDRESS_POINT.shp") # clean_orlando_add(orlando_add).to_csv(data_dict['intermediate']['orlando']['parcel'] + 'addresses.csv', index=False) # la_add = gpd.read_file("/Users/JoeFish/Desktop/la_addresspoints.gdb", nrows = 100) # la_add = pd.read_csv(data_dict['intermediate']['la']['parcel'] + 'addresses.csv') # file is corrupted so we have to read it in this way... # print(la_add.head()) #sd_add = gpd.read_file(data_dict['raw']['sd']['parcel'] + 'addrapn_datasd_san_diego/addrapn_datasd.shp') # sf_add = pd.read_csv( # data_dict['raw']['sf']['parcel'] + 'Addresses_with_Units_-_Enterprise_Addressing_System_san_francisco.csv') # seattle_add = gpd.read_file(data_dict['raw']['seattle']['parcel'] + # 'Addresses_in_King_County___address_point/Addresses_in_King_County___address_point.shp') # # # clean_baton_rouge_add(baton_rouge_add).to_csv(data_dict['intermediate']['baton_rouge']['parcel'] + 'addresses.csv', index=False) # clean_chi_add2(chicago_add1).to_csv(data_dict['intermediate']['chicago']['parcel'] + 'addresses_from_parcels.csv', index=False) # clean_chi_add1(chicago_add2).to_csv(data_dict['intermediate']['chicago']['parcel'] + 'addresses_from_points.csv', index=False) # clean_int_addresses(la_add).to_csv(data_dict['intermediate']['la']['parcel'] + 'addresses_temp.csv', index=False) # clean_sf_add(sf_add).to_csv(data_dict['intermediate']['sf']['parcel'] + 'addresses.csv', index=False) # #clean_sd_add(sd_add).to_csv(data_dict['intermediate']['sd']['parcel'] + 'addresses.csv', index=False) # clean_seattle_add(seattle_add).to_csv(data_dict['intermediate']['seattle']['parcel'] + 'addresses.csv', index=False) # chi1 = pd.read_csv(data_dict['intermediate']['chicago']['parcel'] + 'addresses_from_parcels.csv', dtype={"parsed_addr_n1": str}) # chi2 = pd.read_csv(data_dict['intermediate']['chicago']['parcel'] + 'addresses_from_points.csv', dtype={"parsed_addr_n1": str}) # concat_chi_add(chi1,chi2).to_csv(data_dict['intermediate']['chicago']['parcel'] + 'addresses_concat.csv', index=False) sac_add = pd.read_csv(data_dict['raw']['sac']['parcel'] + 'Address.csv') sac_xwalk = pd.read_csv(data_dict['raw']['sac']['parcel'] + 'Address_parcel_xwalk.csv') sac_add = merge_sac_parcel_id(sac_add=sac_add, xwalk=sac_xwalk) clean_sac_add(sac_add).to_csv(data_dict['intermediate']['sac']['parcel'] + 'addresses_concat.csv', index=False) pass
jfish-fishj/boring_cities
python_modules/clean_address_data.py
clean_address_data.py
py
15,391
python
en
code
0
github-code
6
[ { "api_name": "warnings.filterwarnings", "line_number": 14, "usage_type": "call" }, { "api_name": "fiona.open", "line_number": 19, "usage_type": "call" }, { "api_name": "geopandas.GeoDataFrame.from_features", "line_number": 20, "usage_type": "call" }, { "api_name": "geopandas.GeoDataFrame", "line_number": 20, "usage_type": "attribute" }, { "api_name": "pandas.DataFrame", "line_number": 27, "usage_type": "attribute" }, { "api_name": "numpy.array_split", "line_number": 28, "usage_type": "call" }, { "api_name": "pathos.multiprocessing.ProcessingPool", "line_number": 29, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 30, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 40, "usage_type": "attribute" }, { "api_name": "address_parsing.clean_parse_address", "line_number": 41, "usage_type": "call" }, { "api_name": "helper_functions.add_subset_address_cols", "line_number": 76, "usage_type": "call" }, { "api_name": "helper_functions.add_subset_address_cols", "line_number": 93, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 122, "usage_type": "call" }, { "api_name": "data_constants.default_crs", "line_number": 123, "usage_type": "argument" }, { "api_name": "data_constants.default_crs", "line_number": 124, "usage_type": "name" }, { "api_name": "numpy.where", "line_number": 131, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 137, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 140, "usage_type": "call" }, { "api_name": "re.search", "line_number": 149, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 150, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 155, "usage_type": "call" }, { "api_name": "re.search", "line_number": 160, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 161, "usage_type": "call" }, { "api_name": "numpy.where", "line_number": 166, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 171, "usage_type": "call" }, { "api_name": "helper_functions.make_panel", "line_number": 173, "usage_type": "call" }, { "api_name": "helper_functions.interpolate_polygon", "line_number": 177, "usage_type": "call" }, { "api_name": "helper_functions.add_subset_address_cols", "line_number": 181, "usage_type": "call" }, { "api_name": "name_parsing.combine_names", "line_number": 197, "usage_type": "call" }, { "api_name": "data_constants.default_crs", "line_number": 198, "usage_type": "argument" }, { "api_name": "data_constants.default_crs", "line_number": 199, "usage_type": "name" }, { "api_name": "helper_functions.add_subset_address_cols", "line_number": 202, "usage_type": "call" }, { "api_name": "data_constants.default_crs", "line_number": 219, "usage_type": "argument" }, { "api_name": "data_constants.default_crs", "line_number": 220, "usage_type": "name" }, { "api_name": "helper_functions.add_subset_address_cols", "line_number": 223, "usage_type": "call" }, { "api_name": "helper_functions.add_subset_address_cols", "line_number": 244, "usage_type": "call" }, { "api_name": "helper_functions.add_subset_address_cols", "line_number": 263, "usage_type": "call" }, { "api_name": "helper_functions.add_subset_address_cols", "line_number": 283, "usage_type": "call" }, { "api_name": "helper_functions.add_subset_address_cols", "line_number": 302, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 307, "usage_type": "attribute" }, { "api_name": "pandas.merge", "line_number": 308, "usage_type": "call" }, { "api_name": "helper_functions.add_subset_address_cols", "line_number": 329, "usage_type": "call" }, { "api_name": "helper_functions.add_subset_address_cols", "line_number": 338, "usage_type": "call" }, { "api_name": "data_constants.make_data_dict", "line_number": 345, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 379, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 380, "usage_type": "call" } ]
47036004516
import time from sqlalchemy import Column, Integer, String, Float, Boolean, ForeignKey import sqlalchemy.types as types from sqlalchemy.orm import relationship from sqlalchemy.sql.expression import func from sqlalchemy import or_, and_, desc from marshmallow import Schema, fields from database import Base class KycRequestSchema(Schema): date = fields.Float() token = fields.String() greenid_verification_id = fields.String() status = fields.String() class KycRequest(Base): __tablename__ = 'kyc_requests' id = Column(Integer, primary_key=True) date = Column(Float, nullable=False, unique=False) token = Column(String, nullable=False, unique=True) greenid_verification_id = Column(String, nullable=False, unique=True) status = Column(String ) def __init__(self, token, greenid_verification_id): self.date = time.time() self.token = token self.greenid_verification_id = greenid_verification_id self.status = "created" @classmethod def count(cls, session): return session.query(cls).count() @classmethod def from_token(cls, session, token): return session.query(cls).filter(cls.token == token).first() def __repr__(self): return '<KycRequest %r>' % (self.token) def to_json(self): schema = KycRequestSchema() return schema.dump(self).data
djpnewton/zap-merchant
models.py
models.py
py
1,387
python
en
code
0
github-code
6
[ { "api_name": "marshmallow.Schema", "line_number": 12, "usage_type": "name" }, { "api_name": "marshmallow.fields.Float", "line_number": 13, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 13, "usage_type": "name" }, { "api_name": "marshmallow.fields.String", "line_number": 14, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 14, "usage_type": "name" }, { "api_name": "marshmallow.fields.String", "line_number": 15, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 15, "usage_type": "name" }, { "api_name": "marshmallow.fields.String", "line_number": 16, "usage_type": "call" }, { "api_name": "marshmallow.fields", "line_number": 16, "usage_type": "name" }, { "api_name": "database.Base", "line_number": 18, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 20, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 20, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 21, "usage_type": "call" }, { "api_name": "sqlalchemy.Float", "line_number": 21, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 22, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 23, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 24, "usage_type": "argument" }, { "api_name": "time.time", "line_number": 27, "usage_type": "call" } ]
35406045180
import json import os from elasticsearch import Elasticsearch, helpers, exceptions client = Elasticsearch(os.getenv("ELASTICSEARCH_URL")) f = open("dump", "r") def main(): while True: line = f.readline() if len(line) == 0: break data = json.loads(line) yield { '_op_type': 'index', '_index': 'data', '_id': data["id"], 'doc': data } helpers.bulk(client, main(), stats_only=True, chunk_size=2000)
polianax/regex
upload.py
upload.py
py
506
python
en
code
0
github-code
6
[ { "api_name": "elasticsearch.Elasticsearch", "line_number": 5, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 5, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 15, "usage_type": "call" }, { "api_name": "elasticsearch.helpers.bulk", "line_number": 24, "usage_type": "call" }, { "api_name": "elasticsearch.helpers", "line_number": 24, "usage_type": "name" } ]
11016530679
import os import discord import requests import asyncio from dotenv import load_dotenv from discord.utils import get from discord.ext import commands compteur = 301 nbConnected = 0 load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') SERVER_IP = os.getenv('SERVER_IP') SERVER_PORT = os.getenv('SERVER_PORT') CHANNEL_ID = int(os.getenv('CHANNEL_ID')) VOCAL_ID = int(os.getenv('VOCAL_ID')) bot = commands.Bot(command_prefix="!") # Background task async def background_task(): global compteur await bot.wait_until_ready() while not bot.is_closed(): await call_api() await asyncio.sleep(30) compteur += 30 async def call_api(): global nbConnected global compteur for guild in bot.guilds: if (guild.id == CHANNEL_ID): channel = discord.utils.get(guild.channels, id=VOCAL_ID) response = requests.get('https://minecraft-api.com/api/ping/online/' + SERVER_IP + '/' + str(SERVER_PORT)) nbConnected2 = response.content.decode("utf-8") if nbConnected != nbConnected2 and compteur > 300: nbConnected = nbConnected2 message = 'Il y a ' + str(nbConnected) + (' connectés' if int(nbConnected) > 1 else ' connecté') compteur = 0 await channel.edit(name=message) bot.loop.create_task(background_task()) # Start bot bot.run(TOKEN)
AudricCh/minecraft-discord-bot
bot/main.py
main.py
py
1,395
python
en
code
0
github-code
6
[ { "api_name": "dotenv.load_dotenv", "line_number": 12, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 13, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 14, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 15, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 16, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 17, "usage_type": "call" }, { "api_name": "discord.ext.commands.Bot", "line_number": 19, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 19, "usage_type": "name" }, { "api_name": "asyncio.sleep", "line_number": 28, "usage_type": "call" }, { "api_name": "discord.utils.get", "line_number": 37, "usage_type": "call" }, { "api_name": "discord.utils", "line_number": 37, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 38, "usage_type": "call" } ]
10609649346
from createProtocol import ARP, EthernetII from parseProtocol import Parser from optparse import OptionParser from helper import subnet_creator, get_mac_address, get_ip_address from rich.progress import track from time import sleep import socket import netifaces import threading def get_user_parameters(): parse_options = OptionParser() parse_options.add_option("-n", "--network", dest="sub_network", help="Enter Network Address \n[+] Example : 192.168.1.0/24") parse_options.add_option("-i", "--interface", dest="interface", help="Enter Your Interface") options, _ = parse_options.parse_args() interfaces = netifaces.interfaces() if not options.interface and not options.sub_network: print("\nPlease enter parameters. You can use '--help' for parameters.") if options.interface not in interfaces: print("\nThere is no such interface.") if not options.sub_network: print("\nEnter network address.") return options def send_packet(interface, ip): ethernet = EthernetII(src_mac=get_mac_address(interface)) arp = ARP(dst_mac="00:00:00:00:00:00", src_mac=get_mac_address(interface), src_ip=get_ip_address(interface)) sock = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(0x0806)) sock.bind((interface, 0x0806)) arp._dst_ip = ip packet = ethernet() + arp() sock.send(packet) def receive_packet(interface): sock = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(0x0806)) sock.bind((interface, 0x0806)) parser = Parser() while True: data, _ = sock.recvfrom(65535) _, _, _, otherData = parser.ethernetFrame(data) opcode, dst_mac, dst_ip, src_mac, src_ip = parser.arp_frame(otherData) if opcode == 2: parser.print_frame(dst_mac=dst_mac, dst_ip=dst_ip) def main(): user_params = get_user_parameters() user_network = user_params.sub_network user_interface = user_params.interface ip_list = subnet_creator(user_network) receive_thread = threading.Thread(target=receive_packet, args=(user_interface,), daemon=True) receive_thread.start() sleep(1.5) for ip in track(ip_list, "Sending Packet => "): send_packet(user_interface,ip) if __name__ == "__main__": main()
oguzhan-kurt/Network-Scanner
main.py
main.py
py
2,295
python
en
code
0
github-code
6
[ { "api_name": "optparse.OptionParser", "line_number": 13, "usage_type": "call" }, { "api_name": "netifaces.interfaces", "line_number": 19, "usage_type": "call" }, { "api_name": "createProtocol.EthernetII", "line_number": 34, "usage_type": "call" }, { "api_name": "helper.get_mac_address", "line_number": 34, "usage_type": "call" }, { "api_name": "createProtocol.ARP", "line_number": 35, "usage_type": "call" }, { "api_name": "helper.get_mac_address", "line_number": 35, "usage_type": "call" }, { "api_name": "helper.get_ip_address", "line_number": 35, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 37, "usage_type": "call" }, { "api_name": "socket.AF_PACKET", "line_number": 37, "usage_type": "attribute" }, { "api_name": "socket.SOCK_RAW", "line_number": 37, "usage_type": "attribute" }, { "api_name": "socket.htons", "line_number": 37, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 45, "usage_type": "call" }, { "api_name": "socket.AF_PACKET", "line_number": 45, "usage_type": "attribute" }, { "api_name": "socket.SOCK_RAW", "line_number": 45, "usage_type": "attribute" }, { "api_name": "socket.htons", "line_number": 45, "usage_type": "call" }, { "api_name": "parseProtocol.Parser", "line_number": 47, "usage_type": "call" }, { "api_name": "helper.subnet_creator", "line_number": 61, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 63, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 66, "usage_type": "call" }, { "api_name": "rich.progress.track", "line_number": 68, "usage_type": "call" } ]
27055803559
"""empty message Revision ID: 810e0afb57ea Revises: 22771e69d10c Create Date: 2022-01-19 19:59:08.027108 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "810e0afb57ea" down_revision = "22771e69d10c" branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table( "techstack", sa.Column("id", sa.Integer(), nullable=False), sa.Column("technology", sa.String(length=50), nullable=False), sa.Column("label", sa.String(length=50), nullable=True), sa.PrimaryKeyConstraint("id"), sa.UniqueConstraint("technology"), ) op.create_table( "team_techstack", sa.Column("team_id", sa.Integer(), nullable=True), sa.Column("techstack_id", sa.Integer(), nullable=True), sa.ForeignKeyConstraint( ["team_id"], ["team.id"], ), sa.ForeignKeyConstraint( ["techstack_id"], ["techstack.id"], ), ) op.create_table( "user_skill", sa.Column("user_id", sa.Integer(), nullable=False), sa.Column("techstack_id", sa.Integer(), nullable=False), sa.Column("skill_level", sa.Integer(), nullable=True), sa.Column("is_learning_goal", sa.Boolean(), nullable=True), sa.ForeignKeyConstraint( ["techstack_id"], ["techstack.id"], ), sa.ForeignKeyConstraint( ["user_id"], ["user.id"], ), sa.PrimaryKeyConstraint("user_id", "techstack_id"), ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table("user_skill") op.drop_table("team_techstack") op.drop_table("techstack") # ### end Alembic commands ###
CodeForPoznan/codeforpoznan.pl_v3
backend/migrations/versions/810e0afb57ea_.py
810e0afb57ea_.py
py
1,891
python
en
code
8
github-code
6
[ { "api_name": "alembic.op.create_table", "line_number": 20, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 20, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 22, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 23, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.PrimaryKeyConstraint", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.UniqueConstraint", "line_number": 26, "usage_type": "call" }, { "api_name": "alembic.op.create_table", "line_number": 28, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 28, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 30, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 30, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 31, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 31, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 32, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 36, "usage_type": "call" }, { "api_name": "alembic.op.create_table", "line_number": 41, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 41, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 43, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 43, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 44, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 44, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 45, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 45, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 46, "usage_type": "call" }, { "api_name": "sqlalchemy.Boolean", "line_number": 46, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 47, "usage_type": "call" }, { "api_name": "sqlalchemy.ForeignKeyConstraint", "line_number": 51, "usage_type": "call" }, { "api_name": "sqlalchemy.PrimaryKeyConstraint", "line_number": 55, "usage_type": "call" }, { "api_name": "alembic.op.drop_table", "line_number": 62, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 62, "usage_type": "name" }, { "api_name": "alembic.op.drop_table", "line_number": 63, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 63, "usage_type": "name" }, { "api_name": "alembic.op.drop_table", "line_number": 64, "usage_type": "call" }, { "api_name": "alembic.op", "line_number": 64, "usage_type": "name" } ]
26964335493
from setuptools import setup from hostinfo.version import __version__ as VERSION from build_utils import BuildCommand from build_utils import PublishCommand from build_utils import BinaryDistribution PACKAGE_NAME = 'pimjpeg' BuildCommand.pkg = PACKAGE_NAME # BuildCommand.py2 = False # BuildCommand.py3 = False PublishCommand.pkg = PACKAGE_NAME PublishCommand.version = VERSION README = open('README.rst').read() GITHUB = "https://github.com/walchko/{}".format(PACKAGE_NAME) INSTALL_REQ = open("requirements.txt").readlines() TEST_REQ = ['nose'] CMDS = {'publish': PublishCommand, 'make': BuildCommand} setup( name=PACKAGE_NAME, version=VERSION, author="Kevin J. Walchko", keywords=['package', 'keywords'], author_email="[email protected]", description="raspbery pi camera mjpeg streamer", license="MIT", package_data={ 'package': ['templates', 'static'], }, include_package_data=True, zip_safe=False, classifiers=[ 'Development Status :: 4 - Beta', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.6', 'Operating System :: Unix', 'Operating System :: MacOS :: MacOS X', 'Operating System :: POSIX', 'Topic :: Utilities', 'Topic :: Internet :: WWW/HTTP :: Dynamic Content', 'Topic :: System :: Shells', 'Environment :: Console' ], install_requires=INSTALL_REQ, tests_require=TEST_REQ, url=GITHUB, long_description=README, cmdclass=CMDS, packages=[PACKAGE_NAME], # scripts=[ # 'bin/hello.py' # ] )
walchko/mjpeg
setup.py
setup.py
py
1,527
python
en
code
0
github-code
6
[ { "api_name": "build_utils.BuildCommand.pkg", "line_number": 9, "usage_type": "attribute" }, { "api_name": "build_utils.BuildCommand", "line_number": 9, "usage_type": "name" }, { "api_name": "build_utils.PublishCommand.pkg", "line_number": 12, "usage_type": "attribute" }, { "api_name": "build_utils.PublishCommand", "line_number": 12, "usage_type": "name" }, { "api_name": "build_utils.PublishCommand.version", "line_number": 13, "usage_type": "attribute" }, { "api_name": "build_utils.PublishCommand", "line_number": 13, "usage_type": "name" }, { "api_name": "hostinfo.version.__version__", "line_number": 13, "usage_type": "name" }, { "api_name": "build_utils.PublishCommand", "line_number": 18, "usage_type": "name" }, { "api_name": "build_utils.BuildCommand", "line_number": 18, "usage_type": "name" }, { "api_name": "setuptools.setup", "line_number": 21, "usage_type": "call" }, { "api_name": "hostinfo.version.__version__", "line_number": 23, "usage_type": "name" } ]
36766609482
# date: 2021/09/06 # link: https://programmers.co.kr/learn/courses/30/lessons/17680 from collections import deque def solution(cacheSize, cities): answer = 0 status = deque() if cacheSize == 0: answer = len(cities) * 5 else: for city in cities: city = city.upper() if city in status: answer += 1 status.remove(city) else: answer += 5 if len(status) >= cacheSize: status.popleft() status.append(city) return answer
jiyoung-dev/Algorithm
Kakao 기출문제/캐시.py
캐시.py
py
608
python
en
code
0
github-code
6
[ { "api_name": "collections.deque", "line_number": 8, "usage_type": "call" } ]
3653572970
import numpy as np import pandas as pd import matplotlib.pyplot as plt from skimage.color import rgb2lab from skimage.color import lab2rgb from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer import sys # representative RGB colours for each label, for nice display COLOUR_RGB = { 'red': (255, 0, 0), 'orange': (255, 114, 0), 'yellow': (255, 255, 0), 'green': (0, 230, 0), 'blue': (0, 0, 255), 'purple': (187, 0, 187), 'brown': (117, 60, 0), 'pink': (255, 187, 187), 'black': (0, 0, 0), 'grey': (150, 150, 150), 'white': (255, 255, 255), } name_to_rgb = np.vectorize(COLOUR_RGB.get, otypes=[np.uint8, np.uint8, np.uint8]) def plot_predictions(model, lum=71, resolution=256): """ Create a slice of LAB colour space with given luminance; predict with the model; plot the results. """ wid = resolution hei = resolution n_ticks = 5 # create a hei*wid grid of LAB colour values, with L=lum ag = np.linspace(-100, 100, wid) bg = np.linspace(-100, 100, hei) aa, bb = np.meshgrid(ag, bg) ll = lum * np.ones((hei, wid)) lab_grid = np.stack([ll, aa, bb], axis=2) # convert to RGB for consistency with original input X_grid = lab2rgb(lab_grid) # predict and convert predictions to colours so we can see what's happening y_grid = model.predict(X_grid.reshape((wid*hei, 3))) pixels = np.stack(name_to_rgb(y_grid), axis=1) / 255 pixels = pixels.reshape((hei, wid, 3)) # plot input and predictions plt.figure(figsize=(10, 5)) plt.suptitle('Predictions at L=%g' % (lum,)) plt.subplot(1, 2, 1) plt.title('Inputs') plt.xticks(np.linspace(0, wid, n_ticks), np.linspace(-100, 100, n_ticks)) plt.yticks(np.linspace(0, hei, n_ticks), np.linspace(-100, 100, n_ticks)) plt.xlabel('A') plt.ylabel('B') plt.imshow(X_grid.reshape((hei, wid, 3))) plt.subplot(1, 2, 2) plt.title('Predicted Labels') plt.xticks(np.linspace(0, wid, n_ticks), np.linspace(-100, 100, n_ticks)) plt.yticks(np.linspace(0, hei, n_ticks), np.linspace(-100, 100, n_ticks)) plt.xlabel('A') plt.imshow(pixels) #to convert rgb to lab def rgb_to_lab(X): X = pd.DataFrame(X) #print(X) X = X.values.reshape(1, -1, 3) X = rgb2lab(X) X = X.reshape(-1,3) return X def main(infile): #def main(): data = pd.read_csv(infile) data = pd.read_csv("colour-data.csv") #print(data) X = data[['R', 'G', 'B']] # array with shape (n, 3). Divide by 255 so components are all 0-1. #print(X) X = X/255 X = X.values.tolist() #print(X) #https://stackoverflow.com/questions/34165731/a-column-vector-y-was-passed-when-a-1d-array-was-expected y = data[['Label']].values.ravel() # array with shape (n,) of colour words. #print(y) # TODO: build model_rgb to predict y from X. # TODO: print model_rgb's accuracy score X_train, X_valid, y_train, y_valid = train_test_split(X, y) model_rgb = GaussianNB() model_rgb.fit(X_train, y_train) y_predicted = model_rgb.predict(X_valid) print(model_rgb.score(X_valid, y_valid)) # TODO: build model_lab to predict y from X by converting to LAB colour first. # TODO: print model_lab's accuracy score #We can create a pipeline model where the first step is a transformer that converts from RGB to LAB, and the second is a Gaussian classifier, exactly as before. model_lab = make_pipeline( FunctionTransformer(rgb_to_lab, validate = False), GaussianNB() ) model_lab.fit(X_train, y_train) lab_y_predicted = model_lab.predict(X_valid) print(model_lab.score(X_valid, y_valid)) plot_predictions(model_rgb) plt.savefig('predictions_rgb.png') plot_predictions(model_lab) plt.savefig('predictions_lab.png') if __name__ == '__main__': main(sys.argv[1]) #main()
injoon2019/SFU_CMPT353
Exercise/e7/colour_bayes.py
colour_bayes.py
py
4,009
python
en
code
1
github-code
6
[ { "api_name": "numpy.vectorize", "line_number": 27, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 27, "usage_type": "attribute" }, { "api_name": "numpy.linspace", "line_number": 39, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.meshgrid", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 43, "usage_type": "call" }, { "api_name": "skimage.color.lab2rgb", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 50, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 54, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 54, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.suptitle", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 57, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 57, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 58, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 58, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 59, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 59, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 59, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 60, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 60, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.ylabel", "line_number": 61, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 61, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 62, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 62, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplot", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 64, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.title", "line_number": 65, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 65, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.xticks", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 66, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 66, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.yticks", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 67, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.xlabel", "line_number": 68, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 68, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.imshow", "line_number": 69, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 69, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 74, "usage_type": "call" }, { "api_name": "skimage.color.rgb2lab", "line_number": 77, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 83, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 84, "usage_type": "call" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 98, "usage_type": "call" }, { "api_name": "sklearn.naive_bayes.GaussianNB", "line_number": 99, "usage_type": "call" }, { "api_name": "sklearn.pipeline.make_pipeline", "line_number": 108, "usage_type": "call" }, { "api_name": "sklearn.preprocessing.FunctionTransformer", "line_number": 109, "usage_type": "call" }, { "api_name": "sklearn.naive_bayes.GaussianNB", "line_number": 110, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 119, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 119, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 121, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 121, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 125, "usage_type": "attribute" } ]
74795986426
import openpyxl import tkinter as tk def add_data_to_excel(roll_number, name): # Open the Excel file or create a new one if it doesn't exist try: workbook = openpyxl.load_workbook('data.xlsx') except FileNotFoundError: workbook = openpyxl.Workbook() # Select the active sheet (default: first sheet) sheet = workbook.active # Append the data to the Excel sheet row = [roll_number, name] sheet.append(row) # Save the changes to the Excel file workbook.save('data.xlsx') def on_submit(): roll_number = roll_entry.get() name = name_entry.get() try: add_data_to_excel(roll_number, name) result_label.config(text="Data successfully stored in Excel!", fg="green") except Exception as e: result_label.config(text=f"Error occurred: {e}", fg="red") # Create the tkinter window root = tk.Tk() root.title("Data Entry") # Labels and Entry widgets for roll number and name roll_label = tk.Label(root, text="Roll Number:") roll_label.pack() roll_entry = tk.Entry(root) roll_entry.pack() name_label = tk.Label(root, text="Name:") name_label.pack() name_entry = tk.Entry(root) name_entry.pack() submit_button = tk.Button(root, text="Submit", command=on_submit) submit_button.pack() result_label = tk.Label(root, text="", fg="green") result_label.pack() # Run the tkinter main loop root.mainloop()
Chandravarma2004/Push-the-data-given-to-excel-
project3.py
project3.py
py
1,441
python
en
code
0
github-code
6
[ { "api_name": "openpyxl.load_workbook", "line_number": 7, "usage_type": "call" }, { "api_name": "openpyxl.Workbook", "line_number": 9, "usage_type": "call" }, { "api_name": "tkinter.Tk", "line_number": 32, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 36, "usage_type": "call" }, { "api_name": "tkinter.Entry", "line_number": 38, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 41, "usage_type": "call" }, { "api_name": "tkinter.Entry", "line_number": 43, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 46, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 49, "usage_type": "call" } ]
5508352220
import random, os, shutil, yaml, gzip import pandas as pd import numpy as np import prepare.configs as configs from google.cloud import storage import pickle import time storage_client = storage.Client() bucket = storage_client.bucket(configs.bucketName) def encodeConfigs(_confs): return [ _confs['sim time settings']['time step'], _confs['sim time settings']['total time'], _confs['sim time settings']['sampling rate'], int(_confs['change Na mem']['event happens']), _confs['change Na mem']['change start'], _confs['change Na mem']['change finish'], _confs['change Na mem']['change rate'], _confs['change Na mem']['multiplier'], int(_confs['change K mem']['event happens']), _confs['change K mem']['change start'], _confs['change K mem']['change finish'], _confs['change K mem']['change rate'], _confs['change K mem']['multiplier'] ] def generateDataset(): srcFolder = "storage/processed" destFolder = "storage/ready" inputMaxCellsNumber = 250 retryCounter = 0 # Fetch available simulation folders runsIdxs = [] for blob in bucket.list_blobs(prefix=srcFolder): folderName = blob.name.split("/") if (folderName[2] not in runsIdxs and folderName[2] != ""): runsIdxs.append(folderName[2]) # Ftech simulation folders already processed with open("./prepare/processed.txt","r") as f: processedRunsIdxs = f.readlines() processedRunsIdxs = [folder.strip() for folder in processedRunsIdxs] availableFolders = [] for runIdx in runsIdxs: if (runIdx not in processedRunsIdxs): availableFolders.append(runIdx) print("[GENERATE DATASET] Folders {} | Processed {} | Left {}".format(len(runsIdxs), len(processedRunsIdxs), len(availableFolders))) for i, runFolderIdx in enumerate(availableFolders): # Keep track of the progress if (i in [int(len(availableFolders)*0.25), int(len(availableFolders)*0.5), int(len(availableFolders)*0.75)]): print(">> {} %".format(int(i / len(availableFolders) * 100))) try: data = pd.read_csv('gs://{}/{}/{}/simulation.csv'.format(configs.bucketName, srcFolder, runFolderIdx)) print(">> {} | {}".format(runFolderIdx, data['folderName'][0])) # 1. Download Sim Config File and encode It fileDest = '/tmp/rawSimConfig.yml' bucket.blob('storage/raw/{}/configs.yml'.format(data['folderName'][0])).download_to_filename(fileDest) with open(fileDest, 'r') as stream: simConfigRaw = yaml.safe_load(stream) simConfigsEncoded = np.asarray(encodeConfigs(simConfigRaw)) simConfigsEncoded = np.append(simConfigsEncoded, [0]) # Add timestamp information # 2. Download Sim.betse File and open it ( to extract Membrane permeabilities values) fileDest = '/tmp/sim_1.betse.gz' bucket.blob('storage/raw/{}/sim_1.betse.gz'.format(data['folderName'][0])).download_to_filename(fileDest) with gzip.open(fileDest, "rb") as f: sim, cells, params = pickle.load(f) # 3. Generate training examples files. One for each simulation timestep using sim config, sim.betse & vmems for timestampIdx in range(len(sim.time)): inputVmem = np.asarray(data[data['timestamp'] == timestampIdx]['vmem']) outputVmem = np.asarray(data[data['timestamp'] == timestampIdx + 1]['vmem']) # Update timestamp information simConfigsEncoded[simConfigsEncoded.shape[0] - 1] = timestampIdx # 1. Compute cells perms values from cells membranes perms values. From {3, 6} values to 1 (average) cellsPopulationSize = inputVmem.shape[0] cells_mems = [[] for cell in range(cellsPopulationSize)] for memUniqueIdx, cellIdx in enumerate(cells.mem_to_cells): cells_mems[cellIdx].append(sim.dd_time[timestampIdx][:, memUniqueIdx]) cells_permeabilities = [] for cellMembranes in cells_mems: cells_permeabilities.append(np.mean(cellMembranes, axis=0)) cells_permeabilities = np.asarray(cells_permeabilities) # N, 4 # K, Na, M-, Proteins- # concat Vmem values with perms values inputVmem = np.concatenate((inputVmem.reshape((-1, 1)), cells_permeabilities), axis=1) # N, 5 # concat cells centers to input vector inputVmem = np.concatenate((inputVmem, cells.cell_centres), axis=1) # N, 7 # Concat env concentrations env_cc = np.transpose(sim.cc_env_time[timestampIdx])[ : inputVmem.shape[0]] # get only same shape as inputVmem since env cc all the same inputVmem = np.concatenate((inputVmem, env_cc), axis=1) # N, 11 # Concat cytosilic concentrations cytosolic_cc = np.transpose(sim.cc_time[timestampIdx]) inputVmem = np.concatenate((inputVmem, cytosolic_cc), axis=1) # N, 15 #Pad Input ''' TODO: - Not pad with 0 since it is a possible Vmem value. ''' if (inputVmem.shape[0] < inputMaxCellsNumber): inputVmemPad = np.zeros((inputMaxCellsNumber, inputVmem.shape[1])) inputVmemPad[:inputVmem.shape[0]] = inputVmem inputVmem = inputVmemPad outputVmemPad = np.zeros((inputMaxCellsNumber)) outputVmemPad[:outputVmem.shape[0]] = outputVmem outputVmem = outputVmemPad #Discard Input elif (inputVmem.shape[0] > inputMaxCellsNumber): print("<<ATTENTION>> Found Input with Numbers of cells higher that current Max: {} > {}".format(inputVmem.shape[0], inputMaxCellsNumber)) continue # Discard example if data # - Vmem < - 100 || > 100 # - K_env, Na_env, M_env, X_env, K_cc, Na_cc, M_cc, X_cc > 1000 # if (np.any(inputVmem[:, 0] < -100) or np.any(inputVmem[:, 0] > 100)): print("Discard example, Vmem {}".format(np.max(np.abs(inputVmem)))) continue if (np.any(inputVmem[: , 7:] > 1000)): print("Discard example, Concentration {}".format(np.max(inputVmem[: , 7:]))) continue if (np.any(outputVmem[:, 0] < -100) or np.any(outputVmem[:, 0] > 100)): print("Discard example, Vmem Output {}".format(np.max(np.abs(outputVmem)))) continue #print("inputVmem length: {}".format(inputVmem.shape[0])) #print("Configs length: {}".format(configs.shape[0])) #print("outputVmem length: {}".format(outputVmem.shape[0])) filePath = '/tmp/example.npy' np.save(filePath, np.asarray([ inputVmem, simConfigsEncoded, outputVmem ], dtype="object")) blob = bucket.blob('{}/{}/{}.npy'.format(destFolder, runFolderIdx, timestampIdx)) blob.upload_from_filename(filePath) retryCounter = 0 with open("./prepare/processed.txt","a+") as f: f.write(runFolderIdx + "\n") # If for some reason processing fails. Handle it. It will not save on the processed.txt allowing to be processed at the next restart except: print("Handle Excpetion | Sleeping for {}".format(2 ** retryCounter)) time.sleep(2 ** retryCounter) # sleep since may be due to too many requests retryCounter += 1 continue
R-Stefano/betse-ml
prepare/utils.py
utils.py
py
7,976
python
en
code
0
github-code
6
[ { "api_name": "google.cloud.storage.Client", "line_number": 9, "usage_type": "call" }, { "api_name": "google.cloud.storage", "line_number": 9, "usage_type": "name" }, { "api_name": "prepare.configs.bucketName", "line_number": 10, "usage_type": "attribute" }, { "api_name": "prepare.configs", "line_number": 10, "usage_type": "name" }, { "api_name": "pandas.read_csv", "line_number": 60, "usage_type": "call" }, { "api_name": "prepare.configs.bucketName", "line_number": 60, "usage_type": "attribute" }, { "api_name": "prepare.configs", "line_number": 60, "usage_type": "name" }, { "api_name": "yaml.safe_load", "line_number": 67, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 69, "usage_type": "call" }, { "api_name": "gzip.open", "line_number": 74, "usage_type": "call" }, { "api_name": "pickle.load", "line_number": 75, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 79, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 80, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 93, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 94, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 100, "usage_type": "call" }, { "api_name": "numpy.transpose", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.transpose", "line_number": 107, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 108, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 120, "usage_type": "call" }, { "api_name": "numpy.any", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.any", "line_number": 137, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 138, "usage_type": "call" }, { "api_name": "numpy.any", "line_number": 141, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 142, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 148, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 148, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 162, "usage_type": "call" } ]
35395847394
from django.core.paginator import InvalidPage class AlphabetGlossary(object): """Алфавитный глоссарий""" def __init__(self, object_list, on=None, num_groups=7): self.object_list = object_list # список объектов self.count = len(object_list) # количество объектов в списке self.max_froups = num_groups # количество алфавитных групп self.groups = [] # список алфавитных групп # Словарь, в котором ключ - буква алфавита, а значение - список объектов на эту букву из object_list chunks = {} for obj in self.object_list: if on: obj_str = str(getattr(obj, on)) else: obj_str = str(obj) letter = str.upper(obj_str[0]) if letter not in chunks: chunks[letter] = [] chunks[letter].append(obj) # Вычисляем предполагаемое количество объектов в алфавитной группе per_group = self.count / num_groups for letter in chunks: chunk_len = len(chunks[letter]) if chunk_len > per_group: per_group = chunk_len # Распределяем объекты по алфавитным группам current_group = AlphabetGroup(self) for letter in sorted(chunks.keys()): sub_list = chunks[letter] # элементы списка объектов на указанную букву # Определяем, уместится ли sub_list в текущую алфавитную группу, или его # нужно переносить в новую. Новая группа будет создана, если: # - добавление sub_list приведёт к переполнению текущей группы # - в текущей группе свободного места меньше, чем количество неумещающихся объектов # - текущая группа не пуста (в противном случае, это будет означать, что len(sub_list) > per_group new_group_count = len(sub_list) + current_group.count if new_group_count > per_group and \ abs(per_group - current_group.count) < abs(per_group - new_group_count) and \ current_group.count > 0: self.groups.append(current_group) current_group = AlphabetGroup(self) current_group.add(sub_list, letter) # Если по окончании цикла осталась непустая группа, добавляем её в глоссарий if current_group.count > 0: self.groups.append(current_group) def group(self, num): """Возвращает объект алфавитной группы""" if len(self.groups) == 0: return None elif num > 0 and num <= len(self.groups): return self.groups[num - 1] else: raise InvalidPage @property def num_groups(self): """Возвращает количество алфавитных групп""" return len(self.groups) class AlphabetGroup(object): """Алфавитная группа глоссария""" def __init__(self, glossary): self.glossary = glossary self.object_list = [] self.letters = [] @property def count(self): """Возвращает количество объектов в группе""" return len(self.object_list) @property def start_letter(self): """Возвращает первую букву группы""" if len(self.letters) > 0: self.letters.sort(key=str.upper) return self.letters[0] else: return None @property def end_letter(self): """Возвращает последнюю букву группы""" if len(self.letters) > 0: self.letters.sort(key=str.upper) return self.letters[-1] else: return None @property def number(self): """Возвращает номер группы в глоссарии""" return self.glossary.groups.index(self) + 1 def add(self, new_list, letter=None): """Добавляет список объектов в группу""" if len(new_list) > 0: self.object_list = self.object_list + new_list if letter: self.letters.append(letter) def __repr__(self): """Возвращает метку группы""" if self.start_letter == self.end_letter: return self.start_letter else: return '%c-%c' % (self.start_letter, self.end_letter)
zarmoose/eastwood_test
employees/glossary.py
glossary.py
py
5,105
python
ru
code
0
github-code
6
[ { "api_name": "django.core.paginator.InvalidPage", "line_number": 66, "usage_type": "name" } ]
3578166823
import os import torch import csv import pandas as pd from config import FoldersConfig def txt_to_csv(input_path, output_path): with open(input_path, 'r') as in_file: stripped = (line.strip() for line in in_file) lines = (line.split() for line in stripped if line) with open(output_path, 'w') as out_file: writer = csv.writer(out_file) writer.writerows(lines) def get_categories_and_path(input_path, output_path): with open(input_path, 'r') as in_file: reader = csv.reader(in_file) next(reader) row0 = next(reader) with open(output_path, 'w') as out_file: writer = csv.writer(out_file) writer.writerow(["path", "deep_fashion_category_name", "dataset"]) for r in reader: split_r = r[0].split('_')[-2] category = split_r.split('/')[-2] r.append(r[0]) r.append(category) r.append('deep_fashion') writer.writerow( (r[2], r[3], r[4]) ) def add_column_with_article_type_equivalence(deep_fashion, map_to_product_fashion, output_path): deep_fashion_df = pd.read_csv(deep_fashion, error_bad_lines=False) map_to_product_fashion_df = pd.read_csv(map_to_product_fashion) deep_fashion_with_article_type_df = deep_fashion_df.merge(map_to_product_fashion_df, on='deep_fashion_category_name', how='left') deep_fashion_with_article_type_df['id'] = deep_fashion_with_article_type_df.index + 100000 deep_fashion_with_article_type_df = deep_fashion_with_article_type_df[['id', 'path', 'deep_fashion_category_name', 'product_fashion_article_type', 'dataset']] deep_fashion_with_article_type_df.columns = ['id', 'path', 'categoryName', 'articleType', 'dataset'] deep_fashion_with_article_type_df.to_csv(output_path, index=False) def prepare_datasets(): resources = FoldersConfig.RESOURCES_DIR list_categories_path = resources + 'deep_fashion/list_category_img.txt' list_categories_output_path = resources + 'deep_fashion/list_category_img.csv' path_category_dataset = resources + 'deep_fashion/path_category_dataset.csv' map_to_product_fashion_path = resources + 'map_deep_fashion_to_product_fashion.csv' deep_fashion_with_article_type_path = resources + 'deep_fashion/deep_fashion_with_article_type.csv' if not os.path.exists(list_categories_output_path): txt_to_csv(list_categories_path, list_categories_output_path) if not os.path.exists(path_category_dataset): get_categories_and_path(list_categories_output_path, path_category_dataset) if not os.path.exists(deep_fashion_with_article_type_path): add_column_with_article_type_equivalence(path_category_dataset, map_to_product_fashion_path, deep_fashion_with_article_type_path) if __name__ == "__main__": prepare_datasets()
ferran-candela/upc-aidl-2021-image-retrieval
imageretrieval/src/prepare_datasets.py
prepare_datasets.py
py
2,898
python
en
code
3
github-code
6
[ { "api_name": "csv.writer", "line_number": 14, "usage_type": "call" }, { "api_name": "csv.reader", "line_number": 20, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 24, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 36, "usage_type": "call" }, { "api_name": "pandas.read_csv", "line_number": 37, "usage_type": "call" }, { "api_name": "config.FoldersConfig.RESOURCES_DIR", "line_number": 50, "usage_type": "attribute" }, { "api_name": "config.FoldersConfig", "line_number": 50, "usage_type": "name" }, { "api_name": "os.path.exists", "line_number": 58, "usage_type": "call" }, { "api_name": "os.path", "line_number": 58, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 61, "usage_type": "call" }, { "api_name": "os.path", "line_number": 61, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 64, "usage_type": "call" }, { "api_name": "os.path", "line_number": 64, "usage_type": "attribute" } ]
9324609377
from flask import Blueprint, render_template redspine = Blueprint('redspine', __name__, template_folder='./', static_folder='./', static_url_path='/') redspine.display_name = "Redspine" redspine.published = False redspine.description = "A red-spine notebook. Art that folds in on itself across pages by bleeding through." @redspine.route('/') def _redspine(): return render_template('redspine.html')
connerxyz/exhibits
cxyz/exhibits/redspine/redspine.py
redspine.py
py
491
python
en
code
0
github-code
6
[ { "api_name": "flask.Blueprint", "line_number": 3, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 15, "usage_type": "call" } ]
35175789251
from django.shortcuts import render from .models import Book, Shope def home(request): # qs = Post.objects.all() # # The DB query has not been executed at this point # x = qs # # Just assigning variables doesn't do anything # for x in qs: # print(x) # # The query is executed at this point, on iteration # for x in qs: # print("%d" % x.id) # # The query is not executed this time, due to caching post_qs = Book.objects.order_by('id') for start, end, total, qs in batch_qs(post_qs): print("Now processing %s - %s of %s" % (start + 1, end, total)) for post in qs: print(post.name) return render(request, 'query_optimization/home.html') def batch_qs(qs, batch_size=10): """ Returns a (start, end, total, queryset) tuple for each batch in the given queryset. Usage: # Make sure to order your querset article_qs = Article.objects.order_by('id') for start, end, total, qs in batch_qs(article_qs): print "Now processing %s - %s of %s" % (start + 1, end, total) for article in qs: print article.body """ total = qs.count() for start in range(0, total, batch_size): end = min(start + batch_size, total) yield (start, end, total, qs[start:end]) # def home(request): # books = Book.objects.all().only("name", "create_date") # for each in books: # print(each.name) # print(f"Cache {books._result_cache}") # return render(request, 'query_optimization/home.html') def home(request): queryset = Shope.objects.prefetch_related('book').all() stores = [] for store in queryset: books = [book.name for book in store.book.all()] stores.append({'id': store.id, 'name': store.name, 'books': books}) return render(request, 'query_optimization/home.html') queryset = Store.objects.prefetch_related( Prefetch('books', queryset=Book.objects.filter(price__range=(250, 300))))
Azhar-inexture-1/django_practice_models
query_optimization/views.py
views.py
py
2,036
python
en
code
0
github-code
6
[ { "api_name": "models.Book.objects.order_by", "line_number": 17, "usage_type": "call" }, { "api_name": "models.Book.objects", "line_number": 17, "usage_type": "attribute" }, { "api_name": "models.Book", "line_number": 17, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 22, "usage_type": "call" }, { "api_name": "models.Shope.objects.prefetch_related", "line_number": 54, "usage_type": "call" }, { "api_name": "models.Shope.objects", "line_number": 54, "usage_type": "attribute" }, { "api_name": "models.Shope", "line_number": 54, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 59, "usage_type": "call" }, { "api_name": "models.Book.objects.filter", "line_number": 63, "usage_type": "call" }, { "api_name": "models.Book.objects", "line_number": 63, "usage_type": "attribute" }, { "api_name": "models.Book", "line_number": 63, "usage_type": "name" } ]
26683410836
#!/usr/bin/python3 '''Defines a Base class ''' import json from os import path class Base: '''Represents a base class Attributes: __nb_objects: holds the number of Base instances created ''' __nb_objects = 0 def __init__(self, id=None): '''Instantiates a Base object Args: id: type int. Defaults to None ''' if id is not None: self.id = id else: type(self).__nb_objects += 1 self.id = type(self).__nb_objects @staticmethod def to_json_string(list_dictionaries): '''Returns the JSON string representation of list_dictionaries ''' if list_dictionaries is None: return '[]' if type(list_dictionaries) is not list: raise TypeError('to_json_string argument must be a list of dicts') for obj in list_dictionaries: if type(obj) is not dict: raise TypeError('items in to_json_string arg must be dicts') return json.dumps(list_dictionaries) @classmethod def save_to_file(cls, list_objs): '''Writes the JSON string representation of list_objs to a file ''' if type(list_objs) not in (None, list): raise TypeError('list_objs must be of type list') for obj in list_objs: if type(obj) is not cls: raise TypeError('items in list_objs must be of same type as cls') filename = cls.__name__ + '.json' with open(filename, 'w', encoding='utf-8') as f: if list_objs is None: f.write('[]') else: list_dicts = [obj.to_dictionary() for obj in list_objs] # json.dump(list_dicts, f) achieves same thing as next line f.write(Base.to_json_string(list_dicts)) @staticmethod def from_json_string(json_string): '''Returns the list of JSON string representation ''' if json_string is None or json_string == '': return [] if type(json_string) is not str: raise TypeError('json_string must be str repr of a list of dicts') return json.loads(json_string) @classmethod def create(cls, **dictionary): '''Returns an instance with all attributes already set ''' # Create a dummy Rectangle or Square instance if cls.__name__ == 'Rectangle': dummy = cls(1, 1) elif cls.__name__ == 'Square': dummy = cls(1) dummy.update(**dictionary) return dummy @classmethod def load_from_file(cls): '''Returns a list of instances ''' filename = cls.__name__ + '.json' if path.exists(filename): with open(filename, 'r', encoding='utf-8') as f: json_string = f.read() list_dict = cls.from_json_string(json_string) return [cls.create(**d) for d in list_dict] return []
nzubeifechukwu/alx-higher_level_programming
0x0C-python-almost_a_circle/models/base.py
base.py
py
2,989
python
en
code
0
github-code
6
[ { "api_name": "json.dumps", "line_number": 39, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 67, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path", "line_number": 86, "usage_type": "name" } ]
72331238589
import gc import numpy as np import xarray as xr import scipy.ndimage.filters as conv from . import dc_utilities as utilities from datetime import datetime #################################################### # | TSM | #################################################### # 0.0001 for the scale of ls7 data. def _tsmi(dataset): return (dataset.red.astype('float64') + dataset.green.astype('float64'))*0.0001 / 2 def tsm(dataset_in, clean_mask=None, no_data=0): # Create a clean mask from cfmask if the user does not provide one if clean_mask is None: cfmask = dataset_in.cf_mask clean_mask = utilities.create_cfmask_clean_mask(cfmask) tsm = 3983 * _tsmi(dataset_in)**1.6246 tsm.values[np.invert(clean_mask)] = no_data # Contains data for clear pixels # Create xarray of data time = dataset_in.time latitude = dataset_in.latitude longitude = dataset_in.longitude dataset_out = xr.Dataset({'tsm': tsm}, coords={'time': time, 'latitude': latitude, 'longitude': longitude}) return dataset_out def mask_tsm(dataset_in, wofs): wofs_criteria = wofs.copy(deep=True).normalized_data.where(wofs.normalized_data > 0.8) wofs_criteria.values[wofs_criteria.values > 0] = 0 kernel = np.array([[1,1,1],[1,1,1],[1,1,1]]) mask = conv.convolve(wofs_criteria.values, kernel, mode ='constant') mask = mask.astype(np.float32) dataset_out = dataset_in.copy(deep=True) dataset_out.normalized_data.values += mask dataset_out.total_clean.values += mask dataset_out.normalized_data.values[np.isnan(dataset_out.normalized_data.values)] = 0 dataset_out.total_clean.values[np.isnan(dataset_out.total_clean.values)] = 0 return dataset_out
ceos-seo/Data_Cube_v2
ui/django_site_v2/data_cube_ui/utils/dc_tsm.py
dc_tsm.py
py
1,835
python
en
code
26
github-code
6
[ { "api_name": "numpy.invert", "line_number": 24, "usage_type": "call" }, { "api_name": "xarray.Dataset", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 39, "usage_type": "call" }, { "api_name": "scipy.ndimage.filters.convolve", "line_number": 41, "usage_type": "call" }, { "api_name": "scipy.ndimage.filters", "line_number": 41, "usage_type": "name" }, { "api_name": "numpy.float32", "line_number": 42, "usage_type": "attribute" }, { "api_name": "numpy.isnan", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 48, "usage_type": "call" } ]
9270626576
from dataclasses import dataclass @dataclass class block: name: str seperatorStart: str seperatorEnd: str def getBlock(blocks: list, input: list): strings = list() index = 0 offsetindex = 0 foundBlock = False dontAppend = False for string in input: dontAppend = False if (foundBlock and blocks[index].name == "*"): if (type(strings) == list): strings = dict() if (string.__contains__(blocks[index].seperatorStart)): if (offsetindex == 0): foundBlockName = string.split(blocks[index].seperatorStart)[0].strip().lower() dontAppend = True offsetindex += 1 elif (string.__contains__(blocks[index].seperatorEnd)): if (offsetindex == 0): break else: offsetindex -= 1 if (dontAppend == False and offsetindex > 0): if (strings.__contains__(foundBlockName)): strings[foundBlockName].append(string) else: strings[foundBlockName] = [string] elif (foundBlock == True): if (string.__contains__(blocks[index].seperatorStart)): offsetindex += 1 elif (string.__contains__(blocks[index].seperatorEnd)): if (offsetindex == 0): break else: offsetindex -= 1 strings.append(string) else: if (string.__contains__(blocks[index].seperatorStart)): stringSplit = string.split(blocks[index].seperatorStart, 1) if (stringSplit[0].strip().lower() == blocks[index].name.lower().strip() and offsetindex == 0): if (len(stringSplit[1].strip()) > 0): strings.append(stringSplit[1].strip()) if (index + 1 <= len(blocks) - 1 ): index += 1 if (index == len(blocks) - 1): foundBlock = True else: offsetindex += 1 elif (string.__contains__(blocks[index].seperatorEnd)): if (offsetindex > 0): offsetindex -= 1 else: index -= 1 return strings def getVariable(name: str, blocks: list, seperator: str, input: list): if (len(blocks) > 0): block = getBlock(blocks, input) else: block = input if (name == "*"): output = dict() for string in block: if (string.__contains__(seperator)): stringSplit = [ stringSplit.strip() for stringSplit in string.split(seperator)] output[stringSplit[0].lower()] = stringSplit[1] else: for string in block: if (string.__contains__(seperator)): stringSplit = [ stringSplit.strip() for stringSplit in string.split(seperator)] if (stringSplit[0].lower() == name.lower()): output = stringSplit[1] break return output
superboo07/TextAdventure
TAUtilities.py
TAUtilities.py
py
2,998
python
en
code
0
github-code
6
[ { "api_name": "dataclasses.dataclass", "line_number": 3, "usage_type": "name" } ]
7713977328
#!/usr/bin/python # -*- coding: utf-8 -*- from flask import Flask, render_template import platform import netifaces myApp = Flask(__name__) @myApp.route('/') def home(): data = {'user': 'ramy', 'machine':platform.node(), 'os':platform.system(), 'dist':platform.linux_distribution(), 'interfaces':netifaces.interfaces()} return render_template('index.system.html', title='Home', data=data) if __name__ == '__main__': myApp.run(host='0.0.0.0', port=999)
RMDHMN/pythonFlash_testing
system-template.py
system-template.py
py
469
python
en
code
1
github-code
6
[ { "api_name": "flask.Flask", "line_number": 8, "usage_type": "call" }, { "api_name": "platform.node", "line_number": 12, "usage_type": "call" }, { "api_name": "platform.system", "line_number": 12, "usage_type": "call" }, { "api_name": "platform.linux_distribution", "line_number": 12, "usage_type": "call" }, { "api_name": "netifaces.interfaces", "line_number": 12, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 14, "usage_type": "call" } ]
6166872296
# -*- coding: utf-8 -*- """ Created on Thu Jun 15 09:32:16 2017 @author: Francesco """ from sklearn.preprocessing import StandardScaler import numpy as np import threading as th import time import re import matplotlib.pyplot as plt movement_kind = ["wrist up", "wrist down", "wrist rotation out", "wrist rotation inside", "hand open", "hand closed"] class up(object): index_array = [] value_array = [] def __init__(self): self.index_array.append(0) def update(self,index,value): self.index_array.append(index) self.value_array.append(value) def load_from_C_formatting(file): f = open(file,'r').read() temp = f.split('\n') Ltemp = len(temp) state = int(temp[0][-1]) start_index = 0 X = [] Y = [] for j in range(1,Ltemp-1): new_state = int(temp[j][-1]) if(int(new_state != state)): Xraw = temp[start_index:j-1] start_index = j L = len(Xraw) X_current = np.zeros((L,8)) i = 0 k = 0 for line in Xraw: #print(line[:-2]) for value in line[:-2].split(','): X_current[i,k] = value k+=1 i+=1 k=0 Y.append(state) X.append(X_current) state = new_state #last start index is the index of the last recording Xraw = temp[start_index:-1] L = len(Xraw) X_current = np.zeros((L,8)) i = 0 k = 0 for line in Xraw: #print(line[:-2]) for value in line[:-2].split(','): X_current[i,k] = value k+=1 i+=1 k=0 Y.append(state) X.append(X_current) figures = [] for movement in np.unique(Y): figures.append(plt.subplots(1,1)) for p in [2,3,4,5,6,7]: y = X[movement][:,p] moving_average(y,10) #figures è una tupla (fig,axes) e noi dobbiamo #plottare su axes movement = int(movement) figures[movement][1].plot(y,color=colorarray[p],label='ch'+str(p)) legend = figures[movement][1].legend(loc='upper left', shadow=True) figures[movement][0].suptitle(movement_kind[movement]) plt.show() return (X,Y) def load_dataset(file): """ RIFARE INIZIO """ n_channels = 8 f = open(file,'r') #jump to the second block(the first is corrupted) while(1): if(f.read(1) == '-'): start = f.tell()+2 break f.seek(start) #now we are ready to read the first block, which is the first feature actually #understand the block length, must be equal for each block dataset = f.read() n_linee = 0 for line in dataset.split('\n'): n_linee+=1 if(line == '-'): n_linee -= 1 break len_blocco = n_linee+1 #create the structure that will hold the features #each feature is a matrix n_linee*9 (n_channels + classe movimento) n_blocks = (len(dataset.split('\n'))-1)/len_blocco features = np.zeros((n_linee,n_channels+1,int(n_blocks)+1)) i = 0 j = 0 block = 0 for line in dataset.split('\n'): if(len(line)<5): block+=1 i = 0 #print(line) else: for value in line.split(','): features[i,j,block] = value j+=1 #print(line) j=0 i+=1 return features def gradient(data,channels): der = np.zeros((len(data),channels)) for i in range(1,len(data)): der[i,:] = data[i,:]-data[i-1,:] return der def moving_average(data,samp_for_average): n_windows = int(len(data)/samp_for_average) for i in range(n_windows): data[i*samp_for_average:(i+1)*samp_for_average] = np.average(data[i*samp_for_average:(i+1)*samp_for_average]) def open_outfile(file,rep): f = open(file,'r').read() lines = f.split('\n') info_decoded = lines[rep].split('\t') first_matrix = info_decoded[:-1] n_cluster = int(info_decoded[-1]) #this code fails when there is a number without decimals, because 2. doesn't match the pattern #since it searches for another number after the dot, that's the reason why the second "try" #to catch this behaviour we say that two possible patterns may exist, 3.0 is recognized as well as 3. patterns=re.compile(r'-\d+\.\d+|\d+\.\d+|-\d+\.|\d+\.') #as a note: we search for both positive or negative(minus sign) but the order is important, #because if -\d+\. was before -\d+\.\d+, the number -2.3 would be recognized as -2. matrix = np.array(patterns.findall(first_matrix[0]),dtype='f') for row in first_matrix[1:]: #the first has alread been taken try: temp = np.array(patterns.findall(row),dtype='f') matrix = np.vstack((matrix,temp)) except ValueError: print("Error:",row) return (matrix,n_cluster) #load data def load_data_into_matrix(file,startline=0,endline=-1,cols=8,mode="signal"): graph_data = open(file,'r').read() lines = graph_data.split('\n') n_channels = cols n_lines = (len(lines)) vertical_lines = len(lines[startline:endline]) data = np.zeros((vertical_lines,n_channels)) #read all channels (8), plot only the desired #the last acquisition may be corrupted, sudden termination of serial comm #the first lines may be corrupted by giggering of the sensors/serial reads garbage if mode == "signal": i=0 j=0 for line in lines[startline:endline]: if(len(line)>1): t = line.split(',') for value in t: data[i,j] = t[j] j+=1 j=0 i+=1 return data if mode == "encoded": i=0 j=0 data = np.chararray((n_lines - (startline-endline),n_channels)) for line in lines[startline:endline]: if(len(line)>1): t = line.split(',') for value in t: data[i,j] = t[j] j+=1 j=0 i+=1 return data def unsigned_derivative(x_t,x_tmen1): return np.abs((x_t - x_tmen1)/x_t) colorarray = ['b','g','r','c','m','y','k','0.75'] mode = {'polso_piegato_alto':[0,1,4], #estensori 'polso_piegato_basso':[2,3,7], #flessori 'polso_ruotato_esterno':[0,3], #ulnari 'polso_ruotato_interno':[1,2], #radiali 'updown':[0,1], 'intest':[2,3], 'tutti':range(8)} class track(object): def __init__(self,data): self.data = data self.channels = data.shape[1] #number of channels self.samples = data.shape[0] #number of samples def set_baseline(self,number_of_samples = 30): #define the baseline for each channel, with this code we #don't care about how many channels are there, 2 or 3 or n #the shape of baseline will be 1xn #basically this code is doing this: for each column sum the first #30 values and do the average, the subtract this value from #all the values self.baseline = np.sum(self.data[0:number_of_samples,:],axis=0)/number_of_samples self.data -= self.baseline def moving_avg(self,samp_for_average): n_windows = int(len(self.data)/samp_for_average) for s in range(self.channels): for i in range(n_windows): self.data[i*samp_for_average:(i+1)*samp_for_average,s] = np.average(self.data[i*samp_for_average:(i+1)*samp_for_average,s]) def __getitem__(self,index): return self.data[index[0]][index[1]] def read_channel(self,channel): return self.data[:,channel] def shape(self): return self.data.shape class computation(th.Thread): def __init__(self,name,signal): th.Thread.__init__(self) self.signal = signal self.name = name def run(self): #we use alto/basso together with esterno/interno since #they aren't mutual exclusive movements, the wirst can #in fact go up while it may be extern/intern, but cannot go #up while it is down #we somehow simulate the fact that we are reading a stream of data #so we don't use all the data together, but once more at each step #feature extraction: position: baseline and movement: derivative #t represents time that goes by """ !!!! MUST BE A MULTIPLE OF 10 !!!! """ windows_length = 10 n_chann = self.signal.shape()[1] encoder = (lambda Y: 'a' if Y > windows_length/100 else 'b' if Y > -windows_length/100 else 'c') encoded = ['x']*8 t = 0 outfile = open('thread_data'+self.name+'.txt','w') #outfilerrr = open('prova_pos'+self.name+'.txt','w') flag = 1 print("%s: samples %d, channels %d"%(self.name,self.signal.shape()[0],self.signal.shape()[1]) ) try: while(1): der_ = self.signal[t,:] - self.signal[t+windows_length,:] #print(der_[0], self.signal[t,0], self.signal[t+windows_length,0] ) #se deltaY > deltaX .... calcoli sul quaderno, #qua aggiungo solo deltaX è sempre "window length" perchè è la distanza alla quale sono presi i punti i=0 encoded[0] = encoder(der_[0]) outfile.write("%c"%encoded[0]) for i in range(1,8): encoded[i] = encoder(der_[i]) outfile.write(',') outfile.write("%c"%encoded[i]) #slide window t += windows_length #deve essere almeno superiore alla media mobile #print(line) flag+=1 outfile.write('\n') #print(time.time()-start_time) except IndexError: outfile.close() print(flag) """ *********************** MAIN ********************** """ class offline_process(object): def __init__(self,filename): """ LOAD DATA """ data = load_data_into_matrix(filename,0,-1,8) """ DIVIDE INTO MEANINGFUL CHANNELS """ self.polso_updown = track(data[:,mode['tutti']]) #self.polso_intest = track(data[:,mode['intest']]) """ REMOVE BASELINE """ # self.polso_alto_track.set_baseline() # self.polso_basso_track.set_baseline() # self.polso_esterno_track.set_baseline() # self.polso_interno_track.set_baseline() """ LOW PASS FILTER """ self.polso_updown.moving_avg(10) #self.polso_intest.moving_avg(30) """ START TWO THREADS TO COMPUTE""" self.thread_updown = computation("-encoding",self.polso_updown) #self.thread_leftright = computation("intest",self.polso_updown) def __call__(self): #start a thread for each computation, which is left-right or #up down try: self.thread_updown.start() #self.thread_leftright.start() self.thread_updown.join() #self.thread_leftright.join() except KeyboardInterrupt: self.thread_updown.join() #self.thread_leftright.join() class occurrence_table(object): def __init__(self): self.items = [] self.number_of_occurrence = [] self.l = 0 self.total = 0 def __repr__(self): return "Object filled with %d items"%self.l def __str__(self): for i in range(self.l): print("%s: %d"%(self.items[i],self.number_of_occurrence[i])) return "----- End ------ " def append(self,item): j=0 for occurrence in self.items: if occurrence != item: j=j+1 else: self.number_of_occurrence[j]+=1 self.total += 1 return #se hai fatto tutto il for senza entrare nell'else vuol #dire che è nuovo, quindi lo appendo self.items.append(item) #ovviamente metto nel conteggio che ne ho aggiunto uno self.number_of_occurrence.append(1) self.l += 1 self.total += 1 #conteggio e item sono due liste separate ma l'elemento #j esimo di number_of.. indica quante volte l'elemento #j esimo di items è presente def get(self): return (self.items,self.number_of_occurrence) def prob(self): temp = [1]*self.l for i in range(self.l): temp[i] = self.number_of_occurrence[i]/self.total return temp if __name__ == "__main__": p = offline_process("model_updown.txt") p() encoded_signal = load_data_into_matrix("thread_data-encoding.txt",mode="encoded") entropy = lambda p: 0 if p==0 else -p*np.log2(p) symbols_taken = 3 n_samples = encoded_signal.shape[0] window_len = 30 start = 0 start_for_plot = 0 channel = encoded_signal.shape[1] n_steps= window_len - symbols_taken + 1 print("n_steps:",n_steps) ch = np.zeros((n_samples - window_len,channel),dtype='f') outfile = open('entropy.txt','w') while(start < n_samples - window_len): table = [] for i in range(channel): table.append(occurrence_table()) window = encoded_signal[start:start+window_len,:] for i in range(n_steps): for j in range(channel): table[j].append(window[i:i+symbols_taken,j].tostring()) entropy_per_channel = [0]*channel #il massimo dell'entropia quando ho tutto uguale, 3**3 perchè ho 3 simboli per 3 posizioni for j in range(channel): list_of_prob = table[j].prob() #print(list_of_prob) for i in range(len(list_of_prob)): entropy_per_channel[j] += entropy(list_of_prob[i]) ch[start_for_plot,j] = entropy_per_channel[j] outfile.write(str(entropy_per_channel[j])) outfile.write('\t') start += 1 start_for_plot += 1 outfile.write('\n') #print(table[0]) outfile.close() fig2, ax2 = plt.subplots(1,1) for p in range(channel): y = ch[:,p] ax2.plot(y,color=colorarray[p],label='ch'+str(p)) legend = ax2.legend(loc='upper left', shadow=True) plt.show() #
FrancesoM/UnlimitedHand-Learning
python_side/utilities.py
utilities.py
py
16,063
python
en
code
1
github-code
6
[ { "api_name": "numpy.zeros", "line_number": 52, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 76, "usage_type": "call" }, { "api_name": "numpy.unique", "line_number": 96, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 98, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 98, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 111, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 111, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 144, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 166, "usage_type": "call" }, { "api_name": "numpy.average", "line_number": 174, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 186, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 189, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 193, "usage_type": "call" }, { "api_name": "numpy.vstack", "line_number": 194, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 208, "usage_type": "call" }, { "api_name": "numpy.chararray", "line_number": 230, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 244, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 269, "usage_type": "call" }, { "api_name": "numpy.average", "line_number": 276, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 288, "usage_type": "attribute" }, { "api_name": "threading.Thread.__init__", "line_number": 290, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 290, "usage_type": "attribute" }, { "api_name": "numpy.log2", "line_number": 449, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 465, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 498, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 498, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 506, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 506, "usage_type": "name" } ]
30354806111
import sys # Enthought library imports from pyface.qt import QtCore, QtGui # Local imports from tvtk.util.gradient_editor import ( ColorControlPoint, ChannelBase, FunctionControl, GradientEditorWidget ) ########################################################################## # `QGradientControl` class. ########################################################################## class QGradientControl(QtGui.QWidget): """Widget which displays the gradient represented by an GradientTable object (and does nothing beyond that)""" def __init__(self, parent=None, gradient_table=None, width=100, height=100): """master: panel in which to place the control. GradientTable is the Table to which to attach.""" super(QGradientControl, self).__init__(parent=parent) self.resize(width, height) self.setAttribute(QtCore.Qt.WA_OpaquePaintEvent, True) self.width = width self.height = height self.gradient_table = gradient_table assert gradient_table.size == width self.setMinimumSize(100, 50) # currently only able to use gradient tables in the same size as the # canvas width def paintEvent(self, event): """Paint handler.""" super(QGradientControl, self).paintEvent(event) painter = QtGui.QPainter(self) brush = QtGui.QBrush(QtGui.QColor(0, 0, 0) ) painter.setBrush(brush) painter.setBackgroundMode(QtCore.Qt.OpaqueMode) sz = self.size() width, height = sz.width(), sz.height() xform = self.gradient_table.scaling_function start_y = 0 end_y = height if xform: # if a scaling transformation is provided, paint the original # gradient under the scaled gradient. start_y = height/2 # paint the original gradient as it stands in the table. color = QtGui.QColor() for x in range(width): (r,g,b,a) = self.gradient_table.get_pos_rgba_color_lerped(float(x)/(width-1)) color.setRgb(int(255*r), int(255*g), int(255*b)) painter.setPen(color) brush.setColor(color) painter.drawLine(x, start_y, x, end_y) if xform: # paint the scaled gradient below end_y = start_y start_y = 0 for x in range(width): f = float(x)/(width-1) (r,g,b,a) = self.gradient_table.get_pos_rgba_color_lerped(xform(f)) color.set(int(255*r), int(255*g), int(255*b)) brush.setColor(color) painter.drawLine(x, start_y, x, end_y) ########################################################################## # `Channel` class. ########################################################################## class Channel(ChannelBase): def paint(self, painter): """Paint current channel into Canvas (a canvas of a function control object). Contents of the canvas are not deleted prior to painting, so more than one channel can be painted into the same canvas. """ table = self.control.table # only control points which are active for the current channel # are to be painted. filter them out. relevant_control_points = [ x for x in table.control_points if self.name in x.active_channels ] # lines between control points color = QtGui.QColor(*self.rgb_color) painter.setPen(color) brush = QtGui.QBrush(color) painter.setBrush(brush) painter.setBackgroundMode(QtCore.Qt.OpaqueMode) for k in range( len(relevant_control_points) - 1 ): cur_point = relevant_control_points[k] next_point = relevant_control_points[1+k] painter.drawLine(self.get_pos_index(cur_point.pos), self.get_value_index(cur_point.color), self.get_pos_index(next_point.pos), self.get_value_index(next_point.color)) # control points themself. color = QtCore.Qt.black painter.setPen(color) for control_point in relevant_control_points: x = self.get_pos_index( control_point.pos ) y = self.get_value_index( control_point.color ) radius=6 #print(x,y) painter.drawRect(x-(radius/2.0), y-(radius/2.0), radius, radius) painter.drawRect(100,80,6,6) ########################################################################## # `QFunctionControl` class. ########################################################################## class QFunctionControl(QtGui.QWidget, FunctionControl): """Widget which displays a rectangular regions on which hue, sat, val or rgb values can be modified. An function control can have one or more attached color channels.""" # Radius around a control point center in which we'd still count a # click as "clicked the control point" control_pt_click_tolerance = 4 ChannelFactory = Channel def __init__(self, master=None, gradient_table=None, color_space=None, width=100, height=100): """Initialize a function control widget on tkframe master. Parameters: ----------- master: The master widget. Note that this widget *must* have the methods specified in the `AbstractGradientEditorWidget` interface. on_table_changed: Callback function taking a bool argument of meaning 'FinalUpdate'. FinalUpdate is true if a control point is dropped, created or removed and false if the update is due to a control point currently beeing dragged (but not yet dropped) color_space: String which specifies the channels painted on this control. May be any combination of h,s,v,r,g,b,a in which each channel occurs only once. set_status_text: a callback used to set the status text when using the editor. """ kw = dict( master=master, gradient_table=gradient_table, color_space=color_space, width=width, height=height ) super().__init__(**kw) self.resize(width, height) self.setMinimumSize(100, 50) ###################################################################### # Qt event handlers. ###################################################################### def paintEvent(self, event): super(QFunctionControl, self).paintEvent(event) painter = QtGui.QPainter(self) brush = QtGui.QBrush(QtGui.QColor(255, 255, 255)) painter.setBrush(brush) width, height = self.size().width(), self.size().height() painter.drawRect(0, 0, width, height) for channel in self.channels: channel.paint(painter) def mousePressEvent(self, event): if event.button() == QtCore.Qt.LeftButton: self.cur_drag = self.find_control_point(event.x(), event.y()) super(QFunctionControl, self).mousePressEvent(event) def mouseReleaseEvent(self, event): if event.button() == QtCore.Qt.LeftButton: if self.cur_drag: self.table_config_changed( final_update = True ) self.cur_drag = None elif event.button() == QtCore.Qt.RightButton: # toggle control point. check if there is a control point # under the mouse. If yes, delete it, if not, create one # at that point. cur_control_point = self.find_control_point(event.x(), None) if cur_control_point: # found a marker at the click position. delete it and return, # unless it is a fixed marker (at pos 0 or 1).. if ( cur_control_point[1].fixed ): # in this case do nothing. Fixed markers cannot be deleted. return self.table.control_points.remove(cur_control_point[1]) self.table_config_changed(final_update=True) else: # since there was no marker to remove at the point, we assume # that we should place one there new_control_point = ColorControlPoint(active_channels=self.active_channels_string) new_control_point.set_pos(self.channels[0].get_index_pos(event.x())) # set new control point color to the color currently present # at its designated position new_control_point.color = self.table.get_pos_color(new_control_point.pos) self.table.insert_control_point(new_control_point) self.table_config_changed(final_update = True) if isinstance(event, QtGui.QMouseEvent): super(QFunctionControl, self).mouseReleaseEvent(event) def leaveEvent(self, event): if self.cur_drag: self.table_config_changed( final_update = True ) self.cur_drag = None super(QFunctionControl, self).leaveEvent(event) def resizeEvent(self, event): sz = self.size() self.width = sz.width() self.height = sz.height() def mouseMoveEvent(self, event): # currently dragging a control point? channel = None point = None if self.cur_drag: channel = self.cur_drag[0] point = self.cur_drag[1] if ( not point.fixed ): point.set_pos( channel.get_index_pos(event.x()) ) point.activate_channels( self.active_channels_string ) self.table.sort_control_points() channel.set_value_index( point.color, event.y() ) self.table_config_changed( final_update = False ) screenX = event.x() screenY = event.y() width, height = self.size().width(), self.size().height() master = self.master s1, s2 = master.get_table_range() if channel is not None: name = self.text_map[channel.name] pos = s1 + (s2 - s1)*point.pos val = channel.get_value(point.color) txt = '%s: (%.3f, %.3f)'%(name, pos, val) else: x = s1 + (s2 - s1)*float(screenX)/(width-1) y = 1.0 - float(screenY)/(height-1) txt = "position: (%.3f, %.3f)"%(x, y) self.master.set_status_text(txt) ########################################################################## # `QGradientEditorWidget` class. ########################################################################## class QGradientEditorWidget(QtGui.QWidget, GradientEditorWidget): """A Gradient Editor widget that can be used anywhere. """ def __init__(self, master, vtk_table, on_change_color_table=None, colors=None): """ Parameters: ----------- vtk_table : the `tvtk.LookupTable` or `tvtk.VolumeProperty` object to set. on_change_color_table : A callback called when the color table changes. colors : list of 'rgb', 'hsv', 'h', 's', 'v', 'a' (Default : ['rgb', 'hsv', 'a']) 'rgb' creates one panel to edit Red, Green and Blue colors. 'hsv' creates one panel to edit Hue, Saturation and Value. 'h', 's', 'v', 'r', 'g', 'b', 'a' separately specified creates different panels for each. """ kw = dict(master=master, vtk_table=vtk_table, on_change_color_table=on_change_color_table, colors=colors) super().__init__(**kw) gradient_preview_width = self.gradient_preview_width gradient_preview_height = self.gradient_preview_height channel_function_width = self.channel_function_width channel_function_height = self.channel_function_height # set up all the panels in a grid # 6x2 size: 6 rows, 2 columns... grid = QtGui.QGridLayout() grid.setColumnStretch(0, 0) grid.setColumnStretch(1, 1) # "Gradient Viewer" panel, in position (0,1) for sizer self.gradient_control = QGradientControl(self, self.gradient_table, gradient_preview_width, gradient_preview_height) self.setToolTip('Right click for menu') grid.addWidget(QtGui.QLabel("", self), 0, 0) grid.addWidget(self.gradient_control, 0, 1) # Setup the context menu to fire for the Gradient control alone. gc = self.gradient_control gc.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) gc.customContextMenuRequested.connect(self.contextMenuEventOnGradient) # Add the function controls: function_controls = self.function_controls editor_data = self.editor_data row = 1 for color in self.colors: data = editor_data[color] control = QFunctionControl(self, self.gradient_table, color, channel_function_width, channel_function_height) txt = data[0] + self.tooltip_text control.setToolTip(txt) # Add name of editor (to left side of editor) grid.addWidget(QtGui.QLabel(data[1], self), row, 0) # Add the "RGB" control point editor grid.addWidget(control, row, 1) function_controls.append(control) row += 1 # The status text. self.text = QtGui.QLabel('status', self) grid.addWidget(self.text, row, 0, 1, 2) self.setLayout(grid) self.show() ###################################################################### # `GradientEditorWidget` interface. ###################################################################### def set_status_text(self, msg): self.text.setText(msg) ###################################################################### # Qt event methods. ###################################################################### def contextMenuEventOnGradient(self, pos): menu = QtGui.QMenu(self) saveAction = menu.addAction("Save as") loadAction = menu.addAction("Load") action = menu.exec_(self.mapToGlobal(pos)) if action == saveAction: self.on_save() elif action == loadAction: self.on_load() def on_save(self, event=None): """ Open "Save" dialog, write lookuptable to 3 files: ``*.lut`` (lookuptable) ``*.grad`` (gradient table for use with this program), and ``*.jpg`` (image of the gradient) """ wildcard = "Gradient Files (*.grad);;All Files (*.*)" filename, filter = QtGui.QFileDialog.getSaveFileName(self, "Save LUT to...", '', wildcard) if filename: self.save(filename) def on_load(self, event=None): """ Load a ``*.grad`` lookuptable file. """ wildcard = "Gradient Files (*.grad);;All Files (*.*)" filename, filter = QtGui.QFileDialog.getOpenFileName(self, "Open gradient file...", '', wildcard) if filename: self.load(filename) ########################################################################## # `QGradientEditor` class. ########################################################################## class QGradientEditor(QtGui.QMainWindow): """ QMainWindow that displays the gradient editor window, i.e. the thing that contains the gradient display, the function controls and the buttons. """ def __init__(self, vtk_table, on_change_color_table=None, colors=None): """Initialize the gradient editor window. Parameters ---------- vtk_table: Instance of vtkLookupTable, designating the table which is to be edited. on_change_color_table: Callback function taking no arguments. Called when the color table was changed and rendering is requested. """ super(QGradientEditor, self).__init__() self.setWindowTitle("Color Gradient Editor") self.widget = QGradientEditorWidget( master=self, vtk_table=vtk_table, on_change_color_table=on_change_color_table, colors=colors ) self.setCentralWidget(self.widget) self.resize(300, 500) self.statusBar() ## Set up the MenuBar menu = self.menuBar() file_menu = menu.addMenu("&File") file_action = QtGui.QAction("&Save", self) file_action.setStatusTip("Save CTF") file_action.triggered.connect(self.widget.on_save) file_menu.addAction(file_action) load_action = QtGui.QAction("&Load", self) load_action.setStatusTip("Load CTF") load_action.triggered.connect(self.widget.on_load) file_menu.addAction(load_action) quit_action = QtGui.QAction("&Quit", self) quit_action.setStatusTip("Quit application") quit_action.triggered.connect(QtGui.QApplication.instance().quit) file_menu.addAction(quit_action) help_menu = menu.addMenu("&Help") action = QtGui.QAction("&Help", self) action.setStatusTip("Help") action.triggered.connect(self.on_help) help_menu.addAction(action) action = QtGui.QAction("&About", self) action.setStatusTip("About application") action.triggered.connect(self.on_about) help_menu.addAction(action) def on_help(self, event=None): """ Help defining the mouse interactions """ message = "Right click to add control points. Left click to move control points" QtGui.QMessageBox.information(self, 'Help', message) def on_about(self, event=None): """ Who wrote the program?""" message = 'tk Gradient Editor for MayaVi1: Gerald Knizia ([email protected])\n'\ 'wxPython port: Pete Schmitt ([email protected])\n'\ 'Qt port: Prabhu Ramachandran\n'\ 'Enhanced for Mayavi2: Prabhu Ramachandran' QtGui.QMessageBox.information(self, 'About gradient editor', message) def main(): from tvtk.util.traitsui_gradient_editor import make_test_table import sys table, ctf, otf = make_test_table(lut=False) # the actual gradient editor code. def on_color_table_changed(): """If we had a vtk window running, update it here""" # print("Update Render Window") pass app = QtGui.QApplication.instance() editor = QGradientEditor(table, on_color_table_changed, colors=['rgb', 'a', 'h', 's', 'v'], ) editor.setWindowTitle("Gradient editor") editor.show() sys.exit(app.exec_()) ########################################################################## # Test application. ########################################################################## if __name__ == "__main__": main()
enthought/mayavi
tvtk/util/qt_gradient_editor.py
qt_gradient_editor.py
py
19,600
python
en
code
1,177
github-code
6
[ { "api_name": "pyface.qt.QtGui.QWidget", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 15, "usage_type": "name" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 23, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 23, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QPainter", "line_number": 37, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 37, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QBrush", "line_number": 38, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 38, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QColor", "line_number": 38, "usage_type": "call" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 40, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 40, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QColor", "line_number": 53, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 53, "usage_type": "name" }, { "api_name": "tvtk.util.gradient_editor.ChannelBase", "line_number": 75, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QColor", "line_number": 91, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 91, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QBrush", "line_number": 93, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 93, "usage_type": "name" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 95, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 95, "usage_type": "name" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 106, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 106, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QWidget", "line_number": 120, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 120, "usage_type": "name" }, { "api_name": "tvtk.util.gradient_editor.FunctionControl", "line_number": 120, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QPainter", "line_number": 169, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 169, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QBrush", "line_number": 170, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 170, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QColor", "line_number": 170, "usage_type": "call" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 178, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 178, "usage_type": "name" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 183, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 183, "usage_type": "name" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 187, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 187, "usage_type": "name" }, { "api_name": "tvtk.util.gradient_editor.ColorControlPoint", "line_number": 203, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QMouseEvent", "line_number": 213, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 213, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QWidget", "line_number": 261, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 261, "usage_type": "name" }, { "api_name": "tvtk.util.gradient_editor.GradientEditorWidget", "line_number": 261, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QGridLayout", "line_number": 301, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 301, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QLabel", "line_number": 311, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 311, "usage_type": "name" }, { "api_name": "pyface.qt.QtCore.Qt", "line_number": 316, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtCore", "line_number": 316, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QLabel", "line_number": 332, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 332, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QLabel", "line_number": 339, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 339, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QMenu", "line_number": 355, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 355, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QFileDialog.getSaveFileName", "line_number": 371, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QFileDialog", "line_number": 371, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 371, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QFileDialog.getOpenFileName", "line_number": 383, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QFileDialog", "line_number": 383, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 383, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QMainWindow", "line_number": 394, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 394, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAction", "line_number": 426, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 426, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAction", "line_number": 431, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 431, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAction", "line_number": 436, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 436, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QApplication.instance", "line_number": 438, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QApplication", "line_number": 438, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 438, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAction", "line_number": 442, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 442, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QAction", "line_number": 446, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui", "line_number": 446, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QMessageBox.information", "line_number": 455, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QMessageBox", "line_number": 455, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 455, "usage_type": "name" }, { "api_name": "pyface.qt.QtGui.QMessageBox.information", "line_number": 463, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QMessageBox", "line_number": 463, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 463, "usage_type": "name" }, { "api_name": "tvtk.util.traitsui_gradient_editor.make_test_table", "line_number": 469, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QApplication.instance", "line_number": 476, "usage_type": "call" }, { "api_name": "pyface.qt.QtGui.QApplication", "line_number": 476, "usage_type": "attribute" }, { "api_name": "pyface.qt.QtGui", "line_number": 476, "usage_type": "name" }, { "api_name": "sys.exit", "line_number": 483, "usage_type": "call" } ]
41913795360
import logging from functools import partial from datasets import load_dataset from transformers import ( Seq2SeqTrainer, Seq2SeqTrainingArguments, WhisperForConditionalGeneration, WhisperProcessor, ) from src.callbacks import ShuffleCallback from src.config import Config, TrainingArgumentsConfig from src.data_collator import DataCollatorSpeechSeq2SeqWithPadding from src.metrics import compute_metrics from src.prepare_dataset import prepare_dataset logging.basicConfig(level=logging.INFO) def train(): config = Config() training_args_config = TrainingArgumentsConfig() training_args = Seq2SeqTrainingArguments(**training_args_config.dict()) if config.prepare_dataset: dataset, _ = prepare_dataset(config) else: dataset = load_dataset(config.dataset_name, config.dataset_lang) logging.info("Training model...") model = WhisperForConditionalGeneration.from_pretrained(config.model_name) processor = WhisperProcessor.from_pretrained( config.model_name, task=config.task, language=config.model_lang ) compute_metrics_fn = partial(compute_metrics, processor=processor) trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=dataset["train"], eval_dataset=dataset["validation"], data_collator=DataCollatorSpeechSeq2SeqWithPadding(processor=processor), compute_metrics=compute_metrics_fn, tokenizer=processor, callbacks=[ShuffleCallback()], ) trainer.train() trainer.push_to_hub() if __name__ == "__main__": train()
Giorgi-Sekhniashvili/geo_whisper
train.py
train.py
py
1,605
python
en
code
0
github-code
6
[ { "api_name": "logging.basicConfig", "line_number": 18, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 18, "usage_type": "attribute" }, { "api_name": "src.config.Config", "line_number": 22, "usage_type": "call" }, { "api_name": "src.config.TrainingArgumentsConfig", "line_number": 23, "usage_type": "call" }, { "api_name": "transformers.Seq2SeqTrainingArguments", "line_number": 24, "usage_type": "call" }, { "api_name": "src.prepare_dataset.prepare_dataset", "line_number": 27, "usage_type": "call" }, { "api_name": "datasets.load_dataset", "line_number": 29, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 30, "usage_type": "call" }, { "api_name": "transformers.WhisperForConditionalGeneration.from_pretrained", "line_number": 32, "usage_type": "call" }, { "api_name": "transformers.WhisperForConditionalGeneration", "line_number": 32, "usage_type": "name" }, { "api_name": "transformers.WhisperProcessor.from_pretrained", "line_number": 33, "usage_type": "call" }, { "api_name": "transformers.WhisperProcessor", "line_number": 33, "usage_type": "name" }, { "api_name": "functools.partial", "line_number": 36, "usage_type": "call" }, { "api_name": "src.metrics.compute_metrics", "line_number": 36, "usage_type": "argument" }, { "api_name": "transformers.Seq2SeqTrainer", "line_number": 37, "usage_type": "call" }, { "api_name": "src.data_collator.DataCollatorSpeechSeq2SeqWithPadding", "line_number": 42, "usage_type": "call" }, { "api_name": "src.callbacks.ShuffleCallback", "line_number": 45, "usage_type": "call" } ]
8499225984
from booleano.exc import InvalidOperationError from booleano.operations.operands import Operand __all__ = ["String", "Number", "Arithmetic", "Set"] class Constant(Operand): """ Base class for constant operands. The only operation that is common to all the constants is equality (see :meth:`equals`). Constants don't rely on the context -- they are constant! .. warning:: This class is available as the base for the built-in :class:`String`, :class:`Number` and :class:`Set` classes. User-defined constants aren't supported, but you can assign a name to a constant (see :term:`binding`). """ operations = {'equality'} def __init__(self, constant_value): """ :param constant_value: The Python value represented by the Booleano constant. :type constant_value: :class:`object` """ self.constant_value = constant_value def to_python(self, context): """ Return the value represented by this constant. """ return self.constant_value def equals(self, value, context): """ Check if this constant equals ``value``. """ return self.constant_value == value def check_equivalence(self, node): """ Make sure constant ``node`` and this constant are equivalent. :param node: The other constant which may be equivalent to this one. :type node: Constant :raises AssertionError: If the constants are of different types or represent different values. """ super(Constant, self).check_equivalence(node) assert node.constant_value == self.constant_value, \ u'Constants %s and %s represent different values' % (self, node) class String(Constant): u""" Constant string. These constants only support equality operations. .. note:: **Membership operations aren't supported** Although both sets and strings are item collections, the former is unordered and the later is ordered. If they were supported, there would some ambiguities to sort out, because users would expect the following operation results: - ``"ao" ⊂ "hola"`` is false: If strings were also sets, then the resulting operation would be ``{"a", "o"} ⊂ {"h", "o", "l", "a"}``, which is true. - ``"la" ∈ "hola"`` is true: If strings were also sets, then the resulting operation would be ``{"l", "a"} ∈ {"h", "o", "l", "a"}``, which would be an *invalid operation* because the first operand must be an item, not a set. But if we make an exception and take the first operand as an item, the resulting operation would be ``"la" ∈ {"h", "o", "l", "a"}``, which is not true. The solution to the problems above would involve some magic which contradicts the definition of a set: Take the second operand as an *ordered collection*. But it'd just cause more trouble, because both operations would be equivalent! Also, there would be other issues to take into account (or not), like case-sensitivity. Therefore, if this functionality is needed, developers should create functions to handle it. """ def __init__(self, string): """ :param string: The Python string to be represented by this Booleano string. :type string: :class:`basestring` ``string`` will be converted to :class:`unicode`, so it doesn't have to be a :class:`basestring` initially. """ import sys if sys.version_info >= (3, 0): string = str(string) else: string = unicode(string) super(String, self).__init__(string) def equals(self, value, context): """Turn ``value`` into a string if it isn't a string yet""" value = str(value) return super(String, self).equals(value, context) def __unicode__(self): """Return the Unicode representation of this constant string.""" return u'"%s"' % self.constant_value def __hash__(self): return id(self) def __repr__(self): """Return the representation for this constant string.""" return '<String "%s">' % self.constant_value.encode("utf-8") class ArithmeticVariable(object): def __init__(self, number, namespace, namespace_separator=":"): self.namespace_separator = namespace_separator self.parsed_results = number self._namespace = namespace self.variables = {} self.__define_variables() number = self.flatten(self.parsed_results) self.__full_expression = "".join(number) def __str__(self): number = self.flatten(self.parsed_results) return "".join(number) def __define_variables(self): number = self.parsed_results temp = [] for n in number: t = self.__get_variable_names(n) if isinstance(t, list): temp.extend(t) else: temp.append(t) self.required_variables = temp temp = {} for v in self.required_variables: for k, val in v.items(): temp[k] = val self.required_variables = temp def __get_variable_names(self, number): from pyparsing import ParseResults import re temp = [] if isinstance(number, ParseResults): for n in number: t = self.__get_variable_names(n) if isinstance(t, list): temp.extend(t) else: temp.append(t) return temp elif len(re.findall("[a-zA-Z" + self.namespace_separator + "]+", number)) > 0: var = str(number).split(self.namespace_separator) variable_namespaces = var[0:-1] variable_name = var[-1] return {str(number): self._namespace.get_object(variable_name, variable_namespaces)} return temp @classmethod def flatten(cls, s): from pyparsing import ParseResults if s == []: return s if isinstance(s[0], ParseResults): return cls.flatten(s[0]) + cls.flatten(s[1:]) return s[:1] + cls.flatten(s[1:]) def replace(self, num, context, namespace=True): for k, v in self.required_variables.items(): if namespace and self.namespace_separator not in k: continue num = num.replace(k, str(v.to_python(context))) return num def evaluate(self, context): number = self.__full_expression # Replace all variables with numbers # First replace variables with namespaces defined to avoid clobbering number = self.replace(number, context) # Then replace variables with no namespace number = self.replace(number, context, False) number = number.replace("^", "**") from booleano import SafeEval answer = SafeEval.eval_expr(number) return answer class Arithmetic(Constant): """ Numeric constant. These constants support inequality operations; see :meth:`greater_than` and :meth:`less_than`. """ operations = Constant.operations | {'inequality'} def __init__(self, number, namespace, namespace_separator=":"): """ :param number: The number to be represented, as a Python object. :type number: :class:`object` ``number`` is converted into a :class:`float` internally, so it can be an :class:`string <basestring>` initially. """ self.namespace_sparator = namespace_separator super(Arithmetic, self).__init__(ArithmeticVariable(number, namespace, namespace_separator)) def equals(self, value, context): """ Check if this numeric constant equals ``value``. :raises InvalidOperationError: If ``value`` can't be turned into a float. ``value`` will be turned into a float prior to the comparison, to support strings. """ print("Constant equals") return super(Arithmetic, self).equals(self._to_number(value), context) def greater_than(self, value, context): """ Check if this numeric constant is greater than ``value``. :raises InvalidOperationError: If ``value`` can't be turned into a float. ``value`` will be turned into a float prior to the comparison, to support strings. """ print("Constant gt") return self.constant_value > self._to_number(value) def less_than(self, value, context): """ Check if this numeric constant is less than ``value``. :raises InvalidOperationError: If ``value`` can't be turned into a float. ``value`` will be turned into a float prior to the comparison, to support strings. """ print("Constant lt") return self.constant_value < self._to_number(value) def to_python(self, context): return self.constant_value.evaluate(context) def _to_number(self, value): """ Convert ``value`` to a Python float and return the new value. :param value: The value to be converted into float. :return: The value as a float. :rtype: float :raises InvalidOperationError: If ``value`` can't be converted. """ print("Constant to_num") try: return float(value) except ValueError: raise InvalidOperationError('"%s" is not a number' % value) def __unicode__(self): """Return the Unicode representation of this constant number.""" print("constant unicode") return str(self.constant_value) def __repr__(self): """Return the representation for this constant number.""" return '<Arithmetic %s>' % self.constant_value class Number(Constant): """ Numeric constant. These constants support inequality operations; see :meth:`greater_than` and :meth:`less_than`. """ operations = Constant.operations | {'inequality'} def __init__(self, number): """ :param number: The number to be represented, as a Python object. :type number: :class:`object` ``number`` is converted into a :class:`float` internally, so it can be an :class:`string <basestring>` initially. """ number = float(number) super(Number, self).__init__(number) def equals(self, value, context): """ Check if this numeric constant equals ``value``. :raises InvalidOperationError: If ``value`` can't be turned into a float. ``value`` will be turned into a float prior to the comparison, to support strings. """ return super(Number, self).equals(self._to_number(value), context) def greater_than(self, value, context): """ Check if this numeric constant is greater than ``value``. :raises InvalidOperationError: If ``value`` can't be turned into a float. ``value`` will be turned into a float prior to the comparison, to support strings. """ return self.constant_value > self._to_number(value) def less_than(self, value, context): """ Check if this numeric constant is less than ``value``. :raises InvalidOperationError: If ``value`` can't be turned into a float. ``value`` will be turned into a float prior to the comparison, to support strings. """ return self.constant_value < self._to_number(value) def _to_number(self, value): """ Convert ``value`` to a Python float and return the new value. :param value: The value to be converted into float. :return: The value as a float. :rtype: float :raises InvalidOperationError: If ``value`` can't be converted. """ try: return float(value) except ValueError: raise InvalidOperationError('"%s" is not a number' % value) def __unicode__(self): """Return the Unicode representation of this constant number.""" return str(self.constant_value) def __repr__(self): """Return the representation for this constant number.""" return '<Number %s>' % self.constant_value class Set(Constant): """ Constant sets. These constants support membership operations; see :meth:`contains` and :meth:`is_subset`. """ operations = Constant.operations | {"inequality", "membership"} def __init__(self, *items): """ :raises booleano.exc.InvalidOperationError: If at least one of the ``items`` is not an operand. """ for item in items: if not isinstance(item, Operand): raise InvalidOperationError('Item "%s" is not an operand, so ' 'it cannot be a member of a set' % item) super(Set, self).__init__(set(items)) def to_python(self, context): """ Return a set made up of the Python representation of the operands contained in this set. """ items = set(item.to_python(context) for item in self.constant_value) return items def equals(self, value, context): """Check if all the items in ``value`` are the same of this set.""" value = set(value) return value == self.to_python(context) def less_than(self, value, context): """ Check if this set has less items than the number represented in ``value``. :raises InvalidOperationError: If ``value`` is not an integer. """ value = self._to_int(value) return len(self.constant_value) < value def greater_than(self, value, context): """ Check if this set has more items than the number represented in ``value``. :raises InvalidOperationError: If ``value`` is not an integer. """ value = self._to_int(value) return len(self.constant_value) > value def belongs_to(self, value, context): """ Check that this constant set contains the ``value`` item. """ for item in self.constant_value: try: if item.equals(value, context): return True except InvalidOperationError: continue return False def is_subset(self, value, context): """ Check that the ``value`` set is a subset of this constant set. """ for item in value: if not self.belongs_to(item, context): return False return True def check_equivalence(self, node): """ Make sure set ``node`` and this set are equivalent. :param node: The other set which may be equivalent to this one. :type node: Set :raises AssertionError: If ``node`` is not a set or it's a set with different elements. """ Operand.check_equivalence(self, node) unmatched_elements = list(self.constant_value) assert len(unmatched_elements) == len(node.constant_value), \ u'Sets %s and %s do not have the same cardinality' % \ (unmatched_elements, node) # Checking that each element is represented by a mock operand: for element in node.constant_value: for key in range(len(unmatched_elements)): if unmatched_elements[key] == element: del unmatched_elements[key] break assert 0 == len(unmatched_elements), \ u'No match for the following elements: %s' % unmatched_elements def __unicode__(self): """Return the Unicode representation of this constant set.""" elements = [str(element) for element in self.constant_value] elements = u", ".join(elements) return "{%s}" % elements def __repr__(self): """Return the representation for this constant set.""" elements = [repr(element) for element in self.constant_value] elements = ", ".join(elements) if elements: elements = " " + elements return '<Set%s>' % elements @classmethod def _to_int(cls, value): """ Convert ``value`` is to integer if possible. :param value: The value to be verified. :return: ``value`` as integer. :rtype: int :raises InvalidOperationError: If ``value`` is not an integer. This is a workaround for Python < 2.6, where floats didn't have the ``.is_integer()`` method. """ try: value_as_int = int(value) is_int = value_as_int == float(value) except (ValueError, TypeError): is_int = False if not is_int: raise InvalidOperationError("To compare the amount of items in a " "set, the operand %s has to be an " "integer" % repr(value)) return value_as_int
MikeDombo/Stock_Backtester
booleano/operations/operands/constants.py
constants.py
py
15,020
python
en
code
3
github-code
6
[ { "api_name": "booleano.operations.operands.Operand", "line_number": 7, "usage_type": "name" }, { "api_name": "sys.version_info", "line_number": 114, "usage_type": "attribute" }, { "api_name": "pyparsing.ParseResults", "line_number": 171, "usage_type": "name" }, { "api_name": "re.findall", "line_number": 179, "usage_type": "call" }, { "api_name": "pyparsing.ParseResults", "line_number": 191, "usage_type": "name" }, { "api_name": "booleano.SafeEval.eval_expr", "line_number": 211, "usage_type": "call" }, { "api_name": "booleano.SafeEval", "line_number": 211, "usage_type": "name" }, { "api_name": "{'ParseResults': 'pyparsing.ParseResults', 're': 're', 'SafeEval': 'booleano.SafeEval'}", "line_number": 237, "usage_type": "call" }, { "api_name": "booleano.exc.InvalidOperationError", "line_number": 298, "usage_type": "call" }, { "api_name": "booleano.exc.InvalidOperationError", "line_number": 386, "usage_type": "call" }, { "api_name": "booleano.operations.operands.Operand", "line_number": 416, "usage_type": "argument" }, { "api_name": "booleano.exc.InvalidOperationError", "line_number": 417, "usage_type": "call" }, { "api_name": "booleano.exc.InvalidOperationError", "line_number": 467, "usage_type": "name" }, { "api_name": "booleano.operations.operands.Operand.check_equivalence", "line_number": 491, "usage_type": "call" }, { "api_name": "booleano.operations.operands.Operand", "line_number": 491, "usage_type": "name" }, { "api_name": "booleano.exc.InvalidOperationError", "line_number": 542, "usage_type": "call" } ]
86366418129
import numpy as np import matplotlib.pyplot as plt def radial_kernel(x0, X, tau): return np.exp(np.sum((X - x0) ** 2, axis=1) / (-2 * tau * tau)) def local_regression(x0, X, Y, tau): # add bias term x0 = np.r_[1, x0] X = np.c_[np.ones(len(X)), X] # fit model: normal equations with kernel xw = X.T * radial_kernel(x0, X, tau) beta = np.linalg.pinv(xw @ X) @ xw @ Y # predict value return x0 @ beta def generate_data(): n = 1000 X = np.linspace(-3, 3, num=n) Y = np.log(np.abs(X ** 2 - 1) + .5) # Y = np.sin(X) + 0.3 * np.random.randn(n) # plt.scatter(X, Y, s=5, color="green") plt.savefig("LocalWeightedLinearRegression2-DataInitial.png") plt.cla() # Clear axis plt.clf() # Clear figure plt.close() # Close a figure window # jitter X X += np.random.normal(scale=.1, size=n) plt.scatter(X, Y, s=5, color="green") plt.savefig("LocalWeightedLinearRegression2-DatawithGitter.png") plt.cla() # Clear axis plt.clf() # Clear figure plt.close() # Close a figure window return X, Y def create_plot(X, Y, tau): fig, axes = plt.subplots(3, 2, figsize=(16, 8), sharex=False, sharey=False, dpi=120) # plt.subplots(3, 2 ) means display data in 3 rows and 2 columns # Plot each axes for i, ax in enumerate(axes.ravel()): domain = np.linspace(-3, 3, num=40) prediction = [local_regression(x0, X, Y, tau[i]) for x0 in domain] ax.scatter(X, Y, s=5, color="green", label="actual") ax.scatter(domain, prediction, s=5, color='red', label="prediction") ax.set( title="tau=" + str(tau[i]), xlabel='X', ylabel='Y', ) ax.legend(loc='best') plt.suptitle('Local Weight Linear regression', size=10, color='blue') plt.savefig("LocalWeightedLinearRegression2-DataAndPrediction.png") return plt if __name__ == "__main__": X, Y = generate_data() tau = [800, 10, .1, .01, .08, .9] myplot = create_plot(X, Y, tau) myplot.show()
MitaAcharya/MachineLeaning
AndrewNG/Week2/Week2_LWR_Extra/LocalWeightedLinearRegression.py
LocalWeightedLinearRegression.py
py
2,053
python
en
code
0
github-code
6
[ { "api_name": "numpy.exp", "line_number": 6, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 6, "usage_type": "call" }, { "api_name": "numpy.r_", "line_number": 11, "usage_type": "attribute" }, { "api_name": "numpy.c_", "line_number": 12, "usage_type": "attribute" }, { "api_name": "numpy.ones", "line_number": 12, "usage_type": "call" }, { "api_name": "numpy.linalg.pinv", "line_number": 15, "usage_type": "call" }, { "api_name": "numpy.linalg", "line_number": 15, "usage_type": "attribute" }, { "api_name": "numpy.linspace", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.abs", "line_number": 23, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 25, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 25, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 26, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 26, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.cla", "line_number": 27, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 27, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 28, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 28, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 29, "usage_type": "name" }, { "api_name": "numpy.random.normal", "line_number": 31, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 31, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 32, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 32, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 33, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 33, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.cla", "line_number": 34, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 34, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.clf", "line_number": 35, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 35, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.close", "line_number": 36, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 36, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.subplots", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 41, "usage_type": "name" }, { "api_name": "numpy.linspace", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.suptitle", "line_number": 55, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 55, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.savefig", "line_number": 56, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 56, "usage_type": "name" }, { "api_name": "matplotlib.pyplot", "line_number": 57, "usage_type": "name" } ]