repo_id
stringlengths
21
96
file_path
stringlengths
31
155
content
stringlengths
1
92.9M
__index_level_0__
int64
0
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/registration/_optical_flow_utils.py
"""Common tools to optical flow algorithms. """ import cupy as cp import numpy as np from cupyx.scipy import ndimage as ndi from cucim.skimage.transform import pyramid_reduce from cucim.skimage.util.dtype import _convert def get_warp_points(grid, flow): """Compute warp point coordinates. Parameters ---------- grid : iterable The sparse grid to be warped (obtained using ``np.meshgrid(..., sparse=True)).``) flow : ndarray The warping motion field. Returns ------- out : ndarray The warp point coordinates. """ out = flow.copy() for idx, g in enumerate(grid): out[idx, ...] += g return out def resize_flow(flow, shape): """Rescale the values of the vector field (u, v) to the desired shape. The values of the output vector field are scaled to the new resolution. Parameters ---------- flow : ndarray The motion field to be processed. shape : iterable Couple of integers representing the output shape. Returns ------- rflow : ndarray The resized and rescaled motion field. """ scale = [n / o for n, o in zip(shape, flow.shape[1:])] scale_factor = cp.asarray(scale, dtype=flow.dtype) for _ in shape: scale_factor = scale_factor[..., cp.newaxis] rflow = scale_factor * ndi.zoom( flow, [1] + scale, order=0, mode="nearest", prefilter=False ) return rflow def get_pyramid(I, downscale=2.0, nlevel=10, min_size=16): # noqa """Construct image pyramid. Parameters ---------- I : ndarray The image to be preprocessed (Gray scale or RGB). downscale : float The pyramid downscale factor. nlevel : int The maximum number of pyramid levels. min_size : int The minimum size for any dimension of the pyramid levels. Returns ------- pyramid : list[ndarray] The coarse to fine images pyramid. """ pyramid = [I] size = min(I.shape) count = 1 while (count < nlevel) and (size > downscale * min_size): J = pyramid_reduce(pyramid[-1], downscale, channel_axis=None) pyramid.append(J) size = min(J.shape) count += 1 return pyramid[::-1] def coarse_to_fine( I0, I1, solver, downscale=2, nlevel=10, min_size=16, dtype=np.float32 ): """Generic coarse to fine solver. Parameters ---------- I0 : ndarray The first gray scale image of the sequence. I1 : ndarray The second gray scale image of the sequence. solver : callable The solver applied at each pyramid level. downscale : float The pyramid downscale factor. nlevel : int The maximum number of pyramid levels. min_size : int The minimum size for any dimension of the pyramid levels. dtype : dtype Output data type. Returns ------- flow : ndarray The estimated optical flow components for each axis. """ if I0.shape != I1.shape: raise ValueError("Input images should have the same shape") if np.dtype(dtype).char not in "efdg": raise ValueError( "Only floating point data type are valid" " for optical flow" ) pyramid = list( zip( get_pyramid(_convert(I0, dtype), downscale, nlevel, min_size), get_pyramid(_convert(I1, dtype), downscale, nlevel, min_size), ) ) # Initialization to 0 at coarsest level. flow = cp.zeros((pyramid[0][0].ndim,) + pyramid[0][0].shape, dtype=dtype) flow = solver(pyramid[0][0], pyramid[0][1], flow) for J0, J1 in pyramid[1:]: flow = solver(J0, J1, resize_flow(flow, J0.shape)) return flow
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/registration/_optical_flow.py
# coding: utf-8 """TV-L1 optical flow algorithm implementation. """ from functools import partial from itertools import combinations_with_replacement import cupy as cp from cupyx.scipy import ndimage as ndi from .._shared._gradient import gradient from .._shared.utils import _supported_float_type from ..transform import warp from ._optical_flow_utils import coarse_to_fine, get_warp_points def _tvl1( reference_image, moving_image, flow0, attachment, tightness, num_warp, num_iter, tol, prefilter, ): """TV-L1 solver for optical flow estimation. Parameters ---------- reference_image : ndarray, shape (M, N[, P[, ...]]) The first gray scale image of the sequence. moving_image : ndarray, shape (M, N[, P[, ...]]) The second gray scale image of the sequence. flow0 : ndarray, shape (image0.ndim, M, N[, P[, ...]]) Initialization for the vector field. attachment : float Attachment parameter. The smaller this parameter is, the smoother is the solutions. tightness : float Tightness parameter. It should have a small value in order to maintain attachment and regularization parts in correspondence. num_warp : int Number of times moving_image is warped. num_iter : int Number of fixed point iteration. tol : float Tolerance used as stopping criterion based on the L² distance between two consecutive values of (u, v). prefilter : bool Whether to prefilter the estimated optical flow before each image warp. Returns ------- flow : ndarray, shape ((image0.ndim, M, N[, P[, ...]]) The estimated optical flow components for each axis. """ dtype = reference_image.dtype grid = cp.meshgrid( *[cp.arange(n, dtype=dtype) for n in reference_image.shape], indexing="ij", sparse=True, ) dt = 0.5 / reference_image.ndim reg_num_iter = 2 f0 = attachment * tightness f1 = dt / tightness tol *= reference_image.size flow_current = flow_previous = flow0 g = cp.zeros((reference_image.ndim,) + reference_image.shape, dtype=dtype) proj = cp.zeros( ( reference_image.ndim, reference_image.ndim, ) + reference_image.shape, dtype=dtype, ) s_g = [slice(None)] * g.ndim s_p = [slice(None)] * proj.ndim s_d = [slice(None)] * (proj.ndim - 2) for _ in range(num_warp): if prefilter: flow_current = ndi.median_filter( flow_current, [1] + reference_image.ndim * [3] ) image1_warp = warp( moving_image, get_warp_points(grid, flow_current), mode="edge" ) # output_as_array=True stacks the gradients along the first axis grad = gradient(image1_warp, output_as_array=True) NI = (grad * grad).sum(0) NI[NI == 0] = 1 rho_0 = image1_warp - reference_image - (grad * flow_current).sum(0) for _ in range(num_iter): # Data term rho = rho_0 + (grad * flow_current).sum(0) idx = abs(rho) <= f0 * NI flow_auxiliary = flow_current flow_auxiliary[:, idx] -= rho[idx] * grad[:, idx] / NI[idx] idx = ~idx srho = f0 * cp.sign(rho[idx]) flow_auxiliary[:, idx] -= srho * grad[:, idx] # Regularization term flow_current = flow_auxiliary.copy() for idx in range(reference_image.ndim): s_p[0] = idx for _ in range(reg_num_iter): for ax in range(reference_image.ndim): s_g[0] = ax s_g[ax + 1] = slice(0, -1) g[tuple(s_g)] = cp.diff(flow_current[idx], axis=ax) s_g[ax + 1] = slice(None) norm = cp.sqrt((g * g).sum(0, keepdims=True)) norm *= f1 norm += 1.0 proj[idx] -= dt * g proj[idx] /= norm # d will be the (negative) divergence of proj[idx] d = -proj[idx].sum(0) for ax in range(reference_image.ndim): s_p[1] = ax s_p[ax + 2] = slice(0, -1) s_d[ax] = slice(1, None) d[tuple(s_d)] += proj[tuple(s_p)] s_p[ax + 2] = slice(None) s_d[ax] = slice(None) flow_current[idx] = flow_auxiliary[idx] + d flow_previous -= flow_current # The difference as stopping criteria if (flow_previous * flow_previous).sum() < tol: break flow_previous = flow_current return flow_current def optical_flow_tvl1( reference_image, moving_image, *, attachment=15, tightness=0.3, num_warp=5, num_iter=10, tol=1e-4, prefilter=False, dtype=cp.float32, ): r"""Coarse to fine optical flow estimator. The TV-L1 solver is applied at each level of the image pyramid. TV-L1 is a popular algorithm for optical flow estimation introduced by Zack et al. [1]_, improved in [2]_ and detailed in [3]_. Parameters ---------- reference_image : ndarray, shape (M, N[, P[, ...]]) The first gray scale image of the sequence. moving_image : ndarray, shape (M, N[, P[, ...]]) The second gray scale image of the sequence. attachment : float, optional Attachment parameter (:math:`\lambda` in [1]_). The smaller this parameter is, the smoother the returned result will be. tightness : float, optional Tightness parameter (:math:`\tau` in [1]_). It should have a small value in order to maintain attachment and regularization parts in correspondence. num_warp : int, optional Number of times moving_image is warped. num_iter : int, optional Number of fixed point iteration. tol : float, optional Tolerance used as stopping criterion based on the L² distance between two consecutive values of (u, v). prefilter : bool, optional Whether to prefilter the estimated optical flow before each image warp. When True, a median filter with window size 3 along each axis is applied. This helps to remove potential outliers. dtype : dtype, optional Output data type: must be floating point. Single precision provides good results and saves memory usage and computation time compared to double precision. Returns ------- flow : ndarray, shape ((image0.ndim, M, N[, P[, ...]]) The estimated optical flow components for each axis. Notes ----- Color images are not supported. References ---------- .. [1] Zach, C., Pock, T., & Bischof, H. (2007, September). A duality based approach for realtime TV-L 1 optical flow. In Joint pattern recognition symposium (pp. 214-223). Springer, Berlin, Heidelberg. :DOI:`10.1007/978-3-540-74936-3_22` .. [2] Wedel, A., Pock, T., Zach, C., Bischof, H., & Cremers, D. (2009). An improved algorithm for TV-L 1 optical flow. In Statistical and geometrical approaches to visual motion analysis (pp. 23-45). Springer, Berlin, Heidelberg. :DOI:`10.1007/978-3-642-03061-1_2` .. [3] Pérez, J. S., Meinhardt-Llopis, E., & Facciolo, G. (2013). TV-L1 optical flow estimation. Image Processing On Line, 2013, 137-150. :DOI:`10.5201/ipol.2013.26` Examples -------- >>> import cupy as cp >>> from cucim.skimage.color import rgb2gray >>> from skimage.data import stereo_motorcycle >>> from cucim.skimage.registration import optical_flow_tvl1 >>> image0, image1, disp = [cp.array(a) for a in stereo_motorcycle()] >>> # --- Convert the images to gray level: color is not supported. >>> image0 = rgb2gray(image0) >>> image1 = rgb2gray(image1) >>> flow = optical_flow_tvl1(image1, image0) """ solver = partial( _tvl1, attachment=attachment, tightness=tightness, num_warp=num_warp, num_iter=num_iter, tol=tol, prefilter=prefilter, ) if cp.dtype(dtype) != _supported_float_type(dtype): msg = f"dtype={dtype} is not supported. Try 'float32' or 'float64.'" raise ValueError(msg) return coarse_to_fine(reference_image, moving_image, solver, dtype=dtype) def _ilk( reference_image, moving_image, flow0, radius, num_warp, gaussian, prefilter ): """Iterative Lucas-Kanade (iLK) solver for optical flow estimation. Parameters ---------- reference_image : ndarray, shape (M, N[, P[, ...]]) The first gray scale image of the sequence. moving_image : ndarray, shape (M, N[, P[, ...]]) The second gray scale image of the sequence. flow0 : ndarray, shape (reference_image.ndim, M, N[, P[, ...]]) Initialization for the vector field. radius : int Radius of the window considered around each pixel. num_warp : int Number of times moving_image is warped. gaussian : bool if True, a gaussian kernel is used for the local integration. Otherwise, a uniform kernel is used. prefilter : bool Whether to prefilter the estimated optical flow before each image warp. This helps to remove potential outliers. Returns ------- flow : ndarray, shape ((reference_image.ndim, M, N[, P[, ...]]) The estimated optical flow components for each axis. """ from .._shared.filters import gaussian as gaussian_filter dtype = reference_image.dtype ndim = reference_image.ndim size = 2 * radius + 1 if gaussian: sigma = ndim * (size / 4,) filter_func = partial(gaussian_filter, sigma=sigma, mode="mirror") else: filter_func = partial( ndi.uniform_filter, size=ndim * (size,), mode="mirror" ) flow = flow0 # For each pixel location (i, j), the optical flow X = flow[:, i, j] # is the solution of the ndim x ndim linear system # A[i, j] * X = b[i, j] A = cp.zeros(reference_image.shape + (ndim, ndim), dtype=dtype) b = cp.zeros(reference_image.shape + (ndim,), dtype=dtype) grid = cp.meshgrid( *[cp.arange(n, dtype=dtype) for n in reference_image.shape], indexing="ij", sparse=True, ) for _ in range(num_warp): if prefilter: flow = ndi.median_filter(flow, (1,) + ndim * (3,)) moving_image_warp = warp( moving_image, get_warp_points(grid, flow), mode="edge" ) # output_as_array=True stacks the gradients along the first axis grad = gradient(moving_image_warp, output_as_array=True) error_image = ( (grad * flow).sum(axis=0) + reference_image - moving_image_warp ) # Local linear systems creation for i, j in combinations_with_replacement(range(ndim), 2): A[..., i, j] = A[..., j, i] = filter_func(grad[i] * grad[j]) for i in range(ndim): b[..., i] = filter_func(grad[i] * error_image) # Don't consider badly conditioned linear systems idx = abs(cp.linalg.det(A)) < 1e-14 A[idx] = cp.eye(ndim, dtype=dtype) b[idx] = 0 # Solve the local linear systems flow = cp.moveaxis(cp.linalg.solve(A, b), ndim, 0) return flow def optical_flow_ilk( reference_image, moving_image, *, radius=7, num_warp=10, gaussian=False, prefilter=False, dtype=cp.float32, ): """Coarse to fine optical flow estimator. The iterative Lucas-Kanade (iLK) solver is applied at each level of the image pyramid. iLK [1]_ is a fast and robust alternative to TVL1 algorithm although less accurate for rendering flat surfaces and object boundaries (see [2]_). Parameters ---------- reference_image : ndarray, shape (M, N[, P[, ...]]) The first gray scale image of the sequence. moving_image : ndarray, shape (M, N[, P[, ...]]) The second gray scale image of the sequence. radius : int, optional Radius of the window considered around each pixel. num_warp : int, optional Number of times moving_image is warped. gaussian : bool, optional If True, a Gaussian kernel is used for the local integration. Otherwise, a uniform kernel is used. prefilter : bool, optional Whether to prefilter the estimated optical flow before each image warp. When True, a median filter with window size 3 along each axis is applied. This helps to remove potential outliers. dtype : dtype, optional Output data type: must be floating point. Single precision provides good results and saves memory usage and computation time compared to double precision. Returns ------- flow : ndarray, shape ((reference_image.ndim, M, N[, P[, ...]]) The estimated optical flow components for each axis. Notes ----- - The implemented algorithm is described in **Table2** of [1]_. - Color images are not supported. References ---------- .. [1] Le Besnerais, G., & Champagnat, F. (2005, September). Dense optical flow by iterative local window registration. In IEEE International Conference on Image Processing 2005 (Vol. 1, pp. I-137). IEEE. :DOI:`10.1109/ICIP.2005.1529706` .. [2] Plyer, A., Le Besnerais, G., & Champagnat, F. (2016). Massively parallel Lucas Kanade optical flow for real-time video processing applications. Journal of Real-Time Image Processing, 11(4), 713-730. :DOI:`10.1007/s11554-014-0423-0` Examples -------- >>> import cupy as cp >>> from skimage.data import stereo_motorcycle >>> from cucim.skimage.color import rgb2gray >>> from cucim.skimage.registration import optical_flow_ilk >>> reference_image, moving_image, disp = map(cp.array, stereo_motorcycle()) >>> # --- Convert the images to gray level: color is not supported. >>> reference_image = rgb2gray(reference_image) >>> moving_image = rgb2gray(moving_image) >>> flow = optical_flow_ilk(moving_image, reference_image) """ solver = partial( _ilk, radius=radius, num_warp=num_warp, gaussian=gaussian, prefilter=prefilter, ) if cp.dtype(dtype) != _supported_float_type(dtype): msg = f"dtype={dtype} is not supported. Try 'float32' or 'float64.'" raise ValueError(msg) return coarse_to_fine(reference_image, moving_image, solver, dtype=dtype)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/registration
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/registration/tests/test_tvl1.py
import cupy as cp import numpy as np import pytest from cucim.skimage._shared.utils import _supported_float_type from cucim.skimage.registration import optical_flow_tvl1 from cucim.skimage.transform import warp def _sin_flow_gen(image0, max_motion=4.5, npics=5): """Generate a synthetic ground truth optical flow with a sinusoid as first component. Parameters: ---- image0: ndarray The base image to be warped. max_motion: float Maximum flow magnitude. npics: int Number of sinusoid pics. Returns ------- flow, image1 : ndarray The synthetic ground truth optical flow with a sinusoid as first component and the corresponding warped image. """ grid = cp.meshgrid(*[cp.arange(n) for n in image0.shape], indexing="ij") grid = cp.stack(grid) # TODO: make upstream scikit-image PR changing gt_flow dtype to float gt_flow = cp.zeros_like(grid, dtype=float) gt_flow[0, ...] = max_motion * cp.sin( grid[0] / grid[0].max() * npics * np.pi ) image1 = warp(image0, grid - gt_flow, mode="edge") return gt_flow, image1 @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_2d_motion(dtype): # Generate synthetic data rnd = cp.random.RandomState(0) image0 = cp.array(rnd.normal(size=(256, 256)).astype(dtype)) gt_flow, image1 = _sin_flow_gen(image0) image1 = image1.astype(dtype, copy=False) float_dtype = _supported_float_type(dtype) # Estimate the flow flow = optical_flow_tvl1(image0, image1, attachment=5, dtype=float_dtype) assert flow.dtype == float_dtype # Assert that the average absolute error is less then half a pixel assert abs(flow - gt_flow).mean() < 0.5 if dtype != float_dtype: with pytest.raises(ValueError): optical_flow_tvl1(image0, image1, attachment=5, dtype=dtype) @pytest.mark.parametrize("dtype", [cp.float32, cp.float64]) def test_3d_motion(dtype): # Generate synthetic data rnd = np.random.RandomState(0) image0 = cp.array(rnd.normal(size=(100, 100, 100))).astype(dtype) gt_flow, image1 = _sin_flow_gen(image0) image1 = image1.astype(dtype, copy=False) # Estimate the flow # TODO: note: when changing _sin_flow_gen to use a float deformation field # had to increase attachment here from 5 to pass the tolerance. flow = optical_flow_tvl1(image0, image1, attachment=10, dtype=dtype) assert flow.dtype == dtype # Assert that the average absolute error is less then half a pixel assert abs(flow - gt_flow).mean() < 0.5 def test_no_motion_2d(): rnd = np.random.default_rng(0) img = cp.array(rnd.normal(size=(256, 256))) flow = optical_flow_tvl1(img, img) assert cp.all(flow == 0) def test_no_motion_3d(): rnd = np.random.default_rng(0) img = cp.array(rnd.normal(size=(64, 64, 64))) flow = optical_flow_tvl1(img, img) assert cp.all(flow == 0) def test_optical_flow_dtype(): # Generate synthetic data rnd = np.random.default_rng(0) image0 = cp.array(rnd.normal(size=(256, 256))) gt_flow, image1 = _sin_flow_gen(image0) # Estimate the flow at double precision flow_f64 = optical_flow_tvl1(image0, image1, attachment=5, dtype=np.float64) assert flow_f64.dtype == np.float64 # Estimate the flow at single precision flow_f32 = optical_flow_tvl1(image0, image1, attachment=5, dtype=np.float32) assert flow_f32.dtype == np.float32 # Assert that floating point precision does not affect the quality # of the estimated flow assert cp.abs(flow_f64 - flow_f32).mean() < 1e-3 def test_incompatible_shapes(): rnd = np.random.default_rng(0) I0 = cp.array(rnd.normal(size=(256, 256))) I1 = cp.array(rnd.normal(size=(128, 256))) with pytest.raises(ValueError): u, v = optical_flow_tvl1(I0, I1) def test_wrong_dtype(): rnd = np.random.default_rng(0) img = cp.array(rnd.normal(size=(256, 256))) with pytest.raises(ValueError): u, v = optical_flow_tvl1(img, img, dtype=np.int64)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/registration
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/registration/tests/test_masked_phase_cross_correlation.py
import cupy as cp import numpy as np import pytest from cupyx.scipy.ndimage import fourier_shift, shift as real_shift from numpy.testing import assert_almost_equal from skimage.data import camera from skimage.io import imread from cucim.skimage._shared.fft import fftmodule as fft from cucim.skimage._shared.testing import fetch from cucim.skimage._shared.utils import _supported_float_type from cucim.skimage.registration._masked_phase_cross_correlation import ( _masked_phase_cross_correlation as masked_register_translation, cross_correlate_masked, ) from cucim.skimage.registration._phase_cross_correlation import ( phase_cross_correlation, ) def test_masked_registration_vs_phase_cross_correlation(): """masked_register_translation should give the same results as phase_cross_correlation in the case of trivial masks.""" reference_image = cp.array(camera()) shift = (-7, 12) shifted = cp.real( fft.ifft2(fourier_shift(fft.fft2(reference_image), shift)) ) trivial_mask = cp.ones_like(reference_image) nonmasked_result, *_ = phase_cross_correlation(reference_image, shifted) masked_result = masked_register_translation( reference_image, shifted, reference_mask=trivial_mask, overlap_ratio=1 / 10, ) cp.testing.assert_array_equal(nonmasked_result, masked_result) def test_masked_registration_random_masks(): """masked_register_translation should be able to register translations between images even with random masks.""" # See random number generator for reproducible results np.random.seed(23) reference_image = cp.array(camera()) shift = (-7, 12) shifted = cp.real( fft.ifft2(fourier_shift(fft.fft2(reference_image), shift)) ) # Random masks with 75% of pixels being valid ref_mask = np.random.choice( [True, False], reference_image.shape, p=[3 / 4, 1 / 4] ) shifted_mask = np.random.choice( [True, False], shifted.shape, p=[3 / 4, 1 / 4] ) ref_mask = cp.asarray(ref_mask) shifted_mask = cp.asarray(shifted_mask) measured_shift = masked_register_translation( reference_image, shifted, reference_mask=ref_mask, moving_mask=shifted_mask, ) cp.testing.assert_array_equal(measured_shift, -cp.asarray(shift)) def test_masked_registration_3d_contiguous_mask(): """masked_register_translation should be able to register translations between volumes with contiguous masks.""" data = pytest.importorskip("skimage.data") if not hasattr(data, "brain"): pytest.skip("brain data not available in this version of scikit-image") ref_vol = cp.array(data.brain()[:, ::2, ::2]) offset = (1, -5, 10) # create square mask ref_mask = cp.zeros_like(ref_vol, dtype=bool) ref_mask[:-2, 75:100, 75:100] = True ref_shifted = real_shift(ref_vol, offset) measured_offset = masked_register_translation( ref_vol, ref_shifted, reference_mask=ref_mask, moving_mask=ref_mask ) cp.testing.assert_array_equal(offset, -cp.array(measured_offset)) def test_masked_registration_random_masks_non_equal_sizes(): """masked_register_translation should be able to register translations between images that are not the same size even with random masks.""" # See random number generator for reproducible results np.random.seed(23) reference_image = cp.array(camera()) shift = (-7, 12) shifted = cp.real( fft.ifft2(fourier_shift(fft.fft2(reference_image), shift)) ) # Crop the shifted image shifted = shifted[64:-64, 64:-64] # Random masks with 75% of pixels being valid ref_mask = np.random.choice( [True, False], reference_image.shape, p=[3 / 4, 1 / 4] ) shifted_mask = np.random.choice( [True, False], shifted.shape, p=[3 / 4, 1 / 4] ) reference_image = cp.asarray(reference_image) shifted = cp.asarray(shifted) measured_shift = masked_register_translation( reference_image, shifted, reference_mask=cp.ones_like(ref_mask), moving_mask=cp.ones_like(shifted_mask), ) cp.testing.assert_array_equal(measured_shift, -cp.asarray(shift)) def test_masked_registration_padfield_data(): """Masked translation registration should behave like in the original publication""" # Test translated from MATLABimplementation `MaskedFFTRegistrationTest` # file. You can find the source code here: # http://www.dirkpadfield.com/Home/MaskedFFTRegistrationCode.zip shifts = [(75, 75), (-130, 130), (130, 130)] for xi, yi in shifts: fixed_image = cp.array( imread( fetch( "registration/tests/data/OriginalX{:d}Y{:d}.png" "".format(xi, yi) ) ) ) moving_image = cp.array( imread( fetch( "registration/tests/data/TransformedX{:d}Y{:d}.png" "".format(xi, yi) ) ) ) # Valid pixels are 1 fixed_mask = fixed_image != 0 moving_mask = moving_image != 0 # Note that shifts in x and y and shifts in cols and rows shift_y, shift_x = cp.asnumpy( masked_register_translation( fixed_image, moving_image, reference_mask=fixed_mask, moving_mask=moving_mask, overlap_ratio=0.1, ) ) # Note: by looking at the test code from Padfield's # MaskedFFTRegistrationCode repository, the # shifts were not xi and yi, but xi and -yi np.testing.assert_array_equal((shift_x, shift_y), (-xi, yi)) @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_cross_correlate_masked_output_shape(dtype): """Masked normalized cross-correlation should return a shape of N + M + 1 for each transform axis.""" shape1 = (15, 4, 5) shape2 = (6, 12, 7) expected_full_shape = tuple(np.array(shape1) + np.array(shape2) - 1) expected_same_shape = shape1 arr1 = cp.zeros(shape1, dtype=dtype) arr2 = cp.zeros(shape2, dtype=dtype) # Trivial masks m1 = cp.ones_like(arr1) m2 = cp.ones_like(arr2) float_dtype = _supported_float_type(dtype) full_xcorr = cross_correlate_masked( arr1, arr2, m1, m2, axes=(0, 1, 2), mode="full" ) assert full_xcorr.dtype.kind != "c" # grlee77: output should be real assert full_xcorr.shape == expected_full_shape assert full_xcorr.dtype == float_dtype same_xcorr = cross_correlate_masked( arr1, arr2, m1, m2, axes=(0, 1, 2), mode="same" ) assert same_xcorr.shape == expected_same_shape assert same_xcorr.dtype == float_dtype def test_cross_correlate_masked_test_against_mismatched_dimensions(): """Masked normalized cross-correlation should raise an error if array dimensions along non-transformation axes are mismatched.""" shape1 = (23, 1, 1) shape2 = (6, 2, 2) arr1 = cp.zeros(shape1) arr2 = cp.zeros(shape2) # Trivial masks m1 = cp.ones_like(arr1) m2 = cp.ones_like(arr2) with pytest.raises(ValueError): cross_correlate_masked(arr1, arr2, m1, m2, axes=(1, 2)) def test_cross_correlate_masked_output_range(): """Masked normalized cross-correlation should return between 1 and -1.""" # See random number generator for reproducible results np.random.seed(23) # Array dimensions must match along non-transformation axes, in # this case # axis 0 shape1 = (15, 4, 5) shape2 = (15, 12, 7) # Initial array ranges between -5 and 5 arr1 = 10 * np.random.random(shape1) - 5 arr2 = 10 * np.random.random(shape2) - 5 # random masks m1 = np.random.choice([True, False], arr1.shape) m2 = np.random.choice([True, False], arr2.shape) arr1 = cp.asarray(arr1) arr2 = cp.asarray(arr2) m1 = cp.asarray(m1) m2 = cp.asarray(m2) xcorr = cross_correlate_masked(arr1, arr2, m1, m2, axes=(1, 2)) # No assert array less or equal, so we add an eps # Also could not find an `assert_array_greater`, Use (-xcorr) instead eps = np.finfo(float).eps cp.testing.assert_array_less(xcorr, 1 + eps) cp.testing.assert_array_less(-xcorr, 1 + eps) def test_cross_correlate_masked_side_effects(): """Masked normalized cross-correlation should not modify the inputs.""" shape1 = (2, 2, 2) shape2 = (2, 2, 2) arr1 = cp.zeros(shape1) arr2 = cp.zeros(shape2) # Trivial masks m1 = cp.ones_like(arr1) m2 = cp.ones_like(arr2) # CuPy Backed: had to refactor (cannot set write=False) # for arr in (arr1, arr2, m1, m2): # arr.setflags(write=False) arr1c, arr2c, m1c, m2c = [a.copy() for a in (arr1, arr2, m1, m2)] cross_correlate_masked(arr1, arr2, m1, m2) cp.testing.assert_array_equal(arr1, arr1c) cp.testing.assert_array_equal(arr2, arr2c) cp.testing.assert_array_equal(m1, m1c) cp.testing.assert_array_equal(m2, m2c) def test_cross_correlate_masked_over_axes(): """Masked normalized cross-correlation over axes should be equivalent to a loop over non-transform axes.""" # See random number generator for reproducible results np.random.seed(23) arr1 = np.random.random((8, 8, 5)) arr2 = np.random.random((8, 8, 5)) m1 = np.random.choice([True, False], arr1.shape) m2 = np.random.choice([True, False], arr2.shape) arr1 = cp.asarray(arr1) arr2 = cp.asarray(arr2) m1 = cp.asarray(m1) m2 = cp.asarray(m2) # Loop over last axis with_loop = cp.empty_like(arr1, dtype=np.complex128) for index in range(arr1.shape[-1]): with_loop[:, :, index] = cross_correlate_masked( arr1[:, :, index], arr2[:, :, index], m1[:, :, index], m2[:, :, index], axes=(0, 1), mode="same", ) over_axes = cross_correlate_masked( arr1, arr2, m1, m2, axes=(0, 1), mode="same" ) cp.testing.assert_array_almost_equal(with_loop, over_axes) def test_cross_correlate_masked_autocorrelation_trivial_masks(): """Masked normalized cross-correlation between identical arrays should reduce to an autocorrelation even with random masks.""" # See random number generator for reproducible results np.random.seed(23) arr1 = cp.asarray(camera()) # Random masks with 75% of pixels being valid m1 = np.random.choice([True, False], arr1.shape, p=[3 / 4, 1 / 4]) m2 = np.random.choice([True, False], arr1.shape, p=[3 / 4, 1 / 4]) m1 = cp.asarray(m1) m2 = cp.asarray(m2) xcorr = cross_correlate_masked( arr1, arr1, m1, m2, axes=(0, 1), mode="same", overlap_ratio=0 ).real max_index = cp.unravel_index(cp.argmax(xcorr), xcorr.shape) max_index = tuple(map(int, max_index)) # Autocorrelation should have maximum in center of array # CuPy Backend: uint8 inputs will be processed in float32, so reduce # decimal to 5 assert_almost_equal(float(xcorr.max()), 1, decimal=5) np.testing.assert_array_equal(max_index, np.array(arr1.shape) / 2)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/registration
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/registration/tests/test_phase_cross_correlation.py
import itertools import cupy as cp import numpy as np import pytest from cupy.testing import assert_allclose from cupyx.scipy.ndimage import fourier_shift from skimage.data import camera, eagle from cucim.skimage import img_as_float from cucim.skimage._shared._warnings import expected_warnings from cucim.skimage._shared.fft import fftmodule as fft from cucim.skimage.data import binary_blobs from cucim.skimage.registration._phase_cross_correlation import ( _upsampled_dft, phase_cross_correlation, ) @pytest.mark.parametrize("normalization", [None, "phase"]) def test_correlation(normalization): reference_image = fft.fftn(cp.array(camera())) shift = (-7, 12) shifted_image = fourier_shift(reference_image, shift) # pixel precision result, _, _ = phase_cross_correlation( reference_image, shifted_image, space="fourier", normalization=normalization, ) assert_allclose(result[:2], -cp.array(shift)) @pytest.mark.parametrize("normalization", ["nonexisting"]) def test_correlation_invalid_normalization(normalization): reference_image = fft.fftn(cp.array(camera())) shift = (-7, 12) shifted_image = fourier_shift(reference_image, shift) # pixel precision with pytest.raises(ValueError): phase_cross_correlation( reference_image, shifted_image, space="fourier", normalization=normalization, ) @pytest.mark.parametrize("normalization", [None, "phase"]) def test_subpixel_precision(normalization): reference_image = fft.fftn(cp.array(camera())) subpixel_shift = (-2.4, 1.32) shifted_image = fourier_shift(reference_image, subpixel_shift) # subpixel precision result, _, _ = phase_cross_correlation( reference_image, shifted_image, upsample_factor=100, space="fourier", normalization=normalization, ) assert_allclose(result[:2], -cp.array(subpixel_shift), atol=0.05) @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_real_input(dtype): reference_image = cp.array(camera()).astype(dtype, copy=False) subpixel_shift = (-2.4, 1.32) shifted_image = fourier_shift(fft.fftn(reference_image), subpixel_shift) shifted_image = fft.ifftn(shifted_image).real.astype(dtype, copy=False) # subpixel precision result, error, diffphase = phase_cross_correlation( reference_image, shifted_image, upsample_factor=100 ) assert isinstance(result, tuple) assert all(isinstance(s, float) for s in result) assert_allclose(result[:2], -cp.array(subpixel_shift), atol=0.05) def test_size_one_dimension_input(): # take a strip of the input image reference_image = fft.fftn(cp.array(camera())[:, 15]).reshape((-1, 1)) subpixel_shift = (-2.4, 4) shifted_image = fourier_shift(reference_image, subpixel_shift) # subpixel precision result, error, diffphase = phase_cross_correlation( reference_image, shifted_image, upsample_factor=20, space="fourier" ) assert_allclose(result[:2], -cp.array((-2.4, 0)), atol=0.05) def test_3d_input(): phantom = img_as_float(binary_blobs(length=32, n_dim=3)) reference_image = fft.fftn(phantom) shift = (-2.0, 1.0, 5.0) shifted_image = fourier_shift(reference_image, shift) result, error, diffphase = phase_cross_correlation( reference_image, shifted_image, space="fourier" ) assert_allclose(result, -cp.array(shift), atol=0.05) # subpixel precision now available for 3-D data subpixel_shift = (-2.3, 1.7, 5.4) shifted_image = fourier_shift(reference_image, subpixel_shift) result, error, diffphase = phase_cross_correlation( reference_image, shifted_image, upsample_factor=100, space="fourier" ) assert_allclose(result, -cp.array(subpixel_shift), atol=0.05) def test_unknown_space_input(): image = cp.ones((5, 5)) with pytest.raises(ValueError): phase_cross_correlation(image, image, space="frank") def test_wrong_input(): # Dimensionality mismatch image = cp.ones((5, 5, 1)) template = cp.ones((5, 5)) with pytest.raises(ValueError): phase_cross_correlation(template, image) # Size mismatch image = cp.ones((5, 5)) template = cp.ones((4, 4)) with pytest.raises(ValueError): phase_cross_correlation(template, image) # NaN values in data image = cp.ones((5, 5)) image[0][0] = cp.nan template = cp.ones((5, 5)) with expected_warnings([r"invalid value encountered in true_divide|\A\Z"]): with pytest.raises(ValueError): phase_cross_correlation(template, image, return_error=True) def test_4d_input_pixel(): phantom = img_as_float(binary_blobs(length=32, n_dim=4)) reference_image = fft.fftn(phantom) shift = (-2.0, 1.0, 5.0, -3) shifted_image = fourier_shift(reference_image, shift) result, error, diffphase = phase_cross_correlation( reference_image, shifted_image, space="fourier" ) assert_allclose(result, -cp.array(shift), atol=0.05) def test_4d_input_subpixel(): phantom = img_as_float(binary_blobs(length=32, n_dim=4)) reference_image = fft.fftn(phantom) subpixel_shift = (-2.3, 1.7, 5.4, -3.2) shifted_image = fourier_shift(reference_image, subpixel_shift) result, error, diffphase = phase_cross_correlation( reference_image, shifted_image, upsample_factor=10, space="fourier" ) assert_allclose(result, -cp.array(subpixel_shift), atol=0.05) def test_mismatch_upsampled_region_size(): with pytest.raises(ValueError): _upsampled_dft(cp.ones((4, 4)), upsampled_region_size=[3, 2, 1, 4]) def test_mismatch_offsets_size(): with pytest.raises(ValueError): _upsampled_dft(cp.ones((4, 4)), 3, axis_offsets=[3, 2, 1, 4]) @pytest.mark.parametrize( ("shift0", "shift1"), itertools.product((100, -100, 350, -350), (100, -100, 350, -350)), ) @cp.testing.with_requires("scikit-image>=0.20") def test_disambiguate_2d(shift0, shift1): image = cp.array(eagle()[500:, 900:]) # use a highly textured image region # Protect against some versions of scikit-image + imagio loading as # RGB instead of grayscale. if image.ndim == 3: image = image[..., 0] shift = (shift0, shift1) origin0 = [] for s in shift: if s > 0: origin0.append(0) else: origin0.append(-s) origin1 = np.array(origin0) + shift slice0 = tuple(slice(o, o + 450) for o in origin0) slice1 = tuple(slice(o, o + 450) for o in origin1) reference = image[slice0] moving = image[slice1] computed_shift, _, _ = phase_cross_correlation( reference, moving, disambiguate=True, return_error="always" ) np.testing.assert_equal(shift, computed_shift) def test_disambiguate_zero_shift(): """When the shift is 0, disambiguation becomes degenerate. Some quadrants become size 0, which prevents computation of cross-correlation. This test ensures that nothing bad happens in that scenario. """ image = cp.array(camera()) computed_shift, _, _ = phase_cross_correlation( image, image, disambiguate=True, return_error="always" ) assert computed_shift == (0, 0)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/registration
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/registration/tests/test_ilk.py
import cupy as cp import numpy as np import pytest from test_tvl1 import _sin_flow_gen from cucim.skimage._shared.utils import _supported_float_type from cucim.skimage.registration import optical_flow_ilk @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) @pytest.mark.parametrize("gaussian", [True, False]) @pytest.mark.parametrize("prefilter", [True, False]) def test_2d_motion(dtype, gaussian, prefilter): # Generate synthetic data rnd = np.random.default_rng(0) image0 = rnd.normal(size=(256, 256)) image0 = cp.asarray(image0, dtype=dtype) gt_flow, image1 = _sin_flow_gen(image0) image1 = image1.astype(dtype, copy=False) float_dtype = _supported_float_type(dtype) # Estimate the flow flow = optical_flow_ilk( image0, image1, gaussian=gaussian, prefilter=prefilter, dtype=float_dtype, ) assert flow.dtype == float_dtype # Assert that the average absolute error is less then half a pixel assert abs(flow - gt_flow).mean() < 0.5 if dtype != float_dtype: with pytest.raises(ValueError): optical_flow_ilk( image0, image1, gaussian=gaussian, prefilter=prefilter, dtype=dtype, ) @pytest.mark.parametrize("gaussian", [True, False]) @pytest.mark.parametrize("prefilter", [True, False]) def test_3d_motion(gaussian, prefilter): # Generate synthetic data rnd = np.random.default_rng(123) image0 = rnd.normal(size=(50, 55, 60)) image0 = cp.asarray(image0) gt_flow, image1 = _sin_flow_gen(image0, npics=3) # Estimate the flow flow = optical_flow_ilk( image0, image1, radius=5, gaussian=gaussian, prefilter=prefilter ) # Assert that the average absolute error is less then half a pixel assert abs(flow - gt_flow).mean() < 0.5 def test_no_motion_2d(): rnd = np.random.default_rng(0) img = rnd.normal(size=(256, 256)) img = cp.asarray(img) flow = optical_flow_ilk(img, img) assert cp.all(flow == 0) def test_no_motion_3d(): rnd = np.random.default_rng(0) img = rnd.normal(size=(64, 64, 64)) img = cp.asarray(img) flow = optical_flow_ilk(img, img) assert cp.all(flow == 0) def test_optical_flow_dtype(): # Generate synthetic data rnd = np.random.default_rng(0) image0 = rnd.normal(size=(256, 256)) image0 = cp.asarray(image0) gt_flow, image1 = _sin_flow_gen(image0) # Estimate the flow at double precision flow_f64 = optical_flow_ilk(image0, image1, dtype="float64") assert flow_f64.dtype == "float64" # Estimate the flow at single precision flow_f32 = optical_flow_ilk(image0, image1, dtype="float32") assert flow_f32.dtype == "float32" # Assert that floating point precision does not affect the quality # of the estimated flow assert cp.abs(flow_f64 - flow_f32).mean() < 1e-3 def test_incompatible_shapes(): rnd = np.random.default_rng(0) I0 = rnd.normal(size=(256, 256)) I1 = rnd.normal(size=(255, 256)) with pytest.raises(ValueError): u, v = optical_flow_ilk(I0, I1) def test_wrong_dtype(): rnd = np.random.default_rng(0) img = rnd.normal(size=(256, 256)) with pytest.raises(ValueError): u, v = optical_flow_ilk(img, img, dtype="int")
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color/rgb_colors.py
aliceblue = (0.941, 0.973, 1) antiquewhite = (0.98, 0.922, 0.843) aqua = (0, 1, 1) aquamarine = (0.498, 1, 0.831) azure = (0.941, 1, 1) beige = (0.961, 0.961, 0.863) bisque = (1, 0.894, 0.769) black = (0, 0, 0) blanchedalmond = (1, 0.922, 0.804) blue = (0, 0, 1) blueviolet = (0.541, 0.169, 0.886) brown = (0.647, 0.165, 0.165) burlywood = (0.871, 0.722, 0.529) cadetblue = (0.373, 0.62, 0.627) chartreuse = (0.498, 1, 0) chocolate = (0.824, 0.412, 0.118) coral = (1, 0.498, 0.314) cornflowerblue = (0.392, 0.584, 0.929) cornsilk = (1, 0.973, 0.863) crimson = (0.863, 0.0784, 0.235) cyan = (0, 1, 1) darkblue = (0, 0, 0.545) darkcyan = (0, 0.545, 0.545) darkgoldenrod = (0.722, 0.525, 0.0431) darkgray = (0.663, 0.663, 0.663) darkgreen = (0, 0.392, 0) darkgrey = (0.663, 0.663, 0.663) darkkhaki = (0.741, 0.718, 0.42) darkmagenta = (0.545, 0, 0.545) darkolivegreen = (0.333, 0.42, 0.184) darkorange = (1, 0.549, 0) darkorchid = (0.6, 0.196, 0.8) darkred = (0.545, 0, 0) darksalmon = (0.914, 0.588, 0.478) darkseagreen = (0.561, 0.737, 0.561) darkslateblue = (0.282, 0.239, 0.545) darkslategray = (0.184, 0.31, 0.31) darkslategrey = (0.184, 0.31, 0.31) darkturquoise = (0, 0.808, 0.82) darkviolet = (0.58, 0, 0.827) deeppink = (1, 0.0784, 0.576) deepskyblue = (0, 0.749, 1) dimgray = (0.412, 0.412, 0.412) dimgrey = (0.412, 0.412, 0.412) dodgerblue = (0.118, 0.565, 1) firebrick = (0.698, 0.133, 0.133) floralwhite = (1, 0.98, 0.941) forestgreen = (0.133, 0.545, 0.133) fuchsia = (1, 0, 1) gainsboro = (0.863, 0.863, 0.863) ghostwhite = (0.973, 0.973, 1) gold = (1, 0.843, 0) goldenrod = (0.855, 0.647, 0.125) gray = (0.502, 0.502, 0.502) green = (0, 0.502, 0) greenyellow = (0.678, 1, 0.184) grey = (0.502, 0.502, 0.502) honeydew = (0.941, 1, 0.941) hotpink = (1, 0.412, 0.706) indianred = (0.804, 0.361, 0.361) indigo = (0.294, 0, 0.51) ivory = (1, 1, 0.941) khaki = (0.941, 0.902, 0.549) lavender = (0.902, 0.902, 0.98) lavenderblush = (1, 0.941, 0.961) lawngreen = (0.486, 0.988, 0) lemonchiffon = (1, 0.98, 0.804) lightblue = (0.678, 0.847, 0.902) lightcoral = (0.941, 0.502, 0.502) lightcyan = (0.878, 1, 1) lightgoldenrodyellow = (0.98, 0.98, 0.824) lightgray = (0.827, 0.827, 0.827) lightgreen = (0.565, 0.933, 0.565) lightgrey = (0.827, 0.827, 0.827) lightpink = (1, 0.714, 0.757) lightsalmon = (1, 0.627, 0.478) lightseagreen = (0.125, 0.698, 0.667) lightskyblue = (0.529, 0.808, 0.98) lightslategray = (0.467, 0.533, 0.6) lightslategrey = (0.467, 0.533, 0.6) lightsteelblue = (0.69, 0.769, 0.871) lightyellow = (1, 1, 0.878) lime = (0, 1, 0) limegreen = (0.196, 0.804, 0.196) linen = (0.98, 0.941, 0.902) magenta = (1, 0, 1) maroon = (0.502, 0, 0) mediumaquamarine = (0.4, 0.804, 0.667) mediumblue = (0, 0, 0.804) mediumorchid = (0.729, 0.333, 0.827) mediumpurple = (0.576, 0.439, 0.859) mediumseagreen = (0.235, 0.702, 0.443) mediumslateblue = (0.482, 0.408, 0.933) mediumspringgreen = (0, 0.98, 0.604) mediumturquoise = (0.282, 0.82, 0.8) mediumvioletred = (0.78, 0.0824, 0.522) midnightblue = (0.098, 0.098, 0.439) mintcream = (0.961, 1, 0.98) mistyrose = (1, 0.894, 0.882) moccasin = (1, 0.894, 0.71) navajowhite = (1, 0.871, 0.678) navy = (0, 0, 0.502) oldlace = (0.992, 0.961, 0.902) olive = (0.502, 0.502, 0) olivedrab = (0.42, 0.557, 0.137) orange = (1, 0.647, 0) orangered = (1, 0.271, 0) orchid = (0.855, 0.439, 0.839) palegoldenrod = (0.933, 0.91, 0.667) palegreen = (0.596, 0.984, 0.596) palevioletred = (0.686, 0.933, 0.933) papayawhip = (1, 0.937, 0.835) peachpuff = (1, 0.855, 0.725) peru = (0.804, 0.522, 0.247) pink = (1, 0.753, 0.796) plum = (0.867, 0.627, 0.867) powderblue = (0.69, 0.878, 0.902) purple = (0.502, 0, 0.502) red = (1, 0, 0) rosybrown = (0.737, 0.561, 0.561) royalblue = (0.255, 0.412, 0.882) saddlebrown = (0.545, 0.271, 0.0745) salmon = (0.98, 0.502, 0.447) sandybrown = (0.98, 0.643, 0.376) seagreen = (0.18, 0.545, 0.341) seashell = (1, 0.961, 0.933) sienna = (0.627, 0.322, 0.176) silver = (0.753, 0.753, 0.753) skyblue = (0.529, 0.808, 0.922) slateblue = (0.416, 0.353, 0.804) slategray = (0.439, 0.502, 0.565) slategrey = (0.439, 0.502, 0.565) snow = (1, 0.98, 0.98) springgreen = (0, 1, 0.498) steelblue = (0.275, 0.51, 0.706) tan = (0.824, 0.706, 0.549) teal = (0, 0.502, 0.502) thistle = (0.847, 0.749, 0.847) tomato = (1, 0.388, 0.278) turquoise = (0.251, 0.878, 0.816) violet = (0.933, 0.51, 0.933) wheat = (0.961, 0.871, 0.702) white = (1, 1, 1) whitesmoke = (0.961, 0.961, 0.961) yellow = (1, 1, 0) yellowgreen = (0.604, 0.804, 0.196)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color/colorlabel.py
import itertools import cupy as cp import numpy as np from .._shared.utils import _supported_float_type, warn from ..util import img_as_float from . import rgb_colors from .colorconv import gray2rgb, hsv2rgb, rgb2hsv __all__ = ["color_dict", "label2rgb", "DEFAULT_COLORS"] DEFAULT_COLORS = ( "red", "blue", "yellow", "magenta", "green", "indigo", "darkorange", "cyan", "pink", "yellowgreen", ) color_dict = { k: v for k, v in rgb_colors.__dict__.items() if isinstance(v, tuple) } def _rgb_vector(color): """Return RGB color as (1, 3) array. This RGB array gets multiplied by masked regions of an RGB image, which are partially flattened by masking (i.e. dimensions 2D + RGB -> 1D + RGB). Parameters ---------- color : str or array Color name in `color_dict` or RGB float values between [0, 1]. """ if isinstance(color, str): color = color_dict[color] # Slice to handle RGBA colors. return np.asarray(color[:3]) # CuPy Backend: leave this array on the host def _match_label_with_color(label, colors, bg_label, bg_color): """Return `unique_labels` and `color_cycle` for label array and color list. Colors are cycled for normal labels, but the background color should only be used for the background. """ # Temporarily set background color; it will be removed later. if bg_color is None: bg_color = (0, 0, 0) bg_color = _rgb_vector(bg_color) # map labels to their ranks among all labels from small to large unique_labels, mapped_labels = cp.unique(label, return_inverse=True) # get rank of bg_label bg_label_rank_list = mapped_labels[label.ravel() == bg_label] # The rank of each label is the index of the color it is matched to in # color cycle. bg_label should always be mapped to the first color, so # its rank must be 0. Other labels should be ranked from small to large # from 1. if len(bg_label_rank_list) > 0: bg_label_rank = bg_label_rank_list[0] mapped_labels[mapped_labels < bg_label_rank] += 1 mapped_labels[label.ravel() == bg_label] = 0 else: mapped_labels += 1 # Modify labels and color cycle so background color is used only once. color_cycle = itertools.cycle(colors) color_cycle = itertools.chain([bg_color], color_cycle) return mapped_labels, color_cycle def label2rgb( label, image=None, colors=None, alpha=0.3, bg_label=0, bg_color=(0, 0, 0), image_alpha=1, kind="overlay", *, saturation=0, channel_axis=-1, ): """Return an RGB image where color-coded labels are painted over the image. Parameters ---------- label : ndarray Integer array of labels with the same shape as `image`. image : ndarray, optional Image used as underlay for labels. It should have the same shape as `labels`, optionally with an additional RGB (channels) axis. If `image` is an RGB image, it is converted to grayscale before coloring. colors : list, optional List of colors. If the number of labels exceeds the number of colors, then the colors are cycled. alpha : float [0, 1], optional Opacity of colorized labels. Ignored if image is `None`. bg_label : int, optional Label that's treated as the background. If `bg_label` is specified, `bg_color` is `None`, and `kind` is `overlay`, background is not painted by any colors. bg_color : str or array, optional Background color. Must be a name in `color_dict` or RGB float values between [0, 1]. image_alpha : float [0, 1], optional Opacity of the image. kind : string, one of {'overlay', 'avg'} The kind of color image desired. 'overlay' cycles over defined colors and overlays the colored labels over the original image. 'avg' replaces each labeled segment with its average color, for a stained-class or pastel painting appearance. saturation : float [0, 1], optional Parameter to control the saturation applied to the original image between fully saturated (original RGB, `saturation=1`) and fully unsaturated (grayscale, `saturation=0`). Only applies when `kind='overlay'`. channel_axis : int, optional This parameter indicates which axis of the output array will correspond to channels. If `image` is provided, this must also match the axis of `image` that corresponds to channels. Returns ------- result : array of float, shape (M, N, 3) The result of blending a cycling colormap (`colors`) for each distinct value in `label` with the image, at a certain alpha value. """ if image is not None: image = np.moveaxis(image, source=channel_axis, destination=-1) if kind == "overlay": rgb = _label2rgb_overlay( label, image, colors, alpha, bg_label, bg_color, image_alpha, saturation, ) elif kind == "avg": rgb = _label2rgb_avg(label, image, bg_label, bg_color) else: raise ValueError("`kind` must be either 'overlay' or 'avg'.") return np.moveaxis(rgb, source=-1, destination=channel_axis) def _label2rgb_overlay( label, image=None, colors=None, alpha=0.3, bg_label=-1, bg_color=None, image_alpha=1, saturation=0, ): """Return an RGB image where color-coded labels are painted over the image. Parameters ---------- label : ndarray Integer array of labels with the same shape as `image`. image : ndarray, optional Image used as underlay for labels. It should have the same shape as `labels`, optionally with an additional RGB (channels) axis. If `image` is an RGB image, it is converted to grayscale before coloring. colors : list, optional List of colors. If the number of labels exceeds the number of colors, then the colors are cycled. alpha : float [0, 1], optional Opacity of colorized labels. Ignored if image is `None`. bg_label : int, optional Label that's treated as the background. If `bg_label` is specified and `bg_color` is `None`, background is not painted by any colors. bg_color : str or array, optional Background color. Must be a name in `color_dict` or RGB float values between [0, 1]. image_alpha : float [0, 1], optional Opacity of the image. saturation : float [0, 1], optional Parameter to control the saturation applied to the original image between fully saturated (original RGB, `saturation=1`) and fully unsaturated (grayscale, `saturation=0`). Returns ------- result : array of float, shape (M, N, 3) The result of blending a cycling colormap (`colors`) for each distinct value in `label` with the image, at a certain alpha value. """ if not 0 <= saturation <= 1: warn(f"saturation must be in range [0, 1], got {saturation}") if colors is None: colors = DEFAULT_COLORS colors = [_rgb_vector(c) for c in colors] if image is None: image = cp.zeros(label.shape + (3,), dtype=np.float64) # Opacity doesn't make sense if no image exists. alpha = 1 else: if ( image.shape[: label.ndim] != label.shape or image.ndim > label.ndim + 1 ): raise ValueError("`image` and `label` must be the same shape") if image.ndim == label.ndim + 1 and image.shape[-1] != 3: raise ValueError("`image` must be RGB (image.shape[-1] must be 3).") if image.min() < 0: warn("Negative intensities in `image` are not supported") float_dtype = _supported_float_type(image.dtype) image = img_as_float(image).astype(float_dtype, copy=False) if image.ndim > label.ndim: hsv = rgb2hsv(image) hsv[..., 1] *= saturation image = hsv2rgb(hsv) elif image.ndim == label.ndim: image = gray2rgb(image) image = image * image_alpha + (1 - image_alpha) # Ensure that all labels are non-negative so we can index into # `label_to_color` correctly. offset = min(int(label.min()), bg_label) if offset != 0: label = label - offset # Make sure you don't modify the input array. bg_label -= offset new_type = np.min_scalar_type(int(label.max())) if new_type == bool: new_type = np.uint8 label = label.astype(new_type) mapped_labels_flat, color_cycle = _match_label_with_color( label, colors, bg_label, bg_color ) if len(mapped_labels_flat) == 0: return image dense_labels = range(int(mapped_labels_flat.max()) + 1) # CuPy Backend: small color_cycle arrays are left on the CPU label_to_color = np.stack([c for i, c in zip(dense_labels, color_cycle)]) # CuPy Backend: transfer to GPU after concatenation of small host arrays label_to_color = cp.asarray(label_to_color) mapped_labels = mapped_labels_flat.reshape(label.shape) label = mapped_labels result = label_to_color[mapped_labels] * alpha + image * (1 - alpha) # Remove background label if its color was not specified. remove_background = 0 in mapped_labels_flat and bg_color is None if remove_background: result[label == bg_label] = image[label == bg_label] return result def _label2rgb_avg(label_field, image, bg_label=0, bg_color=(0, 0, 0)): """Visualise each segment in `label_field` with its mean color in `image`. Parameters ---------- label_field : ndarray of int A segmentation of an image. image : array, shape ``label_field.shape + (3,)`` A color image of the same spatial shape as `label_field`. bg_label : int, optional A value in `label_field` to be treated as background. bg_color : 3-tuple of int, optional The color for the background label Returns ------- out : ndarray, same shape and type as `image` The output visualization. """ out = cp.zeros(label_field.shape + (3,), dtype=image.dtype) labels = cp.unique(label_field) bg = labels == bg_label if bg.any(): labels = labels[labels != bg_label] mask = (label_field == bg_label).nonzero() out[mask] = bg_color for label in labels: mask = (label_field == label).nonzero() color = image[mask].mean(axis=0) out[mask] = color return out
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color/colorconv.py
"""Functions for converting between color spaces. The "central" color space in this module is RGB, more specifically the linear sRGB color space using D65 as a white-point [1]_. This represents a standard monitor (w/o gamma correction). For a good FAQ on color spaces see [2]_. The API consists of functions to convert to and from RGB as defined above, as well as a generic function to convert to and from any supported color space (which is done through RGB in most cases). Supported color spaces ---------------------- * RGB : Red Green Blue. Here the sRGB standard [1]_. * HSV : Hue, Saturation, Value. Uniquely defined when related to sRGB [3]_. * RGB CIE : Red Green Blue. The original RGB CIE standard from 1931 [4]_. Primary colors are 700 nm (red), 546.1 nm (blue) and 435.8 nm (green). * XYZ CIE : XYZ Derived from the RGB CIE color space. Chosen such that ``x == y == z == 1/3`` at the whitepoint, and all color matching functions are greater than zero everywhere. * LAB CIE : Lightness, a, b Colorspace derived from XYZ CIE that is intended to be more perceptually uniform * LUV CIE : Lightness, u, v Colorspace derived from XYZ CIE that is intended to be more perceptually uniform * LCH CIE : Lightness, Chroma, Hue Defined in terms of LAB CIE. C and H are the polar representation of a and b. The polar angle C is defined to be on ``(0, 2*pi)`` :author: Nicolas Pinto (rgb2hsv) :author: Ralf Gommers (hsv2rgb) :author: Travis Oliphant (XYZ and RGB CIE functions) :author: Matt Terry (lab2lch) :author: Alex Izvorski (yuv2rgb, rgb2yuv and related) :license: modified BSD References ---------- .. [1] Official specification of sRGB, IEC 61966-2-1:1999. .. [2] http://www.poynton.com/ColorFAQ.html .. [3] https://en.wikipedia.org/wiki/HSL_and_HSV .. [4] https://en.wikipedia.org/wiki/CIE_1931_color_space """ from warnings import warn import cupy as cp import numpy as np from scipy import linalg from .._shared.utils import ( _supported_float_type, channel_as_last_axis, deprecate_func, identity, ) from ..util import dtype, dtype_limits def convert_colorspace(arr, fromspace, tospace, *, channel_axis=-1): """Convert an image array to a new color space. Valid color spaces are: 'RGB', 'HSV', 'RGB CIE', 'XYZ', 'YUV', 'YIQ', 'YPbPr', 'YCbCr', 'YDbDr' Parameters ---------- arr : (..., 3, ...) array_like The image to convert. By default, the final dimension denotes channels. fromspace : str The color space to convert from. Can be specified in lower case. tospace : str The color space to convert to. Can be specified in lower case. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The converted image. Same dimensions as input. Raises ------ ValueError If fromspace is not a valid color space ValueError If tospace is not a valid color space Notes ----- Conversion is performed through the "central" RGB color space, i.e. conversion from XYZ to HSV is implemented as ``XYZ -> RGB -> HSV`` instead of directly. Examples -------- >>> import cupy as cp >>> from skimage import data >>> img = cp.array(data.astronaut()) >>> img_hsv = convert_colorspace(img, 'RGB', 'HSV') """ fromdict = { "rgb": identity, "hsv": hsv2rgb, "rgb cie": rgbcie2rgb, "xyz": xyz2rgb, "yuv": yuv2rgb, "yiq": yiq2rgb, "ypbpr": ypbpr2rgb, "ycbcr": ycbcr2rgb, "ydbdr": ydbdr2rgb, } todict = { "rgb": identity, "hsv": rgb2hsv, "rgb cie": rgb2rgbcie, "xyz": rgb2xyz, "yuv": rgb2yuv, "yiq": rgb2yiq, "ypbpr": rgb2ypbpr, "ycbcr": rgb2ycbcr, "ydbdr": rgb2ydbdr, } fromspace = fromspace.lower() tospace = tospace.lower() if fromspace not in fromdict: msg = f"`fromspace` has to be one of {fromdict.keys()}" raise ValueError(msg) if tospace not in todict: msg = f"`tospace` has to be one of {todict.keys()}" raise ValueError(msg) return todict[tospace]( fromdict[fromspace](arr, channel_axis=channel_axis), channel_axis=channel_axis, ) def _prepare_colorarray( arr, force_copy=False, force_c_contiguous=True, channel_axis=-1 ): """Check the shape of the array and convert it to floating point representation. """ if arr.shape[channel_axis] != 3: msg = ( f"the input array must have size 3 along `channel_axis`, " f"got {arr.shape}" ) raise ValueError(msg) float_dtype = _supported_float_type(arr.dtype) if float_dtype == cp.float32: _func = dtype.img_as_float32 else: _func = dtype.img_as_float64 out = _func(arr, force_copy=force_copy) if force_c_contiguous and not out.flags.c_contiguous: out = cp.ascontiguousarray(out) return out def _validate_channel_axis(channel_axis, ndim): if not isinstance(channel_axis, int): raise TypeError("channel_axis must be an integer") if channel_axis < -ndim or channel_axis >= ndim: raise np.AxisError("channel_axis exceeds array dimensions") @cp.memoize(for_each_device=True) def _rgba2rgb_kernel(background, name="rgba2rgb"): code = """ X alpha = rgba[4*i + 3]; X val; """ for ch in range(3): code += f""" val = (1 - alpha) * {background[ch]} + alpha * rgba[4*i + {ch}]; rgb[3*i + {ch}] = min(max(val, (X)0.0), (X)1.0); """ return cp.ElementwiseKernel( "raw X rgba", "raw X rgb", code, name="cucim_skimage_color_" + name ) @channel_as_last_axis() # current CUDA kernel assumes channel_axis is last def rgba2rgb(rgba, background=(1, 1, 1), *, channel_axis=-1): """RGBA to RGB conversion using alpha blending [1]_. Parameters ---------- rgba : (..., 4, ...) array_like The image in RGBA format. By default, the final dimension denotes channels. background : array_like The color of the background to blend the image with (3 floats between 0 to 1 - the RGB value of the background). channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `rgba` is not at least 2D with shape (..., 4, ...). References ---------- .. [1] https://en.wikipedia.org/wiki/Alpha_compositing#Alpha_blending Examples -------- >>> import cupy as cp >>> from cucim.skimage import color >>> from skimage import data >>> img_rgba = cp.array(data.logo()) >>> img_rgb = color.rgba2rgb(img_rgba) """ _validate_channel_axis(channel_axis, rgba.ndim) channel_axis = channel_axis % rgba.ndim if rgba.shape[channel_axis] != 4: msg = ( f"the input array must have size 4 along `channel_axis`, " f"got {rgba.shape}" ) raise ValueError(msg) float_dtype = _supported_float_type(rgba.dtype) if float_dtype == cp.float32: rgba = dtype.img_as_float32(rgba) else: rgba = dtype.img_as_float64(rgba) if not rgba.flags.c_contiguous: rgba = cp.ascontiguousarray(rgba) if isinstance(background, cp.ndarray): background = cp.asnumpy(background) # synchronize background = tuple(float(b) for b in background) if len(background) != 3: raise ValueError( "background must be an array-like containing 3 RGB " f"values. Got {len(background)} items" ) if any((b < 0 or b > 1) for b in background): raise ValueError( "background RGB values must be floats between " "0 and 1." ) name = f"rgba2rgb_{rgba.dtype.char}" kern = _rgba2rgb_kernel(background, name) rgb = cp.empty(rgba.shape[:-1] + (3,), dtype=rgba.dtype) kern(rgba, rgb, size=rgb.size // 3) return rgb @cp.memoize(for_each_device=True) def _rgb_to_hsv_kernel(name="rgb2hsv"): code = """ X minv = rgb[3*i]; X maxv = rgb[3*i]; X tmp; for (int ch=1; ch < 3; ch++) { tmp = rgb[3*i + ch]; if (tmp > maxv) { maxv = tmp; } else if (tmp < minv) { minv = tmp; } } X delta = maxv - minv; if (delta == 0.0) { hsv[3*i] = 0.0; hsv[3*i + 1] = 0.0; } else { hsv[3*i + 1] = delta / maxv; if (rgb[3*i] == maxv) { hsv[3*i] = (rgb[3*i + 1] - rgb[3*i + 2]) / delta; } else if (rgb[3*i + 1] == maxv) { hsv[3*i] = 2.0 + (rgb[3*i + 2] - rgb[3*i]) / delta; } else if (rgb[3*i + 2] == maxv) { hsv[3*i] = 4.0 + (rgb[3*i] - rgb[3*i + 1]) / delta; } hsv[3*i] /= 6.0; hsv[3*i] = hsv[3*i] - floor(hsv[3*i] / (X)1.0); } hsv[3*i + 2] = maxv; """ return cp.ElementwiseKernel( "raw X rgb", "raw X hsv", code, name="cucim_skimage_color_" + name ) @channel_as_last_axis() def rgb2hsv(rgb, *, channel_axis=-1): """RGB to HSV color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in HSV format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- Conversion between RGB and HSV color spaces results in some loss of precision, due to integer arithmetic and rounding [1]_. References ---------- .. [1] https://en.wikipedia.org/wiki/HSL_and_HSV Examples -------- >>> import cupy as cp >>> from cucim.skimage import color >>> from skimage import data >>> img = cp.array(data.astronaut()) >>> img_hsv = color.rgb2hsv(img) """ input_is_one_pixel = rgb.ndim == 1 if input_is_one_pixel: rgb = rgb[np.newaxis, ...] rgb = _prepare_colorarray( rgb, force_c_contiguous=True, channel_axis=channel_axis ) hsv = cp.empty_like(rgb) name = f"rgb2hsv_{rgb.dtype.char}" kern = _rgb_to_hsv_kernel(name=name) kern(rgb, hsv, size=rgb.size // 3) if input_is_one_pixel: hsv = cp.squeeze(hsv, axis=0) return hsv @cp.memoize(for_each_device=True) def _hsv_to_rgb_kernel(name="hsv2rgb"): code = """ int hi = (int)floor(hsv[3*i] * 6.0); X f = hsv[3*i] * 6 - hi; X v = hsv[3*i + 2]; X p = v * (1 - hsv[3*i + 1]); int rem = (int)hi % 6; switch(rem) { case 0: rgb[3*i] = v; rgb[3*i + 1] = v * (1 - (1 - f) * hsv[3*i + 1]); rgb[3*i + 2] = p; break; case 1: rgb[3*i] = v * (1 - f * hsv[3*i + 1]); rgb[3*i + 1] = v; rgb[3*i + 2] = p; break; case 2: rgb[3*i] = p; rgb[3*i + 1] = v; rgb[3*i + 2] = v * (1 - (1 - f) * hsv[3*i + 1]); break; case 3: rgb[3*i] = p; rgb[3*i + 1] = v * (1 - f * hsv[3*i + 1]); rgb[3*i + 2] = v; break; case 4: rgb[3*i] = v * (1 - (1 - f) * hsv[3*i + 1]); rgb[3*i + 1] = p; rgb[3*i + 2] = v; break; case 5: rgb[3*i] = v; rgb[3*i + 1] = p; rgb[3*i + 2] = v * (1 - f * hsv[3*i + 1]); break; } """ return cp.ElementwiseKernel( "raw X hsv", "raw X rgb", code, name="cucim_skimage_color_" + name ) @channel_as_last_axis() def hsv2rgb(hsv, *, channel_axis=-1): """HSV to RGB color space conversion. Parameters ---------- hsv : (..., 3, ...) array_like The image in HSV format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `hsv` is not at least 2-D with shape (..., 3, ...). Notes ----- Conversion between RGB and HSV color spaces results in some loss of precision, due to integer arithmetic and rounding [1]_. References ---------- .. [1] https://en.wikipedia.org/wiki/HSL_and_HSV Examples -------- >>> import cupy as cp >>> from skimage import data >>> img = cp.array(data.astronaut()) >>> img_hsv = rgb2hsv(img) >>> img_rgb = hsv2rgb(img_hsv) """ hsv = _prepare_colorarray( hsv, force_c_contiguous=True, channel_axis=channel_axis ) rgb = cp.empty_like(hsv) name = f"hsv2rgb_{hsv.dtype.char}" kern = _hsv_to_rgb_kernel(name=name) kern(hsv, rgb, size=hsv.size // 3) return rgb # --------------------------------------------------------------- # Primaries for the coordinate systems # --------------------------------------------------------------- cie_primaries = np.array([700, 546.1, 435.8]) sb_primaries = np.array([1.0 / 155, 1.0 / 190, 1.0 / 225]) * 1e5 # --------------------------------------------------------------- # Matrices that define conversion between different color spaces # --------------------------------------------------------------- # From sRGB specification # fmt: off xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423], [0.212671, 0.715160, 0.072169], [0.019334, 0.119193, 0.950227]]) rgb_from_xyz = linalg.inv(xyz_from_rgb) # From https://en.wikipedia.org/wiki/CIE_1931_color_space # Note: Travis's code did not have the divide by 0.17697 xyz_from_rgbcie = np.array([[0.49, 0.31, 0.20], [0.17697, 0.81240, 0.01063], [0.00, 0.01, 0.99]]) / 0.17697 rgbcie_from_xyz = linalg.inv(xyz_from_rgbcie) # construct matrices to and from rgb: rgbcie_from_rgb = rgbcie_from_xyz @ xyz_from_rgb rgb_from_rgbcie = rgb_from_xyz @ xyz_from_rgbcie gray_from_rgb = np.array([[0.2125, 0.7154, 0.0721], [0, 0, 0], [0, 0, 0]]) yuv_from_rgb = np.array([[ 0.299 , 0.587 , 0.114 ], # noqa [-0.14714119, -0.28886916, 0.43601035], # noqa [ 0.61497538, -0.51496512, -0.10001026]]) # noqa rgb_from_yuv = linalg.inv(yuv_from_rgb) yiq_from_rgb = np.array([[0.299 , 0.587 , 0.114 ], # noqa [0.59590059, -0.27455667, -0.32134392], # noqa [0.21153661, -0.52273617, 0.31119955]]) # noqa rgb_from_yiq = linalg.inv(yiq_from_rgb) ypbpr_from_rgb = np.array([[ 0.299 , 0.587 , 0.114 ], # noqa [-0.168736, -0.331264, 0.5 ], # noqa [ 0.5 , -0.418688, -0.081312]]) # noqa # fmt: on rgb_from_ypbpr = linalg.inv(ypbpr_from_rgb) ycbcr_from_rgb = np.array( [ [65.481, 128.553, 24.966], # noqa [-37.797, -74.203, 112.0], # noqa [112.0, -93.786, -18.214], ] ) # noqa rgb_from_ycbcr = linalg.inv(ycbcr_from_rgb) ydbdr_from_rgb = np.array( [ [0.299, 0.587, 0.114], # noqa [-0.45, -0.883, 1.333], # noqa [-1.333, 1.116, 0.217], ] ) # noqa rgb_from_ydbdr = linalg.inv(ydbdr_from_rgb) # CIE LAB constants for Observer=2A, Illuminant=D65 # NOTE: this is actually the XYZ values for the illuminant above. lab_ref_white = np.array([0.95047, 1.0, 1.08883]) # XYZ coordinates of the illuminants, scaled to [0, 1]. For each illuminant I # we have: # # illuminant[I]['2'] corresponds to the XYZ coordinates for the 2 degree # field of view. # # illuminant[I]['10'] corresponds to the XYZ coordinates for the 10 degree # field of view. # # illuminant[I]['R'] corresponds to the XYZ coordinates for R illuminants # in grDevices::convertColor # # The XYZ coordinates are calculated from [1], using the formula: # # X = x * ( Y / y ) # Y = Y # Z = ( 1 - x - y ) * ( Y / y ) # # where Y = 1. The only exception is the illuminant "D65" with aperture angle # 2, whose coordinates are copied from 'lab_ref_white' for # backward-compatibility reasons. # # References # ---------- # .. [1] https://en.wikipedia.org/wiki/Standard_illuminant _illuminants = { "A": { "2": (1.098466069456375, 1, 0.3558228003436005), "10": (1.111420406956693, 1, 0.3519978321919493), "R": (1.098466069456375, 1, 0.3558228003436005), }, "B": { "2": (0.9909274480248003, 1, 0.8531327322886154), "10": (0.9917777147717607, 1, 0.8434930535866175), "R": (0.9909274480248003, 1, 0.8531327322886154), }, "C": { "2": (0.980705971659919, 1, 1.1822494939271255), "10": (0.9728569189782166, 1, 1.1614480488951577), "R": (0.980705971659919, 1, 1.1822494939271255), }, "D50": { "2": (0.9642119944211994, 1, 0.8251882845188288), "10": (0.9672062750333777, 1, 0.8142801513128616), "R": (0.9639501491621826, 1, 0.8241280285499208), }, "D55": { "2": (0.956797052643698, 1, 0.9214805860173273), "10": (0.9579665682254781, 1, 0.9092525159847462), "R": (0.9565317453467969, 1, 0.9202554587037198), }, "D65": { "2": (0.95047, 1.0, 1.08883), # This was: `lab_ref_white` "10": (0.94809667673716, 1, 1.0730513595166162), "R": (0.9532057125493769, 1, 1.0853843816469158), }, "D75": { "2": (0.9497220898840717, 1, 1.226393520724154), "10": (0.9441713925645873, 1, 1.2064272211720228), "R": (0.9497220898840717, 1, 1.226393520724154), }, "E": {"2": (1.0, 1.0, 1.0), "10": (1.0, 1.0, 1.0), "R": (1.0, 1.0, 1.0)}, } def xyz_tristimulus_values(*, illuminant, observer, dtype=None): """Get the CIE XYZ tristimulus values. Given an illuminant and observer, this function returns the CIE XYZ tristimulus values [2]_ scaled such that :math:`Y = 1`. Parameters ---------- illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"} The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"} One of: 2-degree observer, 10-degree observer, or 'R' observer as in R function ``grDevices::convertColor`` [3]_. dtype : np.dtype, optional This argument is ignored in the cuCIM implementation of `xyz_tristimulus_values` since an array is not returned. The output is always a 3-tuple of float. Returns ------- values : 3-tuple of float Three elements :math:`X, Y, Z` containing the CIE XYZ tristimulus values of the given illuminant. Raises ------ ValueError If either the illuminant or the observer angle are not supported or unknown. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant#White_points_of_standard_illuminants .. [2] https://en.wikipedia.org/wiki/CIE_1931_color_space#Meaning_of_X,_Y_and_Z .. [3] https://www.rdocumentation.org/packages/grDevices/versions/3.6.2/topics/convertColor Notes ----- The return type of this function differs from the one in scikit-image as it always returns a 3-tuple of float rather than an array with a user-specified dtype. The CIE XYZ tristimulus values are calculated from :math:`x, y` [1]_, using the formula .. math:: X = x / y .. math:: Y = 1 .. math:: Z = (1 - x - y) / y The only exception is the illuminant "D65" with aperture angle 2° for backward-compatibility reasons. Examples -------- Get the CIE XYZ tristimulus values for a "D65" illuminant for a 10 degree field of view >>> xyz_tristimulus_values(illuminant="D65", observer="10") array([0.94809668, 1. , 1.07305136]) """ # noqa illuminant = illuminant.upper() observer = observer.upper() try: return _illuminants[illuminant][observer] except KeyError: raise ValueError( f"Unknown illuminant/observer combination " f"(`{illuminant}`, `{observer}`)" ) @deprecate_func( hint="Use `skimage.color.xyz_tristimulus_values` instead.", deprecated_version="23.08", removed_version="24.06", ) def get_xyz_coords(illuminant, observer, dtype=float): """Get the XYZ coordinates of the given illuminant and observer [1]_. Parameters ---------- illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional One of: 2-degree observer, 10-degree observer, or 'R' observer as in R function grDevices::convertColor. dtype: dtype, optional Output data type. Returns ------- out : array Array with 3 elements containing the XYZ coordinates of the given illuminant. Raises ------ ValueError If either the illuminant or the observer angle are not supported or unknown. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant """ return xyz_tristimulus_values(illuminant=illuminant, observer=observer) # Haematoxylin-Eosin-DAB colorspace # From original Ruifrok's paper: A. C. Ruifrok and D. A. Johnston, # "Quantification of histochemical staining by color deconvolution," # Analytical and quantitative cytology and histology / the International # Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, # pp. 291-9, Aug. 2001. # fmt: off rgb_from_hed = np.array([[0.65, 0.70, 0.29], [0.07, 0.99, 0.11], [0.27, 0.57, 0.78]]) hed_from_rgb = linalg.inv(rgb_from_hed) # Following matrices are adapted form the Java code written by G.Landini. # The original code is available at: # https://web.archive.org/web/20160624145052/http://www.mecourse.com/landinig/software/cdeconv/cdeconv.html # Hematoxylin + DAB rgb_from_hdx = np.array([[0.650, 0.704, 0.286], [0.268, 0.570, 0.776], [0.0, 0.0, 0.0]]) rgb_from_hdx[2, :] = np.cross(rgb_from_hdx[0, :], rgb_from_hdx[1, :]) hdx_from_rgb = linalg.inv(rgb_from_hdx) # Feulgen + Light Green rgb_from_fgx = np.array([[0.46420921, 0.83008335, 0.30827187], [0.94705542, 0.25373821, 0.19650764], [0.0, 0.0, 0.0]]) rgb_from_fgx[2, :] = np.cross(rgb_from_fgx[0, :], rgb_from_fgx[1, :]) fgx_from_rgb = linalg.inv(rgb_from_fgx) # Giemsa: Methyl Blue + Eosin rgb_from_bex = np.array([[0.834750233, 0.513556283, 0.196330403], [0.092789, 0.954111, 0.283111], [0.0, 0.0, 0.0]]) rgb_from_bex[2, :] = np.cross(rgb_from_bex[0, :], rgb_from_bex[1, :]) bex_from_rgb = linalg.inv(rgb_from_bex) # FastRed + FastBlue + DAB rgb_from_rbd = np.array([[0.21393921, 0.85112669, 0.47794022], [0.74890292, 0.60624161, 0.26731082], [0.268, 0.570, 0.776]]) rbd_from_rgb = linalg.inv(rgb_from_rbd) # Methyl Green + DAB rgb_from_gdx = np.array([[0.98003, 0.144316, 0.133146], [0.268, 0.570, 0.776], [0.0, 0.0, 0.0]]) rgb_from_gdx[2, :] = np.cross(rgb_from_gdx[0, :], rgb_from_gdx[1, :]) gdx_from_rgb = linalg.inv(rgb_from_gdx) # Hematoxylin + AEC rgb_from_hax = np.array([[0.650, 0.704, 0.286], [0.2743, 0.6796, 0.6803], [0.0, 0.0, 0.0]]) rgb_from_hax[2, :] = np.cross(rgb_from_hax[0, :], rgb_from_hax[1, :]) hax_from_rgb = linalg.inv(rgb_from_hax) # Blue matrix Anilline Blue + Red matrix Azocarmine + Orange matrix Orange-G rgb_from_bro = np.array([[0.853033, 0.508733, 0.112656], [0.09289875, 0.8662008, 0.49098468], [0.10732849, 0.36765403, 0.9237484]]) bro_from_rgb = linalg.inv(rgb_from_bro) # Methyl Blue + Ponceau Fuchsin rgb_from_bpx = np.array([[0.7995107, 0.5913521, 0.10528667], [0.09997159, 0.73738605, 0.6680326], [0.0, 0.0, 0.0]]) rgb_from_bpx[2, :] = np.cross(rgb_from_bpx[0, :], rgb_from_bpx[1, :]) bpx_from_rgb = linalg.inv(rgb_from_bpx) # Alcian Blue + Hematoxylin rgb_from_ahx = np.array([[0.874622, 0.457711, 0.158256], [0.552556, 0.7544, 0.353744], [0.0, 0.0, 0.0]]) rgb_from_ahx[2, :] = np.cross(rgb_from_ahx[0, :], rgb_from_ahx[1, :]) ahx_from_rgb = linalg.inv(rgb_from_ahx) # Hematoxylin + PAS rgb_from_hpx = np.array([[0.644211, 0.716556, 0.266844], [0.175411, 0.972178, 0.154589], [0.0, 0.0, 0.0]]) rgb_from_hpx[2, :] = np.cross(rgb_from_hpx[0, :], rgb_from_hpx[1, :]) hpx_from_rgb = linalg.inv(rgb_from_hpx) # fmt on # ------------------------------------------------------------- # The conversion functions that make use of the matrices above # ------------------------------------------------------------- @cp.memoize(for_each_device=True) def _get_convert_kernel(matrix_tuple, pre, post, name): # pre code may modify x so set both x and y as outputs return cp.ElementwiseKernel( '', 'raw X x, raw X y', pre + _get_core_colorconv_operation(matrix_tuple) + post, name='cucim_skimage_color_' + name) def _convert(matrix, arr, pre='', post='', name='_convert'): """Do the color space conversion. Parameters ---------- matrix : array_like The 3x3 matrix to use. arr : (..., 3) array_like The input array. Final dimension denotes channels. Returns ------- out : (..., 3) ndarray The converted array. Same dimensions as input. """ arr = _prepare_colorarray(arr) name = name + f'_{arr.dtype.char}' kern = _get_convert_kernel(tuple(matrix.ravel()), pre, post, name) out = cp.empty_like(arr) kern(arr, out, size=arr.size // 3) return out def _get_core_colorconv_operation(m): """Generate inline CUDA kernel code for color conversions. x is the input image with 3 channels on the last axis y is the output image with 3 channels on the last axis m is a 3x3 color conversion matrix """ return f""" y[3*i] = x[3*i] * {m[0]} + x[3*i + 1] * {m[1]} + x[3*i + 2] * {m[2]}; y[3*i + 1] = x[3*i] * {m[3]} + x[3*i + 1] * {m[4]} + x[3*i + 2] * {m[5]}; y[3*i + 2] = x[3*i] * {m[6]} + x[3*i + 1] * {m[7]} + x[3*i + 2] * {m[8]}; """ # noqa @channel_as_last_axis() def xyz2rgb(xyz, *, channel_axis=-1): """XYZ to RGB color space conversion. Parameters ---------- xyz : (..., 3, ...) array_like The image in XYZ format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `xyz` is not at least 2-D with shape (..., 3, ...). Notes ----- The CIE XYZ color space is derived from the CIE RGB color space. Note however that this function converts to sRGB. References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> from cucim.skimage.color import rgb2xyz, xyz2rgb >>> img = cp.array(data.astronaut()) >>> img_xyz = rgb2xyz(img) >>> img_rgb = xyz2rgb(img_xyz) """ # Follow the algorithm from http://www.easyrgb.com/index.php # except we don't multiply/divide by 100 in the conversion arr = _prepare_colorarray(xyz, force_c_contiguous=True, channel_axis=channel_axis) # scaling applied after the 3x3 conversion matrix multiplication # (c indexes over color channels here) _post_colorconv = """ for (int c=0; c < 3; c++) { if (y[3*i + c] > 0.0031308) { y[3*i + c] = 1.055 * pow(y[3*i + c], (X)(1 / 2.4)) - 0.055; } else { y[3*i + c] *= 12.92; } y[3*i + c] = min(max(y[3*i + c], (X)0.0), (X)1.0); } """ return _convert(rgb_from_xyz, arr, post=_post_colorconv, name='xyz2rgb') @channel_as_last_axis() def rgb2xyz(rgb, *, channel_axis=-1): """RGB to XYZ color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in XYZ format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- The CIE XYZ color space is derived from the CIE RGB color space. Note however that this function converts from sRGB. References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> import cupy as cp >>> from skimage import data >>> img = cp.array(data.astronaut()) >>> img_xyz = rgb2xyz(img) """ # Follow the algorithm from http://www.easyrgb.com/index.php # except we don't multiply/divide by 100 in the conversion rgb = _prepare_colorarray(rgb, force_copy=True, force_c_contiguous=True, channel_axis=channel_axis) # scaling applied to the input before 3x3 conversion matrix multiplication # (c indexes over color channels here) _pre_colorconv = """ for (int c=0; c < 3; c++) { if (x[3*i + c] > 0.04045) { x[3*i + c] = pow((x[3*i + c] + (X)0.055) / (X)1.055, (X)2.4); } else { x[3*i + c] /= 12.92; } } """ return _convert(xyz_from_rgb, rgb, pre=_pre_colorconv, name='rgb2xyz') @channel_as_last_axis() def rgb2rgbcie(rgb, *, channel_axis=-1): """RGB to RGB CIE color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB CIE format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> from cucim.skimage.color import rgb2rgbcie >>> img = cp.array(data.astronaut()) >>> img_rgbcie = rgb2rgbcie(img) """ return _convert(rgbcie_from_rgb, rgb, name='rgb2rgbcie') @channel_as_last_axis() def rgbcie2rgb(rgbcie, *, channel_axis=-1): """RGB CIE to RGB color space conversion. Parameters ---------- rgbcie : (..., 3, ...) array_like The image in RGB CIE format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `rgbcie` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] https://en.wikipedia.org/wiki/CIE_1931_color_space Examples -------- >>> from skimage import data >>> from cucim.skimage.color import rgb2rgbcie, rgbcie2rgb >>> img = cp.array(data.astronaut()) >>> img_rgbcie = rgb2rgbcie(img) >>> img_rgb = rgbcie2rgb(img_rgbcie) """ return _convert(rgb_from_rgbcie, rgbcie, name='rgbcie2rgb') @cp.memoize(for_each_device=True) def _rgb_to_gray_kernel(dtype): return cp.ElementwiseKernel( 'raw X rgb', 'raw X gray', """ gray[i] = 0.2125 * rgb[3*i] + 0.7154 * rgb[3*i + 1] + 0.0721 * rgb[3*i + 2]; """, # noqa name=f'cucim_skimage_color_rgb2gray_{np.dtype(dtype).char}') @channel_as_last_axis(multichannel_output=False) def rgb2gray(rgb, *, channel_axis=-1): """Compute luminance of an RGB image. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. Returns ------- out : ndarray The luminance image - an array which is the same size as the input array, but with the channel dimension removed. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- The weights used in this conversion are calibrated for contemporary CRT phosphors:: Y = 0.2125 R + 0.7154 G + 0.0721 B If there is an alpha channel present, it is ignored. References ---------- .. [1] http://poynton.ca/PDFs/ColorFAQ.pdf Examples -------- >>> import cupy as cp >>> from cucim.skimage.color import rgb2gray >>> from skimage import data >>> img = cp.array(data.astronaut()) >>> img_gray = rgb2gray(img) """ rgb = _prepare_colorarray(rgb, force_c_contiguous=True, channel_axis=channel_axis) kern = _rgb_to_gray_kernel(rgb.dtype) gray = cp.empty(rgb.shape[:-1], dtype=rgb.dtype) kern(rgb, gray, size=gray.size) return gray def gray2rgba(image, alpha=None, *, channel_axis=-1): """Create a RGBA representation of a gray-level image. Parameters ---------- image : array_like Input image. alpha : array_like, optional Alpha channel of the output image. It may be a scalar or an array that can be broadcast to ``image``. If not specified it is set to the maximum limit corresponding to the ``image`` dtype. channel_axis : int, optional This parameter indicates which axis of the output array will correspond to channels. Returns ------- rgba : ndarray RGBA image. A new dimension of length 4 is added to input image shape. """ alpha_min, alpha_max = dtype_limits(image, clip_negative=False) if alpha is None: alpha = alpha_max if not cp.can_cast(alpha, image.dtype): warn("alpha can't be safely cast to image dtype {}" .format(image.dtype.name), stacklevel=2) if np.isscalar(alpha): alpha = cp.full(image.shape, alpha, dtype=image.dtype) elif alpha.shape != image.shape: raise ValueError("alpha.shape must match image.shape") rgba = np.stack((image,) * 3 + (alpha,), axis=channel_axis) return rgba def gray2rgb(image, *, channel_axis=-1): """Create an RGB representation of a gray-level image. Parameters ---------- image : array_like Input image. channel_axis : int, optional This parameter indicates which axis of the output array will correspond to channels. Returns ------- rgb : (..., 3, ...) ndarray RGB image. A new dimension of length 3 is added to input image. Notes ----- If the input is a 1-dimensional image of shape ``(M, )``, the output will be shape ``(M, 3)``. """ return cp.stack(3 * (image,), axis=channel_axis) @cp.memoize(for_each_device=True) def _get_xyz_to_lab_kernel(xyz_ref_white, name='xyz2lab'): _xyz_to_lab = f""" // scale by CIE XYZ tristimulus values of the reference white point arr[3*i] /= {xyz_ref_white[0]}; arr[3*i + 1] /= {xyz_ref_white[1]}; arr[3*i + 2] /= {xyz_ref_white[2]}; // Nonlinear distortion and linear transformation for (int ch=0; ch < 3; ch++) {{ if (arr[3*i + ch] > 0.008856) {{ arr[3*i + ch] = cbrt(arr[3*i + ch]); }} else {{ arr[3*i + ch] = 7.787 * arr[3*i + ch] + 16.0 / 116.0; }} }} // Vector scaling lab[3*i] = (116. * arr[3*i + 1]) - 16.0; lab[3*i + 1] = 500.0 * (arr[3*i] - arr[3*i + 1]); lab[3*i + 2] = 200.0 * (arr[3*i + 1] - arr[3*i + 2]); """ # array will be modified in-place return cp.ElementwiseKernel( '', 'raw X arr, raw X lab', _xyz_to_lab, name='cucim_skimage_color_' + name) @channel_as_last_axis() def xyz2lab(xyz, illuminant="D65", observer="2", *, channel_axis=-1): """XYZ to CIE-LAB color space conversion. Parameters ---------- xyz : (..., 3, ...) array_like The image in XYZ format. By default, the final dimension denotes channels. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional One of: 2-degree observer, 10-degree observer, or 'R' observer as in R function grDevices::convertColor. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in CIE-LAB format. Same dimensions as input. Raises ------ ValueError If `xyz` is not at least 2-D with shape (..., 3, ...). ValueError If either the illuminant or the observer angle is unsupported or unknown. Notes ----- By default Observer="2", Illuminant="D65". CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function :func:`~.xyz_tristimulus_values` for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/en/math.php .. [2] https://en.wikipedia.org/wiki/CIELAB_color_space Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage.color import rgb2xyz, xyz2lab >>> img = cp.array(data.astronaut()) >>> img_xyz = rgb2xyz(img) >>> img_lab = xyz2lab(img_xyz) """ xyz = _prepare_colorarray(xyz, force_copy=True, force_c_contiguous=True, channel_axis=channel_axis) xyz_ref_white = xyz_tristimulus_values( illuminant=illuminant, observer=observer ) name = f'xyz2lab_{xyz.dtype.char}' kern = _get_xyz_to_lab_kernel(xyz_ref_white, name=name) lab = cp.empty_like(xyz) kern(xyz, lab, size=lab.size // 3) return lab @cp.memoize(for_each_device=True) def _get_lab_to_xyz_kernel(xyz_ref_white, name='lab2xyz'): _lab_to_xyz = f""" xyz[3*i + 1] = (lab[3*i] + 16.) / 116.; xyz[3*i] = (lab[3*i + 1] / 500.0) + xyz[3*i + 1]; xyz[3*i + 2] = xyz[3*i + 1] - (lab[3*i + 2] /200.0); if (xyz[3*i + 2] < 0.0) {{ xyz[3*i + 2] = 0.0; warn[i] = 1; }} for (int ch=0; ch < 3; ch++) {{ if (xyz[3*i + ch] > 0.2068966) {{ xyz[3*i + ch] *= xyz[3*i + ch] * xyz[3*i + ch]; }} else {{ xyz[3*i + ch] = (xyz[3*i + ch] - 16.0 / 116.0) / 7.787; }} }} xyz[3*i] *= {xyz_ref_white[0]}; xyz[3*i + 1] *= {xyz_ref_white[1]}; xyz[3*i + 2] *= {xyz_ref_white[2]}; // xyz[3*i] = min(max(xyz[3*i], 0.0), 1.0); // xyz[3*i + 1] = min(max(xyz[3*i + 1], 0.0), 1.0); // xyz[3*i + 2] = min(max(xyz[3*i + 2], 0.0), 1.0); """ # array will be modified in-place return cp.ElementwiseKernel( '', 'raw X lab, raw X xyz, raw int32 warn', _lab_to_xyz, name='cucim_skimage_color_' + name) @channel_as_last_axis() def lab2xyz(lab, illuminant="D65", observer="2", *, channel_axis=-1): """Convert image in CIE-LAB to XYZ color space. Parameters ---------- lab : (..., 3, ...) array_like The input image in CIE-LAB color space. Unless `channel_axis` is set, the final dimension denotes the CIE-LAB channels. The L* values range from 0 to 100; the a* and b* values range from -128 to 127. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional The aperture angle of the observer. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in XYZ color space, of same shape as input. Raises ------ ValueError If `lab` is not at least 2-D with shape (..., 3, ...). ValueError If either the illuminant or the observer angle are not supported or unknown. UserWarning If any of the pixels are invalid (Z < 0). Notes ----- The CIE XYZ tristimulus values are x_ref = 95.047, y_ref = 100., and z_ref = 108.883. See function :func:`~.xyz_tristimulus_values` for a list of supported illuminants. See Also -------- xyz2lab References ---------- .. [1] http://www.easyrgb.com/en/math.php .. [2] https://en.wikipedia.org/wiki/CIELAB_color_space """ xyz, n_invalid = _lab2xyz(lab, illuminant, observer, channel_axis) if n_invalid > 0: warn( "Conversion from CIE-LAB to XYZ color space resulted in " f"{n_invalid} negative Z values that have been clipped to zero", stacklevel=3, ) return xyz def _lab2xyz(lab, illuminant, observer, channel_axis): """Convert CIE-LAB to XYZ color space. Internal function for :func:`~.lab2xyz` and others. In addition to the converted image, return the number of invalid pixels in the Z channel for correct warning propagation. Returns ------- out : (..., 3, ...) ndarray The image in XYZ format. Same dimensions as input. n_invalid : int Number of invalid pixels in the Z channel after conversion. """ lab = _prepare_colorarray(lab, force_c_contiguous=True, channel_axis=channel_axis) xyz_ref_white = xyz_tristimulus_values( illuminant=illuminant, observer=observer ) name = f'lab2xyz_{lab.dtype.char}' kern = _get_lab_to_xyz_kernel(xyz_ref_white, name=name) xyz = cp.empty_like(lab) # TODO: better to use array for warn or a single element with atomic # operations? warnings = cp.zeros(lab.shape[:-1], dtype=np.int32) kern(lab, xyz, warnings, size=lab.size // 3) n_invalid = int(cp.count_nonzero(warnings)) # synchronize! return xyz, n_invalid @channel_as_last_axis() def rgb2lab(rgb, illuminant="D65", observer="2", *, channel_axis=-1): """Conversion from the sRGB color space (IEC 61966-2-1:1999) to the CIE Lab colorspace under the given illuminant and observer. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional The aperture angle of the observer. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in Lab format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- RGB is a device-dependent color space so, if you use this function, be sure that the image you are analyzing has been mapped to the sRGB color space. This function uses rgb2xyz and xyz2lab. By default Observer="2", Illuminant="D65". CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function :func:`~.xyz_tristimulus_values` for a list of supported illuminants. References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant """ return xyz2lab(rgb2xyz(rgb), illuminant, observer) @channel_as_last_axis() def lab2rgb(lab, illuminant="D65", observer="2", *, channel_axis=-1): """Convert image in CIE-LAB to sRGB color space. Parameters ---------- lab : (..., 3, ...) array_like The input image in CIE-LAB color space. Unless `channel_axis` is set, the final dimension denotes the CIE-LAB channels. The L* values range from 0 to 100; the a* and b* values range from -128 to 127. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional The aperture angle of the observer. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in sRGB color space, of same shape as input. Raises ------ ValueError If `lab` is not at least 2-D with shape (..., 3, ...). Notes ----- This function uses :func:`~.lab2xyz` and :func:`~.xyz2rgb`. The CIE XYZ tristimulus values are x_ref = 95.047, y_ref = 100., and z_ref = 108.883. See function :func:`~.xyz_tristimulus_values` for a list of supported illuminants. See Also -------- rgb2lab References ---------- .. [1] https://en.wikipedia.org/wiki/Standard_illuminant .. [2] https://en.wikipedia.org/wiki/CIELAB_color_space """ xyz, n_invalid = _lab2xyz(lab, illuminant, observer, channel_axis) if n_invalid != 0: warn( "Conversion from CIE-LAB, via XYZ to sRGB color space resulted in " f"{n_invalid} negative Z values that have been clipped to zero", stacklevel=3, ) return xyz2rgb(xyz, channel_axis=channel_axis) @cp.memoize(for_each_device=True) def _get_xyz_to_luv_kernel(xyz_ref_white, dtype): eps = np.finfo(dtype).eps preamble = f""" // u' and v' helper functions static __device__ __inline__ X fu(X v0, X v1, X v2) {{ return (4.0 * v0) / (v0 + 15.0 * v1 + 3.0 * v2 + {eps}); }} static __device__ __inline__ X fv(X v0, X v1, X v2) {{ return (9.0 * v1) / (v0 + 15.0 * v1 + 3.0 * v2 + {eps}); }} """ denom = np.asarray([1, 15, 3]) @ np.asarray(xyz_ref_white, dtype=float) denom = float(denom) u0 = 4 * xyz_ref_white[0] / denom v0 = 9 * xyz_ref_white[1] / denom _xyz_to_luv = f""" luv[3*i] = xyz[3*i + 1] / {xyz_ref_white[1]}; if (luv[3*i] > 0.008856) {{ luv[3*i] = 116.0 * cbrt(luv[3*i]) - 16.0; }} else {{ luv[3*i] *= 903.3; }} luv[3*i + 1] = ( 13.0 * luv[3*i] * (fu(xyz[3*i], xyz[3*i + 1], xyz[3*i + 2]) - {u0}) ); luv[3*i + 2] = ( 13.0 * luv[3*i] * (fv(xyz[3*i], xyz[3*i + 1], xyz[3*i + 2]) - {v0}) ); """ # array will be modified in-place return cp.ElementwiseKernel( '', 'raw X xyz, raw X luv', _xyz_to_luv, preamble=preamble, name=f'cucim_skimage_color_xyz2luv_{np.dtype(dtype).char}') @channel_as_last_axis() def xyz2luv(xyz, illuminant="D65", observer="2", *, channel_axis=-1): """XYZ to CIE-Luv color space conversion. Parameters ---------- xyz : (..., 3, ...) array_like The image in XYZ format. By default, the final dimension denotes channels. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional The aperture angle of the observer. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in CIE-Luv format. Same dimensions as input. Raises ------ ValueError If `xyz` is not at least 2-D with shape (..., 3, ...). ValueError If either the illuminant or the observer angle are not supported or unknown. Notes ----- By default XYZ conversion weights use observer=2A. Reference whitepoint for D65 Illuminant, with XYZ tristimulus values of ``(95.047, 100., 108.883)``. See function :func:`~.xyz_tristimulus_values` for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/en/math.php .. [2] https://en.wikipedia.org/wiki/CIELUV Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage.color import rgb2xyz, xyz2luv >>> img = cp.array(data.astronaut()) >>> img_xyz = rgb2xyz(img) >>> img_luv = xyz2luv(img_xyz) """ input_is_one_pixel = xyz.ndim == 1 if input_is_one_pixel: xyz = xyz[np.newaxis, ...] xyz = _prepare_colorarray(xyz, force_c_contiguous=True, channel_axis=channel_axis) xyz_ref_white = xyz_tristimulus_values( illuminant=illuminant, observer=observer ) kern = _get_xyz_to_luv_kernel(xyz_ref_white, xyz.dtype) luv = cp.empty_like(xyz) kern(xyz, luv, size=xyz.size // 3) if input_is_one_pixel: luv = cp.squeeze(luv, axis=0) return luv @cp.memoize(for_each_device=True) def _get_luv_to_xyz_kernel(xyz_ref_white, dtype): eps = np.finfo(dtype).eps denom = np.asarray([1, 15, 3]) @ np.asarray(xyz_ref_white, dtype=float) denom = float(denom) u0 = 4 * xyz_ref_white[0] / denom v0 = 9 * xyz_ref_white[1] / denom _luv_to_xyz = f""" if (luv[3*i] > 7.999625) {{ xyz[3*i + 1] = (luv[3 * i] + 16.0) / 116.0; xyz[3*i + 1] *= xyz[3*i + 1] * xyz[3*i + 1]; }} else {{ xyz[3*i + 1] = luv[3*i] / 903.3; }} xyz[3*i + 1] *= {xyz_ref_white[1]}; X a = {u0} + luv[3*i + 1] / (13.0 * luv[3*i] + {eps}); X b = {v0} + luv[3*i + 2] / (13.0 * luv[3*i] + {eps}); X c = 3.0 * xyz[3*i + 1] * (5.0 * b - 3.0); xyz[3*i + 2] = ((a - 4.0) * c - 15.0 * a * b * xyz[3*i + 1]) / (12.0 * b); xyz[3*i] = -(c / b + 3.0 * xyz[3*i + 2]); """ # noqa return cp.ElementwiseKernel( '', 'raw X luv, raw X xyz', _luv_to_xyz, name=f'cucim_skimage_color_luv2xyz_{np.dtype(dtype).char}') @channel_as_last_axis() def luv2xyz(luv, illuminant="D65", observer="2", *, channel_axis=-1): """CIE-Luv to XYZ color space conversion. Parameters ---------- luv : (..., 3, ...) array_like The image in CIE-Luv format. By default, the final dimension denotes channels. illuminant : {"A", "B", "C", "D50", "D55", "D65", "D75", "E"}, optional The name of the illuminant (the function is NOT case sensitive). observer : {"2", "10", "R"}, optional The aperture angle of the observer. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in XYZ format. Same dimensions as input. Raises ------ ValueError If `luv` is not at least 2-D with shape (..., 3, ...). ValueError If either the illuminant or the observer angle are not supported or unknown. Notes ----- XYZ conversion weights use observer=2A. Reference whitepoint for D65 Illuminant, with XYZ tristimulus values of ``(95.047, 100., 108.883)``. See function :func:`~.xyz_tristimulus_values` for a list of supported illuminants. References ---------- .. [1] http://www.easyrgb.com/en/math.php .. [2] https://en.wikipedia.org/wiki/CIELUV """ luv = _prepare_colorarray(luv, force_c_contiguous=True, channel_axis=channel_axis) xyz_ref_white = xyz_tristimulus_values( illuminant=illuminant, observer=observer ) kern = _get_luv_to_xyz_kernel(xyz_ref_white, luv.dtype) xyz = cp.empty_like(luv) kern(luv, xyz, size=luv.size // 3) return xyz @channel_as_last_axis() def rgb2luv(rgb, *, channel_axis=-1): """RGB to CIE-Luv color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in CIE Luv format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- This function uses rgb2xyz and xyz2luv. References ---------- .. [1] http://www.easyrgb.com/en/math.php .. [2] https://en.wikipedia.org/wiki/CIELUV """ return xyz2luv(rgb2xyz(rgb)) @channel_as_last_axis() def luv2rgb(luv, *, channel_axis=-1): """Luv to RGB color space conversion. Parameters ---------- luv : (..., 3, ...) array_like The image in CIE Luv format. By default, the final dimension denotes channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `luv` is not at least 2-D with shape (..., 3, ...). Notes ----- This function uses luv2xyz and xyz2rgb. """ return xyz2rgb(luv2xyz(luv)) @channel_as_last_axis() def rgb2hed(rgb, *, channel_axis=-1): """RGB to Haematoxylin-Eosin-DAB (HED) color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in HED format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] A. C. Ruifrok and D. A. Johnston, "Quantification of histochemical staining by color deconvolution.," Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001. Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage.color import rgb2hed >>> ihc = cp.array(data.immunohistochemistry()) >>> ihc_hed = rgb2hed(ihc) """ return separate_stains(rgb, hed_from_rgb) @channel_as_last_axis() def hed2rgb(hed, *, channel_axis=-1): """Haematoxylin-Eosin-DAB (HED) to RGB color space conversion. Parameters ---------- hed : (..., 3, ...) array_like The image in the HED color space. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB. Same dimensions as input. Raises ------ ValueError If `hed` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] A. C. Ruifrok and D. A. Johnston, "Quantification of histochemical staining by color deconvolution.," Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001. Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage.color import rgb2hed, hed2rgb >>> ihc = cp.array(data.immunohistochemistry()) >>> ihc_hed = rgb2hed(ihc) >>> ihc_rgb = hed2rgb(ihc_hed) """ return combine_stains(hed, rgb_from_hed) @cp.memoize(for_each_device=True) def _separate_stains_kernel(m): log_adjust = 1 / np.log(1e-6) code = f""" X tmp[3]; for (int ch=0; ch<3; ch++) {{ tmp[ch] = log(max(rgb[3*i + ch], 1e-6)) * {log_adjust}; }} stains[3*i] = tmp[0] * {m[0]} + tmp[1] * {m[3]} + tmp[2] * {m[6]}; stains[3*i + 1] = tmp[0] * {m[1]} + tmp[1] * {m[4]} + tmp[2] * {m[7]}; stains[3*i + 2] = tmp[0] * {m[2]} + tmp[1] * {m[5]} + tmp[2] * {m[8]}; """ # noqa return cp.ElementwiseKernel( 'raw X rgb', 'raw X stains', code, name='cucim_skimage_color_seperate_stains') @channel_as_last_axis() def separate_stains(rgb, conv_matrix, *, channel_axis=-1): """RGB to stain color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. conv_matrix: ndarray The stain separation matrix as described by G. Landini [1]_. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in stain color space. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- Stain separation matrices available in the ``color`` module and their respective colorspace: * ``hed_from_rgb``: Hematoxylin + Eosin + DAB * ``hdx_from_rgb``: Hematoxylin + DAB * ``fgx_from_rgb``: Feulgen + Light Green * ``bex_from_rgb``: Giemsa stain : Methyl Blue + Eosin * ``rbd_from_rgb``: FastRed + FastBlue + DAB * ``gdx_from_rgb``: Methyl Green + DAB * ``hax_from_rgb``: Hematoxylin + AEC * ``bro_from_rgb``: Blue matrix Anilline Blue + Red matrix Azocarmine\ + Orange matrix Orange-G * ``bpx_from_rgb``: Methyl Blue + Ponceau Fuchsin * ``ahx_from_rgb``: Alcian Blue + Hematoxylin * ``hpx_from_rgb``: Hematoxylin + PAS This implementation borrows some ideas from DIPlib [2]_, e.g. the compensation using a small value to avoid log artifacts when calculating the Beer-Lambert law. References ---------- .. [1] https://web.archive.org/web/20160624145052/http://www.mecourse.com/landinig/software/cdeconv/cdeconv.html .. [2] https://github.com/DIPlib/diplib/ .. [3] A. C. Ruifrok and D. A. Johnston, “Quantification of histochemical staining by color deconvolution,” Anal. Quant. Cytol. Histol., vol. 23, no. 4, pp. 291–299, Aug. 2001. Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage.color import separate_stains, hdx_from_rgb >>> ihc = cp.array(data.immunohistochemistry()) >>> ihc_hdx = separate_stains(ihc, hdx_from_rgb) """ # noqa rgb = _prepare_colorarray(rgb, force_c_contiguous=True, channel_axis=channel_axis) if conv_matrix.shape != (3, 3): raise ValueError("conv_matrix must have shape (3, 3)") conv_matrix = tuple(cp.asnumpy(conv_matrix).ravel()) # #cp.maximum(rgb, 1e-6, out=rgb) # avoiding log artifacts # log_adjust = np.log(1e-6) # used to compensate the sum above # conv_matrix = cp.asarray(conv_matrix, dtype=rgb.dtype) # stains = (cp.log(rgb) / log_adjust) @ conv_matrix kern = _separate_stains_kernel(conv_matrix) stains = cp.empty_like(rgb) kern(rgb, stains, size=rgb.size // 3) cp.maximum(stains, 0, out=stains) return stains @cp.memoize(for_each_device=True) def _combine_stains_kernel(m): # log_adjust here is used to compensate the sum within separate_stains() log_adjust = np.log(1e-6) code = f""" X tmp[3]; for (int ch=0; ch<3; ch++) {{ tmp[ch] = stains[3*i + ch] * {log_adjust}; }} rgb[3*i] = tmp[0] * {m[0]} + tmp[1] * {m[3]} + tmp[2] * {m[6]}; rgb[3*i + 1] = tmp[0] * {m[1]} + tmp[1] * {m[4]} + tmp[2] * {m[7]}; rgb[3*i + 2] = tmp[0] * {m[2]} + tmp[1] * {m[5]} + tmp[2] * {m[8]}; for (int ch=0; ch<3; ch++) {{ rgb[3*i + ch] = min(max(exp(rgb[3*i + ch]), (X)0.0), (X)1.0); }} """ # noqa return cp.ElementwiseKernel( 'raw X stains', 'raw X rgb', code, name='cucim_skimage_color_combine_stains') @channel_as_last_axis() def combine_stains(stains, conv_matrix, *, channel_axis=-1): """Stain to RGB color space conversion. Parameters ---------- stains : (..., 3, ...) array_like The image in stain color space. By default, the final dimension denotes channels. conv_matrix: ndarray The stain separation matrix as described by G. Landini [1]_. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `stains` is not at least 2-D with shape (..., 3, ...). Notes ----- Stain combination matrices available in the ``color`` module and their respective colorspace: * ``rgb_from_hed``: Hematoxylin + Eosin + DAB * ``rgb_from_hdx``: Hematoxylin + DAB * ``rgb_from_fgx``: Feulgen + Light Green * ``rgb_from_bex``: Giemsa stain : Methyl Blue + Eosin * ``rgb_from_rbd``: FastRed + FastBlue + DAB * ``rgb_from_gdx``: Methyl Green + DAB * ``rgb_from_hax``: Hematoxylin + AEC * ``rgb_from_bro``: Blue matrix Anilline Blue + Red matrix Azocarmine\ + Orange matrix Orange-G * ``rgb_from_bpx``: Methyl Blue + Ponceau Fuchsin * ``rgb_from_ahx``: Alcian Blue + Hematoxylin * ``rgb_from_hpx``: Hematoxylin + PAS References ---------- .. [1] https://web.archive.org/web/20160624145052/http://www.mecourse.com/landinig/software/cdeconv/cdeconv.html .. [2] A. C. Ruifrok and D. A. Johnston, “Quantification of histochemical staining by color deconvolution,” Anal. Quant. Cytol. Histol., vol. 23, no. 4, pp. 291–299, Aug. 2001. Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage.color import (separate_stains, combine_stains, ... hdx_from_rgb, rgb_from_hdx) >>> ihc = cp.array(data.immunohistochemistry()) >>> ihc_hdx = separate_stains(ihc, hdx_from_rgb) >>> ihc_rgb = combine_stains(ihc_hdx, rgb_from_hdx) """ # noqa stains = _prepare_colorarray(stains, force_c_contiguous=True, channel_axis=channel_axis) if conv_matrix.shape != (3, 3): raise ValueError("conv_matrix must have shape (3, 3)") conv_matrix = tuple(cp.asnumpy(conv_matrix).ravel()) kern = _combine_stains_kernel(conv_matrix) rgb = cp.empty_like(stains) kern(stains, rgb, size=stains.size // 3) return rgb @cp.memoize(for_each_device=True) def _lab2lch_kernel(nchannels=3, name='lab2lch'): code = f""" X a = lab[{nchannels}*i + 1]; X b = lab[{nchannels}*i + 2]; // update lab array in-place with the lch values lab[{nchannels}*i + 1] = hypot(a, b); lab[{nchannels}*i + 2] = atan2(b, a); // NON-STANDARD RANGE! Maps to ``(0, 2*pi)`` rather than ``(-pi, +pi)`` if (lab[{nchannels}*i + 2] < 0) {{ lab[{nchannels}*i + 2] += 2 * M_PI; }} """ # noqa return cp.ElementwiseKernel( '', 'raw X lab', code, name='cucim_skimage_color_' + name) @channel_as_last_axis() def lab2lch(lab, *, channel_axis=-1): """CIE-LAB to CIE-LCH color space conversion. LCH is the cylindrical representation of the LAB (Cartesian) colorspace Parameters ---------- lab : (..., 3, ...) array_like The N-D image in CIE-LAB format. The last (``N+1``-th) dimension must have at least 3 elements, corresponding to the ``L``, ``a``, and ``b`` color channels. Subsequent elements are copied. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in LCH format, in a N-D array with same shape as input `lab`. Raises ------ ValueError If `lch` does not have at least 3 color channels (i.e. l, a, b). Notes ----- The Hue is expressed as an angle between ``(0, 2*pi)`` Examples -------- >>> from skimage import data >>> from cucim.skimage.color import rgb2lab, lab2lch >>> img = cp.array(data.astronaut()) >>> img_lab = rgb2lab(img) >>> img_lch = lab2lch(img_lab) """ lab = _prepare_lab_array(lab, force_copy=True) nchannels = lab.shape[-1] name = f'lab2lch_{nchannels}channel_{lab.dtype}' kern = _lab2lch_kernel(nchannels, name=name) kern(lab, size=lab.size // nchannels) return lab def _cart2polar_2pi(x, y): """convert cartesian coordinates to polar (uses non-standard theta range!) NON-STANDARD RANGE! Maps to ``(0, 2*pi)`` rather than usual ``(-pi, +pi)`` """ r, t = cp.hypot(x, y), cp.arctan2(y, x) t += cp.where(t < 0., 2 * np.pi, 0) return r, t @cp.memoize(for_each_device=True) def _lch2lab_kernel(nchannels=3, name='lch2lab'): code = f""" X sin_h = sin(lch[{nchannels}*i + 2]); X cos_h = cos(lch[{nchannels}*i + 2]); // update lch array in-place with the lab values lch[{nchannels}*i + 2] = lch[{nchannels}*i + 1] * sin_h; lch[{nchannels}*i + 1] = lch[{nchannels}*i + 1] * cos_h; """ # noqa return cp.ElementwiseKernel( '', 'raw X lch', code, name='cucim_skimage_color_' + name) @channel_as_last_axis() def lch2lab(lch, *, channel_axis=-1): """CIE-LCH to CIE-LAB color space conversion. LCH is the cylindrical representation of the LAB (Cartesian) colorspace Parameters ---------- lch : (..., 3, ...) array_like The N-D image in CIE-LCH format. The last (``N+1``-th) dimension must have at least 3 elements, corresponding to the ``L``, ``a``, and ``b`` color channels. Subsequent elements are copied. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in LAB format, with same shape as input `lch`. Raises ------ ValueError If `lch` does not have at least 3 color channels (i.e. l, c, h). Examples -------- >>> from skimage import data >>> from cucim.skimage.color import rgb2lab, lch2lab >>> img = cp.array(data.astronaut()) >>> img_lab = rgb2lab(img) >>> img_lch = lab2lch(img_lab) >>> img_lab2 = lch2lab(img_lch) """ # make a copy because lch will be modified in-place by the kernel below lch = _prepare_lab_array(lch, force_copy=True) nchannels = lch.shape[-1] name = f'lch2lab_{nchannels}channel_{lch.dtype}' kern = _lch2lab_kernel(nchannels, name=name) kern(lch, size=lch.size // nchannels) return lch def _prepare_lab_array(arr, force_copy=True): """Ensure input for lab2lch, lch2lab are well-posed. Arrays must be in floating point and have at least 3 elements in last dimension. Return a new array. """ shape = arr.shape if shape[-1] < 3: raise ValueError('Input array has less than 3 color channels') float_dtype = _supported_float_type(arr.dtype) if float_dtype == np.float32: _func = dtype.img_as_float32 else: _func = dtype.img_as_float64 return _func(arr, force_copy=force_copy) @channel_as_last_axis() def rgb2yuv(rgb, *, channel_axis=-1): """RGB to YUV color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in YUV format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- Y is between 0 and 1. Use YCbCr instead of YUV for the color space commonly used by video codecs, where Y ranges from 16 to 235. References ---------- .. [1] https://en.wikipedia.org/wiki/YUV """ return _convert(yuv_from_rgb, rgb, name='rgb2yuv') @channel_as_last_axis() def rgb2yiq(rgb, *, channel_axis=-1): """RGB to YIQ color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in YIQ format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). """ return _convert(yiq_from_rgb, rgb, name='rgb2yiq') @channel_as_last_axis() def rgb2ypbpr(rgb, *, channel_axis=-1): """RGB to YPbPr color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in YPbPr format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] https://en.wikipedia.org/wiki/YPbPr """ return _convert(ypbpr_from_rgb, rgb, name='rgb2ypbpr') @channel_as_last_axis() def rgb2ycbcr(rgb, *, channel_axis=-1): """RGB to YCbCr color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in YCbCr format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- Y is between 16 and 235. This is the color space commonly used by video codecs; it is sometimes incorrectly called "YUV". References ---------- .. [1] https://en.wikipedia.org/wiki/YCbCr """ _post_colorconv = """ y[3*i] += 16; y[3*i + 1] += 128; y[3*i + 2] += 128; """ arr = _convert(ycbcr_from_rgb, rgb, post=_post_colorconv, name='rgb2ycbcr') return arr @channel_as_last_axis() def rgb2ydbdr(rgb, *, channel_axis=-1): """RGB to YDbDr color space conversion. Parameters ---------- rgb : (..., 3, ...) array_like The image in RGB format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in YDbDr format. Same dimensions as input. Raises ------ ValueError If `rgb` is not at least 2-D with shape (..., 3, ...). Notes ----- This is the color space commonly used by video codecs. It is also the reversible color transform in JPEG2000. References ---------- .. [1] https://en.wikipedia.org/wiki/YDbDr """ return _convert(ydbdr_from_rgb, rgb, name='rgb2ydbdr') @channel_as_last_axis() def yuv2rgb(yuv, *, channel_axis=-1): """YUV to RGB color space conversion. Parameters ---------- yuv : (..., 3, ...) array_like The image in YUV format. By default, the final dimension denotes channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `yuv` is not at least 2-D with shape (..., 3, ...). References ---------- .. [1] https://en.wikipedia.org/wiki/YUV """ return _convert(rgb_from_yuv, yuv, name='yuv2rgb') @channel_as_last_axis() def yiq2rgb(yiq, *, channel_axis=-1): """YIQ to RGB color space conversion. Parameters ---------- yiq : (..., 3, ...) array_like The image in YIQ format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `yiq` is not at least 2-D with shape (..., 3, ...). """ return _convert(rgb_from_yiq, yiq, name='yiq2rgb') @channel_as_last_axis() def ypbpr2rgb(ypbpr, *, channel_axis=-1): """YPbPr to RGB color space conversion. Parameters ---------- ypbpr : (..., 3, ...) array_like The image in YPbPr format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `ypbpr` is not at least 2-D with shape (..., 3). References ---------- .. [1] https://en.wikipedia.org/wiki/YPbPr """ return _convert(rgb_from_ypbpr, ypbpr, name='ypbpr2rgb') @channel_as_last_axis() def ycbcr2rgb(ycbcr, *, channel_axis=-1): """YCbCr to RGB color space conversion. Parameters ---------- ycbcr : (..., 3, ...) array_like The image in YCbCr format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `ycbcr` is not at least 2-D with shape (..., 3, ...). Notes ----- Y is between 16 and 235. This is the color space commonly used by video codecs; it is sometimes incorrectly called "YUV". References ---------- .. [1] https://en.wikipedia.org/wiki/YCbCr """ arr = ycbcr.copy() _pre_colorconv = """ x[3*i] -= 16; x[3*i + 1] -= 128; x[3*i + 2] -= 128; """ return _convert(rgb_from_ycbcr, arr, pre=_pre_colorconv, name='ycbcr2rgb') @channel_as_last_axis() def ydbdr2rgb(ydbdr, *, channel_axis=-1): """YDbDr to RGB color space conversion. Parameters ---------- ydbdr : (..., 3, ...) array_like The image in YDbDr format. By default, the final dimension denotes channels. channel_axis : int, optional This parameter indicates which axis of the array corresponds to channels. Returns ------- out : (..., 3, ...) ndarray The image in RGB format. Same dimensions as input. Raises ------ ValueError If `ydbdr` is not at least 2-D with shape (..., 3, ...). Notes ----- This is the color space commonly used by video codecs, also called the reversible color transform in JPEG2000. References ---------- .. [1] https://en.wikipedia.org/wiki/YDbDr """ return _convert(rgb_from_ydbdr, ydbdr, name='ydbdr2rgb')
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color/__init__.py
from .colorconv import ( ahx_from_rgb, bex_from_rgb, bpx_from_rgb, bro_from_rgb, combine_stains, convert_colorspace, fgx_from_rgb, gdx_from_rgb, gray2rgb, gray2rgba, hax_from_rgb, hdx_from_rgb, hed2rgb, hed_from_rgb, hpx_from_rgb, hsv2rgb, lab2lch, lab2rgb, lab2xyz, lch2lab, luv2rgb, luv2xyz, rbd_from_rgb, rgb2gray, rgb2hed, rgb2hsv, rgb2lab, rgb2luv, rgb2rgbcie, rgb2xyz, rgb2ycbcr, rgb2ydbdr, rgb2yiq, rgb2ypbpr, rgb2yuv, rgb_from_ahx, rgb_from_bex, rgb_from_bpx, rgb_from_bro, rgb_from_fgx, rgb_from_gdx, rgb_from_hax, rgb_from_hdx, rgb_from_hed, rgb_from_hpx, rgb_from_rbd, rgba2rgb, rgbcie2rgb, separate_stains, xyz2lab, xyz2luv, xyz2rgb, xyz_tristimulus_values, ycbcr2rgb, ydbdr2rgb, yiq2rgb, ypbpr2rgb, yuv2rgb, ) from .colorlabel import color_dict, label2rgb from .delta_e import deltaE_cie76, deltaE_ciede94, deltaE_ciede2000, deltaE_cmc __all__ = [ "convert_colorspace", "xyz_tristimulus_values", "rgba2rgb", "rgb2hsv", "hsv2rgb", "rgb2xyz", "xyz2rgb", "rgb2rgbcie", "rgbcie2rgb", "rgb2gray", "gray2rgb", "gray2rgba", "xyz2lab", "lab2xyz", "lab2rgb", "rgb2lab", "xyz2luv", "luv2xyz", "luv2rgb", "rgb2luv", "rgb2hed", "hed2rgb", "lab2lch", "lch2lab", "rgb2yuv", "yuv2rgb", "rgb2yiq", "yiq2rgb", "rgb2ypbpr", "ypbpr2rgb", "rgb2ycbcr", "ycbcr2rgb", "rgb2ydbdr", "ydbdr2rgb", "separate_stains", "combine_stains", "rgb_from_hed", "hed_from_rgb", "rgb_from_hdx", "hdx_from_rgb", "rgb_from_fgx", "fgx_from_rgb", "rgb_from_bex", "bex_from_rgb", "rgb_from_rbd", "rbd_from_rgb", "rgb_from_gdx", "gdx_from_rgb", "rgb_from_hax", "hax_from_rgb", "rgb_from_bro", "bro_from_rgb", "rgb_from_bpx", "bpx_from_rgb", "rgb_from_ahx", "ahx_from_rgb", "rgb_from_hpx", "hpx_from_rgb", "color_dict", "label2rgb", "deltaE_cie76", "deltaE_ciede94", "deltaE_ciede2000", # TODO: fix accuracy "deltaE_cmc", ]
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color/delta_e.py
""" Functions for calculating the "distance" between colors. Implicit in these definitions of "distance" is the notion of "Just Noticeable Distance" (JND). This represents the distance between colors where a human can perceive different colors. Humans are more sensitive to certain colors than others, which different deltaE metrics correct for with varying degrees of sophistication. The literature often mentions 1 as the minimum distance for visual differentiation, but more recent studies (Mahy 1994) peg JND at 2.3 The delta-E notation comes from the German word for "Sensation" (Empfindung). Reference --------- https://en.wikipedia.org/wiki/Color_difference """ import warnings import cupy as cp import numpy as np from .._shared.utils import _supported_float_type from .colorconv import _cart2polar_2pi, lab2lch def _float_inputs(lab1, lab2, allow_float32=True): if allow_float32: float_dtype = _supported_float_type((lab1.dtype, lab2.dtype)) else: float_dtype = cp.float64 lab1 = lab1.astype(float_dtype, copy=False) lab2 = lab2.astype(float_dtype, copy=False) return lab1, lab2 def deltaE_cie76(lab1, lab2, channel_axis=-1): """Euclidean distance between two points in Lab color space Parameters ---------- lab1 : array_like reference color (Lab colorspace) lab2 : array_like comparison color (Lab colorspace) channel_axis : int, optional This parameter indicates which axis of the arrays corresponds to channels. Returns ------- dE : array_like distance between colors `lab1` and `lab2` References ---------- .. [1] https://en.wikipedia.org/wiki/Color_difference .. [2] A. R. Robertson, "The CIE 1976 color-difference formulae," Color Res. Appl. 2, 7-11 (1977). """ lab1, lab2 = _float_inputs(lab1, lab2, allow_float32=True) L1, a1, b1 = cp.moveaxis(lab1, source=channel_axis, destination=0)[:3] L2, a2, b2 = cp.moveaxis(lab2, source=channel_axis, destination=0)[:3] out = (L2 - L1) * (L2 - L1) out += (a2 - a1) * (a2 - a1) out += (b2 - b1) * (b2 - b1) return cp.sqrt(out, out=out) def deltaE_ciede94( lab1, lab2, kH=1, kC=1, kL=1, k1=0.045, k2=0.015, *, channel_axis=-1 ): """Color difference according to CIEDE 94 standard Accommodates perceptual non-uniformities through the use of application specific scale factors (`kH`, `kC`, `kL`, `k1`, and `k2`). Parameters ---------- lab1 : array_like reference color (Lab colorspace) lab2 : array_like comparison color (Lab colorspace) kH : float, optional Hue scale kC : float, optional Chroma scale kL : float, optional Lightness scale k1 : float, optional first scale parameter k2 : float, optional second scale parameter channel_axis : int, optional This parameter indicates which axis of the arrays corresponds to channels. Returns ------- dE : array_like color difference between `lab1` and `lab2` Notes ----- deltaE_ciede94 is not symmetric with respect to lab1 and lab2. CIEDE94 defines the scales for the lightness, hue, and chroma in terms of the first color. Consequently, the first color should be regarded as the "reference" color. `kL`, `k1`, `k2` depend on the application and default to the values suggested for graphic arts ========== ============== ========== Parameter Graphic Arts Textiles ========== ============== ========== `kL` 1.000 2.000 `k1` 0.045 0.048 `k2` 0.015 0.014 ========== ============== ========== References ---------- .. [1] https://en.wikipedia.org/wiki/Color_difference .. [2] http://www.brucelindbloom.com/index.html?Eqn_DeltaE_CIE94.html """ lab1, lab2 = _float_inputs(lab1, lab2, allow_float32=True) lab1 = cp.moveaxis(lab1, source=channel_axis, destination=0) lab2 = cp.moveaxis(lab2, source=channel_axis, destination=0) L1, C1 = lab2lch(lab1, channel_axis=0)[:2] L2, C2 = lab2lch(lab2, channel_axis=0)[:2] dL = L1 - L2 dC = C1 - C2 dH2 = get_dH2(lab1, lab2, channel_axis=0) SL = 1 SC = 1 + k1 * C1 SH = 1 + k2 * C1 dE2 = dL / (kL * SL) dE2 *= dE2 tmp = dC / (kC * SC) tmp *= tmp dE2 += tmp tmp = kH * SH tmp *= tmp dE2 += dH2 / tmp return cp.sqrt(cp.maximum(dE2, 0, out=dE2), out=dE2) def deltaE_ciede2000(lab1, lab2, kL=1, kC=1, kH=1, *, channel_axis=-1): """Color difference as given by the CIEDE 2000 standard. CIEDE 2000 is a major revision of CIDE94. The perceptual calibration is largely based on experience with automotive paint on smooth surfaces. Parameters ---------- lab1 : array_like reference color (Lab colorspace) lab2 : array_like comparison color (Lab colorspace) kL : float (range), optional lightness scale factor, 1 for "acceptably close"; 2 for "imperceptible" see deltaE_cmc kC : float (range), optional chroma scale factor, usually 1 kH : float (range), optional hue scale factor, usually 1 channel_axis : int, optional This parameter indicates which axis of the arrays corresponds to channels. Returns ------- deltaE : array_like The distance between `lab1` and `lab2` Notes ----- CIEDE 2000 assumes parametric weighting factors for the lightness, chroma, and hue (`kL`, `kC`, `kH` respectively). These default to 1. References ---------- .. [1] https://en.wikipedia.org/wiki/Color_difference .. [2] http://www.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf :DOI:`10.1364/AO.33.008069` .. [3] M. Melgosa, J. Quesada, and E. Hita, "Uniformity of some recent color metrics tested with an accurate color-difference tolerance dataset," Appl. Opt. 33, 8069-8077 (1994). """ lab1, lab2 = _float_inputs(lab1, lab2, allow_float32=True) warnings.warn( "The numerical accuracy of this function on the GPU is reduced " "relative to the CPU version" ) channel_axis = channel_axis % lab1.ndim unroll = False if lab1.ndim == 1 and lab2.ndim == 1: unroll = True if lab1.ndim == 1: lab1 = lab1[None, :] if lab2.ndim == 1: lab2 = lab2[None, :] channel_axis += 1 L1, a1, b1 = cp.moveaxis(lab1, source=channel_axis, destination=0)[:3] L2, a2, b2 = cp.moveaxis(lab2, source=channel_axis, destination=0)[:3] # distort `a` based on average chroma # then convert to lch coordinates from distorted `a` # all subsequence calculations are in the new coordinates # (often denoted "prime" in the literature) Cbar = 0.5 * (cp.hypot(a1, b1) + cp.hypot(a2, b2)) c7 = Cbar**7 G = 0.5 * (1 - cp.sqrt(c7 / (c7 + 25**7))) scale = 1 + G C1, h1 = _cart2polar_2pi(a1 * scale, b1) C2, h2 = _cart2polar_2pi(a2 * scale, b2) # recall that c, h are polar coordinates. c==r, h==theta # cide2000 has four terms to delta_e: # 1) Luminance term # 2) Hue term # 3) Chroma term # 4) hue Rotation term # lightness term Lbar = 0.5 * (L1 + L2) tmp = Lbar - 50 tmp *= tmp SL = 1 + 0.015 * tmp / cp.sqrt(20 + tmp) L_term = (L2 - L1) / (kL * SL) # chroma term Cbar = 0.5 * (C1 + C2) # new coordinates SC = 1 + 0.045 * Cbar C_term = (C2 - C1) / (kC * SC) # hue term h_diff = h2 - h1 h_sum = h1 + h2 CC = C1 * C2 dH = h_diff.copy() dH[h_diff > np.pi] -= 2 * np.pi dH[h_diff < -np.pi] += 2 * np.pi dH[CC == 0.0] = 0.0 # if r == 0, dtheta == 0 dH_term = 2 * cp.sqrt(CC) * cp.sin(dH / 2) Hbar = h_sum.copy() mask = cp.logical_and(CC != 0.0, cp.abs(h_diff) > np.pi) Hbar[mask * (h_sum < 2 * np.pi)] += 2 * np.pi Hbar[mask * (h_sum >= 2 * np.pi)] -= 2 * np.pi Hbar[CC == 0.0] *= 2 Hbar *= 0.5 T = ( 1 - 0.17 * cp.cos(Hbar - np.deg2rad(30)) + 0.24 * cp.cos(2 * Hbar) + 0.32 * cp.cos(3 * Hbar + np.deg2rad(6)) - 0.20 * cp.cos(4 * Hbar - np.deg2rad(63)) ) SH = 1 + 0.015 * Cbar * T H_term = dH_term / (kH * SH) # hue rotation c7 = Cbar**7 Rc = 2 * cp.sqrt(c7 / (c7 + 25**7)) tmp = (cp.rad2deg(Hbar) - 275) / 25 tmp *= tmp dtheta = np.deg2rad(30) * cp.exp(-tmp) R_term = -cp.sin(2 * dtheta) * Rc * C_term * H_term # put it all together dE2 = L_term * L_term dE2 += C_term * C_term dE2 += H_term * H_term dE2 += R_term cp.sqrt(cp.maximum(dE2, 0, out=dE2), out=dE2) if unroll: dE2 = dE2[0] return dE2 def deltaE_cmc(lab1, lab2, kL=1, kC=1, *, channel_axis=-1): """Color difference from the CMC l:c standard. This color difference was developed by the Colour Measurement Committee (CMC) of the Society of Dyers and Colourists (United Kingdom). It is intended for use in the textile industry. The scale factors `kL`, `kC` set the weight given to differences in lightness and chroma relative to differences in hue. The usual values are ``kL=2``, ``kC=1`` for "acceptability" and ``kL=1``, ``kC=1`` for "imperceptibility". Colors with ``dE > 1`` are "different" for the given scale factors. Parameters ---------- lab1 : array_like reference color (Lab colorspace) lab2 : array_like comparison color (Lab colorspace) channel_axis : int, optional This parameter indicates which axis of the arrays corresponds to channels. Returns ------- dE : array_like distance between colors `lab1` and `lab2` Notes ----- deltaE_cmc the defines the scales for the lightness, hue, and chroma in terms of the first color. Consequently ``deltaE_cmc(lab1, lab2) != deltaE_cmc(lab2, lab1)`` References ---------- .. [1] https://en.wikipedia.org/wiki/Color_difference .. [2] http://www.brucelindbloom.com/index.html?Eqn_DeltaE_CIE94.html .. [3] F. J. J. Clarke, R. McDonald, and B. Rigg, "Modification to the JPC79 colour-difference formula," J. Soc. Dyers Colour. 100, 128-132 (1984). """ lab1, lab2 = _float_inputs(lab1, lab2, allow_float32=True) lab1 = cp.moveaxis(lab1, source=channel_axis, destination=0) lab2 = cp.moveaxis(lab2, source=channel_axis, destination=0) L1, C1, h1 = lab2lch(lab1, channel_axis=0)[:3] L2, C2, h2 = lab2lch(lab2, channel_axis=0)[:3] dC = C1 - C2 dL = L1 - L2 dH2 = get_dH2(lab1, lab2, channel_axis=0) T = cp.where( cp.logical_and(cp.rad2deg(h1) >= 164, cp.rad2deg(h1) <= 345), 0.56 + 0.2 * cp.abs(np.cos(h1 + cp.deg2rad(168))), 0.36 + 0.4 * cp.abs(np.cos(h1 + cp.deg2rad(35))), ) c1_4 = C1**4 F = cp.sqrt(c1_4 / (c1_4 + 1900)) SL = cp.where(L1 < 16, 0.511, 0.040975 * L1 / (1.0 + 0.01765 * L1)) SC = 0.638 + 0.0638 * C1 / (1.0 + 0.0131 * C1) SH = SC * (F * T + 1 - F) dE2 = (dL / (kL * SL)) ** 2 dE2 += (dC / (kC * SC)) ** 2 dE2 += dH2 / (SH**2) return cp.sqrt(cp.maximum(dE2, 0, out=dE2), out=dE2) def get_dH2(lab1, lab2, *, channel_axis=-1): """squared hue difference term occurring in deltaE_cmc and deltaE_ciede94 Despite its name, "dH" is not a simple difference of hue values. We avoid working directly with the hue value, since differencing angles is troublesome. The hue term is usually written as: c1 = sqrt(a1**2 + b1**2) c2 = sqrt(a2**2 + b2**2) term = (a1-a2)**2 + (b1-b2)**2 - (c1-c2)**2 dH = sqrt(term) However, this has poor roundoff properties when a or b is dominant. Instead, ab is a vector with elements a and b. The same dH term can be re-written as: |ab1-ab2|**2 - (|ab1| - |ab2|)**2 and then simplified to: 2*|ab1|*|ab2| - 2*dot(ab1, ab2) """ # This function needs double precision internally for accuracy input_is_float_32 = ( _supported_float_type((lab1.dtype, lab2.dtype)) == cp.float32 ) lab1, lab2 = _float_inputs(lab1, lab2, allow_float32=False) a1, b1 = cp.moveaxis(lab1, source=channel_axis, destination=0)[1:3] a2, b2 = cp.moveaxis(lab2, source=channel_axis, destination=0)[1:3] # magnitude of (a, b) is the chroma C1 = cp.hypot(a1, b1) C2 = cp.hypot(a2, b2) term = (C1 * C2) - (a1 * a2 + b1 * b2) out = 2 * term if input_is_float_32: out = out.astype(np.float32) return out
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color/adapt_rgb.py
import functools import cupy as cp from .. import color from ..util.dtype import _convert __all__ = ["adapt_rgb", "hsv_value", "each_channel"] def is_rgb_like(image, channel_axis=-1): """Return True if the image *looks* like it's RGB. This function should not be public because it is only intended to be used for functions that don't accept volumes as input, since checking an image's shape is fragile. """ return (image.ndim == 3) and (image.shape[channel_axis] in (3, 4)) def adapt_rgb(apply_to_rgb): """Return decorator that adapts to RGB images to a gray-scale filter. This function is only intended to be used for functions that don't accept volumes as input, since checking an image's shape is fragile. Parameters ---------- apply_to_rgb : function Function that returns a filtered image from an image-filter and RGB image. This will only be called if the image is RGB-like. """ def decorator(image_filter): @functools.wraps(image_filter) def image_filter_adapted(image, *args, **kwargs): if is_rgb_like(image): return apply_to_rgb(image_filter, image, *args, **kwargs) else: return image_filter(image, *args, **kwargs) return image_filter_adapted return decorator def hsv_value(image_filter, image, *args, **kwargs): """Return color image by applying `image_filter` on HSV-value of `image`. Note that this function is intended for use with `adapt_rgb`. Parameters ---------- image_filter : function Function that filters a gray-scale image. image : array Input image. Note that RGBA images are treated as RGB. """ # Slice the first three channels so that we remove any alpha channels. hsv = color.rgb2hsv(image[:, :, :3]) value = hsv[:, :, 2].copy() value = image_filter(value, *args, **kwargs) hsv[:, :, 2] = _convert(value, hsv.dtype) return color.hsv2rgb(hsv) def each_channel(image_filter, image, *args, **kwargs): """Return color image by applying `image_filter` on channels of `image`. Note that this function is intended for use with `adapt_rgb`. Parameters ---------- image_filter : function Function that filters a gray-scale image. image : array Input image. """ c_new = [ image_filter(c, *args, **kwargs) for c in cp.moveaxis(image, -1, 0) ] return cp.stack(c_new, axis=-1)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color/tests/test_delta_e.py
"""Test for correctness of color distance functions""" import cupy as cp import numpy as np import pytest from cupy.testing import ( assert_allclose, assert_array_almost_equal, assert_array_equal, ) from cucim.skimage._shared.testing import expected_warnings, fetch from cucim.skimage._shared.utils import _supported_float_type from cucim.skimage.color.delta_e import ( deltaE_cie76, deltaE_ciede94, deltaE_ciede2000, deltaE_cmc, ) @pytest.mark.parametrize("channel_axis", [0, 1, -1]) @pytest.mark.parametrize("dtype", [cp.float32, cp.float64]) def test_ciede2000_dE(dtype, channel_axis): data = load_ciede2000_data() N = len(data) lab1 = np.zeros((N, 3), dtype=dtype) lab1[:, 0] = data["L1"] lab1[:, 1] = data["a1"] lab1[:, 2] = data["b1"] lab2 = np.zeros((N, 3), dtype=dtype) lab2[:, 0] = data["L2"] lab2[:, 1] = data["a2"] lab2[:, 2] = data["b2"] lab1 = cp.moveaxis(cp.asarray(lab1), source=-1, destination=channel_axis) lab2 = cp.moveaxis(cp.asarray(lab2), source=-1, destination=channel_axis) dE2 = deltaE_ciede2000(lab1, lab2, channel_axis=channel_axis) assert dE2.dtype == _supported_float_type(dtype) # Note: lower float64 accuracy than scikit-image # rtol = 1e-2 if dtype == cp.float32 else 1e-4 rtol = 1e-2 assert_allclose(dE2, data["dE"], rtol=rtol) def load_ciede2000_data(): dtype = [ ("pair", int), ("1", int), ("L1", float), ("a1", float), ("b1", float), ("a1_prime", float), ("C1_prime", float), ("h1_prime", float), ("hbar_prime", float), ("G", float), ("T", float), ("SL", float), ("SC", float), ("SH", float), ("RT", float), ("dE", float), ("2", int), ("L2", float), ("a2", float), ("b2", float), ("a2_prime", float), ("C2_prime", float), ("h2_prime", float), ] # note: ciede_test_data.txt contains several intermediate quantities path = fetch("color/tests/ciede2000_test_data.txt") return np.loadtxt(path, dtype=dtype) @pytest.mark.parametrize("channel_axis", [0, 1, -1]) @pytest.mark.parametrize("dtype", [cp.float32, cp.float64]) def test_cie76(dtype, channel_axis): data = load_ciede2000_data() N = len(data) lab1 = np.zeros((N, 3), dtype=dtype) lab1[:, 0] = data["L1"] lab1[:, 1] = data["a1"] lab1[:, 2] = data["b1"] lab2 = np.zeros((N, 3), dtype=dtype) lab2[:, 0] = data["L2"] lab2[:, 1] = data["a2"] lab2[:, 2] = data["b2"] lab1 = cp.moveaxis(cp.asarray(lab1), source=-1, destination=channel_axis) lab2 = cp.moveaxis(cp.asarray(lab2), source=-1, destination=channel_axis) dE2 = deltaE_cie76(lab1, lab2, channel_axis=channel_axis) assert dE2.dtype == _supported_float_type(dtype) # fmt: off oracle = cp.asarray([ 4.00106328, 6.31415011, 9.1776999, 2.06270077, 2.36957073, 2.91529271, 2.23606798, 2.23606798, 4.98000036, 4.9800004, 4.98000044, 4.98000049, 4.98000036, 4.9800004, 4.98000044, 3.53553391, 36.86800781, 31.91002977, 30.25309901, 27.40894015, 0.89242934, 0.7972, 0.8583065, 0.82982507, 3.1819238, 2.21334297, 1.53890382, 4.60630929, 6.58467989, 3.88641412, 1.50514845, 2.3237848, 0.94413208, 1.31910843 ]) # fmt: on rtol = 1e-5 if dtype == cp.float32 else 1e-8 assert_allclose(dE2, oracle, rtol=rtol) @pytest.mark.parametrize("channel_axis", [0, 1, -1]) @pytest.mark.parametrize("dtype", [cp.float32, cp.float64]) def test_ciede94(dtype, channel_axis): data = load_ciede2000_data() N = len(data) lab1 = np.zeros((N, 3), dtype=dtype) lab1[:, 0] = data["L1"] lab1[:, 1] = data["a1"] lab1[:, 2] = data["b1"] lab2 = np.zeros((N, 3), dtype=dtype) lab2[:, 0] = data["L2"] lab2[:, 1] = data["a2"] lab2[:, 2] = data["b2"] lab1 = cp.moveaxis(cp.asarray(lab1), source=-1, destination=channel_axis) lab2 = cp.moveaxis(cp.asarray(lab2), source=-1, destination=channel_axis) dE2 = deltaE_ciede94(lab1, lab2, channel_axis=channel_axis) assert dE2.dtype == _supported_float_type(dtype) # fmt: off oracle = cp.asarray([ 1.39503887, 1.93410055, 2.45433566, 0.68449187, 0.6695627, 0.69194527, 2.23606798, 2.03163832, 4.80069441, 4.80069445, 4.80069449, 4.80069453, 4.80069441, 4.80069445, 4.80069449, 3.40774352, 34.6891632, 29.44137328, 27.91408781, 24.93766082, 0.82213163, 0.71658427, 0.8048753, 0.75284394, 1.39099471, 1.24808929, 1.29795787, 1.82045088, 2.55613309, 1.42491303, 1.41945261, 2.3225685, 0.93853308, 1.30654464 ]) # fmt: on rtol = 1e-5 if dtype == cp.float32 else 1e-8 assert_allclose(dE2, oracle, rtol=rtol) @pytest.mark.parametrize("channel_axis", [0, 1, -1]) @pytest.mark.parametrize("dtype", [cp.float32, cp.float64]) def test_cmc(dtype, channel_axis): data = load_ciede2000_data() N = len(data) lab1 = np.zeros((N, 3), dtype=dtype) lab1[:, 0] = data["L1"] lab1[:, 1] = data["a1"] lab1[:, 2] = data["b1"] lab2 = np.zeros((N, 3), dtype=dtype) lab2[:, 0] = data["L2"] lab2[:, 1] = data["a2"] lab2[:, 2] = data["b2"] lab1 = cp.moveaxis(cp.asarray(lab1), source=-1, destination=channel_axis) lab2 = cp.moveaxis(cp.asarray(lab2), source=-1, destination=channel_axis) dE2 = deltaE_cmc(lab1, lab2, channel_axis=channel_axis) assert dE2.dtype == _supported_float_type(dtype) # fmt: off oracle = cp.asarray([ 1.73873611, 2.49660844, 3.30494501, 0.85735576, 0.88332927, 0.97822692, 3.50480874, 2.87930032, 6.5783807, 6.57838075, 6.5783808, 6.57838086, 6.67492321, 6.67492326, 6.67492331, 4.66852997, 42.10875485, 39.45889064, 38.36005919, 33.93663807, 1.14400168, 1.00600419, 1.11302547, 1.05335328, 1.42822951, 1.2548143, 1.76838061, 2.02583367, 3.08695508, 1.74893533, 1.90095165, 1.70258148, 1.80317207, 2.44934417 ]) # fmt: on rtol = 1e-5 if dtype == cp.float32 else 1e-8 assert_allclose(dE2, oracle, rtol=rtol) # Equal or close colors make `delta_e.get_dH2` function to return # negative values resulting in NaNs when passed to sqrt (see #1908 # issue on Github): lab1 = lab2 expected = cp.zeros_like(oracle) assert_array_almost_equal( deltaE_cmc(lab1, lab2, channel_axis=channel_axis), expected, decimal=6 ) lab2[0, 0] += cp.finfo(float).eps assert_array_almost_equal( deltaE_cmc(lab1, lab2, channel_axis=channel_axis), expected, decimal=6 ) def test_cmc_single_item(): # Single item case: lab1 = lab2 = cp.array([0.0, 1.59607713, 0.87755709]) assert_array_equal(deltaE_cmc(lab1, lab2), 0) lab2[0] += cp.finfo(float).eps assert_array_equal(deltaE_cmc(lab1, lab2), 0) def test_single_color_cie76(): lab1 = cp.array((0.5, 0.5, 0.5)) lab2 = cp.array((0.4, 0.4, 0.4)) deltaE_cie76(lab1, lab2) def test_single_color_ciede94(): lab1 = cp.array((0.5, 0.5, 0.5)) lab2 = cp.array((0.4, 0.4, 0.4)) deltaE_ciede94(lab1, lab2) def test_single_color_ciede2000(): lab1 = cp.array((0.5, 0.5, 0.5)) lab2 = cp.array((0.4, 0.4, 0.4)) with expected_warnings(["The numerical accuracy of this function"]): deltaE_ciede2000(lab1, lab2) def test_single_color_cmc(): lab1 = cp.array((0.5, 0.5, 0.5)) lab2 = cp.array((0.4, 0.4, 0.4)) deltaE_cmc(lab1, lab2)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color/tests/test_colorlabel.py
import itertools import cupy as cp import numpy as np import pytest from cupy.testing import assert_array_almost_equal, assert_array_equal from numpy.testing import assert_no_warnings from cucim.skimage._shared.testing import expected_warnings from cucim.skimage.color.colorlabel import hsv2rgb, label2rgb, rgb2hsv def test_shape_mismatch(): image = cp.ones((3, 3)) label = cp.ones((2, 2)) with pytest.raises(ValueError): label2rgb(image, label, bg_label=-1) def test_wrong_kind(): label = cp.ones((3, 3)) # Must not raise an error. label2rgb(label, bg_label=-1) # kind='foo' is wrong. with pytest.raises(ValueError): label2rgb(label, kind="foo", bg_label=-1) @pytest.mark.parametrize("channel_axis", [0, 1, -1]) def test_uint_image(channel_axis): img = cp.random.randint(0, 255, (10, 10), dtype=cp.uint8) labels = cp.zeros((10, 10), dtype=cp.int64) labels[1:3, 1:3] = 1 labels[6:9, 6:9] = 2 output = label2rgb(labels, image=img, bg_label=0, channel_axis=channel_axis) # Make sure that the output is made of floats and in the correct range assert cp.issubdtype(output.dtype, cp.floating) assert output.max() <= 1 # size 3 (RGB) along the specified channel_axis new_axis = channel_axis % output.ndim assert output.shape[new_axis] == 3 def test_rgb(): image = cp.ones((1, 3)) label = cp.arange(3).reshape(1, -1) colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] # Set alphas just in case the defaults change rgb = label2rgb( label, image=image, colors=colors, alpha=1, image_alpha=1, bg_label=-1 ) assert_array_almost_equal(rgb, [colors]) def test_alpha(): image = cp.random.uniform(size=(3, 3)) label = cp.random.randint(0, 9, size=(3, 3)) # If we set `alpha = 0`, then rgb should match image exactly. rgb = label2rgb(label, image=image, alpha=0, image_alpha=1, bg_label=-1) assert_array_almost_equal(rgb[..., 0], image) assert_array_almost_equal(rgb[..., 1], image) assert_array_almost_equal(rgb[..., 2], image) def test_no_input_image(): label = cp.arange(3).reshape(1, -1) colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] rgb = label2rgb(label, colors=colors, bg_label=-1) assert_array_almost_equal(rgb, [colors]) def test_image_alpha(): image = cp.random.uniform(size=(1, 3)) label = cp.arange(3).reshape(1, -1) colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] # If we set `image_alpha = 0`, then rgb should match label colors exactly. rgb = label2rgb( label, image=image, colors=colors, alpha=1, image_alpha=0, bg_label=-1 ) assert_array_almost_equal(rgb, [colors]) def test_color_names(): image = cp.ones((1, 3)) label = cp.arange(3).reshape(1, -1) cnames = ["red", "lime", "blue"] colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] # Set alphas just in case the defaults change rgb = label2rgb( label, image=image, colors=cnames, alpha=1, image_alpha=1, bg_label=-1 ) assert_array_almost_equal(rgb, [colors]) def test_bg_and_color_cycle(): image = cp.zeros((1, 10)) # dummy image label = cp.arange(10).reshape(1, -1) colors = [(1, 0, 0), (0, 0, 1)] bg_color = (0, 0, 0) rgb = label2rgb( label, image=image, bg_label=0, bg_color=bg_color, colors=colors, alpha=1, ) assert_array_almost_equal(rgb[0, 0], bg_color) for pixel, color in zip(rgb[0, 1:], itertools.cycle(colors)): assert_array_almost_equal(pixel, color) def test_negative_labels(): labels = cp.array([0, -1, -2, 0]) rout = cp.array( [(0.0, 0.0, 0.0), (0.0, 0.0, 1.0), (1.0, 0.0, 0.0), (0.0, 0.0, 0.0)] ) assert_array_almost_equal( rout, label2rgb(labels, bg_label=0, alpha=1, image_alpha=1) ) def test_nonconsecutive(): labels = cp.array([0, 2, 4, 0]) colors = [(1, 0, 0), (0, 0, 1)] rout = cp.array( [(1.0, 0.0, 0.0), (0.0, 0.0, 1.0), (1.0, 0.0, 0.0), (1.0, 0.0, 0.0)] ) assert_array_almost_equal( rout, label2rgb(labels, colors=colors, alpha=1, image_alpha=1, bg_label=-1), ) def test_label_consistency(): """Assert that the same labels map to the same colors.""" label_1 = cp.arange(5).reshape(1, -1) label_2 = cp.array([0, 1]) colors = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1)] # Set alphas just in case the defaults change rgb_1 = label2rgb(label_1, colors=colors, bg_label=-1) rgb_2 = label2rgb(label_2, colors=colors, bg_label=-1) for label_id in label_2.ravel(): assert_array_almost_equal( rgb_1[label_1 == label_id], rgb_2[label_2 == label_id] ) def test_leave_labels_alone(): labels = cp.array([-1, 0, 1]) labels_saved = labels.copy() label2rgb(labels, bg_label=-1) label2rgb(labels, bg_label=1) assert_array_equal(labels, labels_saved) # TODO: diagnose test error that occurs only with CUB enabled: CuPy bug? @pytest.mark.parametrize("channel_axis", [0, 1, -1]) def test_avg(channel_axis): # label image # fmt: off label_field = cp.asarray([[1, 1, 1, 2], [1, 2, 2, 2], [3, 3, 4, 4]], dtype=np.uint8) # color image r = cp.asarray([[1., 1., 0., 0.], [0., 0., 1., 1.], [0., 0., 0., 0.]]) g = cp.asarray([[0., 0., 0., 1.], [1., 1., 1., 0.], [0., 0., 0., 0.]]) b = cp.asarray([[0., 0., 0., 1.], [0., 1., 1., 1.], [0., 0., 1., 1.]]) image = cp.dstack((r, g, b)) # reference label-colored image rout = cp.asarray([[0.5, 0.5, 0.5, 0.5], [0.5, 0.5, 0.5, 0.5], [0. , 0. , 0. , 0. ]]) # noqa gout = cp.asarray([[0.25, 0.25, 0.25, 0.75], [0.25, 0.75, 0.75, 0.75], [0. , 0. , 0. , 0. ]]) # noqa bout = cp.asarray([[0. , 0. , 0. , 1. ], # noqa [0. , 1. , 1. , 1. ], # noqa [0.0, 0.0, 1.0, 1.0]]) # noqa expected_out = cp.dstack((rout, gout, bout)) # test standard averaging _image = cp.moveaxis(image, source=-1, destination=channel_axis) out = label2rgb(label_field, _image, kind='avg', bg_label=-1, channel_axis=channel_axis) out = cp.moveaxis(out, source=channel_axis, destination=-1) assert_array_equal(out, expected_out) # test averaging with custom background value out_bg = label2rgb(label_field, _image, bg_label=2, bg_color=(0, 0, 0), kind='avg', channel_axis=channel_axis) out_bg = cp.moveaxis(out_bg, source=channel_axis, destination=-1) expected_out_bg = expected_out.copy() expected_out_bg[label_field == 2] = 0 assert_array_equal(out_bg, expected_out_bg) # test default background color out_bg = label2rgb(label_field, _image, bg_label=2, kind='avg', channel_axis=channel_axis) out_bg = cp.moveaxis(out_bg, source=channel_axis, destination=-1) assert_array_equal(out_bg, expected_out_bg) def test_negative_intensity(): labels = cp.arange(100).reshape(10, 10) image = cp.full((10, 10), -1, dtype="float64") with pytest.warns(UserWarning): label2rgb(labels, image, bg_label=-1) def test_bg_color_rgb_string(): img = np.random.randint(0, 255, (10, 10), dtype=np.uint8) labels = np.zeros((10, 10), dtype=np.int64) labels[1:3, 1:3] = 1 labels[6:9, 6:9] = 2 img = cp.asarray(img) labels = cp.asarray(labels) output = label2rgb(labels, image=img, alpha=0.9, bg_label=0, bg_color="red") assert output[0, 0, 0] > 0.9 # red channel def test_avg_with_2d_image(): img = np.random.randint(0, 255, (10, 10), dtype=np.uint8) labels = np.zeros((10, 10), dtype=np.int64) labels[1:3, 1:3] = 1 labels[6:9, 6:9] = 2 img = cp.asarray(img) labels = cp.asarray(labels) assert_no_warnings(label2rgb, labels, image=img, bg_label=0, kind="avg") @pytest.mark.parametrize("image_type", ["rgb", "gray", None]) def test_label2rgb_nd(image_type): # validate 1D and 3D cases by testing their output relative to the 2D case shape = (10, 10) if image_type == "rgb": img = cp.random.randint(0, 255, shape + (3,), dtype=np.uint8) elif image_type == "gray": img = cp.random.randint(0, 255, shape, dtype=np.uint8) else: img = None # add a couple of rectangular labels labels = cp.zeros(shape, dtype=np.int64) # Note: Have to choose labels here so that the 1D slice below also contains # both label values. Otherwise the labeled colors will not match. labels[2:-2, 1:3] = 1 labels[3:-3, 6:9] = 2 # label in the 2D case (correct 2D output is tested in other functions) labeled_2d = label2rgb(labels, image=img, bg_label=0) # labeling a single line gives an equivalent result image_1d = img[5] if image_type is not None else None labeled_1d = label2rgb(labels[5], image=image_1d, bg_label=0) expected = labeled_2d[5] assert_array_equal(labeled_1d, expected) # Labeling a 3D stack of duplicates gives the same result in each plane image_3d = cp.stack((img,) * 4) if image_type is not None else None labels_3d = cp.stack((labels,) * 4) labeled_3d = label2rgb(labels_3d, image=image_3d, bg_label=0) for labeled_plane in labeled_3d: assert_array_equal(labeled_plane, labeled_2d) def test_label2rgb_shape_errors(): img = cp.random.randint(0, 255, (10, 10, 3), dtype=np.uint8) labels = cp.zeros((10, 10), dtype=np.int64) labels[2:5, 2:5] = 1 # mismatched 2D shape with pytest.raises(ValueError): label2rgb(labels, img[1:]) # too many axes in img with pytest.raises(ValueError): label2rgb(labels, img[..., np.newaxis]) # too many channels along the last axis with pytest.raises(ValueError): label2rgb(labels, np.concatenate((img, img), axis=-1)) def test_overlay_full_saturation(): rgb_img = cp.random.uniform(size=(10, 10, 3)) labels = cp.ones((10, 10), dtype=np.int64) labels[5:, 5:] = 2 labels[:3, :3] = 0 alpha = 0.3 rgb = label2rgb( labels, image=rgb_img, alpha=alpha, bg_label=0, saturation=1 ) # check that rgb part of input image is preserved, where labels=0 assert_array_almost_equal(rgb_img[:3, :3] * (1 - alpha), rgb[:3, :3]) def test_overlay_custom_saturation(): rgb_img = cp.random.uniform(size=(10, 10, 3)) labels = cp.ones((10, 10), dtype=np.int64) labels[5:, 5:] = 2 labels[:3, :3] = 0 alpha = 0.3 saturation = 0.3 rgb = label2rgb( labels, image=rgb_img, alpha=alpha, bg_label=0, saturation=saturation ) hsv = rgb2hsv(rgb_img) hsv[..., 1] *= saturation saturated_img = hsv2rgb(hsv) # check that rgb part of input image is saturated, where labels=0 assert_array_almost_equal(saturated_img[:3, :3] * (1 - alpha), rgb[:3, :3]) def test_saturation_warning(): rgb_img = cp.random.uniform(size=(10, 10, 3)) labels = cp.ones((10, 10), dtype=np.int64) with expected_warnings(["saturation must be in range"]): label2rgb(labels, image=rgb_img, bg_label=0, saturation=2) with expected_warnings(["saturation must be in range"]): label2rgb(labels, image=rgb_img, bg_label=0, saturation=-1)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color/tests/test_colorconv.py
"""Tests for color conversion functions. Authors ------- - the rgb2hsv test was written by Nicolas Pinto, 2009 - other tests written by Ralf Gommers, 2009 :license: modified BSD """ import colorsys import os import cupy as cp import numpy as np import pytest from cupy.testing import ( assert_allclose, assert_array_almost_equal, assert_array_equal, ) from numpy.testing import assert_equal from skimage import data from cucim.skimage._shared._warnings import expected_warnings from cucim.skimage._shared.utils import _supported_float_type, slice_at_axis from cucim.skimage.color import ( combine_stains, convert_colorspace, gray2rgb, gray2rgba, hed2rgb, hsv2rgb, lab2lch, lab2rgb, lab2xyz, lch2lab, luv2rgb, luv2xyz, rgb2gray, rgb2hed, rgb2hsv, rgb2lab, rgb2luv, rgb2rgbcie, rgb2xyz, rgb2ycbcr, rgb2ydbdr, rgb2yiq, rgb2ypbpr, rgb2yuv, rgba2rgb, rgbcie2rgb, separate_stains, xyz2lab, xyz2luv, xyz2rgb, ycbcr2rgb, ydbdr2rgb, yiq2rgb, ypbpr2rgb, yuv2rgb, ) from cucim.skimage.util import img_as_float, img_as_float32, img_as_ubyte data_dir = os.path.join(os.path.dirname(__file__), "data") class TestColorconv: img_rgb = cp.asarray(data.colorwheel()) img_grayscale = cp.asarray(data.camera()) # fmt: off img_rgba = cp.array([[[0, 0.5, 1, 0], [0, 0.5, 1, 1], [0, 0.5, 1, 0.5]]]).astype(float) img_stains = img_as_float(img_rgb) * 0.3 colbars = cp.array([[1, 1, 0, 0, 1, 1, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0], [1, 0, 1, 0, 1, 0, 1, 0]]).astype(float) colbars_array = cp.swapaxes(colbars.reshape(3, 4, 2), 0, 2) colbars_point75 = colbars * 0.75 colbars_point75_array = cp.swapaxes(colbars_point75.reshape(3, 4, 2), 0, 2) xyz_array = cp.asarray([[[0.4124, 0.21260, 0.01930]], # red [[0, 0, 0]], # black [[.9505, 1., 1.089]], # white [[.1805, .0722, .9505]], # blue [[.07719, .15438, .02573]], # green ]) lab_array = cp.asarray([[[53.233, 80.109, 67.220]], # red [[0., 0., 0.]], # black [[100.0, 0.005, -0.010]], # white [[32.303, 79.197, -107.864]], # blue [[46.229, -51.7, 49.898]], # green ]) luv_array = cp.asarray([[[53.233, 175.053, 37.751]], # red [[0., 0., 0.]], # black [[100., 0.001, -0.017]], # white [[32.303, -9.400, -130.358]], # blue [[46.228, -43.774, 56.589]], # green ]) # fmt: on # RGBA to RGB @pytest.mark.parametrize("channel_axis", [0, 1, 2, -1, -2, -3]) def test_rgba2rgb_conversion(self, channel_axis): rgba = self.img_rgba rgba = cp.moveaxis(rgba, source=-1, destination=channel_axis) rgb = rgba2rgb(rgba, channel_axis=channel_axis) rgb = cp.moveaxis(rgb, source=channel_axis, destination=-1) # fmt: off expected = cp.asarray([[[1, 1, 1], [0, 0.5, 1], [0.5, 0.75, 1]]]).astype(float) # fmt: on assert_equal(rgb.shape, expected.shape) assert_array_almost_equal(rgb, expected) def test_rgba2rgb_error_grayscale(self): with pytest.raises(ValueError): rgba2rgb(self.img_grayscale) @pytest.mark.parametrize("channel_axis", [None, 1.5]) def test_rgba2rgb_error_channel_axis_invalid(self, channel_axis): with pytest.raises(TypeError): rgba2rgb(self.img_rgba, channel_axis=channel_axis) @pytest.mark.parametrize("channel_axis", [-4, 3]) def test_rgba2rgb_error_channel_axis_out_of_range(self, channel_axis): with pytest.raises(np.AxisError): rgba2rgb(self.img_rgba, channel_axis=channel_axis) def test_rgba2rgb_error_rgb(self): with pytest.raises(ValueError): rgba2rgb(self.img_rgb) def test_rgba2rgb_dtype(self): rgba = self.img_rgba.astype("float64") rgba32 = img_as_float32(rgba) assert rgba2rgb(rgba).dtype == rgba.dtype assert rgba2rgb(rgba32).dtype == rgba32.dtype # RGB to HSV @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_rgb2hsv_conversion(self, channel_axis): rgb = img_as_float(self.img_rgb)[::16, ::16] _rgb = cp.moveaxis(rgb, source=-1, destination=channel_axis) hsv = rgb2hsv(_rgb, channel_axis=channel_axis) hsv = cp.moveaxis(hsv, source=channel_axis, destination=-1) hsv = hsv.reshape(-1, 3) # ground truth from colorsys gt = np.asarray( [ colorsys.rgb_to_hsv(pt[0], pt[1], pt[2]) for pt in cp.asnumpy(rgb).reshape(-1, 3) ] ) assert_array_almost_equal(hsv, gt) def test_rgb2hsv_error_grayscale(self): with pytest.raises(ValueError): rgb2hsv(self.img_grayscale) def test_rgb2hsv_dtype(self): rgb = img_as_float(self.img_rgb) rgb32 = img_as_float32(self.img_rgb) assert rgb2hsv(rgb).dtype == rgb.dtype assert rgb2hsv(rgb32).dtype == rgb32.dtype # HSV to RGB @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_hsv2rgb_conversion(self, channel_axis): rgb = self.img_rgb.astype("float32")[::16, ::16] # create HSV image with colorsys hsv = cp.asarray( [ colorsys.rgb_to_hsv(pt[0], pt[1], pt[2]) for pt in rgb.reshape(-1, 3).get() ] ).reshape(rgb.shape) hsv = np.moveaxis(hsv, source=-1, destination=channel_axis) _rgb = hsv2rgb(hsv, channel_axis=channel_axis) _rgb = np.moveaxis(_rgb, source=channel_axis, destination=-1) # convert back to RGB and compare with original. # relative precision for RGB -> HSV roundtrip is about 1e-6 assert_array_almost_equal(rgb, _rgb, decimal=4) def test_hsv2rgb_error_grayscale(self): with pytest.raises(ValueError): hsv2rgb(self.img_grayscale) def test_hsv2rgb_dtype(self): rgb = self.img_rgb.astype("float32")[::16, ::16] # create HSV image with colorsys hsv = cp.asarray( [ colorsys.rgb_to_hsv(pt[0], pt[1], pt[2]) for pt in rgb.reshape(-1, 3).get() ], dtype="float64", ).reshape(rgb.shape) hsv32 = hsv.astype("float32") assert hsv2rgb(hsv).dtype == hsv.dtype assert hsv2rgb(hsv32).dtype == hsv32.dtype # RGB to XYZ @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_rgb2xyz_conversion(self, channel_axis): # fmt: off gt = cp.asarray([[[0.950456, 1. , 1.088754], # noqa [0.538003, 0.787329, 1.06942 ], # noqa [0.592876, 0.28484 , 0.969561], # noqa [0.180423, 0.072169, 0.950227]], # noqa [[0.770033, 0.927831, 0.138527], # noqa [0.35758 , 0.71516 , 0.119193], # noqa [0.412453, 0.212671, 0.019334], # noqa [0. , 0. , 0. ]]]) # noqa # fmt: on img = cp.moveaxis( self.colbars_array, source=-1, destination=channel_axis ) out = rgb2xyz(img, channel_axis=channel_axis) out = cp.moveaxis(out, source=channel_axis, destination=-1) assert_array_almost_equal(out, gt) # stop repeating the "raises" checks for all other functions that are # implemented with color._convert() def test_rgb2xyz_error_grayscale(self): with pytest.raises(ValueError): rgb2xyz(self.img_grayscale) def test_rgb2xyz_dtype(self): img = self.colbars_array img32 = img.astype("float32") assert rgb2xyz(img).dtype == img.dtype assert rgb2xyz(img32).dtype == img32.dtype # XYZ to RGB def test_xyz2rgb_conversion(self): assert_array_almost_equal( xyz2rgb(rgb2xyz(self.colbars_array)), self.colbars_array ) def test_xyz2rgb_dtype(self): img = rgb2xyz(self.colbars_array) img32 = img.astype("float32") assert xyz2rgb(img).dtype == img.dtype assert xyz2rgb(img32).dtype == img32.dtype # RGB<->XYZ roundtrip on another image @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_xyz_rgb_roundtrip(self, channel_axis): img_rgb = img_as_float(self.img_rgb) img_rgb = cp.moveaxis(img_rgb, source=-1, destination=channel_axis) round_trip = xyz2rgb( rgb2xyz(img_rgb, channel_axis=channel_axis), channel_axis=channel_axis, ) assert_allclose(round_trip, img_rgb, rtol=1e-5, atol=1e-5) # RGB<->HED roundtrip with ubyte image def test_hed_rgb_roundtrip(self): img_in = img_as_ubyte(self.img_stains) img_out = rgb2hed(hed2rgb(img_in)) assert_array_equal(img_as_ubyte(img_out), img_in) # HED<->RGB roundtrip with float image @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_hed_rgb_float_roundtrip(self, channel_axis): img_in = self.img_stains img_in = cp.moveaxis(img_in, source=-1, destination=channel_axis) img_out = rgb2hed( hed2rgb(img_in, channel_axis=channel_axis), channel_axis=channel_axis, ) assert_array_almost_equal(img_out, img_in) # RGB<->BRO roundtrip with ubyte image def test_bro_rgb_roundtrip(self): from cucim.skimage.color.colorconv import bro_from_rgb, rgb_from_bro img_in = img_as_ubyte(self.img_stains) img_out = combine_stains(img_in, rgb_from_bro) img_out = separate_stains(img_out, bro_from_rgb) assert_array_equal(img_as_ubyte(img_out), img_in) # BRO<->RGB roundtrip with float image @pytest.mark.parametrize("channel_axis", [0, 1, -1]) def test_bro_rgb_roundtrip_float(self, channel_axis): from skimage.color.colorconv import bro_from_rgb, rgb_from_bro img_in = self.img_stains img_in = cp.moveaxis(img_in, source=-1, destination=channel_axis) img_out = combine_stains( img_in, rgb_from_bro, channel_axis=channel_axis ) img_out = separate_stains( img_out, bro_from_rgb, channel_axis=channel_axis ) assert_array_almost_equal(img_out, img_in) # RGB to RGB CIE @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_rgb2rgbcie_conversion(self, channel_axis): # fmt: off gt = cp.asarray([[[ 0.1488856 , 0.18288098, 0.19277574], # noqa [ 0.01163224, 0.16649536, 0.18948516], # noqa [ 0.12259182, 0.03308008, 0.17298223], # noqa [-0.01466154, 0.01669446, 0.16969164]], # noqa [[ 0.16354714, 0.16618652, 0.0230841 ], # noqa [ 0.02629378, 0.1498009 , 0.01979351], # noqa [ 0.13725336, 0.01638562, 0.00329059], # noqa [ 0. , 0. , 0. ]]]) # noqa # fmt: on img = np.moveaxis( self.colbars_array, source=-1, destination=channel_axis ) out = rgb2rgbcie(img, channel_axis=channel_axis) out = np.moveaxis(out, source=channel_axis, destination=-1) assert_array_almost_equal(out, gt) def test_rgb2rgbcie_dtype(self): img = self.colbars_array.astype("float64") img32 = img.astype("float32") assert rgb2rgbcie(img).dtype == img.dtype assert rgb2rgbcie(img32).dtype == img32.dtype # RGB CIE to RGB @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_rgbcie2rgb_conversion(self, channel_axis): rgb = cp.moveaxis( self.colbars_array, source=-1, destination=channel_axis ) round_trip = rgbcie2rgb( rgb2rgbcie(rgb, channel_axis=channel_axis), channel_axis=channel_axis, ) # only roundtrip test, we checked rgb2rgbcie above already assert_array_almost_equal(round_trip, rgb) def test_rgbcie2rgb_dtype(self): img = rgb2rgbcie(self.colbars_array).astype("float64") img32 = img.astype("float32") assert rgbcie2rgb(img).dtype == img.dtype assert rgbcie2rgb(img32).dtype == img32.dtype @pytest.mark.parametrize("channel_axis", [0, -1]) def test_convert_colorspace(self, channel_axis): colspaces = ["HSV", "RGB CIE", "XYZ", "YCbCr", "YPbPr", "YDbDr"] colfuncs_from = [ hsv2rgb, rgbcie2rgb, xyz2rgb, ycbcr2rgb, ypbpr2rgb, ydbdr2rgb, ] colfuncs_to = [ rgb2hsv, rgb2rgbcie, rgb2xyz, rgb2ycbcr, rgb2ypbpr, rgb2ydbdr, ] colbars_array = cp.moveaxis( self.colbars_array, source=-1, destination=channel_axis ) kw = dict(channel_axis=channel_axis) assert_array_almost_equal( convert_colorspace(colbars_array, "RGB", "RGB", **kw), colbars_array ) for i, space in enumerate(colspaces): # print(f"space={space}") gt = colfuncs_from[i](colbars_array, **kw) assert_array_almost_equal( convert_colorspace(colbars_array, space, "RGB", **kw), gt ) gt = colfuncs_to[i](colbars_array, **kw) assert_array_almost_equal( convert_colorspace(colbars_array, "RGB", space, **kw), gt ) with pytest.raises(ValueError): convert_colorspace(colbars_array, "nokey", "XYZ", **kw) with pytest.raises(ValueError): convert_colorspace(colbars_array, "RGB", "nokey", **kw) @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_rgb2gray(self, channel_axis): x = cp.array([1, 1, 1]).reshape((1, 1, 3)).astype(float) x = cp.moveaxis(x, source=-1, destination=channel_axis) g = rgb2gray(x, channel_axis=channel_axis) assert_array_almost_equal(g, 1) assert_array_equal(g.shape, (1, 1)) def test_rgb2gray_contiguous(self): x = cp.random.rand(10, 10, 3) assert rgb2gray(x).flags["C_CONTIGUOUS"] assert rgb2gray(x[:5, :5]).flags["C_CONTIGUOUS"] def test_rgb2gray_alpha(self): x = cp.empty((10, 10, 4)) with pytest.raises(ValueError): rgb2gray(x) def test_rgb2gray_on_gray(self): with pytest.raises(ValueError): rgb2gray(np.empty((5, 5))) def test_rgb2gray_dtype(self): img = cp.random.rand(10, 10, 3).astype("float64") img32 = img.astype("float32") assert rgb2gray(img).dtype == img.dtype assert rgb2gray(img32).dtype == img32.dtype # test matrices for xyz2lab and lab2xyz generated using # http://www.easyrgb.com/index.php?X=CALC # Note: easyrgb website displays xyz*100 def test_xyz2lab(self): assert_array_almost_equal( xyz2lab(self.xyz_array), self.lab_array, decimal=3 ) # Test the conversion with the rest of the illuminants. for i in ["A", "B", "C", "d50", "d55", "d65"]: i = i.lower() for obs in ["2", "10", "R"]: obs = obs.lower() fname = os.path.join(data_dir, f"lab_array_{i}_{obs}.npy") lab_array_i_obs = np.load(fname) assert_array_almost_equal( lab_array_i_obs, xyz2lab(self.xyz_array, i, obs), decimal=2 ) for i in ["d75", "e"]: fname = os.path.join(data_dir, f"lab_array_{i}_2.npy") lab_array_i_obs = np.load(fname) assert_array_almost_equal( lab_array_i_obs, xyz2lab(self.xyz_array, i, "2"), decimal=2 ) @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_xyz2lab_channel_axis(self, channel_axis): # test conversion with channels along a specified axis xyz = cp.moveaxis(self.xyz_array, source=-1, destination=channel_axis) lab = xyz2lab(xyz, channel_axis=channel_axis) lab = cp.moveaxis(lab, source=channel_axis, destination=-1) assert_array_almost_equal(lab, self.lab_array, decimal=3) def test_xyz2lab_dtype(self): img = self.xyz_array.astype("float64") img32 = img.astype("float32") assert xyz2lab(img).dtype == img.dtype assert xyz2lab(img32).dtype == img32.dtype def test_lab2xyz(self): assert_array_almost_equal( lab2xyz(self.lab_array), self.xyz_array, decimal=3 ) # Test the conversion with the rest of the illuminants. for i in ["A", "B", "C", "d50", "d55", "d65"]: i = i.lower() for obs in ["2", "10", "R"]: obs = obs.lower() fname = os.path.join(data_dir, f"lab_array_{i}_{obs}.npy") lab_array_i_obs = cp.array(np.load(fname)) assert_array_almost_equal( lab2xyz(lab_array_i_obs, i, obs), self.xyz_array, decimal=3 ) for i in ["d75", "e"]: fname = os.path.join(data_dir, f"lab_array_{i}_2.npy") lab_array_i_obs = cp.array(np.load(fname)) assert_array_almost_equal( lab2xyz(lab_array_i_obs, i, "2"), self.xyz_array, decimal=3 ) # And we include a call to test the exception handling in the code. with pytest.raises(ValueError): lab2xyz(lab_array_i_obs, "NaI", "2") # Not an illuminant with pytest.raises(ValueError): lab2xyz(lab_array_i_obs, "d50", "42") # Not a degree @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_lab2xyz_channel_axis(self, channel_axis): # test conversion with channels along a specified axis lab = cp.moveaxis(self.lab_array, source=-1, destination=channel_axis) xyz = lab2xyz(lab, channel_axis=channel_axis) xyz = cp.moveaxis(xyz, source=channel_axis, destination=-1) assert_array_almost_equal(xyz, self.xyz_array, decimal=3) def test_lab2xyz_dtype(self): img = self.lab_array.astype("float64") img32 = img.astype("float32") assert lab2xyz(img).dtype == img.dtype assert lab2xyz(img32).dtype == img32.dtype def test_rgb2lab_brucelindbloom(self): """ Test the RGB->Lab conversion by comparing to the calculator on the authoritative Bruce Lindbloom [website](http://brucelindbloom.com/index.html?ColorCalculator.html). """ # Obtained with D65 white point, sRGB model and gamma # fmt: off gt_for_colbars = cp.asarray([ [100, 0, 0], [97.1393, -21.5537, 94.4780], [91.1132, -48.0875, -14.1312], [87.7347, -86.1827, 83.1793], [60.3242, 98.2343, -60.8249], [53.2408, 80.0925, 67.2032], [32.2970, 79.1875, -107.8602], [0, 0, 0]]).T # fmt: on gt_array = cp.swapaxes(gt_for_colbars.reshape(3, 4, 2), 0, 2) assert_array_almost_equal( rgb2lab(self.colbars_array), gt_array, decimal=2 ) @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_lab_rgb_roundtrip(self, channel_axis): img_rgb = img_as_float(self.img_rgb) img_rgb = cp.moveaxis(img_rgb, source=-1, destination=channel_axis) assert_allclose( lab2rgb( rgb2lab(img_rgb, channel_axis=channel_axis), channel_axis=channel_axis, ), img_rgb, rtol=1e-5, atol=1e-5, ) def test_rgb2lab_dtype(self): img = self.colbars_array.astype("float64") img32 = img.astype("float32") assert rgb2lab(img).dtype == img.dtype assert rgb2lab(img32).dtype == img32.dtype def test_lab2rgb_dtype(self): img = self.lab_array.astype("float64") img32 = img.astype("float32") assert lab2rgb(img).dtype == img.dtype assert lab2rgb(img32).dtype == img32.dtype # test matrices for xyz2luv and luv2xyz generated using # http://www.easyrgb.com/index.php?X=CALC # Note: easyrgb website displays xyz*100 def test_xyz2luv(self): assert_array_almost_equal( xyz2luv(self.xyz_array), self.luv_array, decimal=3 ) # Test the conversion with the rest of the illuminants. for i in ["A", "B", "C", "d50", "d55", "d65"]: i = i.lower() for obs in ["2", "10", "R"]: obs = obs.lower() fname = os.path.join(data_dir, f"luv_array_{i}_{obs}.npy") luv_array_i_obs = np.load(fname) assert_array_almost_equal( luv_array_i_obs, xyz2luv(self.xyz_array, i, obs), decimal=2 ) for i in ["d75", "e"]: fname = os.path.join(data_dir, f"luv_array_{i}_2.npy") luv_array_i_obs = np.load(fname) assert_array_almost_equal( luv_array_i_obs, xyz2luv(self.xyz_array, i, "2"), decimal=2 ) @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_xyz2luv_channel_axis(self, channel_axis): # test conversion with channels along a specified axis xyz = cp.moveaxis(self.xyz_array, source=-1, destination=channel_axis) luv = xyz2luv(xyz, channel_axis=channel_axis) luv = cp.moveaxis(luv, source=channel_axis, destination=-1) assert_array_almost_equal(luv, self.luv_array, decimal=3) def test_xyz2luv_dtype(self): img = self.xyz_array.astype("float64") img32 = img.astype("float32") assert xyz2luv(img).dtype == img.dtype assert xyz2luv(img32).dtype == img32.dtype def test_luv2xyz(self): assert_array_almost_equal( luv2xyz(self.luv_array), self.xyz_array, decimal=3 ) # Test the conversion with the rest of the illuminants. for i in ["A", "B", "C", "d50", "d55", "d65"]: i = i.lower() for obs in ["2", "10", "R"]: obs = obs.lower() fname = os.path.join(data_dir, f"luv_array_{i}_{obs}.npy") luv_array_i_obs = cp.array(np.load(fname)) assert_array_almost_equal( luv2xyz(luv_array_i_obs, i, obs), self.xyz_array, decimal=3 ) for i in ["d75", "e"]: fname = os.path.join(data_dir, f"luv_array_{i}_2.npy") luv_array_i_obs = cp.array(np.load(fname)) assert_array_almost_equal( luv2xyz(luv_array_i_obs, i, "2"), self.xyz_array, decimal=3 ) @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_luv2xyz_channel_axis(self, channel_axis): # test conversion with channels along a specified axis luv = cp.moveaxis(self.luv_array, source=-1, destination=channel_axis) xyz = luv2xyz(luv, channel_axis=channel_axis) xyz = cp.moveaxis(xyz, source=channel_axis, destination=-1) assert_array_almost_equal(xyz, self.xyz_array, decimal=3) def test_luv2xyz_dtype(self): img = self.luv_array.astype("float64") img32 = img.astype("float32") assert luv2xyz(img).dtype == img.dtype assert luv2xyz(img32).dtype == img32.dtype def test_rgb2luv_brucelindbloom(self): """ Test the RGB->Lab conversion by comparing to the calculator on the authoritative Bruce Lindbloom [website](http://brucelindbloom.com/index.html?ColorCalculator.html). """ # Obtained with D65 white point, sRGB model and gamma # fmt: off gt_for_colbars = cp.asarray([ [100, 0, 0], [97.1393, 7.7056, 106.7866], [91.1132, -70.4773, -15.2042], [87.7347, -83.0776, 107.3985], [60.3242, 84.0714, -108.6834], [53.2408, 175.0151, 37.7564], [32.2970, -9.4054, -130.3423], [0, 0, 0]]).T # fmt: on gt_array = cp.swapaxes(gt_for_colbars.reshape(3, 4, 2), 0, 2) assert_array_almost_equal( rgb2luv(self.colbars_array), gt_array, decimal=2 ) def test_rgb2luv_dtype(self): img = self.colbars_array.astype("float64") img32 = img.astype("float32") assert rgb2luv(img).dtype == img.dtype assert rgb2luv(img32).dtype == img32.dtype def test_luv2rgb_dtype(self): img = self.luv_array.astype("float64") img32 = img.astype("float32") assert luv2rgb(img).dtype == img.dtype assert luv2rgb(img32).dtype == img32.dtype @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_luv_rgb_roundtrip(self, channel_axis): img_rgb = img_as_float(self.img_rgb) img_rgb = cp.moveaxis(img_rgb, source=-1, destination=channel_axis) assert_allclose( luv2rgb( rgb2luv(img_rgb, channel_axis=channel_axis), channel_axis=channel_axis, ), img_rgb, rtol=1e-4, atol=1e-4, ) def test_lab_rgb_outlier(self): lab_array = np.ones((3, 1, 3)) lab_array[0] = [50, -12, 85] lab_array[1] = [50, 12, -85] lab_array[2] = [90, -4, -47] lab_array = cp.asarray(lab_array) # fmt: off rgb_array = cp.asarray([[[0.501, 0.481, 0]], [[0, 0.482, 1.]], [[0.578, 0.914, 1.]], ]) # fmt: on assert_array_almost_equal(lab2rgb(lab_array), rgb_array, decimal=3) def test_lab_full_gamut(self): a, b = cp.meshgrid(cp.arange(-100, 100), cp.arange(-100, 100)) L = cp.ones(a.shape) lab = cp.dstack((L, a, b)) regex = ( "Conversion from CIE-LAB to XYZ color space resulted in " "\\d+ negative Z values that have been clipped to zero" ) for value in [0, 10, 20]: lab[:, :, 0] = value with pytest.warns(UserWarning, match=regex): lab2xyz(lab) @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_lab_lch_roundtrip(self, channel_axis): rgb = img_as_float(self.img_rgb) rgb = cp.moveaxis(rgb, source=-1, destination=channel_axis) lab = rgb2lab(rgb, channel_axis=channel_axis) lab2 = lch2lab( lab2lch(lab, channel_axis=channel_axis), channel_axis=channel_axis, ) assert_allclose(lab2, lab, rtol=1e-4, atol=1e-4) def test_rgb_lch_roundtrip(self): rgb = img_as_float(self.img_rgb) lab = rgb2lab(rgb) lch = lab2lch(lab) lab2 = lch2lab(lch) rgb2 = lab2rgb(lab2) assert_allclose(rgb, rgb2, rtol=1e-4, atol=1e-4) def test_lab_lch_0d(self): lab0 = self._get_lab0() lch0 = lab2lch(lab0) lch2 = lab2lch(lab0[None, None, :]) assert_array_almost_equal(lch0, lch2[0, 0, :]) def test_lab_lch_1d(self): lab0 = self._get_lab0() lch0 = lab2lch(lab0) lch1 = lab2lch(lab0[None, :]) assert_array_almost_equal(lch0, lch1[0, :]) def test_lab_lch_3d(self): lab0 = self._get_lab0() lch0 = lab2lch(lab0) lch3 = lab2lch(lab0[None, None, None, :]) assert_array_almost_equal(lch0, lch3[0, 0, 0, :]) def _get_lab0(self): rgb = img_as_float(self.img_rgb[:1, :1, :]) return rgb2lab(rgb)[0, 0, :] def test_yuv(self): rgb = cp.asarray([[[1.0, 1.0, 1.0]]]) assert_array_almost_equal(rgb2yuv(rgb), cp.asarray([[[1, 0, 0]]])) assert_array_almost_equal(rgb2yiq(rgb), cp.asarray([[[1, 0, 0]]])) assert_array_almost_equal(rgb2ypbpr(rgb), cp.asarray([[[1, 0, 0]]])) assert_array_almost_equal( rgb2ycbcr(rgb), cp.asarray([[[235, 128, 128]]]) ) assert_array_almost_equal(rgb2ydbdr(rgb), cp.asarray([[[1, 0, 0]]])) rgb = cp.asarray([[[0.0, 1.0, 0.0]]]) assert_array_almost_equal( rgb2yuv(rgb), cp.asarray([[[0.587, -0.28886916, -0.51496512]]]) ) assert_array_almost_equal( rgb2yiq(rgb), cp.asarray([[[0.587, -0.27455667, -0.52273617]]]) ) assert_array_almost_equal( rgb2ypbpr(rgb), cp.asarray([[[0.587, -0.331264, -0.418688]]]) ) assert_array_almost_equal( rgb2ycbcr(rgb), cp.asarray([[[144.553, 53.797, 34.214]]]) ) assert_array_almost_equal( rgb2ydbdr(rgb), cp.asarray([[[0.587, -0.883, 1.116]]]) ) @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_yuv_roundtrip(self, channel_axis): img_rgb = img_as_float(self.img_rgb)[::16, ::16] img_rgb = cp.moveaxis(img_rgb, source=-1, destination=channel_axis) assert_allclose( yuv2rgb( rgb2yuv(img_rgb, channel_axis=channel_axis), channel_axis=channel_axis, ), img_rgb, rtol=1e-5, atol=1e-5, ) assert_allclose( yiq2rgb( rgb2yiq(img_rgb, channel_axis=channel_axis), channel_axis=channel_axis, ), img_rgb, rtol=1e-5, atol=1e-5, ) assert_allclose( ypbpr2rgb( rgb2ypbpr(img_rgb, channel_axis=channel_axis), channel_axis=channel_axis, ), img_rgb, rtol=1e-5, atol=1e-5, ) assert_allclose( ycbcr2rgb( rgb2ycbcr(img_rgb, channel_axis=channel_axis), channel_axis=channel_axis, ), img_rgb, rtol=1e-5, atol=1e-5, ) assert_allclose( ydbdr2rgb( rgb2ydbdr(img_rgb, channel_axis=channel_axis), channel_axis=channel_axis, ), img_rgb, rtol=1e-5, atol=1e-5, ) def test_rgb2yuv_dtype(self): img = self.colbars_array.astype("float64") img32 = img.astype("float32") assert rgb2yuv(img).dtype == img.dtype assert rgb2yuv(img32).dtype == img32.dtype def test_yuv2rgb_dtype(self): img = rgb2yuv(self.colbars_array).astype("float64") img32 = img.astype("float32") assert yuv2rgb(img).dtype == img.dtype assert yuv2rgb(img32).dtype == img32.dtype def test_rgb2yiq_conversion(self): rgb = img_as_float(self.img_rgb)[::16, ::16] yiq = rgb2yiq(rgb).reshape(-1, 3) gt = np.asarray( [ colorsys.rgb_to_yiq(pt[0], pt[1], pt[2]) for pt in cp.asnumpy(rgb).reshape(-1, 3) ] ) assert_array_almost_equal(yiq, gt, decimal=2) @pytest.mark.parametrize("func", [lab2rgb, lab2xyz]) def test_warning_stacklevel(self, func): regex = ( "Conversion from CIE-LAB.* XYZ.*color space resulted in " "1 negative Z values that have been clipped to zero" ) with pytest.warns(UserWarning, match=regex) as messages: func(lab=cp.array([[[0, 0, 300.0]]])) assert len(messages) == 1 assert messages[0].filename == __file__, "warning points at wrong file" def test_gray2rgb(): x = cp.asarray([0, 0.5, 1]) w = gray2rgb(x) # fmt off expected_output = cp.asarray([[0, 0, 0], [0.5, 0.5, 0.5], [1, 1, 1]]) # fmt on assert_array_equal(w, expected_output) x = x.reshape((3, 1)) y = gray2rgb(x) assert_array_equal(y.shape, (3, 1, 3)) assert_array_equal(y.dtype, x.dtype) assert_array_equal(y[..., 0], x) assert_array_equal(y[0, 0, :], [0, 0, 0]) x = cp.asarray([[0, 128, 255]], dtype=np.uint8) z = gray2rgb(x) assert_array_equal(z.shape, (1, 3, 3)) assert_array_equal(z[..., 0], x) assert_array_equal(z[0, 1, :], [128, 128, 128]) def test_gray2rgb_rgb(): x = cp.random.rand(5, 5, 4) y = gray2rgb(x) assert y.shape == (x.shape + (3,)) for i in range(3): assert_array_equal(x, y[..., i]) @pytest.mark.parametrize("shape", [(5, 5), (5, 5, 4), (5, 4, 5, 4)]) @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_gray2rgba(shape, channel_axis): # nD case img = cp.random.random(shape) rgba = gray2rgba(img, channel_axis=channel_axis) assert rgba.ndim == img.ndim + 1 # Shape check new_axis_loc = channel_axis % rgba.ndim assert_equal(rgba.shape, shape[:new_axis_loc] + (4,) + shape[new_axis_loc:]) # dtype check assert rgba.dtype == img.dtype # RGB channels check for channel in range(3): assert_array_equal(rgba[slice_at_axis(channel, axis=new_axis_loc)], img) # Alpha channel check assert_array_equal(rgba[slice_at_axis(3, axis=new_axis_loc)], 1.0) @pytest.mark.parametrize("shape", [(5, 5), (5, 5, 4), (5, 4, 5, 4)]) @pytest.mark.parametrize("channel_axis", [0, 1, -1, -2]) def test_gray2rgb_channel_axis(shape, channel_axis): # nD case img = cp.random.random(shape) rgb = gray2rgb(img, channel_axis=channel_axis) assert rgb.ndim == img.ndim + 1 # Shape check new_axis_loc = channel_axis % rgb.ndim assert_equal(rgb.shape, shape[:new_axis_loc] + (3,) + shape[new_axis_loc:]) # dtype check assert rgb.dtype == img.dtype def test_gray2rgba_dtype(): img_f64 = cp.random.random((5, 5)) img_f32 = img_f64.astype("float32") img_u8 = img_as_ubyte(img_f64) img_int = img_u8.astype(int) for img in [img_f64, img_f32, img_u8, img_int]: assert gray2rgba(img).dtype == img.dtype def test_gray2rgba_alpha(): img = cp.random.random((5, 5)) img_u8 = img_as_ubyte(img) # Default alpha = None rgba = gray2rgba(img, alpha) assert_array_equal(rgba[..., :3], gray2rgb(img)) assert_array_equal(rgba[..., 3], 1.0) # Scalar alpha = 0.5 rgba = gray2rgba(img, alpha) assert_array_equal(rgba[..., :3], gray2rgb(img)) assert_array_equal(rgba[..., 3], alpha) # Array alpha = cp.random.random((5, 5)) rgba = gray2rgba(img, alpha) assert_array_equal(rgba[..., :3], gray2rgb(img)) assert_array_equal(rgba[..., 3], alpha) # Warning about alpha cast alpha = 0.5 with expected_warnings(["alpha can't be safely cast to image dtype"]): rgba = gray2rgba(img_u8, alpha) assert_array_equal(rgba[..., :3], gray2rgb(img_u8)) # Invalid shape alpha = cp.random.random((5, 5, 1)) expected_err_msg = "alpha.shape must match image.shape" with pytest.raises(ValueError) as err: rgba = gray2rgba(img, alpha) assert expected_err_msg == str(err.value) @pytest.mark.parametrize("func", [rgb2gray, gray2rgb, gray2rgba]) @pytest.mark.parametrize( "shape", ([(3,), (2, 3), (4, 5, 3), (5, 4, 5, 3), (4, 5, 4, 5, 3)]) ) def test_nD_gray_conversion(func, shape): img = cp.random.rand(*shape) out = func(img) common_ndim = min(out.ndim, len(shape)) assert out.shape[:common_ndim] == shape[:common_ndim] @pytest.mark.parametrize( "func", [ rgb2hsv, hsv2rgb, rgb2xyz, xyz2rgb, rgb2hed, hed2rgb, rgb2rgbcie, rgbcie2rgb, xyz2lab, lab2xyz, lab2rgb, rgb2lab, xyz2luv, luv2xyz, luv2rgb, rgb2luv, lab2lch, lch2lab, rgb2yuv, yuv2rgb, rgb2yiq, yiq2rgb, rgb2ypbpr, ypbpr2rgb, rgb2ycbcr, ycbcr2rgb, rgb2ydbdr, ydbdr2rgb, ], ) @pytest.mark.parametrize( "shape", ([(3,), (2, 3), (4, 5, 3), (5, 4, 5, 3), (4, 5, 4, 5, 3)]) ) def test_nD_color_conversion(func, shape): img = cp.random.rand(*shape) out = func(img) assert out.shape == img.shape @pytest.mark.parametrize( "shape", ([(4,), (2, 4), (4, 5, 4), (5, 4, 5, 4), (4, 5, 4, 5, 4)]) ) def test_rgba2rgb_nD(shape): img = cp.random.rand(*shape) out = rgba2rgb(img) expected_shape = shape[:-1] + (3,) assert out.shape == expected_shape @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_rgba2rgb_dtypes(dtype): rgba = cp.array( [[[0, 0.5, 1, 0], [0, 0.5, 1, 1], [0, 0.5, 1, 0.5]]] ).astype(dtype=dtype) rgb = rgba2rgb(rgba) float_dtype = _supported_float_type(rgba.dtype) assert rgb.dtype == float_dtype expected = cp.array([[[1, 1, 1], [0, 0.5, 1], [0.5, 0.75, 1]]]).astype( float ) assert rgb.shape == expected.shape assert_array_almost_equal(rgb, expected) @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_lab_lch_roundtrip_dtypes(dtype): rgb = cp.asarray(data.colorwheel()) rgb = img_as_float(rgb).astype(dtype=dtype, copy=False) lab = rgb2lab(rgb) float_dtype = _supported_float_type(dtype) assert lab.dtype == float_dtype lab2 = lch2lab(lab2lch(lab)) decimal = 4 if float_dtype == cp.float32 else 7 assert_array_almost_equal(lab2, lab, decimal=decimal) @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_rgb2hsv_dtypes(dtype): rgb = cp.asarray(data.colorwheel()) rgb = img_as_float(rgb)[::16, ::16] rgb = rgb.astype(dtype=dtype, copy=False) hsv = rgb2hsv(rgb).reshape(-1, 3) float_dtype = _supported_float_type(dtype) assert hsv.dtype == float_dtype # ground truth from colorsys gt = cp.asarray( [ colorsys.rgb_to_hsv(pt[0], pt[1], pt[2]) for pt in cp.asnumpy(rgb).reshape(-1, 3) ] ) decimal = 3 if float_dtype == cp.float32 else 7 assert_array_almost_equal(hsv, gt, decimal=decimal)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color/tests/test_adapt_rgb.py
from functools import partial import cupy as cp import numpy as np from skimage import data from cucim.skimage import color, filters, img_as_float, img_as_uint from cucim.skimage.color.adapt_rgb import adapt_rgb, each_channel, hsv_value # Down-sample image for quicker testing. COLOR_IMAGE = cp.asarray(data.astronaut()[::5, ::6]) GRAY_IMAGE = cp.asarray(data.camera()[::5, ::5]) SIGMA = 3 smooth = partial(filters.gaussian, sigma=SIGMA) assert_allclose = partial(cp.testing.assert_allclose, atol=1e-8) @adapt_rgb(each_channel) def edges_each(image): return filters.sobel(image) @adapt_rgb(each_channel) def smooth_each(image, sigma): return filters.gaussian(image, sigma) @adapt_rgb(each_channel) def mask_each(image, mask): result = image.copy() result[mask] = 0 return result @adapt_rgb(hsv_value) def edges_hsv(image): return filters.sobel(image) @adapt_rgb(hsv_value) def smooth_hsv(image, sigma): return filters.gaussian(image, sigma) @adapt_rgb(hsv_value) def edges_hsv_uint(image): return img_as_uint(filters.sobel(image)) def test_gray_scale_image(): # We don't need to test both `hsv_value` and `each_channel` since # `adapt_rgb` is handling gray-scale inputs. assert_allclose(edges_each(GRAY_IMAGE), filters.sobel(GRAY_IMAGE)) def test_each_channel(): filtered = edges_each(COLOR_IMAGE) for i, channel in enumerate(cp.rollaxis(filtered, axis=-1)): expected = img_as_float(filters.sobel(COLOR_IMAGE[:, :, i])) assert_allclose(channel, expected) def test_each_channel_with_filter_argument(): filtered = smooth_each(COLOR_IMAGE, SIGMA) for i, channel in enumerate(cp.rollaxis(filtered, axis=-1)): assert_allclose(channel, smooth(COLOR_IMAGE[:, :, i])) def test_each_channel_with_asymmetric_kernel(): mask = cp.triu(cp.ones(COLOR_IMAGE.shape[:2], dtype=np.bool_)) mask_each(COLOR_IMAGE, mask) def test_hsv_value(): filtered = edges_hsv(COLOR_IMAGE) value = color.rgb2hsv(COLOR_IMAGE)[:, :, 2] assert_allclose(color.rgb2hsv(filtered)[:, :, 2], filters.sobel(value)) def test_hsv_value_with_filter_argument(): filtered = smooth_hsv(COLOR_IMAGE, SIGMA) value = color.rgb2hsv(COLOR_IMAGE)[:, :, 2] assert_allclose(color.rgb2hsv(filtered)[:, :, 2], smooth(value)) def test_hsv_value_with_non_float_output(): # Since `rgb2hsv` returns a float image and the result of the filtered # result is inserted into the HSV image, we want to make sure there isn't # a dtype mismatch. filtered = edges_hsv_uint(COLOR_IMAGE) filtered_value = color.rgb2hsv(filtered)[:, :, 2] value = color.rgb2hsv(COLOR_IMAGE)[:, :, 2] # Reduce tolerance because dtype conversion. assert_allclose(filtered_value, filters.sobel(value), rtol=1e-5, atol=1e-5)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/color/tests/ciede2000_test_data.txt
# input, intermediate, and output values for CIEDE2000 dE function # data taken from "The CIEDE2000 Color-Difference Formula: Implementation Notes, ..." http://www.ece.rochester.edu/~gsharma/ciede2000/ciede2000noteCRNA.pdf # tab delimited data # pair 1 L1 a1 b1 ap1 cp1 hp1 hbar1 G T SL SC SH RT dE 2 L2 a2 b2 ap2 cp2 hp2 1 1 50.0000 2.6772 -79.7751 2.6774 79.8200 271.9222 270.9611 0.0001 0.6907 1.0000 4.6578 1.8421 -1.7042 2.0425 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 2 1 50.0000 3.1571 -77.2803 3.1573 77.3448 272.3395 271.1698 0.0001 0.6843 1.0000 4.6021 1.8216 -1.7070 2.8615 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 3 1 50.0000 2.8361 -74.0200 2.8363 74.0743 272.1944 271.0972 0.0001 0.6865 1.0000 4.5285 1.8074 -1.7060 3.4412 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 4 1 50.0000 -1.3802 -84.2814 -1.3803 84.2927 269.0618 269.5309 0.0001 0.7357 1.0000 4.7584 1.9217 -1.6809 1.0000 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 5 1 50.0000 -1.1848 -84.8006 -1.1849 84.8089 269.1995 269.5997 0.0001 0.7335 1.0000 4.7700 1.9218 -1.6822 1.0000 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 6 1 50.0000 -0.9009 -85.5211 -0.9009 85.5258 269.3964 269.6982 0.0001 0.7303 1.0000 4.7862 1.9217 -1.6840 1.0000 2 50.0000 0.0000 -82.7485 0.0000 82.7485 270.0000 7 1 50.0000 0.0000 0.0000 0.0000 0.0000 0.0000 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669 2 50.0000 -1.0000 2.0000 -1.5000 2.5000 126.8697 8 1 50.0000 -1.0000 2.0000 -1.5000 2.5000 126.8697 126.8697 0.5000 1.2200 1.0000 1.0562 1.0229 0.0000 2.3669 2 50.0000 0.0000 0.0000 0.0000 0.0000 0.0000 9 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 269.9854 0.4998 0.7212 1.0000 1.1681 1.0404 -0.0022 7.1792 2 50.0000 -2.4900 0.0009 -3.7346 3.7346 179.9862 10 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 269.9847 0.4998 0.7212 1.0000 1.1681 1.0404 -0.0022 7.1792 2 50.0000 -2.4900 0.0010 -3.7346 3.7346 179.9847 11 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 89.9839 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195 2 50.0000 -2.4900 0.0011 -3.7346 3.7346 179.9831 12 1 50.0000 2.4900 -0.0010 3.7346 3.7346 359.9847 89.9831 0.4998 0.6175 1.0000 1.1681 1.0346 0.0000 7.2195 2 50.0000 -2.4900 0.0012 -3.7346 3.7346 179.9816 13 1 50.0000 -0.0010 2.4900 -0.0015 2.4900 90.0345 180.0328 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045 2 50.0000 0.0009 -2.4900 0.0013 2.4900 270.0311 14 1 50.0000 -0.0010 2.4900 -0.0015 2.4900 90.0345 180.0345 0.4998 0.9779 1.0000 1.1121 1.0365 0.0000 4.8045 2 50.0000 0.0010 -2.4900 0.0015 2.4900 270.0345 15 1 50.0000 -0.0010 2.4900 -0.0015 2.4900 90.0345 0.0362 0.4998 1.3197 1.0000 1.1121 1.0493 0.0000 4.7461 2 50.0000 0.0011 -2.4900 0.0016 2.4900 270.0380 16 1 50.0000 2.5000 0.0000 3.7496 3.7496 0.0000 315.0000 0.4998 0.8454 1.0000 1.1406 1.0396 -0.0001 4.3065 2 50.0000 0.0000 -2.5000 0.0000 2.5000 270.0000 17 1 50.0000 2.5000 0.0000 3.4569 3.4569 0.0000 346.2470 0.3827 1.4453 1.1608 1.9547 1.4599 -0.0003 27.1492 2 73.0000 25.0000 -18.0000 34.5687 38.9743 332.4939 18 1 50.0000 2.5000 0.0000 3.4954 3.4954 0.0000 51.7766 0.3981 0.6447 1.0640 1.7498 1.1612 0.0000 22.8977 2 61.0000 -5.0000 29.0000 -6.9907 29.8307 103.5532 19 1 50.0000 2.5000 0.0000 3.5514 3.5514 0.0000 272.2362 0.4206 0.6521 1.0251 1.9455 1.2055 -0.8219 31.9030 2 56.0000 -27.0000 -3.0000 -38.3556 38.4728 184.4723 20 1 50.0000 2.5000 0.0000 3.5244 3.5244 0.0000 11.9548 0.4098 1.1031 1.0400 1.9120 1.3353 0.0000 19.4535 2 58.0000 24.0000 15.0000 33.8342 37.0102 23.9095 21 1 50.0000 2.5000 0.0000 3.7494 3.7494 0.0000 3.5056 0.4997 1.2616 1.0000 1.1923 1.0808 0.0000 1.0000 2 50.0000 3.1736 0.5854 4.7596 4.7954 7.0113 22 1 50.0000 2.5000 0.0000 3.7493 3.7493 0.0000 0.0000 0.4997 1.3202 1.0000 1.1956 1.0861 0.0000 1.0000 2 50.0000 3.2972 0.0000 4.9450 4.9450 0.0000 23 1 50.0000 2.5000 0.0000 3.7497 3.7497 0.0000 5.8190 0.4999 1.2197 1.0000 1.1486 1.0604 0.0000 1.0000 2 50.0000 1.8634 0.5757 2.7949 2.8536 11.6380 24 1 50.0000 2.5000 0.0000 3.7493 3.7493 0.0000 1.9603 0.4997 1.2883 1.0000 1.1946 1.0836 0.0000 1.0000 2 50.0000 3.2592 0.3350 4.8879 4.8994 3.9206 25 1 60.2574 -34.0099 36.2677 -34.0678 49.7590 133.2085 132.0835 0.0017 1.3010 1.1427 3.2946 1.9951 0.0000 1.2644 2 60.4626 -34.1751 39.4387 -34.2333 52.2238 130.9584 26 1 63.0109 -31.0961 -5.8663 -32.6194 33.1427 190.1951 188.8221 0.0490 0.9402 1.1831 2.4549 1.4560 0.0000 1.2630 2 62.8187 -29.7946 -4.0864 -31.2542 31.5202 187.4490 27 1 61.2901 3.7196 -5.3901 5.5668 7.7487 315.9240 310.0313 0.4966 0.6952 1.1586 1.3092 1.0717 -0.0032 1.8731 2 61.4292 2.2480 -4.9620 3.3644 5.9950 304.1385 28 1 35.0831 -44.1164 3.7933 -44.3939 44.5557 175.1161 176.4290 0.0063 1.0168 1.2148 2.9105 1.6476 0.0000 1.8645 2 35.0232 -40.0716 1.5901 -40.3237 40.3550 177.7418 29 1 22.7233 20.0904 -46.6940 20.1424 50.8532 293.3339 291.3809 0.0026 0.3636 1.4014 3.1597 1.2617 -1.2537 2.0373 2 23.0331 14.9730 -42.5619 15.0118 45.1317 289.4279 30 1 36.4612 47.8580 18.3852 47.9197 51.3256 20.9901 21.8781 0.0013 0.9239 1.1943 3.3888 1.7357 0.0000 1.4146 2 36.2715 50.5065 21.2231 50.5716 54.8444 22.7660 31 1 90.8027 -2.0831 1.4410 -3.1245 3.4408 155.2410 167.1011 0.4999 1.1546 1.6110 1.1329 1.0511 0.0000 1.4441 2 91.1528 -1.6435 0.0447 -2.4651 2.4655 178.9612 32 1 90.9257 -0.5406 -0.9208 -0.8109 1.2270 228.6315 218.4363 0.5000 1.3916 1.5930 1.0620 1.0288 0.0000 1.5381 2 88.6381 -0.8985 -0.7239 -1.3477 1.5298 208.2412 33 1 6.7747 -0.2908 -2.4247 -0.4362 2.4636 259.8025 263.0049 0.4999 0.9556 1.6517 1.1057 1.0337 -0.0004 0.6377 2 5.8714 -0.0985 -2.2286 -0.1477 2.2335 266.2073 34 1 2.0776 0.0795 -1.1350 0.1192 1.1412 275.9978 268.0910 0.5000 0.7826 1.7246 1.0383 1.0100 0.0000 0.9082 2 0.9033 -0.0636 -0.5514 -0.0954 0.5596 260.18421
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/restoration/deconvolution.py
"""Implementations restoration functions""" import warnings import cupy as cp import numpy as np from .._shared.utils import _supported_float_type, deprecate_kwarg from . import uft __keywords__ = "restoration, image, deconvolution" def wiener(image, psf, balance, reg=None, is_real=True, clip=True): r"""Wiener-Hunt deconvolution Return the deconvolution with a Wiener-Hunt approach (i.e. with Fourier diagonalisation). Parameters ---------- image : cp.ndarray Input degraded image (can be n-dimensional). psf : ndarray Point Spread Function. This is assumed to be the impulse response (input image space) if the data-type is real, or the transfer function (Fourier space) if the data-type is complex. There is no constraints on the shape of the impulse response. The transfer function must be of shape `(N1, N2, ..., ND)` if `is_real is True`, `(N1, N2, ..., ND // 2 + 1)` otherwise (see `cp.fft.rfftn`). balance : float The regularisation parameter value that tunes the balance between the data adequacy that improve frequency restoration and the prior adequacy that reduce frequency restoration (to avoid noise artifacts). reg : ndarray, optional The regularisation operator. The Laplacian by default. It can be an impulse response or a transfer function, as for the psf. Shape constraint is the same as for the `psf` parameter. is_real : boolean, optional True by default. Specify if ``psf`` and ``reg`` are provided with hermitian hypothesis, that is only half of the frequency plane is provided (due to the redundancy of Fourier transform of real signal). It's apply only if ``psf`` and/or ``reg`` are provided as transfer function. For the hermitian property see ``uft`` module or ``cupy.fft.rfftn``. clip : boolean, optional True by default. If True, pixel values of the result above 1 or under -1 are thresholded for skimage pipeline compatibility. Returns ------- im_deconv : (M, N) ndarray The deconvolved image. Examples -------- >>> import cupy as cp >>> import cupyx.scipy.ndimage as ndi >>> from cucim.skimage import color, restoration >>> from skimage import data >>> img = color.rgb2gray(cp.array(data.astronaut())) >>> psf = cp.ones((5, 5)) / 25 >>> img = ndi.uniform_filter(img, size=psf.shape) >>> img += 0.1 * img.std() * cp.random.standard_normal(img.shape) >>> deconvolved_img = restoration.wiener(img, psf, 0.1) Notes ----- This function applies the Wiener filter to a noisy and degraded image by an impulse response (or PSF). If the data model is .. math:: y = Hx + n where :math:`n` is noise, :math:`H` the PSF and :math:`x` the unknown original image, the Wiener filter is .. math:: \hat x = F^\dagger (|\Lambda_H|^2 + \lambda |\Lambda_D|^2) \Lambda_H^\dagger F y where :math:`F` and :math:`F^\dagger` are the Fourier and inverse Fourier transforms respectively, :math:`\Lambda_H` the transfer function (or the Fourier transform of the PSF, see [Hunt] below) and :math:`\Lambda_D` the filter to penalize the restored image frequencies (Laplacian by default, that is penalization of high frequency). The parameter :math:`\lambda` tunes the balance between the data (that tends to increase high frequency, even those coming from noise), and the regularization. These methods are then specific to a prior model. Consequently, the application or the true image nature must correspond to the prior model. By default, the prior model (Laplacian) introduce image smoothness or pixel correlation. It can also be interpreted as high-frequency penalization to compensate the instability of the solution with respect to the data (sometimes called noise amplification or "explosive" solution). Finally, the use of Fourier space implies a circulant property of :math:`H`, see [2]_. References ---------- .. [1] François Orieux, Jean-François Giovannelli, and Thomas Rodet, "Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution", J. Opt. Soc. Am. A 27, 1593-1607 (2010) https://www.osapublishing.org/josaa/abstract.cfm?URI=josaa-27-7-1593 https://hal.archives-ouvertes.fr/hal-00674508 .. [2] B. R. Hunt "A matrix theory proof of the discrete convolution theorem", IEEE Trans. on Audio and Electroacoustics, vol. au-19, no. 4, pp. 285-288, dec. 1971 """ if reg is None: reg, _ = uft.laplacian(image.ndim, image.shape, is_real=is_real) if not cp.iscomplexobj(reg): reg = uft.ir2tf(reg, image.shape, is_real=is_real) float_type = _supported_float_type(image.dtype) image = image.astype(float_type, copy=False) psf = psf.real.astype(float_type, copy=False) reg = reg.real.astype(float_type, copy=False) if psf.shape != reg.shape: trans_func = uft.ir2tf(psf, image.shape, is_real=is_real) else: trans_func = psf atf2 = cp.abs(trans_func) atf2 *= atf2 areg2 = cp.abs(reg) areg2 *= areg2 wiener_filter = cp.conj(trans_func) / (atf2 + balance * areg2) if is_real: deconv = uft.uirfftn( wiener_filter * uft.urfftn(image), shape=image.shape ) else: deconv = uft.uifftn(wiener_filter * uft.ufftn(image)) if clip: deconv[deconv > 1] = 1 deconv[deconv < -1] = -1 return deconv @deprecate_kwarg( {"random_state": "rng"}, removed_version="24.12.00", deprecated_version="23.08.00", ) @deprecate_kwarg( {"seed": "rng"}, removed_version="24.12.00", deprecated_version="23.12.00", ) def unsupervised_wiener( image, psf, reg=None, user_params=None, is_real=True, clip=True, *, rng=None, ): """Unsupervised Wiener-Hunt deconvolution. Return the deconvolution with a Wiener-Hunt approach, where the hyperparameters are automatically estimated. The algorithm is a stochastic iterative process (Gibbs sampler) described in the reference below. See also ``wiener`` function. Parameters ---------- image : (M, N) ndarray The input degraded image. psf : ndarray The impulse response (input image's space) or the transfer function (Fourier space). Both are accepted. The transfer function is automatically recognized as being complex (``cupy.iscomplexobj(psf)``). reg : ndarray, optional The regularisation operator. The Laplacian by default. It can be an impulse response or a transfer function, as for the psf. user_params : dict, optional Dictionary of parameters for the Gibbs sampler. See below. clip : boolean, optional True by default. If true, pixel values of the result above 1 or under -1 are thresholded for skimage pipeline compatibility. rng : {`cupy.random.Generator`, int}, optional Pseudo-random number generator. By default, a PCG64 generator is used (see :func:`cupy.random.default_rng`). If `rng` is an int, it is used to seed the generator. Returns ------- x_postmean : (M, N) ndarray The deconvolved image (the posterior mean). chains : dict The keys ``noise`` and ``prior`` contain the chain list of noise and prior precision respectively. Other parameters ---------------- The keys of ``user_params`` are: threshold : float The stopping criterion: the norm of the difference between to successive approximated solution (empirical mean of object samples, see Notes section). 1e-4 by default. burnin : int The number of sample to ignore to start computation of the mean. 15 by default. min_num_iter : int The minimum number of iterations. 30 by default. max_num_iter : int The maximum number of iterations if ``threshold`` is not satisfied. 200 by default. callback : callable (None by default) A user provided callable to which is passed, if the function exists, the current image sample for whatever purpose. The user can store the sample, or compute other moments than the mean. It has no influence on the algorithm execution and is only for inspection. Examples -------- >>> import cupy as cp >>> import cupyx.scipy.ndimage as ndi >>> from cucim.skimage import color, restoration >>> from skimage import data >>> img = color.rgb2gray(cp.array(data.astronaut())) >>> psf = cp.ones((5, 5)) / 25 >>> img = ndi.uniform_filter(img, size=psf.shape) >>> rng = cp.random.default_rng() >>> img += 0.1 * img.std() * rng.standard_normal(img.shape) >>> deconvolved_img = restoration.unsupervised_wiener(img, psf) Notes ----- The estimated image is design as the posterior mean of a probability law (from a Bayesian analysis). The mean is defined as a sum over all the possible images weighted by their respective probability. Given the size of the problem, the exact sum is not tractable. This algorithm use of MCMC to draw image under the posterior law. The practical idea is to only draw highly probable images since they have the biggest contribution to the mean. At the opposite, the less probable images are drawn less often since their contribution is low. Finally, the empirical mean of these samples give us an estimation of the mean, and an exact computation with an infinite sample set. References ---------- .. [1] François Orieux, Jean-François Giovannelli, and Thomas Rodet, "Bayesian estimation of regularization and point spread function parameters for Wiener-Hunt deconvolution", J. Opt. Soc. Am. A 27, 1593-1607 (2010) https://www.osapublishing.org/josaa/abstract.cfm?URI=josaa-27-7-1593 https://hal.archives-ouvertes.fr/hal-00674508 """ if user_params is not None: for s in ("max", "min"): if (s + "_iter") in user_params: warning_msg = ( f"`{s}_iter` is a deprecated key for `user_params`. " f"It will be removed in version 1.0. " f"Use `{s}_num_iter` instead." ) warnings.warn(warning_msg, FutureWarning) user_params[s + "_num_iter"] = user_params.pop(s + "_iter") params = { "threshold": 1e-4, "max_num_iter": 200, "min_num_iter": 30, "burnin": 15, "callback": None, } params.update(user_params or {}) if reg is None: reg, _ = uft.laplacian(image.ndim, image.shape, is_real=is_real) if not cp.iscomplexobj(reg): reg = uft.ir2tf(reg, image.shape, is_real=is_real) float_type = _supported_float_type(image.dtype) image = image.astype(float_type, copy=False) psf = psf.real.astype(float_type, copy=False) reg = reg.real.astype(float_type, copy=False) if psf.shape != reg.shape: trans_fct = uft.ir2tf(psf, image.shape, is_real=is_real) else: trans_fct = psf # The mean of the object x_postmean = cp.zeros(trans_fct.shape, dtype=float_type) # The previous computed mean in the iterative loop prev_x_postmean = cp.zeros(trans_fct.shape, dtype=float_type) # Difference between two successive mean delta = np.NAN # Initial state of the chain gn_chain, gx_chain = [1], [1] # The correlation of the object in Fourier space (if size is big, # this can reduce computation time in the loop) areg2 = cp.abs(reg) areg2 *= areg2 atf2 = cp.abs(trans_fct) atf2 *= atf2 # The Fourier transform may change the image.size attribute, so we # store it. if is_real: data_spectrum = uft.urfft2(image) else: data_spectrum = uft.ufft2(image) rng = cp.random.default_rng(rng) # Gibbs sampling for iteration in range(params["max_num_iter"]): # Sample of Eq. 27 p(circX^k | gn^k-1, gx^k-1, y). # weighting (correlation in direct space) precision = gn_chain[-1] * atf2 + gx_chain[-1] * areg2 # Eq. 29 # Note: Use astype instead of dtype argument to standard_normal to get # similar random values across precisions, as needed for # reference data used by test_unsupervised_wiener. _rand1 = rng.standard_normal(data_spectrum.shape) _rand1 = _rand1.astype(float_type, copy=False) _rand2 = rng.standard_normal(data_spectrum.shape) _rand2 = _rand2.astype(float_type, copy=False) excursion = cp.sqrt(0.5 / precision) * (_rand1 + 1j * _rand2) # mean Eq. 30 (RLS for fixed gn, gamma0 and gamma1 ...) wiener_filter = gn_chain[-1] * cp.conj(trans_fct) / precision # sample of X in Fourier space x_sample = wiener_filter * data_spectrum + excursion if params["callback"]: params["callback"](x_sample) # sample of Eq. 31 p(gn | x^k, gx^k, y) gn_chain.append( rng.gamma( image.size / 2, 2 / uft.image_quad_norm(data_spectrum - x_sample * trans_fct), ).astype(float_type, copy=False) ) # sample of Eq. 31 p(gx | x^k, gn^k-1, y) gx_chain.append( rng.gamma( (image.size - 1) / 2, 2 / uft.image_quad_norm(x_sample * reg) ).astype(float_type, copy=False) ) # current empirical average if iteration > params["burnin"]: x_postmean = prev_x_postmean + x_sample if iteration > (params["burnin"] + 1): current = x_postmean / (iteration - params["burnin"]) previous = prev_x_postmean / (iteration - params["burnin"] - 1) delta = ( cp.sum(cp.abs(current - previous)) / cp.sum(cp.abs(x_postmean)) / (iteration - params["burnin"]) ) prev_x_postmean = x_postmean # stop of the algorithm if (iteration > params["min_num_iter"]) and ( delta < params["threshold"] ): break # Empirical average \approx POSTMEAN Eq. 44 x_postmean = x_postmean / (iteration - params["burnin"]) if is_real: x_postmean = uft.uirfft2(x_postmean, shape=image.shape) else: x_postmean = uft.uifft2(x_postmean) if clip: x_postmean[x_postmean > 1] = 1 x_postmean[x_postmean < -1] = -1 return (x_postmean, {"noise": gn_chain, "prior": gx_chain}) def richardson_lucy(image, psf, num_iter=50, clip=True, filter_epsilon=None): """Richardson-Lucy deconvolution. Parameters ---------- image : ndarray Input degraded image (can be n-dimensional). psf : ndarray The point spread function. num_iter : int, optional Number of iterations. This parameter plays the role of regularisation. clip : boolean, optional True by default. If true, pixel value of the result above 1 or under -1 are thresholded for skimage pipeline compatibility. filter_epsilon: float, optional Value below which intermediate results become 0 to avoid division by small numbers. Returns ------- im_deconv : ndarray The deconvolved image. Examples -------- >>> import cupy as cp >>> from cucim.skimage import img_as_float, restoration >>> from skimage import data >>> camera = cp.asarray(img_as_float(cp.array(data.camera()))) >>> from cupyx.scipy.signal import convolve2d >>> psf = cp.ones((5, 5)) / 25 >>> camera = convolve2d(camera, psf, 'same') >>> camera += 0.1 * camera.std() * cp.random.standard_normal(camera.shape) >>> deconvolved = restoration.richardson_lucy(camera, psf, 5) References ---------- .. [1] https://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution """ # TODO: use cupyx.scipy.signal once upstream fftconvolve and # choose_conv_method for > 1d has been implemented. from cucim.skimage import _vendored as signal float_type = _supported_float_type(image.dtype) image = image.astype(float_type, copy=False) psf = psf.astype(float_type, copy=False) im_deconv = cp.full(image.shape, 0.5, dtype=float_type) psf_mirror = cp.ascontiguousarray(psf[::-1, ::-1]) # Small regularization parameter used to avoid 0 divisions eps = 1e-12 for _ in range(num_iter): conv = signal.convolve(im_deconv, psf, mode="same") + eps if filter_epsilon: relative_blur = cp.where(conv < filter_epsilon, 0, image / conv) else: relative_blur = image / conv im_deconv *= signal.convolve(relative_blur, psf_mirror, mode="same") if clip: im_deconv[im_deconv > 1] = 1 im_deconv[im_deconv < -1] = -1 return im_deconv
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/restoration/_denoise.py
import functools import cupy as cp from cucim.skimage.util import img_as_float from .._shared import utils from .._shared.utils import _supported_float_type def _denoise_tv_chambolle_nd(image, weight=0.1, eps=2.0e-4, max_num_iter=200): """Perform total-variation denoising on n-dimensional images. Parameters ---------- image : ndarray n-D input data to be denoised. weight : float, optional Denoising weight. The greater `weight`, the more denoising (at the expense of fidelity to `input`). eps : float, optional Relative difference of the value of the cost function that determines the stop criterion. The algorithm stops when: (E_(n-1) - E_n) < eps * E_0 max_num_iter : int, optional Maximal number of iterations used for the optimization. Returns ------- out : ndarray Denoised array of floats. Notes ----- Rudin, Osher and Fatemi algorithm. """ ndim = image.ndim p = cp.zeros((image.ndim,) + image.shape, dtype=image.dtype) g = cp.zeros_like(p) d = cp.zeros_like(image) i = 0 slices_g = [slice(None)] * (ndim + 1) slices_d = [slice(None)] * ndim slices_p = [slice(None)] * (ndim + 1) while i < max_num_iter: if i > 0: # d will be the (negative) divergence of p d = -p.sum(0) for ax in range(ndim): slices_d[ax] = slice(1, None) slices_p[ax + 1] = slice(0, -1) slices_p[0] = ax d[tuple(slices_d)] += p[tuple(slices_p)] slices_d[ax] = slice(None) slices_p[ax + 1] = slice(None) out = image + d E = (d * d).sum() else: out = image E = 0.0 # g stores the gradients of out along each axis # e.g. g[0] is the first order finite difference along axis 0 for ax in range(ndim): slices_g[ax + 1] = slice(0, -1) slices_g[0] = ax g[tuple(slices_g)] = cp.diff(out, axis=ax) slices_g[ax + 1] = slice(None) norm = (g * g).sum(axis=0, keepdims=True) cp.sqrt(norm, out=norm) E += weight * norm.sum() tau = 1.0 / (2.0 * ndim) norm *= tau / weight norm += 1.0 p -= tau * g p /= norm E /= float(image.size) if i == 0: E_init = E E_previous = E else: if abs(E_previous - E) < eps * E_init: break else: E_previous = E i += 1 return out @utils.deprecate_kwarg( {"n_iter_max": "max_num_iter"}, removed_version="23.02.00", deprecated_version="22.06.00", ) def denoise_tv_chambolle( image, weight=0.1, eps=2.0e-4, max_num_iter=200, *, channel_axis=None ): r"""Perform total variation denoising in nD. Given :math:`f`, a noisy image (input data), total variation denoising (also known as total variation regularization) aims to find an image :math:`u` with less total variation than :math:`f`, under the constraint that :math:`u` remain similar to :math:`f`. This can be expressed by the Rudin--Osher--Fatemi (ROF) minimization problem: .. math:: \min_{u} \sum_{i=0}^{N-1} \left( \left| \nabla{u_i} \right| + \frac{\lambda}{2}(f_i - u_i)^2 \right) where :math:`\lambda` is a positive parameter. The first term of this cost function is the total variation; the second term represents data fidelity. As :math:`\lambda \to 0`, the total variation term dominates, forcing the solution to have smaller total variation, at the expense of looking less like the input data. This code is an implementation of the algorithm proposed by Chambolle in [1]_ to solve the ROF problem. Parameters ---------- image : ndarray Input image to be denoised. If its dtype is not float, it gets converted with :func:`~.img_as_float`. weight : float, optional Denoising weight. It is equal to :math:`\frac{1}{\lambda}`. Therefore, the greater the `weight`, the more denoising (at the expense of fidelity to `image`). eps : float, optional Tolerance :math:`\varepsilon > 0` for the stop criterion (compares to absolute value of relative difference of the cost function :math:`E`): The algorithm stops when :math:`|E_{n-1} - E_n| < \varepsilon * E_0`. max_num_iter : int, optional Maximal number of iterations used for the optimization. channel_axis : int or None, optional If ``None``, the image is assumed to be grayscale (single-channel). Otherwise, this parameter indicates which axis of the array corresponds to channels. .. versionadded:: 0.19 ``channel_axis`` was added in 0.19. Returns ------- u : ndarray Denoised image. Notes ----- Make sure to set the `channel_axis` parameter appropriately for color images. The principle of total variation denoising is explained in [2]_. It is about minimizing the total variation of an image, which can be roughly described as the integral of the norm of the image gradient. Total variation denoising tends to produce cartoon-like images, that is, piecewise-constant images. See Also -------- denoise_tv_bregman : Perform total variation denoising using split-Bregman optimization. References ---------- .. [1] A. Chambolle, An algorithm for total variation minimization and applications, Journal of Mathematical Imaging and Vision, Springer, 2004, 20, 89-97. .. [2] https://en.wikipedia.org/wiki/Total_variation_denoising Examples -------- 2D example on astronaut image: >>> import cupy as cp >>> from cucim.skimage import color >>> from skimage import data >>> img = color.rgb2gray(cp.array(data.astronaut()[:50, :50])) >>> img += 0.5 * img.std() * cp.random.randn(*img.shape) >>> denoised_img = denoise_tv_chambolle(img, weight=60) 3D example on synthetic data: >>> x, y, z = cp.ogrid[0:20, 0:20, 0:20] >>> mask = (x - 22)**2 + (y - 20)**2 + (z - 17)**2 < 8**2 >>> mask = mask.astype(float) >>> mask += 0.2*cp.random.randn(*mask.shape) >>> res = denoise_tv_chambolle(mask, weight=100) """ # noqa im_type = image.dtype if not im_type.kind == "f": image = img_as_float(image) # enforce float16->float32 and float128->float64 float_dtype = _supported_float_type(image.dtype) image = image.astype(float_dtype, copy=False) if channel_axis is not None: channel_axis = channel_axis % image.ndim _at = functools.partial(utils.slice_at_axis, axis=channel_axis) out = cp.zeros_like(image) for c in range(image.shape[channel_axis]): out[_at(c)] = _denoise_tv_chambolle_nd( image[_at(c)], weight, eps, max_num_iter ) else: out = _denoise_tv_chambolle_nd(image, weight, eps, max_num_iter) return out
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/restoration/__init__.py
from ._denoise import denoise_tv_chambolle from .deconvolution import richardson_lucy, unsupervised_wiener, wiener from .j_invariant import calibrate_denoiser, denoise_invariant __all__ = [ "wiener", "unsupervised_wiener", "richardson_lucy", "denoise_tv_chambolle", "calibrate_denoiser", "denoise_invariant", ]
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/restoration/j_invariant.py
import functools import itertools import cupy as cp import numpy as np import cucim.skimage._vendored.ndimage as ndi from .._shared.utils import _supported_float_type from ..metrics import mean_squared_error from ..util import img_as_float def _interpolate_image(image, *, multichannel=False): """Replacing each pixel in ``image`` with the average of its neighbors. Parameters ---------- image : ndarray Input data to be interpolated. multichannel : bool, optional Whether the last axis of the image is to be interpreted as multiple channels or another spatial dimension. Returns ------- interp : ndarray Interpolated version of `image`. """ spatialdims = image.ndim if not multichannel else image.ndim - 1 conv_filter = ndi.generate_binary_structure(spatialdims, 1).astype( image.dtype ) conv_filter.ravel()[conv_filter.size // 2] = 0 conv_filter /= conv_filter.sum() # CuPy Backend: refactored below to avoid for loop if multichannel: conv_filter = conv_filter[..., np.newaxis] interp = ndi.convolve(image, conv_filter, mode="mirror") return interp def _generate_grid_slice(shape, *, offset, stride=3): """Generate slices of uniformly-spaced points in an array. Parameters ---------- shape : tuple of int Shape of the mask. offset : int The offset of the grid of ones. Iterating over ``offset`` will cover the entire array. It should be between 0 and ``stride ** ndim``, not inclusive, where ``ndim = len(shape)``. stride : int, optional The spacing between ones, used in each dimension. Returns ------- mask : ndarray The mask. Examples -------- >>> shape = (4, 4) >>> array = cp.zeros(shape, dtype=int) >>> grid_slice = _generate_grid_slice(shape, offset=0, stride=2) >>> array[grid_slice] = 1 >>> print(array) [[1 0 1 0] [0 0 0 0] [1 0 1 0] [0 0 0 0]] Changing the offset moves the location of the 1s: >>> array = cp.zeros(shape, dtype=int) >>> grid_slice = _generate_grid_slice(shape, offset=3, stride=2) >>> array[grid_slice] = 1 >>> print(array) [[0 0 0 0] [0 1 0 1] [0 0 0 0] [0 1 0 1]] """ phases = np.unravel_index(offset, (stride,) * len(shape)) mask = tuple(slice(p, None, stride) for p in phases) return mask def denoise_invariant( image, denoise_function, *, stride=4, masks=None, denoiser_kwargs=None ): """Apply a J-invariant version of `denoise_function`. Parameters ---------- image : ndarray ([M[, N[, ...P]][, C]) of ints, uints or floats Input data to be denoised. `image` can be of any numeric type, but it is cast into a ndarray of floats (using `img_as_float`) for the computation of the denoised image. denoise_function : function Original denoising function. stride : int, optional Stride used in masking procedure that converts `denoise_function` to J-invariance. masks : list of ndarray, optional Set of masks to use for computing J-invariant output. If `None`, a full set of masks covering the image will be used. denoiser_kwargs: Keyword arguments passed to `denoise_function`. Returns ------- output : ndarray Denoised image, of same shape as `image`. Notes ----- A denoising function is J-invariant if the prediction it makes for each pixel does not depend on the value of that pixel in the original image. The prediction for each pixel may instead use all the relevant information contained in the rest of the image, which is typically quite significant. Any function can be converted into a J-invariant one using a simple masking procedure, as described in [1]. The pixel-wise error of a J-invariant denoiser is uncorrelated to the noise, so long as the noise in each pixel is independent. Consequently, the average difference between the denoised image and the oisy image, the *self-supervised loss*, is the same as the difference between the denoised image and the original clean image, the *ground-truth loss* (up to a constant). This means that the best J-invariant denoiser for a given image can be found using the noisy data alone, by selecting the denoiser minimizing the self- supervised loss. References ---------- .. [1] J. Batson & L. Royer. Noise2Self: Blind Denoising by Self-Supervision, International Conference on Machine Learning, p. 524-533 (2019). """ image = img_as_float(image) # promote float16->float32 if needed float_dtype = _supported_float_type(image.dtype) image = image.astype(float_dtype, copy=False) if denoiser_kwargs is None: denoiser_kwargs = {} if "multichannel" in denoiser_kwargs: multichannel = denoiser_kwargs["multichannel"] else: multichannel = denoiser_kwargs.get("channel_axis", None) is not None interp = _interpolate_image(image, multichannel=multichannel) output = cp.zeros_like(image) if masks is None: spatialdims = image.ndim if not multichannel else image.ndim - 1 n_masks = stride**spatialdims masks = ( _generate_grid_slice( image.shape[:spatialdims], offset=idx, stride=stride ) for idx in range(n_masks) ) for mask in masks: input_image = image.copy() input_image[mask] = interp[mask] output[mask] = denoise_function(input_image, **denoiser_kwargs)[mask] return output def _product_from_dict(dictionary): """Utility function to convert parameter ranges to parameter combinations. Converts a dict of lists into a list of dicts whose values consist of the cartesian product of the values in the original dict. Parameters ---------- dictionary : dict of lists Dictionary of lists to be multiplied. Yields ------ selections : dicts of values Dicts containing individual combinations of the values in the input dict. """ keys = dictionary.keys() for element in itertools.product(*dictionary.values()): yield dict(zip(keys, element)) def calibrate_denoiser( image, denoise_function, denoise_parameters, *, stride=4, approximate_loss=True, extra_output=False, ): """Calibrate a denoising function and return optimal J-invariant version. The returned function is partially evaluated with optimal parameter values set for denoising the input image. Parameters ---------- image : ndarray Input data to be denoised (converted using `img_as_float`). denoise_function : function Denoising function to be calibrated. denoise_parameters : dict of list Ranges of parameters for `denoise_function` to be calibrated over. stride : int, optional Stride used in masking procedure that converts `denoise_function` to J-invariance. approximate_loss : bool, optional Whether to approximate the self-supervised loss used to evaluate the denoiser by only computing it on one masked version of the image. If False, the runtime will be a factor of `stride**image.ndim` longer. extra_output : bool, optional If True, return parameters and losses in addition to the calibrated denoising function Returns ------- best_denoise_function : function The optimal J-invariant version of `denoise_function`. If `extra_output` is True, the following tuple is also returned: (parameters_tested, losses) : tuple (list of dict, list of int) List of parameters tested for `denoise_function`, as a dictionary of kwargs Self-supervised loss for each set of parameters in `parameters_tested`. Notes ----- The calibration procedure uses a self-supervised mean-square-error loss to evaluate the performance of J-invariant versions of `denoise_function`. The minimizer of the self-supervised loss is also the minimizer of the ground-truth loss (i.e., the true MSE error) [1]. The returned function can be used on the original noisy image, or other images with similar characteristics. Increasing the stride increases the performance of `best_denoise_function` at the expense of increasing its runtime. It has no effect on the runtime of the calibration. References ---------- .. [1] J. Batson & L. Royer. Noise2Self: Blind Denoising by Self-Supervision, International Conference on Machine Learning, p. 524-533 (2019). Examples -------- >>> import cupy as cp >>> from cucim.skimage import color >>> from skimage import data >>> from cucim.skimage.restoration import (denoise_tv_chambolle, ... calibrate_denoiser) >>> img = color.rgb2gray(cp.array(data.astronaut()[:50, :50])) >>> noisy = img + 0.5 * img.std() * cp.random.randn(*img.shape) >>> parameters = {'weight': cp.arange(0.01, 0.5, 0.05)} >>> denoising_function = calibrate_denoiser(noisy, denoise_tv_chambolle, ... denoise_parameters=parameters) >>> denoised_img = denoising_function(img) """ # noqa parameters_tested, losses = _calibrate_denoiser_search( image, denoise_function, denoise_parameters=denoise_parameters, stride=stride, approximate_loss=approximate_loss, ) idx = np.argmin(losses) best_parameters = parameters_tested[idx] best_denoise_function = functools.partial( denoise_invariant, denoise_function=denoise_function, stride=stride, denoiser_kwargs=best_parameters, ) if extra_output: return best_denoise_function, (parameters_tested, losses) else: return best_denoise_function def _calibrate_denoiser_search( image, denoise_function, denoise_parameters, *, stride=4, approximate_loss=True, ): """Return a parameter search history with losses for a denoise function. Parameters ---------- image : ndarray Input data to be denoised (converted using `img_as_float`). denoise_function : function Denoising function to be calibrated. denoise_parameters : dict of list Ranges of parameters for `denoise_function` to be calibrated over. stride : int, optional Stride used in masking procedure that converts `denoise_function` to J-invariance. approximate_loss : bool, optional Whether to approximate the self-supervised loss used to evaluate the denoiser by only computing it on one masked version of the image. If False, the runtime will be a factor of `stride**image.ndim` longer. Returns ------- parameters_tested : list of dict List of parameters tested for `denoise_function`, as a dictionary of kwargs. losses : list of int Self-supervised loss for each set of parameters in `parameters_tested`. """ image = img_as_float(image) parameters_tested = list(_product_from_dict(denoise_parameters)) losses = [] for denoiser_kwargs in parameters_tested: if "multichannel" in denoiser_kwargs: multichannel = denoiser_kwargs["multichannel"] else: multichannel = denoiser_kwargs.get("channel_axis", None) is not None if not approximate_loss: denoised = denoise_invariant( image, denoise_function, stride=stride, denoiser_kwargs=denoiser_kwargs, ) loss = mean_squared_error(image, denoised) else: spatialdims = image.ndim if not multichannel else image.ndim - 1 n_masks = stride**spatialdims mask = _generate_grid_slice( image.shape[:spatialdims], offset=n_masks // 2, stride=stride ) masked_denoised = denoise_invariant( image, denoise_function, masks=[mask], denoiser_kwargs=denoiser_kwargs, ) loss = mean_squared_error(image[mask], masked_denoised[mask]) losses.append(float(loss)) return parameters_tested, losses
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/restoration/uft.py
r"""Function of unitary fourier transform (uft) and utilities This module implements the unitary fourier transform, also known as the ortho-normal transform. It is especially useful for convolution [1], as it respects the Parseval equality. The value of the null frequency is equal to .. math:: \frac{1}{\sqrt{n}} \sum_i x_i so the Fourier transform has the same energy as the original image (see ``image_quad_norm`` function). The transform is applied from the last axis for performance (assuming a C-order array input). References ---------- .. [1] B. R. Hunt "A matrix theory proof of the discrete convolution theorem", IEEE Trans. on Audio and Electroacoustics, vol. au-19, no. 4, pp. 285-288, dec. 1971 """ import math import cupy as cp import cupyx.scipy.fft as fft import numpy as np from .._shared.utils import _supported_float_type def ufftn(inarray, dim=None): """N-dimensional unitary Fourier transform. Parameters ---------- inarray : ndarray The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. Returns ------- outarray : ndarray (same shape than inarray) The unitary N-D Fourier transform of ``inarray``. Examples -------- >>> import cupy as cp >>> input = cp.ones((3, 3, 3)) >>> output = ufftn(input) >>> cp.allclose(cp.sum(input) / cp.sqrt(input.size), output[0, 0, 0]) array(True) >>> output.shape (3, 3, 3) """ if dim is None: dim = inarray.ndim outarray = fft.fftn(inarray, axes=range(-dim, 0), norm="ortho") return outarray def uifftn(inarray, dim=None): """N-dimensional unitary inverse Fourier transform. Parameters ---------- inarray : ndarray The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. Returns ------- outarray : ndarray (same shape than inarray) The unitary inverse N-D Fourier transform of ``inarray``. Examples -------- >>> import cupy as cp >>> input = cp.ones((3, 3, 3)) >>> output = uifftn(input) >>> cp.allclose(cp.sum(input) / cp.sqrt(input.size), output[0, 0, 0]) array(True) >>> output.shape (3, 3, 3) """ if dim is None: dim = inarray.ndim outarray = fft.ifftn(inarray, axes=range(-dim, 0), norm="ortho") return outarray def urfftn(inarray, dim=None): """N-dimensional real unitary Fourier transform. This transform considers the Hermitian property of the transform on real-valued input. Parameters ---------- inarray : ndarray, shape (M, N, ..., P) The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. Returns ------- outarray : ndarray, shape (M, N, ..., P / 2 + 1) The unitary N-D real Fourier transform of ``inarray``. Notes ----- The ``urfft`` functions assume an input array of real values. Consequently, the output has a Hermitian property and redundant values are not computed or returned. Examples -------- >>> import cupy as cp >>> input = cp.ones((5, 5, 5)) >>> output = urfftn(input) >>> cp.allclose(cp.sum(input) / cp.sqrt(input.size), output[0, 0, 0]) array(True) >>> output.shape (5, 5, 3) """ if dim is None: dim = inarray.ndim outarray = fft.rfftn(inarray, axes=range(-dim, 0), norm="ortho") return outarray def uirfftn(inarray, dim=None, shape=None): """N-dimensional inverse real unitary Fourier transform. This transform considers the Hermitian property of the transform from complex to real input. Parameters ---------- inarray : ndarray The array to transform. dim : int, optional The last axis along which to compute the transform. All axes by default. shape : tuple of int, optional The shape of the output. The shape of ``rfft`` is ambiguous in case of odd-valued input shape. In this case, this parameter should be provided. See ``cupy.fft.irfftn``. Returns ------- outarray : ndarray The unitary N-D inverse real Fourier transform of ``inarray``. Notes ----- The ``uirfft`` function assumes that the output array is real-valued. Consequently, the input is assumed to have a Hermitian property and redundant values are implicit. Examples -------- >>> import cupy as cp >>> input = cp.ones((5, 5, 5)) >>> output = uirfftn(urfftn(input), shape=input.shape) >>> cp.allclose(input, output) array(True) >>> output.shape (5, 5, 5) """ if dim is None: dim = inarray.ndim outarray = fft.irfftn(inarray, shape, axes=range(-dim, 0), norm="ortho") return outarray def ufft2(inarray): """2-dimensional unitary Fourier transform. Compute the Fourier transform on the last 2 axes. Parameters ---------- inarray : ndarray The array to transform. Returns ------- outarray : ndarray (same shape as inarray) The unitary 2-D Fourier transform of ``inarray``. See Also -------- uifft2, ufftn, urfftn Examples -------- >>> import cupy as cp >>> input = cp.ones((10, 128, 128)) >>> output = ufft2(input) >>> cp.allclose(cp.sum(input[1, ...]) / cp.sqrt(input[1, ...].size), ... output[1, 0, 0]) array(True) >>> output.shape (10, 128, 128) """ return ufftn(inarray, 2) def uifft2(inarray): """2-dimensional inverse unitary Fourier transform. Compute the inverse Fourier transform on the last 2 axes. Parameters ---------- inarray : ndarray The array to transform. Returns ------- outarray : ndarray (same shape as inarray) The unitary 2-D inverse Fourier transform of ``inarray``. See Also -------- uifft2, uifftn, uirfftn Examples -------- >>> import cupy as cp >>> input = cp.ones((10, 128, 128)) >>> output = uifft2(input) >>> cp.allclose(cp.sum(input[1, ...]) / cp.sqrt(input[1, ...].size), ... output[0, 0, 0]) array(True) >>> output.shape (10, 128, 128) """ return uifftn(inarray, 2) def urfft2(inarray): """2-dimensional real unitary Fourier transform Compute the real Fourier transform on the last 2 axes. This transform considers the Hermitian property of the transform from complex to real-valued input. Parameters ---------- inarray : ndarray, shape (M, N, ..., P) The array to transform. Returns ------- outarray : ndarray, shape (M, N, ..., 2 * (P - 1)) The unitary 2-D real Fourier transform of ``inarray``. See Also -------- ufft2, ufftn, urfftn Examples -------- >>> import cupy as cp >>> input = cp.ones((10, 128, 128)) >>> output = urfft2(input) >>> cp.allclose(cp.sum(input[1,...]) / cp.sqrt(input[1,...].size), ... output[1, 0, 0]) array(True) >>> output.shape (10, 128, 65) """ return urfftn(inarray, 2) def uirfft2(inarray, shape=None): """2-dimensional inverse real unitary Fourier transform. Compute the real inverse Fourier transform on the last 2 axes. This transform considers the Hermitian property of the transform from complex to real-valued input. Parameters ---------- inarray : ndarray, shape (M, N, ..., P) The array to transform. shape : tuple of int, optional The shape of the output. The shape of ``rfft`` is ambiguous in case of odd-valued input shape. In this case, this parameter should be provided. See ``cupy.fft.irfftn``. Returns ------- outarray : ndarray, shape (M, N, ..., 2 * (P - 1)) The unitary 2-D inverse real Fourier transform of ``inarray``. See Also -------- urfft2, uifftn, uirfftn Examples -------- >>> import cupy as cp >>> input = cp.ones((10, 128, 128)) >>> output = uirfftn(urfftn(input), shape=input.shape) >>> cp.allclose(input, output) array(True) >>> output.shape (10, 128, 128) """ return uirfftn(inarray, 2, shape=shape) def image_quad_norm(inarray): """Return the quadratic norm of images in Fourier space. This function detects whether the input image satisfies the Hermitian property. Parameters ---------- inarray : ndarray Input image. The image data should reside in the final two axes. Returns ------- norm : float The quadratic norm of ``inarray``. Examples -------- >>> import cupy as cp >>> input = cp.ones((5, 5)) >>> image_quad_norm(ufft2(input)) == cp.sum(cp.abs(input)**2) array(True) >>> image_quad_norm(ufft2(input)) == image_quad_norm(urfft2(input)) array(True) """ # If there is a Hermitian symmetry abs_sq = cp.abs(inarray) abs_sq *= abs_sq if inarray.shape[-1] != inarray.shape[-2]: return 2 * cp.sum(cp.sum(abs_sq, axis=-1), axis=-1) - cp.sum( cp.abs(inarray[..., 0]) ** 2, axis=-1 ) else: return cp.sum(cp.sum(abs_sq, axis=-1), axis=-1) def ir2tf(imp_resp, shape, dim=None, is_real=True): """Compute the transfer function of an impulse response (IR). This function makes the necessary correct zero-padding, zero convention, correct fft2, etc... to compute the transfer function of IR. To use with unitary Fourier transform for the signal (ufftn or equivalent). Parameters ---------- imp_resp : ndarray The impulse responses. shape : tuple of int A tuple of integer corresponding to the target shape of the transfer function. dim : int, optional The last axis along which to compute the transform. All axes by default. is_real : boolean, optional If True (default), imp_resp is supposed real and the Hermitian property is used with rfftn Fourier transform. Returns ------- y : complex ndarray The transfer function of shape ``shape``. See Also -------- ufftn, uifftn, urfftn, uirfftn Examples -------- >>> import cupy as cp >>> cp.all(cp.array([[4, 0], [0, 0]]) == ir2tf(cp.ones((2, 2)), (2, 2))) array(True) >>> ir2tf(cp.ones((2, 2)), (512, 512)).shape == (512, 257) True >>> ir2tf(cp.ones((2, 2)), (512, 512), is_real=False).shape == (512, 512) True Notes ----- The input array can be composed of multiple-dimensional IR with an arbitrary number of IR. The individual IR must be accessed through the first axes. The last ``dim`` axes contain the space definition. """ if not dim: dim = imp_resp.ndim # Zero padding and fill irpadded_dtype = _supported_float_type(imp_resp.dtype) irpadded = cp.zeros(shape, dtype=irpadded_dtype) irpadded[tuple([slice(0, s) for s in imp_resp.shape])] = imp_resp # Roll for zero convention of the fft to avoid the phase # problem. Work with odd and even size. for axis, axis_size in enumerate(imp_resp.shape): if axis >= imp_resp.ndim - dim: irpadded = cp.roll( irpadded, shift=-math.floor(axis_size / 2), axis=axis ) func = fft.rfftn if is_real else fft.fftn out = func(irpadded, axes=(range(-dim, 0))) return out def laplacian(ndim, shape, is_real=True, *, dtype=None): """Return the transfer function of the Laplacian. Laplacian is the second order difference, on row and column. Parameters ---------- ndim : int The dimension of the Laplacian. shape : tuple The support on which to compute the transfer function. is_real : boolean, optional If True (default), imp_resp is assumed to be real-valued and the Hermitian property is used with rfftn Fourier transform to return the transfer function. Returns ------- tf : array_like, complex The transfer function. impr : array_like, real The Laplacian. Examples -------- >>> import cupy as cp >>> tf, ir = laplacian(2, (32, 32)) >>> cp.all(ir == cp.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]])) array(True) >>> cp.all(tf == ir2tf(ir, (32, 32))) array(True) """ if dtype is None: dtype = cp.float64 if is_real else cp.complex128 elif np.dtype(dtype).kind != "f": raise ValueError("dtype must be a floating point dtype") # CuPy Backend: assemble the small kernel on the host and then transfer it impr = np.zeros([3] * ndim) for dim in range(ndim): idx = tuple( [slice(1, 2)] * dim + [slice(None)] + [slice(1, 2)] * (ndim - dim - 1) ) impr[idx] = np.array([-1.0, 0.0, -1.0]).reshape( [-1 if i == dim else 1 for i in range(ndim)] ) impr[(slice(1, 2),) * ndim] = 2.0 * ndim impr = cp.array(impr, dtype=dtype) if shape is None: # filters.laplace only uses the spatial kernel return impr return ir2tf(impr, shape, is_real=is_real), impr
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/restoration
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/restoration/tests/test_denoise.py
import functools import cupy as cp import numpy as np import pytest from cupy.testing import assert_array_equal from skimage import color, data, img_as_float from cucim.skimage import restoration from cucim.skimage._shared.utils import _supported_float_type, slice_at_axis from cucim.skimage.metrics import structural_similarity cp.random.seed(1234) astro = img_as_float(data.astronaut()[:128, :128]) astro_gray = color.rgb2gray(astro) checkerboard_gray = img_as_float(data.checkerboard()) checkerboard = color.gray2rgb(checkerboard_gray) # versions with one odd-sized dimension astro_gray_odd = astro_gray[:, :-1] astro_odd = astro[:, :-1] # transfer test images to the GPU astro = cp.asarray(astro) astro_gray = cp.asarray(astro_gray) astro_gray_odd = cp.asarray(astro_gray_odd) astro_odd = cp.asarray(astro_odd) checkerboard = cp.asarray(checkerboard) checkerboard_gray = cp.asarray(checkerboard_gray) float_dtypes = [cp.float16, cp.float32, cp.float64] try: float_dtypes += [cp.float128] except AttributeError: pass @pytest.mark.parametrize("dtype", float_dtypes) def test_denoise_tv_chambolle_2d(dtype): # astronaut image img = astro_gray.astype(dtype, copy=True) # add noise to astronaut img += 0.5 * img.std() * cp.random.rand(*img.shape) # clip noise so that it does not exceed allowed range for float images. img = cp.clip(img, 0, 1) # denoise denoised_astro = restoration.denoise_tv_chambolle(img, weight=0.1) assert denoised_astro.dtype == _supported_float_type(img.dtype) # TODO: remove device to host transfers if cuda # morphological_gradient is implemented from scipy import ndimage as ndi # noqa # Convert to a floating point type supported by scipy.ndimage float_dtype = _supported_float_type(img.dtype) img = img.astype(float_dtype, copy=False) grad = ndi.morphological_gradient(cp.asnumpy(img), size=((3, 3))) grad_denoised = ndi.morphological_gradient( cp.asnumpy(denoised_astro), size=((3, 3)) ) # test if the total variation has decreased assert grad_denoised.dtype == float_dtype assert np.sqrt((grad_denoised**2).sum()) < np.sqrt((grad**2).sum()) @pytest.mark.parametrize("channel_axis", [0, 1, 2, -1]) def test_denoise_tv_chambolle_multichannel(channel_axis): denoised0 = restoration.denoise_tv_chambolle(astro[..., 0], weight=0.1) img = cp.moveaxis(astro, -1, channel_axis) denoised = restoration.denoise_tv_chambolle( img, weight=0.1, channel_axis=channel_axis ) _at = functools.partial(slice_at_axis, axis=channel_axis % img.ndim) assert_array_equal(denoised[_at(0)], denoised0) # tile astronaut subset to generate 3D+channels data astro3 = cp.tile(astro[:64, :64, cp.newaxis, :], [1, 1, 2, 1]) # modify along tiled dimension to give non-zero gradient on 3rd axis astro3[:, :, 0, :] = 2 * astro3[:, :, 0, :] denoised0 = restoration.denoise_tv_chambolle(astro3[..., 0], weight=0.1) astro3 = cp.moveaxis(astro3, -1, channel_axis) denoised = restoration.denoise_tv_chambolle( astro3, weight=0.1, channel_axis=channel_axis ) _at = functools.partial(slice_at_axis, axis=channel_axis % astro3.ndim) assert_array_equal(denoised[_at(0)], denoised0) def test_denoise_tv_chambolle_float_result_range(): # astronaut image img = astro_gray int_astro = cp.multiply(img, 255).astype(np.uint8) assert cp.max(int_astro) > 1 denoised_int_astro = restoration.denoise_tv_chambolle(int_astro, weight=0.1) # test if the value range of output float data is within [0.0:1.0] assert denoised_int_astro.dtype == _supported_float_type(int_astro.dtype) assert cp.max(denoised_int_astro) <= 1.0 assert cp.min(denoised_int_astro) >= 0.0 def test_denoise_tv_chambolle_3d(): """Apply the TV denoising algorithm on a 3D image representing a sphere.""" x, y, z = cp.ogrid[0:40, 0:40, 0:40] mask = (x - 22) ** 2 + (y - 20) ** 2 + (z - 17) ** 2 < 8**2 mask = 100 * mask.astype(float) mask += 60 mask += 20 * cp.random.rand(*mask.shape) mask[mask < 0] = 0 mask[mask > 255] = 255 mask = mask.astype(np.uint8) res = restoration.denoise_tv_chambolle(mask, weight=0.1) assert res.dtype == _supported_float_type(mask.dtype) assert res.std() * 255 < mask.std() def test_denoise_tv_chambolle_1d(): """Apply the TV denoising algorithm on a 1D sinusoid.""" x = 125 + 100 * cp.sin(cp.linspace(0, 8 * cp.pi, 1000)) x += 20 * cp.random.rand(x.size) x = cp.clip(x, 0, 255) x = x.astype(np.uint8) res = restoration.denoise_tv_chambolle(x, weight=0.1) assert res.dtype == _supported_float_type(x.dtype) assert res.std() * 255 < x.std() def test_denoise_tv_chambolle_4d(): """TV denoising for a 4D input.""" im = 255 * cp.random.rand(8, 8, 8, 8) im = im.astype(np.uint8) res = restoration.denoise_tv_chambolle(im, weight=0.1) assert res.dtype == _supported_float_type(im.dtype) assert res.std() * 255 < im.std() def test_denoise_tv_chambolle_weighting(): # make sure a specified weight gives consistent results regardless of # the number of input image dimensions rstate = cp.random.RandomState(1234) img2d = astro_gray.copy() img2d += 0.15 * rstate.standard_normal(img2d.shape) img2d = cp.clip(img2d, 0, 1) # generate 4D image by tiling img4d = cp.tile(img2d[..., None, None], (1, 1, 2, 2)) w = 0.2 denoised_2d = restoration.denoise_tv_chambolle(img2d, weight=w) denoised_4d = restoration.denoise_tv_chambolle(img4d, weight=w) assert ( structural_similarity( denoised_2d, denoised_4d[:, :, 0, 0], data_range=1.0 ) > 0.98 )
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/restoration
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/restoration/tests/test_j_invariant.py
import cupy as cp import numpy as np import pytest from skimage.data import camera, chelsea # from cucim.skimage.restoration import denoise_wavelet from skimage.restoration import denoise_wavelet from cucim.skimage._shared.utils import _supported_float_type from cucim.skimage.data import binary_blobs from cucim.skimage.metrics import mean_squared_error as mse from cucim.skimage.restoration import calibrate_denoiser, denoise_tv_chambolle from cucim.skimage.restoration.j_invariant import denoise_invariant from cucim.skimage.util import img_as_float, random_noise test_img = img_as_float(cp.asarray(camera())) test_img_color = img_as_float(cp.asarray(chelsea())) test_img_3d = img_as_float(binary_blobs(64, n_dim=3)) / 2 noisy_img = random_noise(test_img, mode="gaussian", var=0.01) noisy_img_color = random_noise(test_img_color, mode="gaussian", var=0.01) noisy_img_3d = random_noise(test_img_3d, mode="gaussian", var=0.1) # TODO: replace with CuPy version once completed def _denoise_wavelet(image, rescale_sigma=True, **kwargs): return cp.asarray( denoise_wavelet( cp.asnumpy(image), rescale_sigma=rescale_sigma, **kwargs ) ) def test_denoise_invariant(): # denoised_img = denoise_invariant(noisy_img, _denoise_wavelet) denoised_img = denoise_invariant(noisy_img, denoise_tv_chambolle) denoised_mse = mse(denoised_img, test_img) original_mse = mse(noisy_img, test_img) assert denoised_mse < original_mse @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_denoise_invariant_color(dtype): denoised_img_color = denoise_invariant( noisy_img_color.astype(dtype), _denoise_wavelet, denoiser_kwargs=dict(channel_axis=-1), ) denoised_mse = mse(denoised_img_color, test_img_color) original_mse = mse(noisy_img_color, test_img_color) assert denoised_mse < original_mse assert denoised_img_color.dtype == _supported_float_type(dtype) def test_denoise_invariant_3d(): denoised_img_3d = denoise_invariant(noisy_img_3d, _denoise_wavelet) denoised_mse = mse(denoised_img_3d, test_img_3d) original_mse = mse(noisy_img_3d, test_img_3d) assert denoised_mse < original_mse def test_calibrate_denoiser_extra_output(): parameter_ranges = {"sigma": np.linspace(0.1, 1, 5) / 2} _, (parameters_tested, losses) = calibrate_denoiser( noisy_img, _denoise_wavelet, denoise_parameters=parameter_ranges, extra_output=True, ) all_denoised = [ denoise_invariant( noisy_img, _denoise_wavelet, denoiser_kwargs=denoiser_kwargs ) for denoiser_kwargs in parameters_tested ] ground_truth_losses = [float(mse(img, test_img)) for img in all_denoised] assert np.argmin(losses) == np.argmin(ground_truth_losses) def test_calibrate_denoiser(): parameter_ranges = {"sigma": np.linspace(0.1, 1, 5) / 2} denoiser = calibrate_denoiser( noisy_img, _denoise_wavelet, denoise_parameters=parameter_ranges ) denoised_mse = mse(denoiser(noisy_img), test_img) original_mse = mse(noisy_img, test_img) assert denoised_mse < original_mse def test_calibrate_denoiser_tv(): parameter_ranges = {"weight": np.linspace(0.01, 0.4, 10)} denoiser = calibrate_denoiser( noisy_img, denoise_tv_chambolle, denoise_parameters=parameter_ranges ) denoised_mse = mse(denoiser(noisy_img), test_img) original_mse = mse(noisy_img, test_img) assert denoised_mse < original_mse def test_input_image_not_modified(): input_image = noisy_img.copy() parameter_ranges = {"sigma": np.random.random(5) / 2} calibrate_denoiser( input_image, _denoise_wavelet, denoise_parameters=parameter_ranges ) assert cp.all(noisy_img == input_image)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/restoration
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/restoration/tests/test_restoration.py
import cupy as cp import numpy as np import pytest from cupyx.scipy import ndimage as ndi from scipy import signal from cucim.skimage import restoration from cucim.skimage._shared.testing import expected_warnings, fetch from cucim.skimage._shared.utils import _supported_float_type from cucim.skimage.color import rgb2gray from cucim.skimage.restoration import uft def camera(): import skimage import skimage.data return cp.asarray(skimage.img_as_float(skimage.data.camera())) def astronaut(): import skimage import skimage.data return cp.asarray(skimage.img_as_float(skimage.data.astronaut())) test_img = camera() def _get_rtol_atol(dtype): rtol = 1e-3 atol = 0 if dtype == np.float16: rtol = 1e-2 atol = 1e-3 elif dtype == np.float32: atol = 1e-5 return rtol, atol @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_wiener(dtype): psf = np.ones((5, 5), dtype=dtype) / 25 data = signal.convolve2d(cp.asnumpy(test_img), psf, "same") np.random.seed(0) data += 0.1 * data.std() * np.random.standard_normal(data.shape) psf = cp.asarray(psf, dtype=dtype) data = cp.asarray(data, dtype=dtype) deconvolved = restoration.wiener(data, psf, 0.05) assert deconvolved.dtype == _supported_float_type(dtype) rtol, atol = _get_rtol_atol(dtype) path = fetch("restoration/tests/camera_wiener.npy") cp.testing.assert_allclose(deconvolved, np.load(path), rtol=rtol, atol=atol) _, laplacian = uft.laplacian(2, data.shape) otf = uft.ir2tf(psf, data.shape, is_real=False) assert otf.real.dtype == _supported_float_type(dtype) deconvolved = restoration.wiener( data, otf, 0.05, reg=laplacian, is_real=False ) assert deconvolved.real.dtype == _supported_float_type(dtype) cp.testing.assert_allclose( cp.real(deconvolved), np.load(path), rtol=rtol, atol=atol ) @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_unsupervised_wiener(dtype): psf = np.ones((5, 5), dtype=dtype) / 25 data = signal.convolve2d(cp.asnumpy(test_img), psf, "same") seed = 16829302 # keep old-style RandomState here for compatibility with previously stored # reference data in camera_unsup.npy and camera_unsup2.npy rng = np.random.RandomState(seed) data += 0.1 * data.std() * rng.standard_normal(data.shape) psf = cp.asarray(psf, dtype=dtype) data = cp.asarray(data, dtype=dtype) deconvolved, _ = restoration.unsupervised_wiener(data, psf, rng=seed) float_type = _supported_float_type(dtype) assert deconvolved.dtype == float_type rtol, atol = _get_rtol_atol(dtype) # CuPy Backend: Cannot use the following comparison to scikit-image data # due to different random values generated by cp.random # within unsupervised_wiener. # Verified similar appearance qualitatively. # path = fetch("restoration/tests/camera_unsup.npy") # cp.testing.assert_allclose(deconvolved, np.load(path), rtol=1e-3) _, laplacian = uft.laplacian(2, data.shape) otf = uft.ir2tf(psf, data.shape, is_real=False) assert otf.real.dtype == float_type np.random.seed(0) deconvolved2 = restoration.unsupervised_wiener( # noqa data, otf, reg=laplacian, is_real=False, user_params={ "callback": lambda x: None, "max_num_iter": 200, "min_num_iter": 30, }, rng=seed, )[0] assert deconvolved2.real.dtype == float_type # CuPy Backend: Cannot use the following comparison to scikit-image data # due to different random values generated by cp.random # within unsupervised_wiener. # Verified similar appearance qualitatively. # path = fetch("restoration/tests/camera_unsup2.npy") # cp.testing.assert_allclose(cp.real(deconvolved), np.load(path), rtol=1e-3) def test_unsupervised_wiener_deprecated_user_param(): psf = np.ones((5, 5), dtype=float) / 25 data = signal.convolve2d(cp.asnumpy(test_img), psf, "same") data = cp.array(data) psf = cp.array(psf) otf = uft.ir2tf(psf, data.shape, is_real=False) _, laplacian = uft.laplacian(2, data.shape) with expected_warnings( [ "`max_iter` is a deprecated key", "`min_iter` is a deprecated key", "`random_state` is a deprecated argument name", ] ): restoration.unsupervised_wiener( data, otf, reg=laplacian, is_real=False, user_params={"max_iter": 200, "min_iter": 30}, random_state=5, ) with expected_warnings( [ "`seed` is a deprecated argument name", ] ): restoration.unsupervised_wiener( data, otf, reg=laplacian, is_real=False, seed=5, ) def test_image_shape(): """Test that shape of output image in deconvolution is same as input. This addresses issue #1172. """ point = cp.zeros((5, 5), float) point[2, 2] = 1.0 psf = ndi.gaussian_filter(point, sigma=1.0) # image shape: (45, 45), as reported in #1172 image = cp.asarray(test_img[65:165, 215:315]) # just the face image_conv = ndi.convolve(image, psf) deconv_sup = restoration.wiener(image_conv, psf, 1) deconv_un = restoration.unsupervised_wiener(image_conv, psf)[0] # test the shape assert image.shape == deconv_sup.shape assert image.shape == deconv_un.shape # test the reconstruction error sup_relative_error = cp.abs(deconv_sup - image) / image un_relative_error = cp.abs(deconv_un - image) / image cp.testing.assert_array_less(cp.median(sup_relative_error), 0.1) cp.testing.assert_array_less(cp.median(un_relative_error), 0.1) def test_richardson_lucy(): rstate = np.random.RandomState(0) psf = np.ones((5, 5)) / 25 data = signal.convolve2d(cp.asnumpy(test_img), psf, "same") np.random.seed(0) data += 0.1 * data.std() * rstate.standard_normal(data.shape) data = cp.asarray(data) psf = cp.asarray(psf) deconvolved = restoration.richardson_lucy(data, psf, 5) path = fetch("restoration/tests/camera_rl.npy") cp.testing.assert_allclose(deconvolved, np.load(path), rtol=1e-4) @pytest.mark.parametrize("dtype_image", [cp.float16, cp.float32, cp.float64]) @pytest.mark.parametrize("dtype_psf", [cp.float32, cp.float64]) def test_richardson_lucy_filtered(dtype_image, dtype_psf): if dtype_image == cp.float64: atol = 1e-8 else: atol = 1e-4 test_img_astro = rgb2gray(astronaut()) psf = cp.ones((5, 5), dtype=dtype_psf) / 25 data = cp.array( signal.convolve2d(cp.asnumpy(test_img_astro), cp.asnumpy(psf), "same"), dtype=dtype_image, ) deconvolved = restoration.richardson_lucy(data, psf, 5, filter_epsilon=1e-6) assert deconvolved.dtype == _supported_float_type(data.dtype) path = fetch("restoration/tests/astronaut_rl.npy") cp.testing.assert_allclose(deconvolved, np.load(path), rtol=1e-3, atol=atol)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/exposure/histogram_matching.py
import cupy as cp from .._shared import utils def _match_cumulative_cdf(source, template): """ Return modified source array so that the cumulative density function of its values matches the cumulative density function of the template. """ if source.dtype.kind == "u": src_lookup = source.reshape(-1) src_counts = cp.bincount(src_lookup) tmpl_counts = cp.bincount(template.reshape(-1)) # omit values where the count was 0 tmpl_values = cp.nonzero(tmpl_counts)[0] tmpl_counts = tmpl_counts[tmpl_values] else: src_values, src_lookup, src_counts = cp.unique( source.reshape(-1), return_inverse=True, return_counts=True ) tmpl_values, tmpl_counts = cp.unique( template.reshape(-1), return_counts=True ) # calculate normalized quantiles for each array src_quantiles = cp.cumsum(src_counts) / source.size tmpl_quantiles = cp.cumsum(tmpl_counts) / template.size interp_a_values = cp.interp(src_quantiles, tmpl_quantiles, tmpl_values) return interp_a_values[src_lookup].reshape(source.shape) @utils.channel_as_last_axis(channel_arg_positions=(0, 1)) def match_histograms(image, reference, *, channel_axis=None): """Adjust an image so that its cumulative histogram matches that of another. The adjustment is applied separately for each channel. Parameters ---------- image : ndarray Input image. Can be gray-scale or in color. reference : ndarray Image to match histogram of. Must have the same number of channels as image. channel_axis : int or None, optional If None, the image is assumed to be a grayscale (single channel) image. Otherwise, this parameter indicates which axis of the array corresponds to channels. Returns ------- matched : ndarray Transformed input image. Raises ------ ValueError Thrown when the number of channels in the input image and the reference differ. References ---------- .. [1] http://paulbourke.net/miscellaneous/equalisation/ """ if image.ndim != reference.ndim: raise ValueError( "Image and reference must have the same number " "of channels." ) if channel_axis is not None: if image.shape[channel_axis] != reference.shape[channel_axis]: raise ValueError( "Number of channels in the input image and " "reference image must match!" ) matched = cp.empty(image.shape, dtype=image.dtype) for channel in range(image.shape[-1]): matched_channel = _match_cumulative_cdf( image[..., channel], reference[..., channel] ) matched[..., channel] = matched_channel else: matched = _match_cumulative_cdf(image, reference) if matched.dtype.kind == "f": # output a float32 result when the input is float16 or float32 out_dtype = utils._supported_float_type(image.dtype) matched = matched.astype(out_dtype, copy=False) return matched
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/exposure/_adapthist.py
""" Adapted code from "Contrast Limited Adaptive Histogram Equalization" by Karel Zuiderveld <[email protected]>, Graphics Gems IV, Academic Press, 1994. http://tog.acm.org/resources/GraphicsGems/ Relicensed with permission of the author under the Modified BSD license. """ import functools import itertools import math import numbers import operator import cupy as cp import numpy as np # TODO: replace _misc.prod with math.prod once minimum Python >= 3.88 from cucim import _misc from cucim.skimage.exposure.exposure import rescale_intensity from .._shared.utils import _supported_float_type from .._vendored import pad from ..color.adapt_rgb import adapt_rgb, hsv_value from ..util import img_as_uint NR_OF_GRAY = 2**14 # number of grayscale levels to use in CLAHE algorithm @adapt_rgb(hsv_value) def equalize_adapthist(image, kernel_size=None, clip_limit=0.01, nbins=256): """Contrast Limited Adaptive Histogram Equalization (CLAHE). An algorithm for local contrast enhancement, that uses histograms computed over different tile regions of the image. Local details can therefore be enhanced even in regions that are darker or lighter than most of the image. Parameters ---------- image : (N1, ...,NN[, C]) ndarray Input image. kernel_size : int or array_like, optional Defines the shape of contextual regions used in the algorithm. If iterable is passed, it must have the same number of elements as ``image.ndim`` (without color channel). If integer, it is broadcasted to each `image` dimension. By default, ``kernel_size`` is 1/8 of ``image`` height by 1/8 of its width. clip_limit : float, optional Clipping limit, normalized between 0 and 1 (higher values give more contrast). nbins : int, optional Number of gray bins for histogram ("data range"). Returns ------- out : (N1, ...,NN[, C]) ndarray Equalized image with float64 dtype. See Also -------- equalize_hist, rescale_intensity Notes ----- * For color images, the following steps are performed: - The image is converted to HSV color space - The CLAHE algorithm is run on the V (Value) channel - The image is converted back to RGB space and returned * For RGBA images, the original alpha channel is removed. .. versionchanged:: 0.17 The values returned by this function are slightly shifted upwards because of an internal change in rounding behavior. References ---------- .. [1] http://tog.acm.org/resources/GraphicsGems/ .. [2] https://en.wikipedia.org/wiki/CLAHE#CLAHE """ float_dtype = _supported_float_type(image.dtype) image = img_as_uint(image) image = cp.around( rescale_intensity(image, out_range=(0, NR_OF_GRAY - 1)) ).astype(cp.min_scalar_type(NR_OF_GRAY)) if kernel_size is None: kernel_size = tuple([max(s // 8, 1) for s in image.shape]) elif isinstance(kernel_size, numbers.Number): kernel_size = (kernel_size,) * image.ndim elif len(kernel_size) != image.ndim: raise ValueError(f"Incorrect value of `kernel_size`: {kernel_size}") kernel_size = [int(k) for k in kernel_size] image = _clahe(image, kernel_size, clip_limit, nbins) image = image.astype(float_dtype, copy=False) return rescale_intensity(image) def _clahe(image, kernel_size, clip_limit, nbins): """Contrast Limited Adaptive Histogram Equalization. Parameters ---------- image : (N1,...,NN) ndarray Input image. kernel_size : int or N-tuple of int Defines the shape of contextual regions used in the algorithm. clip_limit : float Normalized clipping limit between 0 and 1 (higher values give more contrast). nbins : int Number of gray bins for histogram ("data range"). Returns ------- out : (N1,...,NN) ndarray Equalized image. The number of "effective" graylevels in the output image is set by `nbins`; selecting a small value (e.g. 128) speeds up processing and still produces an output image of good quality. A clip limit of 0 or larger than or equal to 1 results in standard (non-contrast limited) AHE. """ ndim = image.ndim dtype = image.dtype # pad the image such that the shape in each dimension # - is a multiple of the kernel_size and # - is preceded by half a kernel size pad_start_per_dim = [k // 2 for k in kernel_size] pad_end_per_dim = [ (k - s % k) % k + math.ceil(k / 2.0) for k, s in zip(kernel_size, image.shape) ] image = pad( image, [[p_i, p_f] for p_i, p_f in zip(pad_start_per_dim, pad_end_per_dim)], mode="reflect", ) # determine gray value bins bin_size = 1 + NR_OF_GRAY // nbins lut = cp.arange(NR_OF_GRAY, dtype=cp.min_scalar_type(NR_OF_GRAY)) lut //= bin_size image = lut[image] # calculate graylevel mappings for each contextual region # rearrange image into flattened contextual regions ns_hist = [int(s / k) - 1 for s, k in zip(image.shape, kernel_size)] hist_blocks_shape = functools.reduce( operator.add, [(s, k) for s, k in zip(ns_hist, kernel_size)] ) hist_blocks_axis_order = tuple(range(0, ndim * 2, 2)) + tuple( range(1, ndim * 2, 2) ) hist_slices = [ slice(k // 2, k // 2 + n * k) for k, n in zip(kernel_size, ns_hist) ] hist_blocks = image[tuple(hist_slices)].reshape(hist_blocks_shape) hist_blocks = hist_blocks.transpose(hist_blocks_axis_order) hist_block_assembled_shape = hist_blocks.shape hist_blocks = hist_blocks.reshape((_misc.prod(ns_hist), -1)) # Calculate actual clip limit kernel_elements = _misc.prod(kernel_size) if clip_limit > 0.0: clim = int(max(clip_limit * kernel_elements, 1)) else: # largest possible value, i.e., do not clip (AHE) clim = kernel_elements # Note: for 4096, 4096 input and default args, shapes are: # hist_blocks.shape = (64, 262144) # hist.shape = (64, 256) hist = cp.apply_along_axis(cp.bincount, -1, hist_blocks, minlength=nbins) if isinstance(hist_blocks, cp.ndarray): # CuPy Backend: # faster to loop over the arrays on the host # (hist is small and clip_histogram has too much overhead) # TODO: implement clip_histogram kernel to avoid synchronization? hist = cp.asarray( np.apply_along_axis( # synchronize! clip_histogram, -1, cp.asnumpy(hist), clip_limit=clim ) ) else: hist = cp.apply_along_axis(clip_histogram, -1, hist, clip_limit=clim) hist = map_histogram(hist, 0, NR_OF_GRAY - 1, kernel_elements) hist = hist.reshape(hist_block_assembled_shape[:ndim] + (-1,)) # duplicate leading mappings in each dim map_array = pad(hist, [(1, 1) for _ in range(ndim)] + [(0, 0)], mode="edge") # Perform multilinear interpolation of graylevel mappings # using the convention described here: # https://en.wikipedia.org/w/index.php?title=Adaptive_histogram_ # equalization&oldid=936814673#Efficient_computation_by_interpolation # rearrange image into blocks for vectorized processing ns_proc = [int(s / k) for s, k in zip(image.shape, kernel_size)] blocks_shape = functools.reduce( operator.add, [(s, k) for s, k in zip(ns_proc, kernel_size)] ) blocks_axis_order = hist_blocks_axis_order blocks = image.reshape(blocks_shape) blocks = blocks.transpose(blocks_axis_order) blocks_flattened_shape = blocks.shape blocks = blocks.reshape( (_misc.prod(ns_proc), _misc.prod(blocks.shape[ndim:])) ) # calculate interpolation coefficients coeffs = cp.meshgrid( *tuple([cp.arange(k) / k for k in kernel_size[::-1]]), indexing="ij" ) coeffs = [cp.transpose(c).flatten() for c in coeffs] inv_coeffs = [1 - c for c in coeffs] # sum over contributions of neighboring contextual # regions in each direction result = cp.zeros(blocks.shape, dtype=cp.float32) for iedge, edge in enumerate(itertools.product(*((range(2),) * ndim))): edge_maps = map_array[ tuple(slice(e, e + n) for e, n in zip(edge, ns_proc)) ] edge_maps = edge_maps.reshape((_misc.prod(ns_proc), -1)) # apply map edge_mapped = cp.take_along_axis(edge_maps, blocks, axis=-1) # interpolate edge_coeffs = functools.reduce( operator.mul, [[inv_coeffs, coeffs][e][d] for d, e in enumerate(edge[::-1])], ) result += (edge_mapped * edge_coeffs).astype(result.dtype) result = result.astype(dtype) # rebuild result image from blocks result = result.reshape(blocks_flattened_shape) blocks_axis_rebuild_order = functools.reduce( operator.add, [(s, k) for s, k in zip(range(0, ndim), range(ndim, ndim * 2))], ) result = result.transpose(blocks_axis_rebuild_order) result = result.reshape(image.shape) # undo padding unpad_slices = tuple( [ slice(p_i, s - p_f) for p_i, p_f, s in zip( pad_start_per_dim, pad_end_per_dim, image.shape ) ] ) result = result[unpad_slices] return result # TODO: refactor this clip_histogram bottleneck. def clip_histogram(hist, clip_limit): """Perform clipping of the histogram and redistribution of bins. The histogram is clipped and the number of excess pixels is counted. Afterwards the excess pixels are equally redistributed across the whole histogram (providing the bin count is smaller than the cliplimit). Parameters ---------- hist : ndarray Histogram array. clip_limit : int Maximum allowed bin count. Returns ------- hist : ndarray Clipped histogram. """ # calculate total number of excess pixels excess_mask = hist > clip_limit excess = hist[excess_mask] n_excess = excess.sum() - excess.size * clip_limit hist[excess_mask] = clip_limit # Second part: clip histogram and redistribute excess pixels in each bin bin_incr = n_excess // hist.size # average binincrement xp = cp.get_array_module(hist) upper = clip_limit - bin_incr # Bins larger than upper set to cliplimit low_mask = hist < upper n_excess -= hist[low_mask].size * bin_incr hist[low_mask] += bin_incr mid_mask = xp.logical_and(hist >= upper, hist < clip_limit) mid = hist[mid_mask] n_excess += mid.sum() - mid.size * clip_limit hist[mid_mask] = clip_limit while n_excess > 0: # Redistribute remaining excess prev_n_excess = n_excess for index in range(hist.size): under_mask = hist < clip_limit step_size = max(1, xp.count_nonzero(under_mask) // n_excess) under_mask = under_mask[index::step_size] hist[index::step_size][under_mask] += 1 n_excess -= xp.count_nonzero(under_mask) if n_excess <= 0: break if prev_n_excess == n_excess: break return hist def map_histogram(hist, min_val, max_val, n_pixels): """Calculate the equalized lookup table (mapping). It does so by cumulating the input histogram. Histogram bins are assumed to be represented by the last array dimension. Parameters ---------- hist : ndarray Clipped histogram. min_val : int Minimum value for mapping. max_val : int Maximum value for mapping. n_pixels : int Number of pixels in the region. Returns ------- out : ndarray Mapped intensity LUT. """ xp = cp.get_array_module(hist) out = xp.cumsum(hist, axis=-1).astype(float) out *= (max_val - min_val) / n_pixels out += min_val cp.clip(out, a_min=None, a_max=max_val, out=out) return out.astype(int)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/exposure/exposure.py
import cupy as cp import numpy as np from .._shared import utils from ..util.dtype import dtype_limits, dtype_range __all__ = [ "histogram", "cumulative_distribution", "equalize_hist", "rescale_intensity", "adjust_gamma", "adjust_log", "adjust_sigmoid", ] DTYPE_RANGE = dtype_range.copy() DTYPE_RANGE.update((d.__name__, limits) for d, limits in dtype_range.items()) DTYPE_RANGE.update( { "uint10": (0, 2**10 - 1), "uint12": (0, 2**12 - 1), "uint14": (0, 2**14 - 1), "bool": dtype_range[bool], "float": dtype_range[np.float64], } ) def _offset_array(arr, low_boundary, high_boundary): """Offset the array to get the lowest value at 0 if negative.""" if low_boundary < 0: offset = low_boundary dyn_range = high_boundary - low_boundary # get smallest dtype that can hold both minimum and offset maximum offset_dtype = np.promote_types( np.min_scalar_type(dyn_range), np.min_scalar_type(low_boundary) ) if arr.dtype != offset_dtype: # prevent overflow errors when offsetting arr = arr.astype(offset_dtype) arr = arr - offset return arr def _bincount_histogram_centers(image, source_range): """Compute bin centers for bincount-based histogram.""" if source_range not in ["image", "dtype"]: raise ValueError( f"Incorrect value for `source_range` argument: {source_range}" ) if source_range == "image": image_min = int(image.min().astype(np.int64)) # synchronize image_max = int(image.max().astype(np.int64)) # synchronize elif source_range == "dtype": image_min, image_max = dtype_limits(image, clip_negative=False) bin_centers = cp.arange(image_min, image_max + 1) return bin_centers def _bincount_histogram(image, source_range, bin_centers=None): """ Efficient histogram calculation for an image of integers. This function is significantly more efficient than cupy.histogram but works only on images of integers. It is based on cupy.bincount. Parameters ---------- image : array Input image. source_range : string 'image' determines the range from the input image. 'dtype' determines the range from the expected range of the images of that data type. Returns ------- hist : array The values of the histogram. bin_centers : array The values at the center of the bins. """ if bin_centers is None: bin_centers = _bincount_histogram_centers(image, source_range) image_min, image_max = bin_centers[0].item(), bin_centers[-1].item() image = _offset_array(image, image_min, image_max) # synchronize # noqa # Casting back to unsigned dtype seems necessary to avoid incorrect # results for larger integer ranges with CUDA 12.x. unsigned_dtype_char = image.dtype.char.upper() image = image.astype(unsigned_dtype_char, copy=False) hist = cp.bincount( image.ravel(), minlength=image_max - min(image_min, 0) + 1 ) if source_range == "image": idx = max(image_min, 0) hist = hist[idx:] return hist, bin_centers def _get_outer_edges(image, hist_range): """Determine the outer bin edges to use for `numpy.histogram`. These are obtained from either the image or hist_range. Parameters ---------- image : ndarray Image for which the histogram is to be computed. hist_range: 2-tuple of int or None Range of values covered by the histogram bins. If None, the minimum and maximum values of `image` are used. Returns ------- first_edge, last_edge : int The range spanned by the histogram bins. Notes ----- This function is adapted from ``np.lib.histograms._get_outer_edges``. """ if hist_range is not None: first_edge, last_edge = hist_range if first_edge > last_edge: raise ValueError( "max must be larger than min in hist_range parameter." ) if not (np.isfinite(first_edge) and np.isfinite(last_edge)): raise ValueError( f"supplied hist_range of [{first_edge}, {last_edge}] is " f"not finite" ) elif image.size == 0: # handle empty arrays. Can't determine hist_range, so use 0-1. first_edge, last_edge = 0, 1 else: first_edge, last_edge = float(image.min()), float( image.max() ) # synchronize # noqa if not (np.isfinite(first_edge) and np.isfinite(last_edge)): raise ValueError( f"autodetected hist_range of [{first_edge}, {last_edge}] is " f"not finite" ) # expand empty hist_range to avoid divide by zero if first_edge == last_edge: first_edge = first_edge - 0.5 last_edge = last_edge + 0.5 return first_edge, last_edge def _get_bin_edges(image, nbins, hist_range): """Computes histogram bins for use with `numpy.histogram`. Parameters ---------- image : ndarray Image for which the histogram is to be computed. nbins : int The number of bins. hist_range: 2-tuple of int Range of values covered by the histogram bins. Returns ------- bin_edges : ndarray The histogram bin edges. Notes ----- This function is a simplified version of ``np.lib.histograms._get_bin_edges`` that only supports uniform bins. """ first_edge, last_edge = _get_outer_edges(image, hist_range) # numpy/gh-10322 means that type resolution rules are dependent on array # shapes. To avoid this causing problems, we pick a type now and stick # with it throughout. bin_type = np.result_type(first_edge, last_edge, image) if np.issubdtype(bin_type, np.integer): bin_type = np.result_type(bin_type, float) # compute bin edges bin_edges = np.linspace( first_edge, last_edge, nbins + 1, endpoint=True, dtype=bin_type ) return bin_edges def _get_numpy_hist_range(image, source_range): if source_range == "image": hist_range = None elif source_range == "dtype": hist_range = dtype_limits(image, clip_negative=False) else: raise ValueError( f"Incorrect value for `source_range` argument: {source_range}" ) return hist_range @utils.channel_as_last_axis(multichannel_output=False) def histogram( image, nbins=256, source_range="image", normalize=False, *, channel_axis=None, ): """Return histogram of image. Unlike `numpy.histogram`, this function returns the centers of bins and does not rebin integer arrays. For integer arrays, each integer value has its own bin, which improves speed and intensity-resolution. If `channel_axis` is not set, the histogram is computed on the flattened image. For color or multichannel images, set ``channel_axis`` to use a common binning for all channels. Alternatively, one may apply the function separately on each channel to obtain a histogram for each color channel with separate binning. Parameters ---------- image : array Input image. nbins : int, optional Number of bins used to calculate histogram. This value is ignored for integer arrays. source_range : string, optional 'image' (default) determines the range from the input image. 'dtype' determines the range from the expected range of the images of that data type. normalize : bool, optional If True, normalize the histogram by the sum of its values. channel_axis : int or None, optional If None, the image is assumed to be a grayscale (single channel) image. Otherwise, this parameter indicates which axis of the array corresponds to channels. Returns ------- hist : array The values of the histogram. When ``channel_axis`` is not None, hist will be a 2D array where the first axis corresponds to channels. bin_centers : array The values at the center of the bins. See Also -------- cumulative_distribution Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage import exposure, img_as_float >>> image = img_as_float(cp.array(data.camera())) >>> cp.histogram(image, bins=2) (array([ 93585, 168559]), array([0. , 0.5, 1. ])) >>> exposure.histogram(image, nbins=2) (array([ 93585, 168559]), array([0.25, 0.75])) """ sh = image.shape if len(sh) == 3 and sh[-1] < 4 and channel_axis is None: utils.warn( "This might be a color image. The histogram will be " "computed on the flattened image. You can instead " "apply this function to each color channel, or set " "channel_axis." ) if channel_axis is not None: channels = sh[-1] hist = [] # compute bins based on the raveled array if cp.issubdtype(image.dtype, cp.integer): # here bins corresponds to the bin centers bins = _bincount_histogram_centers(image, source_range) else: # determine the bin edges for np.histogram hist_range = _get_numpy_hist_range(image, source_range) bins = _get_bin_edges(image, nbins, hist_range) for chan in range(channels): h, bc = _histogram(image[..., chan], bins, source_range, normalize) hist.append(h) # Convert to numpy arrays bin_centers = cp.asarray(bc) hist = cp.stack(hist, axis=0) else: hist, bin_centers = _histogram(image, nbins, source_range, normalize) return hist, bin_centers def _histogram(image, bins, source_range, normalize): """ Parameters ---------- image : ndarray Image for which the histogram is to be computed. bins : int or ndarray The number of histogram bins. For images with integer dtype, an array containing the bin centers can also be provided. For images with floating point dtype, this can be an array of bin_edges for use by ``np.histogram``. source_range : string, optional 'image' (default) determines the range from the input image. 'dtype' determines the range from the expected range of the images of that data type. normalize : bool, optional If True, normalize the histogram by the sum of its values. """ image = image.flatten() # For integer types, histogramming with bincount is more efficient. if np.issubdtype(image.dtype, cp.integer): bin_centers = bins if isinstance(bins, cp.ndarray) else None hist, bin_centers = _bincount_histogram( image, source_range, bin_centers ) else: hist_range = _get_numpy_hist_range(image, source_range) hist, bin_edges = cp.histogram(image, bins=bins, range=hist_range) bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2.0 if normalize: hist = hist / cp.sum(hist) return hist, bin_centers def cumulative_distribution(image, nbins=256): """Return cumulative distribution function (cdf) for the given image. Parameters ---------- image : array Image array. nbins : int, optional Number of bins for image histogram. Returns ------- img_cdf : array Values of cumulative distribution function. bin_centers : array Centers of bins. See Also -------- histogram References ---------- .. [1] https://en.wikipedia.org/wiki/Cumulative_distribution_function Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage import exposure, img_as_float >>> image = img_as_float(cp.array(data.camera())) >>> hi = exposure.histogram(image) >>> cdf = exposure.cumulative_distribution(image) >>> cp.alltrue(cdf[0] == cp.cumsum(hi[0])/float(image.size)) array(True) """ hist, bin_centers = histogram(image, nbins) img_cdf = hist.cumsum() img_cdf = img_cdf / float(img_cdf[-1]) return img_cdf, bin_centers def equalize_hist(image, nbins=256, mask=None): """Return image after histogram equalization. Parameters ---------- image : array Image array. nbins : int, optional Number of bins for image histogram. Note: this argument is ignored for integer images, for which each integer is its own bin. mask: ndarray of bools or 0s and 1s, optional Array of same shape as `image`. Only points at which mask == True are used for the equalization, which is applied to the whole image. Returns ------- out : float array Image array after histogram equalization. Notes ----- This function is adapted from [1]_ with the author's permission. References ---------- .. [1] http://www.janeriksolem.net/histogram-equalization-with-python-and.html .. [2] https://en.wikipedia.org/wiki/Histogram_equalization """ # noqa if mask is not None: mask = mask.astype(bool, copy=False) cdf, bin_centers = cumulative_distribution(image[mask], nbins) else: cdf, bin_centers = cumulative_distribution(image, nbins) out = cp.interp(image.ravel(), bin_centers, cdf) out = out.reshape(image.shape) # Unfortunately, np.interp currently always promotes to float64, so we # have to cast back to single precision when float32 output is desired return out.astype(utils._supported_float_type(image.dtype), copy=False) def intensity_range(image, range_values="image", clip_negative=False): """Return image intensity range (min, max) based on desired value type. Parameters ---------- image : array Input image. range_values : str or 2-tuple, optional The image intensity range is configured by this parameter. The possible values for this parameter are enumerated below. 'image' Return image min/max as the range. 'dtype' Return min/max of the image's dtype as the range. dtype-name Return intensity range based on desired `dtype`. Must be valid key in `DTYPE_RANGE`. Note: `image` is ignored for this range type. 2-tuple Return `range_values` as min/max intensities. Note that there's no reason to use this function if you just want to specify the intensity range explicitly. This option is included for functions that use `intensity_range` to support all desired range types. clip_negative : bool, optional If True, clip the negative range (i.e. return 0 for min intensity) even if the image dtype allows negative values. Returns ------- i_range : tuple A 2-tuple where the first element is the minimum and the second is the maximum. """ if range_values == "dtype": range_values = image.dtype.type if range_values == "image": i_min = image.min().item() i_max = image.max().item() elif range_values in DTYPE_RANGE: i_min, i_max = DTYPE_RANGE[range_values] if clip_negative: i_min = 0 else: i_min, i_max = range_values return i_min, i_max def _output_dtype(dtype_or_range, image_dtype): """Determine the output dtype for rescale_intensity. The dtype is determined according to the following rules: - if ``dtype_or_range`` is a dtype, that is the output dtype. - if ``dtype_or_range`` is a dtype string, that is the dtype used, unless it is not a NumPy data type (e.g. 'uint12' for 12-bit unsigned integers), in which case the data type that can contain it will be used (e.g. uint16 in this case). - if ``dtype_or_range`` is a pair of values, the output data type will be ``_supported_float_type(image_dtype)``. This preserves float32 output for float32 inputs. Parameters ---------- dtype_or_range : type, string, or 2-tuple of int/float The desired range for the output, expressed as either a NumPy dtype or as a (min, max) pair of numbers. image_dtype : np.dtype The input image dtype. Returns ------- out_dtype : type The data type appropriate for the desired output. """ if type(dtype_or_range) in [list, tuple, np.ndarray]: # pair of values: always return float. return utils._supported_float_type(image_dtype) if type(dtype_or_range) == type: # already a type: return it return dtype_or_range if dtype_or_range in DTYPE_RANGE: # string key in DTYPE_RANGE dictionary try: # if it's a canonical numpy dtype, convert return np.dtype(dtype_or_range).type except TypeError: # uint10, uint12, uint14 # otherwise, return uint16 return np.uint16 else: raise ValueError( "Incorrect value for out_range, should be a valid image data " f"type or a pair of values, got {dtype_or_range}." ) def rescale_intensity(image, in_range="image", out_range="dtype"): """Return image after stretching or shrinking its intensity levels. The desired intensity range of the input and output, `in_range` and `out_range` respectively, are used to stretch or shrink the intensity range of the input image. See examples below. Parameters ---------- image : array Image array. in_range, out_range : str or 2-tuple, optional Min and max intensity values of input and output image. The possible values for this parameter are enumerated below. 'image' Use image min/max as the intensity range. 'dtype' Use min/max of the image's dtype as the intensity range. dtype-name Use intensity range based on desired `dtype`. Must be valid key in `DTYPE_RANGE`. 2-tuple Use `range_values` as explicit min/max intensities. Returns ------- out : array Image array after rescaling its intensity. This image is the same dtype as the input image. Notes ----- .. versionchanged:: 0.17 The dtype of the output array has changed to match the output dtype, or float if the output range is specified by a pair of values. See Also -------- equalize_hist Examples -------- By default, the min/max intensities of the input image are stretched to the limits allowed by the image's dtype, since `in_range` defaults to 'image' and `out_range` defaults to 'dtype': >>> image = cp.array([51, 102, 153], dtype=np.uint8) >>> rescale_intensity(image) array([ 0, 127, 255], dtype=uint8) It's easy to accidentally convert an image dtype from uint8 to float: >>> 1.0 * image array([ 51., 102., 153.]) Use `rescale_intensity` to rescale to the proper range for float dtypes: >>> image_float = 1.0 * image >>> rescale_intensity(image_float) array([0. , 0.5, 1. ]) To maintain the low contrast of the original, use the `in_range` parameter: >>> rescale_intensity(image_float, in_range=(0, 255)) array([0.2, 0.4, 0.6]) If the min/max value of `in_range` is more/less than the min/max image intensity, then the intensity levels are clipped: >>> rescale_intensity(image_float, in_range=(0, 102)) array([0.5, 1. , 1. ]) If you have an image with signed integers but want to rescale the image to just the positive range, use the `out_range` parameter. In that case, the output dtype will be float: >>> image = cp.asarray([-10, 0, 10], dtype=np.int8) >>> rescale_intensity(image, out_range=(0, 127)) array([ 0. , 63.5, 127. ]) To get the desired range with a specific dtype, use ``.astype()``: >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int8) array([ 0, 63, 127], dtype=int8) If the input image is constant, the output will be clipped directly to the output range: >>> image = cp.asarray([130, 130, 130], dtype=np.int32) >>> rescale_intensity(image, out_range=(0, 127)).astype(np.int32) array([127, 127, 127], dtype=int32) """ if out_range in ["dtype", "image"]: out_dtype = _output_dtype(image.dtype.type, image.dtype) else: out_dtype = _output_dtype(out_range, image.dtype) imin, imax = map(float, intensity_range(image, in_range)) omin, omax = map( float, intensity_range(image, out_range, clip_negative=(imin >= 0)) ) if np.any(np.isnan([imin, imax, omin, omax])): utils.warn( "One or more intensity levels are NaN. Rescaling will broadcast " "NaN to the full image. Provide intensity levels yourself to " "avoid this. E.g. with np.nanmin(image), np.nanmax(image).", stacklevel=2, ) image = cp.clip(image, imin, imax) if imin != imax: image = (image - imin) / (imax - imin) return cp.asarray(image * (omax - omin) + omin, dtype=out_dtype) else: return cp.clip(image, omin, omax).astype(out_dtype, copy=False) def _assert_non_negative(image): if cp.any(image < 0): # synchronize! raise ValueError( "Image Correction methods work correctly only on " "images with non-negative values. Use " "skimage.exposure.rescale_intensity." ) def _adjust_gamma_u8(image, gamma, gain): """LUT based implementation of gamma adjustment.""" lut = 255 * gain * (np.linspace(0, 1, 256) ** gamma) lut = np.minimum(np.rint(lut), 255).astype("uint8") lut = cp.asarray(lut) return lut[image] def adjust_gamma(image, gamma=1, gain=1): """Performs Gamma Correction on the input image. Also known as Power Law Transform. This function transforms the input image pixelwise according to the equation ``O = I**gamma`` after scaling each pixel to the range 0 to 1. Parameters ---------- image : ndarray Input image. gamma : float, optional Non negative real number. Default value is 1. gain : float, optional The constant multiplier. Default value is 1. Returns ------- out : ndarray Gamma corrected output image. See Also -------- adjust_log Notes ----- For gamma greater than 1, the histogram will shift towards left and the output image will be darker than the input image. For gamma less than 1, the histogram will shift towards right and the output image will be brighter than the input image. References ---------- .. [1] https://en.wikipedia.org/wiki/Gamma_correction Examples -------- >>> from skimage import data >>> from cucim.skimage import exposure, img_as_float >>> image = img_as_float(cp.array(data.moon())) >>> gamma_corrected = exposure.adjust_gamma(image, 2) >>> # Output is darker for gamma > 1 >>> image.mean() > gamma_corrected.mean() array(True) """ if gamma < 0: raise ValueError("Gamma should be a non-negative real number.") dtype = image.dtype.type if dtype is cp.uint8: out = _adjust_gamma_u8(image, gamma, gain) else: _assert_non_negative(image) scale = float( dtype_limits(image, True)[1] - dtype_limits(image, True)[0] ) out = (((image / scale) ** gamma) * scale * gain).astype(dtype) return out def adjust_log(image, gain=1, inv=False): """Performs Logarithmic correction on the input image. This function transforms the input image pixelwise according to the equation ``O = gain*log(1 + I)`` after scaling each pixel to the range 0 to 1. For inverse logarithmic correction, the equation is ``O = gain*(2**I - 1)``. Parameters ---------- image : ndarray Input image. gain : float, optional The constant multiplier. Default value is 1. inv : float, optional If True, it performs inverse logarithmic correction, else correction will be logarithmic. Defaults to False. Returns ------- out : ndarray Logarithm corrected output image. See Also -------- adjust_gamma References ---------- .. [1] http://www.ece.ucsb.edu/Faculty/Manjunath/courses/ece178W03/EnhancePart1.pdf """ # noqa _assert_non_negative(image) dtype = image.dtype.type scale = float(dtype_limits(image, True)[1] - dtype_limits(image, True)[0]) if inv: out = (2 ** (image / scale) - 1) * scale * gain return out.astype(dtype, copy=False) out = cp.log2(1 + image / scale) * scale * gain return out.astype(dtype, copy=False) def adjust_sigmoid(image, cutoff=0.5, gain=10, inv=False): """Performs Sigmoid Correction on the input image. Also known as Contrast Adjustment. This function transforms the input image pixelwise according to the equation ``O = 1/(1 + exp*(gain*(cutoff - I)))`` after scaling each pixel to the range 0 to 1. Parameters ---------- image : ndarray Input image. cutoff : float, optional Cutoff of the sigmoid function that shifts the characteristic curve in horizontal direction. Default value is 0.5. gain : float, optional The constant multiplier in exponential's power of sigmoid function. Default value is 10. inv : bool, optional If True, returns the negative sigmoid correction. Defaults to False. Returns ------- out : ndarray Sigmoid corrected output image. See Also -------- adjust_gamma References ---------- .. [1] Gustav J. Braun, "Image Lightness Rescaling Using Sigmoidal Contrast Enhancement Functions", http://markfairchild.org/PDFs/PAP07.pdf """ _assert_non_negative(image) dtype = image.dtype.type scale = float(dtype_limits(image, True)[1] - dtype_limits(image, True)[0]) if inv: out = (1 - 1 / (1 + cp.exp(gain * (cutoff - image / scale)))) * scale return out.astype(dtype, copy=False) out = (1 / (1 + cp.exp(gain * (cutoff - image / scale)))) * scale return out.astype(dtype, copy=False) def is_low_contrast( image, fraction_threshold=0.05, lower_percentile=1, upper_percentile=99, method="linear", ): """Determine if an image is low contrast. Parameters ---------- image : array-like The image under test. fraction_threshold : float, optional The low contrast fraction threshold. An image is considered low- contrast when its range of brightness spans less than this fraction of its data type's full range. [1]_ lower_percentile : float, optional Disregard values below this percentile when computing image contrast. upper_percentile : float, optional Disregard values above this percentile when computing image contrast. method : str, optional The contrast determination method. Right now the only available option is "linear". Returns ------- out : bool True when the image is determined to be low contrast. Notes ----- For boolean images, this function returns False only if all values are the same (the method, threshold, and percentile arguments are ignored). References ---------- .. [1] https://scikit-image.org/docs/dev/user_guide/data_types.html Examples -------- >>> import cupy as cp >>> image = cp.linspace(0, 0.04, 100) >>> is_low_contrast(image) array(True) >>> image[-1] = 1 >>> is_low_contrast(image) array(True) >>> is_low_contrast(image, upper_percentile=100) array(False) """ if image.dtype == bool: return not ((image.max() == 1) and (image.min() == 0)) if image.ndim == 3: from ..color import rgb2gray, rgba2rgb # avoid circular import if image.shape[2] == 4: image = rgba2rgb(image) if image.shape[2] == 3: image = rgb2gray(image) dlimits = dtype_limits(image, clip_negative=False) limits = cp.percentile(image, [lower_percentile, upper_percentile]) ratio = (limits[1] - limits[0]) / (dlimits[1] - dlimits[0]) return ratio < fraction_threshold
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/exposure/__init__.py
from ._adapthist import equalize_adapthist from .exposure import ( adjust_gamma, adjust_log, adjust_sigmoid, cumulative_distribution, equalize_hist, histogram, is_low_contrast, rescale_intensity, ) from .histogram_matching import match_histograms __all__ = [ "histogram", "equalize_hist", "equalize_adapthist", "rescale_intensity", "cumulative_distribution", "adjust_gamma", "adjust_sigmoid", "adjust_log", "is_low_contrast", "match_histograms", ]
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/exposure
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/exposure/tests/test_exposure.py
import platform import warnings import cupy as cp import numpy as np import pytest from cupy.testing import assert_array_almost_equal, assert_array_equal from numpy.testing import assert_almost_equal from skimage import data from cucim.skimage import exposure, util from cucim.skimage._shared._warnings import expected_warnings from cucim.skimage._shared.utils import _supported_float_type from cucim.skimage.color import rgb2gray from cucim.skimage.exposure.exposure import intensity_range from cucim.skimage.util.dtype import dtype_range # TODO: Some tests fail unexpectedly on ARM. ON_AARCH64 = platform.machine() == "aarch64" ON_AARCH64_REASON = "TODO: Test fails unexpectedly on ARM." # Test integer histograms # ======================= def test_wrong_source_range(): im = cp.array([-1, 100], dtype=cp.int8) match = "Incorrect value for `source_range` argument" with pytest.raises(ValueError, match=match): frequencies, bin_centers = exposure.histogram(im, source_range="foobar") @pytest.mark.xfail(ON_AARCH64, reason=ON_AARCH64_REASON) def test_negative_overflow(): im = cp.array([-1, 100], dtype=cp.int8) frequencies, bin_centers = exposure.histogram(im) assert_array_equal(bin_centers, cp.arange(-1, 101)) assert frequencies[0] == 1 assert frequencies[-1] == 1 assert_array_equal(frequencies[1:-1], 0) def test_all_negative_image(): im = cp.array([-100, -1], dtype=cp.int8) frequencies, bin_centers = exposure.histogram(im) assert_array_equal(bin_centers, cp.arange(-100, 0)) assert frequencies[0] == 1 assert frequencies[-1] == 1 assert_array_equal(frequencies[1:-1], 0) def test_int_range_image(): im = cp.array([10, 100], dtype=cp.int8) frequencies, bin_centers = exposure.histogram(im) assert len(bin_centers) == len(frequencies) assert bin_centers[0] == 10 assert bin_centers[-1] == 100 def test_multichannel_int_range_image(): im = cp.array([[10, 5], [100, 102]], dtype=np.int8) frequencies, bin_centers = exposure.histogram(im, channel_axis=-1) for ch in range(im.shape[-1]): assert len(frequencies[ch]) == len(bin_centers) assert bin_centers[0] == 5 assert bin_centers[-1] == 102 def test_peak_uint_range_dtype(): im = cp.array([10, 100], dtype=cp.uint8) frequencies, bin_centers = exposure.histogram(im, source_range="dtype") assert_array_equal(bin_centers, cp.arange(0, 256)) assert frequencies[10] == 1 assert frequencies[100] == 1 assert frequencies[101] == 0 assert frequencies.shape == (256,) def test_peak_int_range_dtype(): im = cp.array([10, 100], dtype=cp.int8) frequencies, bin_centers = exposure.histogram(im, source_range="dtype") assert_array_equal(bin_centers, cp.arange(-128, 128)) assert frequencies[128 + 10] == 1 assert frequencies[128 + 100] == 1 assert frequencies[128 + 101] == 0 assert frequencies.shape == (256,) def test_flat_uint_range_dtype(): im = cp.linspace(0, 255, 256, dtype=cp.uint8) frequencies, bin_centers = exposure.histogram(im, source_range="dtype") assert_array_equal(bin_centers, cp.arange(0, 256)) assert frequencies.shape == (256,) def test_flat_int_range_dtype(): im = cp.linspace(-128, 128, 256, dtype=cp.int8) frequencies, bin_centers = exposure.histogram(im, source_range="dtype") assert_array_equal(bin_centers, cp.arange(-128, 128)) assert frequencies.shape == (256,) @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_peak_float_out_of_range_image(dtype): im = cp.array([10, 100], dtype=dtype) frequencies, bin_centers = exposure.histogram(im, nbins=90) # offset values by 0.5 for float... assert_array_equal(bin_centers, cp.arange(10, 100) + 0.5) @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_peak_float_out_of_range_dtype(dtype): im = cp.array([10, 100], dtype=dtype) nbins = 10 frequencies, bin_centers = exposure.histogram( im, nbins=nbins, source_range="dtype" ) assert bin_centers.dtype == dtype assert_almost_equal(cp.min(bin_centers).get(), -0.9, 3) assert_almost_equal(cp.max(bin_centers).get(), 0.9, 3) assert len(bin_centers) == 10 def test_normalize(): im = cp.array([0, 255, 255], dtype=cp.uint8) frequencies, bin_centers = exposure.histogram( im, source_range="dtype", normalize=False ) expected = cp.zeros(256) expected[0] = 1 expected[-1] = 2 assert_array_equal(frequencies, expected) frequencies, bin_centers = exposure.histogram( im, source_range="dtype", normalize=True ) expected /= 3.0 assert_array_equal(frequencies, expected) # Test multichannel histograms # ============================ @pytest.mark.parametrize("source_range", ["dtype", "image"]) @pytest.mark.parametrize("dtype", [cp.uint8, cp.int16, cp.float64]) @pytest.mark.parametrize("channel_axis", [0, 1, -1]) def test_multichannel_hist_common_bins_uint8(dtype, source_range, channel_axis): """Check that all channels use the same binning.""" # Construct multichannel image with uniform values within each channel, # but the full range of values across channels. shape = (5, 5) channel_size = shape[0] * shape[1] imin, imax = dtype_range[dtype] im = np.stack( ( np.full(shape, imin, dtype=dtype), np.full(shape, imax, dtype=dtype), ), axis=channel_axis, ) im = cp.asarray(im) frequencies, bin_centers = exposure.histogram( im, source_range=source_range, channel_axis=channel_axis ) if cp.issubdtype(dtype, cp.integer): assert_array_equal(bin_centers, np.arange(imin, imax + 1)) assert frequencies[0][0] == channel_size assert frequencies[0][-1] == 0 assert frequencies[1][0] == 0 assert frequencies[1][-1] == channel_size # Test histogram equalization # =========================== np.random.seed(0) test_img_int = cp.array(data.camera()) # squeeze image intensities to lower image contrast test_img = util.img_as_float(test_img_int) test_img = exposure.rescale_intensity(test_img / 5.0 + 100) test_img = cp.array(test_img) def test_equalize_uint8_approx(): """Check integer bins used for uint8 images.""" img_eq0 = exposure.equalize_hist(test_img_int) img_eq1 = exposure.equalize_hist(test_img_int, nbins=3) cp.testing.assert_allclose(img_eq0, img_eq1) def test_equalize_ubyte(): img = util.img_as_ubyte(test_img) img_eq = exposure.equalize_hist(img) cdf, bin_edges = exposure.cumulative_distribution(img_eq) check_cdf_slope(cdf) @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_equalize_float(dtype): img = util.img_as_float(test_img).astype(dtype, copy=False) img_eq = exposure.equalize_hist(img) assert img_eq.dtype == _supported_float_type(dtype) cdf, bin_edges = exposure.cumulative_distribution(img_eq) check_cdf_slope(cdf) assert bin_edges.dtype == _supported_float_type(dtype) def test_equalize_masked(): img = util.img_as_float(test_img) mask = cp.zeros(test_img.shape) mask[100:400, 100:400] = 1 img_mask_eq = exposure.equalize_hist(img, mask=mask) img_eq = exposure.equalize_hist(img) cdf, bin_edges = exposure.cumulative_distribution(img_mask_eq) check_cdf_slope(cdf) assert not (img_eq == img_mask_eq).all() def check_cdf_slope(cdf): """Slope of cdf which should equal 1 for an equalized histogram.""" norm_intensity = np.linspace(0, 1, len(cdf)) slope, intercept = np.polyfit(norm_intensity, cp.asnumpy(cdf), 1) assert 0.9 < slope < 1.1 # Test intensity range # ==================== @pytest.mark.parametrize( "test_input,expected", [("image", [0, 1]), ("dtype", [0, 255]), ((10, 20), [10, 20])], ) def test_intensity_range_uint8(test_input, expected): image = cp.array([0, 1], dtype=cp.uint8) out = intensity_range(image, range_values=test_input) assert_array_equal(out, cp.array(expected)) @pytest.mark.parametrize( "test_input,expected", [("image", [0.1, 0.2]), ("dtype", [-1, 1]), ((0.3, 0.4), [0.3, 0.4])], ) def test_intensity_range_float(test_input, expected): image = cp.array([0.1, 0.2], dtype=cp.float64) out = intensity_range(image, range_values=test_input) assert_array_equal(out, expected) def test_intensity_range_clipped_float(): image = cp.array([0.1, 0.2], dtype=cp.float64) out = intensity_range(image, range_values="dtype", clip_negative=True) assert_array_equal(out, (0, 1)) # Test rescale intensity # ====================== uint10_max = 2**10 - 1 uint12_max = 2**12 - 1 uint14_max = 2**14 - 1 uint16_max = 2**16 - 1 def test_rescale_stretch(): image = cp.array([51, 102, 153], dtype=cp.uint8) out = exposure.rescale_intensity(image) assert out.dtype == cp.uint8 assert_array_almost_equal(out, [0, 127, 255]) def test_rescale_shrink(): image = cp.array([51.0, 102.0, 153.0]) out = exposure.rescale_intensity(image) assert_array_almost_equal(out, [0, 0.5, 1]) @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_rescale_in_range(dtype): image = cp.array([51.0, 102.0, 153.0], dtype=dtype) out = exposure.rescale_intensity(image, in_range=(0, 255)) assert_array_almost_equal(out, [0.2, 0.4, 0.6], decimal=4) # with out_range='dtype', the output has the same dtype assert out.dtype == image.dtype def test_rescale_in_range_clip(): image = cp.array([51.0, 102.0, 153.0]) out = exposure.rescale_intensity(image, in_range=(0, 102)) assert_array_almost_equal(out, [0.5, 1, 1]) @pytest.mark.parametrize( "dtype", [cp.int8, cp.int32, cp.float16, cp.float32, cp.float64] ) @pytest.mark.xfail(ON_AARCH64, reason=ON_AARCH64_REASON) def test_rescale_out_range(dtype): """Check that output range is correct. .. versionchanged:: 22.02.00 float16 and float32 inputs now result in float32 output. Formerly they would give float64 outputs. """ image = cp.array([-10, 0, 10], dtype=cp.int8) out = exposure.rescale_intensity(image, out_range=(0, 127)) assert out.dtype == _supported_float_type(image.dtype) assert_array_almost_equal(out, [0, 63.5, 127]) def test_rescale_named_in_range(): image = cp.array([0, uint10_max, uint10_max + 100], dtype=cp.uint16) out = exposure.rescale_intensity(image, in_range="uint10") assert_array_almost_equal(out, [0, uint16_max, uint16_max]) def test_rescale_named_out_range(): image = cp.array([0, uint16_max], dtype=cp.uint16) out = exposure.rescale_intensity(image, out_range="uint10") assert_array_almost_equal(out, [0, uint10_max]) def test_rescale_uint12_limits(): image = cp.array([0, uint16_max], dtype=cp.uint16) out = exposure.rescale_intensity(image, out_range="uint12") assert_array_almost_equal(out, [0, uint12_max]) def test_rescale_uint14_limits(): image = cp.array([0, uint16_max], dtype=cp.uint16) out = exposure.rescale_intensity(image, out_range="uint14") assert_array_almost_equal(out, [0, uint14_max]) def test_rescale_all_zeros(): image = cp.zeros((2, 2), dtype=cp.uint8) out = exposure.rescale_intensity(image) assert ~cp.isnan(out).all() assert_array_almost_equal(out, image) def test_rescale_constant(): image = cp.array([130, 130], dtype=cp.uint16) out = exposure.rescale_intensity(image, out_range=(0, 127)) assert_array_almost_equal(out, [127, 127]) def test_rescale_same_values(): image = cp.ones((2, 2)) out = exposure.rescale_intensity(image) assert ~cp.isnan(out).all() assert_array_almost_equal(out, image) @pytest.mark.parametrize( "in_range,out_range", [("image", "dtype"), ("dtype", "image")] ) def test_rescale_nan_warning(in_range, out_range): image = cp.arange(12, dtype=float).reshape(3, 4) image[1, 1] = cp.nan msg = ( r"One or more intensity levels are NaN\." r" Rescaling will broadcast NaN to the full image\." ) with expected_warnings([msg]): exposure.rescale_intensity(image, in_range, out_range) @pytest.mark.parametrize( "out_range, out_dtype", [ ("uint8", cp.uint8), ("uint10", cp.uint16), ("uint12", cp.uint16), ("uint16", cp.uint16), ("float", float), ], ) def test_rescale_output_dtype(out_range, out_dtype): image = cp.array([-128, 0, 127], dtype=cp.int8) output_image = exposure.rescale_intensity(image, out_range=out_range) assert output_image.dtype == out_dtype @pytest.mark.xfail(ON_AARCH64, reason=ON_AARCH64_REASON) def test_rescale_no_overflow(): image = cp.array([-128, 0, 127], dtype=cp.int8) output_image = exposure.rescale_intensity(image, out_range=cp.uint8) cp.testing.assert_array_equal(output_image, [0, 128, 255]) assert output_image.dtype == cp.uint8 @pytest.mark.xfail(ON_AARCH64, reason=ON_AARCH64_REASON) def test_rescale_float_output(): image = cp.array([-128, 0, 127], dtype=cp.int8) output_image = exposure.rescale_intensity(image, out_range=(0, 255)) cp.testing.assert_array_equal(output_image, [0, 128, 255]) assert output_image.dtype == _supported_float_type(image.dtype) def test_rescale_raises_on_incorrect_out_range(): image = cp.array([-128, 0, 127], dtype=cp.int8) with pytest.raises(ValueError): _ = exposure.rescale_intensity(image, out_range="flat") # Test adaptive histogram equalization # ==================================== @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_adapthist_grayscale(dtype): """Test a grayscale float image""" img = cp.array(data.astronaut()) img = util.img_as_float(img).astype(dtype, copy=False) img = rgb2gray(img) img = cp.dstack((img, img, img)) adapted = exposure.equalize_adapthist( img, kernel_size=(57, 51), clip_limit=0.01, nbins=128 ) assert img.shape == adapted.shape assert adapted.dtype == _supported_float_type(dtype) snr_decimal = 3 if dtype != cp.float16 else 2 assert_almost_equal(float(peak_snr(img, adapted)), 100.140, snr_decimal) assert_almost_equal(float(norm_brightness_err(img, adapted)), 0.0529, 3) def test_adapthist_color(): """Test an RGB color uint16 image""" img = util.img_as_uint(cp.array(data.astronaut())) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") hist, bin_centers = exposure.histogram(img) assert len(w) > 0 adapted = exposure.equalize_adapthist(img, clip_limit=0.01) assert adapted.min() == 0 assert adapted.max() == 1.0 assert img.shape == adapted.shape full_scale = exposure.rescale_intensity(img) assert_almost_equal(float(peak_snr(full_scale, adapted)), 109.393, 1) assert_almost_equal( float(norm_brightness_err(full_scale, adapted)), 0.02, 2 ) def test_adapthist_alpha(): """Test an RGBA color image""" img = util.img_as_float(cp.array(data.astronaut())) alpha = cp.ones((img.shape[0], img.shape[1]), dtype=float) img = cp.dstack((img, alpha)) adapted = exposure.equalize_adapthist(img) assert adapted.shape != img.shape img = img[:, :, :3] full_scale = exposure.rescale_intensity(img) assert img.shape == adapted.shape assert_almost_equal(float(peak_snr(full_scale, adapted)), 109.393, 2) assert_almost_equal( float(norm_brightness_err(full_scale, adapted)), 0.0248, 3 ) def test_adapthist_grayscale_Nd(): """ Test for n-dimensional consistency with float images Note: Currently if img.ndim == 3, img.shape[2] > 4 must hold for the image not to be interpreted as a color image by @adapt_rgb """ # take 2d image, subsample and stack it img = util.img_as_float(cp.array(data.astronaut())) img = rgb2gray(img) a = 15 img2d = util.img_as_float(img[0:-1:a, 0:-1:a]) img3d = cp.stack([img2d] * (img.shape[0] // a), axis=0) # apply CLAHE adapted2d = exposure.equalize_adapthist( img2d, kernel_size=5, clip_limit=0.05 ) adapted3d = exposure.equalize_adapthist( img3d, kernel_size=5, clip_limit=0.05 ) # check that dimensions of input and output match assert img2d.shape == adapted2d.shape assert img3d.shape == adapted3d.shape # check that the result from the stack of 2d images is similar # to the underlying 2d image assert ( cp.mean(cp.abs(adapted2d - adapted3d[adapted3d.shape[0] // 2])) < 0.02 ) def test_adapthist_constant(): """Test constant image, float and uint""" img = cp.zeros((8, 8)) img += 2 img = img.astype(cp.uint16) adapted = exposure.equalize_adapthist(img, 3) assert cp.min(adapted) == cp.max(adapted) img = cp.zeros((8, 8)) img += 0.1 img = img.astype(cp.float64) adapted = exposure.equalize_adapthist(img, 3) assert cp.min(adapted) == cp.max(adapted) def test_adapthist_borders(): """Test border processing""" img = rgb2gray(util.img_as_float(cp.array(data.astronaut()))) # maximize difference between orig and processed img img /= 100.0 img[img.shape[0] // 2, img.shape[1] // 2] = 1.0 # check borders are processed for different kernel sizes border_index = -1 for kernel_size in range(51, 71, 2): adapted = exposure.equalize_adapthist(img, kernel_size, clip_limit=0.5) # Check last columns are processed assert ( norm_brightness_err(adapted[:, border_index], img[:, border_index]) > 0.1 ) # Check last rows are processed assert ( norm_brightness_err(adapted[border_index, :], img[border_index, :]) > 0.1 ) def test_adapthist_clip_limit(): img_u = cp.array(data.moon()) img_f = util.img_as_float(img_u) # uint8 input img_clahe0 = exposure.equalize_adapthist(img_u, clip_limit=0) img_clahe1 = exposure.equalize_adapthist(img_u, clip_limit=1) assert_array_equal(img_clahe0, img_clahe1) # float64 input img_clahe0 = exposure.equalize_adapthist(img_f, clip_limit=0) img_clahe1 = exposure.equalize_adapthist(img_f, clip_limit=1) assert_array_equal(img_clahe0, img_clahe1) def peak_snr(img1, img2): """Peak signal to noise ratio of two images Parameters ---------- img1 : array-like img2 : array-like Returns ------- peak_snr : float Peak signal to noise ratio """ if img1.ndim == 3: img1, img2 = rgb2gray(img1.copy()), rgb2gray(img2.copy()) img1 = util.img_as_float(img1) img2 = util.img_as_float(img2) mse = 1.0 / img1.size * cp.square(img1 - img2).sum() _, max_ = dtype_range[img1.dtype.type] return 20 * cp.log(max_ / mse) def norm_brightness_err(img1, img2): """Normalized Absolute Mean Brightness Error between two images Parameters ---------- img1 : array-like img2 : array-like Returns ------- norm_brightness_error : float Normalized absolute mean brightness error """ if img1.ndim == 3: img1, img2 = rgb2gray(img1), rgb2gray(img2) ambe = cp.abs(img1.mean() - img2.mean()) nbe = ambe / dtype_range[img1.dtype.type][1] return nbe def test_adapthist_incorrect_kernel_size(): img = cp.ones((8, 8), dtype=float) with pytest.raises(ValueError, match="Incorrect value of `kernel_size`"): exposure.equalize_adapthist(img, (3, 3, 3)) # Test Gamma Correction # ===================== def test_adjust_gamma_1x1_shape(): """Check that the shape is maintained""" img = cp.ones([1, 1]) result = exposure.adjust_gamma(img, 1.5) assert img.shape == result.shape def test_adjust_gamma_one(): """Same image should be returned for gamma equal to one""" image = cp.arange(0, 256, dtype=np.uint8).reshape((16, 16)) result = exposure.adjust_gamma(image, 1) assert_array_almost_equal(result, image) @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_adjust_gamma_zero(dtype): """White image should be returned for gamma equal to zero""" image = cp.random.uniform(0, 255, (8, 8)).astype(dtype, copy=False) result = exposure.adjust_gamma(image, 0) dtype = image.dtype.type assert_array_almost_equal(result, dtype_range[dtype][1]) assert result.dtype == image.dtype def test_adjust_gamma_less_one(): """Verifying the output with expected results for gamma correction with gamma equal to half""" image = cp.arange(0, 256, dtype=np.uint8).reshape((16, 16)) # fmt: off expected = cp.array([0, 16, 23, 28, 32, 36, 39, 42, 45, 48, 50, 53, 55, 58, 60, 62, 64, 66, 68, 70, 71, 73, 75, 77, 78, 80, 81, 83, 84, 86, 87, 89, 90, 92, 93, 94, 96, 97, 98, 100, 101, 102, 103, 105, 106, 107, 108, 109, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 145, 146, 147, 148, 149, 150, 151, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159, 160, 160, 161, 162, 163, 164, 164, 165, 166, 167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176, 177, 178, 179, 179, 180, 181, 181, 182, 183, 183, 184, 185, 186, 186, 187, 188, 188, 189, 190, 190, 191, 192, 192, 193, 194, 194, 195, 196, 196, 197, 198, 198, 199, 199, 200, 201, 201, 202, 203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210, 211, 211, 212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218, 218, 219, 220, 220, 221, 221, 222, 222, 223, 224, 224, 225, 225, 226, 226, 227, 228, 228, 229, 229, 230, 230, 231, 231, 232, 233, 233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246, 247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 253, 254, 254, 255], dtype=cp.uint8).reshape((16, 16)) # fmt: on result = exposure.adjust_gamma(image, 0.5) assert_array_equal(result, expected) def test_adjust_gamma_greater_one(): """Verifying the output with expected results for gamma correction with gamma equal to two""" image = np.arange(0, 256, dtype=np.uint8).reshape((16, 16)) # fmt: off expected = cp.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 11, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 23, 23, 24, 24, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 32, 32, 33, 34, 35, 35, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 46, 47, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 98, 99, 100, 102, 103, 104, 105, 107, 108, 109, 111, 112, 113, 115, 116, 117, 119, 120, 121, 123, 124, 126, 127, 128, 130, 131, 133, 134, 136, 137, 139, 140, 142, 143, 145, 146, 148, 149, 151, 152, 154, 155, 157, 158, 160, 162, 163, 165, 166, 168, 170, 171, 173, 175, 176, 178, 180, 181, 183, 185, 186, 188, 190, 192, 193, 195, 197, 199, 200, 202, 204, 206, 207, 209, 211, 213, 215, 217, 218, 220, 222, 224, 226, 228, 230, 232, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255] , dtype=cp.uint8).reshape((16, 16)) # fmt: on result = exposure.adjust_gamma(image, 2) assert_array_equal(result, expected) def test_adjust_gamma_neggative(): image = cp.arange(0, 255, 4, cp.uint8).reshape((8, 8)) with pytest.raises(ValueError): exposure.adjust_gamma(image, -1) def test_adjust_gamma_u8_overflow(): img = 255 * cp.ones((2, 2), dtype=np.uint8) assert cp.all(exposure.adjust_gamma(img, gamma=1, gain=1.1) == 255) # Test Logarithmic Correction # =========================== @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_adjust_log_1x1_shape(dtype): """Check that the shape is maintained""" img = cp.ones([1, 1], dtype=dtype) result = exposure.adjust_log(img, 1) assert img.shape == result.shape assert result.dtype == dtype def test_adjust_log(): """Verifying the output with expected results for logarithmic correction with multiplier constant multiplier equal to unity""" image = cp.arange(0, 255, 4, cp.uint8).reshape((8, 8)) # fmt: off expected = cp.array([ [ 0, 5, 11, 16, 22, 27, 33, 38], # noqa [ 43, 48, 53, 58, 63, 68, 73, 77], # noqa [ 82, 86, 91, 95, 100, 104, 109, 113], # noqa [117, 121, 125, 129, 133, 137, 141, 145], [149, 153, 157, 160, 164, 168, 172, 175], [179, 182, 186, 189, 193, 196, 199, 203], [206, 209, 213, 216, 219, 222, 225, 228], [231, 234, 238, 241, 244, 246, 249, 252]], dtype=cp.uint8) # fmt: on result = exposure.adjust_log(image, 1) assert_array_equal(result, expected) def test_adjust_inv_log(): """Verifying the output with expected results for inverse logarithmic correction with multiplier constant multiplier equal to unity""" image = cp.arange(0, 255, 4, cp.uint8).reshape((8, 8)) # fmt: off expected = cp.array([ [ 0, 2, 5, 8, 11, 14, 17, 20], # noqa [ 23, 26, 29, 32, 35, 38, 41, 45], # noqa [ 48, 51, 55, 58, 61, 65, 68, 72], # noqa [ 76, 79, 83, 87, 90, 94, 98, 102], # noqa [106, 110, 114, 118, 122, 126, 130, 134], [138, 143, 147, 151, 156, 160, 165, 170], [174, 179, 184, 188, 193, 198, 203, 208], [213, 218, 224, 229, 234, 239, 245, 250]], dtype=cp.uint8) # fmt: on result = exposure.adjust_log(image, 1, True) assert_array_equal(result, expected) # Test Sigmoid Correction # ======================= @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_adjust_sigmoid_1x1_shape(dtype): """Check that the shape is maintained""" img = cp.ones([1, 1], dtype=dtype) result = exposure.adjust_sigmoid(img, 1, 5) assert img.shape == result.shape assert result.dtype == dtype def test_adjust_sigmoid_cutoff_one(): """Verifying the output with expected results for sigmoid correction with cutoff equal to one and gain of 5""" image = cp.arange(0, 255, 4, cp.uint8).reshape((8, 8)) # fmt: off expected = cp.array([ [ 1, 1, 1, 2, 2, 2, 2, 2], # noqa [ 3, 3, 3, 4, 4, 4, 5, 5], # noqa [ 5, 6, 6, 7, 7, 8, 9, 10], # noqa [ 10, 11, 12, 13, 14, 15, 16, 18], # noqa [ 19, 20, 22, 24, 25, 27, 29, 32], # noqa [ 34, 36, 39, 41, 44, 47, 50, 54], # noqa [ 57, 61, 64, 68, 72, 76, 80, 85], # noqa [ 89, 94, 99, 104, 108, 113, 118, 123]], dtype=cp.uint8) # noqa # fmt: on result = exposure.adjust_sigmoid(image, 1, 5) assert_array_equal(result, expected) def test_adjust_sigmoid_cutoff_zero(): """Verifying the output with expected results for sigmoid correction with cutoff equal to zero and gain of 10""" image = cp.arange(0, 255, 4, cp.uint8).reshape((8, 8)) # fmt: off expected = cp.array([ [127, 137, 147, 156, 166, 175, 183, 191], [198, 205, 211, 216, 221, 225, 229, 232], [235, 238, 240, 242, 244, 245, 247, 248], [249, 250, 250, 251, 251, 252, 252, 253], [253, 253, 253, 253, 254, 254, 254, 254], [254, 254, 254, 254, 254, 254, 254, 254], [254, 254, 254, 254, 254, 254, 254, 254], [254, 254, 254, 254, 254, 254, 254, 254]], dtype=cp.uint8) # fmt: on result = exposure.adjust_sigmoid(image, 0, 10) assert_array_equal(result, expected) def test_adjust_sigmoid_cutoff_half(): """Verifying the output with expected results for sigmoid correction with cutoff equal to half and gain of 10""" image = cp.arange(0, 255, 4, cp.uint8).reshape((8, 8)) # fmt: off expected = cp.array([ [ 1, 1, 2, 2, 3, 3, 4, 5], # noqa [ 5, 6, 7, 9, 10, 12, 14, 16], # noqa [ 19, 22, 25, 29, 34, 39, 44, 50], # noqa [ 57, 64, 72, 80, 89, 99, 108, 118], # noqa [128, 138, 148, 158, 167, 176, 184, 192], [199, 205, 211, 217, 221, 226, 229, 233], [236, 238, 240, 242, 244, 246, 247, 248], [249, 250, 250, 251, 251, 252, 252, 253]], dtype=cp.uint8) # fmt: on result = exposure.adjust_sigmoid(image, 0.5, 10) assert_array_equal(result, expected) def test_adjust_inv_sigmoid_cutoff_half(): """Verifying the output with expected results for inverse sigmoid correction with cutoff equal to half and gain of 10""" image = cp.arange(0, 255, 4, cp.uint8).reshape((8, 8)) # fmt: off expected = cp.array([ [253, 253, 252, 252, 251, 251, 250, 249], [249, 248, 247, 245, 244, 242, 240, 238], [235, 232, 229, 225, 220, 215, 210, 204], [197, 190, 182, 174, 165, 155, 146, 136], [126, 116, 106, 96, 87, 78, 70, 62], # noqa [ 55, 49, 43, 37, 33, 28, 25, 21], # noqa [ 18, 16, 14, 12, 10, 8, 7, 6], # noqa [ 5, 4, 4, 3, 3, 2, 2, 1]], dtype=cp.uint8) # noqa # fmt: on result = exposure.adjust_sigmoid(image, 0.5, 10, True) assert_array_equal(result, expected) def test_is_low_contrast(): image = cp.linspace(0, 0.04, 100) assert exposure.is_low_contrast(image) image[-1] = 1 assert exposure.is_low_contrast(image) assert not exposure.is_low_contrast(image, upper_percentile=100) image = (image * 255).astype(cp.uint8) assert exposure.is_low_contrast(image) assert not exposure.is_low_contrast(image, upper_percentile=100) image = (image.astype(cp.uint16)) * 2**8 assert exposure.is_low_contrast(image) assert not exposure.is_low_contrast(image, upper_percentile=100) def test_is_low_contrast_boolean(): image = cp.zeros((8, 8), dtype=bool) assert exposure.is_low_contrast(image) image[:5] = 1 assert not exposure.is_low_contrast(image) # Test negative input ##################### @pytest.mark.parametrize( "exposure_func", [exposure.adjust_gamma, exposure.adjust_log, exposure.adjust_sigmoid], ) def test_negative_input(exposure_func): image = cp.arange(-10, 245, 4).reshape((8, 8)).astype(cp.float64) with pytest.raises(ValueError): exposure_func(image) # Test Dask Compatibility # ======================= # TODO: this Dask-based test case does not work (segfault!) # @pytest.mark.xfail(True, reason="dask case not currently supported") @pytest.mark.skip("dask case not currently supported") def test_dask_histogram(): pytest.importorskip("dask", reason="dask python library is not installed") import dask.array as da dask_array = da.from_array(cp.array([[0, 1], [1, 2]]), chunks=(1, 2)) output_hist, output_bins = exposure.histogram(dask_array) expected_bins = [0, 1, 2] expected_hist = [1, 2, 1] assert cp.allclose(expected_bins, output_bins) assert cp.allclose(expected_hist, output_hist)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/exposure
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/exposure/tests/test_histogram_matching.py
import cupy as cp import numpy as np import pytest from cupy.testing import assert_array_almost_equal from skimage import data from cucim.skimage import exposure from cucim.skimage._shared.utils import _supported_float_type from cucim.skimage.exposure import histogram_matching @pytest.mark.parametrize( "array, template, expected_array", [ (cp.arange(10), cp.arange(100), cp.arange(9, 100, 10)), (cp.random.rand(4), cp.ones(3), cp.ones(4)), ], ) def test_match_array_values(array, template, expected_array): # when matched = histogram_matching._match_cumulative_cdf(array, template) # then assert_array_almost_equal(matched, expected_array) class TestMatchHistogram: image_rgb = cp.asarray(data.chelsea()) template_rgb = cp.asarray(data.astronaut()) @pytest.mark.parametrize("channel_axis", (0, 1, -1)) def test_match_histograms_channel_axis(self, channel_axis): """Assert that pdf of matched image is close to the reference's pdf for all channels and all values of matched""" image = cp.moveaxis(self.image_rgb, -1, channel_axis) reference = cp.moveaxis(self.template_rgb, -1, channel_axis) matched = exposure.match_histograms( image, reference, channel_axis=channel_axis ) assert matched.dtype == image.dtype matched = cp.moveaxis(matched, channel_axis, -1) reference = cp.moveaxis(reference, channel_axis, -1) matched = cp.asnumpy(matched) reference = cp.asnumpy(reference) matched_pdf = self._calculate_image_empirical_pdf(matched) reference_pdf = self._calculate_image_empirical_pdf(reference) for channel in range(len(matched_pdf)): reference_values, reference_quantiles = reference_pdf[channel] matched_values, matched_quantiles = matched_pdf[channel] for i, matched_value in enumerate(matched_values): closest_id = (np.abs(reference_values - matched_value)).argmin() assert_array_almost_equal( matched_quantiles[i], reference_quantiles[closest_id], decimal=1, ) @pytest.mark.parametrize("dtype", [cp.float16, cp.float32, cp.float64]) def test_match_histograms_float_dtype(self, dtype): """float16 or float32 inputs give float32 output""" image = self.image_rgb.astype(dtype, copy=False) reference = self.template_rgb.astype(dtype, copy=False) matched = exposure.match_histograms(image, reference) assert matched.dtype == _supported_float_type(dtype) @pytest.mark.parametrize( "image, reference", [ (image_rgb, template_rgb[:, :, 0]), (image_rgb[:, :, 0], template_rgb), ], ) def test_raises_value_error_on_channels_mismatch(self, image, reference): with pytest.raises(ValueError): exposure.match_histograms(image, reference) @classmethod def _calculate_image_empirical_pdf(cls, image): """Helper function for calculating empirical probability density function of a given image for all channels""" if image.ndim > 2: image = image.transpose(2, 0, 1) channels = np.array(image, copy=False, ndmin=3) channels_pdf = [] for channel in channels: channel_values, counts = np.unique(channel, return_counts=True) channel_quantiles = np.cumsum(counts).astype(np.float64) channel_quantiles /= channel_quantiles[-1] channels_pdf.append((channel_values, channel_quantiles)) return np.asarray(channels_pdf, dtype=object) def test_match_histograms_consistency(self): """ensure equivalent results for float and integer-based code paths""" image_u8 = self.image_rgb reference_u8 = self.template_rgb image_f64 = self.image_rgb.astype(np.float64) reference_f64 = self.template_rgb.astype(np.float64, copy=False) matched_u8 = exposure.match_histograms(image_u8, reference_u8) matched_f64 = exposure.match_histograms(image_f64, reference_f64) assert_array_almost_equal( matched_u8.astype(np.float64), matched_f64, decimal=5 )
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/data/_binary_blobs.py
import cupy as cp from .._shared.filters import gaussian from .._shared.utils import deprecate_kwarg @deprecate_kwarg( {"seed": "rng"}, deprecated_version="23.12.00", removed_version="24.12.00" ) def binary_blobs( length=512, blob_size_fraction=0.1, n_dim=2, volume_fraction=0.5, rng=None ): """ Generate synthetic binary image with several rounded blob-like objects. Parameters ---------- length : int, optional Linear size of output image. blob_size_fraction : float, optional Typical linear size of blob, as a fraction of ``length``, should be smaller than 1. n_dim : int, optional Number of dimensions of output image. volume_fraction : float, default 0.5 Fraction of image pixels covered by the blobs (where the output is 1). Should be in [0, 1]. rng : {`cupy.random.Generator`, int}, optional Pseudo-random number generator. By default, a PCG64 generator is used (see :func:`cupy.random.default_rng`). If `rng` is an int, it is used to seed the generator. Returns ------- blobs : ndarray of bools Output binary image Notes ----- Warning: CuPy does not give identical randomly generated numbers as NumPy, so using a specific `rng` here will not give an identical pattern to the scikit-image implementation. The behavior for a given random seed may also change across CuPy major versions. See: https://docs.cupy.dev/en/stable/reference/random.html Examples -------- >>> from cucim.skimage import data >>> # tiny size (5, 5) >>> blobs = data.binary_blobs(length=5, blob_size_fraction=0.2) >>> # larger size >>> blobs = data.binary_blobs(length=256, blob_size_fraction=0.1) >>> # Finer structures >>> blobs = data.binary_blobs(length=256, blob_size_fraction=0.05) >>> # Blobs cover a smaller volume fraction of the image >>> blobs = data.binary_blobs(length=256, volume_fraction=0.3) """ # noqa: E501 rs = cp.random.default_rng(rng) shape = tuple([length] * n_dim) mask = cp.zeros(shape) n_pts = max(int(1.0 / blob_size_fraction) ** n_dim, 1) points = (length * rs.random((n_dim, n_pts))).astype(int) mask[tuple(indices for indices in points)] = 1 mask = gaussian(mask, sigma=0.25 * length * blob_size_fraction) threshold = cp.percentile(mask, 100 * (1 - volume_fraction)) return cp.logical_not(mask < threshold)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/data/__init__.py
import lazy_loader as lazy __getattr__, __dir__, __all__ = lazy.attach_stub(__name__, __file__)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/data/__init__.pyi
__all__ = [ "binary_blobs", ] from ._binary_blobs import binary_blobs
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/data
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/data/tests/test_data.py
import cupy as cp import pytest from numpy.testing import assert_almost_equal from cucim.skimage import data def test_binary_blobs(): blobs = data.binary_blobs(length=128) assert_almost_equal(blobs.mean(), 0.5, decimal=1) blobs = data.binary_blobs(length=128, volume_fraction=0.25) assert_almost_equal(blobs.mean(), 0.25, decimal=1) blobs = data.binary_blobs(length=32, volume_fraction=0.25, n_dim=3) assert_almost_equal(blobs.mean(), 0.25, decimal=1) other_realization = data.binary_blobs( length=32, volume_fraction=0.25, n_dim=3 ) assert not cp.all(blobs == other_realization) def test_binary_blobs_futurewarning(): with pytest.warns(FutureWarning): data.binary_blobs(length=128, seed=5)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_ndimage_interp_kernels.py
import cupy import numpy from cucim.skimage._vendored import ( _ndimage_spline_kernel_weights as _spline_kernel_weights, _ndimage_spline_prefilter_core as _spline_prefilter_core, _ndimage_util as _util, ) math_constants_preamble = r""" // workaround for HIP: line begins with #include #include <cupy/math_constants.h> """ spline_weights_inline = _spline_kernel_weights.spline_weights_inline def _get_coord_map(ndim, nprepad=0): """Extract target coordinate from coords array (for map_coordinates). Notes ----- Assumes the following variables have been initialized on the device:: coords (ndarray): array of shape (ncoords, ndim) containing the target coordinates. c_j: variables to hold the target coordinates computes:: c_j = coords[i + j * ncoords]; ncoords is determined by the size of the output array, y. y will be indexed by the CIndexer, _ind. Thus ncoords = _ind.size(); """ ops = [] ops.append("ptrdiff_t ncoords = _ind.size();") pre = f" + (W){nprepad}" if nprepad > 0 else "" for j in range(ndim): ops.append( f""" W c_{j} = coords[i + {j} * ncoords]{pre};""" ) return ops def _get_coord_zoom_and_shift(ndim, nprepad=0): """Compute target coordinate based on a shift followed by a zoom. This version zooms from the center of the edge pixels. Notes ----- Assumes the following variables have been initialized on the device:: in_coord[ndim]: array containing the source coordinate zoom[ndim]: array containing the zoom for each axis shift[ndim]: array containing the zoom for each axis computes:: c_j = zoom[j] * (in_coord[j] - shift[j]) """ ops = [] pre = f" + (W){nprepad}" if nprepad > 0 else "" for j in range(ndim): ops.append( f""" W c_{j} = zoom[{j}] * ((W)in_coord[{j}] - shift[{j}]){pre};""" ) return ops def _get_coord_zoom_and_shift_grid(ndim, nprepad=0): """Compute target coordinate based on a shift followed by a zoom. This version zooms from the outer edges of the grid pixels. Notes ----- Assumes the following variables have been initialized on the device:: in_coord[ndim]: array containing the source coordinate zoom[ndim]: array containing the zoom for each axis shift[ndim]: array containing the zoom for each axis computes:: c_j = zoom[j] * (in_coord[j] - shift[j] + 0.5) - 0.5 """ ops = [] pre = f" + (W){nprepad}" if nprepad > 0 else "" for j in range(ndim): ops.append( f""" W c_{j} = zoom[{j}] * ((W)in_coord[{j}] - shift[j] + 0.5) - 0.5{pre};""" ) return ops def _get_coord_zoom(ndim, nprepad=0): """Compute target coordinate based on a zoom. This version zooms from the center of the edge pixels. Notes ----- Assumes the following variables have been initialized on the device:: in_coord[ndim]: array containing the source coordinate zoom[ndim]: array containing the zoom for each axis computes:: c_j = zoom[j] * in_coord[j] """ ops = [] pre = f" + (W){nprepad}" if nprepad > 0 else "" for j in range(ndim): ops.append( f""" W c_{j} = zoom[{j}] * (W)in_coord[{j}]{pre};""" ) return ops def _get_coord_zoom_grid(ndim, nprepad=0): """Compute target coordinate based on a zoom (grid_mode=True version). This version zooms from the outer edges of the grid pixels. Notes ----- Assumes the following variables have been initialized on the device:: in_coord[ndim]: array containing the source coordinate zoom[ndim]: array containing the zoom for each axis computes:: c_j = zoom[j] * (in_coord[j] + 0.5) - 0.5 """ ops = [] pre = f" + (W){nprepad}" if nprepad > 0 else "" for j in range(ndim): ops.append( f""" W c_{j} = zoom[{j}] * ((W)in_coord[{j}] + 0.5) - 0.5{pre};""" ) return ops def _get_coord_shift(ndim, nprepad=0): """Compute target coordinate based on a shift. Notes ----- Assumes the following variables have been initialized on the device:: in_coord[ndim]: array containing the source coordinate shift[ndim]: array containing the zoom for each axis computes:: c_j = in_coord[j] - shift[j] """ ops = [] pre = f" + (W){nprepad}" if nprepad > 0 else "" for j in range(ndim): ops.append( f""" W c_{j} = (W)in_coord[{j}] - shift[{j}]{pre};""" ) return ops def _get_coord_affine(ndim, nprepad=0): """Compute target coordinate based on a homogeneous transformation matrix. The homogeneous matrix has shape (ndim, ndim + 1). It corresponds to affine matrix where the last row of the affine is assumed to be: ``[0] * ndim + [1]``. Notes ----- Assumes the following variables have been initialized on the device:: mat(array): array containing the (ndim, ndim + 1) transform matrix. in_coords(array): coordinates of the input For example, in 2D: c_0 = mat[0] * in_coords[0] + mat[1] * in_coords[1] + aff[2]; c_1 = mat[3] * in_coords[0] + mat[4] * in_coords[1] + aff[5]; """ ops = [] pre = f" + (W){nprepad}" if nprepad > 0 else "" ncol = ndim + 1 for j in range(ndim): ops.append( f""" W c_{j} = (W)0.0;""" ) for k in range(ndim): ops.append( f""" c_{j} += mat[{ncol * j + k}] * (W)in_coord[{k}];""" ) ops.append( f""" c_{j} += mat[{ncol * j + ndim}]{pre};""" ) return ops def _unravel_loop_index(shape, uint_t="unsigned int"): """ declare a multi-index array in_coord and unravel the 1D index, i into it. This code assumes that the array is a C-ordered array. """ ndim = len(shape) code = [ f""" {uint_t} in_coord[{ndim}]; {uint_t} s, t, idx = i;""" ] for j in range(ndim - 1, 0, -1): code.append( f""" s = {shape[j]}; t = idx / s; in_coord[{j}] = idx - t * s; idx = t;""" ) code.append( """ in_coord[0] = idx;""" ) return "\n".join(code) def _generate_interp_custom( coord_func, ndim, large_int, yshape, mode, cval, order, name="", integer_output=False, nprepad=0, omit_in_coord=False, ): """ Args: coord_func (function): generates code to do the coordinate transformation. See for example, `_get_coord_shift`. ndim (int): The number of dimensions. large_int (bool): If true use Py_ssize_t instead of int for indexing. yshape (tuple): Shape of the output array. mode (str): Signal extension mode to use at the array boundaries cval (float): constant value used when `mode == 'constant'`. name (str): base name for the interpolation kernel integer_output (bool): boolean indicating whether the output has an integer type. nprepad (int): integer indicating the amount of prepadding at the boundaries. Returns: operation (str): code body for the ElementwiseKernel name (str): name for the ElementwiseKernel """ ops = [] internal_dtype = "double" if integer_output else "Y" ops.append(f"{internal_dtype} out = 0.0;") if large_int: uint_t = "size_t" int_t = "ptrdiff_t" else: uint_t = "unsigned int" int_t = "int" # determine strides for x along each axis for j in range(ndim): ops.append(f"const {int_t} xsize_{j} = x.shape()[{j}];") ops.append(f"const {uint_t} sx_{ndim - 1} = 1;") for j in range(ndim - 1, 0, -1): ops.append(f"const {uint_t} sx_{j - 1} = sx_{j} * xsize_{j};") if not omit_in_coord: # create in_coords array to store the unraveled indices ops.append(_unravel_loop_index(yshape, uint_t)) # compute the transformed (target) coordinates, c_j ops = ops + coord_func(ndim, nprepad) if cval is numpy.nan: cval = "(Y)CUDART_NAN" elif cval == numpy.inf: cval = "(Y)CUDART_INF" elif cval == -numpy.inf: cval = "(Y)(-CUDART_INF)" else: cval = f"({internal_dtype}){cval}" if mode == "constant": # use cval if coordinate is outside the bounds of x _cond = " || ".join( [f"(c_{j} < 0) || (c_{j} > xsize_{j} - 1)" for j in range(ndim)] ) ops.append( f""" if ({_cond}) {{ out = {cval}; }} else {{""" ) if order == 0: if mode == "wrap": ops.append("double dcoord;") # mode 'wrap' requires this to work for j in range(ndim): # determine nearest neighbor if mode == "wrap": ops.append( f""" dcoord = c_{j};""" ) else: ops.append( f""" {int_t} cf_{j} = ({int_t})floor((double)c_{j} + 0.5);""" ) # handle boundary if mode != "constant": if mode == "wrap": ixvar = "dcoord" float_ix = True else: ixvar = f"cf_{j}" float_ix = False ops.append( _util._generate_boundary_condition_ops( mode, ixvar, f"xsize_{j}", int_t, float_ix ) ) if mode == "wrap": ops.append( f""" {int_t} cf_{j} = ({int_t})floor(dcoord + 0.5);""" ) # sum over ic_j will give the raveled coordinate in the input ops.append( f""" {int_t} ic_{j} = cf_{j} * sx_{j};""" ) _coord_idx = " + ".join([f"ic_{j}" for j in range(ndim)]) if mode == "grid-constant": _cond = " || ".join([f"(ic_{j} < 0)" for j in range(ndim)]) ops.append( f""" if ({_cond}) {{ out = {cval}; }} else {{ out = ({internal_dtype})x[{_coord_idx}]; }}""" ) else: ops.append( f""" out = ({internal_dtype})x[{_coord_idx}];""" ) elif order == 1: for j in range(ndim): # get coordinates for linear interpolation along axis j ops.append( f""" {int_t} cf_{j} = ({int_t})floor((double)c_{j}); {int_t} cc_{j} = cf_{j} + 1; {int_t} n_{j} = (c_{j} == cf_{j}) ? 1 : 2; // points needed """ ) if mode == "wrap": ops.append( f""" double dcoordf = c_{j}; double dcoordc = c_{j} + 1;""" ) else: # handle boundaries for extension modes. ops.append( f""" {int_t} cf_bounded_{j} = cf_{j}; {int_t} cc_bounded_{j} = cc_{j};""" ) if mode != "constant": if mode == "wrap": ixvar = "dcoordf" float_ix = True else: ixvar = f"cf_bounded_{j}" float_ix = False ops.append( _util._generate_boundary_condition_ops( mode, ixvar, f"xsize_{j}", int_t, float_ix ) ) ixvar = "dcoordc" if mode == "wrap" else f"cc_bounded_{j}" ops.append( _util._generate_boundary_condition_ops( mode, ixvar, f"xsize_{j}", int_t, float_ix ) ) if mode == "wrap": ops.append( f""" {int_t} cf_bounded_{j} = ({int_t})floor(dcoordf);; {int_t} cc_bounded_{j} = ({int_t})floor(dcoordf + 1);; """ ) ops.append( f""" for (int s_{j} = 0; s_{j} < n_{j}; s_{j}++) {{ W w_{j}; {int_t} ic_{j}; if (s_{j} == 0) {{ w_{j} = (W)cc_{j} - c_{j}; ic_{j} = cf_bounded_{j} * sx_{j}; }} else {{ w_{j} = c_{j} - (W)cf_{j}; ic_{j} = cc_bounded_{j} * sx_{j}; }}""" ) elif order > 1: if mode == "grid-constant": spline_mode = "constant" elif mode == "nearest": spline_mode = "nearest" else: spline_mode = _spline_prefilter_core._get_spline_mode(mode) # wx, wy are temporary variables used during spline weight computation ops.append( f""" W wx, wy; {int_t} start;""" ) for j in range(ndim): # determine weights along the current axis ops.append( f""" W weights_{j}[{order + 1}];""" ) ops.append(spline_weights_inline[order].format(j=j, order=order)) # get starting coordinate for spline interpolation along axis j if mode in ["wrap"]: ops.append(f"double dcoord = c_{j};") coord_var = "dcoord" ops.append( _util._generate_boundary_condition_ops( mode, coord_var, f"xsize_{j}", int_t, True ) ) else: coord_var = f"(double)c_{j}" if order & 1: op_str = """ start = ({int_t})floor({coord_var}) - {order_2};""" else: op_str = """ start = ({int_t})floor({coord_var} + 0.5) - {order_2};""" ops.append( op_str.format( int_t=int_t, coord_var=coord_var, order_2=order // 2 ) ) # set of coordinate values within spline footprint along axis j ops.append(f"""{int_t} ci_{j}[{order + 1}];""") for k in range(order + 1): ixvar = f"ci_{j}[{k}]" ops.append( f""" {ixvar} = start + {k};""" ) ops.append( _util._generate_boundary_condition_ops( spline_mode, ixvar, f"xsize_{j}", int_t ) ) # loop over the order + 1 values in the spline filter ops.append( f""" W w_{j}; {int_t} ic_{j}; for (int k_{j} = 0; k_{j} <= {order}; k_{j}++) {{ w_{j} = weights_{j}[k_{j}]; ic_{j} = ci_{j}[k_{j}] * sx_{j}; """ ) if order > 0: _weight = " * ".join([f"w_{j}" for j in range(ndim)]) _coord_idx = " + ".join([f"ic_{j}" for j in range(ndim)]) if mode == "grid-constant" or (order > 1 and mode == "constant"): _cond = " || ".join([f"(ic_{j} < 0)" for j in range(ndim)]) ops.append( f""" if ({_cond}) {{ out += {cval} * ({internal_dtype})({_weight}); }} else {{ {internal_dtype} val = ({internal_dtype})x[{_coord_idx}]; out += val * ({internal_dtype})({_weight}); }}""" ) else: ops.append( f""" {internal_dtype} val = ({internal_dtype})x[{_coord_idx}]; out += val * ({internal_dtype})({_weight});""" ) ops.append("}" * ndim) if mode == "constant": ops.append("}") if integer_output: ops.append("y = (Y)rint((double)out);") else: ops.append("y = (Y)out;") operation = "\n".join(ops) mode_str = mode.replace("-", "_") # avoid hyphen in kernel name name = "cupyx_scipy_ndimage_interpolate_{}_order{}_{}_{}d_y{}".format( name, order, mode_str, ndim, "_".join([f"{j}" for j in yshape]), ) if uint_t == "size_t": name += "_i64" return operation, name @cupy._util.memoize(for_each_device=True) def _get_map_kernel( ndim, large_int, yshape, mode, cval=0.0, order=1, integer_output=False, nprepad=0, ): in_params = "raw X x, raw W coords" out_params = "Y y" operation, name = _generate_interp_custom( coord_func=_get_coord_map, ndim=ndim, large_int=large_int, yshape=yshape, mode=mode, cval=cval, order=order, name="map", integer_output=integer_output, nprepad=nprepad, omit_in_coord=True, # input image coordinates are not needed ) return cupy.ElementwiseKernel( in_params, out_params, operation, name, preamble=math_constants_preamble ) @cupy._util.memoize(for_each_device=True) def _get_shift_kernel( ndim, large_int, yshape, mode, cval=0.0, order=1, integer_output=False, nprepad=0, ): in_params = "raw X x, raw W shift" out_params = "Y y" operation, name = _generate_interp_custom( coord_func=_get_coord_shift, ndim=ndim, large_int=large_int, yshape=yshape, mode=mode, cval=cval, order=order, name="shift", integer_output=integer_output, nprepad=nprepad, ) return cupy.ElementwiseKernel( in_params, out_params, operation, name, preamble=math_constants_preamble ) @cupy._util.memoize(for_each_device=True) def _get_zoom_shift_kernel( ndim, large_int, yshape, mode, cval=0.0, order=1, integer_output=False, grid_mode=False, nprepad=0, ): in_params = "raw X x, raw W shift, raw W zoom" out_params = "Y y" if grid_mode: zoom_shift_func = _get_coord_zoom_and_shift_grid else: zoom_shift_func = _get_coord_zoom_and_shift operation, name = _generate_interp_custom( coord_func=zoom_shift_func, ndim=ndim, large_int=large_int, yshape=yshape, mode=mode, cval=cval, order=order, name="zoom_shift_grid" if grid_mode else "zoom_shift", integer_output=integer_output, nprepad=nprepad, ) return cupy.ElementwiseKernel( in_params, out_params, operation, name, preamble=math_constants_preamble ) @cupy._util.memoize(for_each_device=True) def _get_zoom_kernel( ndim, large_int, yshape, mode, cval=0.0, order=1, integer_output=False, grid_mode=False, nprepad=0, ): in_params = "raw X x, raw W zoom" out_params = "Y y" operation, name = _generate_interp_custom( coord_func=_get_coord_zoom_grid if grid_mode else _get_coord_zoom, ndim=ndim, large_int=large_int, yshape=yshape, mode=mode, cval=cval, order=order, name="zoom_grid" if grid_mode else "zoom", integer_output=integer_output, nprepad=nprepad, ) return cupy.ElementwiseKernel( in_params, out_params, operation, name, preamble=math_constants_preamble ) @cupy._util.memoize(for_each_device=True) def _get_affine_kernel( ndim, large_int, yshape, mode, cval=0.0, order=1, integer_output=False, nprepad=0, ): in_params = "raw X x, raw W mat" out_params = "Y y" operation, name = _generate_interp_custom( coord_func=_get_coord_affine, ndim=ndim, large_int=large_int, yshape=yshape, mode=mode, cval=cval, order=order, name="affine", integer_output=integer_output, nprepad=nprepad, ) return cupy.ElementwiseKernel( in_params, out_params, operation, name, preamble=math_constants_preamble )
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_ndimage_spline_kernel_weights.py
"""Determination of spline kernel weights (adapted from SciPy) See more verbose comments for each case there: https://github.com/scipy/scipy/blob/eba29d69846ab1299976ff4af71c106188397ccc/scipy/ndimage/src/ni_splines.c#L7 ``spline_weights_inline`` is a dict where the key is the spline order and the value is the spline weight initialization code. """ # noqa: E501 spline_weights_inline = {} # Note: This order = 1 case is currently unused (order = 1 has a different code # path in _interp_kernels.py). I think that existing code is a bit more # efficient. spline_weights_inline[ 1 ] = """ wx = c_{j} - floor({order} & 1 ? c_{j} : c_{j} + 0.5); weights_{j}[0] = 1.0 - wx; weights_{j}[1] = wx; """ spline_weights_inline[ 2 ] = """ wx = c_{j} - floor({order} & 1 ? c_{j} : c_{j} + 0.5); weights_{j}[1] = 0.75 - wx * wx; wy = 0.5 - wx; weights_{j}[0] = 0.5 * wy * wy; weights_{j}[2] = 1.0 - weights_{j}[0] - weights_{j}[1]; """ spline_weights_inline[ 3 ] = """ wx = c_{j} - floor({order} & 1 ? c_{j} : c_{j} + 0.5); wy = 1.0 - wx; weights_{j}[1] = (wx * wx * (wx - 2.0) * 3.0 + 4.0) / 6.0; weights_{j}[2] = (wy * wy * (wy - 2.0) * 3.0 + 4.0) / 6.0; weights_{j}[0] = wy * wy * wy / 6.0; weights_{j}[3] = 1.0 - weights_{j}[0] - weights_{j}[1] - weights_{j}[2]; """ spline_weights_inline[ 4 ] = """ wx = c_{j} - floor({order} & 1 ? c_{j} : c_{j} + 0.5); wy = wx * wx; weights_{j}[2] = wy * (wy * 0.25 - 0.625) + 115.0 / 192.0; wy = 1.0 + wx; weights_{j}[1] = wy * (wy * (wy * (5.0 - wy) / 6.0 - 1.25) + 5.0 / 24.0) + 55.0 / 96.0; wy = 1.0 - wx; weights_{j}[3] = wy * (wy * (wy * (5.0 - wy) / 6.0 - 1.25) + 5.0 / 24.0) + 55.0 / 96.0; wy = 0.5 - wx; wy = wy * wy; weights_{j}[0] = wy * wy / 24.0; weights_{j}[4] = 1.0 - weights_{j}[0] - weights_{j}[1] - weights_{j}[2] - weights_{j}[3]; """ spline_weights_inline[ 5 ] = """ wx = c_{j} - floor({order} & 1 ? c_{j} : c_{j} + 0.5); wy = wx * wx; weights_{j}[2] = wy * (wy * (0.25 - wx / 12.0) - 0.5) + 0.55; wy = 1.0 - wx; wy = wy * wy; weights_{j}[3] = wy * (wy * (0.25 - (1.0 - wx) / 12.0) - 0.5) + 0.55; wy = wx + 1.0; weights_{j}[1] = wy * (wy * (wy * (wy * (wy / 24.0 - 0.375) + 1.25) - 1.75) + 0.625) + 0.425; wy = 2.0 - wx; weights_{j}[4] = wy * (wy * (wy * (wy * (wy / 24.0 - 0.375) + 1.25) - 1.75) + 0.625) + 0.425; wy = 1.0 - wx; wy = wy * wy; weights_{j}[0] = (1.0 - wx) * wy * wy / 120.0; weights_{j}[5] = 1.0 - weights_{j}[0] - weights_{j}[1] - weights_{j}[2] - weights_{j}[3] - weights_{j}[4]; """
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/signaltools.py
"""A vendored subset of cupyx.scipy.signal.signaltools Note: The version of ``choose_conv_method`` here differs from the one in CuPy and does not restrict the choice of fftconvolve to only 1D arrays. """ import timeit import warnings import cupy import numpy as np from cupyx.scipy.ndimage import rank_filter, uniform_filter from cucim import _misc from cucim.skimage._vendored import _signaltools_core as _st_core from cucim.skimage._vendored._ndimage_util import _fix_sequence_arg _prod = _misc.prod def convolve(in1, in2, mode="full", method="auto"): """Convolve two N-dimensional arrays. Convolve ``in1`` and ``in2``, with the output size determined by the ``mode`` argument. Args: in1 (cupy.ndarray): First input. in2 (cupy.ndarray): Second input. Should have the same number of dimensions as `in1`. mode (str): Indicates the size of the output: - ``'full'``: output is the full discrete linear convolution \ (default) - ``'valid'``: output consists only of those elements that do \ not rely on the zero-padding. Either ``in1`` or ``in2`` must \ be at least as large as the other in every dimension. - ``'same'``: - output is the same size as ``in1``, centered with \ respect to the ``'full'`` output method (str): Indicates which method to use for the computations: - ``'direct'``: The convolution is determined directly from sums, \ the definition of convolution - ``'fft'``: The Fourier Transform is used to perform the \ convolution by calling ``fftconvolve``. - ``'auto'``: Automatically choose direct of FFT based on an \ estimate of which is faster for the arguments (default). Returns: cupy.ndarray: the result of convolution. .. seealso:: :func:`cupyx.scipy.signal.choose_conv_method` .. seealso:: :func:`cupyx.scipy.signal.correlation` .. seealso:: :func:`cupyx.scipy.signal.fftconvolve` .. seealso:: :func:`cupyx.scipy.signal.oaconvolve` .. seealso:: :func:`cupyx.scipy.ndimage.convolve` .. seealso:: :func:`scipy.signal.convolve` .. note:: By default, ``convolve`` and ``correlate`` use ``method='auto'``, which calls ``choose_conv_method`` to choose the fastest method using pre-computed values. CuPy may not choose the same method to compute the convolution as SciPy does given the same inputs. """ return _correlate(in1, in2, mode, method, True) def correlate(in1, in2, mode="full", method="auto"): """Cross-correlate two N-dimensional arrays. Cross-correlate ``in1`` and ``in2``, with the output size determined by the ``mode`` argument. Args: in1 (cupy.ndarray): First input. in2 (cupy.ndarray): Second input. Should have the same number of dimensions as ``in1``. mode (str): Indicates the size of the output: - ``'full'``: output is the full discrete linear convolution \ (default) - ``'valid'``: output consists only of those elements that do \ not rely on the zero-padding. Either ``in1`` or ``in2`` must \ be at least as large as the other in every dimension. - ``'same'``: - output is the same size as ``in1``, centered with \ respect to the ``'full'`` output method (str): Indicates which method to use for the computations: - ``'direct'``: The convolution is determined directly from sums, \ the definition of convolution - ``'fft'``: The Fourier Transform is used to perform the \ convolution by calling ``fftconvolve``. - ``'auto'``: Automatically choose direct of FFT based on an \ estimate of which is faster for the arguments (default). Returns: cupy.ndarray: the result of correlation. .. seealso:: :func:`cupyx.scipy.signal.choose_conv_method` .. seealso:: :func:`cupyx.scipy.signal.convolve` .. seealso:: :func:`cupyx.scipy.signal.fftconvolve` .. seealso:: :func:`cupyx.scipy.signal.oaconvolve` .. seealso:: :func:`cupyx.scipy.ndimage.correlation` .. seealso:: :func:`scipy.signal.correlation` .. note:: By default, ``convolve`` and ``correlate`` use ``method='auto'``, which calls ``choose_conv_method`` to choose the fastest method using pre-computed values. CuPy may not choose the same method to compute the convolution as SciPy does given the same inputs. """ return _correlate(in1, in2, mode, method, False) def _correlate(in1, in2, mode="full", method="auto", convolution=False): quick_out = _st_core._check_conv_inputs(in1, in2, mode, convolution) if quick_out is not None: return quick_out if method not in ("auto", "direct", "fft"): raise ValueError('acceptable methods are "auto", "direct", or "fft"') if method == "auto": method = choose_conv_method(in1, in2, mode=mode) if method == "direct": return _st_core._direct_correlate( in1, in2, mode, in1.dtype, convolution ) # if method == 'fft': inputs_swapped = _st_core._inputs_swap_needed(mode, in1.shape, in2.shape) if inputs_swapped: in1, in2 = in2, in1 if not convolution: in2 = _st_core._reverse_and_conj(in2) out = fftconvolve(in1, in2, mode) result_type = cupy.result_type(in1, in2) if result_type.kind in "ui": out = out.round() out = out.astype(result_type, copy=False) if not convolution and inputs_swapped: out = cupy.ascontiguousarray(_st_core._reverse_and_conj(out)) return out def fftconvolve(in1, in2, mode="full", axes=None): """Convolve two N-dimensional arrays using FFT. Convolve ``in1`` and ``in2`` using the fast Fourier transform method, with the output size determined by the ``mode`` argument. This is generally much faster than the ``'direct'`` method of ``convolve`` for large arrays, but can be slower when only a few output values are needed, and can only output float arrays (int or object array inputs will be cast to float). Args: in1 (cupy.ndarray): First input. in2 (cupy.ndarray): Second input. Should have the same number of dimensions as ``in1``. mode (str): Indicates the size of the output: ``'full'``: output is the full discrete linear cross-correlation (default) ``'valid'``: output consists only of those elements that do not rely on the zero-padding. Either ``in1`` or ``in2`` must be at least as large as the other in every dimension. ``'same'``: output is the same size as ``in1``, centered with respect to the 'full' output axes (scalar or tuple of scalar or None): Axes over which to compute the convolution. The default is over all axes. Returns: cupy.ndarray: the result of convolution .. seealso:: :func:`cupyx.scipy.signal.choose_conv_method` .. seealso:: :func:`cupyx.scipy.signal.correlation` .. seealso:: :func:`cupyx.scipy.signal.convolve` .. seealso:: :func:`cupyx.scipy.signal.oaconvolve` .. seealso:: :func:`cupyx.scipy.ndimage.convolve` .. seealso:: :func:`scipy.signal.correlation` """ out = _st_core._check_conv_inputs(in1, in2, mode) if out is not None: return out in1, in2, axes = _st_core._init_freq_conv_axes(in1, in2, mode, axes, False) shape = [ max(x1, x2) if a not in axes else x1 + x2 - 1 for a, (x1, x2) in enumerate(zip(in1.shape, in2.shape)) ] out = _st_core._freq_domain_conv(in1, in2, axes, shape, calc_fast_len=True) return _st_core._apply_conv_mode(out, in1.shape, in2.shape, mode, axes) def _conv_ops(x_shape, h_shape, mode): """ Find the number of operations required for direct/fft methods of convolution. The direct operations were recorded by making a dummy class to record the number of operations by overriding ``__mul__`` and ``__add__``. The FFT operations rely on the (well-known) computational complexity of the FFT (and the implementation of ``_freq_domain_conv``). """ if mode == "full": out_shape = [n + k - 1 for n, k in zip(x_shape, h_shape)] elif mode == "valid": out_shape = [abs(n - k) + 1 for n, k in zip(x_shape, h_shape)] elif mode == "same": out_shape = x_shape else: raise ValueError( "Acceptable mode flags are 'valid'," " 'same', or 'full', not mode={}".format(mode) ) s1, s2 = x_shape, h_shape if len(x_shape) == 1: s1, s2 = s1[0], s2[0] if mode == "full": direct_ops = s1 * s2 elif mode == "valid": direct_ops = (s2 - s1 + 1) * s1 if s2 >= s1 else (s1 - s2 + 1) * s2 elif mode == "same": direct_ops = ( s1 * s2 if s1 < s2 else s1 * s2 - (s2 // 2) * ((s2 + 1) // 2) ) else: if mode == "full": direct_ops = min(_prod(s1), _prod(s2)) * _prod(out_shape) elif mode == "valid": direct_ops = min(_prod(s1), _prod(s2)) * _prod(out_shape) elif mode == "same": direct_ops = _prod(s1) * _prod(s2) full_out_shape = [n + k - 1 for n, k in zip(x_shape, h_shape)] N = _prod(full_out_shape) fft_ops = 3 * N * np.log(N) # 3 separate FFTs of size full_out_shape return fft_ops, direct_ops def _fftconv_faster(x, h, mode): """ See if using fftconvolve or convolve is faster. Parameters ---------- x : cupy.ndarray Signal h : cupy.ndarray Kernel mode : str Mode passed to convolve Returns ------- fft_faster : bool Notes ----- See docstring of `choose_conv_method` for details on tuning hardware. See pull request 11031 for more detail: https://github.com/scipy/scipy/pull/11031. """ fft_ops, direct_ops = _conv_ops(x.shape, h.shape, mode) offset = -1e-3 if x.ndim == 1 else -1e-4 constants = ( { "valid": (1.89095737e-9, 2.1364985e-10, offset), "full": (1.7649070e-9, 2.1414831e-10, offset), "same": (3.2646654e-9, 2.8478277e-10, offset) if h.size <= x.size else (3.21635404e-9, 1.1773253e-8, -1e-5), } if x.ndim == 1 else { "valid": (1.85927e-9, 2.11242e-8, offset), "full": (1.99817e-9, 1.66174e-8, offset), "same": (2.04735e-9, 1.55367e-8, offset), } ) O_fft, O_direct, O_offset = constants[mode] return O_fft * fft_ops < O_direct * direct_ops + O_offset def _numeric_arrays(arrays, kinds="buifc"): """ See if a list of arrays are all numeric. Parameters ---------- ndarrays : array or list of arrays arrays to check if numeric. numeric_kinds : string-like The dtypes of the arrays to be checked. If the dtype.kind of the ndarrays are not in this string the function returns False and otherwise returns True. """ if type(arrays) == cupy.ndarray: return arrays.dtype.kind in kinds for array_ in arrays: if array_.dtype.kind not in kinds: return False return True def _timeit_fast(stmt="pass", setup="pass", repeat=3): """ Returns the time the statement/function took, in seconds. Faster, less precise version of IPython's timeit. `stmt` can be a statement written as a string or a callable. Will do only 1 loop (like IPython's timeit) with no repetitions (unlike IPython) for very slow functions. For fast functions, only does enough loops to take 5 ms, which seems to produce similar results (on Windows at least), and avoids doing an extraneous cycle that isn't measured. """ timer = timeit.Timer(stmt, setup) # determine number of calls per rep so total time for 1 rep >= 5 ms x = 0 for p in range(0, 10): number = 10**p x = timer.timeit(number) # seconds if x >= 5e-3 / 10: # 5 ms for final test, 1/10th that for this one break if x > 1: # second # If it's macroscopic, don't bother with repetitions best = x else: number *= 10 r = timer.repeat(repeat, number) best = min(r) sec = best / number return sec # TODO: grlee77: tune this for CUDA when measure=False rather than falling # back to the choices made by SciPy def choose_conv_method(in1, in2, mode="full", measure=False): """ Find the fastest convolution/correlation method. This primarily exists to be called during the ``method='auto'`` option in `convolve` and `correlate`. It can also be used to determine the value of ``method`` for many different convolutions of the same dtype/shape. In addition, it supports timing the convolution to adapt the value of ``method`` to a particular set of inputs and/or hardware. Parameters ---------- in1 : array_like The first argument passed into the convolution function. in2 : array_like The second argument passed into the convolution function. mode : str {'full', 'valid', 'same'}, optional A string indicating the size of the output: ``full`` The output is the full discrete linear convolution of the inputs. (Default) ``valid`` The output consists only of those elements that do not rely on the zero-padding. ``same`` The output is the same size as `in1`, centered with respect to the 'full' output. measure : bool, optional If True, run and time the convolution of `in1` and `in2` with both methods and return the fastest. If False (default), predict the fastest method using precomputed values. Returns ------- method : str A string indicating which convolution method is fastest, either 'direct' or 'fft' times : dict, optional A dictionary containing the times (in seconds) needed for each method. This value is only returned if ``measure=True``. See Also -------- convolve correlate Notes ----- Generally, this method is 99% accurate for 2D signals and 85% accurate for 1D signals for randomly chosen input sizes. For precision, use ``measure=True`` to find the fastest method by timing the convolution. This can be used to avoid the minimal overhead of finding the fastest ``method`` later, or to adapt the value of ``method`` to a particular set of inputs. Experiments were run on an Amazon EC2 r5a.2xlarge machine to test this function. These experiments measured the ratio between the time required when using ``method='auto'`` and the time required for the fastest method (i.e., ``ratio = time_auto / min(time_fft, time_direct)``). In these experiments, we found: * There is a 95% chance of this ratio being less than 1.5 for 1D signals and a 99% chance of being less than 2.5 for 2D signals. * The ratio was always less than 2.5/5 for 1D/2D signals respectively. * This function is most inaccurate for 1D convolutions that take between 1 and 10 milliseconds with ``method='direct'``. A good proxy for this (at least in our experiments) is ``1e6 <= in1.size * in2.size <= 1e7``. The 2D results almost certainly generalize to 3D/4D/etc because the implementation is the same (the 1D implementation is different). All the numbers above are specific to the EC2 machine. However, we did find that this function generalizes fairly decently across hardware. The speed tests were of similar quality (and even slightly better) than the same tests performed on the machine to tune this function's numbers (a mid-2014 15-inch MacBook Pro with 16GB RAM and a 2.5GHz Intel i7 processor). There are cases when `fftconvolve` supports the inputs but this function returns `direct` (e.g., to protect against floating point integer precision). .. versionadded:: 22.02.00 Examples -------- Estimate the fastest method for a given input: >>> from cucim.skimage import _vendored as signal >>> img = cupy.random.rand(32, 32) >>> filter = cupy.random.rand(8, 8) >>> method = signal.choose_conv_method(img, filter, mode='same') >>> method 'fft' This can then be applied to other arrays of the same dtype and shape: >>> img2 = cupy.random.rand(32, 32) >>> filter2 = cupy.random.rand(8, 8) >>> corr2 = signal.correlate(img2, filter2, mode='same', method=method) >>> conv2 = signal.convolve(img2, filter2, mode='same', method=method) The output of this function (``method``) works with `correlate` and `convolve`. """ volume = cupy.asarray(in1) kernel = cupy.asarray(in2) if measure: times = {} for method in ["fft", "direct"]: times[method] = _timeit_fast( lambda: convolve(volume, kernel, mode=mode, method=method) ) chosen_method = "fft" if times["fft"] < times["direct"] else "direct" return chosen_method, times # for integer input, # catch when more precision required than float provides (representing an # integer as float can lose precision in fftconvolve if larger than 2**52) if any([_numeric_arrays([x], kinds="ui") for x in [volume, kernel]]): max_value = int(cupy.abs(volume).max()) * int(cupy.abs(kernel).max()) max_value *= int(min(volume.size, kernel.size)) if max_value > 2 ** np.finfo("float").nmant - 1: return "direct" if _numeric_arrays([volume, kernel], kinds="b"): return "direct" if _numeric_arrays([volume, kernel]): if _fftconv_faster(volume, kernel, mode): return "fft" return "direct" def convolve2d(in1, in2, mode="full", boundary="fill", fillvalue=0): """Convolve two 2-dimensional arrays. Convolve ``in1`` and ``in2`` with output size determined by ``mode``, and boundary conditions determined by ``boundary`` and ``fillvalue``. Args: in1 (cupy.ndarray): First input. in2 (cupy.ndarray): Second input. Should have the same number of dimensions as ``in1``. mode (str): Indicates the size of the output: - ``'full'``: output is the full discrete linear convolution \ (default) - ``'valid'``: output consists only of those elements that do \ not rely on the zero-padding. Either ``in1`` or ``in2`` must \ be at least as large as the other in every dimension. - ``'same'``: - output is the same size as ``in1``, centered with \ respect to the ``'full'`` output boundary (str): Indicates how to handle boundaries: - ``fill``: pad input arrays with fillvalue (default) - ``wrap``: circular boundary conditions - ``symm``: symmetrical boundary conditions fillvalue (scalar): Value to fill pad input arrays with. Default is 0. Returns: cupy.ndarray: A 2-dimensional array containing a subset of the discrete linear convolution of ``in1`` with ``in2``. .. seealso:: :func:`cupyx.scipy.signal.convolve` .. seealso:: :func:`cupyx.scipy.signal.fftconvolve` .. seealso:: :func:`cupyx.scipy.signal.oaconvolve` .. seealso:: :func:`cupyx.scipy.signal.correlate2d` .. seealso:: :func:`cupyx.scipy.ndimage.convolve` .. seealso:: :func:`scipy.signal.convolve2d` """ return _correlate2d(in1, in2, mode, boundary, fillvalue, True) def correlate2d(in1, in2, mode="full", boundary="fill", fillvalue=0): """Cross-correlate two 2-dimensional arrays. Cross correlate ``in1`` and ``in2`` with output size determined by ``mode``, and boundary conditions determined by ``boundary`` and ``fillvalue``. Args: in1 (cupy.ndarray): First input. in2 (cupy.ndarray): Second input. Should have the same number of dimensions as ``in1``. mode (str): Indicates the size of the output: - ``'full'``: output is the full discrete linear convolution \ (default) - ``'valid'``: output consists only of those elements that do \ not rely on the zero-padding. Either ``in1`` or ``in2`` must \ be at least as large as the other in every dimension. - ``'same'``: - output is the same size as ``in1``, centered with \ respect to the ``'full'`` output boundary (str): Indicates how to handle boundaries: - ``fill``: pad input arrays with fillvalue (default) - ``wrap``: circular boundary conditions - ``symm``: symmetrical boundary conditions fillvalue (scalar): Value to fill pad input arrays with. Default is 0. Returns: cupy.ndarray: A 2-dimensional array containing a subset of the discrete linear cross-correlation of ``in1`` with ``in2``. Note: When using ``"same"`` mode with even-length inputs, the outputs of ``correlate`` and ``correlate2d`` differ: There is a 1-index offset between them. .. seealso:: :func:`cupyx.scipy.signal.correlate` .. seealso:: :func:`cupyx.scipy.signal.convolve2d` .. seealso:: :func:`cupyx.scipy.ndimage.correlate` .. seealso:: :func:`scipy.signal.correlate2d` """ return _correlate2d(in1, in2, mode, boundary, fillvalue, False) def _correlate2d(in1, in2, mode, boundary, fillvalue, convolution=False): if not (in1.ndim == in2.ndim == 2): raise ValueError( "{} inputs must both be 2-D arrays".format( "convolve2d" if convolution else "correlate2d" ) ) _boundaries = { "fill": "constant", "pad": "constant", "wrap": "wrap", "circular": "wrap", "symm": "reflect", "symmetric": "reflect", } boundary = _boundaries.get(boundary) if boundary is None: raise ValueError( 'Acceptable boundary flags are "fill" (or "pad"), ' '"circular" (or "wrap"), and ' '"symmetric" (or "symm").' ) quick_out = _st_core._check_conv_inputs(in1, in2, mode, convolution) if quick_out is not None: return quick_out return _st_core._direct_correlate( in1, in2, mode, in1.dtype, convolution, boundary, fillvalue, not convolution, ) def wiener(im, mysize=None, noise=None): """Perform a Wiener filter on an N-dimensional array. Apply a Wiener filter to the N-dimensional array `im`. Args: im (cupy.ndarray): An N-dimensional array. mysize (int or cupy.ndarray, optional): A scalar or an N-length list giving the size of the Wiener filter window in each dimension. Elements of mysize should be odd. If mysize is a scalar, then this scalar is used as the size in each dimension. noise (float, optional): The noise-power to use. If None, then noise is estimated as the average of the local variance of the input. Returns: cupy.ndarray: Wiener filtered result with the same shape as `im`. .. seealso:: :func:`scipy.signal.wiener` """ if im.dtype.kind == "c": # TODO: adding support for complex types requires ndimage filters # to support complex types (which they could easily if not for the # scipy compatibility requirement of forbidding complex and using # float64 intermediates) raise TypeError("complex types not currently supported") if mysize is None: mysize = 3 mysize = _fix_sequence_arg(mysize, im.ndim, "mysize", int) im = im.astype(float, copy=False) # Estimate the local mean local_mean = uniform_filter(im, mysize, mode="constant") # Estimate the local variance local_var = uniform_filter(im * im, mysize, mode="constant") local_var -= local_mean * local_mean # Estimate the noise power if needed. if noise is None: noise = local_var.mean() # Perform the filtering res = im - local_mean res *= 1 - noise / local_var res += local_mean return cupy.where(local_var < noise, local_mean, res) def order_filter(a, domain, rank): """Perform an order filter on an N-D array. Perform an order filter on the array in. The domain argument acts as a mask centered over each pixel. The non-zero elements of domain are used to select elements surrounding each input pixel which are placed in a list. The list is sorted, and the output for that pixel is the element corresponding to rank in the sorted list. Args: a (cupy.ndarray): The N-dimensional input array. domain (cupy.ndarray): A mask array with the same number of dimensions as `a`. Each dimension should have an odd number of elements. rank (int): A non-negative integer which selects the element from the sorted list (0 corresponds to the smallest element). Returns: cupy.ndarray: The results of the order filter in an array with the same shape as `a`. .. seealso:: :func:`cupyx.scipy.ndimage.rank_filter` .. seealso:: :func:`scipy.signal.order_filter` """ if a.dtype.kind in "bc" or a.dtype == cupy.float16: # scipy doesn't support these types raise ValueError("data type not supported") if any(x % 2 != 1 for x in domain.shape): raise ValueError( "Each dimension of domain argument " " should have an odd number of elements." ) return rank_filter(a, rank, footprint=domain, mode="constant") def medfilt(volume, kernel_size=None): """Perform a median filter on an N-dimensional array. Apply a median filter to the input array using a local window-size given by `kernel_size`. The array will automatically be zero-padded. Args: volume (cupy.ndarray): An N-dimensional input array. kernel_size (int or list of ints): Gives the size of the median filter window in each dimension. Elements of `kernel_size` should be odd. If `kernel_size` is a scalar, then this scalar is used as the size in each dimension. Default size is 3 for each dimension. Returns: cupy.ndarray: An array the same size as input containing the median filtered result. .. seealso:: :func:`cupyx.scipy.ndimage.median_filter` .. seealso:: :func:`scipy.signal.medfilt` """ if volume.dtype.kind == "c": # scipy doesn't support complex # (and rank_filter raise TypeError) raise ValueError("complex types not supported") # output is forced to float64 to match scipy kernel_size = _get_kernel_size(kernel_size, volume.ndim) if any(k > s for k, s in zip(kernel_size, volume.shape)): warnings.warn( "kernel_size exceeds volume extent: " "volume will be zero-padded" ) size = np.prod(kernel_size) return rank_filter( volume, size // 2, size=kernel_size, output=float, mode="constant" ) def medfilt2d(input, kernel_size=3): """Median filter a 2-dimensional array. Apply a median filter to the `input` array using a local window-size given by `kernel_size` (must be odd). The array is zero-padded automatically. Args: input (cupy.ndarray): A 2-dimensional input array. kernel_size (int of list of ints of length 2): Gives the size of the median filter window in each dimension. Elements of `kernel_size` should be odd. If `kernel_size` is a scalar, then this scalar is used as the size in each dimension. Default is a kernel of size (3, 3). Returns: cupy.ndarray: An array the same size as input containing the median filtered result. See also -------- .. seealso:: :func:`cupyx.scipy.ndimage.median_filter` .. seealso:: :func:`cupyx.scipy.signal.medfilt` .. seealso:: :func:`scipy.signal.medfilt2d` """ if input.dtype not in (cupy.uint8, cupy.float32, cupy.float64): # Scipy's version only supports uint8, float32, and float64 raise ValueError("only supports uint8, float32, and float64") if input.ndim != 2: raise ValueError("input must be 2d") kernel_size = _get_kernel_size(kernel_size, input.ndim) order = kernel_size[0] * kernel_size[1] // 2 return rank_filter(input, order, size=kernel_size, mode="constant") def _get_kernel_size(kernel_size, ndim): if kernel_size is None: kernel_size = (3,) * ndim kernel_size = _fix_sequence_arg(kernel_size, ndim, "kernel_size", int) if any((k % 2) != 1 for k in kernel_size): raise ValueError("Each element of kernel_size should be odd") return kernel_size
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/ndimage.py
# locally defined filters that are more efficient than in CuPy # measurements # fourier filters # additional filters from cupyx.scipy.ndimage import fourier_ellipsoid # NOQA from cupyx.scipy.ndimage import fourier_gaussian # NOQA from cupyx.scipy.ndimage import fourier_shift # NOQA from cupyx.scipy.ndimage import fourier_uniform # NOQA from cupyx.scipy.ndimage import generic_filter # NOQA from cupyx.scipy.ndimage import generic_filter1d # NOQA from cupyx.scipy.ndimage import label # NOQA from cucim.skimage._vendored._ndimage_filters import convolve # NOQA from cucim.skimage._vendored._ndimage_filters import convolve1d # NOQA from cucim.skimage._vendored._ndimage_filters import correlate # NOQA from cucim.skimage._vendored._ndimage_filters import correlate1d # NOQA from cucim.skimage._vendored._ndimage_filters import gaussian_filter # NOQA from cucim.skimage._vendored._ndimage_filters import gaussian_filter1d # NOQA from cucim.skimage._vendored._ndimage_filters import gaussian_laplace # NOQA from cucim.skimage._vendored._ndimage_filters import generic_laplace # NOQA from cucim.skimage._vendored._ndimage_filters import laplace # NOQA from cucim.skimage._vendored._ndimage_filters import maximum_filter # NOQA from cucim.skimage._vendored._ndimage_filters import maximum_filter1d # NOQA from cucim.skimage._vendored._ndimage_filters import median_filter # NOQA from cucim.skimage._vendored._ndimage_filters import minimum_filter # NOQA from cucim.skimage._vendored._ndimage_filters import minimum_filter1d # NOQA from cucim.skimage._vendored._ndimage_filters import percentile_filter # NOQA from cucim.skimage._vendored._ndimage_filters import prewitt # NOQA from cucim.skimage._vendored._ndimage_filters import rank_filter # NOQA from cucim.skimage._vendored._ndimage_filters import sobel # NOQA from cucim.skimage._vendored._ndimage_filters import uniform_filter # NOQA from cucim.skimage._vendored._ndimage_filters import uniform_filter1d # NOQA from cucim.skimage._vendored._ndimage_filters import ( # NOQA gaussian_gradient_magnitude, generic_gradient_magnitude, ) # interpolation from cucim.skimage._vendored._ndimage_interpolation import rotate # NOQA from cucim.skimage._vendored._ndimage_interpolation import shift # NOQA from cucim.skimage._vendored._ndimage_interpolation import spline_filter # NOQA from cucim.skimage._vendored._ndimage_interpolation import zoom # NOQA from cucim.skimage._vendored._ndimage_interpolation import ( # NOQA affine_transform, map_coordinates, spline_filter1d, ) # morphology from cucim.skimage._vendored._ndimage_morphology import binary_closing # NOQA from cucim.skimage._vendored._ndimage_morphology import binary_dilation # NOQA from cucim.skimage._vendored._ndimage_morphology import binary_erosion # NOQA from cucim.skimage._vendored._ndimage_morphology import binary_opening # NOQA from cucim.skimage._vendored._ndimage_morphology import black_tophat # NOQA from cucim.skimage._vendored._ndimage_morphology import grey_closing # NOQA from cucim.skimage._vendored._ndimage_morphology import grey_dilation # NOQA from cucim.skimage._vendored._ndimage_morphology import grey_erosion # NOQA from cucim.skimage._vendored._ndimage_morphology import grey_opening # NOQA from cucim.skimage._vendored._ndimage_morphology import white_tophat # NOQA from cucim.skimage._vendored._ndimage_morphology import ( # NOQA binary_fill_holes, binary_hit_or_miss, binary_propagation, generate_binary_structure, iterate_structure, morphological_gradient, morphological_laplace, ) # Import the rest of the cupyx.scipy.ndimage API here try: from cupyx.scipy.ndimage import sum_labels # NOQA except ImportError: from cupyx.scipy.ndimage import sum as sum_labels # NOQA from cupyx.scipy.ndimage import center_of_mass # NOQA from cupyx.scipy.ndimage import extrema # NOQA from cupyx.scipy.ndimage import histogram # NOQA from cupyx.scipy.ndimage import labeled_comprehension # NOQA from cupyx.scipy.ndimage import maximum # NOQA from cupyx.scipy.ndimage import maximum_position # NOQA from cupyx.scipy.ndimage import mean # NOQA from cupyx.scipy.ndimage import median # NOQA from cupyx.scipy.ndimage import minimum # NOQA from cupyx.scipy.ndimage import minimum_position # NOQA from cupyx.scipy.ndimage import standard_deviation # NOQA from cupyx.scipy.ndimage import variance # NOQA
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_ndimage_filters_core.py
"""A vendored subset of cupyx.scipy.ndimage._filters_core""" import warnings import cupy import numpy from cucim.skimage._vendored import ( _internal as internal, _ndimage_util as _util, ) def _origins_to_offsets(origins, w_shape): return tuple(x // 2 + o for x, o in zip(w_shape, origins)) def _check_size_footprint_structure( ndim, size, footprint, structure, stacklevel=3, force_footprint=False ): if structure is None and footprint is None: if size is None: raise RuntimeError("no footprint or filter size provided") sizes = _util._fix_sequence_arg(size, ndim, "size", int) if force_footprint: return None, cupy.ones(sizes, bool), None return sizes, None, None if size is not None: warnings.warn( "ignoring size because {} is set".format( "structure" if footprint is None else "footprint" ), UserWarning, stacklevel=stacklevel + 1, ) if footprint is not None: footprint = cupy.array(footprint, bool, True, "C") if not footprint.any(): raise ValueError("all-zero footprint is not supported") if structure is None: if not force_footprint and footprint.all(): if footprint.ndim != ndim: raise RuntimeError("size must have length equal to input rank") return footprint.shape, None, None return None, footprint, None structure = cupy.ascontiguousarray(structure) if footprint is None: footprint = cupy.ones(structure.shape, bool) return None, footprint, structure def _convert_1d_args(ndim, weights, origin, axis): if weights.ndim != 1 or weights.size < 1: raise RuntimeError("incorrect filter size") axis = internal._normalize_axis_index(axis, ndim) w_shape = [1] * ndim w_shape[axis] = weights.size weights = weights.reshape(w_shape) origins = [0] * ndim origins[axis] = _util._check_origin(origin, weights.size) return weights, tuple(origins) def _check_nd_args( input, weights, mode, origin, wghts_name="filter weights", sizes=None ): _util._check_mode(mode) if weights is not None: # Weights must always be less than 2 GiB if weights.nbytes >= (1 << 31): raise RuntimeError( "weights must be 2 GiB or less, use FFTs instead" ) weight_dims = [x for x in weights.shape if x != 0] if len(weight_dims) != input.ndim: raise RuntimeError( "{} array has incorrect shape".format(wghts_name) ) elif sizes is None: raise ValueError("must specify either weights array or sizes") else: weight_dims = sizes origins = _util._fix_sequence_arg(origin, len(weight_dims), "origin", int) for origin, width in zip(origins, weight_dims): _util._check_origin(origin, width) return tuple(origins), _util._get_inttype(input) def _run_1d_filters( filters, input, args, output, mode, cval, origin=0, **filter_kwargs ): """ Runs a series of 1D filters forming an nd filter. The filters must be a list of callables that take input, arg, axis, output, mode, cval, origin. The args is a list of values that are passed for the arg value to the filter. Individual filters can be None causing that axis to be skipped. """ output = _util._get_output(output, input) modes = _util._fix_sequence_arg(mode, input.ndim, "mode", _util._check_mode) # for filters, "wrap" is a synonym for "grid-wrap". modes = ["grid-wrap" if m == "wrap" else m for m in modes] origins = _util._fix_sequence_arg(origin, input.ndim, "origin", int) n_filters = sum(filter is not None for filter in filters) if n_filters == 0: output[:] = input return output # We can't operate in-place efficiently, so use a 2-buffer system temp = ( _util._get_output(output.dtype, input) if n_filters > 1 else None ) # noqa iterator = zip(filters, args, modes, origins) for axis, (fltr, arg, mode, origin) in enumerate(iterator): if fltr is None: continue else: break if n_filters % 2 == 0: fltr(input, arg, axis, temp, mode, cval, origin, **filter_kwargs) input = temp else: fltr(input, arg, axis, output, mode, cval, origin, **filter_kwargs) if n_filters == 1: return output input, output = output, temp for axis, (fltr, arg, mode, origin) in enumerate(iterator, start=axis + 1): if fltr is None: continue fltr(input, arg, axis, output, mode, cval, origin, **filter_kwargs) input, output = output, input return input def _call_kernel( kernel, input, weights, output, structure=None, weights_dtype=numpy.float64, structure_dtype=numpy.float64, ): """ Calls a constructed ElementwiseKernel. The kernel must take an input image, an optional array of weights, an optional array for the structure, and an output array. weights and structure can be given as None (structure defaults to None) in which case they are not passed to the kernel at all. If the output is given as None then it will be allocated in this function. This function deals with making sure that the weights and structure are contiguous and float64 (or bool for weights that are footprints)*, that the output is allocated and appriopately shaped. This also deals with the situation that the input and output arrays overlap in memory. * weights is always cast to float64 or bool in order to get an output compatible with SciPy, though float32 might be sufficient when input dtype is low precision. If weights_dtype is passed as weights.dtype then no dtype conversion will occur. The input and output are never converted. """ args = [input] complex_output = input.dtype.kind == "c" if weights is not None: weights = cupy.ascontiguousarray(weights, weights_dtype) complex_output = complex_output or weights.dtype.kind == "c" args.append(weights) if structure is not None: structure = cupy.ascontiguousarray(structure, structure_dtype) args.append(structure) output = _util._get_output(output, input, None, complex_output) # noqa needs_temp = cupy.shares_memory(output, input, "MAY_SHARE_BOUNDS") if needs_temp: output, temp = ( _util._get_output(output.dtype, input, None, complex_output), output, ) # noqa args.append(output) kernel(*args) if needs_temp: output[:] = temp output = temp return output _ndimage_includes = r""" #include <type_traits> // let Jitify handle this #include <cupy/math_constants.h> template<> struct std::is_floating_point<float16> : std::true_type {}; template<> struct std::is_signed<float16> : std::true_type {}; template<class T> struct std::is_signed<complex<T>> : std::is_signed<T> {}; """ _ndimage_CAST_FUNCTION = """ // Implements a casting function to make it compatible with scipy // Use like cast<to_type>(value) template <class B, class A> __device__ __forceinline__ typename std::enable_if<(!std::is_floating_point<A>::value || std::is_signed<B>::value), B>::type cast(A a) { return (B)a; } template <class B, class A> __device__ __forceinline__ typename std::enable_if<(std::is_floating_point<A>::value && (!std::is_signed<B>::value)), B>::type cast(A a) { return (a >= 0) ? (B)a : -(B)(-a); } template <class T> __device__ __forceinline__ bool nonzero(T x) { return x != static_cast<T>(0); } """ def _generate_nd_kernel( name, pre, found, post, mode, w_shape, int_type, offsets, cval, ctype="X", preamble="", options=(), has_weights=True, has_structure=False, has_mask=False, binary_morphology=False, all_weights_nonzero=False, ): # Currently this code uses CArray for weights but avoids using CArray for # the input data and instead does the indexing itself since it is faster. # If CArray becomes faster than follow the comments that start with # CArray: to switch over to using CArray for the input data as well. ndim = len(w_shape) in_params = "raw X x" if has_weights: in_params += ", raw W w" if has_structure: in_params += ", raw S s" if has_mask: in_params += ", raw M mask" out_params = "Y y" # for filters, "wrap" is a synonym for "grid-wrap" mode = "grid-wrap" if mode == "wrap" else mode # CArray: remove xstride_{j}=... from string size = ( "%s xsize_{j}=x.shape()[{j}], ysize_{j} = _raw_y.shape()[{j}]" ", xstride_{j}=x.strides()[{j}];" % int_type ) sizes = [size.format(j=j) for j in range(ndim)] inds = _util._generate_indices_ops(ndim, int_type, offsets) # CArray: remove expr entirely expr = " + ".join(["ix_{}".format(j) for j in range(ndim)]) ws_init = ws_pre = ws_post = "" if has_weights or has_structure: ws_init = "int iws = 0;" if has_structure: ws_pre = "S sval = s[iws];\n" if has_weights: ws_pre += "W wval = w[iws];\n" if not all_weights_nonzero: ws_pre += "if (nonzero(wval))" ws_post = "iws++;" loops = [] for j in range(ndim): if w_shape[j] == 1: # CArray: string becomes 'inds[{j}] = ind_{j};', remove (int_)type loops.append( "{{ {type} ix_{j} = ind_{j} * xstride_{j};".format( j=j, type=int_type ) ) else: boundary = _util._generate_boundary_condition_ops( mode, "ix_{}".format(j), "xsize_{}".format(j), int_type ) # CArray: last line of string becomes inds[{j}] = ix_{j}; loops.append( """ for (int iw_{j} = 0; iw_{j} < {wsize}; iw_{j}++) {{ {type} ix_{j} = ind_{j} + iw_{j}; {boundary} ix_{j} *= xstride_{j}; """.format( j=j, wsize=w_shape[j], boundary=boundary, type=int_type ) ) # CArray: string becomes 'x[inds]', no format call needed value = "(*(X*)&data[{expr}])".format(expr=expr) if mode == "constant": cond = " || ".join(["(ix_{} < 0)".format(j) for j in range(ndim)]) if cval is numpy.nan: cval = "CUDART_NAN" elif cval == numpy.inf: cval = "CUDART_INF" elif cval == -numpy.inf: cval = "-CUDART_INF" if binary_morphology: found = found.format(cond=cond, value=value) else: if mode == "constant": value = "(({cond}) ? cast<{ctype}>({cval}) : {value})".format( cond=cond, ctype=ctype, cval=cval, value=value ) found = found.format(value=value) # CArray: replace comment and next line in string with # {type} inds[{ndim}] = {{0}}; # and add ndim=ndim, type=int_type to format call operation = """ {sizes} {inds} // don't use a CArray for indexing (faster to deal with indexing ourselves) const unsigned char* data = (const unsigned char*)&x[0]; {ws_init} {pre} {loops} // inner-most loop {ws_pre} {{ {found} }} {ws_post} {end_loops} {post} """.format( sizes="\n".join(sizes), inds=inds, pre=pre, post=post, ws_init=ws_init, ws_pre=ws_pre, ws_post=ws_post, loops="\n".join(loops), found=found, end_loops="}" * ndim, ) mode_str = mode.replace("-", "_") # avoid potential hyphen in kernel name name = "cupyx_scipy_ndimage_{}_{}d_{}_w{}".format( name, ndim, mode_str, "_".join(["{}".format(x) for x in w_shape]) ) if all_weights_nonzero: name += "_all_nonzero" if int_type == "ptrdiff_t": name += "_i64" if has_structure: name += "_with_structure" if has_mask: name += "_with_mask" preamble = _ndimage_includes + _ndimage_CAST_FUNCTION + preamble options += ("--std=c++11", "-DCUPY_USE_JITIFY") return cupy.ElementwiseKernel( in_params, out_params, operation, name, reduce_dims=False, preamble=preamble, options=options, )
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_pearsonr.py
"""Implementation of cupyx.scipy.stats.pearsonr (currently missing in CuPy) Simple port of SciPy's pearsonr in scipy/stats/_stats_py.py. Note that this is based on the simpler implementation from SciPy<1.9 where the return type is just a 2-tuple of (statistic, p-value). In SciPy>=1.9, the return type changed to a PearsonRResult object that also has a `confidence_interval` method. Since we do not need that method in the cuCIM API, a simple tuple-based return is used """ import warnings import cupy as cp import numpy as np from scipy import special class PearsonRConstantInputWarning(RuntimeWarning): """Warning generated by `pearsonr` when an input is constant.""" def __init__(self, msg=None): if msg is None: msg = ( "An input array is constant; the correlation coefficient " "is not defined." ) self.args = (msg,) class PearsonRNearConstantInputWarning(RuntimeWarning): """Warning generated by `pearsonr` when an input is nearly constant.""" def __init__(self, msg=None): if msg is None: msg = ( "An input array is nearly constant; the computed " "correlation coefficient may be inaccurate." ) self.args = (msg,) # Note: adapted from scipy.stats._stats_py.pearsonr in SciPy 1.8.1 def pearsonr(x, y, *, disable_checks=False): r""" Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient [1]_ measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. (See Kowalski [3]_ for a discussion of the effects of non-normality of the input on the distribution of the correlation coefficient.) Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Parameters ---------- x : (N,) array_like Input array. y : (N,) array_like Input array. Returns ------- r : float Pearson's correlation coefficient. p-value : float Two-tailed p-value. Warns ----- PearsonRConstantInputWarning Raised if an input is a constant array. The correlation coefficient is not defined in this case, so ``cp.nan`` is returned. PearsonRNearConstantInputWarning Raised if an input is "nearly" constant. The array ``x`` is considered nearly constant if ``norm(x - mean(x)) < 1e-13 * abs(mean(x))``. Numerical errors in the calculation ``x - mean(x)`` in this case might result in an inaccurate calculation of r. See Also -------- spearmanr : Spearman rank-order correlation coefficient. kendalltau : Kendall's tau, a correlation measure for ordinal data. Notes ----- The correlation coefficient is calculated as follows: .. math:: r = \frac{\sum (x - m_x) (y - m_y)} {\sqrt{\sum (x - m_x)^2 \sum (y - m_y)^2}} where :math:`m_x` is the mean of the vector x and :math:`m_y` is the mean of the vector y. Under the assumption that x and y are drawn from independent normal distributions (so the population correlation coefficient is 0), the probability density function of the sample correlation coefficient r is ([1]_, [2]_): .. math:: f(r) = \frac{{(1-r^2)}^{n/2-2}}{\mathrm{B}(\frac{1}{2},\frac{n}{2}-1)} where n is the number of samples, and B is the beta function. This is sometimes referred to as the exact distribution of r. This is the distribution that is used in `pearsonr` to compute the p-value. The distribution is a beta distribution on the interval [-1, 1], with equal shape parameters a = b = n/2 - 1. In terms of SciPy's implementation of the beta distribution, the distribution of r is:: dist = scipy.stats.beta(n/2 - 1, n/2 - 1, loc=-1, scale=2) The p-value returned by `pearsonr` is a two-sided p-value. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. More precisely, for a given sample with correlation coefficient r, the p-value is the probability that abs(r') of a random sample x' and y' drawn from the population with zero correlation would be greater than or equal to abs(r). In terms of the object ``dist`` shown above, the p-value for a given r and length n can be computed as:: p = 2*dist.cdf(-abs(r)) When n is 2, the above continuous distribution is not well-defined. One can interpret the limit of the beta distribution as the shape parameters a and b approach a = b = 0 as a discrete distribution with equal probability masses at r = 1 and r = -1. More directly, one can observe that, given the data x = [x1, x2] and y = [y1, y2], and assuming x1 != x2 and y1 != y2, the only possible values for r are 1 and -1. Because abs(r') for any sample x' and y' with length 2 will be 1, the two-sided p-value for a sample of length 2 is always 1. References ---------- .. [1] "Pearson correlation coefficient", Wikipedia, https://en.wikipedia.org/wiki/Pearson_correlation_coefficient .. [2] Student, "Probable error of a correlation coefficient", Biometrika, Volume 6, Issue 2-3, 1 September 1908, pp. 302-310. .. [3] C. J. Kowalski, "On the Effects of Non-Normality on the Distribution of the Sample Product-Moment Correlation Coefficient" Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 21, No. 1 (1972), pp. 1-12. Examples -------- >>> from scipy import stats >>> stats.pearsonr([1, 2, 3, 4, 5], [10, 9, 2.5, 6, 4]) (-0.7426106572325057, 0.1505558088534455) There is a linear dependence between x and y if y = a + b*x + e, where a,b are constants and e is a random error term, assumed to be independent of x. For simplicity, assume that x is standard normal, a=0, b=1 and let e follow a normal distribution with mean zero and standard deviation s>0. >>> s = 0.5 >>> x = stats.norm.rvs(size=500) >>> e = stats.norm.rvs(scale=s, size=500) >>> y = x + e >>> stats.pearsonr(x, y) (0.9029601878969703, 8.428978827629898e-185) # may vary This should be close to the exact value given by >>> 1/cp.sqrt(1 + s**2) 0.8944271909999159 For s=0.5, we observe a high level of correlation. In general, a large variance of the noise reduces the correlation, while the correlation approaches one as the variance of the error goes to zero. It is important to keep in mind that no correlation does not imply independence unless (x, y) is jointly normal. Correlation can even be zero when there is a very simple dependence structure: if X follows a standard normal distribution, let y = abs(x). Note that the correlation between x and y is zero. Indeed, since the expectation of x is zero, cov(x, y) = E[x*y]. By definition, this equals E[x*abs(x)] which is zero by symmetry. The following lines of code illustrate this observation: >>> y = cp.abs(x) >>> stats.pearsonr(x, y) (-0.016172891856853524, 0.7182823678751942) # may vary A non-zero correlation coefficient can be misleading. For example, if X has a standard normal distribution, define y = x if x < 0 and y = 0 otherwise. A simple calculation shows that corr(x, y) = sqrt(2/Pi) = 0.797..., implying a high level of correlation: >>> y = cp.where(x < 0, x, 0) >>> stats.pearsonr(x, y) (0.8537091583771509, 3.183461621422181e-143) # may vary This is unintuitive since there is no dependence of x and y if x is larger than zero which happens in about half of the cases if we sample x and y. """ # inputs must be 1D n = len(x) if n != len(y): raise ValueError("x and y must have the same length.") if n < 2: raise ValueError("x and y must have length at least 2.") if not disable_checks: # If an input is constant, the correlation coefficient is not defined. if (x == x[0]).all() or (y == y[0]).all(): warnings.warn(PearsonRConstantInputWarning()) return cp.nan, cp.nan # dtype is the data type for the calculations. This expression ensures # that the data type is at least 64 bit floating point. It might have # more precision if the input is, for example, cp.longdouble. dtype = cp.result_type(x.dtype, y.dtype, float) if n == 2: # faster on host for such a small inputs x = cp.asnumpy(x) y = cp.asnumpy(y) return dtype(np.sign(x[1] - x[0]) * np.sign(y[1] - y[0])), 1.0 xmean = x.mean(dtype=dtype) ymean = y.mean(dtype=dtype) # By using `astype(dtype)`, we ensure that the intermediate calculations # use at least 64 bit floating point. xm = x.astype(dtype) - xmean ym = y.astype(dtype) - ymean # TODO: use cupyx.scipy.linalg.norm from CuPy once available # Unlike cp.linalg.norm or the expression sqrt((xm*xm).sum()), # scipy.linalg.norm(xm) does not overflow if xm is, for example, # [-5e210, 5e210, 3e200, -3e200] normxm = cp.linalg.norm(xm) normym = cp.linalg.norm(ym) if not disable_checks: threshold = 1e-13 if normxm < threshold * abs(xmean) or normym < threshold * abs(ymean): # If all the values in x (likewise y) are very close to the mean, # the loss of precision that occurs in the subtraction # xm = x - xmean might result in large errors in r. warnings.warn(PearsonRNearConstantInputWarning()) r = float(cp.dot(xm / normxm, ym / normym)) # Presumably, if abs(r) > 1, then it is only some small artifact of # floating point arithmetic. r = max(min(r, 1.0), -1.0) # As explained in the docstring, the p-value can be computed as # p = 2*dist.cdf(-abs(r)) # where dist is the beta distribution on [-1, 1] with shape parameters # a = b = n/2 - 1. `special.btdtr` is the CDF for the beta distribution # on [0, 1]. To use it, we make the transformation x = (r + 1)/2; the # shape parameters do not change. Then -abs(r) used in `cdf(-abs(r))` # becomes x = (-abs(r) + 1)/2 = 0.5*(1 - abs(r)). (r is cast to float64 # to avoid a TypeError raised by btdtr when r is higher precision.) ab = n / 2 - 1 # scalar valued, so use special.btdtr from SciPy, not CuPy prob = 2 * special.btdtr(ab, ab, 0.5 * (1.0 - abs(r))) if disable_checks: # warn only based on output values to avoid overhead of host/device # synchronization needed for the disabled checks above. if np.isnan(r) or np.isnan(prob): warnings.warn( "NaN encountered during Pearson R calculation. This may occur " "in same cases such as a nearly constant-valued input." ) return r, prob
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_ndimage_spline_prefilter_core.py
""" Spline poles and boundary handling implemented as in SciPy https://github.com/scipy/scipy/blob/ee6ae72f83a0995aeb34929aed881d3f36fccfda/scipy/ndimage/src/ni_splines.c """ # noqa: E501 import functools import math import operator import textwrap import cupy def get_poles(order): if order == 2: # sqrt(8.0) - 3.0 return (-0.171572875253809902396622551580603843,) elif order == 3: # sqrt(3.0) - 2.0 return (-0.267949192431122706472553658494127633,) elif order == 4: # sqrt(664.0 - sqrt(438976.0)) + sqrt(304.0) - 19.0 # sqrt(664.0 + sqrt(438976.0)) - sqrt(304.0) - 19.0 return ( -0.361341225900220177092212841325675255, -0.013725429297339121360331226939128204, ) elif order == 5: # sqrt(67.5 - sqrt(4436.25)) + sqrt(26.25) - 6.5 # sqrt(67.5 + sqrt(4436.25)) - sqrt(26.25) - 6.5 return ( -0.430575347099973791851434783493520110, -0.043096288203264653822712376822550182, ) else: raise ValueError("only order 2-5 supported") def get_gain(poles): return functools.reduce( operator.mul, [(1.0 - z) * (1.0 - 1.0 / z) for z in poles] ) def _causal_init_code(mode): """Code for causal initialization step of IIR filtering. c is a 1d array of length n and z is a filter pole """ code = f""" // causal init for mode={mode}""" if mode == "mirror": code += """ z_i = z; z_n_1 = pow(z, (P)(n - 1)); c[0] = c[0] + z_n_1 * c[(n - 1) * element_stride]; for (i = 1; i < min(n - 1, static_cast<idx_t>({n_boundary})); ++i) {{ c[0] += z_i * (c[i * element_stride] + z_n_1 * c[(n - 1 - i) * element_stride]); z_i *= z; }} c[0] /= 1 - z_n_1 * z_n_1;""" elif mode == "grid-wrap": code += """ z_i = z; for (i = 1; i < min(n, static_cast<idx_t>({n_boundary})); ++i) {{ c[0] += z_i * c[(n - i) * element_stride]; z_i *= z; }} c[0] /= 1 - z_i; /* z_i = pow(z, n) */""" elif mode == "reflect": code += """ z_i = z; z_n = pow(z, (P)n); c0 = c[0]; c[0] = c[0] + z_n * c[(n - 1) * element_stride]; for (i = 1; i < min(n, static_cast<idx_t>({n_boundary})); ++i) {{ c[0] += z_i * (c[i * element_stride] + z_n * c[(n - 1 - i) * element_stride]); z_i *= z; }} c[0] *= z / (1 - z_n * z_n); c[0] += c0;""" else: raise ValueError("invalid mode: {}".format(mode)) return code def _anticausal_init_code(mode): """Code for the anti-causal initialization step of IIR filtering. c is a 1d array of length n and z is a filter pole """ code = f""" // anti-causal init for mode={mode}""" if mode == "mirror": code += """ c[(n - 1) * element_stride] = ( z * c[(n - 2) * element_stride] + c[(n - 1) * element_stride]) * z / (z * z - 1);""" elif mode == "grid-wrap": code += """ z_i = z; for (i = 0; i < min(n - 1, static_cast<idx_t>({n_boundary})); ++i) {{ c[(n - 1) * element_stride] += z_i * c[i * element_stride]; z_i *= z; }} c[(n - 1) * element_stride] *= z / (z_i - 1); /* z_i = pow(z, n) */""" elif mode == "reflect": code += """ c[(n - 1) * element_stride] *= z / (z - 1);""" else: raise ValueError("invalid mode: {}".format(mode)) return code def _get_spline_mode(mode): """spline boundary mode for interpolation with order >= 2.""" if mode in ["mirror", "reflect", "grid-wrap"]: # exact analytic boundary conditions exist for these modes. return mode elif mode == "grid-mirror": # grid-mirror is a synonym for 'reflect' return "reflect" # No exact analytical spline boundary condition implemented. Reflect gives # lower error than using mirror or wrap for mode 'nearest'. Otherwise, a # mirror spline boundary condition is used. return "reflect" if mode == "nearest" else "mirror" def _get_spline1d_code(mode, poles, n_boundary): """Generates the code required for IIR filtering of a single 1d signal. Prefiltering is done by causal filtering followed by anti-causal filtering. Multiple boundary conditions have been implemented. """ code = [ """ __device__ void spline_prefilter1d( T* __restrict__ c, idx_t signal_length, idx_t element_stride) {{""" ] # variables common to all boundary modes code.append( """ idx_t i, n = signal_length; P z, z_i;""" ) # retrieve the spline boundary extension mode to use mode = _get_spline_mode(mode) if mode == "mirror": # variables specific to mirror boundary mode code.append( """ P z_n_1;""" ) elif mode == "reflect": # variables specific to reflect boundary mode code.append( """ P z_n; T c0;""" ) for pole in poles: code.append( f""" // select the current pole z = {pole};""" ) # initialize and apply the causal filter code.append(_causal_init_code(mode)) code.append( """ // apply the causal filter for the current pole for (i = 1; i < n; ++i) {{ c[i * element_stride] += z * c[(i - 1) * element_stride]; }}""" ) # initialize and apply the anti-causal filter code.append(_anticausal_init_code(mode)) code.append( """ // apply the anti-causal filter for the current pole for (i = n - 2; i >= 0; --i) {{ c[i * element_stride] = z * (c[(i + 1) * element_stride] - c[i * element_stride]); }}""" ) code += [ """ }}""" ] return textwrap.dedent("\n".join(code)).format(n_boundary=n_boundary) _FILTER_GENERAL = """ #include "cupy/carray.cuh" #include "cupy/complex.cuh" typedef {data_type} T; typedef {pole_type} P; typedef {index_type} idx_t; template <typename T> __device__ T* row( T* ptr, idx_t i, idx_t axis, idx_t ndim, const idx_t* shape) {{ idx_t index = 0, stride = 1; for (idx_t a = ndim - 1; a > 0; --a) {{ if (a != axis) {{ index += (i % shape[a]) * stride; i /= shape[a]; }} stride *= shape[a]; }} return ptr + index + stride * i; }} """ _batch_spline1d_strided_template = """ extern "C" __global__ __launch_bounds__({block_size}) void {kernel_name}(T* __restrict__ y, const idx_t* __restrict__ info) {{ const idx_t n_signals = info[0], n_samples = info[1], * __restrict__ shape = info+2; idx_t y_elem_stride = 1; for (int a = {ndim} - 1; a > {axis}; --a) {{ y_elem_stride *= shape[a]; }} idx_t unraveled_idx = blockDim.x * blockIdx.x + threadIdx.x; idx_t batch_idx = unraveled_idx; if (batch_idx < n_signals) {{ T* __restrict__ y_i = row(y, batch_idx, {axis}, {ndim}, shape); spline_prefilter1d(y_i, n_samples, y_elem_stride); }} }} """ @cupy.memoize(for_each_device=True) def get_raw_spline1d_kernel( axis, ndim, mode, order, index_type="int", data_type="double", pole_type="double", block_size=128, ): """Generate a kernel for applying a spline prefilter along a given axis.""" poles = get_poles(order) # determine number of samples for the boundary approximation # (SciPy uses n_boundary = n_samples but this is excessive) largest_pole = max([abs(p) for p in poles]) # tol < 1e-7 fails test cases comparing to SciPy at atol = rtol = 1e-5 tol = 1e-10 if pole_type == "float" else 1e-18 n_boundary = math.ceil(math.log(tol, largest_pole)) # headers and general utility function for extracting rows of data code = _FILTER_GENERAL.format( index_type=index_type, data_type=data_type, pole_type=pole_type ) # generate source for a 1d function for a given boundary mode and poles code += _get_spline1d_code(mode, poles, n_boundary) # generate code handling batch operation of the 1d filter mode_str = mode.replace("-", "_") # cannot have '-' in kernel name kernel_name = ( f"cupyx_scipy_ndimage_spline_filter_{ndim}d_ord{order}_" f"axis{axis}_{mode_str}" ) code += _batch_spline1d_strided_template.format( ndim=ndim, axis=axis, block_size=block_size, kernel_name=kernel_name ) return cupy.RawKernel(code, kernel_name)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_ndimage_util.py
"""A vendored subset of cupyx.scipy.ndimage._util""" import warnings import cupy import numpy def _is_integer_output(output, input): if output is None: return input.dtype.kind in "iu" elif isinstance(output, cupy.ndarray): return output.dtype.kind in "iu" return cupy.dtype(output).kind in "iu" def _check_cval(mode, cval, integer_output): if mode == "constant" and integer_output and not cupy.isfinite(cval): raise NotImplementedError( "Non-finite cval is not supported for " "outputs with integer dtype." ) def _get_weights_dtype(input, weights, use_cucim_casting=False): if weights.dtype.kind == "c" or input.dtype.kind == "c": return cupy.promote_types(input.real.dtype, cupy.complex64) elif weights.dtype.kind in "iub": if use_cucim_casting: from cucim.skimage._shared.utils import _supported_float_type return _supported_float_type(weights.dtype) else: # convert integer dtype weights to double as in SciPy return cupy.float64 return cupy.promote_types(input.real.dtype, cupy.float32) def _get_output(output, input, shape=None, complex_output=False): shape = input.shape if shape is None else shape if output is None: if complex_output: _dtype = cupy.promote_types(input.dtype, cupy.complex64) else: _dtype = input.dtype output = cupy.empty(shape, dtype=_dtype) elif isinstance(output, (type, cupy.dtype)): if complex_output and cupy.dtype(output).kind != "c": warnings.warn("promoting specified output dtype to complex") output = cupy.promote_types(output, cupy.complex64) output = cupy.empty(shape, dtype=output) elif isinstance(output, str): output = numpy.sctypeDict[output] if complex_output and cupy.dtype(output).kind != "c": raise RuntimeError("output must have complex dtype") output = cupy.empty(shape, dtype=output) elif output.shape != shape: raise RuntimeError("output shape not correct") elif complex_output and output.dtype.kind != "c": raise RuntimeError("output must have complex dtype") return output def _fix_sequence_arg(arg, ndim, name, conv=lambda x: x): if isinstance(arg, str): return [conv(arg)] * ndim try: arg = iter(arg) except TypeError: return [conv(arg)] * ndim lst = [conv(x) for x in arg] if len(lst) != ndim: msg = "{} must have length equal to input rank".format(name) raise RuntimeError(msg) return lst def _check_origin(origin, width): origin = int(origin) if (width // 2 + origin < 0) or (width // 2 + origin >= width): raise ValueError("invalid origin") return origin def _check_mode(mode): if mode not in ( "reflect", "constant", "nearest", "mirror", "wrap", "grid-mirror", "grid-wrap", "grid-reflect", ): msg = f"boundary mode not supported (actual: {mode})" raise RuntimeError(msg) return mode def _get_inttype(input): # The integer type to use for indices in the input array # The indices actually use byte positions and we can't just use # input.nbytes since that won't tell us the number of bytes between the # first and last elements when the array is non-contiguous nbytes = ( sum( (x - 1) * abs(stride) for x, stride in zip(input.shape, input.strides) ) + input.dtype.itemsize ) return "int" if nbytes < (1 << 31) else "ptrdiff_t" def _generate_boundary_condition_ops( mode, ix, xsize, int_t="int", float_ix=False, separate=False ): """Generate boundary conditions If separate = True, a pair of conditions for the (lower, upper) boundary are provided instead of a single expression. """ min_func = "fmin" if float_ix else "min" max_func = "fmax" if float_ix else "max" if mode in ["reflect", "grid-mirror"]: if separate: ops_upper = f""" {ix} %= {xsize} * 2; {ix} = {min_func}({ix}, 2 * {xsize} - 1 - {ix}); """ ops_lower = ( f""" if ({ix} < 0) {{ {ix} = - 1 -{ix}; }} """ + ops_upper ) ops = (ops_lower, ops_upper) else: ops = f""" if ({ix} < 0) {{ {ix} = - 1 -{ix}; }} {ix} %= {xsize} * 2; {ix} = {min_func}({ix}, 2 * {xsize} - 1 - {ix});""" elif mode == "mirror": if separate: temp1 = f""" if ({xsize} == 1) {{ {ix} = 0; }} else {{ """ temp2 = f""" if ({ix} < 0) {{ {ix} = -{ix}; }} """ temp3 = f""" {ix} = 1 + ({ix} - 1) % (({xsize} - 1) * 2); {ix} = {min_func}({ix}, 2 * {xsize} - 2 - {ix}); }}""" ops_lower = temp1 + temp2 + temp3 ops_upper = temp1 + temp3 ops = (ops_lower, ops_upper) else: ops = f""" if ({xsize} == 1) {{ {ix} = 0; }} else {{ if ({ix} < 0) {{ {ix} = -{ix}; }} {ix} = 1 + ({ix} - 1) % (({xsize} - 1) * 2); {ix} = {min_func}({ix}, 2 * {xsize} - 2 - {ix}); }}""" elif mode == "nearest": T = "int" if int_t == "int" else "long long" if separate: ops_lower = f"""{ix} = {max_func}(({T}){ix}, ({T})0);""" ops_upper = ( f"""{ix} = {min_func}(({T}){ix}, ({T})({xsize} - 1));""" # noqa ) ops = (ops_lower, ops_upper) else: ops = f"""{ix} = {min_func}({max_func}(({T}){ix}, ({T})0), ({T})({xsize} - 1));""" # noqa elif mode == "grid-wrap": if separate: ops_upper = f""" {ix} %= {xsize}; """ ops_lower = ( ops_upper + f""" while ({ix} < 0) {{ {ix} += {xsize}; }}""" ) ops = (ops_lower, ops_upper) else: ops = f""" {ix} %= {xsize}; if ({ix} < 0) {{ {ix} += {xsize}; }}""" elif mode == "wrap": if separate: ops_lower = f"""{ix} += ({xsize} - 1) * (({int_t})(-{ix} / ({xsize} - 1)) + 1);""" # noqa ops_upper = f"""{ix} -= ({xsize} - 1) * ({int_t})({ix} / ({xsize} - 1));""" # noqa ops = (ops_lower, ops_upper) else: ops = f""" if ({ix} < 0) {{ {ix} += ({xsize} - 1) * (({int_t})(-{ix} / ({xsize} - 1)) + 1); }} else if ({ix} > ({xsize} - 1)) {{ {ix} -= ({xsize} - 1) * ({int_t})({ix} / ({xsize} - 1)); }};""" elif mode in ["constant", "grid-constant"]: if separate: ops_lower = f""" if ({ix} < 0) {{ {ix} = -1; }}""" ops_upper = f""" if ({ix} >= {xsize}) {{ {ix} = -1; }}""" ops = (ops_lower, ops_upper) else: ops = f""" if (({ix} < 0) || {ix} >= {xsize}) {{ {ix} = -1; }}""" if separate: ops = (ops, ops) return ops def _generate_indices_ops(ndim, int_type, offsets): code = "{type} ind_{j} = _i % ysize_{j} - {offset}; _i /= ysize_{j};" body = [ code.format(type=int_type, j=j, offset=offsets[j]) for j in range(ndim - 1, 0, -1) ] return "{type} _i = i;\n{body}\n{type} ind_0 = _i - {offset};".format( type=int_type, body="\n".join(body), offset=offsets[0] )
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_ndimage_filters.py
"""A vendored subset of cupyx.scipy.ndimage._filters""" import warnings import cupy import numpy from cucim.skimage._vendored import ( _internal as internal, _ndimage_filters_core as _filters_core, _ndimage_util as _util, ) from cucim.skimage.filters._separable_filtering import ( ResourceLimitError, _shmem_convolve1d, ) try: from cupy.cuda.compiler import CompileException compile_errors = (ResourceLimitError, CompileException) except ImportError: compile_errors = (ResourceLimitError,) def correlate(input, weights, output=None, mode="reflect", cval=0.0, origin=0): """Multi-dimensional correlate. The array is correlated with the given kernel. Args: input (cupy.ndarray): The input array. weights (cupy.ndarray): Array of weights, same number of dimensions as input output (cupy.ndarray, dtype or None): The array in which to place the output. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``constant``. Default is ``0.0``. origin (scalar or tuple of scalar): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of correlate. .. seealso:: :func:`scipy.ndimage.correlate` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ return _correlate_or_convolve(input, weights, output, mode, cval, origin) def convolve(input, weights, output=None, mode="reflect", cval=0.0, origin=0): """Multi-dimensional convolution. The array is convolved with the given kernel. Args: input (cupy.ndarray): The input array. weights (cupy.ndarray): Array of weights, same number of dimensions as input output (cupy.ndarray, dtype or None): The array in which to place the output. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``constant``. Default is ``0.0``. origin (scalar or tuple of scalar): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of convolution. .. seealso:: :func:`scipy.ndimage.convolve` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ return _correlate_or_convolve( input, weights, output, mode, cval, origin, True ) def correlate1d( input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0, *, algorithm=None, ): """One-dimensional correlate. The array is correlated with the given kernel. Args: input (cupy.ndarray): The input array. weights (cupy.ndarray): One-dimensional array of weights axis (int): The axis of input along which to calculate. Default is -1. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default is ``0``. Returns: cupy.ndarray: The result of the 1D correlation. .. seealso:: :func:`scipy.ndimage.correlate1d` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ return _correlate_or_convolve1d( input, weights, axis, output, mode, cval, origin, False, algorithm ) def convolve1d( input, weights, axis=-1, output=None, mode="reflect", cval=0.0, origin=0, *, algorithm=None, ): """One-dimensional convolution. The array is convolved with the given kernel. Args: input (cupy.ndarray): The input array. weights (cupy.ndarray): One-dimensional array of weights axis (int): The axis of input along which to calculate. Default is -1. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default is ``0``. Returns: cupy.ndarray: The result of the 1D convolution. .. seealso:: :func:`scipy.ndimage.convolve1d` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ return _correlate_or_convolve1d( input, weights, axis, output, mode, cval, origin, True, algorithm ) def _correlate_or_convolve( input, weights, output, mode, cval, origin, convolution=False ): origins, int_type = _filters_core._check_nd_args( input, weights, mode, origin ) if weights.size == 0: return cupy.zeros_like(input) _util._check_cval(mode, cval, _util._is_integer_output(output, input)) if convolution: weights = weights[tuple([slice(None, None, -1)] * weights.ndim)] origins = list(origins) for i, wsize in enumerate(weights.shape): origins[i] = -origins[i] if wsize % 2 == 0: origins[i] -= 1 origins = tuple(origins) elif weights.dtype.kind == "c": # numpy.correlate conjugates weights rather than input. weights = weights.conj() weights_dtype = _util._get_weights_dtype( input, weights, use_cucim_casting=True ) # noqa offsets = _filters_core._origins_to_offsets(origins, weights.shape) kernel = _get_correlate_kernel(mode, weights.shape, int_type, offsets, cval) output = _filters_core._call_kernel( kernel, input, weights, output, weights_dtype=weights_dtype ) return output def _correlate_or_convolve1d( input, weights, axis, output, mode, cval, origin, convolution=False, algorithm=None, ): # Calls fast shared-memory convolution when possible, otherwise falls back # to the vendored elementwise _correlate_or_convolve default_algorithm = False if algorithm is None: default_algorithm = True if input.ndim == 2 and weights.size <= 256: algorithm = "shared_memory" else: algorithm = "elementwise" elif algorithm not in ["shared_memory", "elementwise"]: raise ValueError( "algorithm must be 'shared_memory', 'elementwise' or None" ) if mode == "wrap": mode = "grid-wrap" if algorithm == "shared_memory": if input.ndim not in [2, 3]: raise NotImplementedError( f"shared_memory not implemented for ndim={input.ndim}" ) try: out = _shmem_convolve1d( input, weights, axis=axis, output=output, mode=mode, cval=cval, origin=origin, convolution=convolution, ) return out except compile_errors: # fallback to elementwise if inadequate shared memory available if not default_algorithm: # only warn if 'shared_memory' was explicitly requested warnings.warn( "Inadequate resources for algorithm='shared_memory: " "falling back to the elementwise implementation" ) algorithm = "elementwise" if algorithm == "elementwise": weights, origins = _filters_core._convert_1d_args( input.ndim, weights, origin, axis ) return _correlate_or_convolve( input, weights, output, mode, cval, origins, convolution ) @cupy.memoize(for_each_device=True) def _get_correlate_kernel(mode, w_shape, int_type, offsets, cval): return _filters_core._generate_nd_kernel( "correlate", "W sum = (W)0;", "sum += cast<W>({value}) * wval;", "y = cast<Y>(sum);", mode, w_shape, int_type, offsets, cval, ctype="W", ) def _run_1d_correlates( input, params, get_weights, output, mode, cval, origin=0, **filter_kwargs ): """ Enhanced version of _run_1d_filters that uses correlate1d as the filter function. The params are a list of values to pass to the get_weights callable given. If duplicate param values are found, the weights are reused from the first invocation of get_weights. The get_weights callable must return a 1D array of weights to give to correlate1d. """ wghts = {} for param in params: if param not in wghts: wghts[param] = get_weights(param) wghts = [wghts[param] for param in params] return _filters_core._run_1d_filters( [None if w is None else correlate1d for w in wghts], input, wghts, output, mode, cval, origin, **filter_kwargs, ) def uniform_filter1d( input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0, *, algorithm=None, ): """One-dimensional uniform filter along the given axis. The lines of the array along the given axis are filtered with a uniform filter of the given size. Args: input (cupy.ndarray): The input array. size (int): Length of the uniform filter. axis (int): The axis of input along which to calculate. Default is -1. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default is ``0``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.uniform_filter1d` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ weights_dtype = cupy.promote_types(input.dtype, cupy.float32) weights = cupy.full(size, 1 / size, dtype=weights_dtype) return correlate1d( input, weights, axis, output, mode, cval, origin, algorithm=algorithm ) def uniform_filter( input, size=3, output=None, mode="reflect", cval=0.0, origin=0, *, algorithm=None, ): """Multi-dimensional uniform filter. Args: input (cupy.ndarray): The input array. size (int or sequence of int): Lengths of the uniform filter for each dimension. A single value applies to all axes. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int or sequence of int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of ``0`` is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.uniform_filter` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ sizes = _util._fix_sequence_arg(size, input.ndim, "size", int) weights_dtype = cupy.promote_types(input.dtype, cupy.float32) def get(size): return ( None if size <= 1 else cupy.full(size, 1 / size, dtype=weights_dtype) ) # noqa return _run_1d_correlates( input, sizes, get, output, mode, cval, origin, algorithm=algorithm ) def gaussian_filter1d( input, sigma, axis=-1, order=0, output=None, mode="reflect", cval=0.0, truncate=4.0, *, algorithm=None, ): """One-dimensional Gaussian filter along the given axis. The lines of the array along the given axis are filtered with a Gaussian filter of the given standard deviation. Args: input (cupy.ndarray): The input array. sigma (scalar): Standard deviation for Gaussian kernel. axis (int): The axis of input along which to calculate. Default is -1. order (int): An order of ``0``, the default, corresponds to convolution with a Gaussian kernel. A positive order corresponds to convolution with that derivative of a Gaussian. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. truncate (float): Truncate the filter at this many standard deviations. Default is ``4.0``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.gaussian_filter1d` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ radius = int(float(truncate) * float(sigma) + 0.5) weights_dtype = cupy.promote_types(input.dtype, cupy.float32) weights = _gaussian_kernel1d(sigma, int(order), radius, weights_dtype) return correlate1d( input, weights, axis, output, mode, cval, algorithm=algorithm ) def gaussian_filter( input, sigma, order=0, output=None, mode="reflect", cval=0.0, truncate=4.0, *, algorithm=None, ): """Multi-dimensional Gaussian filter. Args: input (cupy.ndarray): The input array. sigma (scalar or sequence of scalar): Standard deviations for each axis of Gaussian kernel. A single value applies to all axes. order (int or sequence of scalar): An order of ``0``, the default, corresponds to convolution with a Gaussian kernel. A positive order corresponds to convolution with that derivative of a Gaussian. A single value applies to all axes. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. truncate (float): Truncate the filter at this many standard deviations. Default is ``4.0``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.gaussian_filter` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ sigmas = _util._fix_sequence_arg(sigma, input.ndim, "sigma", float) orders = _util._fix_sequence_arg(order, input.ndim, "order", int) truncate = float(truncate) weights_dtype = cupy.promote_types(input, cupy.float32) def get(param, dtype=weights_dtype): sigma, order = param radius = int(truncate * float(sigma) + 0.5) if radius <= 0: return None return _gaussian_kernel1d(sigma, order, radius, dtype) return _run_1d_correlates( input, list(zip(sigmas, orders)), get, output, mode, cval, 0, algorithm=algorithm, ) def _gaussian_kernel1d(sigma, order, radius, dtype=cupy.float64): """ Computes a 1-D Gaussian correlation kernel. """ if order < 0: raise ValueError("order must be non-negative") sigma2 = sigma * sigma x = numpy.arange(-radius, radius + 1) phi_x = numpy.exp(-0.5 / sigma2 * x**2) phi_x /= phi_x.sum() if order == 0: return cupy.asarray(phi_x) # f(x) = q(x) * phi(x) = q(x) * exp(p(x)) # f'(x) = (q'(x) + q(x) * p'(x)) * phi(x) # p'(x) = -1 / sigma ** 2 # Implement q'(x) + q(x) * p'(x) as a matrix operator and apply to the # coefficients of q(x) exponent_range = numpy.arange(order + 1) q = numpy.zeros(order + 1) q[0] = 1 D = numpy.diag(exponent_range[1:], 1) # D @ q(x) = q'(x) P = numpy.diag(numpy.ones(order) / -sigma2, -1) # P @ q(x) = q(x) * p'(x) Q_deriv = D + P for _ in range(order): q = Q_deriv.dot(q) q = (x[:, None] ** exponent_range).dot(q) return cupy.asarray((q * phi_x)[::-1], order="C", dtype=dtype) def prewitt( input, axis=-1, output=None, mode="reflect", cval=0.0, *, algorithm=None ): """Compute a Prewitt filter along the given axis. Args: input (cupy.ndarray): The input array. axis (int): The axis of input along which to calculate. Default is -1. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.prewitt` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ weights_dtype = cupy.promote_types(input.dtype, cupy.float32) smooth = cupy.ones(3, dtype=weights_dtype) return _prewitt_or_sobel(input, axis, output, mode, cval, smooth, algorithm) def sobel( input, axis=-1, output=None, mode="reflect", cval=0.0, *, algorithm=None ): """Compute a Sobel filter along the given axis. Args: input (cupy.ndarray): The input array. axis (int): The axis of input along which to calculate. Default is -1. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.sobel` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ weights_dtype = cupy.promote_types(input.dtype, cupy.float32) smooth = cupy.array([1, 2, 1], dtype=weights_dtype) return _prewitt_or_sobel(input, axis, output, mode, cval, smooth, algorithm) def _prewitt_or_sobel(input, axis, output, mode, cval, weights, algorithm): axis = internal._normalize_axis_index(axis, input.ndim) weights_dtype = cupy.promote_types(input.dtype, cupy.float32) def get(is_diff, dtype=weights_dtype): return ( cupy.array([-1, 0, 1], dtype=dtype) if is_diff else weights ) # noqa return _run_1d_correlates( input, [a == axis for a in range(input.ndim)], get, output, mode, cval, algorithm=algorithm, ) def generic_laplace( input, derivative2, output=None, mode="reflect", cval=0.0, extra_arguments=(), extra_keywords=None, ): """Multi-dimensional Laplace filter using a provided second derivative function. Args: input (cupy.ndarray): The input array. derivative2 (callable): Function or other callable with the following signature that is called once per axis:: derivative2(input, axis, output, mode, cval, *extra_arguments, **extra_keywords) where ``input`` and ``output`` are ``cupy.ndarray``, ``axis`` is an ``int`` from ``0`` to the number of dimensions, and ``mode``, ``cval``, ``extra_arguments``, ``extra_keywords`` are the values given to this function. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. extra_arguments (sequence, optional): Sequence of extra positional arguments to pass to ``derivative2``. extra_keywords (dict, optional): dict of extra keyword arguments to pass ``derivative2``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.generic_laplace` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ if extra_keywords is None: extra_keywords = {} ndim = input.ndim modes = _util._fix_sequence_arg(mode, ndim, "mode", _util._check_mode) output = _util._get_output(output, input) if ndim == 0: output[:] = input return output derivative2( input, 0, output, modes[0], cval, *extra_arguments, **extra_keywords ) if ndim > 1: tmp = _util._get_output(output.dtype, input) for i in range(1, ndim): derivative2( input, i, tmp, modes[i], cval, *extra_arguments, **extra_keywords, ) output += tmp return output def laplace(input, output=None, mode="reflect", cval=0.0, *, algorithm=None): """Multi-dimensional Laplace filter based on approximate second derivatives. Args: input (cupy.ndarray): The input array. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.laplace` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ weights_dtype = cupy.promote_types(input.dtype, cupy.float32) weights = cupy.array([1, -2, 1], dtype=weights_dtype) def derivative2(input, axis, output, mode, cval): return correlate1d( input, weights, axis, output, mode, cval, algorithm=algorithm ) return generic_laplace(input, derivative2, output, mode, cval) def gaussian_laplace( input, sigma, output=None, mode="reflect", cval=0.0, *, algorithm=None, **kwargs, ): """Multi-dimensional Laplace filter using Gaussian second derivatives. Args: input (cupy.ndarray): The input array. sigma (scalar or sequence of scalar): Standard deviations for each axis of Gaussian kernel. A single value applies to all axes. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. kwargs (dict, optional): dict of extra keyword arguments to pass ``gaussian_filter()``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.gaussian_laplace` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ def derivative2(input, axis, output, mode, cval): order = [0] * input.ndim order[axis] = 2 return gaussian_filter( input, sigma, order, output, mode, cval, algorithm=algorithm, **kwargs, ) return generic_laplace(input, derivative2, output, mode, cval) def generic_gradient_magnitude( input, derivative, output=None, mode="reflect", cval=0.0, extra_arguments=(), extra_keywords=None, ): """Multi-dimensional gradient magnitude filter using a provided derivative function. Args: input (cupy.ndarray): The input array. derivative (callable): Function or other callable with the following signature that is called once per axis:: derivative(input, axis, output, mode, cval, *extra_arguments, **extra_keywords) where ``input`` and ``output`` are ``cupy.ndarray``, ``axis`` is an ``int`` from ``0`` to the number of dimensions, and ``mode``, ``cval``, ``extra_arguments``, ``extra_keywords`` are the values given to this function. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. extra_arguments (sequence, optional): Sequence of extra positional arguments to pass to ``derivative2``. extra_keywords (dict, optional): dict of extra keyword arguments to pass ``derivative2``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.generic_gradient_magnitude` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ if extra_keywords is None: extra_keywords = {} ndim = input.ndim modes = _util._fix_sequence_arg(mode, ndim, "mode", _util._check_mode) output = _util._get_output(output, input) if ndim == 0: output[:] = input return output derivative( input, 0, output, modes[0], cval, *extra_arguments, **extra_keywords ) output *= output if ndim > 1: tmp = _util._get_output(output.dtype, input) for i in range(1, ndim): derivative( input, i, tmp, modes[i], cval, *extra_arguments, **extra_keywords, ) tmp *= tmp output += tmp return cupy.sqrt(output, output, casting="unsafe") def gaussian_gradient_magnitude( input, sigma, output=None, mode="reflect", cval=0.0, *, algorithm=None, **kwargs, ): """Multi-dimensional gradient magnitude using Gaussian derivatives. Args: input (cupy.ndarray): The input array. sigma (scalar or sequence of scalar): Standard deviations for each axis of Gaussian kernel. A single value applies to all axes. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. kwargs (dict, optional): dict of extra keyword arguments to pass ``gaussian_filter()``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.gaussian_gradient_magnitude` .. note:: When the output data type is integral (or when no output is provided and input is integral) the results may not perfectly match the results from SciPy due to floating-point rounding of intermediate results. """ def derivative(input, axis, output, mode, cval): order = [0] * input.ndim order[axis] = 1 return gaussian_filter( input, sigma, order, output, mode, cval, algorithm=algorithm, **kwargs, ) return generic_gradient_magnitude(input, derivative, output, mode, cval) def minimum_filter( input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, ): """Multi-dimensional minimum filter. Args: input (cupy.ndarray): The input array. size (int or sequence of int): One of ``size`` or ``footprint`` must be provided. If ``footprint`` is given, ``size`` is ignored. Otherwise ``footprint = cupy.ones(size)`` with ``size`` automatically made to match the number of dimensions in ``input``. footprint (cupy.ndarray): a boolean array which specifies which of the elements within this shape will get passed to the filter function. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int or sequence of int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.minimum_filter` """ return _min_or_max_filter( input, size, footprint, None, output, mode, cval, origin, "min" ) def maximum_filter( input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, ): """Multi-dimensional maximum filter. Args: input (cupy.ndarray): The input array. size (int or sequence of int): One of ``size`` or ``footprint`` must be provided. If ``footprint`` is given, ``size`` is ignored. Otherwise ``footprint = cupy.ones(size)`` with ``size`` automatically made to match the number of dimensions in ``input``. footprint (cupy.ndarray): a boolean array which specifies which of the elements within this shape will get passed to the filter function. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int or sequence of int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.maximum_filter` """ return _min_or_max_filter( input, size, footprint, None, output, mode, cval, origin, "max" ) def _min_or_max_filter( input, size, ftprnt, structure, output, mode, cval, origin, func ): # structure is used by morphology.grey_erosion() and grey_dilation() # and not by the regular min/max filters if isinstance(ftprnt, tuple) and size is None: size = ftprnt ftprnt = None sizes, ftprnt, structure = _filters_core._check_size_footprint_structure( input.ndim, size, ftprnt, structure ) if cval is cupy.nan: raise NotImplementedError("NaN cval is unsupported") if sizes is not None: # Separable filter, run as a series of 1D filters fltr = minimum_filter1d if func == "min" else maximum_filter1d return _filters_core._run_1d_filters( [fltr if size > 1 else None for size in sizes], input, sizes, output, mode, cval, origin, ) origins, int_type = _filters_core._check_nd_args( input, ftprnt, mode, origin, "footprint", sizes=sizes ) if structure is not None and structure.ndim != input.ndim: raise RuntimeError("structure array has incorrect shape") if ftprnt.size == 0: return cupy.zeros_like(input) offsets = _filters_core._origins_to_offsets(origins, ftprnt.shape) kernel = _get_min_or_max_kernel( mode, ftprnt.shape, func, offsets, float(cval), int_type, has_structure=structure is not None, has_central_value=bool(ftprnt[offsets]), ) return _filters_core._call_kernel( kernel, input, ftprnt, output, structure, weights_dtype=bool ) def minimum_filter1d( input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0 ): """Compute the minimum filter along a single axis. Args: input (cupy.ndarray): The input array. size (int): Length of the minimum filter. axis (int): The axis of input along which to calculate. Default is -1. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default is ``0``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.minimum_filter1d` """ return _min_or_max_1d(input, size, axis, output, mode, cval, origin, "min") def maximum_filter1d( input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0 ): """Compute the maximum filter along a single axis. Args: input (cupy.ndarray): The input array. size (int): Length of the maximum filter. axis (int): The axis of input along which to calculate. Default is -1. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default is ``0``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.maximum_filter1d` """ return _min_or_max_1d(input, size, axis, output, mode, cval, origin, "max") def _min_or_max_1d( input, size, axis=-1, output=None, mode="reflect", cval=0.0, origin=0, func="min", ): ftprnt = cupy.ones(size, dtype=bool) ftprnt, origin = _filters_core._convert_1d_args( input.ndim, ftprnt, origin, axis ) origins, int_type = _filters_core._check_nd_args( input, ftprnt, mode, origin, "footprint" ) offsets = _filters_core._origins_to_offsets(origins, ftprnt.shape) kernel = _get_min_or_max_kernel( mode, ftprnt.shape, func, offsets, float(cval), int_type, has_weights=False, ) return _filters_core._call_kernel( kernel, input, None, output, weights_dtype=bool ) @cupy._util.memoize(for_each_device=True) def _get_min_or_max_kernel( mode, w_shape, func, offsets, cval, int_type, has_weights=True, has_structure=False, has_central_value=True, ): # When there are no 'weights' (the footprint, for the 1D variants) then # we need to make sure intermediate results are stored as doubles for # consistent results with scipy. ctype = "X" if has_weights else "double" value = "{value}" if not has_weights: value = "cast<double>({})".format(value) # Having a non-flat structure biases the values if has_structure: value += ("-" if func == "min" else "+") + "cast<X>(sval)" if has_central_value: pre = "{} value = x[i];" found = "value = {func}({value}, value);" else: # If the central pixel is not included in the footprint we cannot # assume `x[i]` is not below the min or above the max and thus cannot # seed with that value. Instead we keep track of having set `value`. pre = "{} value; bool set = false;" found = "value = set ? {func}({value}, value) : {value}; set=true;" return _filters_core._generate_nd_kernel( func, pre.format(ctype), found.format(func=func, value=value), "y = cast<Y>(value);", mode, w_shape, int_type, offsets, cval, ctype=ctype, has_weights=has_weights, has_structure=has_structure, ) def rank_filter( input, rank, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, ): """Multi-dimensional rank filter. Args: input (cupy.ndarray): The input array. rank (int): The rank of the element to get. Can be negative to count from the largest value, e.g. ``-1`` indicates the largest value. size (int or sequence of int): One of ``size`` or ``footprint`` must be provided. If ``footprint`` is given, ``size`` is ignored. Otherwise ``footprint = cupy.ones(size)`` with ``size`` automatically made to match the number of dimensions in ``input``. footprint (cupy.ndarray): a boolean array which specifies which of the elements within this shape will get passed to the filter function. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int or sequence of int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.rank_filter` """ rank = int(rank) return _rank_filter( input, lambda fs: rank + fs if rank < 0 else rank, size, footprint, output, mode, cval, origin, ) def median_filter( input, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, ): """Multi-dimensional median filter. Args: input (cupy.ndarray): The input array. size (int or sequence of int): One of ``size`` or ``footprint`` must be provided. If ``footprint`` is given, ``size`` is ignored. Otherwise ``footprint = cupy.ones(size)`` with ``size`` automatically made to match the number of dimensions in ``input``. footprint (cupy.ndarray): a boolean array which specifies which of the elements within this shape will get passed to the filter function. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int or sequence of int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.median_filter` """ return _rank_filter( input, lambda fs: fs // 2, size, footprint, output, mode, cval, origin ) def percentile_filter( input, percentile, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, ): """Multi-dimensional percentile filter. Args: input (cupy.ndarray): The input array. percentile (scalar): The percentile of the element to get (from ``0`` to ``100``). Can be negative, thus ``-20`` equals ``80``. size (int or sequence of int): One of ``size`` or ``footprint`` must be provided. If ``footprint`` is given, ``size`` is ignored. Otherwise ``footprint = cupy.ones(size)`` with ``size`` automatically made to match the number of dimensions in ``input``. footprint (cupy.ndarray): a boolean array which specifies which of the elements within this shape will get passed to the filter function. output (cupy.ndarray, dtype or None): The array in which to place the output. Default is is same dtype as the input. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``'constant'``. Default is ``0.0``. origin (int or sequence of int): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of the filtering. .. seealso:: :func:`scipy.ndimage.percentile_filter` """ percentile = float(percentile) if percentile < 0.0: percentile += 100.0 if percentile < 0.0 or percentile > 100.0: raise RuntimeError("invalid percentile") if percentile == 100.0: def get_rank(fs): return fs - 1 else: def get_rank(fs): return int(float(fs) * percentile / 100.0) return _rank_filter( input, get_rank, size, footprint, output, mode, cval, origin ) def _rank_filter( input, get_rank, size=None, footprint=None, output=None, mode="reflect", cval=0.0, origin=0, ): sizes, footprint, _ = _filters_core._check_size_footprint_structure( input.ndim, size, footprint, None, force_footprint=False ) if cval is cupy.nan: raise NotImplementedError("NaN cval is unsupported") origins, int_type = _filters_core._check_nd_args( input, footprint, mode, origin, "footprint", sizes=sizes ) has_weights = True if sizes is not None: has_weights = False filter_size = internal.prod(sizes) if filter_size == 0: return cupy.zeros_like(input) footprint_shape = tuple(sizes) elif footprint.size == 0: return cupy.zeros_like(input) else: footprint_shape = footprint.shape filter_size = int(footprint.sum()) if filter_size == footprint.size: # can omit passing the footprint if it is all ones sizes = footprint.shape has_weights = False if not has_weights: footprint = None rank = get_rank(filter_size) if rank < 0 or rank >= filter_size: raise RuntimeError("rank not within filter footprint size") if rank == 0: min_max_op = "min" elif rank == filter_size - 1: min_max_op = "max" else: min_max_op = None if min_max_op is not None: if sizes is not None: return _min_or_max_filter( input, sizes[0], None, None, output, mode, cval, origins, min_max_op, ) else: return _min_or_max_filter( input, None, footprint, None, output, mode, cval, origins, min_max_op, ) offsets = _filters_core._origins_to_offsets(origins, footprint_shape) kernel = _get_rank_kernel( filter_size, rank, mode, footprint_shape, offsets, float(cval), int_type, has_weights=has_weights, ) return _filters_core._call_kernel( kernel, input, footprint, output, weights_dtype=bool ) __SHELL_SORT = """ __device__ void sort(X *array, int size) {{ int gap = {gap}; while (gap > 1) {{ gap /= 3; for (int i = gap; i < size; ++i) {{ X value = array[i]; int j = i - gap; while (j >= 0 && value < array[j]) {{ array[j + gap] = array[j]; j -= gap; }} array[j + gap] = value; }} }} }}""" @cupy._util.memoize() def _get_shell_gap(filter_size): gap = 1 while gap < filter_size: gap = 3 * gap + 1 return gap @cupy._util.memoize(for_each_device=True) def _get_rank_kernel( filter_size, rank, mode, w_shape, offsets, cval, int_type, has_weights ): s_rank = min(rank, filter_size - rank - 1) # The threshold was set based on the measurements on a V100 # TODO(leofang, anaruse): Use Optuna to automatically tune the threshold, # as it may vary depending on the GPU in use, compiler version, dtype, # filter size, etc. if s_rank <= 80: # When s_rank is small and register usage is low, this partial # selection sort approach is faster than general sorting approach # using shell sort. if s_rank == rank: comp_op = "<" else: comp_op = ">" array_size = s_rank + 2 found_post = """ if (iv > {rank} + 1) {{{{ int target_iv = 0; X target_val = values[0]; for (int jv = 1; jv <= {rank} + 1; jv++) {{{{ if (target_val {comp_op} values[jv]) {{{{ target_val = values[jv]; target_iv = jv; }}}} }}}} if (target_iv <= {rank}) {{{{ values[target_iv] = values[{rank} + 1]; }}}} iv = {rank} + 1; }}}}""".format( rank=s_rank, comp_op=comp_op ) post = """ X target_val = values[0]; for (int jv = 1; jv <= {rank}; jv++) {{ if (target_val {comp_op} values[jv]) {{ target_val = values[jv]; }} }} y=cast<Y>(target_val);""".format( rank=s_rank, comp_op=comp_op ) sorter = "" else: array_size = filter_size found_post = "" post = "sort(values,{});\ny=cast<Y>(values[{}]);".format( filter_size, rank ) sorter = __SHELL_SORT.format(gap=_get_shell_gap(filter_size)) return _filters_core._generate_nd_kernel( "rank_{}_{}".format(filter_size, rank), "int iv = 0;\nX values[{}];".format(array_size), "values[iv++] = {value};" + found_post, post, mode, w_shape, int_type, offsets, cval, has_weights=has_weights, preamble=sorter, )
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/pad_elementwise.py
import cupy def _pad_boundary_ops(mode, var_name, size, int_t="int", no_singleton=False): T = "int" if int_t == "int" else "long long" min_func = "min" max_func = "max" if mode == "constant": ops = f""" if (({var_name} < 0) || {var_name} >= {size}) {{ {var_name} = -1; }}""" elif mode == "symmetric": ops = f""" if ({var_name} < 0) {{ {var_name} = - 1 -{var_name}; }} {var_name} %= {size} * 2; {var_name} = {min_func}({var_name}, 2 * {size} - 1 - {var_name}); """ elif mode == "reflect": ops = f""" if ({size} == 1) {{ {var_name} = 0; }} else {{ if ({var_name} < 0) {{ {var_name} = -{var_name}; }} if ({var_name} >= {size}) {{ {var_name} = 1 + ({var_name} - 1) % (({size} - 1) * 2); {var_name} = {min_func}({var_name}, 2 * {size} - 2 - {var_name}); }} }}""" # noqa elif mode == "reflect_no_singleton_dim": # the same as reflect, but without the extra `{size} == 1` check ops = f""" if ({var_name} < 0) {{ {var_name} = -{var_name}; }} if ({var_name} >= {size}) {{ {var_name} = 1 + ({var_name} - 1) % (({size} - 1) * 2); {var_name} = {min_func}({var_name}, 2 * {size} - 2 - {var_name}); }} """ elif mode == "edge": ops = f""" {var_name} = {min_func}( {max_func}(static_cast<{T}>({var_name}), static_cast<{T}>(0)), static_cast<{T}>({size} - 1)); """ elif mode == "wrap": ops = f""" {var_name} %= {size}; if ({var_name} < 0) {{ {var_name} += {size}; }} """ return ops + "\n" def _generate_size_vars( ndim, arr_name="arr", size_prefix="size", int_type="int" ): """Store shape of a raw array into individual variables. Examples -------- >>> print(_generate_size_vars(3, 'arr', 'size', 'int')) int size_0 = arr.shape()[0]; int size_1 = arr.shape()[1]; int size_2 = arr.shape()[2]; """ set_size_vars = [ f"{int_type} {size_prefix}_{i} = {arr_name}.shape()[{i}];" for i in range(ndim) ] return "\n".join(set_size_vars) + "\n" def _generate_stride_vars( ndim, arr_name="arr", size_prefix="stride", int_type="int" ): """Store stride (in bytes) of a raw array into individual variables. Examples -------- >>> print(_generate_size_vars(3, 'arr', 'size', 'int')) int stride_0 = arr.strides()[0]; int stride_1 = arr.strides()[1]; int stride_2 = arr.strides()[2]; """ set_size_vars = [ f"{int_type} {size_prefix}_{i} = {arr_name}.strides()[{i}];" for i in range(ndim) ] return "\n".join(set_size_vars) + "\n" def _generate_indices_ops( ndim, size_prefix="size", int_type="int", index_prefix="ind", order="C", ): """Generate indices based existing variables. Assumes variables f'{size_prefix}_{i}' has the size along axis, i. Examples -------- >>> print(_generate_indices_ops(3, 'size', 'int', 'ind', 'C')) int _i = i; int ind_2 = _i % size_2; _i /= size_2; int ind_1 = _i % size_1; _i /= size_1; int ind_0 = _i; """ if order == "C": _range = range(ndim - 1, 0, -1) idx_largest_stride = 0 elif order == "F": _range = range(ndim - 1) idx_largest_stride = ndim - 1 else: raise ValueError(f"Unknown order: {order}. Must be one of {'C', 'F'}.") body = [ f"{int_type} {index_prefix}_{j} = _i % {size_prefix}_{j}; _i /= {size_prefix}_{j};" # noqa for j in _range ] body = "\n".join(body) code = f"{int_type} _i = i;\n" code += body + "\n" code += f"{int_type} {index_prefix}_{idx_largest_stride} = _i;\n" return code def _gen_raveled(ndim, stride_prefix="stride", index_prefix="i", order=None): """Generate raveled index for c-ordered memory layout For index_prefix='i', the indices are (i_0, i_1, ....) For stride_prefix='stride', the stride is (stride_0, stride_1, ....) """ return " + ".join( f"{stride_prefix}_{j} * {index_prefix}_{j}" for j in range(ndim) ) def _get_pad_kernel_code(pad_starts, int_type="int", mode="edge", order="C"): # variables storing shape of the output array ndim = len(pad_starts) out_size_prefix = "shape" operation = _generate_size_vars( ndim, arr_name="out", size_prefix=out_size_prefix, int_type=int_type ) # variables storing shape of the input array in_size_prefix = "ishape" in_stride_prefix = "istride" operation += _generate_size_vars( ndim, arr_name="arr", size_prefix=in_size_prefix, int_type=int_type ) operation += _generate_stride_vars( ndim, arr_name="arr", size_prefix=in_stride_prefix, int_type=int_type ) # unraveled indices into the output array out_index_prefix = "oi" # Note: Regardless of actual memory layout, need order='C' here to match # the behavior of the index raveling used by ElementwiseKernel. operation += _generate_indices_ops( ndim, size_prefix=out_size_prefix, int_type=int_type, index_prefix=out_index_prefix, order="C", ) # compute unraveled indices into the input array # (i_0, i_1, ...) in_index_prefix = "i" operation += "\n".join( [ f"{int_type} {in_index_prefix}_{j} = {out_index_prefix}_{j} - {pad_starts[j]};" # noqa for j in range(ndim) ] ) operation += "\n" input_indices = tuple(f"{in_index_prefix}_{j}" for j in range(ndim)) # impose boundary condition range_cond = " || ".join( f"({coord} < 0) || ({coord} >= {in_size_prefix}_{j})" for j, coord in enumerate(input_indices) ) operation += f"bool range_cond = {range_cond};" operation += "if (range_cond) {\n" if mode == "constant": for j, coord in enumerate(input_indices): operation += _pad_boundary_ops( mode, coord, f"{in_size_prefix}_{j}", int_type ) operation += f""" if ({coord} == -1) {{ out[i] = static_cast<F>(cval); return; }} """ else: for j, coord in enumerate(input_indices): operation += _pad_boundary_ops( mode, coord, f"{in_size_prefix}_{j}", int_type ) operation += "}\n" raveled_idx = _gen_raveled( ndim, stride_prefix=in_stride_prefix, index_prefix=in_index_prefix, order=order, ) operation += f""" // set output based on raveled index into the input array const char* char_arr = reinterpret_cast<const char*>(&arr[0]); out[i] = *reinterpret_cast<const F*>(char_arr + {raveled_idx}); """ return operation @cupy._util.memoize(for_each_device=True) def _get_pad_kernel(pad_starts, int_type="int", mode="edge", order="C"): in_params = "raw F arr" if mode == "constant": in_params += ", float64 cval" kernel_name = f"pad_{len(pad_starts)}d_order{order}_{mode}" if int_type != "int": kernel_name += f"_{int_type.replace(' ', '_')}_idx" return cupy.ElementwiseKernel( in_params=in_params, out_params="raw F out", operation=_get_pad_kernel_code(pad_starts, int_type, mode, order), name=kernel_name, )
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_signaltools_core.py
"""A vendored subset of cupyx.scipy.signal._signaltools_core""" import cupy from cupyx.scipy import fft from cucim.skimage._vendored._ndimage_filters import _get_correlate_kernel from . import _internal as internal, _ndimage_util as _util def _check_conv_inputs(in1, in2, mode, convolution=True): if in1.ndim == in2.ndim == 0: return in1 * (in2 if convolution else in2.conj()) if in1.ndim != in2.ndim: raise ValueError("in1 and in2 should have the same dimensionality") if in1.size == 0 or in2.size == 0: return cupy.array([], dtype=in1.dtype) if mode not in ("full", "same", "valid"): raise ValueError('acceptable modes are "valid", "same", or "full"') return None def _direct_correlate( in1, in2, mode="full", output=float, convolution=False, boundary="constant", fillvalue=0.0, shift=False, ): if in1.ndim != 1 and ( in1.dtype.kind == "b" or (in1.dtype.kind == "f" and in1.dtype.itemsize < 4) ): raise ValueError("unsupported type in SciPy") # Swaps inputs so smaller one is in2: # NOTE: when mode != 'valid' we can only swap with a constant-0 boundary swapped_inputs = False orig_in1_shape = in1.shape if _inputs_swap_needed(mode, in1.shape, in2.shape) or ( in2.size > in1.size and boundary == "constant" and fillvalue == 0 ): in1, in2 = in2, in1 swapped_inputs = not convolution # Due to several optimizations, the second array can only be 2 GiB if in2.nbytes >= (1 << 31): raise RuntimeError( "smaller array must be 2 GiB or less, " 'use method="fft" instead' ) # At this point, in1.size > in2.size # (except some cases when boundary != 'constant' or fillvalue != 0) # Figure out the output shape and the origin of the kernel if mode == "full": out_shape = tuple(x1 + x2 - 1 for x1, x2 in zip(in1.shape, in2.shape)) offsets = tuple(x - 1 for x in in2.shape) elif mode == "valid": out_shape = tuple(x1 - x2 + 1 for x1, x2 in zip(in1.shape, in2.shape)) offsets = (0,) * in1.ndim else: # mode == 'same': # In correlate2d: When using "same" mode with even-length inputs, the # outputs of correlate and correlate2d differ: There is a 1-index # offset between them. # This is dealt with by using "shift" parameter. out_shape = orig_in1_shape if orig_in1_shape == in1.shape: offsets = tuple((x - shift) // 2 for x in in2.shape) else: offsets = tuple( (2 * x2 - x1 - (not convolution) + shift) // 2 for x1, x2 in zip(in1.shape, in2.shape) ) # Check the output if not isinstance(output, cupy.ndarray): output = cupy.empty(out_shape, output) elif output.shape != out_shape: raise ValueError("out has wrong shape") # Get and run the CuPy kernel int_type = _util._get_inttype(in1) kernel = _get_correlate_kernel( boundary, in2.shape, int_type, offsets, fillvalue ) in2 = _reverse_and_conj(in2) if convolution else in2 if not swapped_inputs: kernel(in1, in2, output) elif output.dtype.kind != "c": # Avoids one array copy kernel(in1, in2, _reverse_and_conj(output)) else: kernel(in1, in2, output) output = cupy.ascontiguousarray(_reverse_and_conj(output)) return output def _reverse_and_conj(x): # Reverse array `x` in all dimensions and perform the complex conjugate return x[(slice(None, None, -1),) * x.ndim].conj() def _inputs_swap_needed(mode, shape1, shape2, axes=None): # See scipy's documentation in scipy.signal.signaltools if mode != "valid" or not shape1: return False if axes is None: axes = range(len(shape1)) not_ok1 = any(shape1[i] < shape2[i] for i in axes) not_ok2 = any(shape1[i] > shape2[i] for i in axes) if not_ok1 and not_ok2: raise ValueError( 'For "valid" mode, one must be at least ' "as large as the other in every dimension" ) return not_ok1 def _init_freq_conv_axes(in1, in2, mode, axes, sorted_axes=False): # See scipy's documentation in scipy.signal.signaltools s1, s2 = in1.shape, in2.shape axes = _init_nd_and_axes(in1, axes) # Length-1 axes can rely on broadcasting rules, no fft needed axes = [ax for ax in axes if s1[ax] != 1 and s2[ax] != 1] if sorted_axes: axes.sort() # Check that unused axes are either 1 (broadcast) or the same length for ax, (dim1, dim2) in enumerate(zip(s1, s2)): if ax not in axes and dim1 != dim2 and dim1 != 1 and dim2 != 1: raise ValueError( "incompatible shapes for in1 and in2:" " {} and {}".format(s1, s2) ) # Check that input sizes are compatible with 'valid' mode. if _inputs_swap_needed(mode, s1, s2, axes=axes): # Convolution is commutative in1, in2 = in2, in1 return in1, in2, axes def _init_nd_and_axes(x, axes): # See documentation in scipy.fft._helper._init_nd_shape_and_axes # except shape argument is always None and doesn't return new shape try: axes = internal._normalize_axis_indices(axes, x.ndim, sort_axes=False) except TypeError: axes = internal._normalize_axis_indices(axes, x.ndim) if not len(axes): raise ValueError("when provided, axes cannot be empty") if any(x.shape[ax] < 1 for ax in axes): raise ValueError("invalid number of data points specified") return axes def _freq_domain_conv(in1, in2, axes, shape, calc_fast_len=False): # See scipy's documentation in scipy.signal.signaltools real = in1.dtype.kind != "c" and in2.dtype.kind != "c" fshape = ( [fft.next_fast_len(shape[a], real) for a in axes] if calc_fast_len else shape ) fftn, ifftn = (fft.rfftn, fft.irfftn) if real else (fft.fftn, fft.ifftn) # Perform the convolution sp1 = fftn(in1, fshape, axes=axes) sp2 = fftn(in2, fshape, axes=axes) out = ifftn(sp1 * sp2, fshape, axes=axes) return out[tuple(slice(x) for x in shape)] if calc_fast_len else out def _apply_conv_mode(full, s1, s2, mode, axes): # See scipy's documentation in scipy.signal.signaltools if mode == "full": return cupy.ascontiguousarray(full) if mode == "valid": s1 = [ full.shape[a] if a not in axes else s1[a] - s2[a] + 1 for a in range(full.ndim) ] starts = [(cur - new) // 2 for cur, new in zip(full.shape, s1)] slices = tuple( slice(start, start + length) for start, length in zip(starts, s1) ) return cupy.ascontiguousarray(full[slices])
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/time.py
"""Timing utility copied from cupyx.time added kwargs support to repeat removed experimental warning """ import math import time import cupy import numpy class _PerfCaseResult(object): def __init__(self, name, ts, devices): assert ts.ndim == 2 assert ts.shape[0] == len(devices) + 1 assert ts.shape[1] > 0 self.name = name self._ts = ts self._devices = devices @property def cpu_times(self): return self._ts[0] @property def gpu_times(self): return self._ts[1:] @staticmethod def _to_str_per_item(device_name, t): assert t.ndim == 1 assert t.size > 0 t_us = t * 1e6 s = " {}:{:9.03f} us".format(device_name, t_us.mean()) if t.size > 1: s += " +/-{:6.03f} (min:{:9.03f} / max:{:9.03f}) us".format( t_us.std(), t_us.min(), t_us.max() ) return s def to_str(self, show_gpu=False): results = [self._to_str_per_item("CPU", self._ts[0])] if show_gpu: for i, d in enumerate(self._devices): results.append( self._to_str_per_item("GPU-{}".format(d), self._ts[1 + i]) ) return "{:<20s}:{}".format(self.name, " ".join(results)) def __str__(self): return self.to_str(show_gpu=True) def repeat( func, args=(), kwargs={}, n_repeat=10000, *, name=None, n_warmup=10, max_duration=math.inf, devices=None, ): if name is None: try: name = func.__name__ except AttributeError: name = "unknown" if devices is None: devices = (cupy.cuda.get_device_id(),) if not callable(func): raise ValueError("`func` should be a callable object.") if not isinstance(args, tuple): raise ValueError("`args` should be of tuple type.") if not isinstance(kwargs, dict): raise ValueError("`kwargs` should be of dict type.") if not isinstance(n_repeat, int): raise ValueError("`n_repeat` should be an integer.") if not isinstance(name, str): raise ValueError("`str` should be a string.") if not isinstance(n_warmup, int): raise ValueError("`n_warmup` should be an integer.") if not isinstance(devices, tuple): raise ValueError("`devices` should be of tuple type") return _repeat( func, args, kwargs, n_repeat, name, n_warmup, max_duration, devices ) def _repeat( func, args, kwargs, n_repeat, name, n_warmup, max_duration, devices ): events_1 = [] events_2 = [] for i in devices: with cupy.cuda.Device(i): events_1.append(cupy.cuda.stream.Event()) events_2.append(cupy.cuda.stream.Event()) ev1 = cupy.cuda.stream.Event() ev2 = cupy.cuda.stream.Event() for i in range(n_warmup): func(*args, **kwargs) for event, device in zip(events_1, devices): with cupy.cuda.Device(device): event.record() event.synchronize() cpu_times = [] gpu_times = [[] for i in events_1] duration = 0 for i in range(n_repeat): for event, device in zip(events_1, devices): with cupy.cuda.Device(device): event.record() t1 = time.perf_counter() func(*args, **kwargs) t2 = time.perf_counter() cpu_time = t2 - t1 cpu_times.append(cpu_time) for event, device in zip(events_2, devices): with cupy.cuda.Device(device): event.record() for event, device in zip(events_2, devices): with cupy.cuda.Device(device): event.synchronize() for i, (ev1, ev2) in enumerate(zip(events_1, events_2)): gpu_time = cupy.cuda.get_elapsed_time(ev1, ev2) * 1e-3 gpu_times[i].append(gpu_time) duration += time.perf_counter() - t1 if duration > max_duration: break ts = numpy.asarray([cpu_times] + gpu_times, dtype=numpy.float64) return _PerfCaseResult(name, ts, devices=devices)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_texture.py
import cupy from cupy import _core from cupy.cuda import runtime, texture _affine_transform_2d_array_kernel = _core.ElementwiseKernel( "U texObj, raw float32 m, uint64 width", "T transformed_image", """ float3 pixel = make_float3( (float)(i / width), (float)(i % width), 1.0f ); float x = dot(pixel, make_float3(m[0], m[1], m[2])) + .5f; float y = dot(pixel, make_float3(m[3], m[4], m[5])) + .5f; transformed_image = tex2D<T>(texObj, y, x); """, "cupyx_texture_affine_transformation_2d_array", preamble=""" inline __host__ __device__ float dot(float3 a, float3 b) { return a.x * b.x + a.y * b.y + a.z * b.z; } """, ) _affine_transform_3d_array_kernel = _core.ElementwiseKernel( "U texObj, raw float32 m, uint64 height, uint64 width", "T transformed_volume", """ float4 voxel = make_float4( (float)(i / (width * height)), (float)((i % (width * height)) / width), (float)((i % (width * height)) % width), 1.0f ); float x = dot(voxel, make_float4(m[0], m[1], m[2], m[3])) + .5f; float y = dot(voxel, make_float4(m[4], m[5], m[6], m[7])) + .5f; float z = dot(voxel, make_float4(m[8], m[9], m[10], m[11])) + .5f; transformed_volume = tex3D<T>(texObj, z, y, x); """, "cupyx_texture_affine_transformation_3d_array", preamble=""" inline __host__ __device__ float dot(float4 a, float4 b) { return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w; } """, ) def _create_texture_object( data, address_mode: str, filter_mode: str, read_mode: str, border_color=0 ): if cupy.issubdtype(data.dtype, cupy.unsignedinteger): fmt_kind = runtime.cudaChannelFormatKindUnsigned elif cupy.issubdtype(data.dtype, cupy.integer): fmt_kind = runtime.cudaChannelFormatKindSigned elif cupy.issubdtype(data.dtype, cupy.floating): fmt_kind = runtime.cudaChannelFormatKindFloat else: raise ValueError(f"Unsupported data type {data.dtype}") if address_mode == "nearest": address_mode = runtime.cudaAddressModeClamp elif address_mode == "constant": address_mode = runtime.cudaAddressModeBorder else: raise ValueError( f"Unsupported address mode {address_mode} " "(supported: constant, nearest)" ) if filter_mode == "nearest": filter_mode = runtime.cudaFilterModePoint elif filter_mode == "linear": filter_mode = runtime.cudaFilterModeLinear else: raise ValueError( f"Unsupported filter mode {filter_mode} " f"(supported: nearest, linear)" ) if read_mode == "element_type": read_mode = runtime.cudaReadModeElementType elif read_mode == "normalized_float": read_mode = runtime.cudaReadModeNormalizedFloat else: raise ValueError( f"Unsupported read mode {read_mode} " "(supported: element_type, normalized_float)" ) texture_fmt = texture.ChannelFormatDescriptor( data.itemsize * 8, 0, 0, 0, fmt_kind ) # CUDAArray: last dimension is the fastest changing dimension array = texture.CUDAarray(texture_fmt, *data.shape[::-1]) res_desc = texture.ResourceDescriptor( runtime.cudaResourceTypeArray, cuArr=array ) # TODO(the-lay): each dimension can have a different addressing mode # TODO(the-lay): border color/value can be defined for up to 4 channels tex_desc = texture.TextureDescriptor( (address_mode,) * data.ndim, filter_mode, read_mode, borderColors=(border_color,), ) tex_obj = texture.TextureObject(res_desc, tex_desc) array.copy_from(data) return tex_obj def affine_transformation( data, transformation_matrix, output_shape=None, output=None, interpolation: str = "linear", mode: str = "constant", border_value=0, ): """ Apply an affine transformation. The method uses texture memory and supports only 2D and 3D float32 arrays without channel dimension. Args: data (cupy.ndarray): The input array or texture object. transformation_matrix (cupy.ndarray): Affine transformation matrix. Must be a homogeneous and have shape ``(ndim + 1, ndim + 1)``. output_shape (tuple of ints): Shape of output. If not specified, the input array shape is used. Default is None. output (cupy.ndarray or ~cupy.dtype): The array in which to place the output, or the dtype of the returned array. If not specified, creates the output array with shape of ``output_shape``. Default is None. interpolation (str): Specifies interpolation mode: ``'linear'`` or ``'nearest'``. Default is ``'linear'``. mode (str): Specifies addressing mode for points outside of the array: (`'constant'``, ``'nearest'``). Default is ``'constant'``. border_value: Specifies value to be used for coordinates outside of the array for ``'constant'`` mode. Default is 0. Returns: cupy.ndarray: The transformed input. .. seealso:: :func:`cupyx.scipy.ndimage.affine_transform` """ ndim = data.ndim if (ndim < 2) or (ndim > 3): raise ValueError( "Texture memory affine transformation is defined only for " "2D and 3D arrays without channel dimension." ) dtype = data.dtype if dtype != cupy.float32: raise ValueError( f"Texture memory affine transformation is available " f"only for float32 data type (not {dtype})" ) if interpolation not in ["linear", "nearest"]: raise ValueError( f"Unsupported interpolation {interpolation} " f"(supported: linear, nearest)" ) if transformation_matrix.shape != (ndim + 1, ndim + 1): raise ValueError("Matrix must be have shape (ndim + 1, ndim + 1)") texture_object = _create_texture_object( data, address_mode=mode, filter_mode=interpolation, read_mode="element_type", border_color=border_value, ) if ndim == 2: kernel = _affine_transform_2d_array_kernel else: kernel = _affine_transform_3d_array_kernel if output_shape is None: output_shape = data.shape if output is None: output = cupy.zeros(output_shape, dtype=dtype) elif isinstance(output, (type, cupy.dtype)): if output != cupy.float32: raise ValueError( f"Texture memory affine transformation is " f"available only for float32 data type (not " f"{output})" ) output = cupy.zeros(output_shape, dtype=output) elif isinstance(output, cupy.ndarray): if output.shape != output_shape: raise ValueError("Output shapes do not match") else: raise ValueError("Output must be None, cupy.ndarray or cupy.dtype") kernel(texture_object, transformation_matrix, *output_shape[1:], output) return output
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_ndimage_interpolation.py
import cmath import math import warnings import cupy import numpy from cupy import _core from cupy.cuda import runtime from cucim.skimage._vendored import ( _ndimage_interp_kernels as _interp_kernels, _ndimage_spline_prefilter_core as _spline_prefilter_core, _ndimage_util as _util, pad, ) from cucim.skimage._vendored._internal import _normalize_axis_index, prod def _check_parameter(func_name, order, mode): if order is None: warnings.warn( f"Currently the default order of {func_name} is 1. In a " "future release this may change to 3 to match " "scipy.ndimage " ) elif order < 0 or 5 < order: raise ValueError("spline order is not supported") if mode not in ( "constant", "grid-constant", "nearest", "mirror", "reflect", "grid-mirror", "wrap", "grid-wrap", "opencv", "_opencv_edge", ): raise ValueError("boundary mode ({}) is not supported".format(mode)) def _get_spline_output(input, output): """Create workspace array, temp, and the final dtype for the output. Differs from SciPy by not always forcing the internal floating point dtype to be double precision. """ complex_data = input.dtype.kind == "c" if complex_data: min_float_dtype = cupy.complex64 else: min_float_dtype = cupy.float32 if isinstance(output, cupy.ndarray): if complex_data and output.dtype.kind != "c": raise ValueError( "output must have complex dtype for complex inputs" ) float_dtype = cupy.promote_types(output.dtype, min_float_dtype) output_dtype = output.dtype else: if output is None: output = output_dtype = input.dtype else: output_dtype = cupy.dtype(output) float_dtype = cupy.promote_types(output, min_float_dtype) if ( isinstance(output, cupy.ndarray) and output.dtype == float_dtype == output_dtype and output.flags.c_contiguous ): if output is not input: _core.elementwise_copy(input, output) temp = output else: temp = input.astype(float_dtype, copy=False) temp = cupy.ascontiguousarray(temp) if cupy.shares_memory(temp, input, "MAY_SHARE_BOUNDS"): temp = temp.copy() return temp, float_dtype, output_dtype def spline_filter1d( input, order=3, axis=-1, output=cupy.float64, mode="mirror" ): """ Calculate a 1-D spline filter along the given axis. The lines of the array along the given axis are filtered by a spline filter. The order of the spline must be >= 2 and <= 5. Args: input (cupy.ndarray): The input array. order (int): The order of the spline interpolation, default is 3. Must be in the range 0-5. axis (int): The axis along which the spline filter is applied. Default is the last axis. output (cupy.ndarray or dtype, optional): The array in which to place the output, or the dtype of the returned array. Default is ``numpy.float64``. mode (str): Points outside the boundaries of the input are filled according to the given mode (``'constant'``, ``'nearest'``, ``'mirror'``, ``'reflect'``, ``'wrap'``, ``'grid-mirror'``, ``'grid-wrap'``, ``'grid-constant'`` or ``'opencv'``). Returns: cupy.ndarray: The result of prefiltering the input. .. seealso:: :func:`scipy.spline_filter1d` """ if order < 0 or order > 5: raise RuntimeError("spline order not supported") x = input ndim = x.ndim axis = _normalize_axis_index(axis, ndim) # order 0, 1 don't require reshaping as no CUDA kernel will be called # scalar or size 1 arrays also don't need to be filtered run_kernel = not (order < 2 or x.ndim == 0 or x.shape[axis] == 1) if not run_kernel: output = _util._get_output(output, input) _core.elementwise_copy(x, output) return output temp, data_dtype, output_dtype = _get_spline_output(x, output) data_type = cupy._core._scalar.get_typename(temp.dtype) pole_type = cupy._core._scalar.get_typename(temp.real.dtype) index_type = _util._get_inttype(input) index_dtype = cupy.int32 if index_type == "int" else cupy.int64 n_samples = x.shape[axis] n_signals = x.size // n_samples info = cupy.array((n_signals, n_samples) + x.shape, dtype=index_dtype) # empirical choice of block size that seemed to work well block_size = max(2 ** math.ceil(numpy.log2(n_samples / 32)), 8) kern = _spline_prefilter_core.get_raw_spline1d_kernel( axis, ndim, mode, order=order, index_type=index_type, data_type=data_type, pole_type=pole_type, block_size=block_size, ) # Due to recursive nature, a given line of data must be processed by a # single thread. n_signals lines will be processed in total. block = (block_size,) grid = ((n_signals + block[0] - 1) // block[0],) # apply prefilter gain poles = _spline_prefilter_core.get_poles(order=order) temp *= _spline_prefilter_core.get_gain(poles) # apply caual + anti-causal IIR spline filters kern(grid, block, (temp, info)) if isinstance(output, cupy.ndarray) and temp is not output: # copy kernel output into the user-provided output array _core.elementwise_copy(temp, output) return output return temp.astype(output_dtype, copy=False) def spline_filter(input, order=3, output=cupy.float64, mode="mirror"): """Multidimensional spline filter. Args: input (cupy.ndarray): The input array. order (int): The order of the spline interpolation, default is 3. Must be in the range 0-5. output (cupy.ndarray or dtype, optional): The array in which to place the output, or the dtype of the returned array. Default is ``numpy.float64``. mode (str): Points outside the boundaries of the input are filled according to the given mode (``'constant'``, ``'nearest'``, ``'mirror'``, ``'reflect'``, ``'wrap'``, ``'grid-mirror'``, ``'grid-wrap'``, ``'grid-constant'`` or ``'opencv'``). Returns: cupy.ndarray: The result of prefiltering the input. .. seealso:: :func:`scipy.spline_filter1d` """ if order < 2 or order > 5: raise RuntimeError("spline order not supported") x = input temp, data_dtype, output_dtype = _get_spline_output(x, output) if order not in [0, 1] and input.ndim > 0: for axis in range(x.ndim): spline_filter1d(x, order, axis, output=temp, mode=mode) x = temp if isinstance(output, cupy.ndarray): _core.elementwise_copy(temp, output) else: output = temp if output.dtype != output_dtype: output = output.astype(output_dtype) return output def _check_coordinates(coordinates, order, allow_float32=True): if coordinates.dtype.kind == "f": if allow_float32: coord_dtype = cupy.promote_types(coordinates.dtype, cupy.float32) else: coord_dtype = cupy.promote_types(coordinates.dtype, cupy.float64) coordinates = coordinates.astype(coord_dtype, copy=False) elif coordinates.dtype.kind in "iu": if order > 1: # order > 1 (spline) kernels require floating-point coordinates if allow_float32: coord_dtype = cupy.promote_types( coordinates.dtype, cupy.float32 ) else: coord_dtype = cupy.promote_types( coordinates.dtype, cupy.float64 ) coordinates = coordinates.astype(coord_dtype) else: raise ValueError("coordinates should have floating point dtype") if not coordinates.flags.c_contiguous: coordinates = cupy.ascontiguousarray(coordinates) return coordinates def _prepad_for_spline_filter(input, mode, cval): if mode in ["nearest", "grid-constant"]: # these modes need padding to get accurate boundary values npad = 12 # empirical factor chosen by SciPy if mode == "grid-constant": kwargs = dict(mode="constant", constant_values=cval) else: kwargs = dict(mode="edge") padded = pad(input, npad, **kwargs) else: npad = 0 padded = input return padded, npad def _filter_input(image, prefilter, mode, cval, order): """Perform spline prefiltering when needed. Spline orders > 1 need a prefiltering stage to preserve resolution. For boundary modes without analytical spline boundary conditions, some prepadding of the input with pad is used to maintain accuracy. ``npad`` is an integer corresponding to the amount of padding at each edge of the array. """ if not prefilter or order < 2: return (cupy.ascontiguousarray(image), 0) padded, npad = _prepad_for_spline_filter(image, mode, cval) float_dtype = cupy.promote_types(image.dtype, cupy.float32) filtered = spline_filter(padded, order, output=float_dtype, mode=mode) return cupy.ascontiguousarray(filtered), npad def map_coordinates( input, coordinates, output=None, order=3, mode="constant", cval=0.0, prefilter=True, ): """Map the input array to new coordinates by interpolation. The array of coordinates is used to find, for each point in the output, the corresponding coordinates in the input. The value of the input at those coordinates is determined by spline interpolation of the requested order. The shape of the output is derived from that of the coordinate array by dropping the first axis. The values of the array along the first axis are the coordinates in the input array at which the output value is found. Args: input (cupy.ndarray): The input array. coordinates (array_like): The coordinates at which ``input`` is evaluated. output (cupy.ndarray or ~cupy.dtype): The array in which to place the output, or the dtype of the returned array. order (int): The order of the spline interpolation, default is 3. Must be in the range 0-5. mode (str): Points outside the boundaries of the input are filled according to the given mode (``'constant'``, ``'nearest'``, ``'mirror'``, ``'reflect'``, ``'wrap'``, ``'grid-mirror'``, ``'grid-wrap'``, ``'grid-constant'`` or ``'opencv'``). cval (scalar): Value used for points outside the boundaries of the input if ``mode='constant'`` or ``mode='opencv'``. Default is 0.0 prefilter (bool): It is not used yet. It just exists for compatibility with :mod:`scipy.ndimage`. Returns: cupy.ndarray: The result of transforming the input. The shape of the output is derived from that of ``coordinates`` by dropping the first axis. .. seealso:: :func:`scipy.ndimage.map_coordinates` """ _check_parameter("map_coordinates", order, mode) if mode == "opencv" or mode == "_opencv_edge": input = pad( input, [(1, 1)] * input.ndim, "constant", constant_values=cval ) coordinates = cupy.add(coordinates, 1) mode = "constant" ret = _util._get_output(output, input, coordinates.shape[1:]) integer_output = ret.dtype.kind in "iu" _util._check_cval(mode, cval, integer_output) if input.dtype.kind in "iu": input = input.astype(cupy.float32) coordinates = _check_coordinates(coordinates, order) filtered, nprepad = _filter_input(input, prefilter, mode, cval, order) large_int = max(prod(input.shape), coordinates.shape[0]) > 1 << 31 kern = _interp_kernels._get_map_kernel( input.ndim, large_int, yshape=coordinates.shape, mode=mode, cval=cval, order=order, integer_output=integer_output, nprepad=nprepad, ) kern(filtered, coordinates, ret) return ret def affine_transform( input, matrix, offset=0.0, output_shape=None, output=None, order=3, mode="constant", cval=0.0, prefilter=True, *, texture_memory=False, ): """Apply an affine transformation. Given an output image pixel index vector ``o``, the pixel value is determined from the input image at position ``cupy.dot(matrix, o) + offset``. Args: input (cupy.ndarray): The input array. matrix (cupy.ndarray): The inverse coordinate transformation matrix, mapping output coordinates to input coordinates. If ``ndim`` is the number of dimensions of ``input``, the given matrix must have one of the following shapes: - ``(ndim, ndim)``: the linear transformation matrix for each output coordinate. - ``(ndim,)``: assume that the 2D transformation matrix is diagonal, with the diagonal specified by the given value. - ``(ndim + 1, ndim + 1)``: assume that the transformation is specified using homogeneous coordinates. In this case, any value passed to ``offset`` is ignored. - ``(ndim, ndim + 1)``: as above, but the bottom row of a homogeneous transformation matrix is always ``[0, 0, ..., 1]``, and may be omitted. offset (float or sequence): The offset into the array where the transform is applied. If a float, ``offset`` is the same for each axis. If a sequence, ``offset`` should contain one value for each axis. output_shape (tuple of ints): Shape tuple. output (cupy.ndarray or ~cupy.dtype): The array in which to place the output, or the dtype of the returned array. order (int): The order of the spline interpolation, default is 3. Must be in the range 0-5. mode (str): Points outside the boundaries of the input are filled according to the given mode (``'constant'``, ``'nearest'``, ``'mirror'``, ``'reflect'``, ``'wrap'``, ``'grid-mirror'``, ``'grid-wrap'``, ``'grid-constant'`` or ``'opencv'``). cval (scalar): Value used for points outside the boundaries of the input if ``mode='constant'`` or ``mode='opencv'``. Default is 0.0 prefilter (bool): It is not used yet. It just exists for compatibility with :mod:`scipy.ndimage`. texture_memory (bool): If True, uses GPU texture memory. Supports only: - 2D and 3D float32 arrays as input - ``(ndim + 1, ndim + 1)`` homogeneous float32 transformation matrix - ``mode='constant'`` and ``mode='nearest'`` - ``order=0`` (nearest neighbor) and ``order=1`` (linear interpolation) - NVIDIA CUDA GPUs Returns: cupy.ndarray or None: The transformed input. If ``output`` is given as a parameter, ``None`` is returned. .. seealso:: :func:`scipy.ndimage.affine_transform` """ if texture_memory: # _texture only available in CuPy 10.x so delay the import # We do not use this texture-based implementation in cuCIM. from cucim.skimage._vendored import _texture if runtime.is_hip: raise RuntimeError( "HIP currently does not support texture acceleration" ) tm_interp = "linear" if order > 0 else "nearest" return _texture.affine_transformation( data=input, transformation_matrix=matrix, output_shape=output_shape, output=output, interpolation=tm_interp, mode=mode, border_value=cval, ) _check_parameter("affine_transform", order, mode) offset = _util._fix_sequence_arg(offset, input.ndim, "offset", float) if matrix.ndim not in [1, 2] or matrix.shape[0] < 1: raise RuntimeError("no proper affine matrix provided") if matrix.ndim == 2: if matrix.shape[0] == matrix.shape[1] - 1: offset = matrix[:, -1] matrix = matrix[:, :-1] elif matrix.shape[0] == input.ndim + 1: offset = matrix[:-1, -1] matrix = matrix[:-1, :-1] if matrix.shape != (input.ndim, input.ndim): raise RuntimeError("improper affine shape") if mode == "opencv": m = cupy.zeros((input.ndim + 1, input.ndim + 1)) m[:-1, :-1] = matrix m[:-1, -1] = offset m[-1, -1] = 1 m = cupy.linalg.inv(m) m[:2] = cupy.roll(m[:2], 1, axis=0) m[:2, :2] = cupy.roll(m[:2, :2], 1, axis=1) matrix = m[:-1, :-1] offset = m[:-1, -1] if output_shape is None: output_shape = input.shape if mode == "opencv" or mode == "_opencv_edge": if matrix.ndim == 1: matrix = cupy.diag(matrix) coordinates = cupy.indices(output_shape, dtype=cupy.float64) coordinates = cupy.dot(matrix, coordinates.reshape((input.ndim, -1))) coordinates += cupy.expand_dims(cupy.asarray(offset), -1) ret = _util._get_output(output, input, shape=output_shape) ret[:] = map_coordinates( input, coordinates, ret.dtype, order, mode, cval, prefilter ).reshape(output_shape) return ret matrix = matrix.astype(cupy.float64, copy=False) ndim = input.ndim output = _util._get_output(output, input, shape=output_shape) if input.dtype.kind in "iu": input = input.astype(cupy.float32) filtered, nprepad = _filter_input(input, prefilter, mode, cval, order) integer_output = output.dtype.kind in "iu" _util._check_cval(mode, cval, integer_output) large_int = max(prod(input.shape), prod(output_shape)) > 1 << 31 if matrix.ndim == 1: offset = cupy.asarray(offset, dtype=cupy.float64) offset = -offset / matrix kern = _interp_kernels._get_zoom_shift_kernel( ndim, large_int, output_shape, mode, cval=cval, order=order, integer_output=integer_output, nprepad=nprepad, ) kern(filtered, offset, matrix, output) else: kern = _interp_kernels._get_affine_kernel( ndim, large_int, output_shape, mode, cval=cval, order=order, integer_output=integer_output, nprepad=nprepad, ) m = cupy.zeros((ndim, ndim + 1), dtype=cupy.float64) m[:, :-1] = matrix m[:, -1] = cupy.asarray(offset, dtype=cupy.float64) kern(filtered, m, output) return output def _minmax(coor, minc, maxc): if coor[0] < minc[0]: minc[0] = coor[0] elif coor[0] > maxc[0]: maxc[0] = coor[0] if coor[1] < minc[1]: minc[1] = coor[1] elif coor[1] > maxc[1]: maxc[1] = coor[1] return minc, maxc def rotate( input, angle, axes=(1, 0), reshape=True, output=None, order=3, mode="constant", cval=0.0, prefilter=True, ): """Rotate an array. The array is rotated in the plane defined by the two axes given by the ``axes`` parameter using spline interpolation of the requested order. Args: input (cupy.ndarray): The input array. angle (float): The rotation angle in degrees. axes (tuple of 2 ints): The two axes that define the plane of rotation. Default is the first two axes. reshape (bool): If ``reshape`` is True, the output shape is adapted so that the input array is contained completely in the output. Default is True. output (cupy.ndarray or ~cupy.dtype): The array in which to place the output, or the dtype of the returned array. order (int): The order of the spline interpolation, default is 3. Must be in the range 0-5. mode (str): Points outside the boundaries of the input are filled according to the given mode (``'constant'``, ``'nearest'``, ``'mirror'``, ``'reflect'``, ``'wrap'``, ``'grid-mirror'``, ``'grid-wrap'``, ``'grid-constant'`` or ``'opencv'``). cval (scalar): Value used for points outside the boundaries of the input if ``mode='constant'`` or ``mode='opencv'``. Default is 0.0 prefilter (bool): It is not used yet. It just exists for compatibility with :mod:`scipy.ndimage`. Returns: cupy.ndarray or None: The rotated input. .. seealso:: :func:`scipy.ndimage.rotate` """ _check_parameter("rotate", order, mode) if mode == "opencv": mode = "_opencv_edge" input_arr = input axes = list(axes) if axes[0] < 0: axes[0] += input_arr.ndim if axes[1] < 0: axes[1] += input_arr.ndim if axes[0] > axes[1]: axes = [axes[1], axes[0]] if axes[0] < 0 or input_arr.ndim <= axes[1]: raise ValueError("invalid rotation plane specified") ndim = input_arr.ndim rad = math.radians(angle) sincos = cmath.rect(1, rad) cos, sin = sincos.real, sincos.imag # determine offsets and output shape as in scipy.ndimage.rotate rot_matrix = numpy.array([[cos, sin], [-sin, cos]]) img_shape = numpy.asarray(input_arr.shape) in_plane_shape = img_shape[axes] if reshape: # Compute transformed input bounds iy, ix = in_plane_shape out_bounds = rot_matrix @ [[0, 0, iy, iy], [0, ix, 0, ix]] # Compute the shape of the transformed input plane out_plane_shape = (out_bounds.ptp(axis=1) + 0.5).astype(cupy.int64) else: out_plane_shape = img_shape[axes] out_center = rot_matrix @ ((out_plane_shape - 1) / 2) in_center = (in_plane_shape - 1) / 2 output_shape = img_shape output_shape[axes] = out_plane_shape output_shape = tuple(output_shape) matrix = numpy.identity(ndim) matrix[axes[0], axes[0]] = cos matrix[axes[0], axes[1]] = sin matrix[axes[1], axes[0]] = -sin matrix[axes[1], axes[1]] = cos offset = numpy.zeros(ndim, dtype=cupy.float64) offset[axes] = in_center - out_center matrix = cupy.asarray(matrix) offset = cupy.asarray(offset) return affine_transform( input, matrix, offset, output_shape, output, order, mode, cval, prefilter, ) def shift( input, shift, output=None, order=3, mode="constant", cval=0.0, prefilter=True, ): """Shift an array. The array is shifted using spline interpolation of the requested order. Points outside the boundaries of the input are filled according to the given mode. Args: input (cupy.ndarray): The input array. shift (float or sequence): The shift along the axes. If a float, ``shift`` is the same for each axis. If a sequence, ``shift`` should contain one value for each axis. output (cupy.ndarray or ~cupy.dtype): The array in which to place the output, or the dtype of the returned array. order (int): The order of the spline interpolation, default is 3. Must be in the range 0-5. mode (str): Points outside the boundaries of the input are filled according to the given mode (``'constant'``, ``'nearest'``, ``'mirror'``, ``'reflect'``, ``'wrap'``, ``'grid-mirror'``, ``'grid-wrap'``, ``'grid-constant'`` or ``'opencv'``). cval (scalar): Value used for points outside the boundaries of the input if ``mode='constant'`` or ``mode='opencv'``. Default is 0.0 prefilter (bool): It is not used yet. It just exists for compatibility with :mod:`scipy.ndimage`. Returns: cupy.ndarray or None: The shifted input. .. seealso:: :func:`scipy.ndimage.shift` """ _check_parameter("shift", order, mode) shift = _util._fix_sequence_arg(shift, input.ndim, "shift", float) if mode == "opencv": mode = "_opencv_edge" output = affine_transform( input, cupy.ones(input.ndim, input.dtype), cupy.negative(cupy.asarray(shift)), None, output, order, mode, cval, prefilter, ) else: output = _util._get_output(output, input) if input.dtype.kind in "iu": input = input.astype(cupy.float32) filtered, nprepad = _filter_input(input, prefilter, mode, cval, order) integer_output = output.dtype.kind in "iu" _util._check_cval(mode, cval, integer_output) large_int = prod(input.shape) > 1 << 31 kern = _interp_kernels._get_shift_kernel( input.ndim, large_int, input.shape, mode, cval=cval, order=order, integer_output=integer_output, nprepad=nprepad, ) shift = cupy.asarray(shift, dtype=cupy.float64, order="C") if shift.ndim != 1: raise ValueError("shift must be 1d") if shift.size != filtered.ndim: raise ValueError("len(shift) must equal input.ndim") kern(filtered, shift, output) return output def zoom( input, zoom, output=None, order=3, mode="constant", cval=0.0, prefilter=True, *, grid_mode=False, ): """Zoom an array. The array is zoomed using spline interpolation of the requested order. Args: input (cupy.ndarray): The input array. zoom (float or sequence): The zoom factor along the axes. If a float, ``zoom`` is the same for each axis. If a sequence, ``zoom`` should contain one value for each axis. output (cupy.ndarray or ~cupy.dtype): The array in which to place the output, or the dtype of the returned array. order (int): The order of the spline interpolation, default is 3. Must be in the range 0-5. mode (str): Points outside the boundaries of the input are filled according to the given mode (``'constant'``, ``'nearest'``, ``'mirror'``, ``'reflect'``, ``'wrap'``, ``'grid-mirror'``, ``'grid-wrap'``, ``'grid-constant'`` or ``'opencv'``). cval (scalar): Value used for points outside the boundaries of the input if ``mode='constant'`` or ``mode='opencv'``. Default is 0.0 prefilter (bool): It is not used yet. It just exists for compatibility with :mod:`scipy.ndimage`. grid_mode (bool, optional): If False, the distance from the pixel centers is zoomed. Otherwise, the distance including the full pixel extent is used. For example, a 1d signal of length 5 is considered to have length 4 when ``grid_mode`` is False, but length 5 when ``grid_mode`` is True. See the following visual illustration: .. code-block:: text | pixel 1 | pixel 2 | pixel 3 | pixel 4 | pixel 5 | |<-------------------------------------->| vs. |<----------------------------------------------->| The starting point of the arrow in the diagram above corresponds to coordinate location 0 in each mode. Returns: cupy.ndarray or None: The zoomed input. .. seealso:: :func:`scipy.ndimage.zoom` """ _check_parameter("zoom", order, mode) zoom = _util._fix_sequence_arg(zoom, input.ndim, "zoom", float) output_shape = [] for s, z in zip(input.shape, zoom): output_shape.append(int(round(s * z))) output_shape = tuple(output_shape) if mode == "opencv": zoom = [] offset = [] for in_size, out_size in zip(input.shape, output_shape): if out_size > 1: zoom.append(float(in_size) / out_size) offset.append((zoom[-1] - 1) / 2.0) else: zoom.append(0) offset.append(0) mode = "nearest" output = affine_transform( input, cupy.asarray(zoom), offset, output_shape, output, order, mode, cval, prefilter, ) else: if grid_mode: # warn about modes that may have surprising behavior suggest_mode = None if mode == "constant": suggest_mode = "grid-constant" elif mode == "wrap": suggest_mode = "grid-wrap" if suggest_mode is not None: warnings.warn( f"It is recommended to use mode = {suggest_mode} instead " f"of {mode} when grid_mode is True." ) zoom = [] for in_size, out_size in zip(input.shape, output_shape): if grid_mode and out_size > 0: zoom.append(in_size / out_size) elif out_size > 1: zoom.append((in_size - 1) / (out_size - 1)) else: zoom.append(0) output = _util._get_output(output, input, shape=output_shape) if input.dtype.kind in "iu": input = input.astype(cupy.float32) filtered, nprepad = _filter_input(input, prefilter, mode, cval, order) integer_output = output.dtype.kind in "iu" _util._check_cval(mode, cval, integer_output) large_int = max(prod(input.shape), prod(output_shape)) > 1 << 31 kern = _interp_kernels._get_zoom_kernel( input.ndim, large_int, output_shape, mode, order=order, integer_output=integer_output, grid_mode=grid_mode, nprepad=nprepad, ) zoom = cupy.asarray(zoom, dtype=cupy.float64) kern(filtered, zoom, output) return output
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/__init__.py
""" This module will hold copies of any upstream CuPy code that is needed, but has not yet been merged to CuPy master. """ from cucim.skimage._vendored._pearsonr import pearsonr from cucim.skimage._vendored.pad import pad from cucim.skimage._vendored.signaltools import * # noqa
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_internal.py
import math from functools import reduce from operator import mul import cupy import numpy try: # try importing Cython-based private axis handling functions from CuPy if hasattr(cupy, "_core"): # CuPy 10 renames core->_core from cupy._core.internal import _normalize_axis_index # NOQA from cupy._core.internal import _normalize_axis_indices # NOQA else: from cupy.core.internal import _normalize_axis_index # NOQA from cupy.core.internal import _normalize_axis_indices # NOQA except ImportError: # Fallback to local Python implementations def _normalize_axis_index(axis, ndim): # NOQA """ Normalizes an axis index, ``axis``, such that is a valid positive index into the shape of array with ``ndim`` dimensions. Raises a ValueError with an appropriate message if this is not possible. Args: axis (int): The un-normalized index of the axis. Can be negative ndim (int): The number of dimensions of the array that ``axis`` should be normalized against Returns: int: The normalized axis index, such that `0 <= normalized_axis < ndim` """ if axis < 0: axis += ndim if not (0 <= axis < ndim): raise numpy.AxisError("axis out of bounds") return axis def _normalize_axis_indices(axes, ndim): # NOQA """Normalize axis indices. Args: axis (int, tuple of int or None): The un-normalized indices of the axis. Can be negative. ndim (int): The number of dimensions of the array that ``axis`` should be normalized against Returns: tuple of int: The tuple of normalized axis indices. """ if axes is None: axes = tuple(range(ndim)) elif not isinstance(axes, tuple): axes = (axes,) res = [] for axis in axes: axis = _normalize_axis_index(axis, ndim) if axis in res: raise ValueError("Duplicate value in 'axis'") res.append(axis) return tuple(sorted(res)) if hasattr(math, "prod"): prod = math.prod else: def prod(iterable, *, start=1): return reduce(mul, iterable, start)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/pad.py
"""version of cupy.pad that dispatches to elementwise kernels for some boundary modes: {'edge', 'wrap', 'symmetric', 'reflect'}. New utility _use_elementwise_kernel determines when to use the new elementwise kernels, otherwise the existing implementations as in cupy.pad are used. """ import numbers import cupy import numpy ############################################################################### # Private utility functions. def _round_if_needed(arr, dtype): """Rounds arr inplace if the destination dtype is an integer.""" if cupy.issubdtype(dtype, cupy.integer): arr.round(out=arr) # bug in round so use rint (cupy/cupy#2330) def _slice_at_axis(sl, axis): """Constructs a tuple of slices to slice an array in the given dimension. Args: sl(slice): The slice for the given dimension. axis(int): The axis to which `sl` is applied. All other dimensions are left "unsliced". Returns: tuple of slices: A tuple with slices matching `shape` in length. """ return (slice(None),) * axis + (sl,) + (Ellipsis,) def _view_roi(array, original_area_slice, axis): """Gets a view of the current region of interest during iterative padding. When padding multiple dimensions iteratively corner values are unnecessarily overwritten multiple times. This function reduces the working area for the first dimensions so that corners are excluded. Args: array(cupy.ndarray): The array with the region of interest. original_area_slice(tuple of slices): Denotes the area with original values of the unpadded array. axis(int): The currently padded dimension assuming that `axis` is padded before `axis` + 1. Returns: """ axis += 1 sl = (slice(None),) * axis + original_area_slice[axis:] return array[sl] def _pad_simple(array, pad_width, fill_value=None): """Pads an array on all sides with either a constant or undefined values. Args: array(cupy.ndarray): Array to grow. pad_width(sequence of tuple[int, int]): Pad width on both sides for each dimension in `arr`. fill_value(scalar, optional): If provided the padded area is filled with this value, otherwise the pad area left undefined. (Default value = None) """ # Allocate grown array new_shape = tuple( left + size + right for size, (left, right) in zip(array.shape, pad_width) ) order = "F" if array.flags.fnc else "C" # Fortran and not also C-order padded = cupy.empty(new_shape, dtype=array.dtype, order=order) if fill_value is not None: padded.fill(fill_value) # Copy old array into correct space original_area_slice = tuple( slice(left, left + size) for size, (left, right) in zip(array.shape, pad_width) ) padded[original_area_slice] = array return padded, original_area_slice def _set_pad_area(padded, axis, width_pair, value_pair): """Set an empty-padded area in given dimension.""" left_slice = _slice_at_axis(slice(None, width_pair[0]), axis) padded[left_slice] = value_pair[0] right_slice = _slice_at_axis( slice(padded.shape[axis] - width_pair[1], None), axis ) padded[right_slice] = value_pair[1] def _get_edges(padded, axis, width_pair): """Retrieves edge values from an empty-padded array along a given axis. Args: padded(cupy.ndarray): Empty-padded array. axis(int): Dimension in which the edges are considered. width_pair((int, int)): Pair of widths that mark the pad area on both sides in the given dimension. """ left_index = width_pair[0] left_slice = _slice_at_axis(slice(left_index, left_index + 1), axis) left_edge = padded[left_slice] right_index = padded.shape[axis] - width_pair[1] right_slice = _slice_at_axis(slice(right_index - 1, right_index), axis) right_edge = padded[right_slice] return left_edge, right_edge def _get_linear_ramps(padded, axis, width_pair, end_value_pair): """Constructs linear ramps for an empty-padded array along a given axis. Args: padded(cupy.ndarray): Empty-padded array. axis(int): Dimension in which the ramps are constructed. width_pair((int, int)): Pair of widths that mark the pad area on both sides in the given dimension. end_value_pair((scalar, scalar)): End values for the linear ramps which form the edge of the fully padded array. These values are included in the linear ramps. """ edge_pair = _get_edges(padded, axis, width_pair) left_ramp = cupy.linspace( start=end_value_pair[0], # squeeze axis replaced by linspace stop=edge_pair[0].squeeze(axis), num=width_pair[0], endpoint=False, dtype=padded.dtype, axis=axis, ) right_ramp = cupy.linspace( start=end_value_pair[1], # squeeze axis replaced by linspace stop=edge_pair[1].squeeze(axis), num=width_pair[1], endpoint=False, dtype=padded.dtype, axis=axis, ) # Reverse linear space in appropriate dimension right_ramp = right_ramp[_slice_at_axis(slice(None, None, -1), axis)] return left_ramp, right_ramp def _get_stats(padded, axis, width_pair, length_pair, stat_func): """Calculates a statistic for an empty-padded array along a given axis. Args: padded(cupy.ndarray): Empty-padded array. axis(int): Dimension in which the statistic is calculated. width_pair((int, int)): Pair of widths that mark the pad area on both sides in the given dimension. length_pair(2-element sequence of None or int): Gives the number of values in valid area from each side that is taken into account when calculating the statistic. If None the entire valid area in `padded` is considered. stat_func(function): Function to compute statistic. The expected signature is ``stat_func(x: ndarray, axis: int, keepdims: bool) -> ndarray``. """ # Calculate indices of the edges of the area with original values left_index = width_pair[0] right_index = padded.shape[axis] - width_pair[1] # as well as its length max_length = right_index - left_index # Limit stat_lengths to max_length left_length, right_length = length_pair if left_length is None or max_length < left_length: left_length = max_length if right_length is None or max_length < right_length: right_length = max_length # Calculate statistic for the left side left_slice = _slice_at_axis( slice(left_index, left_index + left_length), axis ) left_chunk = padded[left_slice] left_stat = stat_func(left_chunk, axis=axis, keepdims=True) _round_if_needed(left_stat, padded.dtype) if left_length == right_length == max_length: # return early as right_stat must be identical to left_stat return left_stat, left_stat # Calculate statistic for the right side right_slice = _slice_at_axis( slice(right_index - right_length, right_index), axis ) right_chunk = padded[right_slice] right_stat = stat_func(right_chunk, axis=axis, keepdims=True) _round_if_needed(right_stat, padded.dtype) return left_stat, right_stat def _set_reflect_both(padded, axis, width_pair, method, include_edge=False): """Pads an `axis` of `arr` using reflection. Args: padded(cupy.ndarray): Input array of arbitrary shape. axis(int): Axis along which to pad `arr`. width_pair((int, int)): Pair of widths that mark the pad area on both sides in the given dimension. method(str): Controls method of reflection; options are 'even' or 'odd'. include_edge(bool, optional): If true, edge value is included in reflection, otherwise the edge value forms the symmetric axis to the reflection. (Default value = False) """ left_pad, right_pad = width_pair old_length = padded.shape[axis] - right_pad - left_pad if include_edge: # Edge is included, we need to offset the pad amount by 1 edge_offset = 1 else: edge_offset = 0 # Edge is not included, no need to offset pad amount old_length -= 1 # but must be omitted from the chunk if left_pad > 0: # Pad with reflected values on left side: # First limit chunk size which can't be larger than pad area chunk_length = min(old_length, left_pad) # Slice right to left, stop on or next to edge, start relative to stop stop = left_pad - edge_offset start = stop + chunk_length left_slice = _slice_at_axis(slice(start, stop, -1), axis) left_chunk = padded[left_slice] if method == "odd": # Negate chunk and align with edge edge_slice = _slice_at_axis(slice(left_pad, left_pad + 1), axis) left_chunk = 2 * padded[edge_slice] - left_chunk # Insert chunk into padded area start = left_pad - chunk_length stop = left_pad pad_area = _slice_at_axis(slice(start, stop), axis) padded[pad_area] = left_chunk # Adjust pointer to left edge for next iteration left_pad -= chunk_length if right_pad > 0: # Pad with reflected values on right side: # First limit chunk size which can't be larger than pad area chunk_length = min(old_length, right_pad) # Slice right to left, start on or next to edge, stop relative to start start = -right_pad + edge_offset - 2 stop = start - chunk_length right_slice = _slice_at_axis(slice(start, stop, -1), axis) right_chunk = padded[right_slice] if method == "odd": # Negate chunk and align with edge edge_slice = _slice_at_axis(slice(-right_pad - 1, -right_pad), axis) right_chunk = 2 * padded[edge_slice] - right_chunk # Insert chunk into padded area start = padded.shape[axis] - right_pad stop = start + chunk_length pad_area = _slice_at_axis(slice(start, stop), axis) padded[pad_area] = right_chunk # Adjust pointer to right edge for next iteration right_pad -= chunk_length return left_pad, right_pad def _set_wrap_both(padded, axis, width_pair): """Pads an `axis` of `arr` with wrapped values. Args: padded(cupy.ndarray): Input array of arbitrary shape. axis(int): Axis along which to pad `arr`. width_pair((int, int)): Pair of widths that mark the pad area on both sides in the given dimension. """ left_pad, right_pad = width_pair period = padded.shape[axis] - right_pad - left_pad # If the current dimension of `arr` doesn't contain enough valid values # (not part of the undefined pad area) we need to pad multiple times. # Each time the pad area shrinks on both sides which is communicated with # these variables. new_left_pad = 0 new_right_pad = 0 if left_pad > 0: # Pad with wrapped values on left side # First slice chunk from right side of the non-pad area. # Use min(period, left_pad) to ensure that chunk is not larger than # pad area right_slice = _slice_at_axis( slice( -right_pad - min(period, left_pad), -right_pad if right_pad != 0 else None, ), axis, ) right_chunk = padded[right_slice] if left_pad > period: # Chunk is smaller than pad area pad_area = _slice_at_axis(slice(left_pad - period, left_pad), axis) new_left_pad = left_pad - period else: # Chunk matches pad area pad_area = _slice_at_axis(slice(None, left_pad), axis) padded[pad_area] = right_chunk if right_pad > 0: # Pad with wrapped values on right side # First slice chunk from left side of the non-pad area. # Use min(period, right_pad) to ensure that chunk is not larger than # pad area left_slice = _slice_at_axis( slice(left_pad, left_pad + min(period, right_pad)), axis ) left_chunk = padded[left_slice] if right_pad > period: # Chunk is smaller than pad area pad_area = _slice_at_axis( slice(-right_pad, -right_pad + period), axis ) new_right_pad = right_pad - period else: # Chunk matches pad area pad_area = _slice_at_axis(slice(-right_pad, None), axis) padded[pad_area] = left_chunk return new_left_pad, new_right_pad def _as_pairs(x, ndim, as_index=False): """Broadcasts `x` to an array with shape (`ndim`, 2). A helper function for `pad` that prepares and validates arguments like `pad_width` for iteration in pairs. Args: x(scalar or array-like, optional): The object to broadcast to the shape (`ndim`, 2). ndim(int): Number of pairs the broadcasted `x` will have. as_index(bool, optional): If `x` is not None, try to round each element of `x` to an integer (dtype `cupy.intp`) and ensure every element is positive. (Default value = False) Returns: nested iterables, shape (`ndim`, 2): The broadcasted version of `x`. """ if x is None: # Pass through None as a special case, otherwise cupy.round(x) fails # with an AttributeError return ((None, None),) * ndim elif isinstance(x, numbers.Number): if as_index: x = round(x) return ((x, x),) * ndim x = numpy.array(x) if as_index: x = numpy.asarray(numpy.round(x), dtype=numpy.intp) if x.ndim < 3: # Optimization: Possibly use faster paths for cases where `x` has # only 1 or 2 elements. `numpy.broadcast_to` could handle these as well # but is currently slower if x.size == 1: # x was supplied as a single value x = x.ravel() # Ensure x[0] works for x.ndim == 0, 1, 2 if as_index and x < 0: raise ValueError("index can't contain negative values") return ((x[0], x[0]),) * ndim if x.size == 2 and x.shape != (2, 1): # x was supplied with a single value for each side # but except case when each dimension has a single value # which should be broadcasted to a pair, # e.g. [[1], [2]] -> [[1, 1], [2, 2]] not [[1, 2], [1, 2]] x = x.ravel() # Ensure x[0], x[1] works if as_index and (x[0] < 0 or x[1] < 0): raise ValueError("index can't contain negative values") return ((x[0], x[1]),) * ndim if as_index and x.min() < 0: raise ValueError("index can't contain negative values") # Converting the array with `tolist` seems to improve performance # when iterating and indexing the result (see usage in `pad`) x_view = x.view() x_view.shape = (ndim, 2) return x_view.tolist() def _use_elementwise_kernel(arr, mode, kwargs): """Determine if we can use an ElementwiseKernel from pad_elementwise.py""" use_elementwise = False if arr.ndim == 0 or arr.size == 0: return False if mode in ("edge", "wrap"): use_elementwise = True # elif mode == 'constant': # # Only a uniform constant is supported in the Elementwise kernel. # # A per-axis constant is not currently supported. # return isinstance(kwargs.get('constant_values', 0), numbers.Number) elif mode in ("symmetric", "reflect"): # only the default 'even' reflect type is supported use_elementwise = kwargs.get("reflect_type", "even") == "even" if use_elementwise: if arr.ndim > 2 and (arr.flags.fnc and arr.nbytes > 5_000_000): # Empirically found slower performance for large Fortran-ordered # arrays with ndim > 2. return False return True return False ############################################################################### # Public functions # @array_function_dispatch(_pad_dispatcher, module='numpy') def pad(array, pad_width, mode="constant", **kwargs): """Pads an array with specified widths and values. Args: array(cupy.ndarray): The array to pad. pad_width(sequence, array_like or int): Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. ((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes. You cannot specify ``cupy.ndarray``. mode(str or function, optional): One of the following string values or a user supplied function 'constant' (default) Pads with a constant value. 'edge' Pads with the edge values of array. 'linear_ramp' Pads with the linear ramp between end_value and the array edge value. 'maximum' Pads with the maximum value of all or part of the vector along each axis. 'mean' Pads with the mean value of all or part of the vector along each axis. 'median' Pads with the median value of all or part of the vector along each axis. (Not Implemented) 'minimum' Pads with the minimum value of all or part of the vector along each axis. 'reflect' Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. 'symmetric' Pads with the reflection of the vector mirrored along the edge of the array. 'wrap' Pads with the wrap of the vector along the axis. The first values are used to pad the end and the end values are used to pad the beginning. 'empty' Pads with undefined values. <function> Padding function, see Notes. stat_length(sequence or int, optional): Used in 'maximum', 'mean', 'median', and 'minimum'. Number of values at edge of each axis used to calculate the statistic value. ((before_1, after_1), ... (before_N, after_N)) unique statistic lengths for each axis. ((before, after),) yields same before and after statistic lengths for each axis. (stat_length,) or int is a shortcut for before = after = statistic length for all axes. Default is ``None``, to use the entire axis. You cannot specify ``cupy.ndarray``. constant_values(sequence or scalar, optional): Used in 'constant'. The values to set the padded values for each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad constants for each axis. ((before, after),) yields same before and after constants for each axis. (constant,) or constant is a shortcut for before = after = constant for all axes. Default is 0. You cannot specify ``cupy.ndarray``. end_values(sequence or scalar, optional): Used in 'linear_ramp'. The values used for the ending value of the linear_ramp and that will form the edge of the padded array. ((before_1, after_1), ... (before_N, after_N)) unique end values for each axis. ((before, after),) yields same before and after end values for each axis. (constant,) or constant is a shortcut for before = after = constant for all axes. Default is 0. You cannot specify ``cupy.ndarray``. reflect_type({'even', 'odd'}, optional): Used in 'reflect', and 'symmetric'. The 'even' style is the default with an unaltered reflection around the edge value. For the 'odd' style, the extended part of the array is created by subtracting the reflected values from two times the edge value. Returns: cupy.ndarray: Padded array with shape extended by ``pad_width``. .. note:: For an array with rank greater than 1, some of the padding of later axes is calculated from padding of previous axes. This is easiest to think about with a rank 2 array where the corners of the padded array are calculated by using padded values from the first axis. The padding function, if used, should modify a rank 1 array in-place. It has the following signature: ``padding_func(vector, iaxis_pad_width, iaxis, kwargs)`` where vector (cupy.ndarray) A rank 1 array already padded with zeros. Padded values are ``vector[:iaxis_pad_width[0]]`` and ``vector[-iaxis_pad_width[1]:]``. iaxis_pad_width (tuple) A 2-tuple of ints, ``iaxis_pad_width[0]`` represents the number of values padded at the beginning of vector where ``iaxis_pad_width[1]`` represents the number of values padded at the end of vector. iaxis (int) The axis currently being calculated. kwargs (dict) Any keyword arguments the function requires. Examples -------- >>> a = cupy.array([1, 2, 3, 4, 5]) >>> cupy.pad(a, (2, 3), 'constant', constant_values=(4, 6)) array([4, 4, 1, ..., 6, 6, 6]) >>> cupy.pad(a, (2, 3), 'edge') array([1, 1, 1, ..., 5, 5, 5]) >>> cupy.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4)) array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4]) >>> cupy.pad(a, (2,), 'maximum') array([5, 5, 1, 2, 3, 4, 5, 5, 5]) >>> cupy.pad(a, (2,), 'mean') array([3, 3, 1, 2, 3, 4, 5, 3, 3]) >>> a = cupy.array([[1, 2], [3, 4]]) >>> cupy.pad(a, ((3, 2), (2, 3)), 'minimum') array([[1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [3, 3, 3, 4, 3, 3, 3], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1]]) >>> a = cupy.array([1, 2, 3, 4, 5]) >>> cupy.pad(a, (2, 3), 'reflect') array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) >>> cupy.pad(a, (2, 3), 'reflect', reflect_type='odd') array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8]) >>> cupy.pad(a, (2, 3), 'symmetric') array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3]) >>> cupy.pad(a, (2, 3), 'symmetric', reflect_type='odd') array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7]) >>> cupy.pad(a, (2, 3), 'wrap') array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3]) >>> def pad_with(vector, pad_width, iaxis, kwargs): ... pad_value = kwargs.get('padder', 10) ... vector[:pad_width[0]] = pad_value ... vector[-pad_width[1]:] = pad_value >>> a = cupy.arange(6) >>> a = a.reshape((2, 3)) >>> cupy.pad(a, 2, pad_with) array([[10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 0, 1, 2, 10, 10], [10, 10, 3, 4, 5, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10]]) >>> cupy.pad(a, 2, pad_with, padder=100) array([[100, 100, 100, 100, 100, 100, 100], [100, 100, 100, 100, 100, 100, 100], [100, 100, 0, 1, 2, 100, 100], [100, 100, 3, 4, 5, 100, 100], [100, 100, 100, 100, 100, 100, 100], [100, 100, 100, 100, 100, 100, 100]]) """ if isinstance(pad_width, numbers.Integral): pad_width = ((pad_width, pad_width),) * array.ndim else: pad_width = numpy.asarray(pad_width) if not pad_width.dtype.kind == "i": raise TypeError("`pad_width` must be of integral type.") # Broadcast to shape (array.ndim, 2) pad_width = _as_pairs(pad_width, array.ndim, as_index=True) if callable(mode): # Old behavior: Use user-supplied function with numpy.apply_along_axis function = mode # Create a new zero padded array padded, _ = _pad_simple(array, pad_width, fill_value=0) # And apply along each axis for axis in range(padded.ndim): # Iterate using ndindex as in apply_along_axis, but assuming that # function operates inplace on the padded array. # view with the iteration axis at the end view = cupy.moveaxis(padded, axis, -1) # compute indices for the iteration axes, and append a trailing # ellipsis to prevent 0d arrays decaying to scalars (gh-8642) inds = numpy.ndindex(view.shape[:-1]) inds = (ind + (Ellipsis,) for ind in inds) for ind in inds: function(view[ind], pad_width[axis], axis, kwargs) return padded # Make sure that no unsupported keywords were passed for the current mode allowed_kwargs = { "empty": [], "edge": [], "wrap": [], "constant": ["constant_values"], "linear_ramp": ["end_values"], "maximum": ["stat_length"], "mean": ["stat_length"], # 'median': ['stat_length'], "minimum": ["stat_length"], "reflect": ["reflect_type"], "symmetric": ["reflect_type"], } try: unsupported_kwargs = set(kwargs) - set(allowed_kwargs[mode]) except KeyError: raise ValueError("mode '{}' is not supported".format(mode)) if unsupported_kwargs: raise ValueError( "unsupported keyword arguments for mode '{}': {}".format( mode, unsupported_kwargs ) ) if _use_elementwise_kernel(array, mode, kwargs): # import here to avoid circular import from cucim.skimage._vendored.pad_elementwise import _get_pad_kernel if mode == "reflect" and min(array.shape) > 1: mode = "reflect_no_singleton_dim" if not array.flags.forc: # make non-contiguous input C-contiguous array = cupy.ascontiguousarray(array) # Allocate grown array new_shape = tuple( left + size + right for size, (left, right) in zip(array.shape, pad_width) ) order = "F" if array.flags.fnc else "C" # Fortran and not also C-order padded = cupy.empty(new_shape, dtype=array.dtype, order=order) (int_type, np_type) = ( ("int", cupy.int32) if padded.size < (1 << 31) else ("ptrdiff_t", cupy.intp) ) kern = _get_pad_kernel( pad_starts=tuple(p[0] for p in pad_width), mode=mode, int_type=int_type, order=order, ) # pad_width must be C-contiguous if mode == "constant": # `_use_elementwise_kernel` excludes cases with non-scalar cval cval = float(kwargs.get("constant_values", 0)) kern(array, cval, padded, size=padded.size) else: kern(array, padded, size=padded.size) return padded if mode == "constant": values = kwargs.get("constant_values", 0) if ( isinstance(values, numbers.Number) and values == 0 and (array.ndim == 1 or array.size < 4e6) ): # faster path for 1d arrays or small n-dimensional arrays return _pad_simple(array, pad_width, 0)[0] stat_functions = { "maximum": cupy.max, "minimum": cupy.min, "mean": cupy.mean, # 'median': cupy.median, } # Create array with final shape and original values # (padded area is undefined) padded, original_area_slice = _pad_simple(array, pad_width) # And prepare iteration over all dimensions # (zipping may be more readable than using enumerate) axes = range(padded.ndim) if mode == "constant": values = _as_pairs(values, padded.ndim) for axis, width_pair, value_pair in zip(axes, pad_width, values): roi = _view_roi(padded, original_area_slice, axis) _set_pad_area(roi, axis, width_pair, value_pair) elif mode == "empty": pass # Do nothing as _pad_simple already returned the correct result elif array.size == 0: # Only modes 'constant' and 'empty' can extend empty axes, all other # modes depend on `array` not being empty # -> ensure every empty axis is only 'padded with 0' for axis, width_pair in zip(axes, pad_width): if array.shape[axis] == 0 and any(width_pair): raise ValueError( "can't extend empty axis {} using modes other than " "'constant' or 'empty'".format(axis) ) # passed, don't need to do anything more as _pad_simple already # returned the correct result elif mode == "edge": for axis, width_pair in zip(axes, pad_width): roi = _view_roi(padded, original_area_slice, axis) edge_pair = _get_edges(roi, axis, width_pair) _set_pad_area(roi, axis, width_pair, edge_pair) elif mode == "linear_ramp": end_values = kwargs.get("end_values", 0) end_values = _as_pairs(end_values, padded.ndim) for axis, width_pair, value_pair in zip(axes, pad_width, end_values): roi = _view_roi(padded, original_area_slice, axis) ramp_pair = _get_linear_ramps(roi, axis, width_pair, value_pair) _set_pad_area(roi, axis, width_pair, ramp_pair) elif mode in stat_functions: func = stat_functions[mode] length = kwargs.get("stat_length", None) length = _as_pairs(length, padded.ndim, as_index=True) for axis, width_pair, length_pair in zip(axes, pad_width, length): roi = _view_roi(padded, original_area_slice, axis) stat_pair = _get_stats(roi, axis, width_pair, length_pair, func) _set_pad_area(roi, axis, width_pair, stat_pair) elif mode in {"reflect", "symmetric"}: method = kwargs.get("reflect_type", "even") include_edge = True if mode == "symmetric" else False for axis, (left_index, right_index) in zip(axes, pad_width): if array.shape[axis] == 1 and (left_index > 0 or right_index > 0): # Extending singleton dimension for 'reflect' is legacy # behavior; it really should raise an error. edge_pair = _get_edges(padded, axis, (left_index, right_index)) _set_pad_area( padded, axis, (left_index, right_index), edge_pair ) continue roi = _view_roi(padded, original_area_slice, axis) while left_index > 0 or right_index > 0: # Iteratively pad until dimension is filled with reflected # values. This is necessary if the pad area is larger than # the length of the original values in the current dimension. left_index, right_index = _set_reflect_both( roi, axis, (left_index, right_index), method, include_edge ) elif mode == "wrap": for axis, (left_index, right_index) in zip(axes, pad_width): roi = _view_roi(padded, original_area_slice, axis) while left_index > 0 or right_index > 0: # Iteratively pad until dimension is filled with wrapped # values. This is necessary if the pad area is larger than # the length of the original values in the current dimension. left_index, right_index = _set_wrap_both( roi, axis, (left_index, right_index) ) return padded
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_vendored/_ndimage_morphology.py
import operator import warnings import cupy import numpy from cupy import _core from cucim.skimage._vendored import ( _internal as internal, _ndimage_filters as _filters, _ndimage_filters_core as _filters_core, _ndimage_util as _util, ) @cupy.memoize(for_each_device=True) def _get_binary_erosion_kernel( w_shape, int_type, offsets, center_is_true, border_value, invert, masked, all_weights_nonzero, ): if invert: border_value = int(not border_value) true_val = 0 false_val = 1 else: true_val = 1 false_val = 0 if masked: pre = """ bool mv = (bool)mask[i]; bool _in = (bool)x[i]; if (!mv) {{ y = cast<Y>(_in); return; }} else if ({center_is_true} && _in == {false_val}) {{ y = cast<Y>(_in); return; }}""".format( center_is_true=int(center_is_true), false_val=false_val ) else: pre = """ bool _in = (bool)x[i]; if ({center_is_true} && _in == {false_val}) {{ y = cast<Y>(_in); return; }}""".format( center_is_true=int(center_is_true), false_val=false_val ) pre = ( pre + """ y = cast<Y>({true_val});""".format( true_val=true_val ) ) # {{{{ required because format is called again within _generate_nd_kernel found = """ if ({{cond}}) {{{{ if (!{border_value}) {{{{ y = cast<Y>({false_val}); return; }}}} }}}} else {{{{ bool nn = {{value}} ? {true_val} : {false_val}; if (!nn) {{{{ y = cast<Y>({false_val}); return; }}}} }}}}""".format( true_val=int(true_val), false_val=int(false_val), border_value=int(border_value), ) name = "binary_erosion" if false_val: name += "_invert" has_weights = not all_weights_nonzero return _filters_core._generate_nd_kernel( name, pre, found, "", "constant", w_shape, int_type, offsets, 0, ctype="Y", has_weights=has_weights, has_structure=False, has_mask=masked, binary_morphology=True, ) def _center_is_true(structure, origin): coor = tuple([oo + ss // 2 for ss, oo in zip(structure.shape, origin)]) return bool(structure[coor]) # device synchronization def iterate_structure(structure, iterations, origin=None): """Iterate a structure by dilating it with itself. Args: structure(array_like): Structuring element (an array of bools, for example), to be dilated with itself. iterations(int): The number of dilations performed on the structure with itself. origin(int or tuple of int, optional): If origin is None, only the iterated structure is returned. If not, a tuple of the iterated structure and the modified origin is returned. Returns: cupy.ndarray: A new structuring element obtained by dilating ``structure`` (``iterations`` - 1) times with itself. .. seealso:: :func:`scipy.ndimage.iterate_structure` """ if iterations < 2: return structure.copy() ni = iterations - 1 shape = [ii + ni * (ii - 1) for ii in structure.shape] pos = [ni * (structure.shape[ii] // 2) for ii in range(len(shape))] slc = tuple( slice(pos[ii], pos[ii] + structure.shape[ii], None) for ii in range(len(shape)) ) out = cupy.zeros(shape, bool) out[slc] = structure != 0 out = binary_dilation(out, structure, iterations=ni) if origin is None: return out else: origin = _util._fix_sequence_arg(origin, structure.ndim, "origin", int) origin = [iterations * o for o in origin] return out, origin def generate_binary_structure(rank, connectivity): """Generate a binary structure for binary morphological operations. Args: rank(int): Number of dimensions of the array to which the structuring element will be applied, as returned by ``np.ndim``. connectivity(int): ``connectivity`` determines which elements of the output array belong to the structure, i.e., are considered as neighbors of the central element. Elements up to a squared distance of ``connectivity`` from the center are considered neighbors. ``connectivity`` may range from 1 (no diagonal elements are neighbors) to ``rank`` (all elements are neighbors). Returns: cupy.ndarray: Structuring element which may be used for binary morphological operations, with ``rank`` dimensions and all dimensions equal to 3. .. seealso:: :func:`scipy.ndimage.generate_binary_structure` """ if connectivity < 1: connectivity = 1 if rank < 1: return cupy.asarray(True, dtype=bool) output = numpy.fabs(numpy.indices([3] * rank) - 1) output = numpy.add.reduce(output, 0) output = output <= connectivity return cupy.asarray(output) def _binary_erosion( input, structure, iterations, mask, output, border_value, origin, invert, brute_force=True, ): try: iterations = operator.index(iterations) except TypeError: raise TypeError("iterations parameter should be an integer") if input.dtype.kind == "c": raise TypeError("Complex type not supported") default_structure = False if structure is None: structure = generate_binary_structure(input.ndim, 1) all_weights_nonzero = input.ndim == 1 center_is_true = True structure_shape = structure.shape elif isinstance(structure, tuple): # For a structure that is true everywhere, can just provide the shape structure_shape = structure if len(structure_shape) == 0: raise RuntimeError("structure must not be empty") else: structure = structure.astype(dtype=bool, copy=False) structure_shape = structure.shape # transfer to CPU for use in determining if it is fully dense # structure_cpu = cupy.asnumpy(structure) if structure.ndim != input.ndim: raise RuntimeError( "structure and input must have same dimensionality" ) if not structure.flags.c_contiguous: structure = cupy.ascontiguousarray(structure) if structure.size < 1: raise RuntimeError("structure must not be empty") if mask is not None: if mask.shape != input.shape: raise RuntimeError("mask and input must have equal sizes") if not mask.flags.c_contiguous: mask = cupy.ascontiguousarray(mask) masked = True else: masked = False origin = _util._fix_sequence_arg(origin, input.ndim, "origin", int) if isinstance(output, cupy.ndarray): if output.dtype.kind == "c": raise TypeError("Complex output type not supported") else: output = bool output = _util._get_output(output, input) temp_needed = cupy.shares_memory(output, input, "MAY_SHARE_BOUNDS") if temp_needed: # input and output arrays cannot share memory temp = output output = _util._get_output(output.dtype, input) if len(structure_shape) == 0: # kernel doesn't handle ndim=0, so special case it here if isinstance(structure, tuple) or float(structure): output[...] = cupy.asarray(input, dtype=bool) else: output[...] = ~cupy.asarray(input, dtype=bool) return output origin = tuple(origin) int_type = _util._get_inttype(input) offsets = _filters_core._origins_to_offsets(origin, structure_shape) if not default_structure: if isinstance(structure, tuple): nnz = internal.prod(structure_shape) all_weights_nonzero = True center_is_true = True else: # synchronize required to determine if all weights are non-zero nnz = int(cupy.count_nonzero(structure)) all_weights_nonzero = nnz == structure.size if all_weights_nonzero: center_is_true = True else: center_is_true = _center_is_true(structure, origin) erode_kernel = _get_binary_erosion_kernel( structure_shape, int_type, offsets, center_is_true, border_value, invert, masked, all_weights_nonzero, ) if all_weights_nonzero: if masked: in_args = (input, mask) else: in_args = (input,) else: if masked: in_args = (input, structure, mask) else: in_args = (input, structure) if iterations == 1: output = erode_kernel(*in_args, output) elif center_is_true and not brute_force: raise NotImplementedError( "only brute_force iteration has been implemented" ) else: if cupy.shares_memory(output, input, "MAY_SHARE_BOUNDS"): raise ValueError("output and input may not overlap in memory") tmp_in = cupy.empty_like(input, dtype=output.dtype) tmp_out = output if iterations >= 1 and not iterations & 1: tmp_in, tmp_out = tmp_out, tmp_in tmp_out = erode_kernel(*in_args, tmp_out) # TODO: kernel doesn't return the changed status, so determine it here changed = not (input == tmp_out).all() # synchronize! ii = 1 while ii < iterations or ((iterations < 1) and changed): tmp_in, tmp_out = tmp_out, tmp_in if all_weights_nonzero: if masked: in_args = (tmp_in, mask) else: in_args = (tmp_in,) else: if masked: in_args = (tmp_in, structure, mask) else: in_args = (tmp_in, structure) tmp_out = erode_kernel(*in_args, tmp_out) changed = not (tmp_in == tmp_out).all() ii += 1 if not changed and (not ii & 1): # synchronize! # can exit early if nothing changed # (only do this after even number of tmp_in/out swaps) break output = tmp_out if temp_needed: _core.elementwise_copy(output, temp) output = temp return output def _prep_structure(structure, ndim): if structure is None: structure = generate_binary_structure(ndim, 1) return structure, structure.shape, True if isinstance(structure, int): structure = (structure,) * ndim elif isinstance(structure, list): structure = tuple(structure) if isinstance(structure, tuple): symmetric_structure = True structure_shape = structure else: # if user-provided, it is not guaranteed to be symmetric symmetric_structure = False structure_shape = structure.shape return structure, structure_shape, symmetric_structure def binary_erosion( input, structure=None, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False, ): """Multidimensional binary erosion with a given structuring element. Binary erosion is a mathematical morphology operation used for image processing. Args: input(cupy.ndarray): The input binary array_like to be eroded. Non-zero (True) elements form the subset to be eroded. structure(cupy.ndarray or tuple or int, optional): The structuring element used for the erosion. Non-zero elements are considered True. If no structuring element is provided an element is generated with a square connectivity equal to one. (Default value = None). If a tuple of integers is provided, a structuring element of the specified shape is used (all elements True). If an integer is provided, the structuring element will have the same size along all axes. iterations(int, optional): The erosion is repeated ``iterations`` times (one, by default). If iterations is less than 1, the erosion is repeated until the result does not change anymore. Only an integer of iterations is accepted. mask(cupy.ndarray or None, optional): If a mask is given, only those elements with a True value at the corresponding mask element are modified at each iteration. (Default value = None) output(cupy.ndarray, optional): Array of the same shape as input, into which the output is placed. By default, a new array is created. border_value(int (cast to 0 or 1), optional): Value at the border in the output array. (Default value = 0) origin(int or tuple of ints, optional): Placement of the filter, by default 0. brute_force(boolean, optional): Memory condition: if False, only the pixels whose value was changed in the last iteration are tracked as candidates to be updated (eroded) in the current iteration; if True all pixels are considered as candidates for erosion, regardless of what happened in the previous iteration. Returns: cupy.ndarray: The result of binary erosion. .. warning:: This function may synchronize the device. .. seealso:: :func:`scipy.ndimage.binary_erosion` """ structure, _, _ = _prep_structure(structure, input.ndim) return _binary_erosion( input, structure, iterations, mask, output, border_value, origin, 0, brute_force, ) def binary_dilation( input, structure=None, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False, ): """Multidimensional binary dilation with the given structuring element. Args: input(cupy.ndarray): The input binary array_like to be dilated. Non-zero (True) elements form the subset to be dilated. structure(cupy.ndarray or tuple or int, optional): The structuring element used for the erosion. Non-zero elements are considered True. If no structuring element is provided an element is generated with a square connectivity equal to one. (Default value = None). If a tuple of integers is provided, a structuring element of the specified shape is used (all elements True). If an integer is provided, the structuring element will have the same size along all axes. iterations(int, optional): The dilation is repeated ``iterations`` times (one, by default). If iterations is less than 1, the dilation is repeated until the result does not change anymore. Only an integer of iterations is accepted. mask(cupy.ndarray or None, optional): If a mask is given, only those elements with a True value at the corresponding mask element are modified at each iteration. (Default value = None) output(cupy.ndarray, optional): Array of the same shape as input, into which the output is placed. By default, a new array is created. border_value(int (cast to 0 or 1), optional): Value at the border in the output array. (Default value = 0) origin(int or tuple of ints, optional): Placement of the filter, by default 0. brute_force(boolean, optional): Memory condition: if False, only the pixels whose value was changed in the last iteration are tracked as candidates to be updated (dilated) in the current iteration; if True all pixels are considered as candidates for dilation, regardless of what happened in the previous iteration. Returns: cupy.ndarray: The result of binary dilation. .. warning:: This function may synchronize the device. .. seealso:: :func:`scipy.ndimage.binary_dilation` """ structure, structure_shape, symmetric = _prep_structure( structure, input.ndim ) origin = _util._fix_sequence_arg(origin, input.ndim, "origin", int) if not symmetric: structure = structure[tuple([slice(None, None, -1)] * structure.ndim)] for ii in range(len(origin)): origin[ii] = -origin[ii] if not structure_shape[ii] & 1: origin[ii] -= 1 return _binary_erosion( input, structure, iterations, mask, output, border_value, origin, 1, brute_force, ) def binary_opening( input, structure=None, iterations=1, output=None, origin=0, mask=None, border_value=0, brute_force=False, ): """ Multidimensional binary opening with the given structuring element. The *opening* of an input image by a structuring element is the *dilation* of the *erosion* of the image by the structuring element. Args: input(cupy.ndarray): The input binary array to be opened. Non-zero (True) elements form the subset to be opened. structure(cupy.ndarray or tuple or int, optional): The structuring element used for the erosion. Non-zero elements are considered True. If no structuring element is provided an element is generated with a square connectivity equal to one. (Default value = None). If a tuple of integers is provided, a structuring element of the specified shape is used (all elements True). If an integer is provided, the structuring element will have the same size along all axes. iterations(int, optional): The opening is repeated ``iterations`` times (one, by default). If iterations is less than 1, the opening is repeated until the result does not change anymore. Only an integer of iterations is accepted. output(cupy.ndarray, optional): Array of the same shape as input, into which the output is placed. By default, a new array is created. origin(int or tuple of ints, optional): Placement of the filter, by default 0. mask(cupy.ndarray or None, optional): If a mask is given, only those elements with a True value at the corresponding mask element are modified at each iteration. (Default value = None) border_value(int (cast to 0 or 1), optional): Value at the border in the output array. (Default value = 0) brute_force(boolean, optional): Memory condition: if False, only the pixels whose value was changed in the last iteration are tracked as candidates to be updated (dilated) in the current iteration; if True all pixels are considered as candidates for opening, regardless of what happened in the previous iteration. Returns: cupy.ndarray: The result of binary opening. .. warning:: This function may synchronize the device. .. seealso:: :func:`scipy.ndimage.binary_opening` """ structure, _, _ = _prep_structure(structure, input.ndim) tmp = binary_erosion( input, structure, iterations, mask, None, border_value, origin, brute_force, ) return binary_dilation( tmp, structure, iterations, mask, output, border_value, origin, brute_force, ) def binary_closing( input, structure=None, iterations=1, output=None, origin=0, mask=None, border_value=0, brute_force=False, ): """ Multidimensional binary closing with the given structuring element. The *closing* of an input image by a structuring element is the *erosion* of the *dilation* of the image by the structuring element. Args: input(cupy.ndarray): The input binary array to be closed. Non-zero (True) elements form the subset to be closed. structure(cupy.ndarray or tuple or int, optional): The structuring element used for the erosion. Non-zero elements are considered True. If no structuring element is provided an element is generated with a square connectivity equal to one. (Default value = None). If a tuple of integers is provided, a structuring element of the specified shape is used (all elements True). If an integer is provided, the structuring element will have the same size along all axes. iterations(int, optional): The closing is repeated ``iterations`` times (one, by default). If iterations is less than 1, the closing is repeated until the result does not change anymore. Only an integer of iterations is accepted. output(cupy.ndarray, optional): Array of the same shape as input, into which the output is placed. By default, a new array is created. origin(int or tuple of ints, optional): Placement of the filter, by default 0. mask(cupy.ndarray or None, optional): If a mask is given, only those elements with a True value at the corresponding mask element are modified at each iteration. (Default value = None) border_value(int (cast to 0 or 1), optional): Value at the border in the output array. (Default value = 0) brute_force(boolean, optional): Memory condition: if False, only the pixels whose value was changed in the last iteration are tracked as candidates to be updated (dilated) in the current iteration; if True all pixels are considered as candidates for closing, regardless of what happened in the previous iteration. Returns: cupy.ndarray: The result of binary closing. .. warning:: This function may synchronize the device. .. seealso:: :func:`scipy.ndimage.binary_closing` """ structure, _, _ = _prep_structure(structure, input.ndim) tmp = binary_dilation( input, structure, iterations, mask, None, border_value, origin, brute_force, ) return binary_erosion( tmp, structure, iterations, mask, output, border_value, origin, brute_force, ) def binary_hit_or_miss( input, structure1=None, structure2=None, output=None, origin1=0, origin2=None, ): """ Multidimensional binary hit-or-miss transform. The hit-or-miss transform finds the locations of a given pattern inside the input image. Args: input (cupy.ndarray): Binary image where a pattern is to be detected. structure1 (cupy.ndarray, optional): Part of the structuring element to be fitted to the foreground (non-zero elements) of ``input``. If no value is provided, a structure of square connectivity 1 is chosen. structure2 (cupy.ndarray, optional): Second part of the structuring element that has to miss completely the foreground. If no value is provided, the complementary of ``structure1`` is taken. output (cupy.ndarray, dtype or None, optional): Array of the same shape as input, into which the output is placed. By default, a new array is created. origin1 (int or tuple of ints, optional): Placement of the first part of the structuring element ``structure1``, by default 0 for a centered structure. origin2 (int or tuple of ints or None, optional): Placement of the second part of the structuring element ``structure2``, by default 0 for a centered structure. If a value is provided for ``origin1`` and not for ``origin2``, then ``origin2`` is set to ``origin1``. Returns: cupy.ndarray: Hit-or-miss transform of ``input`` with the given structuring element (``structure1``, ``structure2``). .. warning:: This function may synchronize the device. .. seealso:: :func:`scipy.ndimage.binary_hit_or_miss` """ if structure1 is None: structure1 = generate_binary_structure(input.ndim, 1) if structure2 is None: structure2 = cupy.logical_not(structure1) origin1 = _util._fix_sequence_arg(origin1, input.ndim, "origin1", int) if origin2 is None: origin2 = origin1 else: origin2 = _util._fix_sequence_arg(origin2, input.ndim, "origin2", int) tmp1 = _binary_erosion( input, structure1, 1, None, None, 0, origin1, 0, False ) inplace = isinstance(output, cupy.ndarray) result = _binary_erosion( input, structure2, 1, None, output, 0, origin2, 1, False ) if inplace: cupy.logical_not(output, output) cupy.logical_and(tmp1, output, output) else: cupy.logical_not(result, result) return cupy.logical_and(tmp1, result) def binary_propagation( input, structure=None, mask=None, output=None, border_value=0, origin=0 ): """ Multidimensional binary propagation with the given structuring element. Args: input (cupy.ndarray): Binary image to be propagated inside ``mask``. structure (cupy.ndarray, optional): Structuring element used in the successive dilations. The output may depend on the structuring element, especially if ``mask`` has several connex components. If no structuring element is provided, an element is generated with a squared connectivity equal to one. mask (cupy.ndarray, optional): Binary mask defining the region into which ``input`` is allowed to propagate. output (cupy.ndarray, optional): Array of the same shape as input, into which the output is placed. By default, a new array is created. border_value (int, optional): Value at the border in the output array. The value is cast to 0 or 1. origin (int or tuple of ints, optional): Placement of the filter. Returns: cupy.ndarray : Binary propagation of ``input`` inside ``mask``. .. warning:: This function may synchronize the device. .. seealso:: :func:`scipy.ndimage.binary_propagation` """ return binary_dilation( input, structure, -1, mask, output, border_value, origin, brute_force=True, ) def binary_fill_holes(input, structure=None, output=None, origin=0): """Fill the holes in binary objects. Args: input (cupy.ndarray): N-D binary array with holes to be filled. structure (cupy.ndarray, optional): Structuring element used in the computation; large-size elements make computations faster but may miss holes separated from the background by thin regions. The default element (with a square connectivity equal to one) yields the intuitive result where all holes in the input have been filled. output (cupy.ndarray, dtype or None, optional): Array of the same shape as input, into which the output is placed. By default, a new array is created. origin (int, tuple of ints, optional): Position of the structuring element. Returns: cupy.ndarray: Transformation of the initial image ``input`` where holes have been filled. .. warning:: This function may synchronize the device. .. seealso:: :func:`scipy.ndimage.binary_fill_holes` """ mask = cupy.logical_not(input) tmp = cupy.zeros(mask.shape, bool) inplace = isinstance(output, cupy.ndarray) # TODO (grlee77): set brute_force=False below once implemented if inplace: binary_dilation( tmp, structure, -1, mask, output, 1, origin, brute_force=True ) cupy.logical_not(output, output) else: output = binary_dilation( tmp, structure, -1, mask, None, 1, origin, brute_force=True ) cupy.logical_not(output, output) return output def grey_erosion( input, size=None, footprint=None, structure=None, output=None, mode="reflect", cval=0.0, origin=0, ): """Calculates a greyscale erosion. Args: input (cupy.ndarray): The input array. size (tuple of ints): Shape of a flat and full structuring element used for the greyscale erosion. Optional if ``footprint`` or ``structure`` is provided. footprint (array of ints): Positions of non-infinite elements of a flat structuring element used for greyscale erosion. Non-zero values give the set of neighbors of the center over which minimum is chosen. structure (array of ints): Structuring element used for the greyscale erosion. ``structure`` may be a non-flat structuring element. output (cupy.ndarray, dtype or None): The array in which to place the output. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``constant``. Default is ``0.0``. origin (scalar or tuple of scalar): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of greyscale erosion. .. seealso:: :func:`scipy.ndimage.grey_erosion` """ if size is None and footprint is None and structure is None: raise ValueError("size, footprint or structure must be specified") return _filters._min_or_max_filter( input, size, footprint, structure, output, mode, cval, origin, "min" ) def grey_dilation( input, size=None, footprint=None, structure=None, output=None, mode="reflect", cval=0.0, origin=0, ): """Calculates a greyscale dilation. Args: input (cupy.ndarray): The input array. size (tuple of ints): Shape of a flat and full structuring element used for the greyscale dilation. Optional if ``footprint`` or ``structure`` is provided. footprint (array of ints): Positions of non-infinite elements of a flat structuring element used for greyscale dilation. Non-zero values give the set of neighbors of the center over which maximum is chosen. structure (array of ints): Structuring element used for the greyscale dilation. ``structure`` may be a non-flat structuring element. output (cupy.ndarray, dtype or None): The array in which to place the output. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``constant``. Default is ``0.0``. origin (scalar or tuple of scalar): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of greyscale dilation. .. seealso:: :func:`scipy.ndimage.grey_dilation` """ if size is None and footprint is None and structure is None: raise ValueError("size, footprint or structure must be specified") if structure is not None: structure = cupy.array(structure) structure = structure[tuple([slice(None, None, -1)] * structure.ndim)] if footprint is not None: footprint = cupy.array(footprint) footprint = footprint[tuple([slice(None, None, -1)] * footprint.ndim)] origin = _util._fix_sequence_arg(origin, input.ndim, "origin", int) for i in range(len(origin)): origin[i] = -origin[i] if footprint is not None: sz = footprint.shape[i] elif structure is not None: sz = structure.shape[i] elif numpy.isscalar(size): sz = size else: sz = size[i] if sz % 2 == 0: origin[i] -= 1 return _filters._min_or_max_filter( input, size, footprint, structure, output, mode, cval, origin, "max" ) def grey_closing( input, size=None, footprint=None, structure=None, output=None, mode="reflect", cval=0.0, origin=0, ): """Calculates a multi-dimensional greyscale closing. Args: input (cupy.ndarray): The input array. size (tuple of ints): Shape of a flat and full structuring element used for the greyscale closing. Optional if ``footprint`` or ``structure`` is provided. footprint (array of ints): Positions of non-infinite elements of a flat structuring element used for greyscale closing. Non-zero values give the set of neighbors of the center over which closing is chosen. structure (array of ints): Structuring element used for the greyscale closing. ``structure`` may be a non-flat structuring element. output (cupy.ndarray, dtype or None): The array in which to place the output. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``constant``. Default is ``0.0``. origin (scalar or tuple of scalar): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of greyscale closing. .. seealso:: :func:`scipy.ndimage.grey_closing` """ if (size is not None) and (footprint is not None): warnings.warn( "ignoring size because footprint is set", UserWarning, stacklevel=2 ) tmp = grey_dilation( input, size, footprint, structure, None, mode, cval, origin ) return grey_erosion( tmp, size, footprint, structure, output, mode, cval, origin ) def grey_opening( input, size=None, footprint=None, structure=None, output=None, mode="reflect", cval=0.0, origin=0, ): """Calculates a multi-dimensional greyscale opening. Args: input (cupy.ndarray): The input array. size (tuple of ints): Shape of a flat and full structuring element used for the greyscale opening. Optional if ``footprint`` or ``structure`` is provided. footprint (array of ints): Positions of non-infinite elements of a flat structuring element used for greyscale opening. Non-zero values give the set of neighbors of the center over which opening is chosen. structure (array of ints): Structuring element used for the greyscale opening. ``structure`` may be a non-flat structuring element. output (cupy.ndarray, dtype or None): The array in which to place the output. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``constant``. Default is ``0.0``. origin (scalar or tuple of scalar): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The result of greyscale opening. .. seealso:: :func:`scipy.ndimage.grey_opening` """ if (size is not None) and (footprint is not None): warnings.warn( "ignoring size because footprint is set", UserWarning, stacklevel=2 ) tmp = grey_erosion( input, size, footprint, structure, None, mode, cval, origin ) return grey_dilation( tmp, size, footprint, structure, output, mode, cval, origin ) def morphological_gradient( input, size=None, footprint=None, structure=None, output=None, mode="reflect", cval=0.0, origin=0, ): """ Multidimensional morphological gradient. The morphological gradient is calculated as the difference between a dilation and an erosion of the input with a given structuring element. Args: input (cupy.ndarray): The input array. size (tuple of ints): Shape of a flat and full structuring element used for the morphological gradient. Optional if ``footprint`` or ``structure`` is provided. footprint (array of ints): Positions of non-infinite elements of a flat structuring element used for morphological gradient. Non-zero values give the set of neighbors of the center over which opening is chosen. structure (array of ints): Structuring element used for the morphological gradient. ``structure`` may be a non-flat structuring element. output (cupy.ndarray, dtype or None): The array in which to place the output. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``constant``. Default is ``0.0``. origin (scalar or tuple of scalar): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The morphological gradient of the input. .. seealso:: :func:`scipy.ndimage.morphological_gradient` """ tmp = grey_dilation( input, size, footprint, structure, None, mode, cval, origin ) if isinstance(output, cupy.ndarray): grey_erosion( input, size, footprint, structure, output, mode, cval, origin ) return cupy.subtract(tmp, output, output) else: return tmp - grey_erosion( input, size, footprint, structure, None, mode, cval, origin ) def morphological_laplace( input, size=None, footprint=None, structure=None, output=None, mode="reflect", cval=0.0, origin=0, ): """ Multidimensional morphological laplace. Args: input (cupy.ndarray): The input array. size (tuple of ints): Shape of a flat and full structuring element used for the morphological laplace. Optional if ``footprint`` or ``structure`` is provided. footprint (array of ints): Positions of non-infinite elements of a flat structuring element used for morphological laplace. Non-zero values give the set of neighbors of the center over which opening is chosen. structure (array of ints): Structuring element used for the morphological laplace. ``structure`` may be a non-flat structuring element. output (cupy.ndarray, dtype or None): The array in which to place the output. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``constant``. Default is ``0.0``. origin (scalar or tuple of scalar): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: The morphological laplace of the input. .. seealso:: :func:`scipy.ndimage.morphological_laplace` """ tmp1 = grey_dilation( input, size, footprint, structure, None, mode, cval, origin ) if isinstance(output, cupy.ndarray): grey_erosion( input, size, footprint, structure, output, mode, cval, origin ) cupy.add(tmp1, output, output) cupy.subtract(output, input, output) return cupy.subtract(output, input, output) else: tmp2 = grey_erosion( input, size, footprint, structure, None, mode, cval, origin ) cupy.add(tmp1, tmp2, tmp2) cupy.subtract(tmp2, input, tmp2) cupy.subtract(tmp2, input, tmp2) return tmp2 def white_tophat( input, size=None, footprint=None, structure=None, output=None, mode="reflect", cval=0.0, origin=0, ): """ Multidimensional white tophat filter. Args: input (cupy.ndarray): The input array. size (tuple of ints): Shape of a flat and full structuring element used for the white tophat. Optional if ``footprint`` or ``structure`` is provided. footprint (array of ints): Positions of non-infinite elements of a flat structuring element used for the white tophat. Non-zero values give the set of neighbors of the center over which opening is chosen. structure (array of ints): Structuring element used for the white tophat. ``structure`` may be a non-flat structuring element. output (cupy.ndarray, dtype or None): The array in which to place the output. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``constant``. Default is ``0.0``. origin (scalar or tuple of scalar): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarray: Result of the filter of ``input`` with ``structure``. .. seealso:: :func:`scipy.ndimage.white_tophat` """ if (size is not None) and (footprint is not None): warnings.warn( "ignoring size because footprint is set", UserWarning, stacklevel=2 ) tmp = grey_erosion( input, size, footprint, structure, None, mode, cval, origin ) tmp = grey_dilation( tmp, size, footprint, structure, output, mode, cval, origin ) if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_: cupy.bitwise_xor(input, tmp, out=tmp) else: cupy.subtract(input, tmp, out=tmp) return tmp def black_tophat( input, size=None, footprint=None, structure=None, output=None, mode="reflect", cval=0.0, origin=0, ): """ Multidimensional black tophat filter. Args: input (cupy.ndarray): The input array. size (tuple of ints): Shape of a flat and full structuring element used for the black tophat. Optional if ``footprint`` or ``structure`` is provided. footprint (array of ints): Positions of non-infinite elements of a flat structuring element used for the black tophat. Non-zero values give the set of neighbors of the center over which opening is chosen. structure (array of ints): Structuring element used for the black tophat. ``structure`` may be a non-flat structuring element. output (cupy.ndarray, dtype or None): The array in which to place the output. mode (str): The array borders are handled according to the given mode (``'reflect'``, ``'constant'``, ``'nearest'``, ``'mirror'``, ``'wrap'``). Default is ``'reflect'``. cval (scalar): Value to fill past edges of input if mode is ``constant``. Default is ``0.0``. origin (scalar or tuple of scalar): The origin parameter controls the placement of the filter, relative to the center of the current element of the input. Default of 0 is equivalent to ``(0,)*input.ndim``. Returns: cupy.ndarry : Result of the filter of ``input`` with ``structure``. .. seealso:: :func:`scipy.ndimage.black_tophat` """ if (size is not None) and (footprint is not None): warnings.warn( "ignoring size because footprint is set", UserWarning, stacklevel=2 ) tmp = grey_dilation( input, size, footprint, structure, None, mode, cval, origin ) tmp = grey_erosion( tmp, size, footprint, structure, output, mode, cval, origin ) if input.dtype == numpy.bool_ and tmp.dtype == numpy.bool_: cupy.bitwise_xor(tmp, input, out=tmp) else: cupy.subtract(tmp, input, out=tmp) return tmp
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/grey.py
import warnings from .gray import ( # noqa black_tophat, closing, dilation, erosion, opening, white_tophat, ) __all__ = [ "erosion", "dilation", "opening", "closing", "white_tophat", "black_tophat", ] warnings.warn( "Importing from cucim.skimage.morphology.grey is deprecated. " "Please import from cucim.skimage.morphology instead.", FutureWarning, stacklevel=2, )
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/footprints.py
import os from collections.abc import Sequence from numbers import Integral import cupy as cp import numpy as np from cucim.skimage import morphology # Precomputed ball and disk decompositions were saved as 2D arrays where the # radius of the desired decomposition is used to index into the first axis of # the array. The values at a given radius corresponds to the number of # repetitions of 3 different types elementary of structuring elements. # # See _nsphere_series_decomposition for full details. _nsphere_decompositions = {} _nsphere_decompositions[2] = np.load( os.path.join(os.path.dirname(__file__), "disk_decompositions.npy") ) _nsphere_decompositions[3] = np.load( os.path.join(os.path.dirname(__file__), "ball_decompositions.npy") ) def _footprint_is_sequence(footprint): if hasattr(footprint, "__cuda_array_interface__"): return False def _validate_sequence_element(t): return ( isinstance(t, Sequence) and len(t) == 2 and ( hasattr(t[0], "__cuda_array_interface__") # can be a shape tuple for square/rectangular footprints or isinstance(t[0], tuple) ) and isinstance(t[1], Integral) ) if isinstance(footprint, Sequence): if all(isinstance(t, int) for t in footprint): # allow pass through of a single shape tuple return False elif not all(_validate_sequence_element(t) for t in footprint): raise ValueError( "All elements of footprint sequence must be a 2-tuple where " "the first element of the tuple is an ndarray and the second " "is an integer indicating the number of iterations." ) else: raise ValueError("footprint must be either an ndarray or Sequence") return True def _footprint_shape(footprint): if isinstance(footprint, tuple): return footprint return footprint.shape def _footprint_ndim(footprint): if isinstance(footprint, tuple): return len(footprint) return footprint.ndim def _shape_from_sequence(footprints, require_odd_size=False): """Determine the shape of composite footprint In the future if we only want to support odd-sized square, we may want to change this to require_odd_size """ if not _footprint_is_sequence(footprints): raise ValueError("expected a sequence of footprints") ndim = _footprint_ndim(footprints[0][0]) shape = [0] * ndim def _odd_size(size, require_odd_size): if require_odd_size and size % 2 == 0: raise ValueError("expected all footprint elements to have odd size") for d in range(ndim): fp, nreps = footprints[0] fp_shape = _footprint_shape(fp) _odd_size(fp_shape[d], require_odd_size) shape[d] = fp_shape[d] + (nreps - 1) * (fp_shape[d] - 1) for fp, nreps in footprints[1:]: fp_shape = _footprint_shape(fp) _odd_size(fp_shape[d], require_odd_size) shape[d] += nreps * (fp_shape[d] - 1) return tuple(shape) def footprint_from_sequence(footprints): """Convert a footprint sequence into an equivalent ndarray. Parameters ---------- footprints : tuple of 2-tuples A sequence of footprint tuples where the first element of each tuple is an array corresponding to a footprint and the second element is the number of times it is to be applied. Currently all footprints should have odd size. Returns ------- footprint : ndarray An single array equivalent to applying the sequence of `footprints`. """ # Create a single pixel image of sufficient size and apply binary dilation. shape = _shape_from_sequence(footprints) imag = cp.zeros(shape, dtype=bool) imag[tuple(s // 2 for s in shape)] = 1 return morphology.binary_dilation(imag, footprints) def square(width, dtype=None, *, decomposition=None): """Generates a flat, square-shaped footprint. Every pixel along the perimeter has a chessboard distance no greater than radius (radius=floor(width/2)) pixels. Parameters ---------- width : int The width and height of the square. Other Parameters ---------------- dtype : data-type or None, optional The data type of the footprint. When None, a tuple will be returned in place of the actual footprint array. This can be be passed to grayscale and binary morphology functions in place of an explicit array to avoid array allocation overhead. decomposition : {None, 'separable', 'sequence'}, optional If None, a single array is returned. For 'sequence', a tuple of smaller footprints is returned. Applying this series of smaller footprints will given an identical result to a single, larger footprint, but often with better computational performance. See Notes for more details. With 'separable', this function uses separable 1D footprints for each axis. Whether 'seqeunce' or 'separable' is computationally faster may be architecture-dependent. Returns ------- footprint : cupy.ndarray The footprint where elements of the neighborhood are 1 and 0 otherwise. When `decomposition` is None, this is just a numpy.ndarray. Otherwise, this will be a tuple whose length is equal to the number of unique structuring elements to apply (see Notes for more detail) Notes ----- When `decomposition` is not None, each element of the `footprint` tuple is a 2-tuple of the form ``(ndarray, num_iter)`` that specifies a footprint array and the number of iterations it is to be applied. For binary morphology, using ``decomposition='sequence'`` or ``decomposition='separable'`` were observed to give better performance than ``decomposition=None``, with the magnitude of the performance increase rapidly increasing with footprint size. For grayscale morphology with square footprints, it is recommended to use ``decomposition=None`` since the internal SciPy functions that are called already have a fast implementation based on separable 1D sliding windows. The 'sequence' decomposition mode only supports odd valued `width`. If `width` is even, the sequence used will be identical to the 'separable' mode. """ if decomposition is None: if dtype is None: return (width, width) else: return cp.ones((width, width), dtype=dtype) if decomposition == "separable" or width % 2 == 0: if dtype is None: sequence = (((width, 1), 1), ((1, width), 1)) else: sequence = ( (cp.ones((width, 1), dtype=dtype), 1), (cp.ones((1, width), dtype=dtype), 1), ) elif decomposition == "sequence": # only handles odd widths if dtype is None: sequence = (((3, 3), _decompose_size(width, 3)),) else: sequence = ( (cp.ones((3, 3), dtype=dtype), _decompose_size(width, 3)), ) else: raise ValueError(f"Unrecognized decomposition: {decomposition}") return sequence def _decompose_size(size, kernel_size=3): """Determine number of repeated iterations for a `kernel_size` kernel. Returns how many repeated morphology operations with an element of size `kernel_size` is equivalent to a morphology with a single kernel of size `n`. """ if kernel_size % 2 != 1: raise ValueError("only odd length kernel_size is supported") return 1 + (size - kernel_size) // (kernel_size - 1) def rectangle(nrows, ncols, dtype=None, *, decomposition=None): """Generates a flat, rectangular-shaped footprint. Every pixel in the rectangle generated for a given width and given height belongs to the neighborhood. Parameters ---------- nrows : int The number of rows of the rectangle. ncols : int The number of columns of the rectangle. Other Parameters ---------------- dtype : data-type or None, optional The data type of the footprint. When None, a tuple will be returned in place of the actual footprint array. This can be be passed to grayscale and binary morphology functions in place of an explicit array to avoid array allocation overhead. decomposition : {None, 'separable', 'sequence'}, optional If None, a single array is returned. For 'sequence', a tuple of smaller footprints is returned. Applying this series of smaller footprints will given an identical result to a single, larger footprint, but often with better computational performance. See Notes for more details. With 'separable', this function uses separable 1D footprints for each axis. Whether 'seqeunce' or 'separable' is computationally faster may be architecture-dependent. Returns ------- footprint : cupy.ndarray A footprint consisting only of ones, i.e. every pixel belongs to the neighborhood. When `decomposition` is None, this is just a numpy.ndarray. Otherwise, this will be a tuple whose length is equal to the number of unique structuring elements to apply (see Notes for more detail) Notes ----- When `decomposition` is not None, each element of the `footprint` tuple is a 2-tuple of the form ``(ndarray, num_iter)`` that specifies a footprint array and the number of iterations it is to be applied. For binary morphology, using ``decomposition='sequence'`` was observed to give better performance, with the magnitude of the performance increase rapidly increasing with footprint size. For grayscale morphology with rectangular footprints, it is recommended to use ``decomposition=None`` since the internal SciPy functions that are called already have a fast implementation based on separable 1D sliding windows. The `sequence` decomposition mode only supports odd valued `nrows` and `ncols`. If either `nrows` or `ncols` is even, the sequence used will be identical to ``decomposition='separable'``. - The use of ``width`` and ``height`` has been deprecated in version 0.18.0. Use ``nrows`` and ``ncols`` instead. """ if decomposition is None: # TODO: check optimal width setting here if dtype is None: return (nrows, ncols) else: return cp.ones((nrows, ncols), dtype=dtype) even_rows = nrows % 2 == 0 even_cols = ncols % 2 == 0 if decomposition == "separable" or even_rows or even_cols: if dtype is None: sequence = [((nrows, 1), 1), ((1, ncols), 1)] else: sequence = [ (cp.ones((nrows, 1), dtype=dtype), 1), (cp.ones((1, ncols), dtype=dtype), 1), ] elif decomposition == "sequence": # this branch only support odd nrows, ncols sq_size = 3 sq_reps = _decompose_size(min(nrows, ncols), sq_size) if dtype is None: sequence = [((3, 3), sq_reps)] else: sequence = [(cp.ones((3, 3), dtype=dtype), sq_reps)] if nrows > ncols: nextra = nrows - ncols if dtype is None: sequence.append(((nextra + 1, 1), 1)) else: sequence.append((cp.ones((nextra + 1, 1), dtype=dtype), 1)) elif ncols > nrows: nextra = ncols - nrows if dtype is None: sequence.append(((1, nextra + 1), 1)) else: sequence.append((cp.ones((1, nextra + 1), dtype=dtype), 1)) else: raise ValueError(f"Unrecognized decomposition: {decomposition}") return tuple(sequence) def diamond(radius, dtype=cp.uint8, *, decomposition=None): """Generates a flat, diamond-shaped footprint. A pixel is part of the neighborhood (i.e. labeled 1) if the city block/Manhattan distance between it and the center of the neighborhood is no greater than radius. Parameters ---------- radius : int The radius of the diamond-shaped footprint. Other Parameters ---------------- dtype : data-type, optional The data type of the footprint. decomposition : {None, 'sequence'}, optional If None, a single array is returned. For 'sequence', a tuple of smaller footprints is returned. Applying this series of smaller footprints will given an identical result to a single, larger footprint, but with better computational performance. See Notes for more details. Returns ------- footprint : cupy.ndarray The footprint where elements of the neighborhood are 1 and 0 otherwise. When `decomposition` is None, this is just a numpy.ndarray. Otherwise, this will be a tuple whose length is equal to the number of unique structuring elements to apply (see Notes for more detail) Notes ----- When `decomposition` is not None, each element of the `footprint` tuple is a 2-tuple of the form ``(ndarray, num_iter)`` that specifies a footprint array and the number of iterations it is to be applied. For either binary or grayscale morphology, using ``decomposition='sequence'`` was observed to have a performance benefit, with the magnitude of the benefit increasing with increasing footprint size. """ if decomposition is None: # CuPy Backend: grid is usually small -> faster to generate it in NumPy sz = np.arange(0, radius * 2 + 1) ii, jj = np.meshgrid(sz, sz, sparse=True) return cp.asarray( np.abs(ii - radius) + np.abs(jj - radius) <= radius, dtype=dtype ) elif decomposition == "sequence": fp = diamond(1, dtype=dtype, decomposition=None) nreps = _decompose_size(2 * radius + 1, fp.shape[0]) footprint = ((fp, nreps),) else: raise ValueError(f"Unrecognized decomposition: {decomposition}") return footprint def _nsphere_series_decomposition(radius, ndim, dtype=None): """Generate a sequence of footprints approximating an n-sphere. Morphological operations with an n-sphere (hypersphere) footprint can be approximated by applying a series of smaller footprints of extent 3 along each axis. Specific solutions for this are given in [1]_ for the case of 2D disks with radius 2 through 10. Here we used n-dimensional extensions of the "square", "diamond" and "t-shaped" elements from that publication. All of these elementary elements have size ``(3,) * ndim``. We numerically computed the number of repetitions of each element that gives the closest match to the disk (in 2D) or ball (in 3D) computed with ``decomposition=None``. The approach can be extended to higher dimensions, but we have only stored results for 2D and 3D at this point. Empirically, the shapes at large radius approach a hexadecagon (16-sides [2]_) in 2D and a rhombicuboctahedron (26-faces, [3]_) in 3D. References ---------- .. [1] Park, H and Chin R.T. Decomposition of structuring elements for optimal implementation of morphological operations. In Proceedings: 1997 IEEE Workshop on Nonlinear Signal and Image Processing, London, UK. https://www.iwaenc.org/proceedings/1997/nsip97/pdf/scan/ns970226.pdf .. [2] https://en.wikipedia.org/wiki/Hexadecagon .. [3] https://en.wikipedia.org/wiki/Rhombicuboctahedron """ if radius == 1: # for radius 1 just use the exact shape (3,) * ndim solution kwargs = dict(dtype=dtype, strict_radius=False, decomposition=None) if ndim == 2: return ((disk(1, **kwargs), 1),) elif ndim == 3: return ((ball(1, **kwargs), 1),) # load precomputed decompositions if ndim not in _nsphere_decompositions: raise ValueError( "sequence decompositions are only currently available for " "2d disks or 3d balls" ) precomputed_decompositions = _nsphere_decompositions[ndim] max_radius = precomputed_decompositions.shape[0] if radius > max_radius: raise ValueError( f"precomputed {ndim}D decomposition unavailable for " f"radius > {max_radius}" ) num_t_series, num_diamond, num_square = precomputed_decompositions[radius] sequence = [] if dtype is None: _dtype = cp.uint8 else: _dtype = dtype if num_t_series > 0: # shape (3, ) * ndim "T-shaped" footprints all_t = _t_shaped_element_series(ndim=ndim, dtype=_dtype) [sequence.append((t, num_t_series)) for t in all_t] if num_diamond > 0: d = np.zeros((3,) * ndim, dtype=_dtype) sl = [slice(1, 2)] * ndim for ax in range(ndim): sl[ax] = slice(None) d[tuple(sl)] = 1 sl[ax] = slice(1, 2) sequence.append((cp.asarray(d), num_diamond)) if num_square > 0: if dtype is None: sequence.append(((3,) * ndim, num_square)) else: sequence.append((cp.ones((3,) * ndim, dtype=_dtype), num_square)) return tuple(sequence) def _t_shaped_element_series(ndim=2, dtype=cp.uint8): """A series of T-shaped structuring elements. In the 2D case this is a T-shaped element and its rotation at multiples of 90 degrees. This series is used in efficient decompositions of disks of various radius as published in [1]_. The generalization to the n-dimensional case can be performed by having the "top" of the T to extend in (ndim - 1) dimensions and then producing a series of rotations such that the bottom end of the T points along each of ``2 * ndim`` orthogonal directions. """ if ndim == 2: # The n-dimensional case produces the same set of footprints, but # the 2D example is retained here for clarity. t0 = np.array([[1, 1, 1], [0, 1, 0], [0, 1, 0]], dtype=dtype) t90 = cp.asarray(np.rot90(t0, 1)) t180 = cp.asarray(np.rot90(t0, 2)) t270 = cp.asarray(np.rot90(t0, 3)) t0 = cp.asarray(t0) return t0, t90, t180, t270 else: # ndimensional generalization of the 2D case above all_t = [] for ax in range(ndim): for idx in [0, 2]: t = np.zeros((3,) * ndim, dtype=dtype) sl = [slice(None)] * ndim sl[ax] = slice(idx, idx + 1) t[tuple(sl)] = 1 sl = [slice(1, 2)] * ndim sl[ax] = slice(None) t[tuple(sl)] = 1 all_t.append(cp.asarray(t)) return tuple(all_t) def disk(radius, dtype=cp.uint8, *, strict_radius=True, decomposition=None): """Generates a flat, disk-shaped footprint. A pixel is within the neighborhood if the Euclidean distance between it and the origin is no greater than radius (This is only approximately True, when `decomposition == 'sequence'`). Parameters ---------- radius : int The radius of the disk-shaped footprint. Other Parameters ---------------- dtype : data-type, optional The data type of the footprint. strict_radius : bool, optional If False, extend the radius by 0.5. This allows the circle to expand further within a cube that remains of size ``2 * radius + 1`` along each axis. This parameter is ignored if decomposition is not None. decomposition : {None, 'sequence', 'crosses'}, optional If None, a single array is returned. For 'sequence', a tuple of smaller footprints is returned. Applying this series of smaller footprints will given a result equivalent to a single, larger footprint, but with better computational performance. For disk footprints, the 'sequence' or 'crosses' decompositions are not always exactly equivalent to ``decomposition=None``. See Notes for more details. Returns ------- footprint : cupy.ndarray The footprint where elements of the neighborhood are 1 and 0 otherwise. Notes ----- When `decomposition` is not None, each element of the `footprint` tuple is a 2-tuple of the form ``(ndarray, num_iter)`` that specifies a footprint array and the number of iterations it is to be applied. The disk produced by the ``decomposition='sequence'`` mode may not be identical to that with ``decomposition=None``. A disk footprint can be approximated by applying a series of smaller footprints of extent 3 along each axis. Specific solutions for this are given in [1]_ for the case of 2D disks with radius 2 through 10. Here, we numerically computed the number of repetitions of each element that gives the closest match to the disk computed with kwargs ``strict_radius=False, decomposition=None``. Empirically, the series decomposition at large radius approaches a hexadecagon (a 16-sided polygon [2]_). In [3]_, the authors demonstrate that a hexadecagon is the closest approximation to a disk that can be achieved for decomposition with footprints of shape (3, 3). The disk produced by the ``decomposition='crosses'`` is often but not always identical to that with ``decomposition=None``. It tends to give a closer approximation than ``decomposition='sequence'``, at a performance that is fairly comparable. The individual cross-shaped elements are not limited to extent (3, 3) in size. Unlike the 'seqeuence' decomposition, the 'crosses' decomposition can also accurately approximate the shape of disks with ``strict_radius=True``. The method is based on an adaption of algorithm 1 given in [4]_. References ---------- .. [1] Park, H and Chin R.T. Decomposition of structuring elements for optimal implementation of morphological operations. In Proceedings: 1997 IEEE Workshop on Nonlinear Signal and Image Processing, London, UK. https://www.iwaenc.org/proceedings/1997/nsip97/pdf/scan/ns970226.pdf .. [2] https://en.wikipedia.org/wiki/Hexadecagon .. [3] Vanrell, M and Vitrià, J. Optimal 3 × 3 decomposable disks for morphological transformations. Image and Vision Computing, Vol. 15, Issue 11, 1997. :DOI:`10.1016/S0262-8856(97)00026-7` .. [4] Li, D. and Ritter, G.X. Decomposition of Separable and Symmetric Convex Templates. Proc. SPIE 1350, Image Algebra and Morphological Image Processing, (1 November 1990). :DOI:`10.1117/12.23608` """ if decomposition is None: # CuPy Backend: grid is usually small -> faster to generate it in NumPy L = np.arange(-radius, radius + 1) X, Y = np.meshgrid(L, L, sparse=True) if not strict_radius: radius += 0.5 return cp.asarray((X * X + Y * Y) <= radius * radius, dtype=dtype) elif decomposition == "sequence": sequence = _nsphere_series_decomposition(radius, ndim=2, dtype=dtype) elif decomposition == "crosses": fp = disk( radius, dtype, strict_radius=strict_radius, decomposition=None ) sequence = _cross_decomposition(fp) return sequence def _cross(r0, r1, dtype=cp.uint8): """Cross-shaped structuring element of shape (r0, r1). Only the central row and column are ones. """ s0 = int(2 * r0 + 1) s1 = int(2 * r1 + 1) c = cp.zeros((s0, s1), dtype=dtype) if r1 != 0: c[r0, :] = 1 if r0 != 0: c[:, r1] = 1 return c def _cross_decomposition(footprint, dtype=cp.uint8): """Decompose a symmetric convex footprint into cross-shaped elements. This is a decomposition of the footprint into a sequence of (possibly asymmetric) cross-shaped elements. This technique was proposed in [1]_ and corresponds roughly to algorithm 1 of that publication (some details had to be modified to get reliable operation). .. [1] Li, D. and Ritter, G.X. Decomposition of Separable and Symmetric Convex Templates. Proc. SPIE 1350, Image Algebra and Morphological Image Processing, (1 November 1990). :DOI:`10.1117/12.23608` """ footprint = cp.asnumpy(footprint) quadrant = footprint[footprint.shape[0] // 2 :, footprint.shape[1] // 2 :] col_sums = quadrant.sum(0, dtype=int) col_sums = np.concatenate((col_sums, np.asarray([0], dtype=int))) i_prev = 0 idx = {} sum0 = 0 for i in range(col_sums.size - 1): if col_sums[i] > col_sums[i + 1]: if i == 0: continue key = (col_sums[i_prev] - col_sums[i], i - i_prev) sum0 += key[0] if key not in idx: idx[key] = 1 else: idx[key] += 1 i_prev = i n = quadrant.shape[0] - 1 - sum0 if n > 0: key = (n, 0) idx[key] = idx.get(key, 0) + 1 return tuple([(_cross(r0, r1, dtype), n) for (r0, r1), n in idx.items()]) def ellipse(width, height, dtype=cp.uint8, *, decomposition=None): """Generates a flat, ellipse-shaped footprint. Every pixel along the perimeter of ellipse satisfies the equation ``(x/width+1)**2 + (y/height+1)**2 = 1``. Parameters ---------- width : int The width of the ellipse-shaped footprint. height : int The height of the ellipse-shaped footprint. Other Parameters ---------------- dtype : data-type, optional The data type of the footprint. decomposition : {None, 'crosses'}, optional If None, a single array is returned. For 'sequence', a tuple of smaller footprints is returned. Applying this series of smaller footprints will given an identical result to a single, larger footprint, but with better computational performance. See Notes for more details. Returns ------- footprint : cupy.ndarray The footprint where elements of the neighborhood are 1 and 0 otherwise. The footprint will have shape ``(2 * height + 1, 2 * width + 1)``. Notes ----- When `decomposition` is not None, each element of the `footprint` tuple is a 2-tuple of the form ``(ndarray, num_iter)`` that specifies a footprint array and the number of iterations it is to be applied. The ellipse produced by the ``decomposition='crosses'`` is often but not always identical to that with ``decomposition=None``. The method is based on an adaption of algorithm 1 given in [1]_. References ---------- .. [1] Li, D. and Ritter, G.X. Decomposition of Separable and Symmetric Convex Templates. Proc. SPIE 1350, Image Algebra and Morphological Image Processing, (1 November 1990). :DOI:`10.1117/12.23608` Examples -------- >>> from cucim.skimage.morphology import footprints >>> footprints.ellipse(5, 3) array([[0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]], dtype=uint8) """ try: from skimage import draw except ImportError: raise ImportError("ellipse requires scikit-image") if decomposition is None: footprint = np.zeros((2 * height + 1, 2 * width + 1), dtype=dtype) rows, cols = draw.ellipse(height, width, height + 1, width + 1) footprint[rows, cols] = 1 # Note: no CUDA counterpart for draw.ellipse so compute in NumPy # CuPy Backend: grid is usually small -> faster to generate it in NumPy return cp.asarray(footprint) elif decomposition == "crosses": fp = ellipse(width, height, dtype, decomposition=None) sequence = _cross_decomposition(fp) return sequence def cube(width, dtype=None, *, decomposition=None): """Generates a cube-shaped footprint. This is the 3D equivalent of a square. Every pixel along the perimeter has a chessboard distance no greater than radius (radius=floor(width/2)) pixels. Parameters ---------- width : int The width, height and depth of the cube. Other Parameters ---------------- dtype : data-type or None, optional The data type of the footprint. When None, a tuple will be returned in place of the actual footprint array. This can be be passed to grayscale and binary morphology functions in place of an explicit array to avoid array allocation overhead. decomposition : {None, 'separable', 'sequence'}, optional If None, a single array is returned. For 'sequence', a tuple of smaller footprints is returned. Applying this series of smaller footprints will given an identical result to a single, larger footprint, but often with better computational performance. See Notes for more details. Returns ------- footprint : cupy.ndarray The footprint where elements of the neighborhood are 1 and 0 otherwise. When `decomposition` is None, this is just a numpy.ndarray. Otherwise, this will be a tuple whose length is equal to the number of unique structuring elements to apply (see Notes for more detail) Notes ----- When `decomposition` is not None, each element of the `footprint` tuple is a 2-tuple of the form ``(ndarray, num_iter)`` that specifies a footprint array and the number of iterations it is to be applied. For binary morphology, using ``decomposition='sequence'`` was observed to give better performance, with the magnitude of the performance increase rapidly increasing with footprint size. For grayscale morphology with square footprints, it is recommended to use ``decomposition=None`` since the internal SciPy functions that are called already have a fast implementation based on separable 1D sliding windows. The 'sequence' decomposition mode only supports odd valued `width`. If `width` is even, the sequence used will be identical to the 'separable' mode. """ if decomposition is None: if dtype is None: return (width, width, width) else: return cp.ones((width, width, width), dtype=dtype) if decomposition == "separable" or width % 2 == 0: if dtype is None: sequence = ( ((width, 1, 1), 1), ((1, width, 1), 1), ((1, 1, width), 1), ) else: sequence = ( (cp.ones((width, 1, 1), dtype=dtype), 1), (cp.ones((1, width, 1), dtype=dtype), 1), (cp.ones((1, 1, width), dtype=dtype), 1), ) elif decomposition == "sequence": # only handles odd widths if dtype is None: sequence = (((3, 3, 3), _decompose_size(width, 3)),) else: sequence = ( (cp.ones((3, 3, 3), dtype=dtype), _decompose_size(width, 3)), ) else: raise ValueError(f"Unrecognized decomposition: {decomposition}") return sequence def octahedron(radius, dtype=cp.uint8, *, decomposition=None): """Generates a octahedron-shaped footprint. This is the 3D equivalent of a diamond. A pixel is part of the neighborhood (i.e. labeled 1) if the city block/Manhattan distance between it and the center of the neighborhood is no greater than radius. Parameters ---------- radius : int The radius of the octahedron-shaped footprint. Other Parameters ---------------- dtype : data-type, optional The data type of the footprint. decomposition : {None, 'sequence'}, optional If None, a single array is returned. For 'sequence', a tuple of smaller footprints is returned. Applying this series of smaller footprints will given an identical result to a single, larger footprint, but with better computational performance. See Notes for more details. Returns ------- footprint : cupy.ndarray The footprint where elements of the neighborhood are 1 and 0 otherwise. When `decomposition` is None, this is just a numpy.ndarray. Otherwise, this will be a tuple whose length is equal to the number of unique structuring elements to apply (see Notes for more detail) Notes ----- When `decomposition` is not None, each element of the `footprint` tuple is a 2-tuple of the form ``(ndarray, num_iter)`` that specifies a footprint array and the number of iterations it is to be applied. For either binary or grayscale morphology, using ``decomposition='sequence'`` was observed to have a performance benefit, with the magnitude of the benefit increasing with increasing footprint size. """ # note that in contrast to diamond(), this method allows non-integer radii if decomposition is None: n = 2 * radius + 1 Z, Y, X = np.ogrid[ -radius : radius : n * 1j, -radius : radius : n * 1j, -radius : radius : n * 1j, ] s = np.abs(X) + np.abs(Y) + np.abs(Z) footprint = cp.array(s <= radius, dtype=dtype) elif decomposition == "sequence": fp = octahedron(1, dtype=dtype, decomposition=None) nreps = _decompose_size(2 * radius + 1, fp.shape[0]) footprint = ((fp, nreps),) else: raise ValueError(f"Unrecognized decomposition: {decomposition}") return footprint def ball(radius, dtype=cp.uint8, *, strict_radius=True, decomposition=None): """Generates a ball-shaped footprint. This is the 3D equivalent of a disk. A pixel is within the neighborhood if the Euclidean distance between it and the origin is no greater than radius. Parameters ---------- radius : int The radius of the ball-shaped footprint. Other Parameters ---------------- dtype : data-type, optional The data type of the footprint. strict_radius : bool, optional If False, extend the radius by 0.5. This allows the circle to expand further within a cube that remains of size ``2 * radius + 1`` along each axis. This parameter is ignored if decomposition is not None. decomposition : {None, 'sequence'}, optional If None, a single array is returned. For 'sequence', a tuple of smaller footprints is returned. Applying this series of smaller footprints will given a result equivalent to a single, larger footprint, but with better computational performance. For ball footprints, the sequence decomposition is not exactly equivalent to decomposition=None. See Notes for more details. Returns ------- footprint : cupy.ndarray The footprint where elements of the neighborhood are 1 and 0 otherwise. Notes ----- The disk produced by the decomposition='sequence' mode is not identical to that with decomposition=None. Here we extend the approach taken in [1]_ for disks to the 3D case, using 3-dimensional extensions of the "square", "diamond" and "t-shaped" elements from that publication. All of these elementary elements have size ``(3,) * ndim``. We numerically computed the number of repetitions of each element that gives the closest match to the ball computed with kwargs ``strict_radius=False, decomposition=None``. Empirically, the equivalent composite footprint to the sequence decomposition approaches a rhombicuboctahedron (26-faces [2]_). References ---------- .. [1] Park, H and Chin R.T. Decomposition of structuring elements for optimal implementation of morphological operations. In Proceedings: 1997 IEEE Workshop on Nonlinear Signal and Image Processing, London, UK. https://www.iwaenc.org/proceedings/1997/nsip97/pdf/scan/ns970226.pdf .. [2] https://en.wikipedia.org/wiki/Rhombicuboctahedron """ if decomposition is None: n = 2 * radius + 1 Z, Y, X = np.ogrid[ -radius : radius : n * 1j, -radius : radius : n * 1j, -radius : radius : n * 1j, ] s = X * X + Y * Y + Z * Z if not strict_radius: radius += 0.5 return cp.array(s <= radius * radius, dtype=dtype) elif decomposition == "sequence": sequence = _nsphere_series_decomposition(radius, ndim=3, dtype=dtype) else: raise ValueError(f"Unrecognized decomposition: {decomposition}") return sequence def octagon(m, n, dtype=cp.uint8, *, decomposition=None): """Generates an octagon shaped footprint. For a given size of (m) horizontal and vertical sides and a given (n) height or width of slanted sides octagon is generated. The slanted sides are 45 or 135 degrees to the horizontal axis and hence the widths and heights are equal. The overall size of the footprint along a single axis will be ``m + 2 * n``. Parameters ---------- m : int The size of the horizontal and vertical sides. n : int The height or width of the slanted sides. Other Parameters ---------------- dtype : data-type, optional The data type of the footprint. decomposition : {None, 'sequence'}, optional If None, a single array is returned. For 'sequence', a tuple of smaller footprints is returned. Applying this series of smaller footprints will given an identical result to a single, larger footprint, but with better computational performance. See Notes for more details. Returns ------- footprint : cupy.ndarray The footprint where elements of the neighborhood are 1 and 0 otherwise. When `decomposition` is None, this is just a numpy.ndarray. Otherwise, this will be a tuple whose length is equal to the number of unique structuring elements to apply (see Notes for more detail) Notes ----- When `decomposition` is not None, each element of the `footprint` tuple is a 2-tuple of the form ``(ndarray, num_iter)`` that specifies a footprint array and the number of iterations it is to be applied. For either binary or grayscale morphology, using ``decomposition='sequence'`` was observed to have a performance benefit, with the magnitude of the benefit increasing with increasing footprint size. """ try: from skimage.morphology import convex_hull_image except ImportError: raise ImportError("octagon requires scikit-image") if m == n == 0: raise ValueError("m and n cannot both be zero") if decomposition is None: footprint = np.zeros((m + 2 * n, m + 2 * n)) footprint[0, n] = 1 footprint[n, 0] = 1 footprint[0, m + n - 1] = 1 footprint[m + n - 1, 0] = 1 footprint[-1, n] = 1 footprint[n, -1] = 1 footprint[-1, m + n - 1] = 1 footprint[m + n - 1, -1] = 1 footprint = convex_hull_image(footprint).astype(dtype) footprint = cp.array(footprint) elif decomposition == "sequence": # special handling for edge cases with small m and/or n if m <= 2 and n <= 2: return ((octagon(m, n, dtype=dtype, decomposition=None), 1),) # general approach for larger m and/or n if m == 0: m = 2 n -= 1 sequence = [] if m > 1: sequence += list(square(m, dtype=dtype, decomposition="sequence")) if n > 0: sequence += [(diamond(1, dtype=dtype, decomposition=None), n)] footprint = tuple(sequence) else: raise ValueError(f"Unrecognized decomposition: {decomposition}") return footprint def star(a, dtype=cp.uint8): """Generates a star shaped footprint. Start has 8 vertices and is an overlap of square of size `2*a + 1` with its 45 degree rotated version. The slanted sides are 45 or 135 degrees to the horizontal axis. Parameters ---------- a : int Parameter deciding the size of the star structural element. The side of the square array returned is `2*a + 1 + 2*floor(a / 2)`. Other Parameters ---------------- dtype : data-type, optional The data type of the footprint. Returns ------- footprint : cupy.ndarray The footprint where elements of the neighborhood are 1 and 0 otherwise. """ try: from skimage.morphology import convex_hull_image except ImportError: raise ImportError("star requires scikit-image") if a == 1: bfilter = cp.zeros((3, 3), dtype) bfilter[:] = 1 return bfilter m = 2 * a + 1 n = a // 2 footprint_square = np.zeros((m + 2 * n, m + 2 * n)) footprint_square[n : m + n, n : m + n] = 1 c = (m + 2 * n - 1) // 2 footprint_rotated = np.zeros((m + 2 * n, m + 2 * n)) footprint_rotated[0, c] = footprint_rotated[-1, c] = 1 footprint_rotated[c, 0] = footprint_rotated[c, -1] = 1 footprint_rotated = convex_hull_image(footprint_rotated).astype(int) footprint = footprint_square + footprint_rotated footprint[footprint > 0] = 1 return cp.array(footprint.astype(dtype, copy=False))
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/binary.py
""" Binary morphological operations """ import functools import cupy as cp import cucim.skimage._vendored.ndimage as ndi from .._shared.utils import deprecate_kwarg from .footprints import _footprint_is_sequence from .misc import default_footprint def _iterate_binary_func(binary_func, image, footprint, out): """Helper to call `binary_func` for each footprint in a sequence. binary_func is a binary morphology function that accepts "structure", "output" and "iterations" keyword arguments (e.g. `scipy.ndimage.binary_erosion`). """ # TODO (performance): # `cupyx.scipy.ndimage` binary morphology implementation only supports # `brute_force=True`. Update here if a more efficient method for # `iterations > 1` is added. fp, num_iter = footprint[0] binary_func( image, structure=fp, output=out, iterations=num_iter, brute_force=True ) for fp, num_iter in footprint[1:]: # Note: out.copy() because the computation cannot be in-place! # SciPy <= 1.7 did not automatically make a copy if needed. binary_func( out.copy(), structure=fp, output=out, iterations=num_iter, brute_force=True, ) return out # The default_footprint decorator provides a diamond footprint as # default with the same dimension as the input image and size 3 along each # axis. @default_footprint @deprecate_kwarg( kwarg_mapping={"selem": "footprint"}, removed_version="23.02.00", deprecated_version="22.02.00", ) def binary_erosion(image, footprint=None, out=None): """Return fast binary morphological erosion of an image. This function returns the same result as grayscale erosion but performs faster for binary images. Morphological erosion sets a pixel at ``(i,j)`` to the minimum over all pixels in the neighborhood centered at ``(i,j)``. Erosion shrinks bright regions and enlarges dark regions. Parameters ---------- image : ndarray Binary input image. footprint : ndarray or tuple, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use a cross-shaped footprint (connectivity=1). The footprint can also be provided as a sequence of smaller footprints as described in the notes below. out : ndarray of bool, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. Returns ------- eroded : ndarray of bool or uint The result of the morphological erosion taking values in ``[False, True]``. Notes ----- The footprint can also be a provided as a sequence of 2-tuples where the first element of each 2-tuple is a footprint ndarray and the second element is an integer describing the number of times it should be iterated. For example ``footprint=[(cp.ones((9, 1)), 1), (cp.ones((1, 9)), 1)]`` would apply a 9x1 footprint followed by a 1x9 footprint resulting in a net effect that is the same as ``footprint=cp.ones((9, 9))``, but with lower computational cost. Most of the builtin footprints such as ``skimage.morphology.disk`` provide an option to automatically generate a footprint sequence of this type. """ if out is None: out = cp.empty(image.shape, dtype=bool) if _footprint_is_sequence(footprint): binary_func = functools.partial(ndi.binary_erosion, border_value=True) return _iterate_binary_func(binary_func, image, footprint, out) ndi.binary_erosion( image, structure=footprint, output=out, border_value=True ) return out @default_footprint @deprecate_kwarg( kwarg_mapping={"selem": "footprint"}, removed_version="23.02.00", deprecated_version="22.02.00", ) def binary_dilation(image, footprint=None, out=None): """Return fast binary morphological dilation of an image. This function returns the same result as grayscale dilation but performs faster for binary images. Morphological dilation sets a pixel at ``(i,j)`` to the maximum over all pixels in the neighborhood centered at ``(i,j)``. Dilation enlarges bright regions and shrinks dark regions. Parameters ---------- image : ndarray Binary input image. footprint : ndarray or tuple, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use a cross-shaped footprint (connectivity=1). The footprint can also be provided as a sequence of smaller footprints as described in the notes below. out : ndarray of bool, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. Returns ------- dilated : ndarray of bool or uint The result of the morphological dilation with values in ``[False, True]``. Notes ----- The footprint can also be a provided as a sequence of 2-tuples where the first element of each 2-tuple is a footprint ndarray and the second element is an integer describing the number of times it should be iterated. For example ``footprint=[(cp.ones((9, 1)), 1), (cp.ones((1, 9)), 1)]`` would apply a 9x1 footprint followed by a 1x9 footprint resulting in a net effect that is the same as ``footprint=cp.ones((9, 9))``, but with lower computational cost. Most of the builtin footprints such as ``skimage.morphology.disk`` provide an option to automatically generate a footprint sequence of this type. """ if out is None: out = cp.empty(image.shape, dtype=bool) if _footprint_is_sequence(footprint): return _iterate_binary_func(ndi.binary_dilation, image, footprint, out) ndi.binary_dilation(image, structure=footprint, output=out) return out @default_footprint @deprecate_kwarg( kwarg_mapping={"selem": "footprint"}, removed_version="23.02.00", deprecated_version="22.02.00", ) def binary_opening(image, footprint=None, out=None): """Return fast binary morphological opening of an image. This function returns the same result as grayscale opening but performs faster for binary images. The morphological opening on an image is defined as an erosion followed by a dilation. Opening can remove small bright spots (i.e. "salt") and connect small dark cracks. This tends to "open" up (dark) gaps between (bright) features. Parameters ---------- image : ndarray Binary input image. footprint : ndarray or tuple, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use a cross-shaped footprint (connectivity=1). The footprint can also be provided as a sequence of smaller footprints as described in the notes below. out : ndarray of bool, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. Returns ------- opening : ndarray of bool The result of the morphological opening. Notes ----- The footprint can also be a provided as a sequence of 2-tuples where the first element of each 2-tuple is a footprint ndarray and the second element is an integer describing the number of times it should be iterated. For example ``footprint=[(cp.ones((9, 1)), 1), (cp.ones((1, 9)), 1)]`` would apply a 9x1 footprint followed by a 1x9 footprint resulting in a net effect that is the same as ``footprint=cp.ones((9, 9))``, but with lower computational cost. Most of the builtin footprints such as ``skimage.morphology.disk`` provide an option to automatically generate a footprint sequence of this type. """ eroded = binary_erosion(image, footprint) out = binary_dilation(eroded, footprint, out=out) return out @default_footprint @deprecate_kwarg( kwarg_mapping={"selem": "footprint"}, removed_version="23.02.00", deprecated_version="22.02.00", ) def binary_closing(image, footprint=None, out=None): """Return fast binary morphological closing of an image. This function returns the same result as grayscale closing but performs faster for binary images. The morphological closing on an image is defined as a dilation followed by an erosion. Closing can remove small dark spots (i.e. "pepper") and connect small bright cracks. This tends to "close" up (dark) gaps between (bright) features. Parameters ---------- image : ndarray Binary input image. footprint : ndarray or tuple, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use a cross-shaped footprint (connectivity=1). The footprint can also be provided as a sequence of smaller footprints as described in the notes below. out : ndarray of bool, optional The array to store the result of the morphology. If None, is passed, a new array will be allocated. Returns ------- closing : ndarray of bool The result of the morphological closing. Notes ----- The footprint can also be a provided as a sequence of 2-tuples where the first element of each 2-tuple is a footprint ndarray and the second element is an integer describing the number of times it should be iterated. For example ``footprint=[(cp.ones((9, 1)), 1), (cp.ones((1, 9)), 1)]`` would apply a 9x1 footprint followed by a 1x9 footprint resulting in a net effect that is the same as ``footprint=cp.ones((9, 9))``, but with lower computational cost. Most of the builtin footprints such as ``skimage.morphology.disk`` provide an option to automatically generate a footprint sequence of this type. """ dilated = binary_dilation(image, footprint) out = binary_erosion(dilated, footprint, out=out) return out
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/gray.py
""" Grayscale morphological operations """ import functools import cupy as cp import cucim.skimage._vendored.ndimage as ndi from .._shared.utils import deprecate_kwarg from .._vendored import pad from ..util import crop from .footprints import _footprint_is_sequence, _shape_from_sequence from .misc import default_footprint __all__ = [ "erosion", "dilation", "opening", "closing", "white_tophat", "black_tophat", ] def _iterate_gray_func(gray_func, image, footprints, out): """Helper to call `binary_func` for each footprint in a sequence. binary_func is a binary morphology function that accepts "structure", "output" and "iterations" keyword arguments (e.g. `scipy.ndimage.binary_erosion`). """ fp, num_iter = footprints[0] tuple_fp = isinstance(fp, tuple) if tuple_fp: gray_func(image, size=fp, output=out) else: gray_func(image, footprint=fp, output=out) for _ in range(1, num_iter): if tuple_fp: gray_func(out.copy(), size=fp, output=out) else: gray_func(out.copy(), footprint=fp, output=out) for fp, num_iter in footprints[1:]: tuple_fp = isinstance(fp, tuple) # Note: out.copy() because the computation cannot be in-place! for _ in range(num_iter): if tuple_fp: gray_func(out.copy(), size=fp, output=out) else: gray_func(out.copy(), footprint=fp, output=out) return out def _shift_footprint(footprint, shift_x, shift_y): """Shift the binary image `footprint` in the left and/or up. This only affects 2D footprints with even number of rows or columns. Parameters ---------- footprint : 2D array, shape (M, N) The input footprint. shift_x, shift_y : bool Whether to move `footprint` along each axis. Returns ------- out : 2D array, shape (M + int(shift_x), N + int(shift_y)) The shifted footprint. """ if isinstance(footprint, tuple): if len(footprint) == 2 and any(s % 2 == 0 for s in footprint): # have to use an explicit array to shift the footprint below footprint = cp.ones(footprint, dtype=bool) else: # no shift needed return footprint if footprint.ndim != 2: # do nothing for 1D or 3D or higher footprints return footprint m, n = footprint.shape if m % 2 == 0: extra_row = cp.zeros((1, n), footprint.dtype) if shift_x: footprint = cp.vstack((footprint, extra_row)) else: footprint = cp.vstack((extra_row, footprint)) m += 1 if n % 2 == 0: extra_col = cp.zeros((m, 1), footprint.dtype) if shift_y: footprint = cp.hstack((footprint, extra_col)) else: footprint = cp.hstack((extra_col, footprint)) return footprint def _invert_footprint(footprint): """Change the order of the values in `footprint`. This is a patch for the *weird* footprint inversion in `ndi.grey_morphology` [1]_. Parameters ---------- footprint : array The input footprint. Returns ------- inverted : array, same shape and type as `footprint` The footprint, in opposite order. Examples -------- >>> footprint = cp.asarray([[0, 0, 0], [0, 1, 1], [0, 1, 1]], cp.uint8) >>> _invert_footprint(footprint) array([[1, 1, 0], [1, 1, 0], [0, 0, 0]], dtype=uint8) References ---------- .. [1] https://github.com/scipy/scipy/blob/ec20ababa400e39ac3ffc9148c01ef86d5349332/scipy/ndimage/morphology.py#L1285 """ # noqa: E501 if isinstance(footprint, tuple): # fully populated rectangle is symmetric return footprint inverted = footprint[(slice(None, None, -1),) * footprint.ndim] return inverted def pad_for_eccentric_footprints(func): """Pad input images for certain morphological operations. Parameters ---------- func : callable A morphological function, either opening or closing, that supports eccentric footprints. Its parameters must include at least `image`, `footprint`, and `out`. Returns ------- func_out : callable The same function, but correctly padding the input image before applying the input function. See Also -------- opening, closing. """ @functools.wraps(func) def func_out(image, footprint, out=None, *args, **kwargs): pad_widths = [] padding = False if out is None: out = cp.empty_like(image) if _footprint_is_sequence(footprint): # Note: in practice none of our built-in footprint sequences will # require padding (all are symmetric and have odd sizes) footprint_shape = _shape_from_sequence(footprint) elif isinstance(footprint, tuple): footprint_shape = footprint else: footprint_shape = footprint.shape for axis_len in footprint_shape: if axis_len % 2 == 0: axis_pad_width = axis_len - 1 padding = True else: axis_pad_width = 0 pad_widths.append((axis_pad_width,) * 2) if padding: image = pad(image, pad_widths, mode="edge") out_temp = cp.empty_like(image) else: out_temp = out out_temp = func(image, footprint, out=out_temp, *args, **kwargs) if padding: out[:] = crop(out_temp, pad_widths) else: out = out_temp return out return func_out @default_footprint @deprecate_kwarg( kwarg_mapping={"selem": "footprint"}, removed_version="23.02.00", deprecated_version="22.02.00", ) def erosion(image, footprint=None, out=None, shift_x=False, shift_y=False): """Return grayscale morphological erosion of an image. Morphological erosion sets a pixel at (i,j) to the minimum over all pixels in the neighborhood centered at (i,j). Erosion shrinks bright regions and enlarges dark regions. Parameters ---------- image : cupy.ndarray Image array. footprint : cupy.ndarray, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use a cross-shaped footprint (connectivity=1). The footprint can also be provided as a sequence of smaller footprints as described in the notes below. out : cupy.ndarray, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. shift_x, shift_y : bool, optional shift footprint about center point. This only affects eccentric footprints (i.e. footprint with even numbered sides). Returns ------- eroded : cupy.ndarray, same shape as `image` The result of the morphological erosion. Notes ----- For ``uint8`` (and ``uint16`` up to a certain bit-depth) data, the lower algorithm complexity makes the `skimage.filters.rank.minimum` function more efficient for larger images and footprints. The footprint can also be a provided as a sequence of 2-tuples where the first element of each 2-tuple is a footprint ndarray and the second element is an integer describing the number of times it should be iterated. For example ``footprint=[(cp.ones((9, 1)), 1), (cp.ones((1, 9)), 1)]`` would apply a 9x1 footprint followed by a 1x9 footprint resulting in a net effect that is the same as ``footprint=cp.ones((9, 9))``, but with lower computational cost. Most of the builtin footprints such as ``skimage.morphology.disk`` provide an option to automatically generate a footprint sequence of this type. Examples -------- >>> # Erosion shrinks bright regions >>> import cupy as cp >>> from cucim.skimage.morphology import square >>> bright_square = cp.asarray([[0, 0, 0, 0, 0], ... [0, 1, 1, 1, 0], ... [0, 1, 1, 1, 0], ... [0, 1, 1, 1, 0], ... [0, 0, 0, 0, 0]], dtype=cp.uint8) >>> erosion(bright_square, square(3)) array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ if out is None: out = cp.empty_like(image) if _footprint_is_sequence(footprint): footprints = tuple( (_shift_footprint(fp, shift_x, shift_y), n) for fp, n in footprint ) return _iterate_gray_func(ndi.grey_erosion, image, footprints, out) if isinstance(footprint, tuple): if len(footprint) != image.ndim: raise ValueError( "footprint.ndim={len(footprint)}, image.ndim={image.ndim}" ) if image.ndim == 2 and any(s % 2 == 0 for s in footprint): # only odd-shaped footprints are properly handled for tuples footprint = cp.ones(footprint, dtype=bool) else: ndi.grey_erosion(image, size=footprint, output=out) return out footprint = _shift_footprint(footprint, shift_x, shift_y) ndi.grey_erosion(image, footprint=footprint, output=out) return out @default_footprint @deprecate_kwarg( kwarg_mapping={"selem": "footprint"}, removed_version="23.02.00", deprecated_version="22.02.00", ) def dilation(image, footprint=None, out=None, shift_x=False, shift_y=False): """Return grayscale morphological dilation of an image. Morphological dilation sets the value of a pixel to the maximum over all pixel values within a local neighborhood centered about it. The values where the footprint is 1 define this neighborhood. Dilation enlarges bright regions and shrinks dark regions. Parameters ---------- image : cupy.ndarray Image array. footprint : cupy.ndarray, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use a cross-shaped footprint (connectivity=1). The footprint can also be provided as a sequence of smaller footprints as described in the notes below. out : cupy.ndarray, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. shift_x, shift_y : bool, optional Shift footprint about center point. This only affects 2D eccentric footprints (i.e., footprints with even-numbered sides). Returns ------- dilated : cupy.ndarray, same shape and type as `image` The result of the morphological dilation. Notes ----- For `uint8` (and `uint16` up to a certain bit-depth) data, the lower algorithm complexity makes the `skimage.filters.rank.maximum` function more efficient for larger images and footprints. The footprint can also be a provided as a sequence of 2-tuples where the first element of each 2-tuple is a footprint ndarray and the second element is an integer describing the number of times it should be iterated. For example ``footprint=[(cp.ones((9, 1)), 1), (cp.ones((1, 9)), 1)]`` would apply a 9x1 footprint followed by a 1x9 footprint resulting in a net effect that is the same as ``footprint=cp.ones((9, 9))``, but with lower computational cost. Most of the builtin footprints such as ``skimage.morphology.disk`` provide an option to automatically generate a footprint sequence of this type. Examples -------- >>> # Dilation enlarges bright regions >>> import cupy as cp >>> from cucim.skimage.morphology import square >>> bright_pixel = cp.asarray([[0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0], ... [0, 0, 1, 0, 0], ... [0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0]], dtype=cp.uint8) >>> dilation(bright_pixel, square(3)) array([[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ if out is None: out = cp.empty_like(image) if _footprint_is_sequence(footprint): # shift and invert (see comment below) each footprint footprints = tuple( (_invert_footprint(_shift_footprint(fp, shift_x, shift_y)), n) for fp, n in footprint ) return _iterate_gray_func(ndi.grey_dilation, image, footprints, out) if isinstance(footprint, tuple): if len(footprint) != image.ndim: raise ValueError( "footprint.ndim={len(footprint)}, image.ndim={image.ndim}" ) if image.ndim == 2 and any(s % 2 == 0 for s in footprint): # only odd-shaped footprints are properly handled for tuples footprint = cp.ones(footprint, dtype=bool) else: ndi.grey_dilation(image, size=footprint, output=out) return out footprint = _shift_footprint(footprint, shift_x, shift_y) # Inside ndi.grey_dilation, the footprint is inverted, # e.g. `footprint = footprint[::-1, ::-1]` for 2D [1]_, for reasons unknown # to this author (@jni). To "patch" this behaviour, we invert our own # footprint before passing it to `ndi.grey_dilation`. # [1] https://github.com/scipy/scipy/blob/ec20ababa400e39ac3ffc9148c01ef86d5349332/scipy/ndimage/morphology.py#L1285 # noqa footprint = _invert_footprint(footprint) ndi.grey_dilation(image, footprint=footprint, output=out) return out @deprecate_kwarg( kwarg_mapping={"selem": "footprint"}, removed_version="23.02.00", deprecated_version="22.02.00", ) @default_footprint @pad_for_eccentric_footprints def opening(image, footprint=None, out=None): """Return grayscale morphological opening of an image. The morphological opening of an image is defined as an erosion followed by a dilation. Opening can remove small bright spots (i.e. "salt") and connect small dark cracks. This tends to "open" up (dark) gaps between (bright) features. Parameters ---------- image : cupy.ndarray Image array. footprint : cupy.ndarray, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use a cross-shaped footprint (connectivity=1). The footprint can also be provided as a sequence of smaller footprints as described in the notes below. out : cupy.ndarray, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. Returns ------- opening : cupy.ndarray, same shape and type as `image` The result of the morphological opening. Notes ----- The footprint can also be a provided as a sequence of 2-tuples where the first element of each 2-tuple is a footprint ndarray and the second element is an integer describing the number of times it should be iterated. For example ``footprint=[(cp.ones((9, 1)), 1), (cp.ones((1, 9)), 1)]`` would apply a 9x1 footprint followed by a 1x9 footprint resulting in a net effect that is the same as ``footprint=cp.ones((9, 9))``, but with lower computational cost. Most of the builtin footprints such as ``skimage.morphology.disk`` provide an option to automatically generate a footprint sequence of this type. Examples -------- >>> # Open up gap between two bright regions (but also shrink regions) >>> import cupy as cp >>> from cucim.skimage.morphology import square >>> bad_connection = cp.asarray([[1, 0, 0, 0, 1], ... [1, 1, 0, 1, 1], ... [1, 1, 1, 1, 1], ... [1, 1, 0, 1, 1], ... [1, 0, 0, 0, 1]], dtype=cp.uint8) >>> opening(bad_connection, square(3)) array([[0, 0, 0, 0, 0], [1, 1, 0, 1, 1], [1, 1, 0, 1, 1], [1, 1, 0, 1, 1], [0, 0, 0, 0, 0]], dtype=uint8) """ eroded = erosion(image, footprint) # note: shift_x, shift_y do nothing if footprint side length is odd out = dilation(eroded, footprint, out=out, shift_x=True, shift_y=True) return out @deprecate_kwarg( kwarg_mapping={"selem": "footprint"}, removed_version="23.02.00", deprecated_version="22.02.00", ) @default_footprint @pad_for_eccentric_footprints def closing(image, footprint=None, out=None): """Return grayscale morphological closing of an image. The morphological closing of an image is defined as a dilation followed by an erosion. Closing can remove small dark spots (i.e. "pepper") and connect small bright cracks. This tends to "close" up (dark) gaps between (bright) features. Parameters ---------- image : cupy.ndarray Image array. footprint : cupy.ndarray, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use a cross-shaped footprint (connectivity=1). The footprint can also be provided as a sequence of smaller footprints as described in the notes below. out : cupy.ndarray, optional The array to store the result of the morphology. If None, a new array will be allocated. Returns ------- closing : cupy.ndarray, same shape and type as `image` The result of the morphological closing. Notes ----- The footprint can also be a provided as a sequence of 2-tuples where the first element of each 2-tuple is a footprint ndarray and the second element is an integer describing the number of times it should be iterated. For example ``footprint=[(cp.ones((9, 1)), 1), (cp.ones((1, 9)), 1)]`` would apply a 9x1 footprint followed by a 1x9 footprint resulting in a net effect that is the same as ``footprint=cp.ones((9, 9))``, but with lower computational cost. Most of the builtin footprints such as ``skimage.morphology.disk`` provide an option to automatically generate a footprint sequence of this type. Examples -------- >>> # Close a gap between two bright lines >>> import cupy as cp >>> from cucim.skimage.morphology import square >>> broken_line = cp.asarray([[0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0], ... [1, 1, 0, 1, 1], ... [0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0]], dtype=cp.uint8) >>> closing(broken_line, square(3)) array([[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ dilated = dilation(image, footprint) # note: shift_x, shift_y do nothing if footprint side length is odd out = erosion(dilated, footprint, out=out, shift_x=True, shift_y=True) return out def _white_tophat_seqence(image, footprints, out): """Return white top hat for a sequence of footprints. Like SciPy's implementation, but with ``ndi.grey_erosion`` and ``ndi.grey_dilation`` wrapped with ``_iterate_gray_func``. """ tmp = _iterate_gray_func(ndi.grey_erosion, image, footprints, out) tmp = _iterate_gray_func(ndi.grey_dilation, tmp.copy(), footprints, out) if tmp is None: tmp = out if image.dtype == cp.bool_ and tmp.dtype == cp.bool_: cp.bitwise_xor(image, tmp, out=tmp) else: cp.subtract(image, tmp, out=tmp) return tmp @default_footprint @deprecate_kwarg( kwarg_mapping={"selem": "footprint"}, removed_version="23.02.00", deprecated_version="22.02.00", ) def white_tophat(image, footprint=None, out=None): """Return white top hat of an image. The white top hat of an image is defined as the image minus its morphological opening. This operation returns the bright spots of the image that are smaller than the footprint. Parameters ---------- image : cupy.ndarray Image array. footprint : cupy.ndarray, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use a cross-shaped footprint (connectivity=1). The footprint can also be provided as a sequence of smaller footprints as described in the notes below. out : cupy.ndarray, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. Returns ------- out : cupy.ndarray, same shape and type as `image` The result of the morphological white top hat. Notes ----- The footprint can also be a provided as a sequence of 2-tuples where the first element of each 2-tuple is a footprint ndarray and the second element is an integer describing the number of times it should be iterated. For example ``footprint=[(cp.ones((9, 1)), 1), (cp.ones((1, 9)), 1)]`` would apply a 9x1 footprint followed by a 1x9 footprint resulting in a net effect that is the same as ``footprint=cp.ones((9, 9))``, but with lower computational cost. Most of the builtin footprints such as ``skimage.morphology.disk`` provide an option to automatically generate a footprint sequence of this type. See Also -------- black_tophat References ---------- .. [1] https://en.wikipedia.org/wiki/Top-hat_transform Examples -------- >>> # Subtract grey background from bright peak >>> import cupy as cp >>> from cucim.skimage.morphology import square >>> bright_on_grey = cp.asarray([[2, 3, 3, 3, 2], ... [3, 4, 5, 4, 3], ... [3, 5, 9, 5, 3], ... [3, 4, 5, 4, 3], ... [2, 3, 3, 3, 2]], dtype=cp.uint8) >>> white_tophat(bright_on_grey, square(3)) array([[0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 1, 5, 1, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ if out is image: opened = opening(image, footprint) if cp.issubdtype(opened.dtype, cp.bool_): cp.logical_xor(out, opened, out=out) else: out -= opened return out elif out is None: out = cp.empty_like(image) # work-around for NumPy deprecation warning for arithmetic # operations on bool arrays if isinstance(image, cp.ndarray) and image.dtype == bool: image_ = image.view(dtype=cp.uint8) else: image_ = image if isinstance(out, cp.ndarray) and out.dtype == bool: out_ = out.view(dtype=cp.uint8) else: out_ = out if _footprint_is_sequence(footprint): return _white_tophat_seqence(image_, footprint, out_) elif isinstance(footprint, tuple): if len(footprint) != image.ndim: raise ValueError( "footprint.ndim={len(footprint)}, image.ndim={image.ndim}" ) ndi.white_tophat(image, size=footprint, output=out) return out out_ = ndi.white_tophat(image_, footprint=footprint, output=out_) return out @default_footprint @deprecate_kwarg( kwarg_mapping={"selem": "footprint"}, removed_version="23.02.00", deprecated_version="22.02.00", ) def black_tophat(image, footprint=None, out=None): """Return black top hat of an image. The black top hat of an image is defined as its morphological closing minus the original image. This operation returns the dark spots of the image that are smaller than the footprint. Note that dark spots in the original image are bright spots after the black top hat. Parameters ---------- image : cupy.ndarray Image array. footprint : cupy.ndarray, optional The neighborhood expressed as a 2-D array of 1's and 0's. If None, use a cross-shaped footprint (connectivity=1). The footprint can also be provided as a sequence of smaller footprints as described in the notes below. out : cupy.ndarray, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. Returns ------- out : cupy.ndarray, same shape and type as `image` The result of the morphological black top hat. Notes ----- The footprint can also be a provided as a sequence of 2-tuples where the first element of each 2-tuple is a footprint ndarray and the second element is an integer describing the number of times it should be iterated. For example ``footprint=[(cp.ones((9, 1)), 1), (cp.ones((1, 9)), 1)]`` would apply a 9x1 footprint followed by a 1x9 footprint resulting in a net effect that is the same as ``footprint=cp.ones((9, 9))``, but with lower computational cost. Most of the builtin footprints such as ``skimage.morphology.disk`` provide an option to automatically generate a footprint sequence of this type. See Also -------- white_tophat References ---------- .. [1] https://en.wikipedia.org/wiki/Top-hat_transform Examples -------- >>> # Change dark peak to bright peak and subtract background >>> import cupy as cp >>> from cucim.skimage.morphology import square >>> dark_on_grey = cp.asarray([[7, 6, 6, 6, 7], ... [6, 5, 4, 5, 6], ... [6, 4, 0, 4, 6], ... [6, 5, 4, 5, 6], ... [7, 6, 6, 6, 7]], dtype=cp.uint8) >>> black_tophat(dark_on_grey, square(3)) array([[0, 0, 0, 0, 0], [0, 0, 1, 0, 0], [0, 1, 5, 1, 0], [0, 0, 1, 0, 0], [0, 0, 0, 0, 0]], dtype=uint8) """ if out is image: original = image.copy() else: original = image out = closing(image, footprint, out=out) if cp.issubdtype(out.dtype, bool): cp.logical_xor(out, original, out=out) else: out -= original return out
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/misc.py
"""Miscellaneous morphology functions.""" import functools import cupy as cp import cucim.skimage._vendored.ndimage as ndi from .._shared.utils import warn # Our function names don't exactly correspond to ndimages. # This dictionary translates from our names to scipy's. funcs = ("erosion", "dilation", "opening", "closing") skimage2ndimage = {x: "grey_" + x for x in funcs} # These function names are the same in ndimage. funcs = ( "binary_erosion", "binary_dilation", "binary_opening", "binary_closing", "black_tophat", "white_tophat", ) skimage2ndimage.update({x: x for x in funcs}) def default_footprint(func): """Decorator to add a default footprint to morphology functions. Parameters ---------- func : function A morphology function such as erosion, dilation, opening, closing, white_tophat, or black_tophat. Returns ------- func_out : function The function, using a default footprint of same dimension as the input image with connectivity 1. """ @functools.wraps(func) def func_out(image, footprint=None, *args, **kwargs): if footprint is None: footprint = ndi.generate_binary_structure(image.ndim, 1) return func(image, footprint=footprint, *args, **kwargs) return func_out def _check_dtype_supported(ar): # Should use `issubdtype` for bool below, but there's a bug in numpy 1.7 if not (ar.dtype == bool or cp.issubdtype(ar.dtype, cp.integer)): raise TypeError( "Only bool or integer image types are supported. " f"Got {ar.dtype}." ) def remove_small_objects(ar, min_size=64, connectivity=1, *, out=None): """Remove objects smaller than the specified size. Expects ar to be an array with labeled objects, and removes objects smaller than min_size. If `ar` is bool, the image is first labeled. This leads to potentially different behavior for bool and 0-and-1 arrays. Parameters ---------- ar : ndarray (arbitrary shape, int or bool type) The array containing the objects of interest. If the array type is int, the ints must be non-negative. min_size : int, optional (default: 64) The smallest allowable object size. connectivity : int, {1, 2, ..., ar.ndim}, optional (default: 1) The connectivity defining the neighborhood of a pixel. Used during labelling if `ar` is bool. out : ndarray Array of the same shape as `ar`, into which the output is placed. By default, a new array is created. Raises ------ TypeError If the input array is of an invalid type, such as float or string. ValueError If the input array contains negative values. Returns ------- out : ndarray, same shape and type as input `ar` The input array with small connected components removed. Examples -------- >>> import cupy as cp >>> from cucim.skimage import morphology >>> a = cp.array([[0, 0, 0, 1, 0], ... [1, 1, 1, 0, 0], ... [1, 1, 1, 0, 1]], bool) >>> b = morphology.remove_small_objects(a, 6) >>> b array([[False, False, False, False, False], [ True, True, True, False, False], [ True, True, True, False, False]]) >>> c = morphology.remove_small_objects(a, 7, connectivity=2) >>> c array([[False, False, False, True, False], [ True, True, True, False, False], [ True, True, True, False, False]]) >>> d = morphology.remove_small_objects(a, 6, out=a) >>> d is a True """ # Raising type error if not int or bool _check_dtype_supported(ar) if out is None: out = ar.copy() else: out[:] = ar if min_size == 0: # shortcut for efficiency return out if out.dtype == bool: footprint = ndi.generate_binary_structure(ar.ndim, connectivity) ccs = cp.zeros_like(ar, dtype=cp.int32) ndi.label(ar, footprint, output=ccs) else: ccs = out try: component_sizes = cp.bincount(ccs.ravel()) except ValueError: raise ValueError( "Negative value labels are not supported. Try " "relabeling the input with `scipy.ndimage.label` or " "`skimage.morphology.label`." ) if len(component_sizes) == 2 and out.dtype != bool: warn( "Only one label was provided to `remove_small_objects`. " "Did you mean to use a boolean array?" ) too_small = component_sizes < min_size too_small_mask = too_small[ccs] out[too_small_mask] = 0 return out def remove_small_holes(ar, area_threshold=64, connectivity=1, *, out=None): """Remove contiguous holes smaller than the specified size. Parameters ---------- ar : ndarray (arbitrary shape, int or bool type) The array containing the connected components of interest. area_threshold : int, optional (default: 64) The maximum area, in pixels, of a contiguous hole that will be filled. Replaces `min_size`. connectivity : int, {1, 2, ..., ar.ndim}, optional (default: 1) The connectivity defining the neighborhood of a pixel. out : ndarray Array of the same shape as `ar` and bool dtype, into which the output is placed. By default, a new array is created. Raises ------ TypeError If the input array is of an invalid type, such as float or string. ValueError If the input array contains negative values. Returns ------- out : ndarray, same shape and type as input `ar` The input array with small holes within connected components removed. Examples -------- >>> import cupy as cp >>> from cucim.skimage import morphology >>> a = cp.array([[1, 1, 1, 1, 1, 0], ... [1, 1, 1, 0, 1, 0], ... [1, 0, 0, 1, 1, 0], ... [1, 1, 1, 1, 1, 0]], bool) >>> b = morphology.remove_small_holes(a, 2) >>> b array([[ True, True, True, True, True, False], [ True, True, True, True, True, False], [ True, False, False, True, True, False], [ True, True, True, True, True, False]]) >>> c = morphology.remove_small_holes(a, 2, connectivity=2) >>> c array([[ True, True, True, True, True, False], [ True, True, True, False, True, False], [ True, False, False, True, True, False], [ True, True, True, True, True, False]]) >>> d = morphology.remove_small_holes(a, 2, out=a) >>> d is a True Notes ----- If the array type is int, it is assumed that it contains already-labeled objects. The labels are not kept in the output image (this function always outputs a bool image). It is suggested that labeling is completed after using this function. """ _check_dtype_supported(ar) # Creates warning if image is an integer image if ar.dtype != bool: warn( "Any labeled images will be returned as a boolean array. " "Did you mean to use a boolean array?", UserWarning, ) if out is not None: if out.dtype != bool: raise TypeError("out dtype must be bool") else: out = ar.astype(bool, copy=True) # Creating the inverse of ar cp.logical_not(ar, out=out) # removing small objects from the inverse of ar out = remove_small_objects(out, area_threshold, connectivity, out=out) cp.logical_not(out, out=out) return out
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/grayreconstruct.py
""" This morphological reconstruction routine was adapted from CellProfiler, code licensed under both GPL and BSD licenses. Website: http://www.cellprofiler.org Copyright (c) 2003-2009 Massachusetts Institute of Technology Copyright (c) 2009-2011 Broad Institute All rights reserved. Original author: Lee Kamentsky """ import cupy as cp import numpy as np import skimage from packaging.version import Version from .._shared.utils import deprecate_kwarg old_reconstruction_pyx = Version(skimage.__version__) < Version("0.20.0") @deprecate_kwarg( kwarg_mapping={"selem": "footprint"}, removed_version="23.02.00", deprecated_version="22.02.00", ) def reconstruction(seed, mask, method="dilation", footprint=None, offset=None): """Perform a morphological reconstruction of an image. Morphological reconstruction by dilation is similar to basic morphological dilation: high-intensity values will replace nearby low-intensity values. The basic dilation operator, however, uses a footprint to determine how far a value in the input image can spread. In contrast, reconstruction uses two images: a "seed" image, which specifies the values that spread, and a "mask" image, which gives the maximum allowed value at each pixel. The mask image, like the footprint, limits the spread of high-intensity values. Reconstruction by erosion is simply the inverse: low-intensity values spread from the seed image and are limited by the mask image, which represents the minimum allowed value. Alternatively, you can think of reconstruction as a way to isolate the connected regions of an image. For dilation, reconstruction connects regions marked by local maxima in the seed image: neighboring pixels less-than-or-equal-to those seeds are connected to the seeded region. Local maxima with values larger than the seed image will get truncated to the seed value. Parameters ---------- seed : ndarray The seed image (a.k.a. marker image), which specifies the values that are dilated or eroded. mask : ndarray The maximum (dilation) / minimum (erosion) allowed value at each pixel. method : {'dilation'|'erosion'}, optional Perform reconstruction by dilation or erosion. In dilation (or erosion), the seed image is dilated (or eroded) until limited by the mask image. For dilation, each seed value must be less than or equal to the corresponding mask value; for erosion, the reverse is true. Default is 'dilation'. footprint : ndarray, optional The neighborhood expressed as an n-D array of 1's and 0's. Default is the n-D square of radius equal to 1 (i.e. a 3x3 square for 2D images, a 3x3x3 cube for 3D images, etc.) offset : ndarray, optional The coordinates of the center of the footprint. Default is located on the geometrical center of the footprint, in that case footprint dimensions must be odd. Returns ------- reconstructed : ndarray The result of morphological reconstruction. Examples -------- >>> import cupy as cp >>> from cucim.skimage.morphology import reconstruction First, we create a sinusoidal mask image with peaks at middle and ends. >>> x = cp.linspace(0, 4 * np.pi) >>> y_mask = cp.cos(x) Then, we create a seed image initialized to the minimum mask value (for reconstruction by dilation, min-intensity values don't spread) and add "seeds" to the left and right peak, but at a fraction of peak value (1). >>> y_seed = y_mask.min() * cp.ones_like(x) >>> y_seed[0] = 0.5 >>> y_seed[-1] = 0 >>> y_rec = reconstruction(y_seed, y_mask) The reconstructed image (or curve, in this case) is exactly the same as the mask image, except that the peaks are truncated to 0.5 and 0. The middle peak disappears completely: Since there were no seed values in this peak region, its reconstructed value is truncated to the surrounding value (-1). As a more practical example, we try to extract the bright features of an image by subtracting a background image created by reconstruction. >>> y, x = cp.mgrid[:20:0.5, :20:0.5] >>> bumps = cp.sin(x) + cp.sin(y) To create the background image, set the mask image to the original image, and the seed image to the original image with an intensity offset, `h`. >>> h = 0.3 >>> seed = bumps - h >>> background = reconstruction(seed, bumps) The resulting reconstructed image looks exactly like the original image, but with the peaks of the bumps cut off. Subtracting this reconstructed image from the original image leaves just the peaks of the bumps >>> hdome = bumps - background This operation is known as the h-dome of the image and leaves features of height `h` in the subtracted image. Notes ----- The algorithm is taken from [1]_. Applications for grayscale reconstruction are discussed in [2]_ and [3]_. References ---------- .. [1] Robinson, "Efficient morphological reconstruction: a downhill filter", Pattern Recognition Letters 25 (2004) 1759-1767. .. [2] Vincent, L., "Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algorithms", IEEE Transactions on Image Processing (1993) .. [3] Soille, P., "Morphological Image Analysis: Principles and Applications", Chapter 6, 2nd edition (2003), ISBN 3540429883. """ from ..filters._rank_order import rank_order assert tuple(seed.shape) == tuple(mask.shape) if method == "dilation" and cp.any(seed > mask): # synchronize! raise ValueError( "Intensity of seed image must be less than that " "of the mask image for reconstruction by dilation." ) elif method == "erosion" and cp.any(seed < mask): # synchronize! raise ValueError( "Intensity of seed image must be greater than that " "of the mask image for reconstruction by erosion." ) try: from skimage.morphology._grayreconstruct import reconstruction_loop except ImportError: try: from skimage.morphology._greyreconstruct import reconstruction_loop except ImportError: raise ImportError("reconstruction requires scikit-image") if footprint is None: footprint = np.ones([3] * seed.ndim, dtype=bool) else: if isinstance(footprint, cp.ndarray): footprint = cp.asnumpy(footprint) footprint = footprint.astype(bool, copy=True) if offset is None: if not all([d % 2 == 1 for d in footprint.shape]): raise ValueError("Footprint dimensions must all be odd") offset = np.array([d // 2 for d in footprint.shape]) else: if isinstance(offset, cp.ndarray): offset = cp.asnumpy(offset) if offset.ndim != footprint.ndim: raise ValueError("Offset and footprint ndims must be equal.") if not all([(0 <= o < d) for o, d in zip(offset, footprint.shape)]): raise ValueError("Offset must be included inside footprint") # Cross out the center of the footprint footprint[tuple(slice(d, d + 1) for d in offset)] = False # Make padding for edges of reconstructed image so we can ignore boundaries dims = (2,) + tuple( s1 + s2 - 1 for s1, s2 in zip(seed.shape, footprint.shape) ) inside_slices = tuple(slice(o, o + s) for o, s in zip(offset, seed.shape)) # Set padded region to minimum image intensity and mask along first axis so # we can interleave image and mask pixels when sorting. if method == "dilation": pad_value = cp.min(seed).item() elif method == "erosion": pad_value = cp.max(seed).item() else: raise ValueError( "Reconstruction method can be one of 'erosion' " f"or 'dilation'. Got '{method}'." ) # CuPy Backend: modified to allow images_dtype based on input dtype # instead of float64 images_dtype = np.promote_types(seed.dtype, mask.dtype) images = cp.full(dims, pad_value, dtype=images_dtype) images[(0, *inside_slices)] = seed images[(1, *inside_slices)] = mask isize = images.size if old_reconstruction_pyx: # scikit-image < 0.20 Cython code only supports int32_t signed_int_dtype = np.int32 unsigned_int_dtype = np.uint32 else: # determine whether image is large enough to require 64-bit integers # use -isize so we get a signed dtype rather than an unsigned one signed_int_dtype = np.result_type(np.min_scalar_type(-isize), np.int32) # the corresponding unsigned type has same char, but uppercase unsigned_int_dtype = np.dtype(signed_int_dtype.char.upper()) # Create a list of strides across the array to get the neighbors within # a flattened array value_stride = np.array(images.strides[1:]) // images.dtype.itemsize image_stride = images.strides[0] // images.dtype.itemsize footprint_mgrid = np.mgrid[ [slice(-o, d - o) for d, o in zip(footprint.shape, offset)] ] footprint_offsets = footprint_mgrid[:, footprint].transpose() nb_strides = np.array( [ np.sum(value_stride * footprint_offset) for footprint_offset in footprint_offsets ], signed_int_dtype, ) # CuPy Backend: changed flatten to ravel to avoid copy images = images.ravel() # Erosion goes smallest to largest; dilation goes largest to smallest. index_sorted = cp.argsort(images).astype(signed_int_dtype, copy=False) if method == "dilation": index_sorted = index_sorted[::-1] # Make a linked list of pixels sorted by value. -1 is the list terminator. index_sorted = cp.asnumpy(index_sorted) prev = np.full(isize, -1, signed_int_dtype) next = np.full(isize, -1, signed_int_dtype) prev[index_sorted[1:]] = index_sorted[:-1] next[index_sorted[:-1]] = index_sorted[1:] # Cython inner-loop compares the rank of pixel values. if method == "dilation": value_rank, value_map = rank_order(images) elif method == "erosion": value_rank, value_map = rank_order(-images) value_map = -value_map # TODO: implement reconstruction_loop on the GPU? For now, run it on host. start = index_sorted[0] value_rank = cp.asnumpy(value_rank.astype(unsigned_int_dtype, copy=False)) reconstruction_loop(value_rank, prev, next, nb_strides, start, image_stride) # Reshape reconstructed image to original image shape and remove padding. value_rank = cp.asarray(value_rank[:image_stride]) rec_img = value_map[value_rank] rec_img.shape = dims[1:] return rec_img[inside_slices]
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/greyreconstruct.py
import warnings from .grayreconstruct import reconstruction # noqa warnings.warn( "Importing from cucim.skimage.morphology.greyreconstruct is deprecated. " "Please import from cucim.skimage.morphology instead.", FutureWarning, stacklevel=2, )
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/_medial_axis_lookup.py
import numpy as np # medial axis lookup tables (independent of image content) # # Note: lookup table generated using scikit-image code from # https://github.com/scikit-image/scikit-image/blob/38b595d60befe3a0b4c0742995b9737200a079c6/skimage/morphology/_skeletonize.py#L449-L458 # noqa # fmt: off lookup_table = np.array( [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], dtype=bool, ) cornerness_table = np.array( [ 9, 8, 8, 7, 8, 7, 7, 6, 8, 7, 7, 6, 7, 6, 6, 5, 8, 7, 7, 6, 7, 6, 6, 5, 7, 6, 6, 5, 6, 5, 5, 4, 8, 7, 7, 6, 7, 6, 6, 5, 7, 6, 6, 5, 6, 5, 5, 4, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 8, 7, 7, 6, 7, 6, 6, 5, 7, 6, 6, 5, 6, 5, 5, 4, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 8, 7, 7, 6, 7, 6, 6, 5, 7, 6, 6, 5, 6, 5, 5, 4, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 8, 7, 7, 6, 7, 6, 6, 5, 7, 6, 6, 5, 6, 5, 5, 4, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0 ], dtype=np.uint8, ) # fmt: on
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/__init__.py
from ._skeletonize import medial_axis, thin from .binary import ( binary_closing, binary_dilation, binary_erosion, binary_opening, ) from .footprints import ( ball, cube, diamond, disk, octagon, octahedron, rectangle, square, star, ) from .gray import ( black_tophat, closing, dilation, erosion, opening, white_tophat, ) from .grayreconstruct import reconstruction from .isotropic import ( isotropic_closing, isotropic_dilation, isotropic_erosion, isotropic_opening, ) from .misc import remove_small_holes, remove_small_objects __all__ = [ "binary_erosion", "binary_dilation", "binary_opening", "binary_closing", "isotropic_dilation", "isotropic_erosion", "isotropic_opening", "isotropic_closing", "erosion", "dilation", "opening", "closing", "white_tophat", "black_tophat", "square", "rectangle", "diamond", "disk", "cube", "octahedron", "ball", "octagon", "star", "reconstruction", "remove_small_objects", "remove_small_holes", "thin", "medial_axis", ]
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/_skeletonize.py
import warnings import cupy as cp import numpy as np import cucim.skimage._vendored.ndimage as ndi from cucim.core.operations.morphology import distance_transform_edt from .._shared.utils import check_nD, deprecate_kwarg from ._medial_axis_lookup import ( cornerness_table as _medial_axis_cornerness_table, lookup_table as _medial_axis_lookup_table, ) # --------- Skeletonization and thinning based on Guo and Hall 1989 --------- # fmt: off _G123_LUT = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0], dtype=bool) _G123P_LUT = np.array([0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=bool) # fmt: on @deprecate_kwarg( {"max_iter": "max_num_iter"}, removed_version="23.02.00", deprecated_version="22.02.00", ) def thin(image, max_num_iter=None): """ Perform morphological thinning of a binary image. Parameters ---------- image : binary (M, N) ndarray The image to be thinned. max_num_iter : int, number of iterations, optional Regardless of the value of this parameter, the thinned image is returned immediately if an iteration produces no change. If this parameter is specified it thus sets an upper bound on the number of iterations performed. Returns ------- out : ndarray of bool Thinned image. See Also -------- medial_axis Notes ----- This algorithm [1]_ works by making multiple passes over the image, removing pixels matching a set of criteria designed to thin connected regions while preserving eight-connected components and 2 x 2 squares [2]_. In each of the two sub-iterations the algorithm correlates the intermediate skeleton image with a neighborhood mask, then looks up each neighborhood in a lookup table indicating whether the central pixel should be deleted in that sub-iteration. References ---------- .. [1] Z. Guo and R. W. Hall, "Parallel thinning with two-subiteration algorithms," Comm. ACM, vol. 32, no. 3, pp. 359-373, 1989. :DOI:`10.1145/62065.62074` .. [2] Lam, L., Seong-Whan Lee, and Ching Y. Suen, "Thinning Methodologies-A Comprehensive Survey," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 14, No. 9, p. 879, 1992. :DOI:`10.1109/34.161346` Examples -------- >>> square = np.zeros((7, 7), dtype=np.uint8) >>> square[1:-1, 2:-2] = 1 >>> square[0, 1] = 1 >>> square array([[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> skel = thin(square) >>> skel.astype(np.uint8) array([[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]], dtype=uint8) """ # check that image is 2d check_nD(image, 2) # convert image to uint8 with values in {0, 1} skel = cp.asarray(image, dtype=bool).astype(cp.uint8) # neighborhood mask mask = cp.asarray( [[8, 4, 2], [16, 0, 1], [32, 64, 128]], dtype=cp.uint8 # noqa # noqa ) G123_LUT = cp.asarray(_G123_LUT) G123P_LUT = cp.asarray(_G123P_LUT) # iterate until convergence, up to the iteration limit max_num_iter = max_num_iter or cp.inf num_iter = 0 n_pts_old, n_pts_new = cp.inf, cp.sum(skel) while n_pts_old != n_pts_new and num_iter < max_num_iter: n_pts_old = n_pts_new # perform the two "subiterations" described in the paper for lut in [G123_LUT, G123P_LUT]: # correlate image with neighborhood mask N = ndi.correlate(skel, mask, mode="constant") # take deletion decision from this subiteration's LUT D = cp.take(lut, N) # perform deletion skel[D] = 0 n_pts_new = cp.sum(skel) # count points after thinning num_iter += 1 return skel.astype(bool) # --------- Skeletonization by medial axis transform -------- def _get_tiebreaker(n, seed): # CuPy generator doesn't currently have the permutation method, so # fall back to cp.random.permutation instead. cp.random.seed(seed) if n < 2 << 31: dtype = np.int32 else: dtype = np.intp tiebreaker = cp.random.permutation(cp.arange(n, dtype=dtype)) return tiebreaker @deprecate_kwarg( {"random_state": "rng"}, deprecated_version="23.08", removed_version="24.06", ) @deprecate_kwarg( {"seed": "rng"}, deprecated_version="23.12", removed_version="24.12" ) def medial_axis(image, mask=None, return_distance=False, *, rng=None): """Compute the medial axis transform of a binary image. Parameters ---------- image : binary ndarray, shape (M, N) The image of the shape to be skeletonized. mask : binary ndarray, shape (M, N), optional If a mask is given, only those elements in `image` with a true value in `mask` are used for computing the medial axis. return_distance : bool, optional If true, the distance transform is returned as well as the skeleton. rng : {`numpy.random.Generator`, int}, optional Pseudo-random number generator. By default, a PCG64 generator is used (see :func:`numpy.random.default_rng`). If `rng` is an int, it is used to seed the generator. The PRNG determines the order in which pixels are processed for tiebreaking. Note: Due to a missing `permute` method on CuPy's random Generator class, only a `numpy.random.Generator` is currently supported. Returns ------- out : ndarray of bools Medial axis transform of the image dist : ndarray of ints, optional Distance transform of the image (only returned if `return_distance` is True) See Also -------- skeletonize Notes ----- This algorithm computes the medial axis transform of an image as the ridges of its distance transform. The different steps of the algorithm are as follows * A lookup table is used, that assigns 0 or 1 to each configuration of the 3x3 binary square, whether the central pixel should be removed or kept. We want a point to be removed if it has more than one neighbor and if removing it does not change the number of connected components. * The distance transform to the background is computed, as well as the cornerness of the pixel. * The foreground (value of 1) points are ordered by the distance transform, then the cornerness. * A cython function is called to reduce the image to its skeleton. It processes pixels in the order determined at the previous step, and removes or maintains a pixel according to the lookup table. Because of the ordering, it is possible to process all pixels in only one pass. Examples -------- >>> square = np.zeros((7, 7), dtype=np.uint8) >>> square[1:-1, 2:-2] = 1 >>> square array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0]], dtype=uint8) >>> medial_axis(square).astype(np.uint8) array([[0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0]], dtype=uint8) """ try: from skimage.morphology._skeletonize_cy import _skeletonize_loop except ImportError as e: warnings.warn( "Could not find required private skimage Cython function:\n" "\tskimage.morphology._skeletonize_cy._skeletonize_loop\n" ) raise e if mask is None: # masked_image is modified in-place later so make a copy of the input masked_image = image.astype(bool, copy=True) else: masked_image = image.astype(bool, copy=True) masked_image[~mask] = False # Load precomputed lookup table based on three conditions: # 1. Keep only positive pixels # AND # 2. Keep if removing the pixel results in a different connectivity # (if the number of connected components is different with and # without the central pixel) # OR # 3. Keep if # pixels in neighborhood is 2 or less # Note that this table is independent of the image table = _medial_axis_lookup_table # Build distance transform distance = distance_transform_edt(masked_image) if return_distance: store_distance = distance.copy() # Corners # The processing order along the edge is critical to the shape of the # resulting skeleton: if you process a corner first, that corner will # be eroded and the skeleton will miss the arm from that corner. Pixels # with fewer neighbors are more "cornery" and should be processed last. # We use a cornerness_table lookup table where the score of a # configuration is the number of background (0-value) pixels in the # 3x3 neighborhood cornerness_table = cp.asarray(_medial_axis_cornerness_table) corner_score = _table_lookup(masked_image, cornerness_table) # Define arrays for inner loop distance = distance[masked_image] i, j = cp.where(masked_image) # Determine the order in which pixels are processed. # We use a random # for tiebreaking. Assign each pixel in the image a # predictable, random # so that masking doesn't affect arbitrary choices # of skeletons if rng is None or isinstance(rng, int): tiebreaker = _get_tiebreaker(n=distance.size, seed=rng) elif isinstance(rng, np.random.Generator): generator = np.random.default_rng(rng) tiebreaker = cp.asarray(generator.permutation(np.arange(distance.size))) else: raise ValueError( f"{type(rng)} class not yet supported for use in " "`medial_axis`." ) order = cp.lexsort( cp.stack((tiebreaker, corner_score[masked_image], distance), axis=0) ) # Call _skeletonize_loop on the CPU. It requires a single pass over the # full array using a specific pixel order, so cannot be run multithreaded! order = cp.asnumpy(order.astype(cp.int32, copy=False)) table = cp.asnumpy(table.astype(cp.uint8, copy=False)) i = cp.asnumpy(i).astype(dtype=np.intp, copy=False) j = cp.asnumpy(j).astype(dtype=np.intp, copy=False) result = cp.asnumpy(masked_image) # Remove pixels not belonging to the medial axis _skeletonize_loop(result.view(np.uint8), i, j, order, table) result = cp.asarray(result.view(bool), dtype=bool) if mask is not None: result[~mask] = image[~mask] if return_distance: return result, store_distance else: return result def _table_lookup(image, table): """ Perform a morphological transform on an image, directed by its neighbors Parameters ---------- image : ndarray A binary image table : ndarray A 512-element table giving the transform of each pixel given the values of that pixel and its 8-connected neighbors. Returns ------- result : ndarray of same shape as `image` Transformed image Notes ----- The pixels are numbered like this:: 0 1 2 3 4 5 6 7 8 The index at a pixel is the sum of 2**<pixel-number> for pixels that evaluate to true. """ # # We accumulate into the indexer to get the index into the table # at each point in the image # # max possible value of indexer is 512, so just use int16 dtype kernel = cp.array([[256, 128, 64], [32, 16, 8], [4, 2, 1]], dtype=cp.int16) indexer = ndi.convolve(image, kernel, output=np.int16, mode="constant") image = table[indexer] return image
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/isotropic.py
""" Binary morphological operations """ import cupy as cp from cucim.core.operations.morphology import distance_transform_edt def _check_output(out, shape): """Check shape and dtype of output array. Parameters ---------- out : cp.ndarray or None The array to check shape : tuple of int The expected shape Returns ------- out : cp.ndarray The original array (or boolean view of a uint8 array). """ if out is None: return None if out.shape != shape: raise ValueError("out.shape must match image.shape") if not out.flags.c_contiguous: raise ValueError("out array must have C-contiguous memory layout") if out.dtype == bool: return out elif out.dtype == cp.uint8: # view uint8 as bool return out.view(bool) else: raise ValueError("provided out array should have boolean type") def isotropic_erosion(image, radius, out=None, spacing=None): """Return binary morphological erosion of an image. This function returns the same result as :func:`skimage.morphology.binary_erosion` but performs faster for large circular structuring elements. This works by applying a threshold to the exact Euclidean distance map of the image [1]_, [2]_. The implementation is based on: func:`cucim.core.operations.morphology.distance_transform_edt`. Parameters ---------- image : ndarray Binary input image. radius : float The radius by which regions should be eroded. out : ndarray of bool, optional The array to store the result of the morphology. If None, a new array will be allocated. spacing : float, or sequence of float, optional Spacing of elements along each dimension. If a sequence, must be of length equal to the input's dimension (number of axes). If a single number, this value is used for all axes. If not specified, a grid spacing of unity is implied. Returns ------- eroded : ndarray of bool The result of the morphological erosion taking values in ``[False, True]``. Notes ----- Empirically, on an RTX A6000 GPU, it was observed that ``isotropic_erosion`` is faster than ``binary_erosion`` with ``decomposition=None`` at radius 12 in 2D and radius 3 in 3D. It becomes faster than ``binary_erosion`` with ``decomposition="sequence"`` at radius 14 in 2D and radius 5 in 3D. In practice, the exact point at which these isotropic functions become faster than their binary counterparts will also be dependent on image shape and content. References ---------- .. [1] Cuisenaire, O. and Macq, B., "Fast Euclidean morphological operators using local distance transformation by propagation, and applications," Image Processing And Its Applications, 1999. Seventh International Conference on (Conf. Publ. No. 465), 1999, pp. 856-860 vol.2. :DOI:`10.1049/cp:19990446` .. [2] Ingemar Ragnemalm, Fast erosion and dilation by contour processing and thresholding of distance maps, Pattern Recognition Letters, Volume 13, Issue 3, 1992, Pages 161-166. :DOI:`10.1016/0167-8655(92)90055-5` """ out = _check_output(out, image.shape) dist = distance_transform_edt(image, sampling=spacing) if out is not None: cp.greater(dist, radius, out=out) else: out = cp.greater(dist, radius) return out def isotropic_dilation(image, radius, out=None, spacing=None): """Return binary morphological dilation of an image. This function returns the same result as :func:`skimage.morphology.binary_dilation` but performs faster for large circular structuring elements. This works by applying a threshold to the exact Euclidean distance map of the inverted image [1]_, [2]_. The implementation is based on: func:`cucim.core.operations.morphology.distance_transform_edt`. Parameters ---------- image : ndarray Binary input image. radius : float The radius by which regions should be dilated. out : ndarray of bool, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. spacing : float, or sequence of float, optional Spacing of elements along each dimension. If a sequence, must be of length equal to the input's dimension (number of axes). If a single number, this value is used for all axes. If not specified, a grid spacing of unity is implied. Returns ------- dilated : ndarray of bool The result of the morphological dilation with values in ``[False, True]``. Notes ----- Empirically, on an RTX A6000 GPU, it was observed that ``isotropic_dilation`` is faster than ``binary_dilation`` with ``decomposition=None`` at radius 12 in 2D and radius 3 in 3D. It becomes faster than ``binary_dilation`` with ``decomposition="sequence"`` at radius 14 in 2D and radius 5 in 3D. In practice, the exact point at which these isotropic functions become faster than their binary counterparts will also be dependent on image shape and content. References ---------- .. [1] Cuisenaire, O. and Macq, B., "Fast Euclidean morphological operators using local distance transformation by propagation, and applications," Image Processing And Its Applications, 1999. Seventh International Conference on (Conf. Publ. No. 465), 1999, pp. 856-860 vol.2. :DOI:`10.1049/cp:19990446` .. [2] Ingemar Ragnemalm, Fast erosion and dilation by contour processing and thresholding of distance maps, Pattern Recognition Letters, Volume 13, Issue 3, 1992, Pages 161-166. :DOI:`10.1016/0167-8655(92)90055-5` """ out = _check_output(out, image.shape) dist = distance_transform_edt(cp.logical_not(image), sampling=spacing) if out is not None: cp.less_equal(dist, radius, out=out) else: out = cp.less_equal(dist, radius) return out def isotropic_opening(image, radius, out=None, spacing=None): """Return binary morphological opening of an image. This function returns the same result as :func:`skimage.morphology.binary_opening` but performs faster for large circular structuring elements. This works by thresholding the exact Euclidean distance map [1]_, [2]_. The implementation is based on: func:`cucim.core.operations.morphology.distance_transform_edt`. Parameters ---------- image : ndarray Binary input image. radius : float The radius with which the regions should be opened. out : ndarray of bool, optional The array to store the result of the morphology. If None is passed, a new array will be allocated. spacing : float, or sequence of float, optional Spacing of elements along each dimension. If a sequence, must be of length equal to the input's dimension (number of axes). If a single number, this value is used for all axes. If not specified, a grid spacing of unity is implied. Returns ------- opened : ndarray of bool The result of the morphological opening. Notes ----- Empirically, on an RTX A6000 GPU, it was observed that ``isotropic_opening`` is faster than ``binary_opening`` with ``decomposition=None`` at radius 12 in 2D and radius 3 in 3D. It becomes faster than ``binary_erosion`` with ``decomposition="sequence"`` at radius 14 in 2D and radius 5 in 3D. In practice, the exact point at which these isotropic functions become faster than their binary counterparts will also be dependent on image shape and content. References ---------- .. [1] Cuisenaire, O. and Macq, B., "Fast Euclidean morphological operators using local distance transformation by propagation, and applications," Image Processing And Its Applications, 1999. Seventh International Conference on (Conf. Publ. No. 465), 1999, pp. 856-860 vol.2. :DOI:`10.1049/cp:19990446` .. [2] Ingemar Ragnemalm, Fast erosion and dilation by contour processing and thresholding of distance maps, Pattern Recognition Letters, Volume 13, Issue 3, 1992, Pages 161-166. :DOI:`10.1016/0167-8655(92)90055-5` """ out = _check_output(out, image.shape) eroded = isotropic_erosion(image, radius, spacing=spacing) return isotropic_dilation(eroded, radius, out=out, spacing=spacing) def isotropic_closing(image, radius, out=None, spacing=None): """Return binary morphological closing of an image. This function returns the same result as binary :func:`skimage.morphology.binary_closing` but performs faster for large circular structuring elements. This works by thresholding the exact Euclidean distance map [1]_, [2]_. The implementation is based on: func:`cucim.core.operations.morphology.distance_transform_edt`. Parameters ---------- image : ndarray Binary input image. radius : float The radius with which the regions should be closed. out : ndarray of bool, optional The array to store the result of the morphology. If None, is passed, a new array will be allocated. spacing : float, or sequence of float, optional Spacing of elements along each dimension. If a sequence, must be of length equal to the input's dimension (number of axes). If a single number, this value is used for all axes. If not specified, a grid spacing of unity is implied. Returns ------- closed : ndarray of bool The result of the morphological closing. Notes ----- Empirically, on an RTX A6000 GPU, it was observed that ``isotropic_closing`` is faster than ``binary_closing`` with ``decomposition=None`` at radius 12 in 2D and radius 3 in 3D. It becomes faster than ``binary_erosion`` with ``decomposition="sequence"`` at radius 14 in 2D and radius 5 in 3D. In practice, the exact point at which these isotropic functions become faster than their binary counterparts will also be dependent on image shape and content. References ---------- .. [1] Cuisenaire, O. and Macq, B., "Fast Euclidean morphological operators using local distance transformation by propagation, and applications," Image Processing And Its Applications, 1999. Seventh International Conference on (Conf. Publ. No. 465), 1999, pp. 856-860 vol.2. :DOI:`10.1049/cp:19990446` .. [2] Ingemar Ragnemalm, Fast erosion and dilation by contour processing and thresholding of distance maps, Pattern Recognition Letters, Volume 13, Issue 3, 1992, Pages 161-166. :DOI:`10.1016/0167-8655(92)90055-5` """ out = _check_output(out, image.shape) dilated = isotropic_dilation(image, radius, spacing=spacing) return isotropic_erosion(dilated, radius, out=out, spacing=spacing)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/tests/test_reconstruction.py
""" These tests are originally part of CellProfiler, code licensed under both GPL and BSD licenses. Website: http://www.cellprofiler.org Copyright (c) 2003-2009 Massachusetts Institute of Technology Copyright (c) 2009-2011 Broad Institute All rights reserved. Original author: Lee Kamentsky """ import cupy as cp import numpy as np import pytest from cupy.testing import assert_array_almost_equal from skimage.morphology import reconstruction as reconstruction_cpu from cucim.skimage.morphology import reconstruction def test_zeros(): """Test reconstruction with image and mask of zeros""" assert_array_almost_equal( reconstruction(cp.zeros((5, 7)), cp.zeros((5, 7))), 0 ) def test_image_equals_mask(): """Test reconstruction where the image and mask are the same""" assert_array_almost_equal( reconstruction(cp.ones((7, 5)), cp.ones((7, 5))), 1 ) def test_image_less_than_mask(): """Test reconstruction where the image is uniform and less than mask""" image = cp.ones((5, 5)) mask = cp.ones((5, 5)) * 2 assert_array_almost_equal(reconstruction(image, mask), 1) def test_one_image_peak(): """Test reconstruction with one peak pixel""" image = cp.ones((5, 5)) image[2, 2] = 2 mask = cp.ones((5, 5)) * 3 assert_array_almost_equal(reconstruction(image, mask), 2) def test_two_image_peaks(): """Test reconstruction with two peak pixels isolated by the mask""" # fmt: off image = cp.array([[1, 1, 1, 1, 1, 1, 1, 1], [1, 2, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 3, 1], [1, 1, 1, 1, 1, 1, 1, 1]]) mask = cp.array([[4, 4, 4, 1, 1, 1, 1, 1], [4, 4, 4, 1, 1, 1, 1, 1], [4, 4, 4, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 4, 4, 4], [1, 1, 1, 1, 1, 4, 4, 4], [1, 1, 1, 1, 1, 4, 4, 4]]) expected = cp.array([[2, 2, 2, 1, 1, 1, 1, 1], [2, 2, 2, 1, 1, 1, 1, 1], [2, 2, 2, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 3, 3, 3], [1, 1, 1, 1, 1, 3, 3, 3], [1, 1, 1, 1, 1, 3, 3, 3]]) # fmt: on assert_array_almost_equal(reconstruction(image, mask), expected) def test_zero_image_one_mask(): """Test reconstruction with an image of all zeros and a mask that's not""" result = reconstruction(cp.zeros((10, 10)), cp.ones((10, 10))) assert_array_almost_equal(result, 0) def test_fill_hole(): """Test reconstruction by erosion, which should fill holes in mask.""" seed = cp.array([0, 8, 8, 8, 8, 8, 8, 8, 8, 0]) mask = cp.array([0, 3, 6, 2, 1, 1, 1, 4, 2, 0]) result = reconstruction(seed, mask, method="erosion") assert_array_almost_equal(result, cp.array([0, 3, 6, 4, 4, 4, 4, 4, 2, 0])) def test_invalid_seed(): seed = cp.ones((5, 5)) mask = cp.ones((5, 5)) with pytest.raises(ValueError): reconstruction(seed * 2, mask, method="dilation") with pytest.raises(ValueError): reconstruction(seed * 0.5, mask, method="erosion") def test_invalid_footprint(): seed = cp.ones((5, 5)) mask = cp.ones((5, 5)) with pytest.raises(ValueError): reconstruction(seed, mask, footprint=np.ones((4, 4))) with pytest.raises(ValueError): reconstruction(seed, mask, footprint=np.ones((3, 4))) reconstruction(seed, mask, footprint=np.ones((3, 3))) def test_invalid_method(): seed = cp.array([0, 8, 8, 8, 8, 8, 8, 8, 8, 0]) mask = cp.array([0, 3, 6, 2, 1, 1, 1, 4, 2, 0]) with pytest.raises(ValueError): reconstruction(seed, mask, method="foo") def test_invalid_offset_not_none(): """Test reconstruction with invalid not None offset parameter""" # fmt: off image = cp.array([[1, 1, 1, 1, 1, 1, 1, 1], [1, 2, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 3, 1], [1, 1, 1, 1, 1, 1, 1, 1]]) mask = cp.array([[4, 4, 4, 1, 1, 1, 1, 1], [4, 4, 4, 1, 1, 1, 1, 1], [4, 4, 4, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 4, 4, 4], [1, 1, 1, 1, 1, 4, 4, 4], [1, 1, 1, 1, 1, 4, 4, 4]]) # fmt: on with pytest.raises(ValueError): reconstruction( image, mask, method="dilation", footprint=cp.ones((3, 3)), offset=cp.array([3, 0]), ) def test_offset_not_none(): """Test reconstruction with valid offset parameter""" seed = cp.array([0, 3, 6, 2, 1, 1, 1, 4, 2, 0]) mask = cp.array([0, 8, 6, 8, 8, 8, 8, 4, 4, 0]) expected = cp.array([0, 3, 6, 6, 6, 6, 6, 4, 4, 0]) assert_array_almost_equal( reconstruction( seed, mask, method="dilation", footprint=cp.ones(3), offset=cp.array([0]), ), expected, ) def test_reconstruction_float_inputs(): """Verifies fix for: https://github.com/rapidsai/cuci/issues/36 Run the 2D example from the reconstruction docstring and compare the output to scikit-image. """ y, x = np.mgrid[:20:0.5, :20:0.5] bumps = np.sin(x) + np.sin(y) h = 0.3 seed = bumps - h background_cpu = reconstruction_cpu(seed, bumps) background = reconstruction(cp.asarray(seed), cp.asarray(bumps)) cp.testing.assert_allclose(background, background_cpu)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/tests/test_misc.py
import cupy as cp import pytest from cupy.testing import assert_array_equal from numpy.testing import assert_equal from cucim.skimage._shared._warnings import expected_warnings from cucim.skimage.morphology import remove_small_holes, remove_small_objects # fmt: off test_image = cp.array([[0, 0, 0, 1, 0], [1, 1, 1, 0, 0], [1, 1, 1, 0, 1]], bool) # fmt: on def test_one_connectivity(): # fmt: off expected = cp.array([[0, 0, 0, 0, 0], [1, 1, 1, 0, 0], [1, 1, 1, 0, 0]], bool) # fmt: on observed = remove_small_objects(test_image, min_size=6) assert_array_equal(observed, expected) def test_two_connectivity(): # fmt: off expected = cp.array([[0, 0, 0, 1, 0], [1, 1, 1, 0, 0], [1, 1, 1, 0, 0]], bool) # fmt: on observed = remove_small_objects(test_image, min_size=7, connectivity=2) assert_array_equal(observed, expected) def test_in_place(): image = test_image.copy() observed = remove_small_objects(image, min_size=6, out=image) assert_equal( observed is image, True, "remove_small_objects in_place argument failed.", ) @pytest.mark.parametrize("in_dtype", [bool, int, cp.int32]) @pytest.mark.parametrize("out_dtype", [bool, int, cp.int32]) def test_out(in_dtype, out_dtype): image = test_image.astype(in_dtype, copy=True) expected_out = cp.empty_like(test_image, dtype=out_dtype) if out_dtype != bool: # object with only 1 label will warn on non-bool output dtype exp_warn = ["Only one label was provided"] else: exp_warn = [] with expected_warnings(exp_warn): out = remove_small_objects(image, min_size=6, out=expected_out) assert out is expected_out def test_labeled_image(): # fmt: off labeled_image = cp.array([[2, 2, 2, 0, 1], [2, 2, 2, 0, 1], [2, 0, 0, 0, 0], [0, 0, 3, 3, 3]], dtype=int) expected = cp.array([[2, 2, 2, 0, 0], [2, 2, 2, 0, 0], [2, 0, 0, 0, 0], [0, 0, 3, 3, 3]], dtype=int) # fmt: on observed = remove_small_objects(labeled_image, min_size=3) assert_array_equal(observed, expected) def test_uint_image(): # fmt: off labeled_image = cp.array([[2, 2, 2, 0, 1], [2, 2, 2, 0, 1], [2, 0, 0, 0, 0], [0, 0, 3, 3, 3]], dtype=cp.uint8) expected = cp.array([[2, 2, 2, 0, 0], [2, 2, 2, 0, 0], [2, 0, 0, 0, 0], [0, 0, 3, 3, 3]], dtype=cp.uint8) # fmt: on observed = remove_small_objects(labeled_image, min_size=3) assert_array_equal(observed, expected) def test_single_label_warning(): # fmt: off image = cp.array([[0, 0, 0, 1, 0], [1, 1, 1, 0, 0], [1, 1, 1, 0, 0]], int) # fmt: on with expected_warnings(["use a boolean array?"]): remove_small_objects(image, min_size=6) def test_float_input(): float_test = cp.random.rand(5, 5) with pytest.raises(TypeError): remove_small_objects(float_test) def test_negative_input(): negative_int = cp.random.randint(-4, -1, size=(5, 5)) with pytest.raises(ValueError): remove_small_objects(negative_int) # fmt: off test_holes_image = cp.array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]], bool) # fmt: on def test_one_connectivity_holes(): # fmt: off expected = cp.array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]], bool) # fmt: on observed = remove_small_holes(test_holes_image, area_threshold=3) assert_array_equal(observed, expected) def test_two_connectivity_holes(): # fmt: off expected = cp.array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]], bool) # fmt: on observed = remove_small_holes( test_holes_image, area_threshold=3, connectivity=2 ) assert_array_equal(observed, expected) def test_in_place_holes(): image = test_holes_image.copy() observed = remove_small_holes(image, area_threshold=3, out=image) assert_equal( observed is image, True, "remove_small_holes in_place argument failed." ) def test_out_remove_small_holes(): image = test_holes_image.copy() expected_out = cp.empty_like(image) out = remove_small_holes(image, area_threshold=3, out=expected_out) assert out is expected_out def test_non_bool_out(): image = test_holes_image.copy() expected_out = cp.empty_like(image, dtype=int) with pytest.raises(TypeError): remove_small_holes(image, area_threshold=3, out=expected_out) def test_labeled_image_holes(): # fmt: off labeled_holes_image = cp.array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 2, 2, 2], [0, 0, 0, 0, 0, 0, 0, 2, 0, 2], [0, 0, 0, 0, 0, 0, 0, 2, 2, 2]], dtype=int) expected = cp.array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]], dtype=bool) # fmt: on with expected_warnings(["returned as a boolean array"]): observed = remove_small_holes(labeled_holes_image, area_threshold=3) assert_array_equal(observed, expected) def test_uint_image_holes(): # fmt: off labeled_holes_image = cp.array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 2, 2, 2], [0, 0, 0, 0, 0, 0, 0, 2, 0, 2], [0, 0, 0, 0, 0, 0, 0, 2, 2, 2]], dtype=cp.uint8) expected = cp.array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]], dtype=bool) # fmt: on with expected_warnings(["returned as a boolean array"]): observed = remove_small_holes(labeled_holes_image, area_threshold=3) assert_array_equal(observed, expected) def test_label_warning_holes(): # fmt: off labeled_holes_image = cp.array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 1, 0, 0, 0, 0], [0, 1, 1, 1, 0, 1, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 2, 2, 2], [0, 0, 0, 0, 0, 0, 0, 2, 0, 2], [0, 0, 0, 0, 0, 0, 0, 2, 2, 2]], dtype=int) # fmt: on with expected_warnings(["use a boolean array?"]): remove_small_holes(labeled_holes_image, area_threshold=3) remove_small_holes(labeled_holes_image.astype(bool), area_threshold=3) def test_float_input_holes(): float_test = cp.random.rand(5, 5) with pytest.raises(TypeError): remove_small_holes(float_test)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/tests/test_footprints.py
""" Tests for Morphological footprints (skimage.morphology.footprint) Author: Damian Eads """ import cupy as cp import numpy as np import pytest from cupy.testing import assert_array_equal from cucim.skimage._shared.testing import fetch from cucim.skimage.morphology import footprints class TestSElem: def test_square_footprint(self): """Test square footprints""" for k in range(0, 5): actual_mask = footprints.square(k, dtype=cp.uint8) expected_mask = np.ones((k, k), dtype="uint8") assert_array_equal(expected_mask, actual_mask) def test_rectangle_footprint(self): """Test rectangle footprints""" for i in range(0, 5): for j in range(0, 5): actual_mask = footprints.rectangle(i, j, dtype=cp.uint8) expected_mask = np.ones((i, j), dtype="uint8") assert_array_equal(expected_mask, actual_mask) def test_cube_footprint(self): """Test cube footprints""" for k in range(0, 5): actual_mask = footprints.cube(k, dtype=cp.uint8) expected_mask = np.ones((k, k, k), dtype="uint8") assert_array_equal(expected_mask, actual_mask) def strel_worker(self, fn, func): matlab_masks = np.load(fetch(fn)) k = 0 for arrname in sorted(matlab_masks): expected_mask = matlab_masks[arrname] actual_mask = func(k) if expected_mask.shape == (1,): expected_mask = expected_mask[:, np.newaxis] assert_array_equal(expected_mask, actual_mask) k = k + 1 def strel_worker_3d(self, fn, func): matlab_masks = np.load(fetch(fn)) k = 0 for arrname in sorted(matlab_masks): expected_mask = matlab_masks[arrname] actual_mask = func(k) if expected_mask.shape == (1,): expected_mask = expected_mask[:, np.newaxis] # Test center slice for each dimension. This gives a good # indication of validity without the need for a 3D reference # mask. c = int(expected_mask.shape[0] / 2) assert_array_equal(expected_mask, actual_mask[c, :, :]) assert_array_equal(expected_mask, actual_mask[:, c, :]) assert_array_equal(expected_mask, actual_mask[:, :, c]) k = k + 1 def test_footprint_disk(self): """Test disk footprints""" self.strel_worker("data/disk-matlab-output.npz", footprints.disk) def test_footprint_diamond(self): """Test diamond footprints""" self.strel_worker("data/diamond-matlab-output.npz", footprints.diamond) def test_footprint_ball(self): """Test ball footprints""" self.strel_worker_3d("data/disk-matlab-output.npz", footprints.ball) def test_footprint_octahedron(self): """Test octahedron footprints""" self.strel_worker_3d( "data/diamond-matlab-output.npz", footprints.octahedron ) def test_footprint_octagon(self): """Test octagon footprints""" # fmt: off expected_mask1 = cp.array([[0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0]], dtype=cp.uint8) actual_mask1 = footprints.octagon(5, 3) expected_mask2 = cp.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=cp.uint8) # fmt: on actual_mask2 = footprints.octagon(1, 1) assert_array_equal(expected_mask1, actual_mask1) assert_array_equal(expected_mask2, actual_mask2) def test_footprint_ellipse(self): """Test ellipse footprints""" # fmt: off expected_mask1 = cp.array([[0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0]], dtype=cp.uint8) actual_mask1 = footprints.ellipse(5, 3) expected_mask2 = cp.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=cp.uint8) # fmt: on actual_mask2 = footprints.ellipse(1, 1) assert_array_equal(expected_mask1, actual_mask1) assert_array_equal(expected_mask2, actual_mask2) assert_array_equal(expected_mask1, footprints.ellipse(3, 5).T) assert_array_equal(expected_mask2, footprints.ellipse(1, 1).T) def test_footprint_star(self): """Test star footprints""" # fmt: off expected_mask1 = cp.array([[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]], dtype=cp.uint8) actual_mask1 = footprints.star(4) expected_mask2 = cp.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=cp.uint8) # fmt: on actual_mask2 = footprints.star(1) assert_array_equal(expected_mask1, actual_mask1) assert_array_equal(expected_mask2, actual_mask2) @pytest.mark.parametrize( "function, args, supports_sequence_decomposition", [ (footprints.disk, (3,), True), (footprints.ball, (3,), True), (footprints.square, (3,), True), (footprints.cube, (3,), True), (footprints.diamond, (3,), True), (footprints.octahedron, (3,), True), (footprints.rectangle, (3, 4), True), (footprints.ellipse, (3, 4), False), (footprints.octagon, (3, 4), True), (footprints.star, (3,), False), ], ) @pytest.mark.parametrize("dtype", [np.uint8, np.float64]) def test_footprint_dtype( function, args, supports_sequence_decomposition, dtype ): # make sure footprint dtype matches what was requested footprint = function(*args, dtype=dtype) assert footprint.dtype == dtype if supports_sequence_decomposition: sequence = function(*args, dtype=dtype, decomposition="sequence") assert all([fp_tuple[0].dtype == dtype for fp_tuple in sequence]) @pytest.mark.parametrize("function", ["disk", "ball"]) @pytest.mark.parametrize( "radius", [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50, 75, 100] ) def test_nsphere_series_approximation(function, radius): fp_func = getattr(footprints, function) expected = fp_func(radius, strict_radius=False, decomposition=None) footprint_sequence = fp_func( radius, strict_radius=False, decomposition="sequence" ) approximate = footprints.footprint_from_sequence(footprint_sequence) assert approximate.shape == expected.shape # verify that maximum error does not exceed some fraction of the size error = np.sum(np.abs(expected.astype(int) - approximate.astype(int))) if radius == 1: assert error == 0 else: max_error = 0.1 if function == "disk" else 0.15 assert error / expected.size <= max_error @pytest.mark.parametrize("radius", [1, 2, 3, 4, 5, 10, 20, 50, 75]) @pytest.mark.parametrize("strict_radius", [False, True]) def test_disk_crosses_approximation(radius, strict_radius): fp_func = footprints.disk expected = fp_func(radius, strict_radius=strict_radius, decomposition=None) footprint_sequence = fp_func( radius, strict_radius=strict_radius, decomposition="crosses" ) approximate = footprints.footprint_from_sequence(footprint_sequence) assert approximate.shape == expected.shape # verify that maximum error does not exceed some fraction of the size error = cp.sum(cp.abs(expected.astype(int) - approximate.astype(int))) max_error = 0.05 assert error / expected.size <= max_error @pytest.mark.parametrize("width", [3, 8, 20, 50]) @pytest.mark.parametrize("height", [3, 8, 20, 50]) def test_ellipse_crosses_approximation(width, height): fp_func = footprints.ellipse expected = fp_func(width, height, decomposition=None) footprint_sequence = fp_func(width, height, decomposition="crosses") approximate = footprints.footprint_from_sequence(footprint_sequence) assert approximate.shape == expected.shape # verify that maximum error does not exceed some fraction of the size error = cp.sum(cp.abs(expected.astype(int) - approximate.astype(int))) max_error = 0.05 assert error / expected.size <= max_error def test_disk_series_approximation_unavailable(): # ValueError if radius is too large (only precomputed up to radius=250) with pytest.raises(ValueError): footprints.disk(radius=10000, decomposition="sequence") def test_ball_series_approximation_unavailable(): # ValueError if radius is too large (only precomputed up to radius=100) with pytest.raises(ValueError): footprints.ball(radius=10000, decomposition="sequence")
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/tests/test_gray.py
import cupy as cp import numpy as np import pytest from cupy import testing from cupyx.scipy import ndimage as ndi from skimage import data from cucim.skimage import color, morphology, transform from cucim.skimage._shared._warnings import expected_warnings from cucim.skimage._shared.testing import fetch from cucim.skimage.util import img_as_ubyte, img_as_uint @pytest.fixture def cam_image(): from skimage import data return cp.ascontiguousarray(cp.array(data.camera()[64:112, 64:96])) @pytest.fixture def cell3d_image(): from skimage import data return cp.ascontiguousarray( cp.array(data.cells3d()[30:48, 0, 20:36, 20:32]) ) class TestMorphology: # These expected outputs were generated with skimage v0.12.1 # using: # # from skimage.morphology.tests.test_gray import TestMorphology # import numpy as np # output = TestMorphology()._build_expected_output() # np.savez_compressed('gray_morph_output.npz', **output) def _build_expected_output(self): funcs = ( morphology.erosion, morphology.dilation, morphology.opening, morphology.closing, morphology.white_tophat, morphology.black_tophat, ) footprints_2D = ( morphology.square, morphology.diamond, morphology.disk, morphology.star, ) image = img_as_ubyte( transform.downscale_local_mean( color.rgb2gray(cp.array(data.coffee())), (20, 20) ) ) output = {} for n in range(1, 4): for footprint in footprints_2D: for func in funcs: key = "{0}_{1}_{2}".format( footprint.__name__, n, func.__name__ ) output[key] = func(image, footprint(n)) return output def test_gray_morphology(self): expected = dict(np.load(fetch("data/gray_morph_output.npz"))) calculated = self._build_expected_output() for k, v in calculated.items(): cp.testing.assert_array_equal(cp.asarray(expected[k]), v) class TestEccentricStructuringElements: def setup_method(self): self.black_pixel = 255 * cp.ones((4, 4), dtype=cp.uint8) self.black_pixel[1, 1] = 0 self.white_pixel = 255 - self.black_pixel self.footprints = [ morphology.square(2), morphology.rectangle(2, 2), morphology.rectangle(2, 1), morphology.rectangle(1, 2), ] def test_dilate_erode_symmetry(self): for s in self.footprints: c = morphology.erosion(self.black_pixel, s) d = morphology.dilation(self.white_pixel, s) assert cp.all(c == (255 - d)) def test_open_black_pixel(self): for s in self.footprints: gray_open = morphology.opening(self.black_pixel, s) assert cp.all(gray_open == self.black_pixel) def test_close_white_pixel(self): for s in self.footprints: gray_close = morphology.closing(self.white_pixel, s) assert cp.all(gray_close == self.white_pixel) def test_open_white_pixel(self): for s in self.footprints: assert cp.all(morphology.opening(self.white_pixel, s) == 0) def test_close_black_pixel(self): for s in self.footprints: assert cp.all(morphology.closing(self.black_pixel, s) == 255) def test_white_tophat_white_pixel(self): for s in self.footprints: tophat = morphology.white_tophat(self.white_pixel, s) cp.testing.assert_array_equal(tophat, self.white_pixel) def test_black_tophat_black_pixel(self): for s in self.footprints: tophat = morphology.black_tophat(self.black_pixel, s) cp.testing.assert_array_equal(tophat, 255 - self.black_pixel) def test_white_tophat_black_pixel(self): for s in self.footprints: tophat = morphology.white_tophat(self.black_pixel, s) assert cp.all(tophat == 0) def test_black_tophat_white_pixel(self): for s in self.footprints: tophat = morphology.black_tophat(self.white_pixel, s) assert cp.all(tophat == 0) gray_functions = [ morphology.erosion, morphology.dilation, morphology.opening, morphology.closing, morphology.white_tophat, morphology.black_tophat, ] @pytest.mark.parametrize("function", gray_functions) def test_default_footprint(function): footprint = morphology.diamond(radius=1) # fmt: off image = cp.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], cp.uint8) # fmt: on im_expected = function(image, footprint) im_test = function(image) cp.testing.assert_array_equal(im_expected, im_test) def test_3d_fallback_default_footprint(): # 3x3x3 cube inside a 7x7x7 image: image = cp.zeros((7, 7, 7), bool) image[2:-2, 2:-2, 2:-2] = 1 opened = morphology.opening(image) # expect a "hyper-cross" centered in the 5x5x5: image_expected = cp.zeros((7, 7, 7), dtype=bool) image_expected[2:5, 2:5, 2:5] = ndi.generate_binary_structure(3, 1) cp.testing.assert_array_equal(opened, image_expected) gray_3d_fallback_functions = [morphology.closing, morphology.opening] @pytest.mark.parametrize("function", gray_3d_fallback_functions) def test_3d_fallback_cube_footprint(function): # 3x3x3 cube inside a 7x7x7 image: image = cp.zeros((7, 7, 7), bool) image[2:-2, 2:-2, 2:-2] = 1 cube = cp.ones((3, 3, 3), dtype=cp.uint8) new_image = function(image, cube) cp.testing.assert_array_equal(new_image, image) def test_3d_fallback_white_tophat(): image = cp.zeros((7, 7, 7), dtype=bool) image[2, 2:4, 2:4] = 1 image[3, 2:5, 2:5] = 1 image[4, 3:5, 3:5] = 1 with expected_warnings([r"operator.*deprecated|\A\Z"]): new_image = morphology.white_tophat(image) footprint = ndi.generate_binary_structure(3, 1) with expected_warnings([r"operator.*deprecated|\A\Z"]): image_expected = ndi.white_tophat( image.view(dtype=cp.uint8), footprint=footprint ) cp.testing.assert_array_equal(new_image, image_expected) def test_3d_fallback_black_tophat(): image = cp.ones((7, 7, 7), dtype=bool) image[2, 2:4, 2:4] = 0 image[3, 2:5, 2:5] = 0 image[4, 3:5, 3:5] = 0 with expected_warnings([r"operator.*deprecated|\A\Z"]): new_image = morphology.black_tophat(image) footprint = ndi.generate_binary_structure(3, 1) with expected_warnings([r"operator.*deprecated|\A\Z"]): image_expected = ndi.black_tophat( image.view(dtype=cp.uint8), footprint=footprint ) cp.testing.assert_array_equal(new_image, image_expected) def test_2d_ndimage_equivalence(): image = cp.zeros((9, 9), cp.uint8) image[2:-2, 2:-2] = 128 image[3:-3, 3:-3] = 196 image[4, 4] = 255 opened = morphology.opening(image) closed = morphology.closing(image) footprint = ndi.generate_binary_structure(2, 1) ndimage_opened = ndi.grey_opening(image, footprint=footprint) ndimage_closed = ndi.grey_closing(image, footprint=footprint) cp.testing.assert_array_equal(opened, ndimage_opened) cp.testing.assert_array_equal(closed, ndimage_closed) # float test images # fmt: off im = cp.array([[0.55, 0.72, 0.6 , 0.54, 0.42], # noqa [0.65, 0.44, 0.89, 0.96, 0.38], [0.79, 0.53, 0.57, 0.93, 0.07], [0.09, 0.02, 0.83, 0.78, 0.87], [0.98, 0.8 , 0.46, 0.78, 0.12]]) # noqa eroded = cp.array([[0.55, 0.44, 0.54, 0.42, 0.38], [0.44, 0.44, 0.44, 0.38, 0.07], [0.09, 0.02, 0.53, 0.07, 0.07], [0.02, 0.02, 0.02, 0.78, 0.07], [0.09, 0.02, 0.46, 0.12, 0.12]]) dilated = cp.array([[0.72, 0.72, 0.89, 0.96, 0.54], [0.79, 0.89, 0.96, 0.96, 0.96], [0.79, 0.79, 0.93, 0.96, 0.93], [0.98, 0.83, 0.83, 0.93, 0.87], [0.98, 0.98, 0.83, 0.78, 0.87]]) opened = cp.array([[0.55, 0.55, 0.54, 0.54, 0.42], [0.55, 0.44, 0.54, 0.44, 0.38], [0.44, 0.53, 0.53, 0.78, 0.07], [0.09, 0.02, 0.78, 0.78, 0.78], [0.09, 0.46, 0.46, 0.78, 0.12]]) closed = cp.array([[0.72, 0.72, 0.72, 0.54, 0.54], [0.72, 0.72, 0.89, 0.96, 0.54], [0.79, 0.79, 0.79, 0.93, 0.87], [0.79, 0.79, 0.83, 0.78, 0.87], [0.98, 0.83, 0.78, 0.78, 0.78]]) # fmt: on def test_float(): cp.testing.assert_allclose(morphology.erosion(im), eroded) cp.testing.assert_allclose(morphology.dilation(im), dilated) cp.testing.assert_allclose(morphology.opening(im), opened) cp.testing.assert_allclose(morphology.closing(im), closed) def test_uint16(): im16, eroded16, dilated16, opened16, closed16 = map( img_as_uint, [im, eroded, dilated, opened, closed] ) cp.testing.assert_allclose(morphology.erosion(im16), eroded16) cp.testing.assert_allclose(morphology.dilation(im16), dilated16) cp.testing.assert_allclose(morphology.opening(im16), opened16) cp.testing.assert_allclose(morphology.closing(im16), closed16) def test_discontiguous_out_array(): # fmt: off image = cp.array([[5, 6, 2], [7, 2, 2], [3, 5, 1]], cp.uint8) # fmt: on out_array_big = cp.zeros((5, 5), cp.uint8) out_array = out_array_big[::2, ::2] # fmt: off expected_dilation = cp.array([[7, 0, 6, 0, 6], [0, 0, 0, 0, 0], [7, 0, 7, 0, 2], [0, 0, 0, 0, 0], [7, 0, 5, 0, 5]], cp.uint8) expected_erosion = cp.array([[5, 0, 2, 0, 2], [0, 0, 0, 0, 0], [2, 0, 2, 0, 1], [0, 0, 0, 0, 0], [3, 0, 1, 0, 1]], cp.uint8) # fmt: on morphology.dilation(image, out=out_array) cp.testing.assert_array_equal(out_array_big, expected_dilation) morphology.erosion(image, out=out_array) cp.testing.assert_array_equal(out_array_big, expected_erosion) def test_1d_erosion(): image = cp.array([1, 2, 3, 2, 1]) expected = cp.array([1, 1, 2, 1, 1]) eroded = morphology.erosion(image) cp.testing.assert_array_equal(eroded, expected) def test_deprecated_import(): msg = "Importing from cucim.skimage.morphology.grey is deprecated." with expected_warnings([msg + r"|\A\Z"]): from cucim.skimage.morphology.grey import erosion # noqa @pytest.mark.parametrize( "function", [ "erosion", "dilation", "closing", "opening", "white_tophat", "black_tophat", ], ) def test_selem_kwarg_deprecation(function): with expected_warnings(["`selem` is a deprecated argument name"]): getattr(morphology, function)(cp.zeros((4, 4)), selem=cp.ones((3, 3))) @pytest.mark.parametrize( "function", [ "erosion", "dilation", "closing", "opening", "white_tophat", "black_tophat", ], ) @pytest.mark.parametrize("size", (7,)) @pytest.mark.parametrize("decomposition", ["separable", "sequence"]) def test_square_decomposition(cam_image, function, size, decomposition): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ footprint_ndarray = morphology.square(size, decomposition=None) footprint = morphology.square(size, decomposition=decomposition) func = getattr(morphology, function) expected = func(cam_image, footprint=footprint_ndarray) out = func(cam_image, footprint=footprint) cp.testing.assert_array_equal(expected, out) @pytest.mark.parametrize( "function", [ "erosion", "dilation", "closing", "opening", "white_tophat", "black_tophat", ], ) @pytest.mark.parametrize("nrows", (3, 11)) @pytest.mark.parametrize("ncols", (3, 11)) @pytest.mark.parametrize("decomposition", ["separable", "sequence"]) def test_rectangle_decomposition( cam_image, function, nrows, ncols, decomposition ): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ footprint_ndarray = morphology.rectangle(nrows, ncols, decomposition=None) footprint = morphology.rectangle(nrows, ncols, decomposition=decomposition) func = getattr(morphology, function) expected = func(cam_image, footprint=footprint_ndarray) out = func(cam_image, footprint=footprint) cp.testing.assert_array_equal(expected, out) @pytest.mark.parametrize( "function", [ "erosion", "dilation", "closing", "opening", "white_tophat", "black_tophat", ], ) @pytest.mark.parametrize("radius", (2, 3)) @pytest.mark.parametrize("decomposition", ["sequence"]) def test_diamond_decomposition(cam_image, function, radius, decomposition): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ footprint_ndarray = morphology.diamond(radius, decomposition=None) footprint = morphology.diamond(radius, decomposition=decomposition) func = getattr(morphology, function) expected = func(cam_image, footprint=footprint_ndarray) out = func(cam_image, footprint=footprint) cp.testing.assert_array_equal(expected, out) @pytest.mark.parametrize( "function", [ "erosion", "dilation", "closing", "opening", "white_tophat", "black_tophat", ], ) @pytest.mark.parametrize("m", (0, 1, 3, 5)) @pytest.mark.parametrize("n", (0, 1, 2, 3)) @pytest.mark.parametrize("decomposition", ["sequence"]) def test_octagon_decomposition(cam_image, function, m, n, decomposition): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ if m == 0 and n == 0: with pytest.raises(ValueError): morphology.octagon(m, n, decomposition=decomposition) else: footprint_ndarray = morphology.octagon(m, n, decomposition=None) footprint = morphology.octagon(m, n, decomposition=decomposition) func = getattr(morphology, function) expected = func(cam_image, footprint=footprint_ndarray) out = func(cam_image, footprint=footprint) cp.testing.assert_array_equal(expected, out) @pytest.mark.parametrize( "function", [ "erosion", "dilation", "closing", "opening", "white_tophat", "black_tophat", ], ) @pytest.mark.parametrize("size", (5,)) @pytest.mark.parametrize("decomposition", ["separable", "sequence"]) def test_cube_decomposition(cell3d_image, function, size, decomposition): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ footprint_ndarray = morphology.cube(size, decomposition=None) footprint = morphology.cube(size, decomposition=decomposition) func = getattr(morphology, function) expected = func(cell3d_image, footprint=footprint_ndarray) out = func(cell3d_image, footprint=footprint) cp.testing.assert_array_equal(expected, out) @pytest.mark.parametrize( "function", [ "erosion", "dilation", "closing", "opening", "white_tophat", "black_tophat", ], ) @pytest.mark.parametrize("radius", (3,)) @pytest.mark.parametrize("decomposition", ["sequence"]) def test_octahedron_decomposition( cell3d_image, function, radius, decomposition ): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ footprint_ndarray = morphology.octahedron(radius, decomposition=None) footprint = morphology.octahedron(radius, decomposition=decomposition) func = getattr(morphology, function) expected = func(cell3d_image, footprint=footprint_ndarray) out = func(cell3d_image, footprint=footprint) cp.testing.assert_array_equal(expected, out) @pytest.mark.parametrize( "function", ["erosion", "dilation", "closing", "opening"], ) @pytest.mark.parametrize("ndim", [2, 3]) @pytest.mark.parametrize("odd_only", [False, True]) def test_tuple_as_footprint(function, ndim, odd_only): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ if odd_only: footprint_shape = (3,) * ndim else: footprint_shape = tuple(range(2, 2 + ndim)) footprint_ndarray = cp.ones(footprint_shape, dtype=bool) rng = cp.random.default_rng(5) img = rng.standard_normal((16,) * ndim, dtype=cp.float32) func = getattr(morphology, function) expected = func(img, footprint=footprint_ndarray) out = func(img, footprint=footprint_shape) testing.assert_array_equal(expected, out)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/tests/test_binary.py
import cupy as cp import numpy as np import pytest from cupy import testing from cupyx.scipy import ndimage as ndi from skimage import data from cucim.skimage import color, morphology from cucim.skimage._shared._warnings import expected_warnings from cucim.skimage.util import img_as_bool img = color.rgb2gray(cp.array(data.astronaut())) bw_img = img > 100 / 255.0 def test_non_square_image(): footprint = morphology.square(3) binary_res = morphology.binary_erosion(bw_img[:100, :200], footprint) gray_res = img_as_bool(morphology.erosion(bw_img[:100, :200], footprint)) testing.assert_array_equal(binary_res, gray_res) @pytest.mark.parametrize( "function", ["binary_erosion", "binary_dilation", "binary_closing", "binary_opening"], ) def test_selem_kwarg_deprecation(function): with expected_warnings(["`selem` is a deprecated argument name"]): getattr(morphology, function)(bw_img, selem=morphology.square(3)) def test_binary_erosion(): footprint = morphology.square(3) binary_res = morphology.binary_erosion(bw_img, footprint) gray_res = img_as_bool(morphology.erosion(bw_img, footprint)) testing.assert_array_equal(binary_res, gray_res) def test_binary_dilation(): footprint = morphology.square(3) binary_res = morphology.binary_dilation(bw_img, footprint) gray_res = img_as_bool(morphology.dilation(bw_img, footprint)) testing.assert_array_equal(binary_res, gray_res) def test_binary_closing(): footprint = morphology.square(3) binary_res = morphology.binary_closing(bw_img, footprint) gray_res = img_as_bool(morphology.closing(bw_img, footprint)) testing.assert_array_equal(binary_res, gray_res) def test_binary_opening(): footprint = morphology.square(3) binary_res = morphology.binary_opening(bw_img, footprint) gray_res = img_as_bool(morphology.opening(bw_img, footprint)) testing.assert_array_equal(binary_res, gray_res) def _get_decomp_test_data(function, ndim=2): if function == "binary_erosion": img = cp.ones((17,) * ndim, dtype=cp.uint8) img[(8,) * ndim] = 0 elif function == "binary_dilation": img = cp.zeros((17,) * ndim, dtype=cp.uint8) img[(8,) * ndim] = 1 else: img = cp.asarray(data.binary_blobs(32, n_dim=ndim, rng=1)) return img @pytest.mark.parametrize( "function", ["binary_erosion", "binary_dilation", "binary_closing", "binary_opening"], ) @pytest.mark.parametrize("size", (3, 4, 11)) @pytest.mark.parametrize("decomposition", ["separable", "sequence"]) def test_square_decomposition(function, size, decomposition): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ footprint_ndarray = morphology.square(size, decomposition=None) footprint = morphology.square(size, decomposition=decomposition) img = _get_decomp_test_data(function) func = getattr(morphology, function) expected = func(img, footprint=footprint_ndarray) out = func(img, footprint=footprint) testing.assert_array_equal(expected, out) @pytest.mark.parametrize( "function", ["binary_erosion", "binary_dilation", "binary_closing", "binary_opening"], ) @pytest.mark.parametrize("nrows", (3, 4, 11)) @pytest.mark.parametrize("ncols", (3, 4, 11)) @pytest.mark.parametrize("decomposition", ["separable", "sequence"]) def test_rectangle_decomposition(function, nrows, ncols, decomposition): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ footprint_ndarray = morphology.rectangle(nrows, ncols, decomposition=None) footprint = morphology.rectangle(nrows, ncols, decomposition=decomposition) img = _get_decomp_test_data(function) func = getattr(morphology, function) expected = func(img, footprint=footprint_ndarray) out = func(img, footprint=footprint) testing.assert_array_equal(expected, out) @pytest.mark.parametrize( "function", ["binary_erosion", "binary_dilation", "binary_closing", "binary_opening"], ) @pytest.mark.parametrize("m", (0, 1, 2, 3, 4, 5)) @pytest.mark.parametrize("n", (0, 1, 2, 3, 4, 5)) @pytest.mark.parametrize("decomposition", ["sequence"]) def test_octagon_decomposition(function, m, n, decomposition): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ if m == 0 and n == 0: with pytest.raises(ValueError): morphology.octagon(m, n, decomposition=decomposition) else: footprint_ndarray = morphology.octagon(m, n, decomposition=None) footprint = morphology.octagon(m, n, decomposition=decomposition) img = _get_decomp_test_data(function) func = getattr(morphology, function) expected = func(img, footprint=footprint_ndarray) out = func(img, footprint=footprint) testing.assert_array_equal(expected, out) @pytest.mark.parametrize( "function", ["binary_erosion", "binary_dilation", "binary_closing", "binary_opening"], ) @pytest.mark.parametrize("radius", (1, 2, 5)) @pytest.mark.parametrize("decomposition", ["sequence"]) def test_diamond_decomposition(function, radius, decomposition): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ footprint_ndarray = morphology.diamond(radius, decomposition=None) footprint = morphology.diamond(radius, decomposition=decomposition) img = _get_decomp_test_data(function) func = getattr(morphology, function) expected = func(img, footprint=footprint_ndarray) out = func(img, footprint=footprint) testing.assert_array_equal(expected, out) @pytest.mark.parametrize( "function", ["binary_erosion", "binary_dilation", "binary_closing", "binary_opening"], ) @pytest.mark.parametrize("size", (3, 4, 5)) @pytest.mark.parametrize("decomposition", ["separable", "sequence"]) def test_cube_decomposition(function, size, decomposition): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ footprint_ndarray = morphology.cube(size, decomposition=None) footprint = morphology.cube(size, decomposition=decomposition) img = _get_decomp_test_data(function, ndim=3) func = getattr(morphology, function) expected = func(img, footprint=footprint_ndarray) out = func(img, footprint=footprint) testing.assert_array_equal(expected, out) @pytest.mark.parametrize( "function", ["binary_erosion", "binary_dilation", "binary_closing", "binary_opening"], ) @pytest.mark.parametrize("radius", (1, 2, 3)) @pytest.mark.parametrize("decomposition", ["sequence"]) def test_octahedron_decomposition(function, radius, decomposition): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ footprint_ndarray = morphology.octahedron(radius, decomposition=None) footprint = morphology.octahedron(radius, decomposition=decomposition) img = _get_decomp_test_data(function, ndim=3) func = getattr(morphology, function) expected = func(img, footprint=footprint_ndarray) out = func(img, footprint=footprint) testing.assert_array_equal(expected, out) def test_footprint_overflow(): footprint = cp.ones((17, 17), dtype=cp.uint8) img = cp.zeros((20, 20), dtype=bool) img[2:19, 2:19] = True binary_res = morphology.binary_erosion(img, footprint) gray_res = img_as_bool(morphology.erosion(img, footprint)) testing.assert_array_equal(binary_res, gray_res) def test_out_argument(): for func in (morphology.binary_erosion, morphology.binary_dilation): footprint = cp.ones((3, 3), dtype=cp.uint8) img = cp.ones((10, 10)) out = cp.zeros_like(img) out_saved = out.copy() func(img, footprint, out=out) assert cp.any(out != out_saved) testing.assert_array_equal(out, func(img, footprint)) binary_functions = [ morphology.binary_erosion, morphology.binary_dilation, morphology.binary_opening, morphology.binary_closing, ] @pytest.mark.parametrize("function", binary_functions) def test_default_footprint(function): footprint = morphology.diamond(radius=1) # fmt: off image = cp.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], cp.uint8) # fmt: on im_expected = function(image, footprint) im_test = function(image) testing.assert_array_equal(im_expected, im_test) def test_3d_fallback_default_footprint(): # 3x3x3 cube inside a 7x7x7 image: image = cp.zeros((7, 7, 7), bool) image[2:-2, 2:-2, 2:-2] = 1 opened = morphology.binary_opening(image) # expect a "hyper-cross" centered in the 5x5x5: image_expected = cp.zeros((7, 7, 7), dtype=bool) image_expected[2:5, 2:5, 2:5] = ndi.generate_binary_structure(3, 1) testing.assert_array_equal(opened, image_expected) binary_3d_fallback_functions = [ morphology.binary_opening, morphology.binary_closing, ] @pytest.mark.parametrize("function", binary_3d_fallback_functions) def test_3d_fallback_cube_footprint(function): # 3x3x3 cube inside a 7x7x7 image: image = cp.zeros((7, 7, 7), bool) image[2:-2, 2:-2, 2:-2] = 1 cube = cp.ones((3, 3, 3), dtype=cp.uint8) new_image = function(image, cube) testing.assert_array_equal(new_image, image) def test_2d_ndimage_equivalence(): image = cp.zeros((9, 9), cp.uint16) image[2:-2, 2:-2] = 2**14 image[3:-3, 3:-3] = 2**15 image[4, 4] = 2**16 - 1 bin_opened = morphology.binary_opening(image) bin_closed = morphology.binary_closing(image) footprint = ndi.generate_binary_structure(2, 1) ndimage_opened = ndi.binary_opening(image, structure=footprint) ndimage_closed = ndi.binary_closing(image, structure=footprint) testing.assert_array_equal(bin_opened, ndimage_opened) testing.assert_array_equal(bin_closed, ndimage_closed) def test_binary_output_2d(): image = cp.zeros((9, 9), cp.uint16) image[2:-2, 2:-2] = 2**14 image[3:-3, 3:-3] = 2**15 image[4, 4] = 2**16 - 1 bin_opened = morphology.binary_opening(image) bin_closed = morphology.binary_closing(image) int_opened = cp.empty_like(image, dtype=cp.uint8) int_closed = cp.empty_like(image, dtype=cp.uint8) morphology.binary_opening(image, out=int_opened) morphology.binary_closing(image, out=int_closed) np.testing.assert_equal(bin_opened.dtype, bool) np.testing.assert_equal(bin_closed.dtype, bool) np.testing.assert_equal(int_opened.dtype, np.uint8) np.testing.assert_equal(int_closed.dtype, np.uint8) def test_binary_output_3d(): image = cp.zeros((9, 9, 9), cp.uint16) image[2:-2, 2:-2, 2:-2] = 2**14 image[3:-3, 3:-3, 3:-3] = 2**15 image[4, 4, 4] = 2**16 - 1 bin_opened = morphology.binary_opening(image) bin_closed = morphology.binary_closing(image) int_opened = cp.empty_like(image, dtype=cp.uint8) int_closed = cp.empty_like(image, dtype=cp.uint8) morphology.binary_opening(image, out=int_opened) morphology.binary_closing(image, out=int_closed) np.testing.assert_equal(bin_opened.dtype, bool) np.testing.assert_equal(bin_closed.dtype, bool) np.testing.assert_equal(int_opened.dtype, np.uint8) np.testing.assert_equal(int_closed.dtype, np.uint8) @pytest.mark.parametrize( "function", ["binary_erosion", "binary_dilation", "binary_closing", "binary_opening"], ) @pytest.mark.parametrize("ndim", [1, 2, 3]) def test_tuple_as_footprint(function, ndim): """Validate footprint decomposition for various shapes. comparison is made to the case without decomposition. """ footprint_shape = tuple(range(2, ndim + 2)) footprint_ndarray = cp.ones(footprint_shape, dtype=bool) img = _get_decomp_test_data(function, ndim=ndim) func = getattr(morphology, function) expected = func(img, footprint=footprint_ndarray) out = func(img, footprint=footprint_shape) testing.assert_array_equal(expected, out)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/tests/test_isotropic.py
import cupy as cp import numpy as np import pytest from cupy.testing import assert_array_equal from skimage import data from cucim.skimage import color, morphology from cucim.skimage.util import img_as_bool img = color.rgb2gray(cp.asarray(data.astronaut())) bw_img = img > 100 / 255.0 def test_non_square_image(): isotropic_res = morphology.isotropic_erosion(bw_img[:100, :200], 3) binary_res = img_as_bool( morphology.binary_erosion(bw_img[:100, :200], morphology.disk(3)) ) assert_array_equal(isotropic_res, binary_res) def test_isotropic_erosion(): isotropic_res = morphology.isotropic_erosion(bw_img, 3) binary_res = img_as_bool( morphology.binary_erosion(bw_img, morphology.disk(3)) ) assert_array_equal(isotropic_res, binary_res) def _disk_with_spacing( radius, dtype=cp.uint8, *, strict_radius=True, spacing=None ): # Identical to morphology.disk, but with a spacing parameter and without # decomposition. This is different from morphology.ellipse which produces a # slightly different footprint. L = np.arange(-radius, radius + 1) X, Y = np.meshgrid(L, L) if spacing is not None: X *= spacing[1] Y *= spacing[0] if not strict_radius: radius += 0.5 return cp.asarray((X**2 + Y**2) <= radius**2, dtype=dtype) def test_isotropic_erosion_spacing(): isotropic_res = morphology.isotropic_dilation(bw_img, 6, spacing=(1, 2)) binary_res = img_as_bool( morphology.binary_dilation( bw_img, _disk_with_spacing(6, spacing=(1, 2)) ) ) assert_array_equal(isotropic_res, binary_res) def test_isotropic_dilation(): isotropic_res = morphology.isotropic_dilation(bw_img, 3) binary_res = img_as_bool( morphology.binary_dilation(bw_img, morphology.disk(3)) ) assert_array_equal(isotropic_res, binary_res) def test_isotropic_closing(): isotropic_res = morphology.isotropic_closing(bw_img, 3) binary_res = img_as_bool( morphology.binary_closing(bw_img, morphology.disk(3)) ) assert_array_equal(isotropic_res, binary_res) def test_isotropic_opening(): isotropic_res = morphology.isotropic_opening(bw_img, 3) binary_res = img_as_bool( morphology.binary_opening(bw_img, morphology.disk(3)) ) assert_array_equal(isotropic_res, binary_res) def test_footprint_overflow(): img = cp.zeros((20, 20), dtype=bool) img[2:19, 2:19] = True isotropic_res = morphology.isotropic_erosion(img, 9) binary_res = img_as_bool(morphology.binary_erosion(img, morphology.disk(9))) assert_array_equal(isotropic_res, binary_res) @pytest.mark.parametrize("out_dtype", [bool, cp.uint8, cp.int32]) def test_out_argument(out_dtype): for func in ( morphology.isotropic_erosion, morphology.isotropic_dilation, morphology.isotropic_opening, morphology.isotropic_closing, ): radius = 3 img = cp.ones((10, 10), dtype=bool) img[2:5, 2:5] = 0 out = cp.zeros_like(img, dtype=out_dtype) out_saved = out.copy() if out_dtype not in [bool, cp.uint8]: with pytest.raises(ValueError): func(img, radius, out=out) else: func(img, radius, out=out) assert cp.any(out != out_saved) assert_array_equal(out, func(img, radius))
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/morphology/tests/test_skeletonize.py
import cupy as cp import numpy as np import pytest from cupy.testing import assert_array_equal from skimage import data from skimage.morphology import thin as thin_cpu from cucim.skimage._shared._warnings import expected_warnings from cucim.skimage.morphology import medial_axis, thin class TestThin: @property def input_image(self): """image to test thinning with""" ii = cp.array( [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 0, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0], ], dtype=cp.uint8, ) return ii def test_zeros(self): assert cp.all(thin(cp.zeros((10, 10))) == 0) def test_iter_1(self): result = thin(self.input_image, 1).astype(cp.uint8) expected = cp.array( [ [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 1, 0, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], ], dtype=cp.uint8, ) assert_array_equal(result, expected) def test_max_iter_kwarg_deprecation(self): result1 = thin(self.input_image, max_num_iter=1).astype(cp.uint8) with expected_warnings(["`max_iter` is a deprecated argument name"]): result2 = thin(self.input_image, max_iter=1).astype(cp.uint8) assert_array_equal(result1, result2) def test_noiter(self): result = thin(self.input_image).astype(cp.uint8) expected = cp.array( [ [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], ], dtype=cp.uint8, ) assert_array_equal(result, expected) def test_baddim(self): for ii in [cp.zeros((3)), cp.zeros((3, 3, 3))]: with pytest.raises(ValueError): thin(ii) @pytest.mark.parametrize("invert", [False, True]) def test_compare_skimage(self, invert): h = data.horse() if invert: h = ~h result = thin(cp.asarray(h)) expected = thin_cpu(h) assert_array_equal(result, expected) class TestMedialAxis: def test_00_00_zeros(self): """Test skeletonize on an array of all zeros""" result = medial_axis(cp.zeros((10, 10), bool)) assert not cp.any(result) def test_00_01_zeros_masked(self): """Test skeletonize on an array that is completely masked""" result = medial_axis(cp.zeros((10, 10), bool), cp.zeros((10, 10), bool)) assert not cp.any(result) def _test_vertical_line(self, **kwargs): """Test a thick vertical line, issue #3861""" img = cp.zeros((9, 9)) img[:, 2] = 1 img[:, 3] = 1 img[:, 4] = 1 expected = cp.full(img.shape, False) expected[:, 3] = True result = medial_axis(img, **kwargs) assert_array_equal(result, expected) def test_vertical_line(self): """Test a thick vertical line, issue #3861""" self._test_vertical_line() def test_rng_numpy(self): # NumPy Generator allowed self._test_vertical_line(rng=np.random.default_rng()) def test_rng_cupy(self): # CuPy Generator not currently supported with pytest.raises(ValueError): self._test_vertical_line(rng=cp.random.default_rng()) def test_rng_int(self): self._test_vertical_line(rng=15) def test_vertical_line_seed(self): """seed was deprecated (now use rng)""" with pytest.warns(FutureWarning): self._test_vertical_line(seed=15) def test_vertical_line_random_state(self): """random_state was deprecated (now use rng)""" with pytest.warns(FutureWarning): self._test_vertical_line(random_state=15) def test_01_01_rectangle(self): """Test skeletonize on a rectangle""" image = cp.zeros((9, 15), bool) image[1:-1, 1:-1] = True # # The result should be four diagonals from the # corners, meeting in a horizontal line # expected = cp.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ], dtype=bool, ) result = medial_axis(image) assert cp.all(result == expected) result, distance = medial_axis(image, return_distance=True) assert distance.max() == 4 def test_01_02_hole(self): """Test skeletonize on a rectangle with a hole in the middle""" image = cp.zeros((9, 15), bool) image[1:-1, 1:-1] = True image[4, 4:-4] = False expected = cp.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ], dtype=bool, ) result = medial_axis(image) assert cp.all(result == expected) def test_narrow_image(self): """Test skeletonize on a 1-pixel thin strip""" image = cp.zeros((1, 5), bool) image[:, 1:-1] = True result = medial_axis(image) assert cp.all(result == image)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared/_dependency_checks.py
from .version_requirements import is_installed has_mpl = is_installed("matplotlib", ">=3.3") if has_mpl: try: # will fail with # ImportError: Failed to import any qt binding # if only matplotlib-base is installed from matplotlib import pyplot # noqa except ImportError: has_mpl = False
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared/_gradient.py
""" Simplified version of cupy.gradient This version doesn't support non-unit spacing or 2nd order edges. Importantly, this version does not promote all integer dtypes to float64, but instead will promote 8 and 16-bit integer types to float32. """ import cupy from cucim.skimage._shared.utils import _supported_float_type def gradient(f, axis=None, output_as_array=False): """Return the gradient of an N-dimensional array. The gradient is computed using second order accurate central differences in the interior points and either first or second order accurate one-sides (forward or backwards) differences at the boundaries. The returned gradient hence has the same shape as the input array. Args: f (cupy.ndarray): An N-dimensional array containing samples of a scalar function. axis (None or int or tuple of ints, optional): The gradient is calculated only along the given axis or axes. The default (axis = None) is to calculate the gradient for all the axes of the input array. axis may be negative, in which case it counts from the last to the first axis. output_as_array Returns: gradient (cupy.ndarray or list of cupy.ndarray): A set of ndarrays (or a single ndarray if there is only one dimension) corresponding to the derivatives of f with respect to each dimension. Each derivative has the same shape as f. """ ndim = f.ndim # number of dimensions if axis is None: axes = tuple(range(ndim)) else: if cupy.isscalar(axis): axis = (axis,) for ax in axis: if ax < -ndim or ax > ndim + 1: raise ValueError(f"invalid axis: {ax}") axes = tuple(ax + ndim if ax < 0 else ax for ax in axis) len_axes = len(axes) # use central differences on interior and one-sided differences on the # endpoints. This preserves second order-accuracy over the full domain. # create slice objects --- initially all are [:, :, ..., :] slice1 = [slice(None)] * ndim slice2 = [slice(None)] * ndim slice3 = [slice(None)] * ndim slice4 = [slice(None)] * ndim otype = f.dtype if cupy.issubdtype(otype, cupy.inexact): pass else: # All other types convert to floating point. float_dtype = _supported_float_type(otype) if cupy.issubdtype(otype, cupy.integer): f = f.astype(float_dtype) otype = float_dtype if output_as_array: out = cupy.empty((ndim,) + f.shape, dtype=otype) outvals = out else: outvals = [] for axis in axes: if f.shape[axis] < 2: raise ValueError( "Shape of array too small to calculate a numerical gradient, " "at least 2 elements are required." ) # result allocation if not output_as_array: out = cupy.empty_like(f, dtype=otype) # Numerical differentiation: 2nd order interior slice1[axis] = slice(1, -1) slice2[axis] = slice(None, -2) slice3[axis] = slice(1, -1) slice4[axis] = slice(2, None) out_sl = (axis,) + tuple(slice1) if output_as_array else tuple(slice1) out[out_sl] = (f[tuple(slice4)] - f[tuple(slice2)]) / 2.0 # Numerical differentiation: 1st order edges slice1[axis] = 0 slice2[axis] = 1 slice3[axis] = 0 # 1D equivalent -- out[0] = (f[1] - f[0]) / (x[1] - x[0]) out_sl = (axis,) + tuple(slice1) if output_as_array else tuple(slice1) out[out_sl] = f[tuple(slice2)] - f[tuple(slice3)] slice1[axis] = -1 slice2[axis] = -1 slice3[axis] = -2 # 1D equivalent -- out[-1] = (f[-1] - f[-2]) / (x[-1] - x[-2]) out_sl = (axis,) + tuple(slice1) if output_as_array else tuple(slice1) out[out_sl] = f[tuple(slice2)] - f[tuple(slice3)] if not output_as_array: outvals.append(out) # reset the slice object in this dimension to ":" slice1[axis] = slice(None) slice2[axis] = slice(None) slice3[axis] = slice(None) slice4[axis] = slice(None) if len_axes == 1: return outvals[0] else: return outvals
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared/coord.py
import cupy as cp import numpy as np from scipy.spatial import cKDTree, distance # TODO: avoid host/device transfers (currently needed for cKDTree) def _ensure_spacing(coord, spacing, p_norm, max_out): """Returns a subset of coord where a minimum spacing is guaranteed. Parameters ---------- coord : ndarray The coordinates of the considered points. spacing : float the maximum allowed spacing between the points. p_norm : float Which Minkowski p-norm to use. Should be in the range [1, inf]. A finite large p may cause a ValueError if overflow can occur. ``inf`` corresponds to the Chebyshev distance and 2 to the Euclidean distance. max_out: int If not None, at most the first ``max_out`` candidates are returned. Returns ------- output : ndarray A subset of coord where a minimum spacing is guaranteed. """ # Use KDtree to find the peaks that are too close to each other tree = cKDTree(coord) indices = tree.query_ball_point(coord, r=spacing, p=p_norm) rejected_peaks_indices = set() naccepted = 0 for idx, candidates in enumerate(indices): if idx not in rejected_peaks_indices: # keep current point and the points at exactly spacing from it candidates.remove(idx) dist = distance.cdist( [coord[idx]], coord[candidates], distance.minkowski, p=p_norm ).reshape(-1) candidates = [c for c, d in zip(candidates, dist) if d < spacing] # candidates.remove(keep) rejected_peaks_indices.update(candidates) naccepted += 1 if max_out is not None and naccepted >= max_out: break # Remove the peaks that are too close to each other output = np.delete(coord, tuple(rejected_peaks_indices), axis=0) if max_out is not None: output = output[:max_out] return output def ensure_spacing( coords, spacing=1, p_norm=np.inf, min_split_size=50, max_out=None, *, max_split_size=2000, ): """Returns a subset of coord where a minimum spacing is guaranteed. Parameters ---------- coords : array_like The coordinates of the considered points. spacing : float the maximum allowed spacing between the points. p_norm : float Which Minkowski p-norm to use. Should be in the range [1, inf]. A finite large p may cause a ValueError if overflow can occur. ``inf`` corresponds to the Chebyshev distance and 2 to the Euclidean distance. min_split_size : int Minimum split size used to process ``coords`` by batch to save memory. If None, the memory saving strategy is not applied. max_out : int If not None, only the first ``max_out`` candidates are returned. max_split_size : int Maximum split size used to process ``coords`` by batch to save memory. This number was decided by profiling with a large number of points. Too small a number results in too much looping in Python instead of C, slowing down the process, while too large a number results in large memory allocations, slowdowns, and, potentially, in the process being killed -- see gh-6010. See benchmark results `here <https://github.com/scikit-image/scikit-image/pull/6035#discussion_r751518691>`_. Returns ------- output : array_like A subset of coord where a minimum spacing is guaranteed. """ output = coords if len(coords): coords = cp.atleast_2d(coords) coords = cp.asnumpy(coords) if min_split_size is None: batch_list = [coords] else: coord_count = len(coords) split_idx = [min_split_size] split_size = min_split_size while coord_count - split_idx[-1] > max_split_size: split_size *= 2 split_idx.append( split_idx[-1] + min(split_size, max_split_size) ) batch_list = np.array_split(coords, split_idx) output = np.zeros((0, coords.shape[1]), dtype=coords.dtype) for batch in batch_list: output = _ensure_spacing( np.vstack([output, batch]), spacing, p_norm, max_out ) if max_out is not None and len(output) >= max_out: break return cp.asarray(output)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared/testing.py
import pytest from numpy.testing import ( # noqa TestCase, assert_, assert_allclose, assert_almost_equal, assert_array_almost_equal, assert_array_almost_equal_nulp, assert_array_equal, assert_array_less, assert_equal, assert_no_warnings, assert_warns, ) from ._warnings import expected_warnings # noqa skipif = pytest.mark.skipif xfail = pytest.mark.xfail parametrize = pytest.mark.parametrize raises = pytest.raises fixture = pytest.fixture have_fetch = True try: # scikit-image >=0.19 from skimage.data._fetchers import _fetch except ImportError: # skip this test if private API changed on scikit-image end have_fetch = False def fetch(data_filename): """Attempt to fetch data, but if unavailable, skip the tests.""" if have_fetch: try: # CuPy Backend: TODO: avoid call to non-public _fetch method return _fetch(data_filename) except (ConnectionError, ModuleNotFoundError): pytest.skip(f"Unable to download {data_filename}") else: pytest.skip("skimage _fetch utility not found")
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared/fft.py
"""Prefer FFTs via the new scipy.fft module when available (SciPy 1.4+) Otherwise fall back to numpy.fft. Like numpy 1.15+ scipy 1.3+ is also using pocketfft, but a newer C++/pybind11 version called pypocketfft """ import cupyx.scipy.fft from cupyx.scipy.fft import next_fast_len fftmodule = cupyx.scipy.fft __all__ = ["fftmodule", "next_fast_len"]
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared/filters.py
"""Filters used across multiple skimage submodules. These are defined here to avoid circular imports. The unit tests remain under skimage/filters/tests/ """ from collections.abc import Iterable import cupy as cp import cucim.skimage._vendored.ndimage as ndi from .._shared.utils import _supported_float_type, convert_to_float, warn class _PatchClassRepr(type): """Control class representations in rendered signatures.""" def __repr__(cls): return f"<{cls.__name__}>" class ChannelAxisNotSet(metaclass=_PatchClassRepr): """Signal that the `channel_axis` parameter is not set. This is a proxy object, used to signal to `skimage.filters.gaussian` that the `channel_axis` parameter has not been set, in which case the function will determine whether a color channel is present. We cannot use ``None`` for this purpose as it has its own meaning which indicates that the given image is grayscale. This automatic behavior was broken in v0.19, recovered but deprecated in v0.20 and will be removed in v0.21. """ def gaussian( image, sigma=1, output=None, mode="nearest", cval=0, preserve_range=False, truncate=4.0, *, channel_axis=ChannelAxisNotSet, ): """Multi-dimensional Gaussian filter. Parameters ---------- image : array-like Input image (grayscale or color) to filter. sigma : scalar or sequence of scalars, optional Standard deviation for Gaussian kernel. The standard deviations of the Gaussian filter are given for each axis as a sequence, or as a single number, in which case it is equal for all axes. output : array, optional The ``output`` parameter passes an array in which to store the filter output. mode : {'reflect', 'constant', 'nearest', 'mirror', 'wrap'}, optional The ``mode`` parameter determines how the array borders are handled, where ``cval`` is the value when mode is equal to 'constant'. Default is 'nearest'. cval : scalar, optional Value to fill past edges of input if ``mode`` is 'constant'. Default is 0.0 preserve_range : bool, optional Whether to keep the original range of values. Otherwise, the input image is converted according to the conventions of ``img_as_float``. Also see https://scikit-image.org/docs/dev/user_guide/data_types.html truncate : float, optional Truncate the filter at this many standard deviations. channel_axis : int or None, optional If None, the image is assumed to be a grayscale (single channel) image. Otherwise, this parameter indicates which axis of the array corresponds to channels. .. warning:: Automatic detection of the color channel based on the old deprecated ``multichannel=None`` was broken in version 0.19. In 0.20 this behavior is recovered. The last axis of an `image` with dimensions (M, N, 3) is interpreted as a color channel if `channel_axis` is not set. Starting with release 23.04.02, ``channel_axis=None`` will be used as the new default value. Returns ------- filtered_image : ndarray the filtered array Notes ----- This function is a wrapper around :func:`scipy.ndi.gaussian_filter`. Integer arrays are converted to float. The ``output`` should be floating point data type since gaussian converts to float provided ``image``. If ``output`` is not provided, another array will be allocated and returned as the result. The multi-dimensional filter is implemented as a sequence of one-dimensional convolution filters. The intermediate arrays are stored in the same data type as the output. Therefore, for output types with a limited precision, the results may be imprecise because intermediate results may be stored with insufficient precision. Examples -------- >>> import cupy as cp >>> a = cp.zeros((3, 3)) >>> a[1, 1] = 1 >>> a array([[0., 0., 0.], [0., 1., 0.], [0., 0., 0.]]) >>> gaussian(a, sigma=0.4) # mild smoothing array([[0.00163116, 0.03712502, 0.00163116], [0.03712502, 0.84496158, 0.03712502], [0.00163116, 0.03712502, 0.00163116]]) >>> gaussian(a, sigma=1) # more smoothing array([[0.05855018, 0.09653293, 0.05855018], [0.09653293, 0.15915589, 0.09653293], [0.05855018, 0.09653293, 0.05855018]]) >>> # Several modes are possible for handling boundaries >>> gaussian(a, sigma=1, mode='reflect') array([[0.08767308, 0.12075024, 0.08767308], [0.12075024, 0.16630671, 0.12075024], [0.08767308, 0.12075024, 0.08767308]]) >>> # For RGB images, each is filtered separately >>> from skimage.data import astronaut >>> image = cp.array(astronaut()) >>> filtered_img = gaussian(image, sigma=1, channel_axis=-1) """ if channel_axis is ChannelAxisNotSet: if image.ndim == 3 and image.shape[-1] == 3: warn( "Automatic detection of the color channel was deprecated in " "v0.19, and `channel_axis=None` will be the new default in " "v0.21. Set `channel_axis=-1` explicitly to silence this " "warning.", FutureWarning, stacklevel=2, ) channel_axis = -1 else: channel_axis = None # CuPy Backend: refactor to avoid overhead of cp.any(cp.asarray(sigma)) sigma_msg = "Sigma values less than zero are not valid" if not isinstance(sigma, Iterable): if sigma < 0: raise ValueError(sigma_msg) elif any(s < 0 for s in sigma): raise ValueError(sigma_msg) if channel_axis is not None: # do not filter across channels if not isinstance(sigma, Iterable): sigma = [sigma] * (image.ndim - 1) if len(sigma) == image.ndim - 1: sigma = list(sigma) sigma.insert(channel_axis % image.ndim, 0) image = convert_to_float(image, preserve_range) float_dtype = _supported_float_type(image.dtype) image = image.astype(float_dtype, copy=False) if output is None: output = cp.empty_like(image) elif not cp.issubdtype(output.dtype, cp.floating): raise ValueError("Provided output data type is not float") ndi.gaussian_filter( image, sigma, output=output, mode=mode, cval=cval, truncate=truncate ) return output
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared/_warnings.py
import functools import os import re import sys import warnings from contextlib import contextmanager __all__ = ["all_warnings", "expected_warnings", "warn"] # A version of `warnings.warn` with a default stacklevel of 2. # functool is used so as not to increase the call stack accidentally warn = functools.partial(warnings.warn, stacklevel=2) @contextmanager def all_warnings(): """ Context for use in testing to ensure that all warnings are raised. Examples -------- >>> import warnings >>> def foo(): ... warnings.warn(RuntimeWarning("bar"), stacklevel=2) We raise the warning once, while the warning filter is set to "once". Hereafter, the warning is invisible, even with custom filters: >>> with warnings.catch_warnings(): ... warnings.simplefilter('once') ... foo() # doctest: +SKIP We can now run ``foo()`` without a warning being raised: >>> from numpy.testing import assert_warns >>> foo() # doctest: +SKIP To catch the warning, we call in the help of ``all_warnings``: >>> with all_warnings(): ... assert_warns(RuntimeWarning, foo) """ # _warnings.py is on the critical import path. # Since this is a testing only function, we lazy import inspect. import inspect # Whenever a warning is triggered, Python adds a __warningregistry__ # member to the *calling* module. The exercise here is to find # and eradicate all those breadcrumbs that were left lying around. # # We proceed by first searching all parent calling frames and explicitly # clearing their warning registries (necessary for the doctests above to # pass). Then, we search for all submodules of skimage and clear theirs # as well (necessary for the skimage test suite to pass). frame = inspect.currentframe() if frame: for f in inspect.getouterframes(frame): f[0].f_locals["__warningregistry__"] = {} del frame for mod_name, mod in list(sys.modules.items()): try: mod.__warningregistry__.clear() except AttributeError: pass with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") yield w @contextmanager def expected_warnings(matching): r"""Context for use in testing to catch known warnings matching regexes Parameters ---------- matching : None or a list of strings or compiled regexes Regexes for the desired warning to catch If matching is None, this behaves as a no-op. Examples -------- >>> import numpy as np >>> image = np.random.randint(0, 2**16, size=(100, 100), dtype=np.uint16) >>> # rank filters are slow when bit-depth exceeds 10 bits >>> from skimage import filters >>> with expected_warnings(['Bad rank filter performance']): ... median_filtered = filters.rank.median(image) Notes ----- Uses `all_warnings` to ensure all warnings are raised. Upon exiting, it checks the recorded warnings for the desired matching pattern(s). Raises a ValueError if any match was not found or an unexpected warning was raised. Allows for three types of behaviors: `and`, `or`, and `optional` matches. This is done to accommodate different build environments or loop conditions that may produce different warnings. The behaviors can be combined. If you pass multiple patterns, you get an orderless `and`, where all of the warnings must be raised. If you use the `|` operator in a pattern, you can catch one of several warnings. Finally, you can use `|\A\Z` in a pattern to signify it as optional. """ if isinstance(matching, str): raise ValueError( "``matching`` should be a list of strings and not " "a string itself." ) # Special case for disabling the context manager if matching is None: yield None return strict_warnings = os.environ.get("SKIMAGE_TEST_STRICT_WARNINGS", "1") if strict_warnings.lower() == "true": strict_warnings = True elif strict_warnings.lower() == "false": strict_warnings = False else: strict_warnings = bool(int(strict_warnings)) with all_warnings() as w: # enter context yield w # exited user context, check the recorded warnings # Allow users to provide None while None in matching: matching.remove(None) remaining = [m for m in matching if r"\A\Z" not in m.split("|")] for warn in w: found = False for match in matching: if re.search(match, str(warn.message)) is not None: found = True if match in remaining: remaining.remove(match) if strict_warnings and not found: raise ValueError(f"Unexpected warning: {str(warn.message)}") if strict_warnings and (len(remaining) > 0): newline = "\n" msg = ( f"No warning raised matching:{newline}{newline.join(remaining)}" ) raise ValueError(msg)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared/utils.py
import functools import inspect import numbers import warnings from collections.abc import Iterable import cupy as cp import numpy as np from ._warnings import all_warnings, warn # noqa __all__ = [ "deprecate_func", "get_bound_method_class", "all_warnings", "safe_as_int", "check_shape_equality", "check_nD", "warn", "reshape_nd", "identity", "slice_at_axis", ] def _get_stack_rank(func): """Return function rank in the call stack.""" if _is_wrapped(func): return 1 + _get_stack_rank(func.__wrapped__) else: return 0 def _is_wrapped(func): return "__wrapped__" in dir(func) def _get_stack_length(func): """Return function call stack length.""" return _get_stack_rank(func.__globals__.get(func.__name__, func)) class _DecoratorBaseClass: """Used to manage decorators' warnings stacklevel. The `_stack_length` class variable is used to store the number of times a function is wrapped by a decorator. Let `stack_length` be the total number of times a decorated function is wrapped, and `stack_rank` be the rank of the decorator in the decorators stack. The stacklevel of a warning is then `stacklevel = 1 + stack_length - stack_rank`. """ _stack_length = {} def get_stack_length(self, func): return self._stack_length.get(func.__name__, _get_stack_length(func)) class change_default_value(_DecoratorBaseClass): """Decorator for changing the default value of an argument. Parameters ---------- arg_name: str The name of the argument to be updated. new_value: any The argument new value. changed_version : str The package version in which the change will be introduced. warning_msg: str Optional warning message. If None, a generic warning message is used. """ def __init__( self, arg_name, *, new_value, changed_version, warning_msg=None ): self.arg_name = arg_name self.new_value = new_value self.warning_msg = warning_msg self.changed_version = changed_version def __call__(self, func): parameters = inspect.signature(func).parameters arg_idx = list(parameters.keys()).index(self.arg_name) old_value = parameters[self.arg_name].default stack_rank = _get_stack_rank(func) if self.warning_msg is None: self.warning_msg = ( f"The new recommended value for {self.arg_name} is " f"{self.new_value}. Until version {self.changed_version}, " f"the default {self.arg_name} value is {old_value}. " f"From version {self.changed_version}, the {self.arg_name} " f"default value will be {self.new_value}. To avoid " f"this warning, please explicitly set {self.arg_name} value." ) @functools.wraps(func) def fixed_func(*args, **kwargs): stacklevel = 1 + self.get_stack_length(func) - stack_rank if len(args) < arg_idx + 1 and self.arg_name not in kwargs.keys(): # warn that arg_name default value changed: warnings.warn( self.warning_msg, FutureWarning, stacklevel=stacklevel ) return func(*args, **kwargs) return fixed_func class remove_arg(_DecoratorBaseClass): """Decorator to remove an argument from function's signature. Parameters ---------- arg_name: str The name of the argument to be removed. changed_version : str The package version in which the warning will be replaced by an error. help_msg: str Optional message appended to the generic warning message. """ def __init__(self, arg_name, *, changed_version, help_msg=None): self.arg_name = arg_name self.help_msg = help_msg self.changed_version = changed_version def __call__(self, func): parameters = inspect.signature(func).parameters arg_idx = list(parameters.keys()).index(self.arg_name) warning_msg = ( f"{self.arg_name} argument is deprecated in upstream scikit-image " f"and will be removed in cuCIM {self.changed_version}. To avoid " f"this warning, please do not use the {self.arg_name} argument. " f"Please see {func.__name__} documentation for more details." ) if self.help_msg is not None: warning_msg += f" {self.help_msg}" stack_rank = _get_stack_rank(func) @functools.wraps(func) def fixed_func(*args, **kwargs): stacklevel = 1 + self.get_stack_length(func) - stack_rank if len(args) > arg_idx or self.arg_name in kwargs.keys(): # warn that arg_name is deprecated warnings.warn(warning_msg, FutureWarning, stacklevel=stacklevel) return func(*args, **kwargs) return fixed_func def _docstring_add_deprecated(func, kwarg_mapping, deprecated_version): """Add deprecated kwarg(s) to the "Other Params" section of a docstring. Parameters ---------- func : function The function whose docstring we wish to update. kwarg_mapping : dict A dict containing {old_arg: new_arg} key/value pairs as used by `deprecate_kwarg`. deprecated_version : str A major.minor version string specifying when old_arg was deprecated. Returns ------- new_doc : str The updated docstring. Returns the original docstring if numpydoc is not available. """ if func.__doc__ is None: return None try: from numpydoc.docscrape import FunctionDoc, Parameter except ImportError: # Return an unmodified docstring if numpydoc is not available. return func.__doc__ Doc = FunctionDoc(func) for old_arg, new_arg in kwarg_mapping.items(): desc = [ f"Deprecated in favor of `{new_arg}`.", "", f".. deprecated:: {deprecated_version}", ] Doc["Other Parameters"].append( Parameter(name=old_arg, type="DEPRECATED", desc=desc) ) new_docstring = str(Doc) # new_docstring will have a header starting with: # # .. function:: func.__name__ # # and some additional blank lines. We strip these off below. split = new_docstring.split("\n") no_header = split[1:] while not no_header[0].strip(): no_header.pop(0) # Store the initial description before any of the Parameters fields. # Usually this is a single line, but the while loop covers any case # where it is not. descr = no_header.pop(0) while no_header[0].strip(): descr += "\n " + no_header.pop(0) descr += "\n\n" # '\n ' rather than '\n' here to restore the original indentation. final_docstring = descr + "\n ".join(no_header) # strip any extra spaces from ends of lines final_docstring = "\n".join( [line.rstrip() for line in final_docstring.split("\n")] ) return final_docstring class deprecate_kwarg(_DecoratorBaseClass): """Decorator ensuring backward compatibility when argument names are modified in a function definition. Parameters ---------- kwarg_mapping: dict Mapping between the function's old argument names and the new ones. deprecated_version : str The package version in which the argument was first deprecated. warning_msg: str Optional warning message. If None, a generic warning message is used. removed_version : str The package version in which the deprecated argument will be removed. """ def __init__( self, kwarg_mapping, deprecated_version, warning_msg=None, removed_version=None, ): self.kwarg_mapping = kwarg_mapping if warning_msg is None: self.warning_msg = ( "`{old_arg}` is a deprecated argument name " "for `{func_name}`. " ) if removed_version is not None: self.warning_msg += ( f"It will be removed in cuCIM " f"version {removed_version}." ) self.warning_msg += "Please use `{new_arg}` instead." else: self.warning_msg = warning_msg self.deprecated_version = deprecated_version def __call__(self, func): stack_rank = _get_stack_rank(func) @functools.wraps(func) def fixed_func(*args, **kwargs): stacklevel = 1 + self.get_stack_length(func) - stack_rank for old_arg, new_arg in self.kwarg_mapping.items(): if old_arg in kwargs: # warn that the function interface has changed: warnings.warn( self.warning_msg.format( old_arg=old_arg, func_name=func.__name__, new_arg=new_arg, ), FutureWarning, stacklevel=stacklevel, ) # Substitute new_arg to old_arg kwargs[new_arg] = kwargs.pop(old_arg) # Call the function with the fixed arguments return func(*args, **kwargs) if func.__doc__ is not None: newdoc = _docstring_add_deprecated( func, self.kwarg_mapping, self.deprecated_version ) fixed_func.__doc__ = newdoc return fixed_func class channel_as_last_axis: """Decorator for automatically making channels axis last for all arrays. This decorator reorders axes for compatibility with functions that only support channels along the last axis. After the function call is complete the channels axis is restored back to its original position. Parameters ---------- channel_arg_positions : tuple of int, optional Positional arguments at the positions specified in this tuple are assumed to be multichannel arrays. The default is to assume only the first argument to the function is a multichannel array. channel_kwarg_names : tuple of str, optional A tuple containing the names of any keyword arguments corresponding to multichannel arrays. multichannel_output : bool, optional A boolean that should be True if the output of the function is not a multichannel array and False otherwise. This decorator does not currently support the general case of functions with multiple outputs where some or all are multichannel. """ def __init__( self, channel_arg_positions=(0,), channel_kwarg_names=(), multichannel_output=True, ): self.arg_positions = set(channel_arg_positions) self.kwarg_names = set(channel_kwarg_names) self.multichannel_output = multichannel_output def __call__(self, func): @functools.wraps(func) def fixed_func(*args, **kwargs): channel_axis = kwargs.get("channel_axis", None) if channel_axis is None: return func(*args, **kwargs) # TODO: convert scalars to a tuple in anticipation of eventually # supporting a tuple of channel axes. Right now, only an # integer or a single-element tuple is supported, though. if np.isscalar(channel_axis): channel_axis = (channel_axis,) if len(channel_axis) > 1: raise ValueError( "only a single channel axis is currently supported" ) if channel_axis == (-1,) or channel_axis == -1: return func(*args, **kwargs) if self.arg_positions: new_args = [] for pos, arg in enumerate(args): if pos in self.arg_positions: new_args.append(np.moveaxis(arg, channel_axis[0], -1)) else: new_args.append(arg) new_args = tuple(new_args) else: new_args = args for name in self.kwarg_names: kwargs[name] = np.moveaxis(kwargs[name], channel_axis[0], -1) # now that we have moved the channels axis to the last position, # change the channel_axis argument to -1 kwargs["channel_axis"] = -1 # Call the function with the fixed arguments out = func(*new_args, **kwargs) if self.multichannel_output: out = np.moveaxis(out, -1, channel_axis[0]) return out return fixed_func class deprecate_func(_DecoratorBaseClass): """Decorate a deprecated function and warn when it is called. Adapted from <http://wiki.python.org/moin/PythonDecoratorLibrary>. Parameters ---------- deprecated_version : str The package version when the deprecation was introduced. removed_version : str The package version in which the deprecated function will be removed. hint : str, optional A hint on how to address this deprecation, e.g., "Use `skimage.submodule.alternative_func` instead." Examples -------- >>> @deprecate_func( ... deprecated_version="1.0.0", ... removed_version="1.2.0", ... hint="Use `bar` instead." ... ) ... def foo(): ... pass Calling ``foo`` will warn with:: FutureWarning: `foo` is deprecated since version 1.0.0 and will be removed in version 1.2.0. Use `bar` instead. """ def __init__(self, *, deprecated_version, removed_version=None, hint=None): self.deprecated_version = deprecated_version self.removed_version = removed_version self.hint = hint def __call__(self, func): message = ( f"`{func.__name__}` is deprecated since version " f"{self.deprecated_version}" ) if self.removed_version: message += ( f" and will be removed in version {self.removed_version}." ) if self.hint: message += f" {self.hint.rstrip('.')}." stack_rank = _get_stack_rank(func) @functools.wraps(func) def wrapped(*args, **kwargs): stacklevel = 1 + self.get_stack_length(func) - stack_rank warnings.warn( message, category=FutureWarning, stacklevel=stacklevel ) return func(*args, **kwargs) # modify doc string to display deprecation warning doc = f"**Deprecated:** {message}" if wrapped.__doc__ is None: wrapped.__doc__ = doc else: wrapped.__doc__ = doc + "\n\n " + wrapped.__doc__ return wrapped def get_bound_method_class(m): """Return the class for a bound method.""" return m.__self__.__class__ def safe_as_int(val, atol=1e-3): """ Attempt to safely cast values to integer format. Parameters ---------- val : scalar or iterable of scalars Number or container of numbers which are intended to be interpreted as integers, e.g., for indexing purposes, but which may not carry integer type. atol : float Absolute tolerance away from nearest integer to consider values in ``val`` functionally integers. Returns ------- val_int : NumPy scalar or ndarray of dtype `np.int64` Returns the input value(s) coerced to dtype `np.int64` assuming all were within ``atol`` of the nearest integer. Notes ----- This operation calculates ``val`` modulo 1, which returns the mantissa of all values. Then all mantissas greater than 0.5 are subtracted from one. Finally, the absolute tolerance from zero is calculated. If it is less than ``atol`` for all value(s) in ``val``, they are rounded and returned in an integer array. Or, if ``val`` was a scalar, a NumPy scalar type is returned. If any value(s) are outside the specified tolerance, an informative error is raised. Examples -------- >>> safe_as_int(7.0) 7 >>> safe_as_int([9, 4, 2.9999999999]) array([9, 4, 3]) >>> safe_as_int(53.1) Traceback (most recent call last): ... ValueError: Integer argument required but received 53.1, check inputs. >>> safe_as_int(53.01, atol=0.01) 53 """ mod = np.asarray(val) % 1 # Extract mantissa # Check for and subtract any mod values > 0.5 from 1 if mod.ndim == 0: # Scalar input, cannot be indexed if mod > 0.5: mod = 1 - mod else: # Iterable input, now ndarray mod[mod > 0.5] = 1 - mod[mod > 0.5] # Test on each side of nearest int try: np.testing.assert_allclose(mod, 0, atol=atol) except AssertionError: raise ValueError( f"Integer argument required but received " f"{val}, check inputs." ) return np.round(val).astype(np.int64) def check_shape_equality(*images): """Check that all images have the same shape""" image0 = images[0] if not all(image0.shape == image.shape for image in images[1:]): raise ValueError("Input images must have the same dimensions.") return def slice_at_axis(sl, axis): """ Construct tuple of slices to slice an array in the given dimension. Parameters ---------- sl : slice The slice for the given dimension. axis : int The axis to which `sl` is applied. All other dimensions are left "unsliced". Returns ------- sl : tuple of slices A tuple with slices matching `shape` in length. Examples -------- >>> slice_at_axis(slice(None, 3, -1), 1) (slice(None, None, None), slice(None, 3, -1), Ellipsis) """ return (slice(None),) * axis + (sl,) + (...,) def reshape_nd(arr, ndim, dim): """Reshape a 1D array to have n dimensions, all singletons but one. Parameters ---------- arr : array, shape (N,) Input array ndim : int Number of desired dimensions of reshaped array. dim : int Which dimension/axis will not be singleton-sized. Returns ------- arr_reshaped : array, shape ([1, ...], N, [1,...]) View of `arr` reshaped to the desired shape. Examples -------- >>> rng = np.random.default_rng() >>> arr = rng.random(7) >>> reshape_nd(arr, 2, 0).shape (7, 1) >>> reshape_nd(arr, 3, 1).shape (1, 7, 1) >>> reshape_nd(arr, 4, -1).shape (1, 1, 1, 7) """ if arr.ndim != 1: raise ValueError("arr must be a 1D array") new_shape = [1] * ndim new_shape[dim] = -1 return np.reshape(arr, new_shape) def check_nD(array, ndim, arg_name="image"): """ Verify an array meets the desired ndims and array isn't empty. Parameters ---------- array : array-like Input array to be validated ndim : int or iterable of ints Allowable ndim or ndims for the array. arg_name : str, optional The name of the array in the original function. """ msg_incorrect_dim = "The parameter `%s` must be a %s-dimensional array" msg_empty_array = "The parameter `%s` cannot be an empty array" if isinstance(ndim, int): ndim = [ndim] if array.size == 0: raise ValueError(msg_empty_array % (arg_name)) if array.ndim not in ndim: raise ValueError( msg_incorrect_dim % (arg_name, "-or-".join([str(n) for n in ndim])) ) def check_random_state(seed): """Turn seed into a `cupy.random.RandomState` instance. Parameters ---------- seed : None, int or cupy.random.RandomState If `seed` is None, return the RandomState singleton used by`cupy.random`. If `seed` is an int, return a new RandomState instance seeded with `seed`. If `seed` is already a RandomState instance, return it. Raises ------ ValueError If `seed` is of the wrong type. """ # noqa # Function originally from scikit-learn's module sklearn.utils.validation if seed is None or seed is cp.random: return cp.random.mtrand._rand if isinstance(seed, (numbers.Integral, cp.integer)): return cp.random.RandomState(seed) if isinstance(seed, cp.random.RandomState): return seed raise ValueError( f"{seed} cannot be used to seed a cupy.random.RandomState instance" ) def convert_to_float(image, preserve_range): """Convert input image to float image with the appropriate range. Parameters ---------- image : ndarray Input image. preserve_range : bool Determines if the range of the image should be kept or transformed using img_as_float. Also see https://scikit-image.org/docs/dev/user_guide/data_types.html Notes ----- * Input images with `float32` data type are not upcast. Returns ------- image : ndarray Transformed version of the input. """ if image.dtype == np.float16: return image.astype(np.float32) if preserve_range: # Convert image to double only if it is not single or double # precision float if image.dtype.char not in "df": image = image.astype(_supported_float_type(image.dtype)) else: from ..util.dtype import img_as_float image = img_as_float(image) return image def _validate_interpolation_order(image_dtype, order): """Validate and return spline interpolation's order. Parameters ---------- image_dtype : dtype Image dtype. order : int, optional The order of the spline interpolation. The order has to be in the range 0-5. See `skimage.transform.warp` for detail. Returns ------- order : int if input order is None, returns 0 if image_dtype is bool and 1 otherwise. Otherwise, image_dtype is checked and input order is validated accordingly (order > 0 is not supported for bool image dtype) """ if order is None: return 0 if image_dtype == bool else 1 if order < 0 or order > 5: raise ValueError( "Spline interpolation order has to be in the " "range 0-5." ) if image_dtype == bool and order != 0: raise ValueError( "Input image dtype is bool. Interpolation is not defined " "with bool data type. Please set order to 0 or explicitly " "cast input image to another data type." ) return order def _to_np_mode(mode): """Convert padding modes from `ndi.correlate` to `np.pad`.""" mode_translation_dict = dict( nearest="edge", reflect="symmetric", mirror="reflect" ) if mode in mode_translation_dict: mode = mode_translation_dict[mode] return mode def _to_ndimage_mode(mode): """Convert from `numpy.pad` mode name to the corresponding ndimage mode.""" mode_translation_dict = dict( constant="constant", edge="nearest", symmetric="reflect", reflect="mirror", wrap="wrap", ) if mode not in mode_translation_dict: raise ValueError( f"Unknown mode: '{mode}', or cannot translate mode. The " f"mode should be one of 'constant', 'edge', 'symmetric', " f"'reflect', or 'wrap'. See the documentation of numpy.pad for " f"more info." ) return _fix_ndimage_mode(mode_translation_dict[mode]) def _fix_ndimage_mode(mode): # SciPy 1.6.0 introduced grid variants of constant and wrap which # have less surprising behavior for images. Use these when available grid_modes = {"constant": "grid-constant", "wrap": "grid-wrap"} return grid_modes.get(mode, mode) new_float_type = { # preserved types "f": cp.float32, # float32 "d": cp.float64, # float64 "F": cp.complex64, # complex64 "D": cp.complex128, # complex128 # promoted float types "e": cp.float32, # float16 # truncated float types "g": cp.float64, # float128 (doesn't exist on windows) "G": cp.complex128, # complex256 (doesn't exist on windows) # integer types that can be exactly represented in float32 "b": cp.float32, # int8 "B": cp.float32, # uint8 "h": cp.float32, # int16 "H": cp.float32, # uint16 "?": cp.float32, # bool } def _supported_float_type(input_dtype, allow_complex=False): """Return an appropriate floating-point dtype for a given dtype. float32, float64, complex64, complex128 are preserved. float16 is promoted to float32. complex256 is demoted to complex128. Other types are cast to float64. Parameters ---------- input_dtype : np.dtype or Iterable of np.dtype The input dtype. If a sequence of multiple dtypes is provided, each dtype is first converted to a supported floating point type and the final dtype is then determined by applying `np.result_type` on the sequence of supported floating point types. allow_complex : bool, optional If False, raise a ValueError on complex-valued inputs. Returns ------- float_type : dtype Floating-point dtype for the image. """ if isinstance(input_dtype, Iterable) and not isinstance(input_dtype, str): return cp.result_type(*(_supported_float_type(d) for d in input_dtype)) input_dtype = cp.dtype(input_dtype) if not allow_complex and input_dtype.kind == "c": raise ValueError("complex valued input is not supported") return new_float_type.get(input_dtype.char, cp.float64) def identity(image, *args, **kwargs): """Returns the first argument unmodified.""" return image def as_binary_ndarray(array, *, variable_name): """Return `array` as a numpy.ndarray of dtype bool. Raises ------ ValueError: An error including the given `variable_name` if `array` can not be safely cast to a boolean array. """ array = cp.asarray(array) if array.dtype != bool: if cp.any((array != 1) & (array != 0)): raise ValueError( f"{variable_name} array is not of dtype boolean or " f"contains values other than 0 and 1 so cannot be " f"safely cast to boolean array." ) return cp.asarray(array, dtype=bool)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared/version_requirements.py
import sys from packaging import version as _version def _check_version(actver, version, cmp_op): """ Check version string of an active module against a required version. If dev/prerelease tags result in TypeError for string-number comparison, it is assumed that the dependency is satisfied. Users on dev branches are responsible for keeping their own packages up to date. Copyright (C) 2013 The IPython Development Team Distributed under the terms of the BSD License. """ try: if cmp_op == ">": return _version.parse(actver) > _version.parse(version) elif cmp_op == ">=": return _version.parse(actver) >= _version.parse(version) elif cmp_op == "=": return _version.parse(actver) == _version.parse(version) elif cmp_op == "<": return _version.parse(actver) < _version.parse(version) else: return False except TypeError: return True def get_module_version(module_name): """Return module version or None if version can't be retrieved.""" mod = __import__(module_name, fromlist=[module_name.rpartition(".")[-1]]) return getattr(mod, "__version__", getattr(mod, "VERSION", None)) def is_installed(name, version=None): """Test if *name* is installed. Parameters ---------- name : str Name of module or "python" version : str, optional Version string to test against. If version is not None, checking version (must have an attribute named '__version__' or 'VERSION') Version may start with =, >=, > or < to specify the exact requirement Returns ------- out : bool True if `name` is installed matching the optional version. Notes ----- Original Copyright (C) 2009-2011 Pierre Raybaut Licensed under the terms of the MIT License. """ if name.lower() == "python": actver = sys.version[:6] else: try: actver = get_module_version(name) except ImportError: return False if version is None: return True else: # since version_requirements is in the critical import path, # we lazy import re import re match = re.search("[0-9]", version) assert match is not None, "Invalid version number" symb = version[: match.start()] if not symb: symb = "=" assert symb in (">=", ">", "=", "<"), ( "Invalid version condition '%s'" % symb ) version = version[match.start() :] return _check_version(actver, version, symb) def require(name, version=None): """Return decorator that forces a requirement for a function or class. Parameters ---------- name : str Name of module or "python". version : str, optional Version string to test against. If version is not None, checking version (must have an attribute named '__version__' or 'VERSION') Version may start with =, >=, > or < to specify the exact requirement Returns ------- func : function A decorator that raises an ImportError if a function is run in the absence of the input dependency. """ # since version_requirements is in the critical import path, we lazy import # functools import functools def decorator(obj): @functools.wraps(obj) def func_wrapped(*args, **kwargs): if is_installed(name, version): return obj(*args, **kwargs) else: msg = '"%s" in "%s" requires "%s' msg = msg % (obj, obj.__module__, name) if version is not None: msg += " %s" % version raise ImportError(msg + '"') return func_wrapped return decorator def get_module(module_name, version=None): """Return a module object of name *module_name* if installed. Parameters ---------- module_name : str Name of module. version : str, optional Version string to test against. If version is not None, checking version (must have an attribute named '__version__' or 'VERSION') Version may start with =, >=, > or < to specify the exact requirement Returns ------- mod : module or None Module if *module_name* is installed matching the optional version or None otherwise. """ if not is_installed(module_name, version): return None return __import__(module_name, fromlist=[module_name.rpartition(".")[-1]])
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared/tests/test_warnings.py
import os import pytest from cucim.skimage._shared._warnings import expected_warnings @pytest.fixture(scope="function") def setup(): # Remove any environment variable if it exists old_strictness = os.environ.pop("SKIMAGE_TEST_STRICT_WARNINGS", None) yield # Add the user's desired strictness if old_strictness is not None: os.environ["SKIMAGE_TEST_STRICT_WARNINGS"] = old_strictness def test_strict_warnigns_default(setup): # By default we should fail on missing expected warnings with pytest.raises(ValueError): with expected_warnings(["some warnings"]): pass @pytest.mark.parametrize("strictness", ["1", "true", "True", "TRUE"]) def test_strict_warning_true(setup, strictness): os.environ["SKIMAGE_TEST_STRICT_WARNINGS"] = strictness with pytest.raises(ValueError): with expected_warnings(["some warnings"]): pass @pytest.mark.parametrize("strictness", ["0", "false", "False", "FALSE"]) def test_strict_warning_false(setup, strictness): # If the user doesnn't wish to be strict about warnings # the following shouldn't raise any error os.environ["SKIMAGE_TEST_STRICT_WARNINGS"] = strictness with expected_warnings(["some warnings"]): pass
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/_shared/tests/test_utils.py
import sys import warnings import cupy as cp import numpy as np import pytest from cucim.skimage._shared.utils import ( _supported_float_type, _validate_interpolation_order, change_default_value, channel_as_last_axis, check_nD, deprecate_kwarg, ) complex_dtypes = [np.complex64, np.complex128] if hasattr(np, "complex256"): complex_dtypes += [np.complex256] have_numpydoc = False try: import numpydoc # noqa have_numpydoc = True except ImportError: pass def test_change_default_value(): @change_default_value("arg1", new_value=-1, changed_version="0.12") def foo(arg0, arg1=0, arg2=1): """Expected docstring""" return arg0, arg1, arg2 @change_default_value( "arg1", new_value=-1, changed_version="0.12", warning_msg="Custom warning message", ) def bar(arg0, arg1=0, arg2=1): """Expected docstring""" return arg0, arg1, arg2 # Assert warning messages with pytest.warns(FutureWarning) as record: assert foo(0) == (0, 0, 1) assert bar(0) == (0, 0, 1) expected_msg = ( "The new recommended value for arg1 is -1. Until " "version 0.12, the default arg1 value is 0. From " "version 0.12, the arg1 default value will be -1. " "To avoid this warning, please explicitly set arg1 value." ) assert str(record[0].message) == expected_msg assert str(record[1].message) == "Custom warning message" # Assert that nothing happens if arg1 is set with warnings.catch_warnings(record=True) as recorded: # No kwargs assert foo(0, 2) == (0, 2, 1) assert foo(0, arg1=0) == (0, 0, 1) # Function name and doc is preserved assert foo.__name__ == "foo" if sys.flags.optimize < 2: # if PYTHONOPTIMIZE is set to 2, docstrings are stripped assert foo.__doc__ == "Expected docstring" # Assert no warnings were raised assert len(recorded) == 0 def test_deprecate_kwarg(): @deprecate_kwarg({"old_arg1": "new_arg1"}, "22.02.00") def foo(arg0, new_arg1=1, arg2=None): """Expected docstring""" return arg0, new_arg1, arg2 @deprecate_kwarg( {"old_arg1": "new_arg1"}, deprecated_version="22.02.00", warning_msg="Custom warning message", ) def bar(arg0, new_arg1=1, arg2=None): """Expected docstring""" return arg0, new_arg1, arg2 # Assert that the DeprecationWarning is raised when the deprecated # argument name is used and that the reasult is valid with pytest.warns(FutureWarning) as record: assert foo(0, old_arg1=1) == (0, 1, None) assert bar(0, old_arg1=1) == (0, 1, None) msg = ( "`old_arg1` is a deprecated argument name " "for `foo`. Please use `new_arg1` instead." ) assert str(record[0].message) == msg assert str(record[1].message) == "Custom warning message" # Assert that nothing happens when the function is called with the # new API with warnings.catch_warnings(record=True) as recorded: # No kwargs assert foo(0) == (0, 1, None) assert foo(0, 2) == (0, 2, None) assert foo(0, 1, 2) == (0, 1, 2) # Kwargs without deprecated argument assert foo(0, new_arg1=1, arg2=2) == (0, 1, 2) assert foo(0, new_arg1=2) == (0, 2, None) assert foo(0, arg2=2) == (0, 1, 2) assert foo(0, 1, arg2=2) == (0, 1, 2) # Function name and doc is preserved assert foo.__name__ == "foo" if sys.flags.optimize < 2: # if PYTHONOPTIMIZE is set to 2, docstrings are stripped if not have_numpydoc: assert foo.__doc__ == """Expected docstring""" else: assert ( foo.__doc__ == """Expected docstring Other Parameters ---------------- old_arg1 : DEPRECATED Deprecated in favor of `new_arg1`. .. deprecated:: 22.02.00 """ ) assert len(recorded) == 0 def test_check_nD(): z = np.random.random(200**2).reshape((200, 200)) x = z[10:30, 30:10] with pytest.raises(ValueError): check_nD(x, 2) @pytest.mark.parametrize( "dtype", [bool, int, np.uint8, np.uint16, float, np.float32, np.float64] ) @pytest.mark.parametrize("order", [None, -1, 0, 1, 2, 3, 4, 5, 6]) def test_validate_interpolation_order(dtype, order): if order is None: # Default order assert ( _validate_interpolation_order(dtype, None) == 0 if dtype == bool else 1 ) elif order < 0 or order > 5: # Order not in valid range with pytest.raises(ValueError): _validate_interpolation_order(dtype, order) elif dtype == bool and order != 0: # Deprecated order for bool array with pytest.raises(ValueError): _validate_interpolation_order(bool, order) else: # Valid use case assert _validate_interpolation_order(dtype, order) == order @pytest.mark.parametrize( "dtype", [ bool, np.float16, np.float32, np.float64, np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64, ], ) def test_supported_float_dtype_real(dtype): float_dtype = _supported_float_type(dtype) if dtype in [ np.float16, np.float32, np.int8, np.uint8, np.int16, np.uint16, bool, ]: assert float_dtype == np.float32 else: assert float_dtype == np.float64 @pytest.mark.parametrize("dtype", complex_dtypes) @pytest.mark.parametrize("allow_complex", [False, True]) def test_supported_float_dtype_complex(dtype, allow_complex): if allow_complex: float_dtype = _supported_float_type(dtype, allow_complex=allow_complex) if dtype == np.complex64: assert float_dtype == np.complex64 else: assert float_dtype == np.complex128 else: with pytest.raises(ValueError): _supported_float_type(dtype, allow_complex=allow_complex) @pytest.mark.parametrize( "dtype", ["f", "float32", np.float32, np.dtype(np.float32)] ) def test_supported_float_dtype_input_kinds(dtype): assert _supported_float_type(dtype) == np.float32 @pytest.mark.parametrize( "dtypes, expected", [ ((np.float16, np.float64), np.float64), ([np.float32, np.uint16, np.int8], np.float32), ([np.float32, bool], np.float32), ([np.float32, np.uint32, np.int16], np.float64), ({np.float32, np.float16}, np.float32), ], ) def test_supported_float_dtype_sequence(dtypes, expected): float_dtype = _supported_float_type(dtypes) assert float_dtype == expected @channel_as_last_axis(multichannel_output=False) def _decorated_channel_axis_size(x, *, channel_axis=None): if channel_axis is None: return None assert channel_axis == -1 return x.shape[-1] @pytest.mark.parametrize("channel_axis", [None, 0, 1, 2, -1, -2, -3]) def test_decorated_channel_axis_shape(channel_axis): # Verify that channel_as_last_axis modifies the channel_axis as expected # need unique size per axis here x = cp.zeros((2, 3, 4)) size = _decorated_channel_axis_size(x, channel_axis=channel_axis) if channel_axis is None: assert size is None else: assert size == x.shape[channel_axis]
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/_label.py
import cupy as cp import scipy.ndimage as cpu_ndi from ._label_kernels import _label def _get_structure(ndim, connectivity): if connectivity is None: # use the full connectivity by default connectivity = ndim if not 1 <= connectivity <= ndim: raise ValueError("Connectivity below 1 or above %d is illegal." % ndim) return cpu_ndi.generate_binary_structure(ndim, connectivity) # TODO: currently uses int32 for the labels. should add int64 option as well def label(label_image, background=None, return_num=False, connectivity=None): r"""Label connected regions of an integer array. Two pixels are connected when they are neighbors and have the same value. In 2D, they can be neighbors either in a 1- or 2-connected sense. The value refers to the maximum number of orthogonal hops to consider a pixel/voxel a neighbor:: 1-connectivity 2-connectivity diagonal connection close-up [ ] [ ] [ ] [ ] [ ] | \ | / | <- hop 2 [ ]--[x]--[ ] [ ]--[x]--[ ] [x]--[ ] | / | \ hop 1 [ ] [ ] [ ] [ ] Parameters ---------- label_image : ndarray of dtype int Image to label. background : int, optional Consider all pixels with this value as background pixels, and label them as 0. By default, 0-valued pixels are considered as background pixels. return_num : bool, optional Whether to return the number of assigned labels. connectivity : int, optional Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. If ``None``, a full connectivity of ``input.ndim`` is used. Returns ------- labels : ndarray of dtype int Labeled array, where all connected regions are assigned the same integer value. num : int, optional Number of labels, which equals the maximum label index and is only returned if return_num is `True`. See Also -------- regionprops regionprops_table References ---------- .. [1] Christophe Fiorio and Jens Gustedt, "Two linear time Union-Find strategies for image processing", Theoretical Computer Science 154 (1996), pp. 165-181. .. [2] Kensheng Wu, Ekow Otoo and Arie Shoshani, "Optimizing connected component labeling algorithms", Paper LBNL-56864, 2005, Lawrence Berkeley National Laboratory (University of California), http://repositories.cdlib.org/lbnl/LBNL-56864 Notes ----- Currently the cucim implementation of this function always uses 32-bit integers for the label array. This is done for performance. In the future 64-bit integer support may also be added for better skimage compatibility. Examples -------- >>> import cupy as cp >>> x = cp.eye(3).astype(int) >>> print(x) [[1 0 0] [0 1 0] [0 0 1]] >>> print(label(x, connectivity=1)) [[1 0 0] [0 2 0] [0 0 3]] >>> print(label(x, connectivity=2)) [[1 0 0] [0 1 0] [0 0 1]] >>> print(label(x, background=-1)) [[1 2 2] [2 1 2] [2 2 1]] >>> x = cp.asarray([[1, 0, 0], ... [1, 1, 5], ... [0, 0, 0]]) >>> print(label(x)) [[1 0 0] [1 1 2] [0 0 0]] """ ndim = label_image.ndim structure = _get_structure(ndim, connectivity) if background is None: background = 0 elif background != 0: # offset so that background becomes 0 as expected by _label below label_image = label_image - background if label_image.dtype.kind not in "bui": # skimage always copies the input into a np.intp dtype array so do the # same here for non-integer dtypes. label_image = label_image.astype(cp.intp) labels = cp.empty(label_image.shape, order="C", dtype=cp.int32) num = _label(label_image, structure, labels, greyscale_mode=True) if return_num: return labels, num return labels
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/_moments.py
import itertools import cupy as cp import numpy as np from .._shared.utils import _supported_float_type, check_nD from ._moments_analytical import moments_raw_to_central def moments_coords(coords, order=3): """Calculate all raw image moments up to a certain order. The following properties can be calculated from raw image moments: * Area as: ``M[0, 0]``. * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}. Note that raw moments are neither translation, scale nor rotation invariant. Parameters ---------- coords : (N, D) double or uint8 array Array of N points that describe an image of D dimensionality in Cartesian space. order : int, optional Maximum order of moments. Default is 3. Returns ------- M : (``order + 1``, ``order + 1``, ...) array Raw image moments. (D dimensions) References ---------- .. [1] Johannes Kilian. Simple Image Analysis By Moments. Durham University, version 0.2, Durham, 2001. Examples -------- >>> import cupy as cp >>> from cucim.skimage.measure import moments_coords >>> coords = cp.array([[row, col] ... for row in range(13, 17) ... for col in range(14, 18)], dtype=cp.float64) >>> M = moments_coords(coords) >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0]) >>> centroid (array(14.5), array(15.5)) """ return moments_coords_central(coords, 0, order=order) def moments_coords_central(coords, center=None, order=3): """Calculate all central image moments up to a certain order. The following properties can be calculated from raw image moments: * Area as: ``M[0, 0]``. * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}. Note that raw moments are neither translation, scale nor rotation invariant. Parameters ---------- coords : (N, D) double or uint8 array Array of N points that describe an image of D dimensionality in Cartesian space. A tuple of coordinates as returned by ``cp.nonzero`` is also accepted as input. center : tuple of float, optional Coordinates of the image centroid. This will be computed if it is not provided. order : int, optional Maximum order of moments. Default is 3. Returns ------- Mc : (``order + 1``, ``order + 1``, ...) array Central image moments. (D dimensions) References ---------- .. [1] Johannes Kilian. Simple Image Analysis By Moments. Durham University, version 0.2, Durham, 2001. Examples -------- >>> import cupy as cp >>> from cucim.skimage.measure import moments_coords_central >>> coords = cp.array([[row, col] ... for row in range(13, 17) ... for col in range(14, 18)]) >>> moments_coords_central(coords) array([[16., 0., 20., 0.], [ 0., 0., 0., 0.], [20., 0., 25., 0.], [ 0., 0., 0., 0.]]) As seen above, for symmetric objects, odd-order moments (columns 1 and 3, rows 1 and 3) are zero when centered on the centroid, or center of mass, of the object (the default). If we break the symmetry by adding a new point, this no longer holds: >>> coords2 = cp.concatenate((coords, cp.array([[17, 17]])), axis=0) >>> cp.around(moments_coords_central(coords2), ... decimals=2) # doctest: +NORMALIZE_WHITESPACE array([[17. , 0. , 22.12, -2.49], [ 0. , 3.53, 1.73, 7.4 ], [25.88, 6.02, 36.63, 8.83], [ 4.15, 19.17, 14.8 , 39.6 ]]) Image moments and central image moments are equivalent (by definition) when the center is (0, 0): >>> cp.allclose(moments_coords(coords), ... moments_coords_central(coords, (0, 0))) array(True) """ if isinstance(coords, tuple): # This format corresponds to coordinate tuples as returned by # e.g. cp.nonzero: (row_coords, column_coords). # We represent them as an npoints x ndim array. coords = cp.stack(coords, axis=-1) check_nD(coords, 2) ndim = coords.shape[1] float_type = _supported_float_type(coords.dtype) if center is None: center = cp.mean(coords, axis=0, dtype=float) center = center.astype(float_type, copy=False) else: center = cp.asarray(center, dtype=float_type) # center the coordinates coords = coords.astype(float_type, copy=False) coords -= center # CuPy backend: for efficiency, sum over the last axis # (which is memory contiguous) # generate all possible exponents for each axis in the given set of points # produces a matrix of shape (order + 1, D, N) coords = coords.T powers = cp.arange(order + 1, dtype=float_type)[:, np.newaxis, np.newaxis] coords = coords[cp.newaxis, ...] ** powers # add extra dimensions for proper broadcasting coords = coords.reshape((1,) * (ndim - 1) + coords.shape) calc = cp.moveaxis(coords[..., 0, :], -2, 0) for axis in range(1, ndim): # isolate each point's axis isolated_axis = coords[..., axis, :] # rotate orientation of matrix for proper broadcasting isolated_axis = cp.moveaxis(isolated_axis, -2, axis) # calculate the moments for each point, one axis at a time calc = calc * isolated_axis # sum all individual point moments to get our final answer Mc = cp.sum(calc, axis=-1) return Mc def moments(image, order=3, *, spacing=None): """Calculate all raw image moments up to a certain order. The following properties can be calculated from raw image moments: * Area as: ``M[0, 0]``. * Centroid as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}. Note that raw moments are neither translation, scale nor rotation invariant. Parameters ---------- image : nD double or uint8 array Rasterized shape as image. order : int, optional Maximum order of moments. Default is 3. spacing: tuple of float, shape (ndim, ) The pixel spacing along each axis of the image. Returns ------- m : (``order + 1``, ``order + 1``) array Raw image moments. References ---------- .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing: Core Algorithms. Springer-Verlag, London, 2009. .. [2] B. Jähne. Digital Image Processing. Springer-Verlag, Berlin-Heidelberg, 6. edition, 2005. .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image Features, from Lecture notes in computer science, p. 676. Springer, Berlin, 1993. .. [4] https://en.wikipedia.org/wiki/Image_moment Examples -------- >>> import cupy as cp >>> from cucim.skimage.measure import moments >>> image = cp.zeros((20, 20), dtype=cp.float64) >>> image[13:17, 13:17] = 1 >>> M = moments(image) >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0]) >>> centroid (array(14.5), array(14.5)) """ float_dtype = _supported_float_type(image.dtype) calc = image.astype(float_dtype, copy=False) powers = cp.arange(order + 1, dtype=float_dtype) _delta = cp.arange(max(image.shape), dtype=float_dtype)[:, cp.newaxis] if spacing is None: # when spacing is not used can compute the powers outside the loop _powers_of_delta = _delta**powers for dim, dim_length in enumerate(image.shape): if spacing is None: powers_of_delta = _powers_of_delta[:dim_length] else: delta = _delta[:dim_length] * spacing[dim] powers_of_delta = delta**powers calc = cp.moveaxis(calc, source=dim, destination=-1) calc = cp.dot(calc, powers_of_delta) calc = cp.moveaxis(calc, source=-1, destination=dim) return calc def moments_central(image, center=None, order=3, *, spacing=None, **kwargs): """Calculate all central image moments up to a certain order. The center coordinates (cr, cc) can be calculated from the raw moments as: {``M[1, 0] / M[0, 0]``, ``M[0, 1] / M[0, 0]``}. Note that central moments are translation invariant but not scale and rotation invariant. Parameters ---------- image : nD double or uint8 array Rasterized shape as image. center : tuple of float, optional Coordinates of the image centroid. This will be computed if it is not provided. order : int, optional The maximum order of moments computed. spacing: tuple of float, shape (ndim, ) The pixel spacing along each axis of the image. Returns ------- mu : (``order + 1``, ``order + 1``) array Central image moments. References ---------- .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing: Core Algorithms. Springer-Verlag, London, 2009. .. [2] B. Jähne. Digital Image Processing. Springer-Verlag, Berlin-Heidelberg, 6. edition, 2005. .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image Features, from Lecture notes in computer science, p. 676. Springer, Berlin, 1993. .. [4] https://en.wikipedia.org/wiki/Image_moment Examples -------- >>> import cupy as cp >>> from cucim.skimage.measure import moments, moments_central >>> image = cp.zeros((20, 20), dtype=cp.float64) >>> image[13:17, 13:17] = 1 >>> M = moments(image) >>> centroid = (M[1, 0] / M[0, 0], M[0, 1] / M[0, 0]) >>> moments_central(image, centroid) array([[16., 0., 20., 0.], [ 0., 0., 0., 0.], [20., 0., 25., 0.], [ 0., 0., 0., 0.]]) """ if center is None: # Note: No need for an explicit call to centroid. # The centroid will be obtained from the raw moments. moments_raw = moments(image, order=order, spacing=spacing) return moments_raw_to_central(moments_raw) if spacing is None: spacing = np.ones(image.ndim) float_dtype = _supported_float_type(image.dtype) calc = image.astype(float_dtype, copy=False) powers = cp.arange(order + 1, dtype=float_dtype) _delta = cp.arange(max(image.shape), dtype=float_dtype)[:, cp.newaxis] for dim, dim_length in enumerate(image.shape): delta = _delta[:dim_length] * spacing[dim] - center[dim] powers_of_delta = delta**powers calc = cp.moveaxis(calc, source=dim, destination=-1) calc = cp.dot(calc, powers_of_delta) calc = cp.moveaxis(calc, source=-1, destination=dim) return calc def _get_moments_norm_operation(ndim, order, unit_scale=True): """Full normalization computation kernel for 2D or 3D cases. Variants with or without scaling are provided. """ operation = f""" double mu0 = static_cast<double>(mu[0]); double ndim = {ndim}; int _i = i; int coord_i; int order_of_current_index = 0; int n_rows = order + 1; double denom; """ if not unit_scale: operation += """ double s_pow;""" operation += f""" for (int d=0; d<{ndim}; d++)""" operation += """ { // This loop computes the coordinate index along each axis of the // matrix in turn and sums them up to get the order of the moment // at the current index in mu. coord_i = _i % n_rows; _i /= n_rows; order_of_current_index += coord_i; } if ((order_of_current_index > order) || (order_of_current_index < 2)) { continue; } """ if unit_scale: operation += """ denom = pow(mu0, static_cast<double>(order_of_current_index) / ndim + 1); nu = mu[i] / denom;""" # noqa else: operation += """ s_pow = pow(scale, static_cast<double>(order_of_current_index)); denom = pow(mu0, static_cast<double>(order_of_current_index) / ndim + 1); nu = (mu[i] / s_pow) / denom;""" # noqa return operation @cp.memoize() def _get_normalize_kernel(ndim, order, unit_scale=True): return cp.ElementwiseKernel( "raw F mu, int32 order, float64 scale", "F nu", operation=_get_moments_norm_operation(ndim, order, unit_scale), name="moments_normmalize_2d_kernel", ) def moments_normalized(mu, order=3, spacing=None): """Calculate all normalized central image moments up to a certain order. Note that normalized central moments are translation and scale invariant but not rotation invariant. Parameters ---------- mu : (M,[ ...,] M) array Central image moments, where M must be greater than or equal to ``order``. order : int, optional Maximum order of moments. Default is 3. Returns ------- nu : (``order + 1``,[ ...,] ``order + 1``) array Normalized central image moments. Notes ----- Differs from the scikit-image implementation in that any moments greater than the requested `order` will be set to ``nan``. References ---------- .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing: Core Algorithms. Springer-Verlag, London, 2009. .. [2] B. Jähne. Digital Image Processing. Springer-Verlag, Berlin-Heidelberg, 6. edition, 2005. .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image Features, from Lecture notes in computer science, p. 676. Springer, Berlin, 1993. .. [4] https://en.wikipedia.org/wiki/Image_moment Examples -------- >>> import cupy as cp >>> from cucim.skimage.measure import (moments, moments_central, ... moments_normalized) >>> image = cp.zeros((20, 20), dtype=cp.float64) >>> image[13:17, 13:17] = 1 >>> m = moments(image) >>> centroid = (m[0, 1] / m[0, 0], m[1, 0] / m[0, 0]) >>> mu = moments_central(image, centroid) >>> moments_normalized(mu) array([[ nan, nan, 0.078125 , 0. ], [ nan, 0. , 0. , 0. ], [0.078125 , 0. , 0.00610352, 0. ], [0. , 0. , 0. , 0. ]]) """ if any(s <= order for s in mu.shape): raise ValueError("Shape of image moments must be >= `order`") if spacing is None: scale = 1.0 else: if isinstance(spacing, cp.ndarray): scale = spacing.min() else: scale = min(spacing) # compute using in a single kernel for the 2D or 3D cases unit_scale = scale == 1.0 kernel = _get_normalize_kernel(mu.ndim, order, unit_scale) nu = cp.full(mu.shape, cp.nan, dtype=mu.dtype) kernel(mu, order, scale, nu) return nu def moments_hu(nu): """Calculate Hu's set of image moments (2D-only). Note that this set of moments is proved to be translation, scale and rotation invariant. Parameters ---------- nu : (M, M) array Normalized central image moments, where M must be >= 4. Returns ------- nu : (7,) array Hu's set of image moments. Notes ----- Due to the small array sizes, this function will be faster on the CPU. Consider transferring ``nu`` to the host and running ``skimage.measure.moments_hu`` if the moments are not needed on the device. References ---------- .. [1] M. K. Hu, "Visual Pattern Recognition by Moment Invariants", IRE Trans. Info. Theory, vol. IT-8, pp. 179-187, 1962 .. [2] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing: Core Algorithms. Springer-Verlag, London, 2009. .. [3] B. Jähne. Digital Image Processing. Springer-Verlag, Berlin-Heidelberg, 6. edition, 2005. .. [4] T. H. Reiss. Recognizing Planar Objects Using Invariant Image Features, from Lecture notes in computer science, p. 676. Springer, Berlin, 1993. .. [5] https://en.wikipedia.org/wiki/Image_moment Examples -------- >>> import cupy as cp >>> from cucim.skimage.measure import (moments_central, moments_hu, ... moments_normalized) >>> image = cp.zeros((20, 20), dtype=np.float64) >>> image[13:17, 13:17] = 0.5 >>> image[10:12, 10:12] = 1 >>> mu = moments_central(image) >>> nu = moments_normalized(mu) >>> moments_hu(nu) array([7.45370370e-01, 3.51165981e-01, 1.04049179e-01, 4.06442107e-02, 2.64312299e-03, 2.40854582e-02, 6.50521303e-19]) """ try: from skimage.measure import moments_hu except ImportError: raise ImportError("moments_hu requires scikit-image.") # CuPy Backend: TODO: Due to small arrays involved, just transfer to/from # the CPU implementation. float_dtype = cp.float32 if nu.dtype == cp.float32 else cp.float64 return cp.asarray(moments_hu(cp.asnumpy(nu)), dtype=float_dtype) def centroid(image, *, spacing=None): """Return the (weighted) centroid of an image. Parameters ---------- image : array The input image. spacing: tuple of float, shape (ndim, ) The pixel spacing along each axis of the image. Returns ------- center : tuple of float, length ``image.ndim`` The centroid of the (nonzero) pixels in ``image``. Examples -------- >>> import cupy as cp >>> from cucim.skimage.measure import centroid >>> image = cp.zeros((20, 20), dtype=cp.float64) >>> image[13:17, 13:17] = 0.5 >>> image[10:12, 10:12] = 1 >>> centroid(image) array([13.16666667, 13.16666667]) """ mu = moments(image, order=1, spacing=spacing) ndim = image.ndim mu0 = mu[(0,) * ndim] center = mu[ tuple( (0,) * dim + (1,) + (0,) * (ndim - dim - 1) for dim in range(ndim) ) ] center /= mu0 return center def _get_inertia_tensor_2x2_kernel(): operation = """ F mu0, mxx, mxy, myy; mu0 = mu[0]; mxx = mu[6]; myy = mu[2]; mxy = mu[4]; result[0] = myy / mu0; result[1] = result[2] = -mxy / mu0; result[3] = mxx / mu0; """ return cp.ElementwiseKernel( in_params="raw F mu", out_params="raw F result", operation=operation, name="cucim_skimage_measure_inertia_tensor_2x2", ) def _get_inertia_tensor_3x3_kernel(): operation = """ F mu0, mxx, myy, mzz, mxy, mxz, myz; mu0 = mu[0]; // mu[0, 0, 0] mxx = mu[18]; // mu[2, 0, 0] myy = mu[6]; // mu[0, 2, 0] mzz = mu[2]; // mu[0, 0, 2] mxy = mu[12]; // mu[1, 1, 0] mxz = mu[10]; // mu[1, 0, 1] myz = mu[4]; // mu[0, 1, 1] result[0] = (myy + mzz) / mu0; result[4] = (mxx + mzz) / mu0; result[8] = (mxx + myy) / mu0; result[1] = result[3] = -mxy / mu0; result[2] = result[6] = -mxz / mu0; result[5] = result[7] = -myz / mu0; """ return cp.ElementwiseKernel( in_params="raw F mu", out_params="raw F result", operation=operation, name="cucim_skimage_measure_inertia_tensor_3x3", ) def inertia_tensor(image, mu=None, *, spacing=None): """Compute the inertia tensor of the input image. Parameters ---------- image : array The input image. mu : array, optional The pre-computed central moments of ``image``. The inertia tensor computation requires the central moments of the image. If an application requires both the central moments and the inertia tensor (for example, `skimage.measure.regionprops`), then it is more efficient to pre-compute them and pass them to the inertia tensor call. spacing : tuple of float, optional The pixel spacing along each axis of the image. Returns ------- T : array, shape ``(image.ndim, image.ndim)`` The inertia tensor of the input image. :math:`T_{i, j}` contains the covariance of image intensity along axes :math:`i` and :math:`j`. References ---------- .. [1] https://en.wikipedia.org/wiki/Moment_of_inertia#Inertia_tensor .. [2] Bernd Jähne. Spatio-Temporal Image Processing: Theory and Scientific Applications. (Chapter 8: Tensor Methods) Springer, 1993. """ if mu is None: # don't need higher-order moments mu = moments_central(image, order=2, spacing=spacing) else: if mu.shape[0] < 3: raise ValueError("mu must contain second order moments") if mu.shape[0] > 3: # if higher than 2nd order moments are present trim the array to # match the expectations of the _get_inertia_tensor* kernels. mu = mu[(slice(0, 3),) * mu.ndim] mu = cp.ascontiguousarray(mu) if image.ndim == 2: result = cp.empty((2, 2), dtype=mu.dtype) kern = _get_inertia_tensor_2x2_kernel() kern(mu, result, size=1) elif image.ndim == 3: result = cp.empty((3, 3), dtype=mu.dtype) kern = _get_inertia_tensor_3x3_kernel() kern(mu, result, size=1) else: # CuPy Backend: mu and result are tiny, so faster on the CPU mu = cp.asnumpy(mu) mu0 = mu[(0,) * image.ndim] # nD expression to get coordinates ([2, 0], [0, 2]) (2D), # ([2, 0, 0], [0, 2, 0], [0, 0, 2]) (3D), etc. corners2 = tuple(2 * np.eye(image.ndim, dtype=int)) # See https://ocw.mit.edu/courses/aeronautics-and-astronautics/ # 16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec26.pdf # Iii is the sum of second-order moments of every axis *except* i, not # the second order moment of axis i. # See also https://github.com/scikit-image/scikit-image/issues/3229 result = np.diag((np.sum(mu[corners2]) - mu[corners2]) / mu0) for dims in itertools.combinations(range(image.ndim), 2): mu_index = np.zeros(image.ndim, dtype=int) mu_index[list(dims)] = 1 result[dims] = -mu[tuple(mu_index)] / mu0 result.T[dims] = -mu[tuple(mu_index)] / mu0 result = cp.asarray(result) return result def inertia_tensor_eigvals(image, mu=None, T=None, *, spacing=None): """Compute the eigenvalues of the inertia tensor of the image. The inertia tensor measures covariance of the image intensity along the image axes. (See `inertia_tensor`.) The relative magnitude of the eigenvalues of the tensor is thus a measure of the elongation of a (bright) object in the image. Parameters ---------- image : array The input image. mu : array, optional The pre-computed central moments of ``image``. T : array, shape ``(image.ndim, image.ndim)`` The pre-computed inertia tensor. If ``T`` is given, ``mu`` and ``image`` are ignored. spacing : tuple of float, optional The pixel spacing along each axis of the image. Returns ------- eigvals : list of float, length ``image.ndim`` The eigenvalues of the inertia tensor of ``image``, in descending order. Notes ----- Computing the eigenvalues requires the inertia tensor of the input image. This is much faster if the central moments (``mu``) are provided, or, alternatively, one can provide the inertia tensor (``T``) directly. """ # avoid circular import from ..feature.corner import ( _image_orthogonal_matrix22_eigvals, _image_orthogonal_matrix33_eigvals, ) if T is None: T = inertia_tensor(image, mu, spacing=spacing) if image.ndim == 2: eigvals = _image_orthogonal_matrix22_eigvals( T[0, 0], T[0, 1], T[1, 1], sort="descending", abs_sort=False ) cp.maximum(eigvals, 0.0, out=eigvals) elif image.ndim == 3: # fmt: off eigvals = _image_orthogonal_matrix33_eigvals( T[0, 0], T[0, 1], T[0, 2], T[1, 1], T[1, 2], T[2, 2], sort='descending', abs_sort=False ) # fmt: on cp.maximum(eigvals, 0.0, out=eigvals) else: # sort in descending order eigvals = cp.sort(cp.linalg.eigvalsh(T))[::-1] # call without out argument so copy will be made -> positive strides eigvals = cp.maximum(eigvals, 0.0) # Floating point precision problems could make a positive # semidefinite matrix have an eigenvalue that is very slightly # negative. This can cause problems down the line, so set values # very near zero to zero. return eigvals
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/_polygon.py
# TODO: use cupyx.scipy.signal once upstream fftconvolve and # choose_conv_method for > 1d has been implemented. import cupy as cp def approximate_polygon(coords, tolerance): """Approximate a polygonal chain with the specified tolerance. It is based on the Douglas-Peucker algorithm. Note that the approximated polygon is always within the convex hull of the original polygon. Parameters ---------- coords : (N, 2) array Coordinate array. tolerance : float Maximum distance from original points of polygon to approximated polygonal chain. If tolerance is 0, the original coordinate array is returned. Returns ------- coords : (M, 2) array Approximated polygonal chain where M <= N. References ---------- .. [1] https://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm """ if tolerance <= 0: return coords chain = cp.zeros(coords.shape[0], "bool") # pre-allocate distance array for all points dists = cp.zeros(coords.shape[0]) chain[0] = True chain[-1] = True pos_stack = [(0, chain.shape[0] - 1)] end_of_chain = False while not end_of_chain: start, end = pos_stack.pop() # determine properties of current line segment r0, c0 = cp.asnumpy(coords[start, :]) r1, c1 = cp.asnumpy(coords[end, :]) dr = r1 - r0 dc = c1 - c0 segment_angle = -cp.arctan2(dr, dc) segment_dist = c0 * cp.sin(segment_angle) + r0 * cp.cos(segment_angle) # select points in-between line segment segment_coords = coords[start + 1 : end, :] segment_dists = dists[start + 1 : end] # check whether to take perpendicular or euclidean distance with # inner product of vectors # vectors from points -> start and end dr0 = segment_coords[:, 0] - r0 dc0 = segment_coords[:, 1] - c0 dr1 = segment_coords[:, 0] - r1 dc1 = segment_coords[:, 1] - c1 # vectors points -> start and end projected on start -> end vector projected_lengths0 = dr0 * dr + dc0 * dc projected_lengths1 = -dr1 * dr - dc1 * dc perp = cp.logical_and(projected_lengths0 > 0, projected_lengths1 > 0) eucl = cp.logical_not(perp) segment_dists[perp] = cp.abs( segment_coords[perp, 0] * cp.cos(segment_angle) + segment_coords[perp, 1] * cp.sin(segment_angle) - segment_dist ) segment_dists[eucl] = cp.minimum( # distance to start point cp.sqrt(dc0[eucl] ** 2 + dr0[eucl] ** 2), # distance to end point cp.sqrt(dc1[eucl] ** 2 + dr1[eucl] ** 2), ) if cp.any(segment_dists > tolerance): # select point with maximum distance to line new_end = start + cp.argmax(segment_dists) + 1 pos_stack.append((new_end, end)) pos_stack.append((start, new_end)) chain[new_end] = True if len(pos_stack) == 0: end_of_chain = True return coords[chain, :] # B-Spline subdivision _SUBDIVISION_MASKS = { # degree: (mask_even, mask_odd) # extracted from (degree + 2)th row of Pascal's triangle 1: ([1, 1], [1, 1]), 2: ([3, 1], [1, 3]), 3: ([1, 6, 1], [0, 4, 4]), 4: ([5, 10, 1], [1, 10, 5]), 5: ([1, 15, 15, 1], [0, 6, 20, 6]), 6: ([7, 35, 21, 1], [1, 21, 35, 7]), 7: ([1, 28, 70, 28, 1], [0, 8, 56, 56, 8]), } def subdivide_polygon(coords, degree=2, preserve_ends=False): """Subdivision of polygonal curves using B-Splines. Note that the resulting curve is always within the convex hull of the original polygon. Circular polygons stay closed after subdivision. Parameters ---------- coords : (N, 2) array Coordinate array. degree : {1, 2, 3, 4, 5, 6, 7}, optional Degree of B-Spline. Default is 2. preserve_ends : bool, optional Preserve first and last coordinate of non-circular polygon. Default is False. Returns ------- coords : (M, 2) array Subdivided coordinate array. References ---------- .. [1] http://mrl.nyu.edu/publications/subdiv-course2000/coursenotes00.pdf """ from cucim.skimage import _vendored as signal if degree not in _SUBDIVISION_MASKS: raise ValueError( "Invalid B-Spline degree. Only degree 1 - 7 is " "supported." ) circular = cp.all(coords[0, :] == coords[-1, :]) method = "valid" if circular: # remove last coordinate because of wrapping coords = coords[:-1, :] # circular convolution by wrapping boundaries method = "same" mask_even, mask_odd = _SUBDIVISION_MASKS[degree] # divide by total weight float_dtype = coords.dtype if coords.dtype.kind == "f" else cp.float64 mask_even = cp.array(mask_even, float_dtype) / (2**degree) mask_odd = cp.array(mask_odd, float_dtype) / (2**degree) even = signal.convolve2d( coords.T, cp.atleast_2d(mask_even), mode=method, boundary="wrap" ) odd = signal.convolve2d( coords.T, cp.atleast_2d(mask_odd), mode=method, boundary="wrap" ) out = cp.empty((even.shape[1] + odd.shape[1], 2), dtype=float_dtype) out[1::2] = even.T out[::2] = odd.T if circular: # close polygon out = cp.vstack([out, out[0, :]]) if preserve_ends and not circular: out = cp.vstack([coords[0, :], out, coords[-1, :]]) return out
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/_label_kernels.py
"""Kernels for scikit-image label. These are copied from CuPy, with modification to add a greyscale_mode parameter as needed for scikit-image. """ import cupy import numpy def _label(x, structure, y, greyscale_mode=False): elems = numpy.where(structure != 0) vecs = [elems[dm] - 1 for dm in range(x.ndim)] offset = vecs[0] for dm in range(1, x.ndim): offset = offset * 3 + vecs[dm] indxs = numpy.where(offset < 0)[0] dirs = [[vecs[dm][dr] for dm in range(x.ndim)] for dr in indxs] dirs = cupy.array(dirs, dtype=numpy.int32) ndirs = indxs.shape[0] y_shape = cupy.array(y.shape, dtype=numpy.int32) count = cupy.zeros(2, dtype=numpy.int32) _kernel_init()(x, y) if greyscale_mode: _kernel_connect(True)(x, y_shape, dirs, ndirs, x.ndim, y, size=y.size) else: _kernel_connect(False)(y_shape, dirs, ndirs, x.ndim, y, size=y.size) _kernel_count()(y, count, size=y.size) maxlabel = int(count[0]) # synchronize labels = cupy.empty(maxlabel, dtype=numpy.int32) _kernel_labels()(y, count, labels, size=y.size) _kernel_finalize()(maxlabel, cupy.sort(labels), y, size=y.size) return maxlabel """ Elementwise kernels for use by label """ def _kernel_init(): return cupy.ElementwiseKernel( "X x", "Y y", "if (x == 0) { y = -1; } else { y = i; }", "cucim_skimage_measure_label_init", ) def _kernel_connect(greyscale_mode=False, int_t="int"): """ Notes ----- dirs is a (n_neig//2, ndim) of relative offsets to the neighboring voxels. For example, for structure = np.ones((3, 3)): dirs = array([[-1, -1], [-1, 0], [-1, 1], [ 0, -1]], dtype=int32) (Implementation assumes a centro-symmetric structure) ndirs = dirs.shape[0] In the dirs loop below, there is a loop over the ndim neighbors: Here, index j corresponds to the current pixel and k is the current neighbor location. """ in_params = "raw int32 shape, raw int32 dirs, int32 ndirs, int32 ndim" if greyscale_mode: # greyscale mode -> different values receive different labels x_condition = "if (x[k] != x[j]) continue;" in_params = "raw X x, " + in_params else: # binary mode -> all non-background voxels treated the same x_condition = "" # Note: atomicCAS is implemented for int, unsigned short, unsigned int, and # unsigned long long code = """ if (y[i] < 0) continue; for (int dr = 0; dr < ndirs; dr++) {{ {int_t} j = i; {int_t} rest = j; {int_t} stride = 1; {int_t} k = 0; for (int dm = ndim-1; dm >= 0; dm--) {{ int pos = rest % shape[dm] + dirs[dm + dr * ndim]; if (pos < 0 || pos >= shape[dm]) {{ k = -1; break; }} k += pos * stride; rest /= shape[dm]; stride *= shape[dm]; }} if (k < 0) continue; if (y[k] < 0) continue; {x_condition} while (1) {{ while (j != y[j]) {{ j = y[j]; }} while (k != y[k]) {{ k = y[k]; }} if (j == k) break; if (j < k) {{ {int_t} old = atomicCAS( &y[k], (Y)k, (Y)j ); if (old == k) break; k = old; }} else {{ {int_t} old = atomicCAS( &y[j], (Y)j, (Y)k ); if (old == j) break; j = old; }} }} }} """.format( x_condition=x_condition, int_t=int_t ) return cupy.ElementwiseKernel( in_params, "raw Y y", code, "cucim_skimage_measure_label_connect", ) def _kernel_count(): return cupy.ElementwiseKernel( "", "raw Y y, raw int32 count", """ if (y[i] < 0) continue; int j = i; while (j != y[j]) { j = y[j]; } if (j != i) y[i] = j; else atomicAdd(&count[0], 1); """, "cucim_skimage_measure_label_count", ) def _kernel_labels(): return cupy.ElementwiseKernel( "", "raw Y y, raw int32 count, raw int32 labels", """ if (y[i] != i) continue; int j = atomicAdd(&count[1], 1); labels[j] = i; """, "cucim_skimage_measure_label_labels", ) def _kernel_finalize(): return cupy.ElementwiseKernel( "int32 maxlabel", "raw int32 labels, raw Y y", """ if (y[i] < 0) { y[i] = 0; continue; } int yi = y[i]; int j_min = 0; int j_max = maxlabel - 1; int j = (j_min + j_max) / 2; while (j_min < j_max) { if (yi == labels[j]) break; if (yi < labels[j]) j_max = j - 1; else j_min = j + 1; j = (j_min + j_max) / 2; } y[i] = j + 1; """, "cucim_skimage_measure_label_finalize", )
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/profile.py
import math import cupy as cp import numpy as np import cucim.skimage._vendored.ndimage as ndi from .._shared.utils import _fix_ndimage_mode, _validate_interpolation_order def profile_line( image, src, dst, linewidth=1, order=None, mode="reflect", cval=0.0, *, reduce_func=cp.mean, ): """Return the intensity profile of an image measured along a scan line. Parameters ---------- image : ndarray, shape (M, N[, C]) The image, either grayscale (2D array) or multichannel (3D array, where the final axis contains the channel information). src : array_like, shape (2, ) The coordinates of the start point of the scan line. dst : array_like, shape (2, ) The coordinates of the end point of the scan line. The destination point is *included* in the profile, in contrast to standard numpy indexing. linewidth : int, optional Width of the scan, perpendicular to the line order : int in {0, 1, 2, 3, 4, 5}, optional The order of the spline interpolation, default is 0 if image.dtype is bool and 1 otherwise. The order has to be in the range 0-5. See `skimage.transform.warp` for detail. mode : {'constant', 'nearest', 'reflect', 'mirror', 'wrap'}, optional How to compute any values falling outside of the image. cval : float, optional If `mode` is 'constant', what constant value to use outside the image. reduce_func : callable, optional Function used to calculate the aggregation of pixel values perpendicular to the profile_line direction when `linewidth` > 1. If set to None the unreduced array will be returned. Returns ------- return_value : array The intensity profile along the scan line. The length of the profile is the ceil of the computed length of the scan line. Examples -------- >>> import cupy as cp >>> x = cp.asarray([[1, 1, 1, 2, 2, 2]]) >>> img = cp.vstack([cp.zeros_like(x), x, x, x, cp.zeros_like(x)]) >>> img array([[0, 0, 0, 0, 0, 0], [1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2], [1, 1, 1, 2, 2, 2], [0, 0, 0, 0, 0, 0]]) >>> profile_line(img, (2, 1), (2, 4)) array([1., 1., 2., 2.]) >>> profile_line(img, (1, 0), (1, 6), cval=4) array([1., 1., 1., 2., 2., 2., 2.]) The destination point is included in the profile, in contrast to standard numpy indexing. For example: >>> profile_line(img, (1, 0), (1, 6)) # The final point is out of bounds array([1., 1., 1., 2., 2., 2., 2.]) >>> profile_line(img, (1, 0), (1, 5)) # This accesses the full first row array([1., 1., 1., 2., 2., 2.]) For different reduce_func inputs: >>> profile_line(img, (1, 0), (1, 3), linewidth=3, reduce_func=cp.mean) array([0.66666667, 0.66666667, 0.66666667, 1.33333333]) >>> profile_line(img, (1, 0), (1, 3), linewidth=3, reduce_func=cp.max) array([1, 1, 1, 2]) >>> profile_line(img, (1, 0), (1, 3), linewidth=3, reduce_func=cp.sum) array([2, 2, 2, 4]) The unreduced array will be returned when `reduce_func` is None or when `reduce_func` acts on each pixel value individually. >>> profile_line(img, (1, 2), (4, 2), linewidth=3, order=0, ... reduce_func=None) array([[1, 1, 2], [1, 1, 2], [1, 1, 2], [0, 0, 0]]) >>> profile_line(img, (1, 0), (1, 3), linewidth=3, reduce_func=cp.sqrt) array([[1. , 1. , 0. ], [1. , 1. , 0. ], [1. , 1. , 0. ], [1.41421356, 1.41421356, 0. ]]) """ order = _validate_interpolation_order(image.dtype, order) mode = _fix_ndimage_mode(mode) perp_lines = _line_profile_coordinates(src, dst, linewidth=linewidth) if image.ndim == 3: pixels = [ ndi.map_coordinates( image[..., i], perp_lines, prefilter=order > 1, order=order, mode=mode, cval=cval, ) for i in range(image.shape[2]) ] pixels = cp.transpose(cp.stack(pixels, axis=0), (1, 2, 0)) else: pixels = ndi.map_coordinates( image, perp_lines, prefilter=order > 1, order=order, mode=mode, cval=cval, ) # The outputted array with reduce_func=None gives an array where the # row values (axis=1) are flipped. Here, we make this consistent. pixels = np.flip(pixels, axis=1) if reduce_func is None: intensities = pixels else: try: intensities = reduce_func(pixels, axis=1) except TypeError: # function doesn't allow axis kwarg intensities = cp.apply_along_axis(reduce_func, arr=pixels, axis=1) return intensities def _line_profile_coordinates(src, dst, linewidth=1): """Return the coordinates of the profile of an image along a scan line. Parameters ---------- src : 2-tuple of numeric scalar (float or int) The start point of the scan line. dst : 2-tuple of numeric scalar (float or int) The end point of the scan line. linewidth : int, optional Width of the scan, perpendicular to the line Returns ------- coords : array, shape (2, N, C), float The coordinates of the profile along the scan line. The length of the profile is the ceil of the computed length of the scan line. Notes ----- This is a utility method meant to be used internally by skimage functions. The destination point is included in the profile, in contrast to standard numpy indexing. """ src_row, src_col = src dst_row, dst_col = dst d_row, d_col = (d - s for d, s in zip(dst, src)) theta = math.atan2(d_row, d_col) length = math.ceil(math.hypot(d_row, d_col) + 1) # we add one above because we include the last point in the profile # (in contrast to standard numpy indexing) line_col = cp.linspace(src_col, dst_col, length) line_row = cp.linspace(src_row, dst_row, length) # we subtract 1 from linewidth to change from pixel-counting # (make this line 3 pixels wide) to point distances (the # distance between pixel centers) col_width = (linewidth - 1) * cp.sin(-theta) / 2 row_width = (linewidth - 1) * cp.cos(theta) / 2 perp_rows = cp.stack( [ cp.linspace(row_i - row_width, row_i + row_width, linewidth) for row_i in line_row ] ) perp_cols = cp.stack( [ cp.linspace(col_i - col_width, col_i + col_width, linewidth) for col_i in line_col ] ) return cp.stack([perp_rows, perp_cols])
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/_regionprops.py
import inspect import math from functools import wraps from math import pi as PI from warnings import warn import cupy as cp import numpy as np from cupyx.scipy import ndimage as ndi from scipy.ndimage import find_objects as cpu_find_objects from cucim.skimage._vendored import pad from . import _moments from ._regionprops_utils import euler_number, perimeter, perimeter_crofton __all__ = ["regionprops", "euler_number", "perimeter", "perimeter_crofton"] # All values in this PROPS dict correspond to current scikit-image property # names. The keys in this PROPS dict correspond to older names used in prior # releases. For backwards compatibility, these older names will continue to # work, but will not be documented. PROPS = { "Area": "area", "BoundingBox": "bbox", "BoundingBoxArea": "area_bbox", "bbox_area": "area_bbox", "CentralMoments": "moments_central", "Centroid": "centroid", "ConvexArea": "area_convex", "convex_area": "area_convex", # 'ConvexHull', "ConvexImage": "image_convex", "convex_image": "image_convex", "Coordinates": "coords", "Eccentricity": "eccentricity", "EquivDiameter": "equivalent_diameter_area", "equivalent_diameter": "equivalent_diameter_area", "EulerNumber": "euler_number", "Extent": "extent", # 'Extrema', "FeretDiameter": "feret_diameter_max", "FeretDiameterMax": "feret_diameter_max", "FilledArea": "area_filled", "filled_area": "area_filled", "FilledImage": "image_filled", "filled_image": "image_filled", "HuMoments": "moments_hu", "Image": "image", "InertiaTensor": "inertia_tensor", "InertiaTensorEigvals": "inertia_tensor_eigvals", "IntensityImage": "image_intensity", "intensity_image": "image_intensity", "Label": "label", "LocalCentroid": "centroid_local", "local_centroid": "centroid_local", "MajorAxisLength": "axis_major_length", "major_axis_length": "axis_major_length", "MaxIntensity": "intensity_max", "max_intensity": "intensity_max", "MeanIntensity": "intensity_mean", "mean_intensity": "intensity_mean", "MinIntensity": "intensity_min", "min_intensity": "intensity_min", "MinorAxisLength": "axis_minor_length", "minor_axis_length": "axis_minor_length", "Moments": "moments", "NormalizedMoments": "moments_normalized", "Orientation": "orientation", "Perimeter": "perimeter", "CroftonPerimeter": "perimeter_crofton", # 'PixelIdxList', # 'PixelList', "Slice": "slice", "Solidity": "solidity", # 'SubarrayIdx' "WeightedCentralMoments": "moments_weighted_central", "weighted_moments_central": "moments_weighted_central", "WeightedCentroid": "centroid_weighted", "weighted_centroid": "centroid_weighted", "WeightedHuMoments": "moments_weighted_hu", "weighted_moments_hu": "moments_weighted_hu", "WeightedLocalCentroid": "centroid_weighted_local", "weighted_local_centroid": "centroid_weighted_local", "WeightedMoments": "moments_weighted", "weighted_moments": "moments_weighted", "WeightedNormalizedMoments": "moments_weighted_normalized", "weighted_moments_normalized": "moments_weighted_normalized", } COL_DTYPES = { "area": float, "area_bbox": float, "area_convex": float, "area_filled": float, "axis_major_length": float, "axis_minor_length": float, "bbox": int, "centroid": float, "centroid_local": float, "centroid_weighted": float, "centroid_weighted_local": float, "coords": object, "eccentricity": float, "equivalent_diameter_area": float, "euler_number": int, "extent": float, "feret_diameter_max": float, "image": object, "image_convex": object, "image_filled": object, "image_intensity": object, "inertia_tensor": float, "inertia_tensor_eigvals": float, "intensity_max": float, "intensity_mean": float, "intensity_min": float, "label": int, "moments": float, "moments_central": float, "moments_hu": float, "moments_normalized": float, "moments_weighted": float, "moments_weighted_central": float, "moments_weighted_hu": float, "moments_weighted_normalized": float, "orientation": float, "perimeter": float, "perimeter_crofton": float, "slice": object, "solidity": float, } OBJECT_COLUMNS = [col for col, dtype in COL_DTYPES.items() if dtype == object] PROP_VALS = set(PROPS.values()) _require_intensity_image = ( "image_intensity", "intensity_max", "intensity_mean", "intensity_min", "moments_weighted", "moments_weighted_central", "centroid_weighted", "centroid_weighted_local", "moments_weighted_hu", "moments_weighted_normalized", ) def _infer_number_of_required_args(func): """Infer the number of required arguments for a function Parameters ---------- func : callable The function that is being inspected. Returns ------- n_args : int The number of required arguments of func. """ argspec = inspect.getfullargspec(func) n_args = len(argspec.args) if argspec.defaults is not None: n_args -= len(argspec.defaults) return n_args def _infer_regionprop_dtype(func, *, intensity, ndim): """Infer the dtype of a region property calculated by func. If a region property function always returns the same shape and type of output regardless of input size, then the dtype is the dtype of the returned array. Otherwise, the property has object dtype. Parameters ---------- func : callable Function to be tested. The signature should be array[bool] -> Any if intensity is False, or *(array[bool], array[float]) -> Any otherwise. intensity : bool Whether the regionprop is calculated on an intensity image. ndim : int The number of dimensions for which to check func. Returns ------- dtype : NumPy data type The data type of the returned property. """ labels = [1, 2] sample = cp.zeros((3,) * ndim, dtype=np.intp) sample[(0,) * ndim] = labels[0] sample[(slice(1, None),) * ndim] = labels[1] propmasks = [(sample == n) for n in labels] rng = cp.random.default_rng() if intensity and _infer_number_of_required_args(func) == 2: def _func(mask): return func(mask, rng.random(sample.shape)) else: _func = func props1, props2 = map(_func, propmasks) if ( cp.isscalar(props1) and cp.isscalar(props2) or cp.asarray(props1).shape == cp.asarray(props2).shape ): dtype = cp.asarray(props1).dtype.type else: dtype = np.object_ return dtype def _cached(f): @wraps(f) def wrapper(obj): cache = obj._cache prop = f.__name__ if not ((prop in cache) and obj._cache_active): cache[prop] = f(obj) return cache[prop] return wrapper def only2d(method): @wraps(method) def func2d(self, *args, **kwargs): if self._ndim > 2: raise NotImplementedError( f"Property {method.__name__} is not implemented for 3D images" ) return method(self, *args, **kwargs) return func2d def _inertia_eigvals_to_axes_lengths_3D(inertia_tensor_eigvals): """Compute ellipsoid axis lengths from inertia tensor eigenvalues. Parameters --------- inertia_tensor_eigvals : sequence of float A sequence of 3 floating point eigenvalues, sorted in descending order. Returns ------- axis_lengths : list of float The ellipsoid axis lengths sorted in descending order. Notes ----- Let a >= b >= c be the ellipsoid semi-axes and s1 >= s2 >= s3 be the inertia tensor eigenvalues. The inertia tensor eigenvalues are given for a solid ellipsoid in [1]_. s1 = 1 / 5 * (a**2 + b**2) s2 = 1 / 5 * (a**2 + c**2) s3 = 1 / 5 * (b**2 + c**2) Rearranging to solve for a, b, c in terms of s1, s2, s3 gives a = math.sqrt(5 / 2 * ( s1 + s2 - s3)) b = math.sqrt(5 / 2 * ( s1 - s2 + s3)) c = math.sqrt(5 / 2 * (-s1 + s2 + s3)) We can then simply replace sqrt(5/2) by sqrt(10) to get the full axes lengths rather than the semi-axes lengths. References ---------- ..[1] https://en.wikipedia.org/wiki/List_of_moments_of_inertia#List_of_3D_inertia_tensors """ # noqa: E501 axis_lengths = [] for ax in range(2, -1, -1): w = sum( v * -1 if i == ax else v for i, v in enumerate(inertia_tensor_eigvals) ) axis_lengths.append(math.sqrt(10 * w)) return axis_lengths class RegionProperties: """Please refer to `skimage.measure.regionprops` for more information on the available region properties. """ def __init__( self, slice, label, label_image, intensity_image, cache_active, *, extra_properties=None, spacing=None, ): if intensity_image is not None: ndim = label_image.ndim if not ( intensity_image.shape[:ndim] == label_image.shape and intensity_image.ndim in [ndim, ndim + 1] ): raise ValueError( "Label and intensity image shapes must match," " except for channel (last) axis." ) multichannel = label_image.shape < intensity_image.shape else: multichannel = False self.label = label self._slice = slice self.slice = slice self._label_image = label_image self._intensity_image = intensity_image self._cache_active = cache_active self._cache = {} self._ndim = label_image.ndim self._multichannel = multichannel self._spatial_axes = tuple(range(self._ndim)) self._spacing = spacing if spacing is not None else (1.0,) * self._ndim if isinstance(self._spacing, cp.ndarray): self._pixel_area = cp.product(self._spacing) else: self._pixel_area = math.prod(self._spacing) self._extra_properties = {} if extra_properties is not None: for func in extra_properties: name = func.__name__ if hasattr(self, name): msg = ( f"Extra property '{name}' is shadowed by existing " f"property and will be inaccessible. Consider " f"renaming it." ) warn(msg) self._extra_properties = { func.__name__: func for func in extra_properties } def __getattr__(self, attr): if self._intensity_image is None and attr in _require_intensity_image: raise AttributeError( f"Attribute '{attr}' unavailable when `intensity_image` " f"has not been specified." ) if attr in self._extra_properties: func = self._extra_properties[attr] n_args = _infer_number_of_required_args(func) # determine whether func requires intensity image if n_args == 2: if self._intensity_image is not None: if self._multichannel: multichannel_list = [ func(self.image, self.image_intensity[..., i]) for i in range(self.image_intensity.shape[-1]) ] return cp.stack(multichannel_list, axis=-1) else: return func(self.image, self.image_intensity) else: raise AttributeError( f"intensity image required to calculate {attr}" ) elif n_args == 1: return func(self.image) else: raise AttributeError( f"Custom regionprop function's number of arguments must " f"be 1 or 2, but {attr} takes {n_args} arguments." ) elif attr in PROPS and attr.lower() == attr: if ( self._intensity_image is None and PROPS[attr] in _require_intensity_image ): raise AttributeError( f"Attribute '{attr}' unavailable when `intensity_image` " f"has not been specified." ) # retrieve deprecated property (excluding old CamelCase ones) return getattr(self, PROPS[attr]) else: raise AttributeError( f"'{type(self)}' object has no attribute '{attr}'" ) def __setattr__(self, name, value): if name in PROPS: super().__setattr__(PROPS[name], value) else: super().__setattr__(name, value) @property @_cached def num_pixels(self): return np.sum(self.image) @property @_cached def area(self): return cp.sum(self.image) * self._pixel_area @property def bbox(self): """ Returns ------- A tuple of the bounding box's start coordinates for each dimension, followed by the end coordinates for each dimension """ return tuple( [self.slice[i].start for i in range(self._ndim)] + [self.slice[i].stop for i in range(self._ndim)] ) @property def area_bbox(self): return self.image.size * self._pixel_area @property def centroid(self): return tuple(cp.asnumpy(self.coords_scaled.mean(axis=0))) @property @_cached def area_convex(self): return cp.sum(self.image_convex) * self._pixel_area @property @_cached def image_convex(self): # TODO: grlee77: avoid host/device transfers # from ..morphology.convex_hull import convex_hull_image from skimage.morphology.convex_hull import convex_hull_image # CuPy Backend: explicitly cast to uint8 to avoid the issue see in # reported in https://github.com/cupy/cupy/issues/4354 return cp.asarray(convex_hull_image(cp.asnumpy(self.image))).astype( cp.uint8 ) @property def coords_scaled(self): indices = cp.nonzero(self.image) return cp.vstack( [ (indices[i] + self.slice[i].start) * s for i, s in zip(range(self._ndim), self._spacing) ] ).T @property def coords(self): indices = cp.nonzero(self.image) return cp.vstack( [indices[i] + self.slice[i].start for i in range(self._ndim)] ).T @property @only2d def eccentricity(self): l1, l2 = self.inertia_tensor_eigvals if l1 == 0: return 0 return math.sqrt(1 - l2 / l1) @property def equivalent_diameter_area(self): if self._ndim == 2: return math.sqrt(4 * self.area / PI) return (2 * self._ndim * self.area / PI) ** (1 / self._ndim) @property def euler_number(self): if self._ndim not in [2, 3]: raise NotImplementedError( "Euler number is implemented for " "2D or 3D images only" ) return euler_number(self.image, self._ndim) @property def extent(self): return self.area / self.area_bbox @property def feret_diameter_max(self): from scipy.spatial.distance import pdist from skimage.measure import find_contours, marching_cubes # TODO: implement marching cubes, etc. warn("feret diameter_max currently not implemented on GPU.") identity_convex_hull = pad( self.image_convex, 2, mode="constant", constant_values=0 ) identity_convex_hull = cp.asnumpy(identity_convex_hull) if self._ndim == 2: coordinates = np.vstack( find_contours(identity_convex_hull, 0.5, fully_connected="high") ) elif self._ndim == 3: coordinates, _, _, _ = marching_cubes( identity_convex_hull, level=0.5 ) distances = pdist(coordinates * self._spacing, "sqeuclidean") return math.sqrt(np.max(distances)) @property def area_filled(self): return cp.sum(self.image_filled) * self._pixel_area @property @_cached def image_filled(self): structure = cp.ones((3,) * self._ndim) return ndi.binary_fill_holes(self.image, structure) @property @_cached def image(self): return self._label_image[self.slice] == self.label @property @_cached def inertia_tensor(self): mu = self.moments_central return _moments.inertia_tensor(self.image, mu, spacing=self._spacing) @property @_cached def inertia_tensor_eigvals(self): return _moments.inertia_tensor_eigvals( self.image, T=self.inertia_tensor ) @property @_cached def image_intensity(self): if self._intensity_image is None: raise AttributeError("No intensity image specified.") image = ( self.image if not self._multichannel else cp.expand_dims(self.image, self._ndim) ) return self._intensity_image[self.slice] * image def _image_intensity_double(self): return self.image_intensity.astype(cp.double, copy=False) @property def centroid_local(self): M = self.moments return tuple( M[tuple(cp.eye(self._ndim, dtype=int))] / M[(0,) * self._ndim] ) @property def intensity_max(self): vals = self.image_intensity[self.image] return cp.max(vals, axis=0).astype(cp.float64, copy=False) @property def intensity_mean(self): return cp.mean(self.image_intensity[self.image], axis=0) @property def intensity_min(self): vals = self.image_intensity[self.image] return cp.min(vals, axis=0).astype(cp.float64, copy=False) @property def axis_major_length(self): if self._ndim == 2: l1 = self.inertia_tensor_eigvals[0] return 4 * math.sqrt(l1) elif self._ndim == 3: # equivalent to _inertia_eigvals_to_axes_lengths_3D(ev)[0] ev = self.inertia_tensor_eigvals return math.sqrt(10 * (ev[0] + ev[1] - ev[2])) else: raise ValueError("axis_major_length only available in 2D and 3D") @property def axis_minor_length(self): if self._ndim == 2: l2 = self.inertia_tensor_eigvals[-1] return 4 * math.sqrt(l2) elif self._ndim == 3: # equivalent to _inertia_eigvals_to_axes_lengths_3D(ev)[-1] ev = self.inertia_tensor_eigvals return math.sqrt(10 * (-ev[0] + ev[1] + ev[2])) else: raise ValueError("axis_minor_length only available in 2D and 3D") @property @_cached def moments(self): M = _moments.moments( self.image.astype(cp.uint8), 3, spacing=self._spacing ) return M @property @_cached def moments_central(self): mu = _moments.moments_central( self.image.astype(cp.uint8), self.centroid_local, order=3, spacing=self._spacing, ) return mu @property @only2d def moments_hu(self): if any(s != 1.0 for s in self._spacing): raise NotImplementedError( "`moments_hu` supports spacing = (1, 1) only" ) return _moments.moments_hu(self.moments_normalized) @property @_cached def moments_normalized(self): return _moments.moments_normalized( self.moments_central, 3, spacing=self._spacing ) @property @only2d def orientation(self): a, b, b, c = self.inertia_tensor.ravel() if a - c == 0: if b < 0: return -PI / 4.0 else: return PI / 4.0 else: return 0.5 * math.atan2(-2 * b, c - a) @property @only2d def perimeter(self): if len(np.unique(self._spacing)) != 1: raise NotImplementedError( "`perimeter` supports isotropic spacings only" ) return perimeter(self.image, 4) * self._spacing[0] @property @only2d def perimeter_crofton(self): if len(np.unique(self._spacing)) != 1: raise NotImplementedError( "`perimeter` supports isotropic spacings only" ) return perimeter_crofton(self.image, 4) * self._spacing[0] @property def solidity(self): return self.area / self.area_convex @property def centroid_weighted(self): ctr = self.centroid_weighted_local return tuple(idx + slc.start for idx, slc in zip(ctr, self.slice)) @property def centroid_weighted_local(self): M = self.moments_weighted return M[tuple(cp.eye(self._ndim, dtype=int))] / M[(0,) * self._ndim] @property @_cached def moments_weighted(self): image = self._image_intensity_double() if self._multichannel: moments = cp.stack( [ _moments.moments( image[..., i], order=3, spacing=self._spacing ) for i in range(image.shape[-1]) ], axis=-1, ) else: moments = _moments.moments(image, order=3, spacing=self._spacing) return moments @property @_cached def moments_weighted_central(self): ctr = self.centroid_weighted_local image = self._image_intensity_double() if self._multichannel: moments_list = [ _moments.moments_central( image[..., i], center=ctr[..., i], order=3, spacing=self._spacing, ) for i in range(image.shape[-1]) ] moments = cp.stack(moments_list, axis=-1) else: moments = _moments.moments_central( image, ctr, order=3, spacing=self._spacing ) return moments @property @only2d def moments_weighted_hu(self): if not (np.array(self._spacing) == np.array([1, 1])).all(): raise NotImplementedError( "`moments_hu` supports spacing = (1, 1) only" ) nu = self.moments_weighted_normalized if self._multichannel: nchannels = self._intensity_image.shape[-1] return cp.stack( [_moments.moments_hu(nu[..., i]) for i in range(nchannels)], axis=-1, ) else: return _moments.moments_hu(nu) @property @_cached def moments_weighted_normalized(self): mu = self.moments_weighted_central if self._multichannel: nchannels = self._intensity_image.shape[-1] return cp.stack( [ _moments.moments_normalized( mu[..., i], order=3, spacing=self._spacing ) for i in range(nchannels) ], axis=-1, ) else: return _moments.moments_normalized( mu, order=3, spacing=self._spacing ) return _moments.moments_normalized( self.moments_weighted_central, 3, spacing=self._spacing ) def __iter__(self): props = PROP_VALS if self._intensity_image is None: unavailable_props = _require_intensity_image props = props.difference(unavailable_props) return iter(sorted(props)) def __getitem__(self, key): value = getattr(self, key, None) if value is not None: return value else: # backwards compatibility return getattr(self, PROPS[key]) def __eq__(self, other): if not isinstance(other, RegionProperties): return False for key in PROP_VALS: try: v1 = getattr(self, key, None) v2 = getattr(other, key, None) if isinstance(v1, tuple): np.testing.assert_equal(v1, v2) else: # so that NaNs are equal cp.testing.assert_array_equal( getattr(self, key, None), getattr(other, key, None) ) except AssertionError: return False return True # For compatibility with code written prior to 0.16 _RegionProperties = RegionProperties def _props_to_dict(regions, properties=("label", "bbox"), separator="-"): """Convert image region properties list into a column dictionary. Parameters ---------- regions : (N,) list List of RegionProperties objects as returned by :func:`regionprops`. properties : tuple or list of str, optional Properties that will be included in the resulting dictionary For a list of available properties, please see :func:`regionprops`. Users should remember to add "label" to keep track of region identities. separator : str, optional For non-scalar properties not listed in OBJECT_COLUMNS, each element will appear in its own column, with the index of that element separated from the property name by this separator. For example, the inertia tensor of a 2D region will appear in four columns: ``inertia_tensor-0-0``, ``inertia_tensor-0-1``, ``inertia_tensor-1-0``, and ``inertia_tensor-1-1`` (where the separator is ``-``). Object columns are those that cannot be split in this way because the number of columns would change depending on the object. For example, ``image`` and ``coords``. Returns ------- out_dict : dict Dictionary mapping property names to an array of values of that property, one value per region. This dictionary can be used as input to pandas ``DataFrame`` to map property names to columns in the frame and regions to rows. Notes ----- Each column contains either a scalar property, an object property, or an element in a multidimensional array. Properties with scalar values for each region, such as "eccentricity", will appear as a float or int array with that property name as key. Multidimensional properties *of fixed size* for a given image dimension, such as "centroid" (every centroid will have three elements in a 3D image, no matter the region size), will be split into that many columns, with the name {property_name}{separator}{element_num} (for 1D properties), {property_name}{separator}{elem_num0}{separator}{elem_num1} (for 2D properties), and so on. For multidimensional properties that don't have a fixed size, such as "image" (the image of a region varies in size depending on the region size), an object array will be used, with the corresponding property name as the key. Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage import util, measure >>> image = cp.array(data.coins()) >>> label_image = measure.label(image > 110, connectivity=image.ndim) >>> proplist = regionprops(label_image, image) >>> props = _props_to_dict(proplist, properties=['label', 'inertia_tensor', ... 'inertia_tensor_eigvals']) >>> props # doctest: +ELLIPSIS +SKIP {'label': array([ 1, 2, ...]), ... 'inertia_tensor-0-0': array([ 4.012...e+03, 8.51..., ...]), ... ..., 'inertia_tensor_eigvals-1': array([ 2.67...e+02, 2.83..., ...])} The resulting dictionary can be directly passed to pandas, if installed, to obtain a clean DataFrame: >>> import pandas as pd # doctest: +SKIP >>> data = pd.DataFrame(props) # doctest: +SKIP >>> data.head() # doctest: +SKIP label inertia_tensor-0-0 ... inertia_tensor_eigvals-1 0 1 4012.909888 ... 267.065503 1 2 8.514739 ... 2.834806 2 3 0.666667 ... 0.000000 3 4 0.000000 ... 0.000000 4 5 0.222222 ... 0.111111 """ out = {} n = len(regions) for prop in properties: r = regions[0] # Copy the original property name so the output will have the # user-provided property name in the case of deprecated names. orig_prop = prop # determine the current property name for any deprecated property. prop = PROPS.get(prop, prop) rp = getattr(r, prop) if prop in COL_DTYPES: dtype = COL_DTYPES[prop] else: func = r._extra_properties[prop] dtype = _infer_regionprop_dtype( func, intensity=r._intensity_image is not None, ndim=r.image.ndim, ) is_0dim_array = isinstance(rp, cp.ndarray) and rp.ndim == 0 # scalars and objects are dedicated one column per prop # array properties are raveled into multiple columns # for more info, refer to notes 1 if ( cp.isscalar(rp) or is_0dim_array or prop in OBJECT_COLUMNS or dtype is np.object_ ): if prop in OBJECT_COLUMNS: # keep objects in a NumPy array column_buffer = np.empty(n, dtype=dtype) for i in range(n): column_buffer[i] = regions[i][prop] out[orig_prop] = np.copy(column_buffer) else: column_buffer = [] for i in range(n): p = regions[i][prop] column_buffer.append(p) column_buffer = cp.array(column_buffer) out[orig_prop] = column_buffer else: if isinstance(rp, cp.ndarray): shape = rp.shape else: shape = (len(rp),) # precompute property column names and locations modified_props = [] locs = [] for ind in np.ndindex(shape): modified_props.append( separator.join(map(str, (orig_prop,) + ind)) ) locs.append(ind if len(ind) > 1 else ind[0]) # fill temporary column data_array n_columns = len(locs) column_data = cp.empty((n, n_columns), dtype=dtype) for k in range(n): rp = regions[k][prop] for i, loc in enumerate(locs): column_data[k, i] = rp[loc] # add the columns to the output dictionary for i, modified_prop in enumerate(modified_props): out[modified_prop] = column_data[:, i] return out def regionprops_table( label_image, intensity_image=None, properties=("label", "bbox"), *, cache=True, separator="-", extra_properties=None, spacing=None, ): """Compute image properties and return them as a pandas-compatible table. The table is a dictionary mapping column names to value arrays. See Notes section below for details. .. versionadded:: 0.16 Parameters ---------- label_image : (N, M[, P]) ndarray Labeled input image. Labels with value 0 are ignored. intensity_image : (M, N[, P][, C]) ndarray, optional Intensity (i.e., input) image with same size as labeled image, plus optionally an extra dimension for multichannel data. Currently, this extra channel dimension, if present, must be the last axis. Default is None. .. versionchanged:: 0.18.0 The ability to provide an extra dimension for channels was added. properties : tuple or list of str, optional Properties that will be included in the resulting dictionary For a list of available properties, please see :func:`regionprops`. Users should remember to add "label" to keep track of region identities. cache : bool, optional Determine whether to cache calculated properties. The computation is much faster for cached properties, whereas the memory consumption increases. separator : str, optional For non-scalar properties not listed in OBJECT_COLUMNS, each element will appear in its own column, with the index of that element separated from the property name by this separator. For example, the inertia tensor of a 2D region will appear in four columns: ``inertia_tensor-0-0``, ``inertia_tensor-0-1``, ``inertia_tensor-1-0``, and ``inertia_tensor-1-1`` (where the separator is ``-``). Object columns are those that cannot be split in this way because the number of columns would change depending on the object. For example, ``image`` and ``coords``. extra_properties : Iterable of callables Add extra property computation functions that are not included with skimage. The name of the property is derived from the function name, the dtype is inferred by calling the function on a small sample. If the name of an extra property clashes with the name of an existing property the extra property will not be visible and a UserWarning is issued. A property computation function must take a region mask as its first argument. If the property requires an intensity image, it must accept the intensity image as the second argument. spacing: tuple of float, shape (ndim, ) The pixel spacing along each axis of the image. Returns ------- out_dict : dict Dictionary mapping property names to an array of values of that property, one value per region. This dictionary can be used as input to pandas ``DataFrame`` to map property names to columns in the frame and regions to rows. If the image has no regions, the arrays will have length 0, but the correct type. Notes ----- Each column contains either a scalar property, an object property, or an element in a multidimensional array. Properties with scalar values for each region, such as "eccentricity", will appear as a float or int array with that property name as key. Multidimensional properties *of fixed size* for a given image dimension, such as "centroid" (every centroid will have three elements in a 3D image, no matter the region size), will be split into that many columns, with the name {property_name}{separator}{element_num} (for 1D properties), {property_name}{separator}{elem_num0}{separator}{elem_num1} (for 2D properties), and so on. For multidimensional properties that don't have a fixed size, such as "image" (the image of a region varies in size depending on the region size), an object array will be used, with the corresponding property name as the key. Examples -------- >>> from skimage import data, util, measure >>> image = data.coins() >>> label_image = measure.label(image > 110, connectivity=image.ndim) >>> props = measure.regionprops_table(label_image, image, ... properties=['label', 'inertia_tensor', ... 'inertia_tensor_eigvals']) >>> props # doctest: +ELLIPSIS +SKIP {'label': array([ 1, 2, ...]), ... 'inertia_tensor-0-0': array([ 4.012...e+03, 8.51..., ...]), ... ..., 'inertia_tensor_eigvals-1': array([ 2.67...e+02, 2.83..., ...])} The resulting dictionary can be directly passed to pandas, if installed, to obtain a clean DataFrame: >>> import pandas as pd # doctest: +SKIP >>> data = pd.DataFrame(props) # doctest: +SKIP >>> data.head() # doctest: +SKIP label inertia_tensor-0-0 ... inertia_tensor_eigvals-1 0 1 4012.909888 ... 267.065503 1 2 8.514739 ... 2.834806 2 3 0.666667 ... 0.000000 3 4 0.000000 ... 0.000000 4 5 0.222222 ... 0.111111 [5 rows x 7 columns] If we want to measure a feature that does not come as a built-in property, we can define custom functions and pass them as ``extra_properties``. For example, we can create a custom function that measures the intensity quartiles in a region: >>> from skimage import data, util, measure >>> import numpy as np >>> def quartiles(regionmask, intensity): ... return np.percentile(intensity[regionmask], q=(25, 50, 75)) >>> >>> image = data.coins() >>> label_image = measure.label(image > 110, connectivity=image.ndim) >>> props = measure.regionprops_table(label_image, intensity_image=image, ... properties=('label',), ... extra_properties=(quartiles,)) >>> import pandas as pd # doctest: +SKIP >>> pd.DataFrame(props).head() # doctest: +SKIP label quartiles-0 quartiles-1 quartiles-2 0 1 117.00 123.0 130.0 1 2 111.25 112.0 114.0 2 3 111.00 111.0 111.0 3 4 111.00 111.5 112.5 4 5 112.50 113.0 114.0 """ regions = regionprops( label_image, intensity_image=intensity_image, cache=cache, extra_properties=extra_properties, spacing=spacing, ) if extra_properties is not None: properties = list(properties) + [ prop.__name__ for prop in extra_properties ] if len(regions) == 0: ndim = label_image.ndim label_image = np.zeros((3,) * ndim, dtype=int) label_image[(1,) * ndim] = 1 label_image = cp.asarray(label_image) if intensity_image is not None: intensity_image = cp.zeros( label_image.shape + intensity_image.shape[ndim:], dtype=intensity_image.dtype, ) regions = regionprops( label_image, intensity_image=intensity_image, cache=cache, extra_properties=extra_properties, spacing=spacing, ) out_d = _props_to_dict( regions, properties=properties, separator=separator ) return {k: v[:0] for k, v in out_d.items()} return _props_to_dict(regions, properties=properties, separator=separator) def regionprops( label_image, intensity_image=None, cache=True, *, extra_properties=None, spacing=None, ): r"""Measure properties of labeled image regions. Parameters ---------- label_image : (M, N[, P]) ndarray Labeled input image. Labels with value 0 are ignored. .. versionchanged:: 0.14.1 Previously, ``label_image`` was processed by ``numpy.squeeze`` and so any number of singleton dimensions was allowed. This resulted in inconsistent handling of images with singleton dimensions. To recover the old behaviour, use ``regionprops(np.squeeze(label_image), ...)``. intensity_image : (M, N[, P][, C]) ndarray, optional Intensity (i.e., input) image with same size as labeled image, plus optionally an extra dimension for multichannel data. Currently, this extra channel dimension, if present, must be the last axis. Default is None. .. versionchanged:: 0.18.0 The ability to provide an extra dimension for channels was added. cache : bool, optional Determine whether to cache calculated properties. The computation is much faster for cached properties, whereas the memory consumption increases. extra_properties : Iterable of callables Add extra property computation functions that are not included with skimage. The name of the property is derived from the function name, the dtype is inferred by calling the function on a small sample. If the name of an extra property clashes with the name of an existing property the extra property will not be visible and a UserWarning is issued. A property computation function must take a region mask as its first argument. If the property requires an intensity image, it must accept the intensity image as the second argument. spacing: tuple of float, shape (ndim, ) The pixel spacing along each axis of the image. Returns ------- properties : list of RegionProperties Each item describes one labeled region, and can be accessed using the attributes listed below. Notes ----- The following properties can be accessed as attributes or keys: **num_pixels** : int Number of foreground pixels. **area** : float Area of the region i.e. number of pixels of the region scaled by pixel-area. **area_bbox** : float Area of the bounding box i.e. number of pixels of bounding box scaled by pixel-area. **area_convex** : float Are of the convex hull image, which is the smallest convex polygon that encloses the region. **area_filled** : float Area of the region with all the holes filled in. **axis_major_length** : float The length of the major axis of the ellipse that has the same normalized second central moments as the region. **axis_minor_length** : float The length of the minor axis of the ellipse that has the same normalized second central moments as the region. **bbox** : tuple Bounding box ``(min_row, min_col, max_row, max_col)``. Pixels belonging to the bounding box are in the half-open interval ``[min_row; max_row)`` and ``[min_col; max_col)``. **centroid** : array Centroid coordinate tuple ``(row, col)``. **centroid_local** : array Centroid coordinate tuple ``(row, col)``, relative to region bounding box. **centroid_weighted** : array Centroid coordinate tuple ``(row, col)`` weighted with intensity image. **centroid_weighted_local** : array Centroid coordinate tuple ``(row, col)``, relative to region bounding box, weighted with intensity image. **coords_scaled** : (N, 2) ndarray Coordinate list ``(row, col)``of the region scaled by ``spacing``. **coords** : (N, 2) ndarray Coordinate list ``(row, col)`` of the region. **eccentricity** : float Eccentricity of the ellipse that has the same second-moments as the region. The eccentricity is the ratio of the focal distance (distance between focal points) over the major axis length. The value is in the interval [0, 1). When it is 0, the ellipse becomes a circle. **equivalent_diameter_area** : float The diameter of a circle with the same area as the region. **euler_number** : int Euler characteristic of the set of non-zero pixels. Computed as number of connected components subtracted by number of holes (input.ndim connectivity). In 3D, number of connected components plus number of holes subtracted by number of tunnels. **extent** : float Ratio of pixels in the region to pixels in the total bounding box. Computed as ``area / (rows * cols)`` **feret_diameter_max** : float Maximum Feret's diameter computed as the longest distance between points around a region's convex hull contour as determined by ``find_contours``. [5]_ **image** : (H, J) ndarray Sliced binary region image which has the same size as bounding box. **image_convex** : (H, J) ndarray Binary convex hull image which has the same size as bounding box. **image_filled** : (H, J) ndarray Binary region image with filled holes which has the same size as bounding box. **image_intensity** : ndarray Image inside region bounding box. **inertia_tensor** : ndarray Inertia tensor of the region for the rotation around its mass. **inertia_tensor_eigvals** : tuple The eigenvalues of the inertia tensor in decreasing order. **intensity_max** : float Value with the greatest intensity in the region. **intensity_mean** : float Value with the mean intensity in the region. **intensity_min** : float Value with the least intensity in the region. **label** : int The label in the labeled input image. **moments** : (3, 3) ndarray Spatial moments up to 3rd order:: m_ij = sum{ array(row, col) * row^i * col^j } where the sum is over the `row`, `col` coordinates of the region. **moments_central** : (3, 3) ndarray Central moments (translation invariant) up to 3rd order:: mu_ij = sum{ array(row, col) * (row - row_c)^i * (col - col_c)^j } where the sum is over the `row`, `col` coordinates of the region, and `row_c` and `col_c` are the coordinates of the region's centroid. **moments_hu** : tuple Hu moments (translation, scale and rotation invariant). **moments_normalized** : (3, 3) ndarray Normalized moments (translation and scale invariant) up to 3rd order:: nu_ij = mu_ij / m_00^[(i+j)/2 + 1] where `m_00` is the zeroth spatial moment. **moments_weighted** : (3, 3) ndarray Spatial moments of intensity image up to 3rd order:: wm_ij = sum{ array(row, col) * row^i * col^j } where the sum is over the `row`, `col` coordinates of the region. **moments_weighted_central** : (3, 3) ndarray Central moments (translation invariant) of intensity image up to 3rd order:: wmu_ij = sum{ array(row, col) * (row - row_c)^i * (col - col_c)^j } where the sum is over the `row`, `col` coordinates of the region, and `row_c` and `col_c` are the coordinates of the region's weighted centroid. **moments_weighted_hu** : tuple Hu moments (translation, scale and rotation invariant) of intensity image. **moments_weighted_normalized** : (3, 3) ndarray Normalized moments (translation and scale invariant) of intensity image up to 3rd order:: wnu_ij = wmu_ij / wm_00^[(i+j)/2 + 1] where ``wm_00`` is the zeroth spatial moment (intensity-weighted area). **orientation** : float Angle between the 0th axis (rows) and the major axis of the ellipse that has the same second moments as the region, ranging from `-pi/2` to `pi/2` counter-clockwise. **perimeter** : float Perimeter of object which approximates the contour as a line through the centers of border pixels using a 4-connectivity. **perimeter_crofton** : float Perimeter of object approximated by the Crofton formula in 4 directions. **slice** : tuple of slices A slice to extract the object from the source image. **solidity** : float Ratio of pixels in the region to pixels of the convex hull image. Each region also supports iteration, so that you can do:: for prop in region: print(prop, region[prop]) See Also -------- label References ---------- .. [1] Wilhelm Burger, Mark Burge. Principles of Digital Image Processing: Core Algorithms. Springer-Verlag, London, 2009. .. [2] B. Jähne. Digital Image Processing. Springer-Verlag, Berlin-Heidelberg, 6. edition, 2005. .. [3] T. H. Reiss. Recognizing Planar Objects Using Invariant Image Features, from Lecture notes in computer science, p. 676. Springer, Berlin, 1993. .. [4] https://en.wikipedia.org/wiki/Image_moment .. [5] W. Pabst, E. Gregorová. Characterization of particles and particle systems, pp. 27-28. ICT Prague, 2007. https://old.vscht.cz/sil/keramika/Characterization_of_particles/CPPS%20_English%20version_.pdf Examples -------- >>> from skimage import data, util >>> from cucim.skimage.measure import label, regionprops >>> img = cp.asarray(util.img_as_ubyte(data.coins()) > 110) >>> label_img = label(img, connectivity=img.ndim) >>> props = regionprops(label_img) >>> # centroid of first labeled object >>> props[0].centroid (22.72987986048314, 81.91228523446583) >>> # centroid of first labeled object >>> props[0]['centroid'] (22.72987986048314, 81.91228523446583) Add custom measurements by passing functions as ``extra_properties`` >>> from skimage import data, util >>> from cucim.skimage.measure import label, regionprops >>> import numpy as np >>> img = cp.asarray(util.img_as_ubyte(data.coins()) > 110) >>> label_img = label(img, connectivity=img.ndim) >>> def pixelcount(regionmask): ... return np.sum(regionmask) >>> props = regionprops(label_img, extra_properties=(pixelcount,)) >>> props[0].pixelcount array(7741) >>> props[1]['pixelcount'] array(42) """ # noqa if label_image.ndim not in (2, 3): raise TypeError("Only 2-D and 3-D images supported.") if not cp.issubdtype(label_image.dtype, cp.integer): if cp.issubdtype(label_image.dtype, bool): raise TypeError( "Non-integer image types are ambiguous: " "use skimage.measure.label to label the connected" "components of label_image," "or label_image.astype(np.uint8) to interpret" "the True values as a single label." ) else: raise TypeError("Non-integer label_image types are ambiguous") regions = [] # CuPy Backend: ndimage.find_objects not implemented objects = cpu_find_objects(cp.asnumpy(label_image)) # synchronize! for i, sl in enumerate(objects): if sl is None: continue label = i + 1 props = RegionProperties( sl, label, label_image, intensity_image, cache, spacing=spacing, extra_properties=extra_properties, ) regions.append(props) return regions def _parse_docs(): import re import textwrap doc = regionprops.__doc__ or "" matches = re.finditer( r"\*\*(\w+)\*\* \:.*?\n(.*?)(?=\n [\*\S]+)", doc, flags=re.DOTALL ) prop_doc = {m.group(1): textwrap.dedent(m.group(2)) for m in matches} return prop_doc def _install_properties_docs(): prop_doc = _parse_docs() for p in [ member for member in dir(RegionProperties) if not member.startswith("_") ]: getattr(RegionProperties, p).__doc__ = prop_doc[p] if __debug__: # don't install docstrings when in optimized/non-debug mode _install_properties_docs()
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/_regionprops_utils.py
import math import cupy as cp import cupyx.scipy.ndimage as ndi import numpy as np from cucim.skimage._vendored import pad # Don't allocate STREL_* on GPU as we don't know in advance which device # fmt: off STREL_4 = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.uint8) STREL_8 = np.ones((3, 3), dtype=np.uint8) # fmt: on # Coefficients from # Ohser J., Nagel W., Schladitz K. (2002) The Euler Number of Discretized Sets # - On the Choice of Adjacency in Homogeneous Lattices. # In: Mecke K., Stoyan D. (eds) Morphology of Condensed Matter. Lecture Notes # in Physics, vol 600. Springer, Berlin, Heidelberg. # The value of coefficients correspond to the contributions to the Euler number # of specific voxel configurations, which are themselves encoded thanks to a # LUT. Computing the Euler number from the addition of the contributions of # local configurations is possible thanks to an integral geometry formula # (see the paper by Ohser et al. for more details). EULER_COEFS2D_4 = [0, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0] EULER_COEFS2D_8 = [0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0] # fmt: off EULER_COEFS3D_26 = np.array([0, 1, 1, 0, 1, 0, -2, -1, 1, -2, 0, -1, 0, -1, -1, 0, 1, 0, -2, -1, -2, -1, -1, -2, -6, -3, -3, -2, -3, -2, 0, -1, 1, -2, 0, -1, -6, -3, -3, -2, -2, -1, -1, -2, -3, 0, -2, -1, 0, -1, -1, 0, -3, -2, 0, -1, -3, 0, -2, -1, 0, 1, 1, 0, 1, -2, -6, -3, 0, -1, -3, -2, -2, -1, -3, 0, -1, -2, -2, -1, 0, -1, -3, -2, -1, 0, 0, -1, -3, 0, 0, 1, -2, -1, 1, 0, -2, -1, -3, 0, -3, 0, 0, 1, -1, 4, 0, 3, 0, 3, 1, 2, -1, -2, -2, -1, -2, -1, 1, 0, 0, 3, 1, 2, 1, 2, 2, 1, 1, -6, -2, -3, -2, -3, -1, 0, 0, -3, -1, -2, -1, -2, -2, -1, -2, -3, -1, 0, -1, 0, 4, 3, -3, 0, 0, 1, 0, 1, 3, 2, 0, -3, -1, -2, -3, 0, 0, 1, -1, 0, 0, -1, -2, 1, -1, 0, -1, -2, -2, -1, 0, 1, 3, 2, -2, 1, -1, 0, 1, 2, 2, 1, 0, -3, -3, 0, -1, -2, 0, 1, -1, 0, -2, 1, 0, -1, -1, 0, -1, -2, 0, 1, -2, -1, 3, 2, -2, 1, 1, 2, -1, 0, 2, 1, -1, 0, -2, 1, -2, 1, 1, 2, -2, 3, -1, 2, -1, 2, 0, 1, 0, -1, -1, 0, -1, 0, 2, 1, -1, 2, 0, 1, 0, 1, 1, 0, ]) # fmt: on def euler_number(image, connectivity=None): """Calculate the Euler characteristic in binary image. For 2D objects, the Euler number is the number of objects minus the number of holes. For 3D objects, the Euler number is obtained as the number of objects plus the number of holes, minus the number of tunnels, or loops. Parameters ---------- image: (N, M) ndarray or (N, M, D) ndarray. 2D or 3D images. If image is not binary, all values strictly greater than zero are considered as the object. connectivity : int, optional Maximum number of orthogonal hops to consider a pixel/voxel as a neighbor. Accepted values are ranging from 1 to input.ndim. If ``None``, a full connectivity of ``input.ndim`` is used. 4 or 8 neighborhoods are defined for 2D images (connectivity 1 and 2, respectively). 6 or 26 neighborhoods are defined for 3D images, (connectivity 1 and 3, respectively). Connectivity 2 is not defined. Returns ------- euler_number : int Euler characteristic of the set of all objects in the image. Notes ----- The Euler characteristic is an integer number that describes the topology of the set of all objects in the input image. If object is 4-connected, then background is 8-connected, and conversely. The computation of the Euler characteristic is based on an integral geometry formula in discretized space. In practice, a neighborhood configuration is constructed, and a LUT is applied for each configuration. The coefficients used are the ones of Ohser et al. It can be useful to compute the Euler characteristic for several connectivities. A large relative difference between results for different connectivities suggests that the image resolution (with respect to the size of objects and holes) is too low. References ---------- .. [1] S. Rivollier. Analyse d’image geometrique et morphometrique par diagrammes de forme et voisinages adaptatifs generaux. PhD thesis, 2010. Ecole Nationale Superieure des Mines de Saint-Etienne. https://tel.archives-ouvertes.fr/tel-00560838 .. [2] Ohser J., Nagel W., Schladitz K. (2002) The Euler Number of Discretized Sets - On the Choice of Adjacency in Homogeneous Lattices. In: Mecke K., Stoyan D. (eds) Morphology of Condensed Matter. Lecture Notes in Physics, vol 600. Springer, Berlin, Heidelberg. Examples -------- >>> import cupy as cp >>> SAMPLE = cp.zeros((100,100,100)) >>> SAMPLE[40:60, 40:60, 40:60] = 1 >>> euler_number(SAMPLE) # doctest: +ELLIPSIS 1... >>> SAMPLE[45:55,45:55,45:55] = 0; >>> euler_number(SAMPLE) # doctest: +ELLIPSIS 2... >>> SAMPLE = cp.array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], ... [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], ... [1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0], ... [0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1], ... [0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]]) >>> euler_number(SAMPLE) # doctest: array(0) >>> euler_number(SAMPLE, connectivity=1) # doctest: array(2) """ # noqa # as image can be a label image, transform it to binary image = (image > 0).astype(int) image = pad(image, pad_width=1, mode="constant") # check connectivity if connectivity is None: connectivity = image.ndim # config variable is an adjacency configuration. A coefficient given by # variable coefs is attributed to each configuration in order to get # the Euler characteristic. if image.ndim == 2: config = cp.array([[0, 0, 0], [0, 1, 4], [0, 2, 8]]) if connectivity == 1: coefs = EULER_COEFS2D_4 else: coefs = EULER_COEFS2D_8 bins = 16 else: # 3D images if connectivity == 2: raise NotImplementedError( "For 3D images, Euler number is implemented " "for connectivities 1 and 3 only" ) # fmt: off config = cp.array([[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 1, 4], [0, 2, 8]], [[0, 0, 0], [0, 16, 64], [0, 32, 128]]]) # fmt: on if connectivity == 1: coefs = EULER_COEFS3D_26[::-1] else: coefs = EULER_COEFS3D_26 bins = 256 # XF has values in the 0-255 range in 3D, and in the 0-15 range in 2D, # with one unique value for each binary configuration of the # 27-voxel cube in 3D / 8-pixel square in 2D, up to symmetries XF = ndi.convolve(image, config, mode="constant", cval=0) h = cp.bincount(XF.ravel(), minlength=bins) coefs = cp.asarray(coefs) if image.ndim == 2: return coefs @ h else: return int(0.125 * coefs @ h) def perimeter(image, neighborhood=4): """Calculate total perimeter of all objects in binary image. Parameters ---------- image : (N, M) ndarray 2D binary image. neighborhood : 4 or 8, optional Neighborhood connectivity for border pixel determination. It is used to compute the contour. A higher neighborhood widens the border on which the perimeter is computed. Returns ------- perimeter : float Total perimeter of all objects in binary image. References ---------- .. [1] K. Benkrid, D. Crookes. Design and FPGA Implementation of a Perimeter Estimator. The Queen's University of Belfast. http://www.cs.qub.ac.uk/~d.crookes/webpubs/papers/perimeter.doc Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage import util >>> from cucim.skimage.measure import label >>> # coins image (binary) >>> img_coins = cp.array(data.coins() > 110) >>> # total perimeter of all objects in the image >>> perimeter(img_coins, neighborhood=4) # doctest: +ELLIPSIS array(7796.86799644) >>> perimeter(img_coins, neighborhood=8) # doctest: +ELLIPSIS array(8806.26807333) """ if image.ndim != 2: raise NotImplementedError("`perimeter` supports 2D images only") if neighborhood == 4: strel = STREL_4 else: strel = STREL_8 strel = cp.asarray(strel) image = image.astype(cp.uint8) eroded_image = ndi.binary_erosion(image, strel, border_value=0) border_image = image - eroded_image perimeter_weights = cp.zeros(50, dtype=cp.float64) perimeter_weights[[5, 7, 15, 17, 25, 27]] = 1 perimeter_weights[[21, 33]] = math.sqrt(2) perimeter_weights[[13, 23]] = (1 + math.sqrt(2)) / 2 perimeter_image = ndi.convolve( border_image, cp.array([[10, 2, 10], [2, 1, 2], [10, 2, 10]]), mode="constant", cval=0, ) # You can also write # return perimeter_weights[perimeter_image].sum() # but that was measured as taking much longer than bincount + cp.dot (5x # as much time) perimeter_histogram = cp.bincount(perimeter_image.ravel(), minlength=50) total_perimeter = perimeter_histogram @ perimeter_weights return total_perimeter def perimeter_crofton(image, directions=4): """Calculate total Crofton perimeter of all objects in binary image. Parameters ---------- image : (N, M) ndarray 2D image. If image is not binary, all values strictly greater than zero are considered as the object. directions : 2 or 4, optional Number of directions used to approximate the Crofton perimeter. By default, 4 is used: it should be more accurate than 2. Computation time is the same in both cases. Returns ------- perimeter : float Total perimeter of all objects in binary image. Notes ----- This measure is based on Crofton formula [1], which is a measure from integral geometry. It is defined for general curve length evaluation via a double integral along all directions. In a discrete space, 2 or 4 directions give a quite good approximation, 4 being more accurate than 2 for more complex shapes. Similar to :func:`~.measure.perimeter`, this function returns an approximation of the perimeter in continuous space. References ---------- .. [1] https://en.wikipedia.org/wiki/Crofton_formula .. [2] S. Rivollier. Analyse d’image geometrique et morphometrique par diagrammes de forme et voisinages adaptatifs generaux. PhD thesis, 2010. Ecole Nationale Superieure des Mines de Saint-Etienne. https://tel.archives-ouvertes.fr/tel-00560838 Examples -------- >>> import cupy as cp >>> from cucim.skimage import util >>> from skimage import data >>> from skimage.measure import label >>> # coins image (binary) >>> img_coins = cp.array(data.coins() > 110) >>> # total perimeter of all objects in the image >>> perimeter_crofton(img_coins, directions=2) # doctest: +ELLIPSIS array(8144.57895443) >>> perimeter_crofton(img_coins, directions=4) # doctest: +ELLIPSIS array(7837.07740694) """ if image.ndim != 2: raise NotImplementedError("`perimeter_crofton` supports 2D images only") # as image could be a label image, transform it to binary image image = (image > 0).astype(cp.uint8) image = pad(image, pad_width=1, mode="constant") XF = ndi.convolve( image, cp.array([[0, 0, 0], [0, 1, 4], [0, 2, 8]]), mode="constant", cval=0, ) h = cp.bincount(XF.ravel(), minlength=16) # definition of the LUT # fmt: off if directions == 2: coefs = [0, np.pi / 2, 0, 0, 0, np.pi / 2, 0, 0, np.pi / 2, np.pi, 0, 0, np.pi / 2, np.pi, 0, 0] else: sq2 = math.sqrt(2) coefs = [0, np.pi / 4 * (1 + 1 / sq2), np.pi / (4 * sq2), np.pi / (2 * sq2), 0, np.pi / 4 * (1 + 1 / sq2), 0, np.pi / (4 * sq2), np.pi / 4, np.pi / 2, np.pi / (4 * sq2), np.pi / (4 * sq2), np.pi / 4, np.pi / 2, 0, 0] # fmt: on total_perimeter = cp.asarray(coefs) @ h return total_perimeter
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/_moments_analytical.py
import itertools import math import cupy as cp import numpy as np _order0_or_1 = """ mc[0] = m[0]; """ _order2_2d = """ /* Implementation of the commented code below with C-order raveled * indices into 3 x 3 matrices, m and mc. * * mc[0, 0] = m[0, 0]; * cx = m[1, 0] / m[0, 0]; * cy = m[0, 1] / m[0, 0]; * mc[1, 1] = m[1, 1] - cx*m[0, 1]; * mc[2, 0] = m[2, 0] - cx*m[1, 0]; * mc[0, 2] = m[0, 2] - cy*m[0, 1]; */ mc[0] = m[0]; F cx = m[3] / m[0]; F cy = m[1] / m[0]; mc[4] = m[4] - cx*m[1]; mc[6] = m[6] - cx*m[3]; mc[2] = m[2] - cy*m[1]; """ _order3_2d = """ /* Implementation of the commented code below with C-order raveled * indices into 4 x 4 matrices, m and mc. * * mc[0, 0] = m[0, 0]; * cx = m[1, 0] / m[0, 0]; * cy = m[0, 1] / m[0, 0]; * mc[1, 1] = m[1, 1] - cx*m[0, 1]; * mc[2, 0] = m[2, 0] - cx*m[1, 0]; * mc[0, 2] = m[0, 2] - cy*m[0, 1]; * mc[2, 1] = (m[2, 1] - 2*cx*m[1, 1] - cy*m[2, 0] + cx*cx*m[0, 1] + cy*cx*m[1, 0]); * mc[1, 2] = (m[1, 2] - 2*cy*m[1, 1] - cx*m[0, 2] + 2*cy*cx*m[0, 1]); * mc[3, 0] = m[3, 0] - 3*cx*m[2, 0] + 2*cx*cx*m[1, 0]; * mc[0, 3] = m[0, 3] - 3*cy*m[0, 2] + 2*cy*cx*m[0, 1]; */ mc[0] = m[0]; F cx = m[4] / m[0]; F cy = m[1] / m[0]; // 2nd order moments mc[5] = m[5] - cx*m[1]; mc[8] = m[8] - cx*m[4]; mc[2] = m[2] - cy*m[1]; // 3rd order moments mc[9] = (m[9] - 2*cx*m[5] - cy*m[8] + cx*cx*m[1] + cy*cx*m[4]); mc[6] = (m[6] - 2*cy*m[5] - cx*m[2] + 2*cy*cx*m[1]); mc[12] = m[12] - 3*cx*m[8] + 2*cx*cx*m[4]; mc[3] = m[3] - 3*cy*m[2] + 2*cy*cy*m[1]; """ # noqa # Note for 2D kernels using C-order raveled indices _order2_3d = """ /* Implementation of the commented code below with C-order raveled * indices into shape (3, 3, 3) matrices, m and mc. * * mc[0, 0, 0] = m[0, 0, 0]; * cx = m[1, 0, 0] / m[0, 0, 0]; * cy = m[0, 1, 0] / m[0, 0, 0]; * cz = m[0, 0, 1] / m[0, 0, 0]; * mc[0, 0, 2] = -cz*m[0, 0, 1] + m[0, 0, 2]; * mc[0, 1, 1] = -cy*m[0, 0, 1] + m[0, 1, 1]; * mc[0, 2, 0] = -cy*m[0, 1, 0] + m[0, 2, 0]; * mc[1, 0, 1] = -cx*m[0, 0, 1] + m[1, 0, 1]; * mc[1, 1, 0] = -cx*m[0, 1, 0] + m[1, 1, 0]; * mc[2, 0, 0] = -cx*m[1, 0, 0] + m[2, 0, 0]; */ mc[0] = m[0]; F cx = m[9] / m[0]; F cy = m[3] / m[0]; F cz = m[1] / m[0]; // 2nd order moments mc[2] = -cz*m[1] + m[2]; mc[4] = -cy*m[1] + m[4]; mc[6] = -cy*m[3] + m[6]; mc[10] = -cx*m[1] + m[10]; mc[12] = -cx*m[3] + m[12]; mc[18] = -cx*m[9] + m[18]; """ _order3_3d = """ /* Implementation of the commented code below with C-order raveled * indices into shape (4, 4, 4) matrices, m and mc. * * mc[0, 0, 0] = m[0, 0, 0]; * cx = m[1, 0, 0] / m[0, 0, 0]; * cy = m[0, 1, 0] / m[0, 0, 0]; * cz = m[0, 0, 1] / m[0, 0, 0]; * // 2nd order moments * mc[0, 0, 2] = -cz*m[0, 0, 1] + m[0, 0, 2]; * mc[0, 1, 1] = -cy*m[0, 0, 1] + m[0, 1, 1]; * mc[0, 2, 0] = -cy*m[0, 1, 0] + m[0, 2, 0]; * mc[1, 0, 1] = -cx*m[0, 0, 1] + m[1, 0, 1]; * mc[1, 1, 0] = -cx*m[0, 1, 0] + m[1, 1, 0]; * mc[2, 0, 0] = -cx*m[1, 0, 0] + m[2, 0, 0]; * // 3rd order moments * mc[0, 0, 3] = (2*cz*cz*m[0, 0, 1] - 3*cz*m[0, 0, 2] + m[0, 0, 3]); * mc[0, 1, 2] = (-cy*m[0, 0, 2] + 2*cz*(cy*m[0, 0, 1] - m[0, 1, 1]) + m[0, 1, 2]); * mc[0, 2, 1] = (cy*cy*m[0, 0, 1] - 2*cy*m[0, 1, 1] + cz*(cy*m[0, 1, 0] - m[0, 2, 0]) + m[0, 2, 1]); * mc[0, 3, 0] = (2*cy*cy*m[0, 1, 0] - 3*cy*m[0, 2, 0] + m[0, 3, 0]); * mc[1, 0, 2] = (-cx*m[0, 0, 2] + 2*cz*(cx*m[0, 0, 1] - m[1, 0, 1]) + m[1, 0, 2]); * mc[1, 1, 1] = (-cx*m[0, 1, 1] + cy*(cx*m[0, 0, 1] - m[1, 0, 1]) + cz*(cx*m[0, 1, 0] - m[1, 1, 0]) + m[1, 1, 1]); * mc[1, 2, 0] = (-cx*m[0, 2, 0] - 2*cy*(-cx*m[0, 1, 0] + m[1, 1, 0]) + m[1, 2, 0]); * mc[2, 0, 1] = (cx*cx*m[0, 0, 1] - 2*cx*m[1, 0, 1] + cz*(cx*m[1, 0, 0] - m[2, 0, 0]) + m[2, 0, 1]); * mc[2, 1, 0] = (cx*cx*m[0, 1, 0] - 2*cx*m[1, 1, 0] + cy*(cx*m[1, 0, 0] - m[2, 0, 0]) + m[2, 1, 0]); * mc[3, 0, 0] = (2*cx*cx*m[1, 0, 0] - 3*cx*m[2, 0, 0] + m[3, 0, 0]); */ mc[0] = m[0]; F cx = m[16] / m[0]; F cy = m[4] / m[0]; F cz = m[1] / m[0]; // 2nd order moments mc[2] = -cz*m[1] + m[2]; mc[5] = -cy*m[1] + m[5]; mc[8] = -cy*m[4] + m[8]; mc[17] = -cx*m[1] + m[17]; mc[20] = -cx*m[4] + m[20]; mc[32] = -cx*m[16] + m[32]; // 3rd order moments mc[3] = (2*cz*cz*m[1] - 3*cz*m[2] + m[3]); mc[6] = (-cy*m[2] + 2*cz*(cy*m[1] - m[5]) + m[6]); mc[9] = (cy*cy*m[1] - 2*cy*m[5] + cz*(cy*m[4] - m[8]) + m[9]); mc[12] = (2*cy*cy*m[4] - 3*cy*m[8] + m[12]); mc[18] = (-cx*m[2] + 2*cz*(cx*m[1] - m[17]) + m[18]); mc[21] = (-cx*m[5] + cy*(cx*m[1] - m[17]) + cz*(cx*m[4] - m[20]) + m[21]); mc[24] = (-cx*m[8] - 2*cy*(-cx*m[4] + m[20]) + m[24]); mc[33] = (cx*cx*m[1] - 2*cx*m[17] + cz*(cx*m[16] - m[32]) + m[33]); mc[36] = (cx*cx*m[4] - 2*cx*m[20] + cy*(cx*m[16] - m[32]) + m[36]); mc[48] = (2*cx*cx*m[16] - 3*cx*m[32] + m[48]); """ # noqa def _moments_raw_to_central_fast(moments_raw): """Analytical formulae for 2D and 3D central moments of order < 4. `moments_raw_to_central` will automatically call this function when ndim < 4 and order < 4. Parameters ---------- moments_raw : ndarray The raw moments. Returns ------- moments_central : ndarray The central moments. """ ndim = moments_raw.ndim order = moments_raw.shape[0] - 1 # convert to float64 during the computation for better accuracy moments_raw = moments_raw.astype(cp.float64, copy=False) moments_central = cp.zeros_like(moments_raw) if order >= 4 or ndim not in [2, 3]: raise ValueError( "This function only supports 2D or 3D moments of order < 4." ) if ndim == 2: if order < 2: operation = _order0_or_1 elif order == 2: operation = _order2_2d elif order == 3: operation = _order3_2d elif ndim == 3: if order < 2: operation = _order0_or_1 elif order == 2: operation = _order2_3d elif order == 3: operation = _order3_3d kernel = cp.ElementwiseKernel( "raw F m", "raw F mc", operation=operation, name=f"order{order}_{ndim}d_kernel", ) # run a single-threaded kernel, so we can avoid device->host->device copy kernel(moments_raw, moments_central, size=1) return moments_central def moments_raw_to_central(moments_raw): ndim = moments_raw.ndim order = moments_raw.shape[0] - 1 if ndim in [2, 3] and order < 4: # fast path with analytical GPU kernels # (avoids any host/device transfers) moments_central = _moments_raw_to_central_fast(moments_raw) return moments_central.astype(moments_raw.dtype, copy=False) # Fallback to general formula applied on the host m = cp.asnumpy(moments_raw) # synchronize moments_central = np.zeros_like(moments_raw) # centers as computed in centroid above centers = tuple(m[tuple(np.eye(ndim, dtype=int))] / m[(0,) * ndim]) if ndim == 2: # This is the general 2D formula from # https://en.wikipedia.org/wiki/Image_moment#Central_moments for p in range(order + 1): for q in range(order + 1): if p + q > order: continue for i in range(p + 1): term1 = math.comb(p, i) term1 *= (-centers[0]) ** (p - i) for j in range(q + 1): term2 = math.comb(q, j) term2 *= (-centers[1]) ** (q - j) moments_central[p, q] += term1 * term2 * m[i, j] return moments_central # The nested loops below are an n-dimensional extension of the 2D formula # given at https://en.wikipedia.org/wiki/Image_moment#Central_moments # iterate over all [0, order] (inclusive) on each axis for orders in itertools.product(*((range(order + 1),) * ndim)): # `orders` here is the index into the `moments_central` output array if sum(orders) > order: # skip any moment that is higher than the requested order continue # loop over terms from `m` contributing to `moments_central[orders]` for idxs in itertools.product(*[range(o + 1) for o in orders]): val = m[idxs] for i_order, c, idx in zip(orders, centers, idxs): val *= math.comb(i_order, idx) val *= (-c) ** (i_order - idx) moments_central[orders] += val return cp.asarray(moments_central)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/entropy.py
import cupy as cp from cupyx.scipy.stats import entropy as scipy_entropy def shannon_entropy(image, base=2): """Calculate the Shannon entropy of an image. The Shannon entropy is defined as S = -sum(pk * log(pk)), where pk are frequency/probability of pixels of value k. Parameters ---------- image : (N, M) ndarray Grayscale input image. base : float, optional The logarithmic base to use. Returns ------- entropy : 0-dimensional float cupy.ndarray Notes ----- The returned value is measured in bits or shannon (Sh) for base=2, natural unit (nat) for base=np.e and hartley (Hart) for base=10. References ---------- .. [1] https://en.wikipedia.org/wiki/Entropy_(information_theory) <https://en.wikipedia.org/wiki/Entropy_(information_theory)>`_ .. [2] https://en.wiktionary.org/wiki/Shannon_entropy Examples -------- >>> import cupy as cp >>> from skimage import data >>> from cucim.skimage.measure import shannon_entropy >>> shannon_entropy(cp.array(data.camera())) array(7.23169501) """ # noqa: E501 _, counts = cp.unique(image, return_counts=True) return scipy_entropy(counts, base=base)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/_blur_effect.py
import cupy as cp import cucim.skimage._vendored.ndimage as ndi from ..color import rgb2gray from ..util import img_as_float __all__ = ["blur_effect"] def blur_effect(image, h_size=11, channel_axis=None, reduce_func=max): """Compute a metric that indicates the strength of blur in an image (0 for no blur, 1 for maximal blur). Parameters ---------- image : ndarray RGB or grayscale nD image. The input image is converted to grayscale before computing the blur metric. h_size : int, optional Size of the re-blurring filter. channel_axis : int or None, optional If None, the image is assumed to be grayscale (single-channel). Otherwise, this parameter indicates which axis of the array corresponds to color channels. reduce_func : callable, optional Function used to calculate the aggregation of blur metrics along all axes. If set to None, the entire list is returned, where the i-th element is the blur metric along the i-th axis. This function should be a host function that operates on standard python floats. Returns ------- blur : float (0 to 1) or list of floats Blur metric: by default, the maximum of blur metrics along all axes. Notes ----- `h_size` must keep the same value in order to compare results between images. Most of the time, the default size (11) is enough. This means that the metric can clearly discriminate blur up to an average 11x11 filter; if blur is higher, the metric still gives good results but its values tend towards an asymptote. References ---------- .. [1] Frederique Crete, Thierry Dolmiere, Patricia Ladret, and Marina Nicolas "The blur effect: perception and estimation with a new no-reference perceptual blur metric" Proc. SPIE 6492, Human Vision and Electronic Imaging XII, 64920I (2007) https://hal.archives-ouvertes.fr/hal-00232709 :DOI:`10.1117/12.702790` """ if channel_axis is not None: try: # ensure color channels are in the final dimension image = cp.moveaxis(image, channel_axis, -1) except cp.AxisError: print("channel_axis must be one of the image array dimensions") raise except TypeError: print("channel_axis must be an integer") raise image = rgb2gray(image) n_axes = image.ndim image = img_as_float(image) shape = image.shape B = [] from ..filters import sobel host_scalars = True slices = tuple([slice(2, s - 1) for s in shape]) for ax in range(n_axes): filt_im = ndi.uniform_filter1d(image, h_size, axis=ax) im_sharp = cp.abs(sobel(image, axis=ax)) im_blur = cp.abs(sobel(filt_im, axis=ax)) T = cp.maximum(0, im_sharp - im_blur) if host_scalars: M1 = float(cp.sum(im_sharp[slices])) # synchronize M2 = float(cp.sum(T[slices])) # synchronize B.append(abs(M1 - M2) / M1) else: M1 = cp.sum(im_sharp[slices]) M2 = cp.sum(T[slices]) B.append(cp.abs(M1 - M2) / M1) return B if reduce_func is None else reduce_func(B)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/__init__.py
from ._blur_effect import blur_effect from ._colocalization import ( intersection_coeff, manders_coloc_coeff, manders_overlap_coeff, pearson_corr_coeff, ) from ._label import label from ._moments import ( centroid, inertia_tensor, inertia_tensor_eigvals, moments, moments_central, moments_coords, moments_coords_central, moments_hu, moments_normalized, ) from ._polygon import approximate_polygon, subdivide_polygon from ._regionprops import ( euler_number, perimeter, perimeter_crofton, regionprops, regionprops_table, ) from .block import block_reduce from .entropy import shannon_entropy from .profile import profile_line __all__ = [ "blur_effect", "regionprops", "regionprops_table", "perimeter", "approximate_polygon", "subdivide_polygon", "block_reduce", "centroid", "moments", "moments_central", "moments_coords", "moments_coords_central", "moments_normalized", "moments_hu", "inertia_tensor", "inertia_tensor_eigvals", "profile_line", "label", "shannon_entropy", "intersection_coeff", "manders_coloc_coeff", "manders_overlap_coeff", "pearson_corr_coeff", ]
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/_colocalization.py
import cupy as cp from .._shared.utils import as_binary_ndarray, check_shape_equality from .._vendored import pearsonr __all__ = [ "pearson_corr_coeff", "manders_coloc_coeff", "manders_overlap_coeff", "intersection_coeff", ] def pearson_corr_coeff(image0, image1, mask=None): r"""Calculate Pearson's Correlation Coefficient between pixel intensities in channels. Parameters ---------- image0 : (M, N) ndarray Image of channel A. image1 : (M, N) ndarray Image of channel 2 to be correlated with channel B. Must have same dimensions as `image0`. mask : (M, N) ndarray of dtype bool, optional Only `image0` and `image1` pixels within this region of interest mask are included in the calculation. Must have same dimensions as `image0`. Returns ------- pcc : float Pearson's correlation coefficient of the pixel intensities between the two images, within the mask if provided. p-value : float Two-tailed p-value. Notes ----- Pearson's Correlation Coefficient (PCC) measures the linear correlation between the pixel intensities of the two images. Its value ranges from -1 for perfect linear anti-correlation to +1 for perfect linear correlation. The calculation of the p-value assumes that the intensities of pixels in each input image are normally distributed. Scipy's implementation of Pearson's correlation coefficient is used. Please refer to it for further information and caveats [1]_. .. math:: r = \frac{\sum (A_i - m_A_i) (B_i - m_B_i)} {\sqrt{\sum (A_i - m_A_i)^2 \sum (B_i - m_B_i)^2}} where :math:`A_i` is the value of the :math:`i^{th}` pixel in `image0` :math:`B_i` is the value of the :math:`i^{th}` pixel in `image1`, :math:`m_A_i` is the mean of the pixel values in `image0` :math:`m_B_i` is the mean of the pixel values in `image1` A low PCC value does not necessarily mean that there is no correlation between the two channel intensities, just that there is no linear correlation. You may wish to plot the pixel intensities of each of the two channels in a 2D scatterplot and use Spearman's rank correlation if a non-linear correlation is visually identified [2]_. Also consider if you are interested in correlation or co-occurence, in which case a method involving segmentation masks (e.g. MCC or intersection coefficient) may be more suitable [3]_ [4]_. Providing the mask of only relevant sections of the image (e.g., cells, or particular cellular compartments) and removing noise is important as the PCC is sensitive to these measures [3]_ [4]_. References ---------- .. [1] https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html .. [2] https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html .. [3] Dunn, K. W., Kamocka, M. M., & McDonald, J. H. (2011). A practical guide to evaluating colocalization in biological microscopy. American journal of physiology. Cell physiology, 300(4), C723–C742. https://doi.org/10.1152/ajpcell.00462.2010 .. [4] Bolte, S. and Cordelières, F.P. (2006), A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy, 224: 213-232. https://doi.org/10.1111/j.1365-2818.2006.01706.x """ # noqa: E501 if mask is not None: mask = as_binary_ndarray(mask, variable_name="mask") check_shape_equality(image0, image1, mask) image0 = image0[mask] image1 = image1[mask] else: check_shape_equality(image0, image1) # scipy pearsonr function only takes flattened arrays image0 = image0.reshape(-1) image1 = image1.reshape(-1) return pearsonr(image0, image1, disable_checks=True) def manders_coloc_coeff(image0, image1_mask, mask=None): r"""Manders' colocalization coefficient between two channels. Parameters ---------- image0 : (M, N) ndarray Image of channel A. All pixel values should be non-negative. image1_mask : (M, N) ndarray of dtype bool Binary mask with segmented regions of interest in channel B. Must have same dimensions as `image0`. mask : (M, N) ndarray of dtype bool, optional Only `image0` pixel values within this region of interest mask are included in the calculation. Must have same dimensions as `image0`. Returns ------- mcc : float Manders' colocalization coefficient. Notes ----- Manders' Colocalization Coefficient (MCC) is the fraction of total intensity of a certain channel (channel A) that is within the segmented region of a second channel (channel B) [1]_. It ranges from 0 for no colocalisation to 1 for complete colocalization. It is also referred to as M1 and M2. MCC is commonly used to measure the colocalization of a particular protein in a subceullar compartment. Typically a segmentation mask for channel B is generated by setting a threshold that the pixel values must be above to be included in the MCC calculation. In this implementation, the channel B mask is provided as the argument `image1_mask`, allowing the exact segmentation method to be decided by the user beforehand. The implemented equation is: .. math:: r = \frac{\sum A_{i,coloc}}{\sum A_i} where :math:`A_i` is the value of the :math:`i^{th}` pixel in `image0` :math:`A_{i,coloc} = A_i` if :math:`Bmask_i > 0` :math:`Bmask_i` is the value of the :math:`i^{th}` pixel in `mask` MCC is sensitive to noise, with diffuse signal in the first channel inflating its value. Images should be processed to remove out of focus and background light before the MCC is calculated [2]_. References ---------- .. [1] Manders, E.M.M., Verbeek, F.J. and Aten, J.A. (1993), Measurement of co-localization of objects in dual-colour confocal images. Journal of Microscopy, 169: 375-382. https://doi.org/10.1111/j.1365-2818.1993.tb03313.x https://imagej.net/media/manders.pdf .. [2] Dunn, K. W., Kamocka, M. M., & McDonald, J. H. (2011). A practical guide to evaluating colocalization in biological microscopy. American journal of physiology. Cell physiology, 300(4), C723–C742. https://doi.org/10.1152/ajpcell.00462.2010 """ image1_mask = as_binary_ndarray(image1_mask, variable_name="image1_mask") if mask is not None: mask = as_binary_ndarray(mask, variable_name="mask") check_shape_equality(image0, image1_mask, mask) image0 = image0[mask] image1_mask = image1_mask[mask] else: check_shape_equality(image0, image1_mask) # check non-negative image if image0.min() < 0: raise ValueError("image contains negative values") img_sum = cp.sum(image0) if img_sum == 0: return 0 return cp.sum(image0 * image1_mask) / img_sum def manders_overlap_coeff(image0, image1, mask=None): r"""Manders' overlap coefficient Parameters ---------- image0 : (M, N) ndarray Image of channel A. All pixel values should be non-negative. image1 : (M, N) ndarray Image of channel B. All pixel values should be non-negative. Must have same dimensions as `image0` mask : (M, N) ndarray of dtype bool, optional Only `image0` and `image1` pixel values within this region of interest mask are included in the calculation. Must have same dimensions as `image0`. Returns ------- moc: float Manders' Overlap Coefficient of pixel intensities between the two images. Notes ----- Manders' Overlap Coefficient (MOC) is given by the equation [1]_: .. math:: r = \frac{\sum A_i B_i}{\sqrt{\sum A_i^2 \sum B_i^2}} where :math:`A_i` is the value of the :math:`i^{th}` pixel in `image0` :math:`B_i` is the value of the :math:`i^{th}` pixel in `image1` It ranges between 0 for no colocalization and 1 for complete colocalization of all pixels. MOC does not take into account pixel intensities, just the fraction of pixels that have positive values for both channels[2]_ [3]_. Its usefulness has been criticized as it changes in response to differences in both co-occurence and correlation and so a particular MOC value could indicate a wide range of colocalization patterns [4]_ [5]_. References ---------- .. [1] Manders, E.M.M., Verbeek, F.J. and Aten, J.A. (1993), Measurement of co-localization of objects in dual-colour confocal images. Journal of Microscopy, 169: 375-382. https://doi.org/10.1111/j.1365-2818.1993.tb03313.x https://imagej.net/media/manders.pdf .. [2] Dunn, K. W., Kamocka, M. M., & McDonald, J. H. (2011). A practical guide to evaluating colocalization in biological microscopy. American journal of physiology. Cell physiology, 300(4), C723–C742. https://doi.org/10.1152/ajpcell.00462.2010 .. [3] Bolte, S. and Cordelières, F.P. (2006), A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy, 224: 213-232. https://doi.org/10.1111/j.1365-2818.2006.01 .. [4] Adler J, Parmryd I. (2010), Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient. Cytometry A. Aug;77(8):733-42.https://doi.org/10.1002/cyto.a.20896 .. [5] Adler, J, Parmryd, I. Quantifying colocalization: The case for discarding the Manders overlap coefficient. Cytometry. 2021; 99: 910– 920. https://doi.org/10.1002/cyto.a.24336 """ if mask is not None: mask = as_binary_ndarray(mask, variable_name="mask") check_shape_equality(image0, image1, mask) image0 = image0[mask] image1 = image1[mask] else: check_shape_equality(image0, image1) # check non-negative image if image0.min() < 0: raise ValueError("image0 contains negative values") if image1.min() < 0: raise ValueError("image1 contains negative values") denom = cp.linalg.norm(image0) * cp.linalg.norm(image1) return cp.vdot(image0, image1) / denom def intersection_coeff(image0_mask, image1_mask, mask=None): r"""Fraction of a channel's segmented binary mask that overlaps with a second channel's segmented binary mask. Parameters ---------- image0_mask : (M, N) ndarray of dtype bool Image mask of channel A. image1_mask : (M, N) ndarray of dtype bool Image mask of channel B. Must have same dimensions as `image0_mask`. mask : (M, N) ndarray of dtype bool, optional Only `image0_mask` and `image1_mask` pixels within this region of interest mask are included in the calculation. Must have same dimensions as `image0_mask`. Returns ------- Intersection coefficient, float Fraction of `image0_mask` that overlaps with `image1_mask`. """ image0_mask = as_binary_ndarray(image0_mask, variable_name="image0_mask") image1_mask = as_binary_ndarray(image1_mask, variable_name="image1_mask") if mask is not None: mask = as_binary_ndarray(mask, variable_name="mask") check_shape_equality(image0_mask, image1_mask, mask) image0_mask = image0_mask[mask] image1_mask = image1_mask[mask] else: check_shape_equality(image0_mask, image1_mask) nonzero_image0 = cp.count_nonzero(image0_mask) if nonzero_image0 == 0: return 0 nonzero_joint = cp.count_nonzero(cp.logical_and(image0_mask, image1_mask)) return nonzero_joint / nonzero_image0
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/block.py
import cupy as cp import numpy as np from .._vendored import pad from ..util import view_as_blocks def block_reduce(image, block_size=2, func=cp.sum, cval=0, func_kwargs=None): """Downsample image by applying function `func` to local blocks. This function is useful for max and mean pooling, for example. Parameters ---------- image : ndarray N-dimensional input image. block_size : array_like or int Array containing down-sampling integer factor along each axis. Default block_size is 2. func : callable Function object which is used to calculate the return value for each local block. This function must implement an ``axis`` parameter. Primary functions are ``numpy.sum``, ``numpy.min``, ``numpy.max``, ``numpy.mean`` and ``numpy.median``. See also `func_kwargs`. cval : float Constant padding value if image is not perfectly divisible by the block size. func_kwargs : dict Keyword arguments passed to `func`. Notably useful for passing dtype argument to ``np.mean``. Takes dictionary of inputs, e.g.: ``func_kwargs={'dtype': np.float16})``. Returns ------- image : ndarray Down-sampled image with same number of dimensions as input image. Examples -------- >>> import cupy as cp >>> from cucim.skimage.measure import block_reduce >>> image = cp.arange(3*3*4).reshape(3, 3, 4) >>> image # doctest: +NORMALIZE_WHITESPACE array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]], [[24, 25, 26, 27], [28, 29, 30, 31], [32, 33, 34, 35]]]) >>> block_reduce(image, block_size=(3, 3, 1), func=cp.mean) array([[[16., 17., 18., 19.]]]) >>> image_max1 = block_reduce(image, block_size=(1, 3, 4), func=cp.max) >>> image_max1 # doctest: +NORMALIZE_WHITESPACE array([[[11]], [[23]], [[35]]]) >>> image_max2 = block_reduce(image, block_size=(3, 1, 4), func=cp.max) >>> image_max2 # doctest: +NORMALIZE_WHITESPACE array([[[27], [31], [35]]]) """ if np.isscalar(block_size): block_size = (block_size,) * image.ndim elif len(block_size) != image.ndim: raise ValueError( "`block_size` must be a scalar or have " "the same length as `image.shape`" ) if func_kwargs is None: func_kwargs = {} pad_width = [] for i in range(len(block_size)): if block_size[i] < 1: raise ValueError( "Down-sampling factors must be >= 1. Use " "`skimage.transform.resize` to up-sample an " "image." ) if image.shape[i] % block_size[i] != 0: after_width = block_size[i] - (image.shape[i] % block_size[i]) else: after_width = 0 pad_width.append((0, after_width)) image = pad( image, pad_width=pad_width, mode="constant", constant_values=cval ) blocked = view_as_blocks(image, block_size) return func( blocked, axis=tuple(range(image.ndim, blocked.ndim)), **func_kwargs )
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/tests/test_profile.py
import cupy as cp import numpy as np from cupy.testing import assert_array_almost_equal, assert_array_equal from cucim.skimage.measure import profile_line image = cp.arange(100).reshape((10, 10)).astype(float) def test_horizontal_rightward(): prof = profile_line(image, (0, 2), (0, 8), order=0, mode="constant") expected_prof = cp.arange(2, 9) assert_array_equal(prof, expected_prof) def test_horizontal_leftward(): prof = profile_line(image, (0, 8), (0, 2), order=0, mode="constant") expected_prof = cp.arange(8, 1, -1) assert_array_equal(prof, expected_prof) def test_vertical_downward(): prof = profile_line(image, (2, 5), (8, 5), order=0, mode="constant") expected_prof = cp.arange(25, 95, 10) assert_array_equal(prof, expected_prof) def test_vertical_upward(): prof = profile_line(image, (8, 5), (2, 5), order=0, mode="constant") expected_prof = cp.arange(85, 15, -10) assert_array_equal(prof, expected_prof) def test_45deg_right_downward(): prof = profile_line(image, (2, 2), (8, 8), order=0, mode="constant") expected_prof = cp.array([22, 33, 33, 44, 55, 55, 66, 77, 77, 88]) # repeats are due to aliasing using nearest neighbor interpolation. # to see this, imagine a diagonal line with markers every unit of # length traversing a checkerboard pattern of squares also of unit # length. Because the line is diagonal, sometimes more than one # marker will fall on the same checkerboard box. assert_array_almost_equal(prof, expected_prof) def test_45deg_right_downward_interpolated(): prof = profile_line(image, (2, 2), (8, 8), order=1, mode="constant") expected_prof = cp.linspace(22, 88, 10) assert_array_almost_equal(prof, expected_prof) def test_45deg_right_upward(): prof = profile_line(image, (8, 2), (2, 8), order=1, mode="constant") expected_prof = cp.arange(82, 27, -6) assert_array_almost_equal(prof, expected_prof) def test_45deg_left_upward(): prof = profile_line(image, (8, 8), (2, 2), order=1, mode="constant") expected_prof = cp.arange(88, 21, -22.0 / 3) assert_array_almost_equal(prof, expected_prof) def test_45deg_left_downward(): prof = profile_line(image, (2, 8), (8, 2), order=1, mode="constant") expected_prof = cp.arange(28, 83, 6) assert_array_almost_equal(prof, expected_prof) def test_pythagorean_triangle_right_downward(): prof = profile_line(image, (1, 1), (7, 9), order=0, mode="constant") expected_prof = cp.array([11, 22, 23, 33, 34, 45, 56, 57, 67, 68, 79]) assert_array_equal(prof, expected_prof) def test_pythagorean_triangle_right_downward_interpolated(): prof = profile_line(image, (1, 1), (7, 9), order=1, mode="constant") expected_prof = cp.linspace(11, 79, 11) assert_array_almost_equal(prof, expected_prof) pyth_image = np.zeros((6, 7), float) line = ((1, 2, 2, 3, 3, 4), (1, 2, 3, 3, 4, 5)) below = ((2, 2, 3, 4, 4, 5), (0, 1, 2, 3, 4, 4)) above = ((0, 1, 1, 2, 3, 3), (2, 2, 3, 4, 5, 6)) pyth_image[line] = 1.8 pyth_image[below] = 0.6 pyth_image[above] = 0.6 pyth_image = cp.asarray(pyth_image) def test_pythagorean_triangle_right_downward_linewidth(): prof = profile_line( pyth_image, (1, 1), (4, 5), linewidth=3, order=0, mode="constant" ) expected_prof = cp.ones(6) assert_array_almost_equal(prof, expected_prof) def test_pythagorean_triangle_right_upward_linewidth(): prof = profile_line( pyth_image[::-1, :], (4, 1), (1, 5), linewidth=3, order=0, mode="constant", ) expected_prof = cp.ones(6) assert_array_almost_equal(prof, expected_prof) def test_pythagorean_triangle_transpose_left_down_linewidth(): prof = profile_line( pyth_image.T[:, ::-1], (1, 4), (5, 1), linewidth=3, order=0, mode="constant", ) expected_prof = np.ones(6) assert_array_almost_equal(prof, expected_prof) def test_reduce_func_mean(): prof = profile_line( pyth_image, (0, 1), (3, 1), linewidth=3, order=0, reduce_func=np.mean, mode="reflect", ) expected_prof = pyth_image[:4, :3].mean(1) assert_array_almost_equal(prof, expected_prof) def test_reduce_func_max(): prof = profile_line( pyth_image, (0, 1), (3, 1), linewidth=3, order=0, reduce_func=np.max, mode="reflect", ) expected_prof = pyth_image[:4, :3].max(1) assert_array_almost_equal(prof, expected_prof) def test_reduce_func_sum(): prof = profile_line( pyth_image, (0, 1), (3, 1), linewidth=3, order=0, reduce_func=np.sum, mode="reflect", ) expected_prof = pyth_image[:4, :3].sum(1) assert_array_almost_equal(prof, expected_prof) def test_reduce_func_mean_linewidth_1(): prof = profile_line( pyth_image, (0, 1), (3, 1), linewidth=1, order=0, reduce_func=np.mean, mode="constant", ) expected_prof = pyth_image[:4, 1] assert_array_almost_equal(prof, expected_prof) def test_reduce_func_None_linewidth_1(): prof = profile_line( pyth_image, (1, 2), (4, 2), linewidth=1, order=0, reduce_func=None, mode="constant", ) expected_prof = pyth_image[1:5, 2, np.newaxis] assert_array_almost_equal(prof, expected_prof) def test_reduce_func_None_linewidth_3(): prof = profile_line( pyth_image, (1, 2), (4, 2), linewidth=3, order=0, reduce_func=None, mode="constant", ) expected_prof = pyth_image[1:5, 1:4] assert_array_almost_equal(prof, expected_prof) def test_reduce_func_lambda_linewidth_3(): def reduce_func(x): return x + x**2 prof = profile_line( pyth_image, (1, 2), (4, 2), linewidth=3, order=0, reduce_func=reduce_func, mode="constant", ) expected_prof = cp.apply_along_axis( reduce_func, arr=pyth_image[1:5, 1:4], axis=1 ) assert_array_almost_equal(prof, expected_prof) def test_reduce_func_sqrt_linewidth_3(): def reduce_func(x): return x**0.5 prof = profile_line( pyth_image, (1, 2), (4, 2), linewidth=3, order=0, reduce_func=reduce_func, mode="constant", ) expected_prof = cp.apply_along_axis( reduce_func, arr=pyth_image[1:5, 1:4], axis=1 ) assert_array_almost_equal(prof, expected_prof) def test_reduce_func_sumofsqrt_linewidth_3(): def reduce_func(x): return np.sum(x**0.5) prof = profile_line( pyth_image, (1, 2), (4, 2), linewidth=3, order=0, reduce_func=reduce_func, mode="constant", ) expected_prof = cp.apply_along_axis( reduce_func, arr=pyth_image[1:5, 1:4], axis=1 ) assert_array_almost_equal(prof, expected_prof) def test_oob_coodinates(): offset = 2 idx = pyth_image.shape[0] + offset prof = profile_line( pyth_image, (-offset, 2), (idx, 2), linewidth=1, order=0, reduce_func=None, mode="constant", ) expected_prof = cp.vstack( [ cp.zeros((offset, 1)), pyth_image[:, 2, cp.newaxis], cp.zeros((offset + 1, 1)), ] ) assert_array_almost_equal(prof, expected_prof) def test_bool_array_input(): shape = (200, 200) center_x, center_y = (140, 150) radius = 20 x, y = cp.meshgrid(cp.arange(shape[1]), cp.arange(shape[0])) mask = (y - center_y) ** 2 + (x - center_x) ** 2 < radius**2 src = (center_y, center_x) phi = 4 * np.pi / 9.0 dy = 31 * np.cos(phi) dx = 31 * np.sin(phi) dst = (center_y + dy, center_x + dx) profile_u8 = profile_line(mask.astype(cp.uint8), src, dst, mode="reflect") assert int(cp.all(profile_u8[:radius] == 1)) profile_b = profile_line(mask, src, dst, mode="constant") assert int(cp.all(profile_b[:radius] == 1)) assert int(cp.all(profile_b == profile_u8))
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/tests/test_blur_effect.py
import cupy as cp import pytest from cupy.testing import assert_array_equal from skimage.data import astronaut from cucim.skimage.color import rgb2gray from cucim.skimage.filters import gaussian from cucim.skimage.measure import blur_effect def test_blur_effect(): """Test that the blur metric increases with more blurring.""" image = cp.array(astronaut()) B0 = blur_effect(image, channel_axis=-1) B1 = blur_effect(gaussian(image, sigma=1, channel_axis=-1), channel_axis=-1) B2 = blur_effect(gaussian(image, sigma=4, channel_axis=-1), channel_axis=-1) assert 0 <= B0 < 1 assert B0 < B1 < B2 def test_blur_effect_h_size(): """Test that the blur metric decreases with increasing size of the re-blurring filter. """ image = cp.array(astronaut()) B0 = blur_effect(image, h_size=3, channel_axis=-1) B1 = blur_effect(image, channel_axis=-1) # default h_size is 11 B2 = blur_effect(image, h_size=30, channel_axis=-1) assert 0 <= B0 < 1 assert B0 > B1 > B2 def test_blur_effect_channel_axis(): """Test that passing an RGB image is equivalent to passing its grayscale version. """ image = cp.array(astronaut()) B0 = blur_effect(image, channel_axis=-1) B1 = blur_effect(rgb2gray(image)) B0_arr = blur_effect(image, channel_axis=-1, reduce_func=None) B1_arr = blur_effect(rgb2gray(image), reduce_func=None) assert 0 <= B0 < 1 assert B0 == B1 assert_array_equal(B0_arr, B1_arr) def test_blur_effect_3d(): """Test that the blur metric works on a 3D image.""" data = pytest.importorskip("skimage.data") if not hasattr(data, "cells3d"): pytest.skip( "cells3d data not available in this version of scikit-image" ) image_3d = cp.array(data.cells3d()[:, 1, :, :]) # grab just the nuclei B0 = blur_effect(image_3d) B1 = blur_effect(gaussian(image_3d, sigma=1)) B2 = blur_effect(gaussian(image_3d, sigma=4)) assert 0 <= B0 < 1 assert B0 < B1 < B2
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/tests/test_colocalization.py
import cupy as cp import numpy as np import pytest from cucim.skimage.measure import ( intersection_coeff, manders_coloc_coeff, manders_overlap_coeff, pearson_corr_coeff, ) def test_invalid_input(): # images are not same size img1 = cp.array([[i + j for j in range(4)] for i in range(4)]) img2 = cp.ones((3, 5, 6)) mask = cp.array([[i <= 1 for i in range(5)] for _ in range(5)]) non_binary_mask = cp.array([[2 for __ in range(4)] for _ in range(4)]) with pytest.raises(ValueError, match=". must have the same dimensions"): pearson_corr_coeff(img1, img1, mask) with pytest.raises(ValueError, match=". must have the same dimensions"): pearson_corr_coeff(img1, img2) with pytest.raises(ValueError, match=". must have the same dimensions"): pearson_corr_coeff(img1, img1, mask) with pytest.raises(ValueError, match=". array is not of dtype boolean"): pearson_corr_coeff(img1, img1, non_binary_mask) with pytest.raises(ValueError, match=". must have the same dimensions"): manders_coloc_coeff(img1, mask) with pytest.raises(ValueError, match=". array is not of dtype boolean"): manders_coloc_coeff(img1, non_binary_mask) with pytest.raises(ValueError, match=". must have the same dimensions"): manders_coloc_coeff(img1, img1 > 0, mask) with pytest.raises(ValueError, match=". array is not of dtype boolean"): manders_coloc_coeff(img1, img1 > 0, non_binary_mask) with pytest.raises(ValueError, match=". must have the same dimensions"): manders_overlap_coeff(img1, img1, mask) with pytest.raises(ValueError, match=". must have the same dimensions"): manders_overlap_coeff(img1, img2) with pytest.raises(ValueError, match=". must have the same dimensions"): manders_overlap_coeff(img1, img1, mask) with pytest.raises(ValueError, match=". array is not of dtype boolean"): manders_overlap_coeff(img1, img1, non_binary_mask) with pytest.raises(ValueError, match=". must have the same dimensions"): intersection_coeff(img1 > 2, img2 > 1, mask) with pytest.raises(ValueError, match=". array is not of dtype boolean"): intersection_coeff(img1, img2) with pytest.raises(ValueError, match=". must have the same dimensions"): intersection_coeff(img1 > 2, img1 > 1, mask) with pytest.raises(ValueError, match=". array is not of dtype boolean"): intersection_coeff(img1 > 2, img1 > 1, non_binary_mask) def test_pcc(): # simple example img1 = cp.array([[i + j for j in range(4)] for i in range(4)]) np.testing.assert_allclose( pearson_corr_coeff(img1, img1), (1.0, 0.0), rtol=1e-12, ) img2 = cp.where(img1 <= 2, 0, img1) np.testing.assert_allclose( pearson_corr_coeff(img1, img2), (0.944911182523068, 3.5667540654536515e-08), rtol=1e-12, ) # change background of roi and see if values are same roi = cp.where(img1 <= 2, 0, 1) np.testing.assert_allclose( pearson_corr_coeff(img1, img1, roi), pearson_corr_coeff(img1, img2, roi), rtol=1e-12, ) def test_mcc(): img1 = cp.array([[j for j in range(4)] for i in range(4)]) mask = cp.array([[i <= 1 for j in range(4)] for i in range(4)]) assert manders_coloc_coeff(img1, mask) == 0.5 # test negative values img_negativeint = cp.where(img1 == 1, -1, img1) img_negativefloat = img_negativeint / 2.0 with pytest.raises(ValueError): manders_coloc_coeff(img_negativeint, mask) with pytest.raises(ValueError): manders_coloc_coeff(img_negativefloat, mask) def test_moc(): img1 = cp.ones((4, 4)) img2 = 2 * cp.ones((4, 4)) assert manders_overlap_coeff(img1, img2) == 1 # test negative values img_negativeint = cp.where(img1 == 1, -1, img1) img_negativefloat = img_negativeint / 2.0 with pytest.raises(ValueError): manders_overlap_coeff(img_negativeint, img2) with pytest.raises(ValueError): manders_overlap_coeff(img1, img_negativeint) with pytest.raises(ValueError): manders_overlap_coeff(img_negativefloat, img2) with pytest.raises(ValueError): manders_overlap_coeff(img1, img_negativefloat) with pytest.raises(ValueError): manders_overlap_coeff(img_negativefloat, img_negativefloat) def test_intersection_coefficient(): img1_mask = cp.array([[j <= 1 for j in range(4)] for i in range(4)]) img2_mask = cp.array([[i <= 1 for j in range(4)] for i in range(4)]) img3_mask = cp.array([[1 for j in range(4)] for i in range(4)]) assert intersection_coeff(img1_mask, img2_mask) == 0.5 assert intersection_coeff(img1_mask, img3_mask) == 1
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/tests/test_ccomp.py
# Note: These test cases originated in skimage/morphology/tests/test_ccomp.py import cupy as cp # import numpy as np from cupy.testing import assert_array_equal from cucim.skimage.measure import label # import pytest # import cucim.skimage.measure._ccomp as ccomp BG = 0 # background value class TestConnectedComponents: def setup_method(self): # fmt: off self.x = cp.array([ [0, 0, 3, 2, 1, 9], [0, 1, 1, 9, 2, 9], [0, 0, 1, 9, 9, 9], [3, 1, 1, 5, 3, 0]]) self.labels = cp.array([ [0, 0, 1, 2, 3, 4], [0, 5, 5, 4, 2, 4], [0, 0, 5, 4, 4, 4], [6, 5, 5, 7, 8, 0]]) # fmt: on # No background - there is no label 0, instead, labelling starts with 1 # and all labels are incremented by 1. self.labels_nobg = self.labels + 1 # The 0 at lower right corner is isolated, so it should get a new label self.labels_nobg[-1, -1] = 10 # We say that background value is 9 (and bg label is 0) self.labels_bg_9 = self.labels_nobg.copy() self.labels_bg_9[self.x == 9] = 0 # Then, where there was the label 5, we now expect 4 etc. # (we assume that the label of value 9 would normally be 5) self.labels_bg_9[self.labels_bg_9 > 5] -= 1 def test_basic(self): assert_array_equal(label(self.x), self.labels) # Make sure data wasn't modified assert self.x[0, 2] == 3 # Check that everything works if there is no background assert_array_equal(label(self.x, background=99), self.labels_nobg) # Check that everything works if background value != 0 assert_array_equal(label(self.x, background=9), self.labels_bg_9) def test_random(self): x = (cp.random.rand(20, 30) * 5).astype(int) labels = label(x) n = int(labels.max()) for i in range(n): values = x[labels == i] assert cp.all(values == values[0]) def test_diag(self): # fmt: off x = cp.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]]) assert_array_equal(label(x), x) # fmt: on def test_4_vs_8(self): # fmt: off x = cp.array([[0, 1], [1, 0]], dtype=int) assert_array_equal(label(x, connectivity=1), [[0, 1], [2, 0]]) assert_array_equal(label(x, connectivity=2), [[0, 1], [1, 0]]) # fmt: on def test_background(self): # fmt: off x = cp.array([[1, 0, 0], [1, 1, 5], [0, 0, 0]]) assert_array_equal(label(x), [[1, 0, 0], [1, 1, 2], [0, 0, 0]]) assert_array_equal(label(x, background=0), [[1, 0, 0], [1, 1, 2], [0, 0, 0]]) # fmt: on def test_background_two_regions(self): # fmt: off x = cp.array([[0, 0, 6], [0, 0, 6], [5, 5, 5]]) res = label(x, background=0) assert_array_equal(res, [[0, 0, 1], [0, 0, 1], [2, 2, 2]]) # fmt: on def test_background_one_region_center(self): # fmt: off x = cp.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]]) assert_array_equal(label(x, connectivity=1, background=0), [[0, 0, 0], [0, 1, 0], [0, 0, 0]]) # fmt: on def test_return_num(self): # fmt: off x = cp.array([[1, 0, 6], [0, 0, 6], [5, 5, 5]]) # fmt: on assert_array_equal(label(x, return_num=True)[1], 3) assert_array_equal(label(x, background=-1, return_num=True)[1], 4) class TestConnectedComponents3d: def setup_method(self): self.x = cp.zeros((3, 4, 5), int) # fmt: off self.x[0] = cp.array([[0, 3, 2, 1, 9], [0, 1, 9, 2, 9], [0, 1, 9, 9, 9], [3, 1, 5, 3, 0]]) self.x[1] = cp.array([[3, 3, 2, 1, 9], [0, 3, 9, 2, 1], [0, 3, 3, 1, 1], [3, 1, 3, 3, 0]]) self.x[2] = cp.array([[3, 3, 8, 8, 0], [2, 3, 9, 8, 8], [2, 3, 0, 8, 0], [2, 1, 0, 0, 0]]) self.labels = cp.zeros((3, 4, 5), int) self.labels[0] = cp.array([[0, 1, 2, 3, 4], [0, 5, 4, 2, 4], [0, 5, 4, 4, 4], [1, 5, 6, 1, 0]]) self.labels[1] = cp.array([[1, 1, 2, 3, 4], [0, 1, 4, 2, 3], [0, 1, 1, 3, 3], [1, 5, 1, 1, 0]]) self.labels[2] = cp.array([[1, 1, 7, 7, 0], [8, 1, 4, 7, 7], [8, 1, 0, 7, 0], [8, 5, 0, 0, 0]]) # fmt: on def test_basic(self): labels = label(self.x) assert_array_equal(labels, self.labels) assert self.x[0, 0, 2] == 2, "Data was modified!" def test_random(self): x = (cp.random.rand(20, 30) * 5).astype(int) labels = label(x) n = int(labels.max()) for i in range(n): values = x[labels == i] assert cp.all(values == values[0]) def test_diag(self): x = cp.zeros((3, 3, 3), int) x[0, 2, 2] = 1 x[1, 1, 1] = 1 x[2, 0, 0] = 1 assert_array_equal(label(x), x) def test_4_vs_8(self): x = cp.zeros((2, 2, 2), int) x[0, 1, 1] = 1 x[1, 0, 0] = 1 label4 = x.copy() label4[1, 0, 0] = 2 assert_array_equal(label(x, connectivity=1), label4) assert_array_equal(label(x, connectivity=3), x) def test_connectivity_1_vs_2(self): x = cp.zeros((2, 2, 2), int) x[0, 1, 1] = 1 x[1, 0, 0] = 1 label1 = x.copy() label1[1, 0, 0] = 2 assert_array_equal(label(x, connectivity=1), label1) assert_array_equal(label(x, connectivity=3), x) def test_background(self): x = cp.zeros((2, 3, 3), int) # fmt: off x[0] = cp.array([[1, 0, 0], [1, 0, 0], [0, 0, 0]]) x[1] = cp.array([[0, 0, 0], [0, 1, 5], [0, 0, 0]]) lnb = x.copy() lnb[0] = cp.array([[1, 2, 2], [1, 2, 2], [2, 2, 2]]) lnb[1] = cp.array([[2, 2, 2], [2, 1, 3], [2, 2, 2]]) lb = x.copy() lb[0] = cp.array([[1, BG, BG], # noqa [1, BG, BG], # noqa [BG, BG, BG]]) lb[1] = cp.array([[BG, BG, BG], [BG, 1, 2], # noqa [BG, BG, BG]]) # fmt: on assert_array_equal(label(x), lb) assert_array_equal(label(x, background=-1), lnb) def test_background_two_regions(self): x = cp.zeros((2, 3, 3), int) # fmt: off x[0] = cp.array([[0, 0, 6], [0, 0, 6], [5, 5, 5]]) x[1] = cp.array([[6, 6, 0], [5, 0, 0], [0, 0, 0]]) lb = x.copy() lb[0] = cp.array([[BG, BG, 1], [BG, BG, 1], [2, 2, 2]]) # noqa lb[1] = cp.array([[1, 1, BG], # noqa [2, BG, BG], # noqa [BG, BG, BG]]) # fmt: on res = label(x, background=0) assert_array_equal(res, lb) def test_background_one_region_center(self): x = cp.zeros((3, 3, 3), int) x[1, 1, 1] = 1 lb = cp.ones_like(x) * BG lb[1, 1, 1] = 1 assert_array_equal(label(x, connectivity=1, background=0), lb) def test_return_num(self): # fmt: off x = cp.array([[1, 0, 6], [0, 0, 6], [5, 5, 5]]) # fmt: on assert_array_equal(label(x, return_num=True)[1], 3) assert_array_equal(label(x, background=-1, return_num=True)[1], 4) def test_1D(self): x = cp.array((0, 1, 2, 2, 1, 1, 0, 0)) xlen = len(x) y = cp.array((0, 1, 2, 2, 3, 3, 0, 0)) reshapes = ( (xlen,), (1, xlen), (xlen, 1), (1, xlen, 1), (xlen, 1, 1), (1, 1, xlen), ) for reshape in reshapes: x2 = x.reshape(reshape) labelled = label(x2) assert_array_equal(y, labelled.flatten()) # CuPy Backend: unlike scikit-image, the CUDA implementation is nD # def test_nd(self): # x = cp.ones((1, 2, 3, 4)) # with testing.raises(NotImplementedError): # label(x) # @pytest.mark.skip("ccomp not yet implemented") # class TestSupport: # def test_reshape(self): # shapes_in = ((3, 1, 2), (1, 4, 5), (3, 1, 1), (2, 1), (1,)) # for shape in shapes_in: # shape = np.array(shape) # numones = sum(shape == 1) # inp = np.random.random(shape) # inp = cp.asarray(inp) # fixed, swaps = ccomp.reshape_array(inp) # shape2 = fixed.shape # # now check that all ones are at the beginning # for i in range(numones): # assert shape2[i] == 1 # back = ccomp.undo_reshape_array(fixed, swaps) # # check that the undo works as expected # assert_array_equal(inp, back)
0
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure
rapidsai_public_repos/cucim/python/cucim/src/cucim/skimage/measure/tests/test_regionprops.py
import math import cupy as cp import cupyx.scipy.ndimage as ndi import numpy as np import pytest from cupy.testing import assert_array_almost_equal, assert_array_equal from numpy.testing import assert_almost_equal, assert_equal from skimage import data, draw from skimage.segmentation import slic from cucim.skimage import transform from cucim.skimage._vendored import pad from cucim.skimage.measure import ( euler_number, perimeter, perimeter_crofton, regionprops, regionprops_table, ) from cucim.skimage.measure._regionprops import ( # noqa COL_DTYPES, OBJECT_COLUMNS, PROPS, _inertia_eigvals_to_axes_lengths_3D, _parse_docs, _props_to_dict, _require_intensity_image, ) # fmt: off SAMPLE = cp.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1], [0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]] ) # fmt: on INTENSITY_SAMPLE = SAMPLE.copy() INTENSITY_SAMPLE[1, 9:11] = 2 INTENSITY_FLOAT_SAMPLE = INTENSITY_SAMPLE.copy().astype(cp.float64) / 10.0 SAMPLE_MULTIPLE = cp.eye(10, dtype=np.int32) SAMPLE_MULTIPLE[3:5, 7:8] = 2 INTENSITY_SAMPLE_MULTIPLE = SAMPLE_MULTIPLE.copy() * 2.0 SAMPLE_3D = cp.zeros((6, 6, 6), dtype=cp.uint8) SAMPLE_3D[1:3, 1:3, 1:3] = 1 SAMPLE_3D[3, 2, 2] = 1 INTENSITY_SAMPLE_3D = SAMPLE_3D.copy() def get_moment_function(img, spacing=(1, 1)): rows, cols = img.shape Y, X = np.meshgrid( cp.linspace(0, rows * spacing[0], rows, endpoint=False), cp.linspace(0, cols * spacing[1], cols, endpoint=False), indexing="ij", ) return lambda p, q: cp.sum(Y**p * X**q * img) def get_moment3D_function(img, spacing=(1, 1, 1)): slices, rows, cols = img.shape Z, Y, X = np.meshgrid( cp.linspace(0, slices * spacing[0], slices, endpoint=False), cp.linspace(0, rows * spacing[1], rows, endpoint=False), cp.linspace(0, cols * spacing[2], cols, endpoint=False), indexing="ij", ) return lambda p, q, r: cp.sum(Z**p * Y**q * X**r * img) def get_central_moment_function(img, spacing=(1, 1)): rows, cols = img.shape Y, X = np.meshgrid( cp.linspace(0, rows * spacing[0], rows, endpoint=False), cp.linspace(0, cols * spacing[1], cols, endpoint=False), indexing="ij", ) Mpq = get_moment_function(img, spacing=spacing) cY = Mpq(1, 0) / Mpq(0, 0) cX = Mpq(0, 1) / Mpq(0, 0) return lambda p, q: cp.sum((Y - cY) ** p * (X - cX) ** q * img) def test_all_props(): region = regionprops(SAMPLE, INTENSITY_SAMPLE)[0] for prop in PROPS: try: # access legacy name via dict assert_array_almost_equal( region[prop], getattr(region, PROPS[prop]) ) # skip property access tests for old CamelCase names # (we intentionally do not provide properties for these) if prop.lower() == prop: # access legacy name via attribute assert_array_almost_equal( getattr(region, prop), getattr(region, PROPS[prop]) ) except TypeError: # the `slice` property causes this pass def test_all_props_3d(): region = regionprops(SAMPLE_3D, INTENSITY_SAMPLE_3D)[0] for prop in PROPS: try: assert_array_almost_equal( region[prop], getattr(region, PROPS[prop]) ) # skip property access tests for old CamelCase names # (we intentionally do not provide properties for these) if prop.lower() == prop: assert_array_almost_equal( getattr(region, prop), getattr(region, PROPS[prop]) ) except (NotImplementedError, TypeError): pass def test_num_pixels(): num_pixels = regionprops(SAMPLE)[0].num_pixels assert num_pixels == 72 num_pixels = regionprops(SAMPLE, spacing=(2, 1))[0].num_pixels assert num_pixels == 72 def test_dtype(): regionprops(cp.zeros((10, 10), dtype=int)) regionprops(cp.zeros((10, 10), dtype=cp.uint)) with pytest.raises(TypeError): regionprops(cp.zeros((10, 10), dtype=float)) with pytest.raises(TypeError): regionprops(cp.zeros((10, 10), dtype=cp.float64)) with pytest.raises(TypeError): regionprops(cp.zeros((10, 10), dtype=bool)) def test_ndim(): regionprops(cp.zeros((10, 10), dtype=int)) regionprops(cp.zeros((10, 10, 1), dtype=int)) regionprops(cp.zeros((10, 10, 10), dtype=int)) regionprops(cp.zeros((1, 1), dtype=int)) regionprops(cp.zeros((1, 1, 1), dtype=int)) with pytest.raises(TypeError): regionprops(cp.zeros((10, 10, 10, 2), dtype=int)) @pytest.mark.skip("feret_diameter_max not implemented on the GPU") def test_feret_diameter_max(): # comparator result is based on SAMPLE from manually-inspected computations comparator_result = 18 test_result = regionprops(SAMPLE)[0].feret_diameter_max assert cp.abs(test_result - comparator_result) < 1 comparator_result_spacing = 10 test_result_spacing = regionprops(SAMPLE, spacing=[1, 0.1])[ 0 ].feret_diameter_max # noqa assert cp.abs(test_result_spacing - comparator_result_spacing) < 1 # square, test that Feret diameter is sqrt(2) * square side img = cp.zeros((20, 20), dtype=cp.uint8) img[2:-2, 2:-2] = 1 feret_diameter_max = regionprops(img)[0].feret_diameter_max assert cp.abs(feret_diameter_max - 16 * math.sqrt(2)) < 1 # Due to marching-squares with a level of .5 the diagonal goes # from (0, 0.5) to (16, 15.5). assert cp.abs(feret_diameter_max - np.sqrt(16**2 + (16 - 1) ** 2)) < 1e-6 spacing = (2, 1) feret_diameter_max = regionprops(img, spacing=spacing)[ 0 ].feret_diameter_max # noqa # For anisotropic spacing the shift is applied to the smaller spacing. assert ( cp.abs( feret_diameter_max - cp.sqrt( (spacing[0] * 16 - (spacing[0] <= spacing[1])) ** 2 + (spacing[1] * 16 - (spacing[1] < spacing[0])) ** 2 ) ) < 1e-6 ) @pytest.mark.skip("feret_diameter_max not implemented on the GPU") def test_feret_diameter_max_3d(): img = cp.zeros((20, 20), dtype=cp.uint8) img[2:-2, 2:-2] = 1 img_3d = cp.dstack((img,) * 3) feret_diameter_max = regionprops(img_3d)[0].feret_diameter_max # Due to marching-cubes with a level of .5 -1=2*0.5 has to be subtracted # from two axes. There are three combinations # (x-1, y-1, z), (x-1, y, z-1), (x, y-1, z-1). # The option yielding the longest diagonal is the computed # max_feret_diameter. assert ( cp.abs( feret_diameter_max - cp.sqrt((16 - 1) ** 2 + 16**2 + (3 - 1) ** 2) ) < 1e-6 ) # noqa spacing = (1, 2, 3) feret_diameter_max = regionprops(img_3d, spacing=spacing)[ 0 ].feret_diameter_max # noqa # The longest of the three options is the max_feret_diameter assert ( cp.abs( feret_diameter_max - cp.sqrt( (spacing[0] * (16 - 1)) ** 2 + (spacing[1] * (16 - 0)) ** 2 + (spacing[2] * (3 - 1)) ** 2 ) ) < 1e-6 ) assert ( cp.abs( feret_diameter_max - cp.sqrt( (spacing[0] * (16 - 1)) ** 2 + (spacing[1] * (16 - 1)) ** 2 + (spacing[2] * (3 - 0)) ** 2 ) ) > 1e-6 ) assert ( cp.abs( feret_diameter_max - cp.sqrt( (spacing[0] * (16 - 0)) ** 2 + (spacing[1] * (16 - 1)) ** 2 + (spacing[2] * (3 - 1)) ** 2 ) ) > 1e-6 ) def test_area(): area = regionprops(SAMPLE)[0].area assert area == cp.sum(SAMPLE) spacing = (1, 2) area = regionprops(SAMPLE, spacing=spacing)[0].area assert area == cp.sum(SAMPLE * math.prod(spacing)) area = regionprops(SAMPLE_3D)[0].area assert area == cp.sum(SAMPLE_3D) spacing = (2, 1, 3) area = regionprops(SAMPLE_3D, spacing=spacing)[0].area assert area == cp.sum(SAMPLE_3D * math.prod(spacing)) def test_bbox(): bbox = regionprops(SAMPLE)[0].bbox assert_array_almost_equal(bbox, (0, 0, SAMPLE.shape[0], SAMPLE.shape[1])) bbox = regionprops(SAMPLE, spacing=(1, 2))[0].bbox assert_array_almost_equal(bbox, (0, 0, SAMPLE.shape[0], SAMPLE.shape[1])) SAMPLE_mod = SAMPLE.copy() SAMPLE_mod[:, -1] = 0 bbox = regionprops(SAMPLE_mod)[0].bbox assert_array_almost_equal( bbox, (0, 0, SAMPLE.shape[0], SAMPLE.shape[1] - 1) ) bbox = regionprops(SAMPLE_mod, spacing=(3, 2))[0].bbox assert_array_almost_equal( bbox, (0, 0, SAMPLE.shape[0], SAMPLE.shape[1] - 1) ) bbox = regionprops(SAMPLE_3D)[0].bbox assert_array_almost_equal(bbox, (1, 1, 1, 4, 3, 3)) bbox = regionprops(SAMPLE_3D, spacing=(0.5, 2, 7))[0].bbox assert_array_almost_equal(bbox, (1, 1, 1, 4, 3, 3)) def test_area_bbox(): padded = pad(SAMPLE, 5, mode="constant") bbox_area = regionprops(padded)[0].area_bbox assert_array_almost_equal(bbox_area, SAMPLE.size) spacing = (0.5, 3) bbox_area = regionprops(padded, spacing=spacing)[0].area_bbox assert_array_almost_equal(bbox_area, SAMPLE.size * math.prod(spacing)) def test_moments_central(): mu = regionprops(SAMPLE)[0].moments_central # determined with OpenCV assert_almost_equal(mu[2, 0], 436.00000000000045, decimal=4) # different from OpenCV results, bug in OpenCV assert_almost_equal(mu[3, 0], -737.333333333333, decimal=3) assert_almost_equal(mu[1, 1], -87.33333333333303, decimal=3) assert_almost_equal(mu[2, 1], -127.5555555555593, decimal=3) assert_almost_equal(mu[0, 2], 1259.7777777777774, decimal=2) assert_almost_equal(mu[1, 2], 2000.296296296291, decimal=2) assert_almost_equal(mu[0, 3], -760.0246913580195, decimal=2) # Verify central moment test functions centralMpq = get_central_moment_function(SAMPLE, spacing=(1, 1)) assert_almost_equal(centralMpq(2, 0), mu[2, 0], decimal=3) assert_almost_equal(centralMpq(3, 0), mu[3, 0], decimal=3) assert_almost_equal(centralMpq(1, 1), mu[1, 1], decimal=3) assert_almost_equal(centralMpq(2, 1), mu[2, 1], decimal=3) assert_almost_equal(centralMpq(0, 2), mu[0, 2], decimal=3) assert_almost_equal(centralMpq(1, 2), mu[1, 2], decimal=3) assert_almost_equal(centralMpq(0, 3), mu[0, 3], decimal=3) # Test spacing against verified central moment test function spacing = (1.8, 0.8) centralMpq = get_central_moment_function(SAMPLE, spacing=spacing) mu = regionprops(SAMPLE, spacing=spacing)[0].moments_central assert_almost_equal(mu[2, 0], centralMpq(2, 0), decimal=3) assert_almost_equal(mu[3, 0], centralMpq(3, 0), decimal=2) assert_almost_equal(mu[1, 1], centralMpq(1, 1), decimal=3) assert_almost_equal(mu[2, 1], centralMpq(2, 1), decimal=2) assert_almost_equal(mu[0, 2], centralMpq(0, 2), decimal=3) assert_almost_equal(mu[1, 2], centralMpq(1, 2), decimal=2) assert_almost_equal(mu[0, 3], centralMpq(0, 3), decimal=2) def test_centroid(): centroid = regionprops(SAMPLE)[0].centroid # determined with MATLAB assert_array_almost_equal(centroid, (5.66666666666666, 9.444444444444444)) # Verify test moment function with spacing=(1, 1) Mpq = get_moment_function(SAMPLE, spacing=(1, 1)) cY = float(Mpq(1, 0) / Mpq(0, 0)) cX = float(Mpq(0, 1) / Mpq(0, 0)) assert_array_almost_equal((cY, cX), centroid) spacing = (1.8, 0.8) # Moment Mpq = get_moment_function(SAMPLE, spacing=spacing) cY = float(Mpq(1, 0) / Mpq(0, 0)) cX = float(Mpq(0, 1) / Mpq(0, 0)) centroid = regionprops(SAMPLE, spacing=spacing)[0].centroid assert_array_almost_equal(centroid, (cY, cX)) def test_centroid_3d(): centroid = regionprops(SAMPLE_3D)[0].centroid # determined by mean along axis 1 of SAMPLE_3D.nonzero() assert_array_almost_equal(centroid, (1.66666667, 1.55555556, 1.55555556)) # Verify moment 3D test function Mpqr = get_moment3D_function(SAMPLE_3D, spacing=(1, 1, 1)) cZ = float(Mpqr(1, 0, 0) / Mpqr(0, 0, 0)) cY = float(Mpqr(0, 1, 0) / Mpqr(0, 0, 0)) cX = float(Mpqr(0, 0, 1) / Mpqr(0, 0, 0)) assert_array_almost_equal((cZ, cY, cX), centroid) # Test spacing spacing = (2, 1, 0.8) Mpqr = get_moment3D_function(SAMPLE_3D, spacing=spacing) cZ = float(Mpqr(1, 0, 0) / Mpqr(0, 0, 0)) cY = float(Mpqr(0, 1, 0) / Mpqr(0, 0, 0)) cX = float(Mpqr(0, 0, 1) / Mpqr(0, 0, 0)) centroid = regionprops(SAMPLE_3D, spacing=spacing)[0].centroid assert_array_almost_equal(centroid, (cZ, cY, cX)) def test_area_convex(): area = regionprops(SAMPLE)[0].area_convex assert area == 125 spacing = (1, 4) area = regionprops(SAMPLE, spacing=spacing)[0].area_convex assert area == 125 * np.prod(spacing) def test_image_convex(): img = regionprops(SAMPLE)[0].image_convex # fmt: off ref = cp.array( [[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) # fmt: on assert_array_equal(img, ref) def test_coordinates(): sample = cp.zeros((10, 10), dtype=cp.int8) coords = cp.array([[3, 2], [3, 3], [3, 4]]) sample[coords[:, 0], coords[:, 1]] = 1 prop_coords = regionprops(sample)[0].coords assert_array_equal(prop_coords, coords) prop_coords = regionprops(sample, spacing=(0.5, 1.2))[0].coords assert_array_equal(prop_coords, coords) def test_coordinates_scaled(): sample = cp.zeros((10, 10), dtype=np.int8) coords = cp.array([[3, 2], [3, 3], [3, 4]]) sample[coords[:, 0], coords[:, 1]] = 1 spacing = (1, 1) prop_coords = regionprops(sample, spacing=spacing)[0].coords_scaled assert_array_equal(prop_coords, coords * cp.array(spacing)) spacing = (1, 0.5) prop_coords = regionprops(sample, spacing=spacing)[0].coords_scaled assert_array_equal(prop_coords, coords * cp.array(spacing)) sample = cp.zeros((6, 6, 6), dtype=cp.int8) coords = cp.array([[1, 1, 1], [1, 2, 1], [1, 3, 1]]) sample[coords[:, 0], coords[:, 1], coords[:, 2]] = 1 prop_coords = regionprops(sample)[0].coords_scaled assert_array_equal(prop_coords, coords) spacing = (0.2, 3, 2.3) prop_coords = regionprops(sample, spacing=spacing)[0].coords_scaled assert_array_equal(prop_coords, coords * cp.array(spacing)) def test_slice(): padded = pad(SAMPLE, ((2, 4), (5, 2)), mode="constant") nrow, ncol = SAMPLE.shape result = regionprops(padded)[0].slice expected = (slice(2, 2 + nrow), slice(5, 5 + ncol)) assert_array_equal(result, expected) spacing = (2, 0.2) result = regionprops(padded, spacing=spacing)[0].slice assert_equal(result, expected) def test_eccentricity(): eps = regionprops(SAMPLE)[0].eccentricity assert_almost_equal(eps, 0.814629313427) eps = regionprops(SAMPLE, spacing=(1.5, 1.5))[0].eccentricity assert_almost_equal(eps, 0.814629313427) img = cp.zeros((5, 5), dtype=int) img[2, 2] = 1 eps = regionprops(img)[0].eccentricity assert_almost_equal(eps, 0) eps = regionprops(img, spacing=(3, 3))[0].eccentricity assert_almost_equal(eps, 0) def test_equivalent_diameter_area(): diameter = regionprops(SAMPLE)[0].equivalent_diameter_area # determined with MATLAB assert_almost_equal(diameter, 9.57461472963) spacing = (1, 3) diameter = regionprops(SAMPLE, spacing=spacing)[0].equivalent_diameter_area equivalent_area = cp.pi * (diameter / 2.0) ** 2 assert_almost_equal(equivalent_area, SAMPLE.sum() * math.prod(spacing)) def test_euler_number(): for spacing in [(1, 1), (2.1, 0.9)]: en = regionprops(SAMPLE, spacing=spacing)[0].euler_number assert en == 0 SAMPLE_mod = SAMPLE.copy() SAMPLE_mod[7, -3] = 0 en = regionprops(SAMPLE_mod, spacing=spacing)[0].euler_number assert en == -1 en = euler_number(SAMPLE, 1) assert en == 2 en = euler_number(SAMPLE_mod, 1) assert en == 1 en = euler_number(SAMPLE_3D, 1) assert en == 1 en = euler_number(SAMPLE_3D, 3) assert en == 1 # for convex body, Euler number is 1 SAMPLE_3D_2 = cp.zeros((100, 100, 100)) SAMPLE_3D_2[40:60, 40:60, 40:60] = 1 en = euler_number(SAMPLE_3D_2, 3) assert en == 1 SAMPLE_3D_2[45:55, 45:55, 45:55] = 0 en = euler_number(SAMPLE_3D_2, 3) assert en == 2 def test_extent(): extent = regionprops(SAMPLE)[0].extent assert_almost_equal(extent, 0.4) extent = regionprops(SAMPLE, spacing=(5, 0.2))[0].extent assert_almost_equal(extent, 0.4) def test_moments_hu(): hu = regionprops(SAMPLE)[0].moments_hu # fmt: off ref = cp.array([ 3.27117627e-01, 2.63869194e-02, 2.35390060e-02, 1.23151193e-03, 1.38882330e-06, -2.72586158e-05, -6.48350653e-06 ]) # fmt: on # bug in OpenCV caused in Central Moments calculation? assert_array_almost_equal(hu, ref) with pytest.raises(NotImplementedError): regionprops(SAMPLE, spacing=(2, 1))[0].moments_hu def test_image(): img = regionprops(SAMPLE)[0].image assert_array_equal(img, SAMPLE) img = regionprops(SAMPLE_3D)[0].image assert_array_equal(img, SAMPLE_3D[1:4, 1:3, 1:3]) def test_label(): label = regionprops(SAMPLE)[0].label assert_array_equal(label, 1) label = regionprops(SAMPLE_3D)[0].label assert_array_equal(label, 1) def test_area_filled(): area = regionprops(SAMPLE)[0].area_filled assert area == cp.sum(SAMPLE) spacing = (2, 1.2) area = regionprops(SAMPLE, spacing=spacing)[0].area_filled assert area == cp.sum(SAMPLE) * math.prod(spacing) SAMPLE_mod = SAMPLE.copy() SAMPLE_mod[7, -3] = 0 area = regionprops(SAMPLE_mod)[0].area_filled assert area == cp.sum(SAMPLE) area = regionprops(SAMPLE_mod, spacing=spacing)[0].area_filled assert area == cp.sum(SAMPLE) * math.prod(spacing) def test_image_filled(): img = regionprops(SAMPLE)[0].image_filled assert_array_equal(img, SAMPLE) img = regionprops(SAMPLE, spacing=(1, 4))[0].image_filled assert_array_equal(img, SAMPLE) def test_axis_major_length(): length = regionprops(SAMPLE)[0].axis_major_length # MATLAB has different interpretation of ellipse than found in literature, # here implemented as found in literature target_length = 16.7924234999 assert_almost_equal(length, target_length, decimal=4) length = regionprops(SAMPLE, spacing=(2, 2))[0].axis_major_length assert_almost_equal(length, 2 * target_length, decimal=4) from skimage.draw import ellipse img = cp.zeros((20, 24), dtype=cp.uint8) rr, cc = ellipse(11, 11, 7, 9, rotation=np.deg2rad(45)) img[rr, cc] = 1 target_length = regionprops(img, spacing=(1, 1))[0].axis_major_length length_wo_spacing = regionprops(img[::2], spacing=(1, 1))[ 0 ].axis_minor_length assert abs(length_wo_spacing - target_length) > 0.1 length = regionprops(img[:, ::2], spacing=(1, 2))[0].axis_major_length assert_almost_equal(length, target_length, decimal=0) def test_intensity_max(): intensity = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE)[ 0 ].intensity_max assert_almost_equal(intensity, 2) def test_intensity_mean(): intensity = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE)[ 0 ].intensity_mean assert_almost_equal(intensity, 1.02777777777777) def test_intensity_min(): intensity = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE)[ 0 ].intensity_min assert_almost_equal(intensity, 1) def test_axis_minor_length(): length = regionprops(SAMPLE)[0].axis_minor_length # MATLAB has different interpretation of ellipse than found in literature, # here implemented as found in literature target_length = 9.739302807263 assert_almost_equal(length, target_length, decimal=5) length = regionprops(SAMPLE, spacing=(1.5, 1.5))[0].axis_minor_length assert_almost_equal(length, 1.5 * target_length, decimal=5) from skimage.draw import ellipse img = cp.zeros((10, 12), dtype=np.uint8) rr, cc = ellipse(5, 6, 3, 5, rotation=np.deg2rad(30)) img[rr, cc] = 1 target_length = regionprops(img, spacing=(1, 1))[0].axis_minor_length length_wo_spacing = regionprops(img[::2], spacing=(1, 1))[ 0 ].axis_minor_length assert abs(length_wo_spacing - target_length) > 0.1 length = regionprops(img[::2], spacing=(2, 1))[0].axis_minor_length assert_almost_equal(length, target_length, decimal=1) def test_moments(): m = regionprops(SAMPLE)[0].moments # determined with OpenCV assert_almost_equal(m[0, 0], 72.0) assert_almost_equal(m[0, 1], 680.0) assert_almost_equal(m[0, 2], 7682.0) assert_almost_equal(m[0, 3], 95588.0) assert_almost_equal(m[1, 0], 408.0) assert_almost_equal(m[1, 1], 3766.0) assert_almost_equal(m[1, 2], 43882.0) assert_almost_equal(m[2, 0], 2748.0) assert_almost_equal(m[2, 1], 24836.0) assert_almost_equal(m[3, 0], 19776.0) # Verify moment test function Mpq = get_moment_function(SAMPLE, spacing=(1, 1)) assert_almost_equal(Mpq(0, 0), m[0, 0]) assert_almost_equal(Mpq(0, 1), m[0, 1]) assert_almost_equal(Mpq(0, 2), m[0, 2]) assert_almost_equal(Mpq(0, 3), m[0, 3]) assert_almost_equal(Mpq(1, 0), m[1, 0]) assert_almost_equal(Mpq(1, 1), m[1, 1]) assert_almost_equal(Mpq(1, 2), m[1, 2]) assert_almost_equal(Mpq(2, 0), m[2, 0]) assert_almost_equal(Mpq(2, 1), m[2, 1]) assert_almost_equal(Mpq(3, 0), m[3, 0]) # Test moment on spacing spacing = (2, 0.3) m = regionprops(SAMPLE, spacing=spacing)[0].moments Mpq = get_moment_function(SAMPLE, spacing=spacing) assert_almost_equal(m[0, 0], Mpq(0, 0), decimal=3) assert_almost_equal(m[0, 1], Mpq(0, 1), decimal=3) assert_almost_equal(m[0, 2], Mpq(0, 2), decimal=3) assert_almost_equal(m[0, 3], Mpq(0, 3), decimal=3) assert_almost_equal(m[1, 0], Mpq(1, 0), decimal=3) assert_almost_equal(m[1, 1], Mpq(1, 1), decimal=3) assert_almost_equal(m[1, 2], Mpq(1, 2), decimal=3) assert_almost_equal(m[2, 0], Mpq(2, 0), decimal=3) assert_almost_equal(m[2, 1], Mpq(2, 1), decimal=2) assert_almost_equal(m[3, 0], Mpq(3, 0), decimal=3) def test_moments_normalized(): nu = regionprops(SAMPLE)[0].moments_normalized # determined with OpenCV assert_almost_equal(nu[0, 2], 0.24301268861454037) assert_almost_equal(nu[0, 3], -0.017278118992041805) assert_almost_equal(nu[1, 1], -0.016846707818929982) assert_almost_equal(nu[1, 2], 0.045473992910668816) assert_almost_equal(nu[2, 0], 0.08410493827160502) assert_almost_equal(nu[2, 1], -0.002899800614433943) spacing = (3, 3) nu = regionprops(SAMPLE, spacing=spacing)[0].moments_normalized # Normalized moments are scale invariant. assert_almost_equal(nu[0, 2], 0.24301268861454037) assert_almost_equal(nu[0, 3], -0.017278118992041805) assert_almost_equal(nu[1, 1], -0.016846707818929982) assert_almost_equal(nu[1, 2], 0.045473992910668816) assert_almost_equal(nu[2, 0], 0.08410493827160502) assert_almost_equal(nu[2, 1], -0.002899800614433943) def test_orientation(): orient = regionprops(SAMPLE)[0].orientation # determined with MATLAB target_orient = -1.4663278802756865 assert_almost_equal(orient, target_orient) orient = regionprops(SAMPLE, spacing=(2, 2))[0].orientation assert_almost_equal(orient, target_orient) # test diagonal regions diag = cp.eye(10, dtype=int) orient_diag = regionprops(diag)[0].orientation assert_almost_equal(orient_diag, -math.pi / 4) orient_diag = regionprops(diag, spacing=(1, 2))[0].orientation assert_almost_equal(orient_diag, np.arccos(0.5 / math.sqrt(1 + 0.5**2))) orient_diag = regionprops(cp.flipud(diag))[0].orientation assert_almost_equal(orient_diag, math.pi / 4) orient_diag = regionprops(cp.flipud(diag), spacing=(1, 2))[0].orientation assert_almost_equal(orient_diag, -np.arccos(0.5 / math.sqrt(1 + 0.5**2))) orient_diag = regionprops(cp.fliplr(diag))[0].orientation assert_almost_equal(orient_diag, math.pi / 4) orient_diag = regionprops(cp.fliplr(diag), spacing=(1, 2))[0].orientation assert_almost_equal(orient_diag, -np.arccos(0.5 / math.sqrt(1 + 0.5**2))) orient_diag = regionprops(cp.fliplr(cp.flipud(diag)))[0].orientation assert_almost_equal(orient_diag, -math.pi / 4) orient_diag = regionprops(np.fliplr(np.flipud(diag)), spacing=(1, 2))[ 0 ].orientation assert_almost_equal(orient_diag, np.arccos(0.5 / math.sqrt(1 + 0.5**2))) def test_perimeter(): per = regionprops(SAMPLE)[0].perimeter target_per = 55.2487373415 assert_almost_equal(per, target_per) per = regionprops(SAMPLE, spacing=(2, 2))[0].perimeter assert_almost_equal(per, 2 * target_per) per = perimeter(SAMPLE.astype(float), neighborhood=8) assert_almost_equal(per, 46.8284271247) with pytest.raises(NotImplementedError): per = regionprops(SAMPLE, spacing=(2, 1))[0].perimeter def test_perimeter_crofton(): per = regionprops(SAMPLE)[0].perimeter_crofton target_per_crof = 61.0800637973 assert_almost_equal(per, target_per_crof) per = regionprops(SAMPLE, spacing=(2, 2))[0].perimeter_crofton assert_almost_equal(per, 2 * target_per_crof) per = perimeter_crofton(SAMPLE.astype("double"), directions=2) assert_almost_equal(per, 64.4026493985) with pytest.raises(NotImplementedError): per = regionprops(SAMPLE, spacing=(2, 1))[0].perimeter_crofton def test_solidity(): solidity = regionprops(SAMPLE)[0].solidity target_solidity = 0.576 assert_almost_equal(solidity, target_solidity) solidity = regionprops(SAMPLE, spacing=(3, 9))[0].solidity assert_almost_equal(solidity, target_solidity) def test_moments_weighted_central(): wmu = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE)[ 0 ].moments_weighted_central # fmt: off ref = cp.array( [[7.4000000000e+01, 3.7303493627e-14, 1.2602837838e+03, -7.6561796932e+02], [-2.1316282073e-13, -8.7837837838e+01, 2.1571526662e+03, -4.2385971907e+03], [4.7837837838e+02, -1.4801314828e+02, 6.6989799420e+03, -9.9501164076e+03], [-7.5943608473e+02, -1.2714707125e+03, 1.5304076361e+04, -3.3156729271e+04]]) # fmt: on np.set_printoptions(precision=10) assert_array_almost_equal(wmu, ref) # Verify test function centralMpq = get_central_moment_function(INTENSITY_SAMPLE, spacing=(1, 1)) assert_almost_equal(centralMpq(0, 0), ref[0, 0]) assert_almost_equal(centralMpq(0, 1), ref[0, 1]) assert_almost_equal(centralMpq(0, 2), ref[0, 2]) assert_almost_equal(centralMpq(0, 3), ref[0, 3]) assert_almost_equal(centralMpq(1, 0), ref[1, 0]) assert_almost_equal(centralMpq(1, 1), ref[1, 1]) assert_almost_equal(centralMpq(1, 2), ref[1, 2]) assert_almost_equal(centralMpq(1, 3), ref[1, 3]) assert_almost_equal(centralMpq(2, 0), ref[2, 0]) assert_almost_equal(centralMpq(2, 1), ref[2, 1]) assert_almost_equal(centralMpq(2, 2), ref[2, 2]) assert_almost_equal(centralMpq(2, 3), ref[2, 3]) assert_almost_equal(centralMpq(3, 0), ref[3, 0]) assert_almost_equal(centralMpq(3, 1), ref[3, 1]) assert_almost_equal(centralMpq(3, 2), ref[3, 2]) assert_almost_equal(centralMpq(3, 3), ref[3, 3]) # Test spacing spacing = (3.2, 1.2) wmu = regionprops( SAMPLE, intensity_image=INTENSITY_SAMPLE, spacing=spacing )[0].moments_weighted_central centralMpq = get_central_moment_function(INTENSITY_SAMPLE, spacing=spacing) assert_almost_equal(wmu[0, 0], centralMpq(0, 0)) assert_almost_equal(wmu[0, 1], centralMpq(0, 1)) assert_almost_equal(wmu[0, 2], centralMpq(0, 2)) assert_almost_equal(wmu[0, 3], centralMpq(0, 3)) assert_almost_equal(wmu[1, 0], centralMpq(1, 0)) assert_almost_equal(wmu[1, 1], centralMpq(1, 1)) assert_almost_equal(wmu[1, 2], centralMpq(1, 2)) assert_almost_equal(wmu[1, 3], centralMpq(1, 3)) assert_almost_equal(wmu[2, 0], centralMpq(2, 0)) assert_almost_equal(wmu[2, 1], centralMpq(2, 1)) assert_almost_equal(wmu[2, 2], centralMpq(2, 2)) assert_almost_equal(wmu[2, 3], centralMpq(2, 3)) assert_almost_equal(wmu[3, 0], centralMpq(3, 0)) assert_almost_equal(wmu[3, 1], centralMpq(3, 1)) assert_almost_equal(wmu[3, 2], centralMpq(3, 2)) assert_almost_equal(wmu[3, 3], centralMpq(3, 3)) def test_centroid_weighted(): centroid = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE)[ 0 ].centroid_weighted target_centroid = (5.540540540540, 9.445945945945) centroid = tuple(float(c) for c in centroid) assert_array_almost_equal(centroid, target_centroid) # Verify test function Mpq = get_moment_function(INTENSITY_SAMPLE, spacing=(1, 1)) cY = float(Mpq(0, 1) / Mpq(0, 0)) cX = float(Mpq(1, 0) / Mpq(0, 0)) assert_almost_equal((cX, cY), centroid) # Test spacing spacing = (2, 2) Mpq = get_moment_function(INTENSITY_SAMPLE, spacing=spacing) cY = float(Mpq(0, 1) / Mpq(0, 0)) cX = float(Mpq(1, 0) / Mpq(0, 0)) centroid = regionprops( SAMPLE, intensity_image=INTENSITY_SAMPLE, spacing=spacing )[0].centroid_weighted centroid = tuple(float(c) for c in centroid) assert_almost_equal(centroid, (cX, cY)) assert_almost_equal(centroid, tuple(2 * c for c in target_centroid)) spacing = (1.3, 0.7) Mpq = get_moment_function(INTENSITY_SAMPLE, spacing=spacing) cY = float(Mpq(0, 1) / Mpq(0, 0)) cX = float(Mpq(1, 0) / Mpq(0, 0)) centroid = regionprops( SAMPLE, intensity_image=INTENSITY_SAMPLE, spacing=spacing )[0].centroid_weighted centroid = tuple(float(c) for c in centroid) assert_almost_equal(centroid, (cX, cY)) def test_moments_weighted_hu(): whu = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE)[ 0 ].moments_weighted_hu # fmt: off ref = cp.array([ 3.1750587329e-01, 2.1417517159e-02, 2.3609322038e-02, 1.2565683360e-03, 8.3014209421e-07, -3.5073773473e-05, -6.7936409056e-06 ]) # fmt: on assert_array_almost_equal(whu, ref) with pytest.raises(NotImplementedError): regionprops(SAMPLE, spacing=(2, 1))[0].moments_weighted_hu def test_moments_weighted(): wm = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE)[ 0 ].moments_weighted # fmt: off ref = cp.array( [[7.4000000e+01, 6.9900000e+02, 7.8630000e+03, 9.7317000e+04], [4.1000000e+02, 3.7850000e+03, 4.4063000e+04, 5.7256700e+05], [2.7500000e+03, 2.4855000e+04, 2.9347700e+05, 3.9007170e+06], [1.9778000e+04, 1.7500100e+05, 2.0810510e+06, 2.8078871e+07]] ) # fmt: on assert_array_almost_equal(wm, ref) # Verify test function Mpq = get_moment_function(INTENSITY_SAMPLE, spacing=(1, 1)) assert_almost_equal(Mpq(0, 0), ref[0, 0]) assert_almost_equal(Mpq(0, 1), ref[0, 1]) assert_almost_equal(Mpq(0, 2), ref[0, 2]) assert_almost_equal(Mpq(0, 3), ref[0, 3]) assert_almost_equal(Mpq(1, 0), ref[1, 0]) assert_almost_equal(Mpq(1, 1), ref[1, 1]) assert_almost_equal(Mpq(1, 2), ref[1, 2]) assert_almost_equal(Mpq(1, 3), ref[1, 3]) assert_almost_equal(Mpq(2, 0), ref[2, 0]) assert_almost_equal(Mpq(2, 1), ref[2, 1]) assert_almost_equal(Mpq(2, 2), ref[2, 2]) assert_almost_equal(Mpq(2, 3), ref[2, 3]) assert_almost_equal(Mpq(3, 0), ref[3, 0]) assert_almost_equal(Mpq(3, 1), ref[3, 1]) assert_almost_equal(Mpq(3, 2), ref[3, 2]) assert_almost_equal(Mpq(3, 3), ref[3, 3]) # Test spacing spacing = (3.2, 1.2) wmu = regionprops( SAMPLE, intensity_image=INTENSITY_SAMPLE, spacing=spacing )[0].moments_weighted Mpq = get_moment_function(INTENSITY_SAMPLE, spacing=spacing) assert_almost_equal(wmu[0, 0], Mpq(0, 0)) assert_almost_equal(wmu[0, 1], Mpq(0, 1)) assert_almost_equal(wmu[0, 2], Mpq(0, 2)) assert_almost_equal(wmu[0, 3], Mpq(0, 3)) assert_almost_equal(wmu[1, 0], Mpq(1, 0)) assert_almost_equal(wmu[1, 1], Mpq(1, 1)) assert_almost_equal(wmu[1, 2], Mpq(1, 2)) assert_almost_equal(wmu[1, 3], Mpq(1, 3)) assert_almost_equal(wmu[2, 0], Mpq(2, 0)) assert_almost_equal(wmu[2, 1], Mpq(2, 1)) assert_almost_equal(wmu[2, 2], Mpq(2, 2)) assert_almost_equal(wmu[2, 3], Mpq(2, 3)) assert_almost_equal(wmu[3, 0], Mpq(3, 0)) assert_almost_equal(wmu[3, 1], Mpq(3, 1)) assert_almost_equal(wmu[3, 2], Mpq(3, 2)) assert_almost_equal(wmu[3, 3], Mpq(3, 3), decimal=6) def test_moments_weighted_normalized(): wnu = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE)[ 0 ].moments_weighted_normalized # fmt: off ref = np.array( [[np.nan, np.nan, 0.2301467830, -0.0162529732], # noqa [np.nan, -0.0160405109, 0.0457932622, np.nan], # noqa [0.0873590903, -0.0031421072, np.nan, np.nan], # noqa [-0.0161217406, np.nan, np.nan, np.nan]] # noqa ) # fmt: on assert_array_almost_equal(wnu, ref) spacing = (3, 3) wnu = regionprops( SAMPLE, intensity_image=INTENSITY_SAMPLE, spacing=spacing )[0].moments_weighted_normalized # Normalized moments are scale invariant assert_almost_equal(wnu[0, 2], 0.2301467830) assert_almost_equal(wnu[0, 3], -0.0162529732) assert_almost_equal(wnu[1, 1], -0.0160405109) assert_almost_equal(wnu[1, 2], 0.0457932622) assert_almost_equal(wnu[2, 0], 0.0873590903) assert_almost_equal(wnu[2, 1], -0.0031421072) assert_almost_equal(wnu[3, 0], -0.0161217406) def test_label_sequence(): a = cp.empty((2, 2), dtype=int) a[:, :] = 2 ps = regionprops(a) assert len(ps) == 1 assert ps[0].label == 2 def test_pure_background(): a = cp.zeros((2, 2), dtype=int) ps = regionprops(a) assert len(ps) == 0 def test_invalid(): ps = regionprops(SAMPLE) def get_intensity_image(): ps[0].image_intensity with pytest.raises(AttributeError): get_intensity_image() def test_invalid_size(): wrong_intensity_sample = cp.array([[1], [1]]) with pytest.raises(ValueError): regionprops(SAMPLE, wrong_intensity_sample) def test_equals(): arr = cp.zeros((100, 100), dtype=int) arr[0:25, 0:25] = 1 arr[50:99, 50:99] = 2 regions = regionprops(arr) r1 = regions[0] regions = regionprops(arr) r2 = regions[0] r3 = regions[1] assert_equal(r1 == r2, True, "Same regionprops are not equal") assert_equal(r1 != r3, True, "Different regionprops are equal") def test_iterate_all_props(): region = regionprops(SAMPLE)[0] p0 = {p: region[p] for p in region} region = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE)[0] p1 = {p: region[p] for p in region} assert len(p0) < len(p1) def test_cache(): SAMPLE_mod = SAMPLE.copy() region = regionprops(SAMPLE_mod)[0] f0 = region.image_filled region._label_image[:10] = 1 f1 = region.image_filled # Changed underlying image, but cache keeps result the same assert_array_equal(f0, f1) # Now invalidate cache region._cache_active = False f1 = region.image_filled assert cp.any(f0 != f1) def test_docstrings_and_props(): def foo(): """foo""" has_docstrings = bool(foo.__doc__) region = regionprops(SAMPLE)[0] docs = _parse_docs() props = [m for m in dir(region) if not m.startswith("_")] nr_docs_parsed = len(docs) nr_props = len(props) if has_docstrings: assert_equal(nr_docs_parsed, nr_props) ds = docs["moments_weighted_normalized"] assert "iteration" not in ds assert len(ds.split("\n")) > 3 else: assert_equal(nr_docs_parsed, 0) def test_props_to_dict(): regions = regionprops(SAMPLE) out = _props_to_dict(regions) assert out == { "label": cp.array([1]), "bbox-0": cp.array([0]), "bbox-1": cp.array([0]), "bbox-2": cp.array([10]), "bbox-3": cp.array([18]), } regions = regionprops(SAMPLE) out = _props_to_dict( regions, properties=("label", "area", "bbox"), separator="+" ) assert out == { "label": cp.array([1]), "area": cp.array([72]), "bbox+0": cp.array([0]), "bbox+1": cp.array([0]), "bbox+2": cp.array([10]), "bbox+3": cp.array([18]), } regions = regionprops(SAMPLE_MULTIPLE) out = _props_to_dict(regions, properties=("coords",)) coords = np.empty(2, object) coords[0] = cp.stack((cp.arange(10),) * 2, axis=-1) coords[1] = cp.array([[3, 7], [4, 7]]) assert out["coords"].shape == coords.shape assert_array_equal(out["coords"][0], coords[0]) assert_array_equal(out["coords"][1], coords[1]) def test_regionprops_table(): out = regionprops_table(SAMPLE) assert out == { "label": cp.array([1]), "bbox-0": cp.array([0]), "bbox-1": cp.array([0]), "bbox-2": cp.array([10]), "bbox-3": cp.array([18]), } out = regionprops_table( SAMPLE, properties=("label", "area", "bbox"), separator="+" ) assert out == { "label": cp.array([1]), "area": cp.array([72]), "bbox+0": cp.array([0]), "bbox+1": cp.array([0]), "bbox+2": cp.array([10]), "bbox+3": cp.array([18]), } out = regionprops_table(SAMPLE_MULTIPLE, properties=("coords",)) coords = np.empty(2, object) coords[0] = cp.stack((cp.arange(10),) * 2, axis=-1) coords[1] = cp.array([[3, 7], [4, 7]]) assert out["coords"].shape == coords.shape assert_array_equal(out["coords"][0], coords[0]) assert_array_equal(out["coords"][1], coords[1]) def test_regionprops_table_deprecated_vector_property(): out = regionprops_table(SAMPLE, properties=("local_centroid",)) for key in out.keys(): # key reflects the deprecated name, not its new (centroid_local) value assert key.startswith("local_centroid") def test_regionprops_table_deprecated_scalar_property(): out = regionprops_table(SAMPLE, properties=("bbox_area",)) assert list(out.keys()) == ["bbox_area"] def test_regionprops_table_equal_to_original(): regions = regionprops(SAMPLE, INTENSITY_FLOAT_SAMPLE) out_table = regionprops_table( SAMPLE, INTENSITY_FLOAT_SAMPLE, properties=COL_DTYPES.keys() ) for prop, dtype in COL_DTYPES.items(): for i, reg in enumerate(regions): rp = reg[prop] if ( cp.isscalar(rp) or (isinstance(rp, cp.ndarray) and rp.ndim == 0) or prop in OBJECT_COLUMNS or dtype is np.object_ ): assert_array_equal(rp, out_table[prop][i]) else: shape = rp.shape if isinstance(rp, cp.ndarray) else (len(rp),) for ind in np.ndindex(shape): modified_prop = "-".join(map(str, (prop,) + ind)) loc = ind if len(ind) > 1 else ind[0] assert_array_equal(rp[loc], out_table[modified_prop][i]) def test_regionprops_table_no_regions(): out = regionprops_table( cp.zeros((2, 2), dtype=int), properties=("label", "area", "bbox"), separator="+", ) assert len(out) == 6 assert len(out["label"]) == 0 assert len(out["area"]) == 0 assert len(out["bbox+0"]) == 0 assert len(out["bbox+1"]) == 0 assert len(out["bbox+2"]) == 0 assert len(out["bbox+3"]) == 0 def test_column_dtypes_complete(): assert set(COL_DTYPES.keys()).union(OBJECT_COLUMNS) == set(PROPS.values()) def test_column_dtypes_correct(): msg = "mismatch with expected type," region = regionprops(SAMPLE, intensity_image=INTENSITY_SAMPLE)[0] for col in COL_DTYPES: r = region[col] if col in OBJECT_COLUMNS: assert COL_DTYPES[col] == object continue # TODO: grlee77: check desired types for returned. # e.g. currently inertia_tensor_eigvals returns a list of 0-dim # arrays if isinstance(r, (tuple, list)): r0 = r[0] if isinstance(r0, cp.ndarray) and r0.ndim == 0: r0 = r0.item() t = type(r0) elif cp.isscalar(r): t = type(r) else: t = type(r.ravel()[0].item()) if cp.issubdtype(t, cp.floating): assert ( COL_DTYPES[col] == float ), f"{col} dtype {t} {msg} {COL_DTYPES[col]}" elif cp.issubdtype(t, cp.integer): assert ( COL_DTYPES[col] == int ), f"{col} dtype {t} {msg} {COL_DTYPES[col]}" else: assert False, f"{col} dtype {t} {msg} {COL_DTYPES[col]}" def pixelcount(regionmask): """a short test for an extra property""" return cp.sum(regionmask) def intensity_median(regionmask, image_intensity): return cp.median(image_intensity[regionmask]) def too_many_args(regionmask, image_intensity, superfluous): return 1 def too_few_args(): return 1 def test_extra_properties(): region = regionprops(SAMPLE, extra_properties=(pixelcount,))[0] assert region.pixelcount == cp.sum(SAMPLE == 1) def test_extra_properties_intensity(): region = regionprops( SAMPLE, intensity_image=INTENSITY_SAMPLE, extra_properties=(intensity_median,), )[0] assert region.intensity_median == cp.median(INTENSITY_SAMPLE[SAMPLE == 1]) @pytest.mark.parametrize("intensity_prop", _require_intensity_image) def test_intensity_image_required(intensity_prop): region = regionprops(SAMPLE)[0] with pytest.raises(AttributeError) as e: getattr(region, intensity_prop) expected_error = ( f"Attribute '{intensity_prop}' unavailable when `intensity_image` has " f"not been specified." ) assert expected_error == str(e.value) def test_extra_properties_no_intensity_provided(): with pytest.raises(AttributeError): region = regionprops(SAMPLE, extra_properties=(intensity_median,))[0] _ = region.intensity_median def test_extra_properties_nr_args(): with pytest.raises(AttributeError): region = regionprops(SAMPLE, extra_properties=(too_few_args,))[0] _ = region.too_few_args with pytest.raises(AttributeError): region = regionprops(SAMPLE, extra_properties=(too_many_args,))[0] _ = region.too_many_args def test_extra_properties_mixed(): # mixed properties, with and without intensity region = regionprops( SAMPLE, intensity_image=INTENSITY_SAMPLE, extra_properties=(intensity_median, pixelcount), )[0] assert region.intensity_median == cp.median(INTENSITY_SAMPLE[SAMPLE == 1]) assert region.pixelcount == cp.sum(SAMPLE == 1) def test_extra_properties_table(): out = regionprops_table( SAMPLE_MULTIPLE, intensity_image=INTENSITY_SAMPLE_MULTIPLE, properties=("label",), extra_properties=(intensity_median, pixelcount), ) assert_array_almost_equal(out["intensity_median"], np.array([2.0, 4.0])) assert_array_equal(out["pixelcount"], np.array([10, 2])) def test_multichannel(): """Test that computing multichannel properties works.""" astro = data.astronaut()[::4, ::4] labels = slic(astro.astype(float), start_label=1) astro = cp.asarray(astro) astro_green = astro[..., 1] labels = cp.asarray(labels) segment_idx = int(cp.max(labels) // 2) region = regionprops( labels, astro_green, extra_properties=[intensity_median], )[segment_idx] region_multi = regionprops( labels, astro, extra_properties=[intensity_median], )[segment_idx] for prop in list(PROPS.keys()) + ["intensity_median"]: p = region[prop] p_multi = region_multi[prop] if isinstance(p, (list, tuple)): p = tuple([cp.asnumpy(p_) for p_ in p]) p = np.stack(p) if isinstance(p_multi, (list, tuple)): p_multi = tuple([cp.asnumpy(p_) for p_ in p_multi]) p_multi = np.stack(p_multi) if np.shape(p) == np.shape(p_multi): # property does not depend on multiple channels assert_array_equal(p, p_multi) else: # property uses multiple channels, returns props stacked along # final axis assert_array_equal(p, p_multi[..., 1]) def test_3d_ellipsoid_axis_lengths(): """Verify that estimated axis lengths are correct. Uses an ellipsoid at an arbitrary position and orientation. """ # generate a centered ellipsoid with non-uniform half-lengths (radii) half_lengths = (20, 10, 50) e = draw.ellipsoid(*half_lengths).astype(int) # Pad by asymmetric amounts so the ellipse isn't centered. Also, pad enough # that the rotated ellipse will still be within the original volume. e = np.pad(e, pad_width=[(30, 18), (30, 12), (40, 20)], mode="constant") e = cp.array(e) # apply rotations to the ellipsoid R = transform.EuclideanTransform(rotation=[0.2, 0.3, 0.4], dimensionality=3) e = ndi.affine_transform(e, R.params) # Compute regionprops rp = regionprops(e)[0] # estimate principal axis lengths via the inertia tensor eigenvalues evs = rp.inertia_tensor_eigvals axis_lengths = _inertia_eigvals_to_axes_lengths_3D(evs) expected_lengths = sorted([2 * h for h in half_lengths], reverse=True) for ax_len_expected, ax_len in zip(expected_lengths, axis_lengths): # verify accuracy to within 1% assert abs(ax_len - ax_len_expected) < 0.01 * ax_len_expected # verify that the axis length regionprops also agree assert abs(rp.axis_major_length - axis_lengths[0]) < 1e-7 assert abs(rp.axis_minor_length - axis_lengths[-1]) < 1e-7
0