repo_id
stringlengths
21
96
file_path
stringlengths
31
155
content
stringlengths
1
92.9M
__index_level_0__
int64
0
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/dataframe/test_combining.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/strings/test_string_methods.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/general_functions/test_conversion.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/general_functions/test_data_manipulation.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/general_functions/test_datetimelike.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/window/test_rolling.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/lists/test_list_methods.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_sorting.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_constructing.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_conversion.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_interval.py
# Copyright (c) 2023, NVIDIA CORPORATION. import numpy as np import pandas as pd import pyarrow as pa import pytest import cudf from cudf.core._compat import PANDAS_GE_210 from cudf.core.index import IntervalIndex, interval_range from cudf.testing._utils import assert_eq def test_interval_constructor_default_closed(): idx = cudf.IntervalIndex([pd.Interval(0, 1)]) assert idx.closed == "right" assert idx.dtype.closed == "right" def test_interval_to_arrow(): expect = pa.Array.from_pandas(pd.IntervalIndex([pd.Interval(0, 1)])) got = cudf.IntervalIndex([pd.Interval(0, 1)]).to_arrow() assert_eq(expect, got) INTERVAL_BOUNDARY_TYPES = [ int, np.int8, np.int16, np.int32, np.int64, np.float32, np.float64, cudf.Scalar, ] @pytest.mark.parametrize("closed", ["left", "right", "both", "neither"]) @pytest.mark.parametrize("start", [0, 1, 2, 3]) @pytest.mark.parametrize("end", [4, 5, 6, 7]) def test_interval_range_basic(start, end, closed): pindex = pd.interval_range(start=start, end=end, closed=closed) gindex = cudf.interval_range(start=start, end=end, closed=closed) assert_eq(pindex, gindex) @pytest.mark.parametrize("start_t", INTERVAL_BOUNDARY_TYPES) @pytest.mark.parametrize("end_t", INTERVAL_BOUNDARY_TYPES) def test_interval_range_dtype_basic(start_t, end_t): start, end = start_t(24), end_t(42) start_val = start.value if isinstance(start, cudf.Scalar) else start end_val = end.value if isinstance(end, cudf.Scalar) else end pindex = pd.interval_range(start=start_val, end=end_val, closed="left") gindex = cudf.interval_range(start=start, end=end, closed="left") assert_eq(pindex, gindex) @pytest.mark.parametrize("closed", ["left", "right", "both", "neither"]) @pytest.mark.parametrize("start", [0]) @pytest.mark.parametrize("end", [0]) def test_interval_range_empty(start, end, closed): pindex = pd.interval_range(start=start, end=end, closed=closed) gindex = cudf.interval_range(start=start, end=end, closed=closed) assert_eq(pindex, gindex) @pytest.mark.parametrize("closed", ["left", "right", "both", "neither"]) @pytest.mark.parametrize("freq", [1, 2, 3]) @pytest.mark.parametrize("start", [0, 1, 2, 3, 5]) @pytest.mark.parametrize("end", [6, 8, 10, 43, 70]) def test_interval_range_freq_basic(start, end, freq, closed): pindex = pd.interval_range(start=start, end=end, freq=freq, closed=closed) gindex = cudf.interval_range( start=start, end=end, freq=freq, closed=closed ) assert_eq(pindex, gindex) @pytest.mark.parametrize("start_t", INTERVAL_BOUNDARY_TYPES) @pytest.mark.parametrize("end_t", INTERVAL_BOUNDARY_TYPES) @pytest.mark.parametrize("freq_t", INTERVAL_BOUNDARY_TYPES) def test_interval_range_freq_basic_dtype(start_t, end_t, freq_t): start, end, freq = start_t(5), end_t(70), freq_t(3) start_val = start.value if isinstance(start, cudf.Scalar) else start end_val = end.value if isinstance(end, cudf.Scalar) else end freq_val = freq.value if isinstance(freq, cudf.Scalar) else freq pindex = pd.interval_range( start=start_val, end=end_val, freq=freq_val, closed="left" ) gindex = cudf.interval_range( start=start, end=end, freq=freq, closed="left" ) assert_eq(pindex, gindex) @pytest.mark.parametrize("closed", ["left", "right", "both", "neither"]) @pytest.mark.parametrize("periods", [1, 1.0, 2, 2.0, 3.0, 3]) @pytest.mark.parametrize("start", [0, 0.0, 1.0, 1, 2, 2.0, 3.0, 3]) @pytest.mark.parametrize("end", [4, 4.0, 5.0, 5, 6, 6.0, 7.0, 7]) def test_interval_range_periods_basic(start, end, periods, closed): pindex = pd.interval_range( start=start, end=end, periods=periods, closed=closed ) gindex = cudf.interval_range( start=start, end=end, periods=periods, closed=closed ) assert_eq(pindex, gindex) @pytest.mark.parametrize("start_t", INTERVAL_BOUNDARY_TYPES) @pytest.mark.parametrize("end_t", INTERVAL_BOUNDARY_TYPES) @pytest.mark.parametrize("periods_t", INTERVAL_BOUNDARY_TYPES) def test_interval_range_periods_basic_dtype(start_t, end_t, periods_t): start, end, periods = start_t(0), end_t(4), periods_t(1.0) start_val = start.value if isinstance(start, cudf.Scalar) else start end_val = end.value if isinstance(end, cudf.Scalar) else end periods_val = ( periods.value if isinstance(periods, cudf.Scalar) else periods ) pindex = pd.interval_range( start=start_val, end=end_val, periods=periods_val, closed="left" ) gindex = cudf.interval_range( start=start, end=end, periods=periods, closed="left" ) assert_eq(pindex, gindex) @pytest.mark.parametrize("closed", ["left", "right", "both", "neither"]) @pytest.mark.parametrize("periods", [1, 2, 3]) @pytest.mark.parametrize("freq", [1, 2, 3, 4]) @pytest.mark.parametrize("end", [4, 8, 9, 10]) def test_interval_range_periods_freq_end(end, freq, periods, closed): pindex = pd.interval_range( end=end, freq=freq, periods=periods, closed=closed ) gindex = cudf.interval_range( end=end, freq=freq, periods=periods, closed=closed ) assert_eq(pindex, gindex) @pytest.mark.parametrize("periods_t", INTERVAL_BOUNDARY_TYPES) @pytest.mark.parametrize("freq_t", INTERVAL_BOUNDARY_TYPES) @pytest.mark.parametrize("end_t", INTERVAL_BOUNDARY_TYPES) def test_interval_range_periods_freq_end_dtype(periods_t, freq_t, end_t): periods, freq, end = periods_t(2), freq_t(3), end_t(10) freq_val = freq.value if isinstance(freq, cudf.Scalar) else freq end_val = end.value if isinstance(end, cudf.Scalar) else end periods_val = ( periods.value if isinstance(periods, cudf.Scalar) else periods ) pindex = pd.interval_range( end=end_val, freq=freq_val, periods=periods_val, closed="left" ) gindex = cudf.interval_range( end=end, freq=freq, periods=periods, closed="left" ) assert_eq(pindex, gindex) @pytest.mark.parametrize("closed", ["left", "right", "both", "neither"]) @pytest.mark.parametrize("periods", [1, 2, 3]) @pytest.mark.parametrize("freq", [1, 2, 3, 4]) @pytest.mark.parametrize("start", [1, 4, 9, 12]) def test_interval_range_periods_freq_start(start, freq, periods, closed): pindex = pd.interval_range( start=start, freq=freq, periods=periods, closed=closed ) gindex = cudf.interval_range( start=start, freq=freq, periods=periods, closed=closed ) assert_eq(pindex, gindex) @pytest.mark.parametrize("periods_t", INTERVAL_BOUNDARY_TYPES) @pytest.mark.parametrize("freq_t", INTERVAL_BOUNDARY_TYPES) @pytest.mark.parametrize("start_t", INTERVAL_BOUNDARY_TYPES) def test_interval_range_periods_freq_start_dtype(periods_t, freq_t, start_t): periods, freq, start = periods_t(2), freq_t(3), start_t(9) freq_val = freq.value if isinstance(freq, cudf.Scalar) else freq start_val = start.value if isinstance(start, cudf.Scalar) else start periods_val = ( periods.value if isinstance(periods, cudf.Scalar) else periods ) pindex = pd.interval_range( start=start_val, freq=freq_val, periods=periods_val, closed="left" ) gindex = cudf.interval_range( start=start, freq=freq, periods=periods, closed="left" ) assert_eq(pindex, gindex) @pytest.mark.parametrize("closed", ["right", "left", "both", "neither"]) @pytest.mark.parametrize( "data", [ ([pd.Interval(30, 50)]), ([pd.Interval(0, 3), pd.Interval(1, 7)]), ([pd.Interval(0.2, 60.3), pd.Interval(1, 7), pd.Interval(0, 0)]), ([]), ], ) def test_interval_index_basic(data, closed): pindex = pd.IntervalIndex(data, closed=closed) gindex = IntervalIndex(data, closed=closed) assert_eq(pindex, gindex) @pytest.mark.parametrize("closed", ["right", "left", "both", "neither"]) def test_interval_index_empty(closed): pindex = pd.IntervalIndex([], closed=closed) gindex = IntervalIndex([], closed=closed) assert_eq(pindex, gindex) @pytest.mark.parametrize("closed", ["right", "left", "both", "neither"]) @pytest.mark.parametrize( "data", [ ([pd.Interval(1, 6), pd.Interval(1, 10), pd.Interval(1, 3)]), ( [ pd.Interval(3.5, 6.0), pd.Interval(1.0, 7.0), pd.Interval(0.0, 10.0), ] ), ( [ pd.Interval(50, 100, closed="left"), pd.Interval(1.0, 7.0, closed="left"), pd.Interval(16, 322, closed="left"), ] ), ( [ pd.Interval(50, 100, closed="right"), pd.Interval(1.0, 7.0, closed="right"), pd.Interval(16, 322, closed="right"), ] ), ], ) def test_interval_index_many_params(data, closed): pindex = pd.IntervalIndex(data, closed=closed) gindex = IntervalIndex(data, closed=closed) assert_eq(pindex, gindex) @pytest.mark.parametrize("closed", ["left", "right", "both", "neither"]) def test_interval_index_from_breaks(closed): breaks = [0, 3, 6, 10] pindex = pd.IntervalIndex.from_breaks(breaks, closed=closed) gindex = IntervalIndex.from_breaks(breaks, closed=closed) assert_eq(pindex, gindex) @pytest.mark.parametrize( "start, stop, freq, periods", [ (0.0, None, 0.2, 5), (0.0, 1.0, None, 5), pytest.param( 0.0, 1.0, 0.2, None, marks=pytest.mark.xfail( condition=not PANDAS_GE_210, reason="https://github.com/pandas-dev/pandas/pull/54477", ), ), (None, 1.0, 0.2, 5), pytest.param( 0.0, 1.0, 0.1, None, marks=pytest.mark.xfail( condition=not PANDAS_GE_210, reason="https://github.com/pandas-dev/pandas/pull/54477", ), ), (0.0, 1.0, None, 10), (0.0, None, 0.25, 4), (1.0, None, 2.5, 2), ], ) def test_interval_range_floating(start, stop, freq, periods): expected = pd.interval_range( start=start, end=stop, freq=freq, periods=periods ) got = interval_range(start=start, end=stop, freq=freq, periods=periods) assert_eq(expected, got) def test_intervalindex_empty_typed_non_int(): data = np.array([], dtype="datetime64[ns]") result = cudf.IntervalIndex(data) expected = pd.IntervalIndex(data) assert_eq(result, expected)
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_properties.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_modifying.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_computation.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_missing.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_numeric.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_selecting.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_memory_usage.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_categorical.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_time_specific.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_multiindex_compat.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/test_combining.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/timedelta/test_constructing.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/timedelta/test_conversion.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/timedelta/test_components.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/multiindex/test_constructing.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/multiindex/test_properties.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/multiindex/test_selecting.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/datetime/test_constructing.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/datetime/test_conversion.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/datetime/test_indexing.py
# Copyright (c) 2023, NVIDIA CORPORATION. import pandas as pd import cudf from cudf.testing._utils import assert_eq def test_slice_datetimetz_index(): data = ["2001-01-01", "2001-01-02", None, None, "2001-01-03"] pidx = pd.DatetimeIndex(data, dtype="datetime64[ns]").tz_localize( "US/Eastern" ) idx = cudf.DatetimeIndex(data, dtype="datetime64[ns]").tz_localize( "US/Eastern" ) expected = pidx[1:4] got = idx[1:4] assert_eq(expected, got)
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/datetime/test_components.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes
rapidsai_public_repos/cudf/python/cudf/cudf/tests/indexes/datetime/test_time_specific.py
# Copyright (c) 2022-2023, NVIDIA CORPORATION. import pandas as pd import cudf from cudf.testing._utils import assert_eq def test_tz_localize(): pidx = pd.date_range("2001-01-01", "2001-01-02", freq="1s") pidx = pidx.astype("<M8[ns]") idx = cudf.from_pandas(pidx) assert pidx.dtype == idx.dtype assert_eq( pidx.tz_localize("America/New_York"), idx.tz_localize("America/New_York"), ) def test_tz_convert(): pidx = pd.date_range("2023-01-01", periods=3, freq="H") idx = cudf.from_pandas(pidx) pidx = pidx.tz_localize("UTC") idx = idx.tz_localize("UTC") assert_eq( pidx.tz_convert("America/New_York"), idx.tz_convert("America/New_York") ) def test_delocalize_naive(): pidx = pd.date_range("2023-01-01", periods=3, freq="H") idx = cudf.from_pandas(pidx) assert_eq(pidx.tz_localize(None), idx.tz_localize(None))
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/groupby/test_agg.py
# Copyright (c) 2023, NVIDIA CORPORATION. import numpy as np import pytest import cudf @pytest.mark.parametrize( "empty", [True, False], ids=["empty", "nonempty"], ) def test_agg_count_dtype(empty): df = cudf.DataFrame({"a": [1, 2, 1], "c": ["a", "b", "c"]}) if empty: df = df.iloc[:0] result = df.groupby("a").agg({"c": "count"}) assert result["c"].dtype == np.dtype("int64")
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/groupby/test_computation.py
# Copyright (c) 2023, NVIDIA CORPORATION. import pandas as pd import pytest import cudf from cudf.testing._utils import assert_eq @pytest.mark.parametrize("method", ["average", "min", "max", "first", "dense"]) def test_rank_return_type_compatible_mode(method): # in compatible mode, rank() always returns floats pdf = pd.DataFrame({"a": [1, 1, 1, 2, 2], "b": [1, 2, 3, 4, 5]}) with cudf.option_context("mode.pandas_compatible", True): df = cudf.from_pandas(pdf) result = df.groupby("a").rank(method=method) expect = pdf.groupby("a").rank(method=method) assert_eq(expect, result) assert result["b"].dtype == "float64"
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/groupby/test_stats.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/groupby/test_indexing.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/groupby/test_function_application.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/general_utilities/test_testing.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_sorting.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_constructing.py
# Copyright (c) 2023, NVIDIA CORPORATION. import numpy as np import cudf def test_construct_int_series_with_nulls_compat_mode(): # in compatibility mode, constructing a Series # with nulls should result in a floating Series: with cudf.option_context("mode.pandas_compatible", True): s = cudf.Series([1, 2, None]) assert s.dtype == np.dtype("float64")
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_conversion.py
# Copyright (c) 2023, NVIDIA CORPORATION. import pandas as pd import pytest import cudf from cudf.testing._utils import assert_eq @pytest.mark.parametrize( "data, dtype", [ ([1, 2, 3], "int8"), ([1, 2, 3], "int64"), ([1.1, 2.2, 3.3], "float32"), ([1.0, 2.0, 3.0], "float32"), ([1.0, 2.0, 3.0], "float64"), (["a", "b", "c"], "str"), (["a", "b", "c"], "category"), (["2001-01-01", "2001-01-02", "2001-01-03"], "datetime64[ns]"), ], ) def test_convert_dtypes(data, dtype): s = pd.Series(data, dtype=dtype) gs = cudf.Series(data, dtype=dtype) expect = s.convert_dtypes() # because we don't have distinct nullable types, we check that we # get the same result if we convert to nullable pandas types: got = gs.convert_dtypes().to_pandas(nullable=True) assert_eq(expect, got) # Now write the same test, but construct a DataFrame # as input instead of parametrizing:
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_accessors.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_datetimelike.py
# Copyright (c) 2023, NVIDIA CORPORATION. import os import pandas as pd import pytest import cudf from cudf import date_range from cudf.testing._utils import assert_eq def _get_all_zones(): zones = [] for root, dirs, files in os.walk("/usr/share/zoneinfo"): for f in files: zone_name = ("/".join([root, f])).lstrip("/usr/share/zoneinfo") try: _ = pd.DatetimeTZDtype("ns", zone_name) except Exception: continue zones.append(zone_name) return zones # NOTE: ALL_TIME_ZONES is a very large list; we likely do NOT want to # use it for more than a handful of tests ALL_TIME_ZONES = _get_all_zones() @pytest.fixture(params=["ns", "us", "ms", "s"]) def unit(request): return request.param @pytest.fixture( params=["America/New_York", "Asia/Tokyo", "CET", "Etc/GMT+1", "UTC"] ) def tz(request): return request.param @pytest.mark.parametrize("zone_name", ALL_TIME_ZONES) def test_tz_localize(unit, zone_name): s = cudf.Series(date_range("2001-01-01", "2001-01-02", freq="1s")) s = s.astype(f"<M8[{unit}]") s = s.dt.tz_localize(zone_name) assert isinstance(s.dtype, pd.DatetimeTZDtype) assert s.dtype.unit == unit assert str(s.dtype.tz) == zone_name @pytest.mark.parametrize("zone_name", ALL_TIME_ZONES) def test_localize_ambiguous(request, unit, zone_name): request.applymarker( pytest.mark.xfail( condition=(zone_name == "America/Metlakatla"), reason="https://www.timeanddate.com/news/time/metlakatla-quits-dst.html", # noqa: E501 ) ) s = cudf.Series( [ "2018-11-04 00:30:00", "2018-11-04 01:00:00", "2018-11-04 01:30:00", "2018-11-04 02:00:00", None, "2018-11-04 02:30:00", ], dtype=f"datetime64[{unit}]", ) expect = s.to_pandas().dt.tz_localize( zone_name, ambiguous="NaT", nonexistent="NaT" ) got = s.dt.tz_localize(zone_name) assert_eq(expect, got) @pytest.mark.parametrize("zone_name", ALL_TIME_ZONES) def test_localize_nonexistent(request, unit, zone_name): request.applymarker( pytest.mark.xfail( condition=(zone_name == "America/Grand_Turk"), reason="https://www.worldtimezone.com/dst_news/dst_news_turkscaicos03.html", # noqa: E501 ) ) s = cudf.Series( [ "2018-03-11 01:30:00", "2018-03-11 02:00:00", "2018-03-11 02:30:00", "2018-03-11 03:00:00", None, "2018-03-11 03:30:00", ], dtype=f"datetime64[{unit}]", ) expect = s.to_pandas().dt.tz_localize( zone_name, ambiguous="NaT", nonexistent="NaT" ) got = s.dt.tz_localize(zone_name) assert_eq(expect, got) def test_delocalize(unit, tz): psr = pd.Series( pd.date_range("2001-01-01", "2001-01-02", freq="1s") ).astype(f"datetime64[{unit}]") sr = cudf.from_pandas(psr) expect = psr.dt.tz_localize(tz).dt.tz_localize(None) got = sr.dt.tz_localize(tz).dt.tz_localize(None) assert_eq(expect, got) def test_delocalize_naive(): # delocalizing naive datetimes should be a no-op psr = pd.Series(["2001-01-01"], dtype="datetime64[ns]") sr = cudf.from_pandas(psr) expect = psr.dt.tz_localize(None) got = sr.dt.tz_localize(None) assert_eq(expect, got) @pytest.mark.parametrize( "from_tz", ["Europe/London", "America/Chicago", "UTC"] ) @pytest.mark.parametrize( "to_tz", ["Europe/London", "America/Chicago", "UTC", None] ) def test_convert(from_tz, to_tz): ps = pd.Series(pd.date_range("2023-01-01", periods=3, freq="H")) gs = cudf.from_pandas(ps) ps = ps.dt.tz_localize(from_tz) gs = gs.dt.tz_localize(from_tz) expect = ps.dt.tz_convert(to_tz) got = gs.dt.tz_convert(to_tz) assert_eq(expect, got) def test_convert_from_naive(): gs = cudf.Series(cudf.date_range("2023-01-01", periods=3, freq="H")) with pytest.raises(TypeError): gs.dt.tz_convert("America/New_York") @pytest.mark.parametrize( "data,original_timezone,target_timezone", [ # DST transition: (["2023-03-12 01:30:00"], "America/New_York", "America/Los_Angeles"), # crossing the international date line: (["2023-05-17 23:30:00"], "Pacific/Auckland", "America/Los_Angeles"), # timezone with non-integer offset: (["2023-05-17 12:00:00"], "Asia/Kolkata", "Australia/Eucla"), # timezone with negative offset: (["2023-05-17 09:00:00"], "America/Los_Angeles", "Pacific/Auckland"), # conversion across multiple days: (["2023-05-16 23:30:00"], "America/New_York", "Asia/Kolkata"), # timezone with half-hour offset: (["2023-05-17 12:00:00"], "Asia/Kolkata", "Australia/Adelaide"), # timezone conversion with a timestamp in the future: (["2025-01-01 00:00:00"], "America/New_York", "Europe/London"), # timezone conversion with a timestamp in the past: (["2000-01-01 12:00:00"], "Europe/Paris", "America/Los_Angeles"), # timezone conversion with a timestamp at midnight: (["2023-05-17 00:00:00"], "Asia/Tokyo", "Europe/Paris"), ], ) def test_convert_edge_cases(data, original_timezone, target_timezone): ps = pd.Series(data, dtype="datetime64[s]").dt.tz_localize( original_timezone ) gs = cudf.Series(data, dtype="datetime64[s]").dt.tz_localize( original_timezone ) expect = ps.dt.tz_convert(target_timezone) got = gs.dt.tz_convert(target_timezone) assert_eq(expect, got) def test_tz_aware_attributes_local(): data = [ "2008-05-12 13:50:00", "2008-12-12 14:50:35", "2009-05-12 13:50:32", ] dti = cudf.DatetimeIndex(data).tz_localize("UTC").tz_convert("US/Eastern") result = dti.hour expected = cudf.Index([9, 9, 9], dtype="int16") assert_eq(result, expected)
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_timeseries.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_computation.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_io_serialization.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_missing.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_indexing.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_attributes.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_function_application.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_binary_operations.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_selecting.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_reshaping.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_categorial.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/series/test_combining.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/data
rapidsai_public_repos/cudf/python/cudf/cudf/tests/data/subword_tokenizer_data/test_sentences.txt
This text is included to make sure Unicode is handled properly: 力加勝北区ᴵᴺᵀᵃছজটডণত This sample text is public domain and was randomly selected from Project Guttenberg. The rain had only ceased with the gray streaks of morning at Blazing Star, and the settlement awoke to a moral sense of cleanliness, and the finding of forgotten knives, tin cups, and smaller camp utensils, where the heavy showers had washed away the debris and dust heaps before the cabin doors. Indeed, it was recorded in Blazing Star that a fortunate early riser had once picked up on the highway a solid chunk of gold quartz which the rain had freed from its incumbering soil, and washed into immediate and glittering popularity. Possibly this may have been the reason why early risers in that locality, during the rainy season, adopted a thoughtful habit of body, and seldom lifted their eyes to the rifted or india-ink washed skies above them. "Cass" Beard had risen early that morning, but not with a view to discovery. A leak in his cabin roof,--quite consistent with his careless, improvident habits,--had roused him at 4 A. M., with a flooded "bunk" and wet blankets. The chips from his wood pile refused to kindle a fire to dry his bed-clothes, and he had recourse to a more provident neighbor's to supply the deficiency. This was nearly opposite. Mr. Cassius crossed the highway, and stopped suddenly. But the Goblin could no longer sit quietly listening to the wisdom and intellect downstairs. No, as soon as the light shone in the evening from the attic it seemed to him as though its beams were strong ropes dragging him up, and he had to go and peep through the key-hole. There he felt the sort of feeling we have looking at the great rolling sea in a storm, and he burst into tears. He could not himself say why he wept, but in spite of his tears he felt quite happy. How beautiful it must be to sit under that tree with the student, but that he could not do; he had to content himself with the key-hole and be happy there! But, wonderful to relate, not an irregular, shapeless fragment of crude ore, fresh from Nature's crucible, but a bit of jeweler's handicraft in the form of a plain gold ring. Looking at it more attentively, he saw that it bore the inscription, "May to Cass." Like most of his fellow gold-seekers, Cass was superstitious. The fountain of classic wisdom, Hypatia herself. As the ancient sage--the name is unimportant to a monk--pumped water nightly that he might study by day, so I, the guardian of cloaks and parasols, at the sacred doors of her lecture-room, imbibe celestial knowledge. From my youth I felt in me a soul above the matter-entangled herd. She revealed to me the glorious fact, that I am a spark of Divinity itself. A fallen star, I am, sir!' continued he, pensively, stroking his lean stomach--'a fallen star!--fallen, if the dignity of philosophy will allow of the simile, among the hogs of the lower world--indeed, even into the hog-bucket itself. Well, after all, I will show you the way to the Archbishop's. There is a philosophic pleasure in opening one's treasures to the modest young. Perhaps you will assist me by carrying this basket of fruit?' And the little man jumped up, put his basket on Philammon's head, and trotted off up a neighbouring street. Philammon followed, half contemptuous, half wondering at what this philosophy might be, which could feed the self-conceit of anything so abject as his ragged little apish guide; but the novel roar and whirl of the street, the perpetual stream of busy faces, the line of curricles, palanquins, laden asses, camels, elephants, which met and passed him, and squeezed him up steps and into doorways, as they threaded their way through the great Moon-gate into the ample street beyond, drove everything from his mind but wondering curiosity, and a vague, helpless dread of that great living wilderness, more terrible than any dead wilderness of sand which he had left behind. Already he longed for the repose, the silence of the Laura--for faces which knew him and smiled upon him; but it was too late to turn back now. His guide held on for more than a mile up the great main street, crossed in the centre of the city, at right angles, by one equally magnificent, at each end of which, miles away, appeared, dim and distant over the heads of the living stream of passengers, the yellow sand-hills of the desert; while at the end of the vista in front of them gleamed the blue harbour, through a network of countless masts. At last they reached the quay at the opposite end of the street; and there burst on Philammon's astonished eyes a vast semicircle of blue sea, ringed with palaces and towers. He stopped involuntarily; and his little guide stopped also, and looked askance at the young monk, to watch the effect which that grand panorama should produce on him. Nana also troubled him in another way. He had sometimes a feeling that she did not admire him. “I know she admires you tremendously, George,” Mrs. Darling would assure him, and then she would sign to the children to be specially nice to father. Lovely dances followed, in which the only other servant, Liza, was sometimes allowed to join. Such a midget she looked in her long skirt and maid's cap, though she had sworn, when engaged, that she would never see ten again. The gaiety of those romps! And gayest of all was Mrs. Darling, who would pirouette so wildly that all you could see of her was the kiss, and then if you had dashed at her you might have got it. There never was a simpler happier family until the coming of Peter Pan. Finally, I always go to sea as a sailor, because of the wholesome exercise and pure air of the fore-castle deck. For as in this world, head winds are far more prevalent than winds from astern (that is, if you never violate the Pythagorean maxim), so for the most part the Commodore on the quarter-deck gets his atmosphere at second hand from the sailors on the forecastle. He thinks he breathes it first; but not so. In much the same way do the commonalty lead their leaders in many other things, at the same time that the leaders little suspect it. But wherefore it was that after having repeatedly smelt the sea as a merchant sailor, I should now take it into my head to go on a whaling voyage; this the invisible police officer of the Fates, who has the constant surveillance of me, and secretly dogs me, and influences me in some unaccountable way—he can better answer than any one else. And, doubtless, my going on this whaling voyage, formed part of the grand programme of Providence that was drawn up a long time ago. It came in as a sort of brief interlude and solo between more extensive performances. I take it that this part of the bill must have run something like this: “_Grand Contested Election for the Presidency of the United States._ “WHALING VOYAGE BY ONE ISHMAEL. “BLOODY BATTLE IN AFFGHANISTAN.” Amy followed, but she poked her hands out stiffly before her, and jerked herself along as if she went by machinery, and her "Ow!" was more suggestive of pins being run into her than of fear and anguish. Jo gave a despairing groan, and Meg laughed outright, while Beth let her bread burn as she watched the fun with interest. "It's no use! Do the best you can when the time comes, and if the audience laughs, don't blame me. Come on, Meg." Then things went smoothly, for Don Pedro defied the world in a speech of two pages without a single break. Hagar, the witch, chanted an awful incantation over her kettleful of simmering toads, with weird effect. Roderigo rent his chains asunder manfully, and Hugo died in agonies of remorse and arsenic, with a wild, "Ha! Ha!" This text is included to make sure Unicode is handled properly: 力加勝北区ᴵᴺᵀᵃছজটডণত This sample text is public domain and was randomly selected from Project Guttenberg. The rain had only ceased with the gray streaks of morning at Blazing Star, and the settlement awoke to a moral sense of cleanliness, and the finding of forgotten knives, tin cups, and smaller camp utensils, where the heavy showers had washed away the debris and dust heaps before the cabin doors. Indeed, it was recorded in Blazing Star that a fortunate early riser had once picked up on the highway a solid chunk of gold quartz which the rain had freed from its incumbering soil, and washed into immediate and glittering popularity. Possibly this may have been the reason why early risers in that locality, during the rainy season, adopted a thoughtful habit of body, and seldom lifted their eyes to the rifted or india-ink washed skies above them. "Cass" Beard had risen early that morning, but not with a view to discovery. A leak in his cabin roof,--quite consistent with his careless, improvident habits,--had roused him at 4 A. M., with a flooded "bunk" and wet blankets. The chips from his wood pile refused to kindle a fire to dry his bed-clothes, and he had recourse to a more provident neighbor's to supply the deficiency. This was nearly opposite. Mr. Cassius crossed the highway, and stopped suddenly. Something glittered in the nearest red pool before him. I had one experience with Master Philip before our visitors betook themselves back to Kent, which, unfortunate as it was, I cannot but relate here. My cousin would enter into none of those rough amusements in which I passed my time, for fear, I took it, of spoiling his fine broadcloths or of losing a gold buckle. He never could be got to wrestle, though I challenged him more than once. And he was a well-built lad, and might, with a little practice, have become skilled in that sport. He laughed at the homespun I wore about the farm, saying it was no costume for a gentleman's son, and begged me sneeringly to don leather breeches. He would have none of the company of those lads with whom I found pleasure, young Harvey, and Willis's son, who was being trained as Mr. Starkie's assistant. Nor indeed did I disdain to join in a game with Hugo, who had been given to me, and other negro lads. Philip saw no sport in a wrestle or a fight between two of the boys from the quarters, and marvelled that I could lower myself to bet with Harvey the younger. He took not a spark of interest in the gaming cocks we raised together to compete at the local contests and at the fair, and knew not a gaff from a cockspur. Being one day at my wits' end to amuse my cousin, I proposed to him a game of quoits on the green beside the spring-house, and thither we repaired, followed by Hugo, and young Harvey come to look on. Master Philip, not casting as well as he might, cries out suddenly to Hugo: "Begone, you black dog! What business have you here watching a game between gentlemen?" But, wonderful to relate, not an irregular, shapeless fragment of crude ore, fresh from Nature's crucible, but a bit of jeweler's handicraft in the form of a plain gold ring. Looking at it more attentively, he saw that it bore the inscription, "May to Cass." Like most of his fellow gold-seekers, Cass was superstitious. The fountain of classic wisdom, Hypatia herself. As the ancient sage--the name is unimportant to a monk--pumped water nightly that he might study by day, so I, the guardian of cloaks and parasols, at the sacred doors of her lecture-room, imbibe celestial knowledge. From my youth I felt in me a soul above the matter-entangled herd. She revealed to me the glorious fact, that I am a spark of Divinity itself. A fallen star, I am, sir!' continued he, pensively, stroking his lean stomach--'a fallen star!--fallen, if the dignity of philosophy will allow of the simile, among the hogs of the lower world--indeed, even into the hog-bucket itself. Well, after all, I will show you the way to the Archbishop's. There is a philosophic pleasure in opening one's treasures to the modest young. Perhaps you will assist me by carrying this basket of fruit?' And the little man jumped up, put his basket on Philammon's head, and trotted off up a neighbouring street. Philammon followed, half contemptuous, half wondering at what this philosophy might be, which could feed the self-conceit of anything so abject as his ragged little apish guide; but the novel roar and whirl of the street, the perpetual stream of busy faces, the line of curricles, palanquins, laden asses, camels, elephants, which met and passed him, and squeezed him up steps and into doorways, as they threaded their way through the great Moon-gate into the ample street beyond, drove everything from his mind but wondering curiosity, and a vague, helpless dread of that great living wilderness, more terrible than any dead wilderness of sand which he had left behind. Already he longed for the repose, the silence of the Laura--for faces which knew him and smiled upon him; but it was too late to turn back now. His guide held on for more than a mile up the great main street, crossed in the centre of the city, at right angles, by one equally magnificent, at each end of which, miles away, appeared, dim and distant over the heads of the living stream of passengers, the yellow sand-hills of the desert; while at the end of the vista in front of them gleamed the blue harbour, through a network of countless masts. and there burst on Philammon's astonished eyes a vast semicircle of blue sea, ringed with palaces and towers. He stopped involuntarily; and his little guide stopped also, and looked askance at the young monk, to watch the effect which that grand panorama should produce on him. Nana also troubled him in another way. He had sometimes a feeling that she did not admire him. “I know she admires you tremendously, George,” Mrs. Darling would assure him, and then she would sign to the children to be specially nice to father. Lovely dances followed, in which the only other servant, Liza, was sometimes allowed to join. Such a midget she looked in her long skirt and maid's cap, though she had sworn, when engaged, that she would never see ten again. In the Year 1676, the Prince of _Orange_ having, in concert with the _Spaniards_, resolv'd upon the important Siege of _Maestrich_ (the only Town in the _Dutch_ Provinces, then remaining in the Hands of the _French_) it was accordingly invested about the middle of _June_, with an Army of twenty Thousand Men, under the Command of his Highness Prince _Waldeck_, with the grand Army covering the Siege. It was some Time before the heavy Cannon, which we expected up the _Maes_, from _Holland_, arrived; which gave Occasion to a Piece of Raillery of Monsieur _Calvo_, the Governor, which was as handsomely repartec'd. That Governor, by a Messenger, intimating his Sorrow to find, we had pawn'd our Cannon for Ammunition Bread. Answer was made, That in a few Days we hoped to give him a Taste of the Loaves, which he should find would be sent him into the Town in extraordinary plenty. I remember another Piece of Raillery, which pass'd some Days after between the _Rhingrave_ and the same _Calvo_. The former sending Word, that he hoped within three Weeks to salute that Governor's Mistress within the Place. _Calvo_ reply'd, He'd give him leave to kiss her all over, if he kiss'd her anywhere in three Months. And gayest of all was Mrs. Darling, who would pirouette so wildly that all you could see of her was the kiss, and then if you had dashed at her you might have got it. There never was a simpler happier family until the coming of Peter Pan. Finally, I always go to sea as a sailor, because of the wholesome exercise and pure air of the fore-castle deck. For as in this world, head winds are far more prevalent than winds from astern (that is, if you never violate the Pythagorean maxim), so for the most part the Commodore on the quarter-deck gets his atmosphere at second hand from the sailors on the forecastle. He thinks he breathes it first; but not so. In much the same way do the commonalty lead their leaders in many other things, at the same time that the leaders little suspect it. But wherefore it was that after having repeatedly smelt the sea as a merchant sailor, I should now take it into my head to go on a whaling voyage; this the invisible police officer of the Fates, who has the constant surveillance of me, and secretly dogs me, and influences me in some unaccountable way—he can better answer than any one else. And, doubtless, my going on this whaling voyage, formed part of the grand programme of Providence that was drawn up a long time ago. It came in as a sort of brief interlude and solo between more extensive performances. The British Isles have been ringing for the last few years with the word 'Art' in its German sense; with 'High Art,' 'Symbolic Art,' 'Ecclesiastical Art,' 'Dramatic Art,' 'Tragic Art,' and so forth; and every well-educated person is expected, nowadays, to know something about Art. Yet in spite of all translations of German 'AEsthetic' treatises, and 'Kunstnovellen,' the mass of the British people cares very little about the matter, and sits contented under the imputation of 'bad taste.' Our stage, long since dead, does not revive; our poetry is dying; our music, like our architecture, only reproduces the past; our painting is only first-rate when it handles landscapes and animals, and seems likely so to remain; but, meanwhile, nobody cares. Some of the deepest and most earnest minds vote the question, in general, a 'sham and a snare,' and whisper to each other confidentially, that Gothic art is beginning to be a 'bore,' and that Sir Christopher Wren was a very good fellow after all; while the middle classes look on the Art movement half amused, as with a pretty toy, half sulkily suspicious of Popery and Paganism, and think, apparently, that Art is very well when it means nothing, and is merely used to beautify drawing-rooms and shawl patterns; not to mention that, if there were no painters, Mr. Smith could not hand down to posterity likenesses of himself, Mrs. Smith, and family. But when 'Art' dares to be in earnest, and to mean something, much more to connect itself with religion, Smith's tone alters. He will teach 'Art' to keep in what he considers its place, and if it refuses, take the law of it, and put it into the Ecclesiastical Court. So he says, and what is more, he means what he says; and as all the world, from Hindostan to Canada, knows by most practical proof, what he means, he sooner or later does, perhaps not always in the wisest way, but still he does it.Ah! It's pleasant to drop into my own easy-chair my dear though a little palpitating what with trotting up-stairs and what with trotting down, and why kitchen stairs should all be corner stairs is for the builders to justify though I do not think they fully understand their trade and never did, else why the sameness and why not more conveniences and fewer draughts and likewise making a practice of laying the plaster on too thick I am well convinced which holds the damp, and as to chimney-pots putting them on by guess-work like hats at a party and no more knowing what their effect will be upon the smoke bless you than I do if so much, except that it will mostly be either to send it down your throat in a straight form or give it a twist before it goes there. And what I says speaking as I find of those new metal chimneys all manner of shapes (there's a row of 'em at Miss Wozenham's lodging-house lower down on the other side of the way) is that they only work your smoke into artificial patterns for you before you swallow it and that I'd quite as soon swallow mine plain, the flavour being the same, not to mention the conceit of putting up signs on the top of your house to show the forms in which you take your smoke into your inside Amy followed, but she poked her hands out stiffly before her, and jerked herself along as if she went by machinery, and her "Ow!" was more suggestive of pins being run into her than of fear and anguish. Jo gave a despairing groan, and Meg laughed outright, while Beth let her bread burn as she watched the fun with interest. "It's no use! Do the best you can when the time comes, and if the audience laughs, don't blame me. Come on, Meg." Then things went smoothly, for Don Pedro defied the world in a speech of two pages without a single break. Hagar, the witch, chanted an awful incantation over her kettleful of simmering toads, with weird effect.'''
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/data/subword_tokenizer_data
rapidsai_public_repos/cudf/python/cudf/cudf/tests/data/subword_tokenizer_data/bert_base_cased_sampled/vocab.txt
[PAD] [unused1] [unused2] [unused3] [unused4] [unused5] [unused6] [unused7] [unused8] [unused9] [unused10] [unused11] [unused12] [unused13] [unused14] [unused15] [unused16] [unused17] [unused18] [unused19] [unused20] [unused21] [unused22] [unused23] [unused24] [unused25] [unused26] [unused27] [unused28] [unused29] [unused30] [unused31] [unused32] [unused33] [unused34] [unused35] [unused36] [unused37] [unused38] [unused39] [unused40] [unused41] [unused42] [unused43] [unused44] [unused45] [unused46] [unused47] [unused48] [unused49] [unused50] [unused51] [unused52] [unused53] [unused54] [unused55] [unused56] [unused57] [unused58] [unused59] [unused60] [unused61] [unused62] [unused63] [unused64] [unused65] [unused66] [unused67] [unused68] [unused69] [unused70] [unused71] [unused72] [unused73] [unused74] [unused75] [unused76] [unused77] [unused78] [unused79] [unused80] [unused81] [unused82] [unused83] [unused84] [unused85] [unused86] [unused87] [unused88] [unused89] [unused90] [unused91] [unused92] [unused93] [unused94] [unused95] [unused96] [unused97] [unused98] [unused99] [UNK] [CLS] [SEP] [MASK] [unused100] [unused101] ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ ¡ ¢ £ ¥ § ¨ © ª « ¬ ® ° ± ² ³ ´ µ ¶ · ¹ º » ¼ ½ ¾ ¿ À Á Â Ä Å Æ Ç È É Í Î Ñ Ó Ö × Ø Ú Ü Þ ß à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ Ā ā ă ą Ć ć Č č ď Đ đ ē ė ę ě ğ ġ Ħ ħ ĩ Ī ī İ ı ļ Ľ ľ Ł ł ń ņ ň ŋ Ō ō ŏ ő Œ œ ř Ś ś Ş ş Š š Ţ ţ ť ũ ū ŭ ů ű ų ŵ ŷ ź Ż ż Ž ž Ə ƒ ơ ư ǎ ǐ ǒ ǔ ǫ Ș ș Ț ț ɐ ɑ ɔ ɕ ə ɛ ɡ ɣ ɨ ɪ ɲ ɾ ʀ ʁ ʂ ʃ ʊ ʋ ʌ ʐ ʑ ʒ ʔ ʰ ʲ ʳ ʷ ʻ ʼ ʾ ʿ ˈ ː ˡ ˢ ˣ ́ ̃ ̍ ̯ ͡ Α Β Γ Δ Ε Η Θ Ι Κ Λ Μ Ν Ο Π Σ Τ Φ Χ Ψ Ω ά έ ή ί α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ ς σ τ υ φ χ ψ ω ό ύ ώ І Ј А Б В Г Д Е Ж З И К Л М Н О П Р С Т У Ф Х Ц Ч Ш Э Ю Я а б в г д е ж з и й к л м н о п р с т у ф х ц ч ш щ ъ ы ь э ю я ё і ї ј њ ћ Ա Հ ա ե ի կ մ յ ն ո ս տ ր ւ ְ ִ ֵ ֶ ַ ָ ֹ ּ א ב ג ד ה ו ז ח ט י כ ל ם מ ן נ ס ע פ צ ק ר ש ת ، ء آ أ إ ئ ا ب ة ت ث ج ح خ د ذ ر ز س ش ص ض ط ظ ع غ ف ق ك ل م ن ه و ى ي َ ِ ٹ پ چ ک گ ہ ی ے ं आ क ग च ज ण त द ध न प ब भ म य र ल व श ष स ह ा ि ी ु े ो ् । ॥ আ ই এ ও ক খ গ চ ছ জ ট ত থ দ ধ ন প ব ম য র ল শ স হ ় া ি ী ু ে ো ্ য় க த ப ம ய ர ல வ ா ி ு ் ร ་ ག ང ད ན བ མ ར ལ ས ི ུ ེ ོ ა ე ი ლ ნ ო რ ს ᴬ ᴵ ᵀ ᵃ ᵇ ᵈ ᵉ ᵍ ᵏ ᵐ ᵒ ᵖ ᵗ ᵘ ᵢ ᵣ ᵤ ᵥ ᶜ ᶠ ḍ Ḥ ḥ Ḩ ḩ ḳ ṃ ṅ ṇ ṛ ṣ ṭ ạ ả ấ ầ ẩ ậ ắ ế ề ể ễ ệ ị ọ ố ồ ổ ộ ớ ờ ợ ụ ủ ứ ừ ử ữ ự ỳ ỹ ἀ ἐ ὁ ὐ ὰ ὶ ὸ ῆ ῖ ῦ ῶ ‐ ‑ ‒ – — ― ‖ ‘ ’ ‚ “ ” „ † ‡ • … ‰ ′ ″ ⁄ ⁰ ⁱ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁺ ⁻ ⁿ ₀ ₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₊ ₍ ₎ ₐ ₑ ₒ ₓ ₕ ₖ ₘ ₙ ₚ ₛ ₜ ₤ € ₱ ₹ ℓ № ℝ ⅓ ← ↑ → ↔ ⇌ ⇒ ∂ ∈ − ∗ ∘ √ ∞ ∧ ∨ ∩ ∪ ≈ ≠ ≡ ≤ ≥ ⊂ ⊆ ⊕ ⋅ ─ │ ■ ● ★ ☆ ☉ ♠ ♣ ♥ ♦ ♭ ♯ ⟨ ⟩ ⱼ 、 。 《 》 「 」 『 』 〜 い う え お か き く け こ さ し す せ そ た ち つ て と な に の は ひ ま み む め も や ゆ よ ら り る れ ん ア ィ イ ウ エ オ カ ガ キ ク グ コ サ シ ジ ス ズ タ ダ ッ テ デ ト ド ナ ニ ハ バ パ フ ブ プ マ ミ ム ャ ュ ラ リ ル レ ロ ン ・ ー 一 三 上 下 中 事 二 井 京 人 亻 仁 佐 侍 光 公 力 北 十 南 原 口 史 司 吉 同 和 囗 国 國 土 城 士 大 天 太 夫 女 子 宀 安 宮 宿 小 尚 山 島 川 州 平 年 心 愛 戸 文 新 方 日 明 星 書 月 木 本 李 村 東 松 林 正 武 氏 水 氵 江 河 海 版 犬 王 生 田 白 皇 省 真 石 社 神 竹 美 義 花 藤 西 谷 車 辶 道 郎 郡 部 野 金 長 門 陽 青 食 馬 高 龍 龸 사 씨 의 이 한 fi fl ! ( ) , - / : the of and to in was The is for as on with that ##s his by he at from it her He had an were you be In she are but which It not or have my him one this me has also up their first out who been they She into all would its ##ing time two ##a ##e said about when over more other can after back them then ##ed there like so only ##n could ##d ##i ##y what no ##o where This made than if You ##ly through we before ##r just some ##er years do New ##t down between new now will three most On around year used such being well during They know against under later did part known off while His re ... ##l people until way American didn University your both many get United became head There second As work any But still again born even eyes After including de took And long team season family see right same called name because film don 10 found much school ##es going won place away We day left John 000 hand since World these how make number each life area man four go No here very National ##m played released never began States album home last too held several May own ##on take end School ##h ll series What want use another city When 2010 side At may That came face June think game those high March early September ##al 2011 looked July state small thought went January October ##u based August ##us world good April York us 12 2012 2008 For 2009 group along few South little ##k following November something 2013 December set 2007 old 2006 2014 located ##an music County City former ##in room ve next All ##man got father house ##g body 15 20 18 started If 2015 town our line War large population named British company member five My single ##en age State moved February 11 Her should century government built come best show However within look men door without need wasn 2016 water One system knew every died League turned asked North St wanted building received song served though felt ##ia station band ##ers local public himself different death say ##1 30 ##2 2005 16 night behind children English members near saw together son 14 voice village 13 hands help ##3 due French London top told open published third 2017 play across During put final often include 25 ##le main having 2004 once ever let book led gave late front find club ##4 German included species College form opened mother women enough West must 2000 power really 17 making half ##6 order might ##is given million times days point full service With km major ##7 original become seen II north six ##te love ##0 national International ##5 24 So District lost run couldn career always ##9 2003 ##th country ##z House air tell south worked woman player ##A almost war River ##ic married continued Then James close black short ##8 ##na using history returned light car ##ra sure William things General ##ry 2002 better support 100 among From feet King anything 21 19 established district 2001 feel great ##ton level Cup These written games others already title story ##p law thing US record role however By students England white control least inside land ##C 22 give community hard ##ie non ##c produced George round period Park business various ##ne does present wife far taken per reached David able version working young live created joined East living appeared case High done 23 important President Award France position office looking total general class To production ##S football party brother keep mind free Street hair announced development either nothing moment Church followed wrote why India San election 1999 lead How ##ch ##rs words European course considered America arms Army political ##la 28 26 west east ground further church less site First Not Australia toward California ##ness described works An Council heart past military 27 ##or heard field human soon founded 1998 playing trying ##x ##ist ##ta television mouth although taking win fire Division ##ity Party Royal program Some Don Association According tried TV Paul outside daughter Best While someone match recorded Canada closed region Air above months elected ##da ##ian road ##ar brought move 1997 leave ##um Thomas 1996 am low Robert formed person services points Mr miles ##b stop rest doing needed international release floor start sound call killed real dark research finished language Michael professional change sent 50 upon 29 track hit event 2018 term example Germany similar return ##ism fact pulled stood says ran information yet result developed girl ##re God 1995 areas signed decided ##ment Company seemed ##el co turn race common video Charles Indian ##ation blood art red ##able added rather 1994 met director addition design average minutes ##ies ##ted available bed coming friend idea kind Union Road remained ##ting everything ##ma running care finally Chinese appointed 1992 Australian ##ley popular mean teams probably ##land usually project social Championship possible word Russian instead mi herself ##T Peter Hall Center seat style money 1993 else Department table Music current 31 features special events character Two square sold debut ##v process Although Since ##ka 40 Central currently education placed lot China quickly forward seven ##ling Europe arm performed Japanese 1991 Henry Now Dr ##ion week Group myself big UK Washington ten deep 1990 Club Japan space La directed smile episode hours whole ##de ##less Why wouldn designed strong training changed Society stage involved hadn towards leading police eight kept Institute study largest child eventually private modern Court throughout getting originally attack ##E talk Great longer songs alone ##ine wide dead walked shot ##ri Oh force ##st Art today friends Island Richard 1989 center construction believe size White ship completed ##B gone Just rock sat ##R radio below entire families league includes type lived official range hold featured Most ##ter president passed means ##f forces lips Mary Do guitar ##ce food wall Of spent Its performance hear ##P Western reported sister ##et morning ##M especially ##ive Minister itself post bit groups 1988 ##tion Black ##ng Well raised sometimes Canadian Paris Spanish replaced schools Academy leaving central female Christian Jack whose college onto provided ##D ##ville players actually stopped ##son Museum doesn ##ts books fight allowed ##ur beginning Records awarded parents coach ##os Red saying ##ck Smith Yes Lake ##L aircraft 1987 ##ble previous ft action Italian African happened vocals Act future court ##ge 1986 degree phone ##ro Is countries winning breath Love river matter Lord Other list self parts ##ate provide cut shows plan 1st interest ##ized Africa stated Sir fell owned earlier ended competition attention 1985 lower nearly bad older stay Saint ##se certain 1984 fingers blue try fourth Grand ##as king ##nt makes chest movement states moving data introduced model date section Los deal ##I skin entered middle success Texas ##w summer island ##N Republic length husband 1980 ##ey reason anyone forced via base 500 job covered Festival Roman successful rights cover Man writing Ireland ##F related goal takes buildings true weeks 1983 Because opening novel ISBN meet gold ##ous mid km² standing Football Chicago shook whom ##ki 1982 Day feeling scored boy higher Force leader heavy fall question sense army Second energy meeting themselves kill ##am board census ##ya ##ns mine meant market required battle campaign attended approximately Kingdom runs active ##ha contract clear previously health 1979 Arts complete Catholic couple units ##ll ##ty Committee shoulder sea systems listed ##O caught tournament ##G northern author Film Your ##men holding offered personal 1981 southern artist traditional studio 200 capital ##ful regular ask giving organization month news Are read managed helped studied student defeated natural industry Year noted decision Government quite ##id smiled 1972 Maybe tracks ##ke Mark al media engine hour Their relationship plays property structure 1976 ago Hill Martin 1978 ready Many Like Bay immediately generally Italy Greek practice caused division significant Joseph speed Let thinking completely 1974 primary mostly ##field ##K 1975 ##to Even writer ##led dropped magazine collection understand route highest particular films lines network Science loss carried direction green 1977 location producer according Women Queen neck thus independent view 1970 Angeles Soviet distance problem Board tour western income appearance access Mexico nodded street surface arrived believed Old 1968 1973 becoming whether 1945 figure singer stand Following issue window wrong pain everyone lives issues park slowly la act ##va bring Lee operations key comes fine cold famous Navy 1971 Me additional individual ##ner Zealand goals county contains Service minute 2nd reach talking particularly ##ham movie Director glass paper studies ##co railway standard Education 45 represented Chief Louis launched Star terms 60 1969 experience watched Another Press Tom staff starting subject break Virginia nine eye ##age evidence foot ##est companies Prince ##V gun create Big People guy Green simply numerous ##line increased twenty ##ga ##do 1967 award officer stone Before material Northern grew male plant Life legs step Al unit 35 except answer ##U report response Edward commercial edition trade science ##ca Irish Law shown rate failed ##ni remains changes mm limited larger Later cause waiting Time ##wood cost Bill manager activities likely allow operated retired ##ping 65 directly Who associated effect hell Florida straight hot Valley management girls expected eastern Mike chance cast centre chair hurt problems ##li walk programs Team characters Battle edge pay maybe corner majority medical Joe Summer ##io attempt Pacific command Radio ##by names municipality 1964 train economic Brown feature sex source agreed remember Three 1966 1965 Pennsylvania victory senior annual III Southern results Sam serving religious Jones appears ##der despite claimed Both musical matches fast security selected Young double complex hospital chief Times ##ve Championships filled Public Despite beautiful Research plans Province ##ally Wales ##ko artists metal nearby Spain ##il 32 houses supported piece ##no stared recording nature legal Russia ##ization remaining looks ##sh bridge closer cases scene marriage Little ##é uses Earth specific Frank theory Good discovered referred bass culture university presented Congress ##go metres continue 1960 isn Awards meaning cell composed separate Series forms Blue cross ##tor increase test computer slightly Where Jewish Town tree status 1944 variety responsible pretty initially ##way realized pass provides Captain Alexander recent score broke Scott drive financial showed Line stories ordered soldiers genus operation gaze sitting society Only hope actor follow Empire Yeah technology happy focus policy spread situation ##ford ##ba Mrs watch Can 1963 Commission touch earned troops Under 1962 individuals cannot 19th ##lin mile expression exactly suddenly weight dance stepped places appear difficult Railway anti numbers kilometres star ##ier department ice Britain removed Once ##lo Boston value ##ant mission trees Order sports join serve Major poor Poland mainly Theatre pushed Station ##it Lady federal silver ##ler foreign ##ard Eastern ##den box hall subsequently lies acquired 1942 ancient CD History Jean beyond ##ger El ##les growing championship native Parliament Williams watching direct overall offer Also 80 Secretary spoke Latin ability ##ated safe presence ##ial headed regional planned 1961 Johnson throat consists ##W extended Or bar walls Chris stations politician Olympics influence share fighting speak hundred Carolina die stars ##tic color Chapter ##ish fear sleep goes Francisco oil Bank sign physical ##berg Dutch seasons ##rd Games Governor sorry lack Centre memory baby smaller charge Did multiple ships shirt Assembly amount leaves 3rd Foundation conditions 1943 Rock Democratic Daniel ##at winner products ##ina store latter Professor civil prior host 1956 soft vote needs Each rules 1958 pressure letter normal proposed levels records 1959 paid intended Victoria purpose okay historical issued 1980s broadcast rule simple picked firm Sea 1941 Elizabeth 1940 serious featuring highly graduated mentioned choice 1948 replied percent Scotland ##hi females constructed 1957 settled Steve recognized cities crew glanced kiss competed flight knowledge editor More Conference ##H fifth elements ##ee ##tes function newspaper recently Miss cultural brown twice Office 1939 truth Creek 1946 households USA 1950 quality ##tt border seconds destroyed pre wait ahead build image 90 cars ##mi 33 promoted professor et bank medal text broken Middle revealed sides wing seems channel 1970s Ben loved effort officers Will ##ff 70 Israel Jim upper fully label Jr assistant powerful pair positive ##ary gives 1955 20th races remain kitchen primarily ##ti Sydney easy Tour whispered buried 300 News Polish 1952 Duke Columbia produce accepted 00 approach minor 1947 Special 44 Asian basis visit Fort Civil finish formerly beside leaned ##ite median rose coast effects supposed Cross ##hip Corps residents Jackson ##ir Bob basketball 36 Asia seem Bishop Book ##ber ring ##ze owner BBC ##ja transferred acting De appearances walking Le press grabbed 1954 officially 1953 ##pe risk taught review ##X lay ##well council Avenue seeing losing Ohio Super province ones travel ##sa projects equipment spot Berlin administrative heat potential shut capacity elections growth fought Republican mixed Andrew teacher turning strength shoulders beat wind 1949 Health follows camp suggested perhaps Alex mountain contact divided candidate fellow 34 Show necessary workers ball horse ways questions protect gas activity younger bottom founder Scottish screen treatment easily com ##house dedicated Master warm Night Georgia Long von ##me perfect website 1960s piano efforts ##ide Tony sort offers Development Simon executive ##nd save Over Senate 1951 1990s draw master Police ##ius renamed boys initial prominent damage Co ##ov ##za online begin occurred captured youth Top account tells Justice conducted forest ##town bought teeth Jersey ##di purchased agreement Michigan ##ure campus prison becomes product secret guess Route huge types drums 64 split defeat estate housing ##ot brothers Coast declared happen titled therefore sun commonly alongside Stadium library Home article steps telling slow assigned refused laughed wants Nick wearing Rome Open ##ah Hospital pointed Taylor lifted escape participated ##j drama parish Santa ##per organized mass pick Airport gets Library unable pull Live ##ging surrounding ##ries focused Adam facilities ##ning ##ny 38 ##ring notable era connected gained operating laid Regiment branch defined Christmas machine Four academic Iran adopted concept Men compared search traffic Max Maria greater ##ding widely ##burg serves 1938 37 Go hotel shared typically scale 1936 leg suffered yards pieces Ministry Wilson episodes empty 1918 safety continues yellow historic settlement 400 Come Corporation enemy content picture evening territory method trial solo driver Here ##ls entrance Prize spring whatever ##ent 75 ##ji reading Arthur ##cy Our clothes Prime Illinois Kong code ##ria sit Harry Federal chosen administration bodies begins stomach Though seats Hong density Sun leaders Field museum chart platform languages ##ron birth holds Gold ##un fish combined ##ps 4th 1937 largely captain trust Game van boat
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/data/subword_tokenizer_data
rapidsai_public_repos/cudf/python/cudf/cudf/tests/data/subword_tokenizer_data/bert_base_cased_sampled/vocab-hash.txt
26899 27424 875 7428432802425011718 0 5054974408289448963 6 18358444369622338053 9 5716902217424485892 14 8236612966193239043 18 15282833726017872390 21 15533348956988973570 27 9001315167781089284 29 7621090240282984451 33 15337888141402371590 36 16169070283077377537 42 15615300272936709634 43 12338784885023498756 45 3175624061711419395 49 9436392785812228615 52 12978641027296058883 59 14468815760709033991 62 15607694490571932163 69 53295083356623878 72 0 78 2230148770582976004 78 6120456721458209796 82 15411373208619074054 86 10274574020114097153 92 9000294930530661890 93 13031557903172483076 95 11350066664294002181 99 6325605033787362307 104 2909954277284188676 107 4104562716099355138 111 3267092979937387012 113 17525453481571210244 117 11532627846208440834 121 10784672185103672321 123 11229796758348255749 124 4379577250247562242 129 1041161126836283908 131 3854383966527313413 135 16467720483237810694 140 14820844471735454722 146 13111220924289178119 148 2548683052821249538 155 719749806464434178 157 2121722119826170883 159 9005614210949580292 162 7050169108294333445 166 17351764915062575107 171 14644698505496219141 174 11657834349296686081 179 13626797927783164930 180 14735048589438940164 182 1078491261937017863 186 7952761372439242754 193 7692446865301965827 195 4552111108816020995 198 12455022990418032132 201 1123962659471997957 205 3056549312838577156 210 1025661670765243906 214 5397331336358247944 216 7810366437124875782 224 1195318972358038531 230 7079722807026103811 233 2524512050942986248 236 1208593608912656389 244 458260789232344578 249 13194777122325112327 251 5922704468287492 258 11746235869336195079 262 8611574268876189188 269 7889840228953421829 273 16998721522558936068 278 6703563424903621638 282 8885848295085850114 288 13776273837475230211 290 6036043703810622467 293 2006225773287659526 296 14202467530861800964 302 7157057020317447684 306 16885485872491802629 310 12800303798361952772 315 621325108927868418 319 16727475898656483841 321 6890112792805515778 322 2421332377941126151 324 16243404411124196356 331 179400401794890244 335 2630159406474274819 339 1306609735592145925 342 14908020842914311174 347 1684452927247835651 353 9400495923215416322 356 8041860727239247878 358 5619270496913133574 364 2985476283152588291 370 18150632792370312198 373 13075355875451793410 379 7596576612263365635 381 7174955249282660868 384 2272878747426984963 388 9645618748109430277 391 5995177571885476868 396 16871713338758691845 400 11801224416933808644 405 15551192014010130949 409 8196030292452405250 414 4794784530053649411 416 68047322062825475 419 10163451915097363972 422 4366630365820669955 426 9174613115382159879 429 17673253091692480002 436 10710744348807818249 438 6301209632168211460 447 6557199531177304066 451 10370980735304160259 453 2426040420413965827 456 18123352379522220547 459 15891150425892429319 462 16507447417454265351 469 487708338428237827 476 14107089365716616196 479 747857609528251395 483 17357876987202521607 486 321005419951863300 493 703083947315053061 497 0 502 17149635587492691460 502 8277651075246678020 506 1819886593879462403 510 13106328552418381315 513 17519686381941948418 516 10696099526822671877 518 4627984173327437314 523 2628632462897246722 525 3686397216490033667 527 6617920799692924934 530 6679301623707790339 536 2596030458845084674 539 13288938917088308226 541 8348492885671808517 543 6252009608718840325 548 5807005916268695559 553 15382799971167504899 560 14954638692016032262 563 8963684459383523331 569 2934745887866391556 572 8236887590303639044 576 2016330563068923911 580 12976290063611676164 587 9986513189506445831 591 780378482699725318 598 383862355994530823 604 7511344867307093508 611 1435616864863593988 615 12590979271693393411 619 859813995721111047 622 17910873098448224770 629 16703366890805911553 631 6922480979814889987 632 8200210214462711297 635 18382541080931060232 636 12959023536126992897 644 11055794376142651906 645 8668012051305565187 647 6795201209679524868 650 3864186432644490244 654 4574634299775772674 658 2086703290536303619 660 7145543127561014787 663 9889572542971630085 666 3510566585561691650 671 10482036181312531460 673 4296479271603189251 677 17165580381790665732 680 17931697598514948104 684 5072138329769649158 692 17857316349005986308 698 1196313437880152072 702 16094827446472526340 710 6365083142954013701 714 17639674970007880709 719 1336948026798963208 724 15719079816546418177 732 453771991153695748 733 15666021623592344581 737 3887496731301423107 742 16351565489992748547 745 12913808626051103749 748 9427161342471792643 753 14610089064185748483 756 11909740995340709890 759 3386059367942955011 761 7100313088634791944 764 14954362273735097348 772 5300343188950335490 776 3306636399811602435 778 15049176780536452612 781 11478464585367391747 785 4192691696663825924 788 1724981527538165256 792 8923121468991320579 800 10407927314751914499 803 4140577061391662082 806 11024499228689010181 808 11103397578962422789 813 16103730809841527300 818 2161511371026989571 822 16905537098408481288 825 14418359835235787780 833 8643099440826274820 837 15803230958149170691 841 2270949347024239618 844 16607521085023703556 846 12520505897845165062 850 10502193626894192132 856 12350321094518214659 860 4950437143309872131 863 938542234576037889 866 9547302901107668484 867 7827404372121768966 871 17757593377946824198 877 13699186867246955524 883 9859653826627356163 887 16394835100035514883 890 13800374264730731525 893 16954635983094506500 898 8015308433863798275 902 858715644299290630 905 4519655150699331077 911 7134867591233050115 916 6432786657037144579 919 0 922 9408341322832972291 922 13653279902433200130 925 1249019122170091524 927 5444522055126761479 931 18233734556082323457 938 1838285473517654531 939 10799019207790220804 942 2448710159565130755 946 18425837006146807297 949 1384258267102048263 950 6553795393861204486 957 5022631533298058243 963 2595435540421003780 966 18298501952506793480 970 17380720526409169413 978 10291550905275666437 983 8968303908578660869 988 7762552109517888009 993 12993351549860134403 1002 13098482377540869636 1005 17174134275815044100 1009 2405939573849534980 1013 11051603729345690626 1017 2765842466801084934 1019 13348255112383532037 1025 4560899789258637829 1030 17071422935680193539 1035 11513452937230732294 1038 1637355496640499203 1044 14940739688966611972 1047 8286559267538602502 1051 6029036263825492484 1057 6337648087046756355 1061 12327119652833755139 1064 7489768843341343236 1067 17101806024406781955 1071 1494687508867621385 1074 915975103999953922 1083 14731060910946571783 1085 7993361195780195330 1092 13688799604315935236 1094 7328858946338903047 1098 2913637027195678723 1105 18189363439163655681 1108 11261484070936291332 1109 1244962005334571010 1113 12618388435910808066 1115 655187203027088898 1117 1699259352638115337 1119 9837815037477742085 1128 10558465000768489987 1133 3128326958710492164 1136 16210393874387209731 1140 3831602806328386054 1143 1858477608543888899 1149 11203849268139405826 1152 14876215834473532933 1154 838167957834962945 1159 4472540425609859076 1160 11410947109444917250 1164 8435818218907397633 1166 11045000766266457089 1167 12325335880954441220 1168 16708265953266297345 1172 18342265362969646594 1173 6953158344648897539 1175 9922701673105435137 1178 10113283973443524101 1179 11668798096262926343 1184 2129351334726026241 1191 5692959118811792390 1192 2917574127780044290 1198 0 1200 14420924818562740228 1200 6098057863303978497 1204 1252966646111680002 1205 7111078464697947144 1207 14144456899593720327 1215 7367692118573781509 1222 9319588592876439043 1227 5212294342286609410 1230 1600499660866511361 1232 17579747388547180552 1233 8365608306992954885 1241 10307394306592963076 1246 17092600292669807621 1250 17030981925892977667 1255 6929843536411176451 1258 9908722951841282057 1261 14685407131320535554 1270 12861962652898171396 1272 11958437143660911107 1276 15904867421058229764 1279 7283769647955500035 1283 7872121678898447876 1286 11726527760261815816 1290 2316085662456682505 1298 12840093831481137155 1307 15574983692566917639 1310 15176154862895929860 1317 16186650646772958214 1321 1965140296142659588 1327 17362020270091437575 1331 26356620300320263 1338 4688323194808506371 1345 470137109846916612 1348 785647648524588041 1352 686083037273571331 1361 8705676087000994307 1364 15985311040931325446 1367 8848102120172622345 1373 14900059783221505542 1382 11611185676221023751 1388 5823293000835959809 1395 11173877492782561286 1396 5985141512875075076 1402 16607272189142469634 1406 7000924871247012354 1408 12796508861938638339 1410 16352304696891085315 1413 12654027566339262469 1416 17652126895193709571 1421 2059554016646703617 1424 8824828815238545922 1425 8026041213654553606 1427 189105210507091461 1433 8038465995762949635 1438 0 1441 4346653818095449092 1441 13441396742193060358 1445 5067771148519478785 1451 210369551309682178 1452 7856429334361659909 1454 6456628847560069634 1459 4777640967745320451 1461 8983636279512822276 1464 14568805960710332932 1468 13817574021643753989 1472 14625711259902278149 1477 4632056779689710085 1482 17613320542667293189 1487 3172012402848437254 1492 8040798394603101188 1498 14064841209998140419 1502 1914908168343121410 1505 7368139610144548354 1507 12868473585497306119 1509 0 1516 1618708134596732930 1516 12587973098332420105 1518 4964388169698209795 1527 11644359715676310021 1530 2644060095775605251 1535 6430078223195648003 1538 10183198452214045187 1541 1240799682393062914 1544 594310634075621378 1546 2369514519273954820 1548 10180653661786314245 1552 954303650251543043 1557 14430712698160791045 1560 7362398115224322564 1565 17170839233019868678 1569 4334478792852912645 1575 6976600872204725253 1580 2757627166710815234 1585 11581525848542896643 1587 1902097979216049156 1590 7092174838851165700 1594 3776232881097953287 1598 4956341896516184071 1605 16560365104979398147 1612 9985649880040289799 1615 8870322153106933763 1622 6905121755133908995 1625 13368640352340902916 1628 6681848478588709895 1632 1825204937600832520 1639 10492979809894170628 1647 16021790814379410438 1651 2537982728896871938 1657 17110141827238231043 1659 8972517116882764291 1662 6878463938568223238 1665 3653948979877717506 1671 11414481194651397126 1673 14522267179648162819 1679 3098339502618796035 1682 7079749050994126342 1685 13571764215085394946 1691 4748948606525397506 1693 1577643399485818884 1695 4080235243237779462 1699 10874175738252140040 1705 8407257242091918850 1713 13208300770644489219 1715 692428139842995202 1718 1811883090719733762 1720 9059362818280152070 1722 1942856588307002885 1728 8118332366482353665 1733 4958069245857057284 1734 14647311378680886789 1738 10762024033896625670 1743 28898254948429830 1749 9834906317233815042 1755 14985989359682912259 1757 1282980713864208388 1760 6063131598875265027 1764 11171681444901584901 1767 9942643440891227650 1772 7536761905759707139 1774 17586310513048226310 1777 5368266791748388869 1783 14231943828217691651 1788 12518647321260815877 1791 129394441281844743 1796 2483490487411335170 1803 654244401428041732 1805 15646533714849457160 1809 11807354932867949571 1817 15902831808268765699 1820 16275101253541722114 1823 7489443708629377026 1825 15395914353243975682 1827 5617555619731661829 1829 3134100206450675206 1834 11607495136261988868 1840 4974806308616426501 1844 17446584074836170241 1849 15686830167444742663 1850 9706307518401206273 1857 1668062460313515521 1858 1175330870409010693 1859 6316020408117881860 1864 3926008952689808899 1868 7412001888157663237 1871 16350342416828571139 1876 17722048717800707588 1879 6638262866276511751 1883 7428951476729761793 1890 17816197047883941382 1891 1346568064340942337 1897 3701787015222295555 1898 6659812133237486083 1901 1828541539854978054 1904 12379063259192634885 1910 2611769333840765443 1915 9618163593004828678 1918 10135224491789939206 1924 12979651712861326853 1930 8882180359699969027 1935 8839565787481092102 1938 13328456084920556038 1944 14232512278042323458 1950 1868952656876792325 1952 7567044498348088836 1957 9878469525845452294 1961 10877666723773861891 1967 4437849393189355524 1970 542122243470857732 1974 4059190346138068994 1978 14321675947144358916 1980 14971180244834539009 1984 7944574903635664900 1985 6982417546170903047 1989 9205813465909939715 1996 14237044737088801799 1999 636814072910696963 2006 12520841226045264391 2009 8898943418672995331 2016 15646690259358356484 2019 15618851112604340228 2023 10285088843216830977 2027 18286036510192394760 2028 6450286360774949890 2036 12025307250191760899 2038 7044602746592181249 2041 8270361223031661060 2042 7199149542695273990 2046 16798091800673956358 2052 5285433079037354499 2058 8498140496880657410 2061 18434636390635965953 2063 8780418579830073348 2064 959965579978681347 2068 2666650386212475906 2071 4093783342266269185 2073 7977153448080645638 2074 3230317076849645570 2080 2644129221999468547 2082 7597431151331275265 2085 6151418962808616963 2086 16786361788616914434 2089 9522044737514147334 2091 15360350686533802498 2097 4398995179394704386 2099 4163122903470647302 2101 18110267126768664070 2107 17811600627481865731 2113 11988559903619469315 2116 5893679902922151940 2119 3302430115655037445 2123 2756050317441962502 2128 7373324598575981572 2134 15626353672087051269 2138 9026268416534243843 2143 5857105831257628164 2146 11246462751297413124 2150 7459631049065515526 2154 2175352842263141379 2160 9748465532031254533 2163 12060676108130005507 2168 8160425232164846593 2171 1665947540125783558 2172 10758171140537368580 2178 5744770555727548418 2182 15867521551313803780 2184 11178209498970826244 2188 2663862265833334277 2192 646145646253570050 2197 6886825228888300036 2199 5219187155516171272 2203 16142200027647465989 2211 8727938199665870852 2216 1200328579526163971 2220 12449385538114001417 2223 14632283715533800450 2232 5295800027246062086 2234 8827019094633400323 2240 14543826221768176641 2243 12388128316821831686 2244 3087048392675298821 2250 17669786912563615747 2255 3879520399747123716 2258 15648071975541157893 2262 5580473107362200071 2267 6895786389712974853 2274 17709709086906012676 2279 9627483233657542665 2283 9602326803985618949 2292 6748599026443758086 2297 11488364339401397254 2303 6716511183525677573 2309 16003763240189186563 2314 6003803301075291138 2317 15800367754014516746 2319 2817341800198731782 2329 2110085916033252869 2335 10353852055773781511 2340 8745468498457416193 2347 15197463976907486213 2348 11844773108515011075 2353 10745169896165544965 2356 9502565595236673539 2361 18340734722524717062 2364 0 2370 4877506240735029250 2370 6632868101528461318 2372 1094192348264738308 2378 15930308455756352518 2382 7517061312773919237 2388 11537382714050522116 2393 15343851421525887493 2397 15685583084244037124 2402 11443729733346354693 2406 18096845502703148037 2411 13060060807344890377 2416 8226818503915081731 2425 5171144332412330499 2428 5367144440061049859 2431 4687503341676126209 2434 8115677569098133507 2435 8753274682505368066 2438 6767268893840927749 2440 10747160183142327300 2445 5318831768157948930 2449 16744837601970291208 2451 3968740997769839108 2459 1041860322726726147 2463 13185494599343868419 2466 3781663100474830852 2469 8664347289501861378 2473 7145447006642560001 2475 977858689003972101 2476 188865761021926916 2481 14781205616979726850 2485 7514076159997088261 2487 15227633270557658627 2492 7486357174119883778 2495 7899052859637422087 2497 4312982947448530435 2504 2484418012864310785 2507 8450324929602980870 2508 11374778755239228418 2514 10780034123560756745 2516 10313953391808102916 2525 13836623279669341188 2529 16297706918062760459 2533 6404560275247226885 2544 8323769790774729734 2549 10061687257419431941 2555 6724033317759518212 2560 12265972209834273288 2564 4748706107567735299 2572 17588235414846031363 2575 16029681841978911746 2578 333014962274056196 2580 2819861156000228870 2584 17301319418358929926 2590 14323022738651812355 2596 17758251407482208260 2599 9992216596142364674 2603 5541911712511293955 2605 1880849355295036931 2608 15421034026101803523 2611 2288503501826235907 2614 2336333131728265731 2617 15127408664422292997 2620 6756061181968708102 2625 2316367058427453443 2631 13786932856453332482 2634 17564157627292750852 2636 5809790665868502019 2640 9389430036410766853 2643 15157257604368261123 2648 523412383725034497 2651 5270886391729814021 2652 8987256414287503365 2657 2751897370690544643 2662 47819066577966599 2665 9543124453318907909 2672 15186331456703232514 2677 9731347057535958023 2679 6234700495105510914 2686 17720066604242729989 2688 611878128332703234 2693 6029104170087404549 2695 14612606995632327172 2700 7357792311987945475 2704 6074856230289873410 2707 13368808999886628358 2709 5918378978107988995 2715 15624776793824203778 2718 4241055509726121476 2720 12687432015779367427 2724 4003272975122620932 2727 17483676776191982087 2731 2701605488646040584 2738 7387630099939362308 2746 16331822462747681798 2750 2197183442359868933 2756 17624623361194542087 2761 1749450990014992388 2768 2888206094896619010 2772 12985412669390948353 2774 9843120678422464515 2775 15590458610270713859 2778 5950622975418741251 2781 17607672802725530117 2784 1225097419526011394 2789 3758572251524375044 2791 5891371767718009858 2795 6843754938996156419 2797 13418347525088883204 2800 2887280155684756490 2804 7867196614872225796 2814 10992396837241625094 2818 15526482250456426497 2824 7582254907030848515 2825 14309589056601523716 2828 2843794758628944386 2832 10106627892829635078 2834 11117505412117820418 2840 17559521087909430786 2842 18410508844162253834 2844 7796754440171003912 2854 1826091018065355268 2862 5568124937607335426 2866 9164033835486570503 2868 7917102923116225537 2875 10708221634884163076 2876 966446973350329348 2880 1882776320247897092 2884 18137433528115911172 2888 7577505208556149252 2892 3902521102041700356 2896 11942362790107158020 2900 2328713611561709573 2904 8376513561567004165 2909 18415012889800110091 2914 7983446382889179652 2925 2304166271864391689 2929 708759182721729026 2938 10774631175750681603 2940 2608247964063907842 2943 7317603117343176707 2945 12615180422705001477 2948 17995452459822326275 2953 12439250137675515394 2956 9947610136498965509 2958 10340600516380348420 2963 10073894039732477444 2967 15954561361998232578 2971 6039226287079734788 2973 12684813664097613833 2977 8337524429261820932 2986 0 2990 5738139389410570757 2990 0 2995 163262518049440773 2995 11390362112332120070 3000 7666496378417453571 3006 17188351170280199170 3009 14157925477049500677 3011 16535316221715341826 3016 701193705161007105 3018 15417977144980853763 3019 9623949443365348357 3022 16537640731048440324 3027 9880057250380779521 3031 10507448958568448514 3032 9901540867816521219 3034 10882434502571251716 3037 15939490563935542790 3041 3818155241101528578 3047 10810785028031231493 3049 17268925026504538113 3054 6000103580025957894 3055 14492044616225970179 3061 8964295197943843335 3064 13244227239481936387 3071 2072267724499101186 3074 735562179013069826 3076 3271477415853879302 3078 1150251700717751812 3084 11835839830005115393 3088 17028480913889055238 3089 16864969398419772420 3095 9646252156141336066 3099 5589333819644110342 3101 14729039479109188098 3107 2256025994407046148 3109 5630416426912279555 3113 23611161351524356 3116 16061932977440933889 3120 7560058124185071106 3121 8943767870065516551 3123 17388385529962317834 3130 11686727589179028995 3140 2993671307613155843 3143 7451626547139373061 3146 12726375988952098305 3151 0 3152 1735273330892205060 3152 2746028049042776065 3156 17093562035495421445 3157 7598703106262353411 3162 17526920923827930631 3165 0 3172 18087597149122765317 3172 11336730259137625602 3177 9704022087244797957 3179 14531181144788964866 3184 5103530438547424773 3186 7049971328222257156 3191 2593832991454060548 3195 2549992206172832771 3199 2656864556911864322 3202 3094347590740453380 3204 0 3208 10556974365044028932 3208 12597146506913681926 3212 18243354473097630721 3218 4168646291002030084 3219 8893226051755120644 3223 7904367695210051587 3227 17247367703075879942 3230 1338287165638264836 3236 6734394253777139715 3240 14645087877274778627 3243 1841749727013933062 3246 0 3252 9793622484838288388 3252 15384076833580083718 3256 14678310837729104389 3262 8947895455599830021 3267 12421729442783160325 3272 14382812703434878978 3277 3484468606955360259 3279 2411175954345499653 3282 18322361710054416389 3287 8989744845956541448 3292 9637438279185886726 3300 8282725403817063939 3306 10727259769060221446 3309 280860399088910340 3315 3074647116268871172 3319 9311932047626983431 3323 2990333995786696707 3330 11415454184475025922 3333 8194042667332418565 3335 11269986522125913093 3340 10773634478079810565 3345 0 3350 4302235270674672643 3350 4579270605621971460 3353 3687011949425630213 3357 9678333478858482691 3362 14661606109051090440 3365 9504123850532876291 3373 14299233528797568008 3376 10370491504729965060 3384 286239823911254530 3388 7969121812144744451 3390 16606218867148559880 3393 11756345184017143302 3401 8204961944753809412 3407 12456910480062157316 3411 7569786299014196739 3415 3372309516929818119 3418 16631131943564946948 3425 4436969913528429575 3429 14467771002258720772 3436 15278270405312088583 3440 6638334178561090565 3447 8154814430089498114 3452 17289464348431017987 3454 13185969354886446085 3457 4725380864147687429 3462 14933071000620043778 3467 12471883028204926466 3469 13286302152236950530 3471 12020003522260348419 3473 11784545509165047810 3476 10311182359550097412 3478 2262872037167824902 3482 15672162207595698690 3488 8479660175647360516 3490 543122224331105283 3494 8738610060644560897 3497 15969479020845567490 3498 3500 5303047073946667464 210658854139 493093586 15289397349632312454 5941764183477191834 3477193953305167424 236453760381 7470284155521404014 24445261 16426766960960540026 14549236 817365937 1873618471841499416 71893492 10694515171064744788 29330183088506125 61997475 4653200 109445719 8926052536804313893 7528330190111771360 1418462186 5887104182899575287 2625321597997091447 23407864425745813 1647838213 6152225753094686522 14151987057237756511 18058417591402760409 538510099 17855463731522440261 240752528220 27920040887059601 11078361536363433136 12517601 15885957841278600403 518718202 805438326 2621553 1550910461 2411070513 59965836 13012951802392676509 97518103 2625321602295859611 30277976 546374457 16759426304739641933 259654328 27356063970624739 1873618458944931675 6209987959894902621 5728764444739437994 18413109988782047308 13885455448020813663 13464164481390611573 5514354709969504081 6364097374632348674 2676033351739376985 1136798196293306910 5299098874403555921 2120987217453057458 17306856587979066781 1873618532028844481 5572365145471912335 18412263926676652075 105382480 5303047039553965447 9881712940254169714 152830562 8610102806501591788 15524263781940136850 14282671233461718187 2857298572705729021 29330122900898936 10554335258691243263 8453377129057749572 18411417864571256842 811271050 1873618489038604579 4657106642463886071 2676033356038145381 514654951 10757572347027851837 4237766514325588729 571999061 9821766011288487605 7230168968130792223 2704904949959166469 1823671323 103350839 46006654 2755882956846859930 15289397371128186695 12662636664722033563 16318735 18411417894664929297 5462796894122411284 9950019064427710530 6981729909914862956 1992588707391932346 63766972 6422699 23407808536904833 15394822466617412826 16881139139804531782 14312300901618944289 2625321593698061230 9870724570679212 5780604289886653255 3870997034531752803 2531021389865944442 10908568553618343357 1860700038481053299 196215461 1801847830 24183115 18424247431471827427 14287090 417019855960 71631344 4391052 61735328 18413674012989259870 2625321597996829544 17957750408840481687 9870724568648556 41943405 2789363542978135882 18412827950883864637 548143940 22151483 17257283845880874759 899112529018292807 538247952 69599701 8510664359869943178 27356081165698156 27638084672359236 12255453 11400819049620310987 1321272283 16881139122607162703 2359405 3101815889301670444 518456056 9232147856523987724 3758799212073651272 3591160524196219107 154600049 17946608694533885076 11500631658516907905 825323275339564903 9870724566615620 39911783 12318365723907459763 546112310 18412827980977537092 536216330 2676033351739114988 11069796553860646809 7880043043777809442 451412296787 18411981918872141859 11678577273375754735 8856014234050823647 105120332 1309344723 162464400 681145240220010584 2626514825137096412 6589396841525218018 356832249381 6156738032733324876 11202456151687629452 27638041680086900 11243723090649876783 5726358144768542273 12498251711624252784 13702827714901707594 811008904 8192198 8714520725396523830 514392806 9960543895307946415 15287141235608259625 5727354401416546168 1808894516123993997 3686437022462641529 5249797181178709209 2625321589399030850 103088691 3062219857732765097 830399540494469985 530117487457144076 12454108019635062383 197984938 8930986418384079868 818873277 16056587 11526999220155450649 6160551 63504826 7621890105505615217 11847668763332905754 10377426660276898779 1873618519132015281 18092519415945890646 15882855708139391266 7993599274919922706 2789363538679106064 2150364451440035988 9870724570416301 2625321593697799226 91161094 1410073577 23920969 7513578521803359945 22279798815198594 15520597512816297356 1023125932615797552 540017436 8910392170935354895 195953314 644809585 14024943 71369196 1873618476141774348 816841645 10906583479868327250 1454041666728626384 4128904 18413392005184749654 108921430 468609401971 16204201012116260706 99025451 9870724568385196 18412545943079354421 11878630053446878902 18204249488608200784 5566476545725367766 17951898368652543383 7558005371879033601 16542141154387102177 6316393479032998553 11694336983993944146 11427331956784106382 4662073785906890031 1873618454645640429 537985804 12999620585941961275 2295119206548507606 11993306 1597536180772867045 5299098844309358384 8294669686619703163 69337553 1873618506235448739 518193910 5406444726343502428 16765215479188031591 5460499803636172954 3431717683755289915 28202117477106938 5249797172580910311 5745384143842643344 14065038233622153931 14311172801615955497 16758489844492275047 5510538272098551989 11065487220741573048 9870724566353399 5679882735784101879 259130038 87097857 3491703471172619422 545850164 18271599167641487963 5991347923196709309 1873618458944406678 7033448275620070919 812778389 434977997061097911 3445982126355516078 2676033351738852867 3545799512027105927 1873618484739311861 12749251354825264418 14836382508930370955 2625321585100000596 21997756618246082 8716776809328151764 15580874176502892132 3332575624131774585 4445946672738010859 5780604328577598853 2848264744227112681 1873618441749072804 257098416 4930631980557601532 6877319166685482198 1005889956380019628 820642761 17826079 23125779236849772 810746758 7930050 8929320279979198383 9654763076979264499 11949535972653271176 1873618514832984063 514130660 18066207382028748450 2573543666009114673 18613585580197092 1427238547443354327 2625321589398768544 102826544 5903884228619468800 4279043148 7036226112429884975 818611132 15794439 3324580943442478547 1903640920853056624 5898403 1873618497637649718 1133620887485417426 10156853965084755435 63242678 282723005 13586095437453200186 9082058141968173941 1987794462939089941 13237708531286474753 5240852582657493474 1915314009235720841 9870724570154139 90898949 17090754651615726815 492307151 195691169 11050161621988804687 23658823 11623400942792738969 9304480456320748248 71107048 816579498 23971751058934778 17869638717220195611 1873618476141513316 361675971417279818 61211034 1873618501936418049 3866756 567411536 5302201063430292982 8486888319115725460 12406930521299355297 9870724568123690 11034422950646711803 4287350254045103750 5566476545725106758 1923875870 547619651 6366353527348595732 8597156797828894009 13590665243542948895 13237708561380147208 4254959725487523541 2907303882175415846 1873618454645376983 9230753948926543533 11731158 527827717 5511666307614640107 1330643932 69075405 28202091681942395 4727296740454696303 1992881785902860007 18301216972081072101 4076606659425995504 9870724566091296 39387493 154075756 5459976644113468289 545588016 12461042340477994821 223556406340 32432337723721245 19595563 2573543610120276856 24535874149025753 5196265237615086368 17735566651085687884 6204347601746593065 1873618484739049815 812516243 6152225714402428442 15291935501556190620 15505670362359531298 451411772583 9484411285755463284 161940107 15292499508566297469 563348302 506004186 11238431078799509026 18323667541285735009 2625321610894640833 103179363763488430 503001580666 12769025487284210679 17785259844527786731 29612147900877606 15290243377345399572 17563932 7667902 3186488476490139978 810484612 1192315333980326167 1873618514832721746 15292499491370961900 513868514 5347351719937377689 45220217 11775490430040476325 12240192446106372977 35324256 2396555433535145871 7409502855497715015 7888341864134085054 4278781002 1732546121802517809 2374936041605498895 21433680820701635 12189960762281954023 869984510486186619 3598203394278688718 6103488079777762245 72876542 16990917635978692369 818348984 15532291 1146796961722731823 17761874897365304540 62980530 4534407021717882867 5636255 32714379920409891 12552846396214610071 6262673798361580735 2528483177756102046 9870724569894177 9297735470756268616 5831598115918776853 32432303331018178 6064762127302393958 6156455943246842659 23396678 13500652 16916327697533962956 70844900 816317351 18411699885273055253 5884848047378859255 5837238405281154301 14311736903207619026 5141736951422061236 3604608 31022281504523376 3599049409094225259 577045344 2974323816123992770 8021450341214588326 3577503648415550265 509805280 9870724567861628 11098517635487303139 7462549834646555859 98501157 5779476207078475458 219257375260 490013379 4222974949961697922 6366353553143235674 3158171969379764633 21365044 27638058876667848 29330140097217635 1873618454645114642 2703776923039566000 68813257 279448782049 814285726 12237654319976351671 517669620 5779476284463187670 10375505326587315831 18411699915366727708 6205475624366966000 3307734082 39125348 1087507565178193378 545325868 15986098390340470919 223556143025 19177592590632702 8865366478519731984 19333416 32432337723461001 812254097 11305519054433421356 1873618484738787248 5105416417023100899 572982104 505742040 563086155 104333894 8070528080642443989 11327137566841769230 2625321610894378836 16377260960560187819 15586729198848181726 1873618441748546884 18413109971585663048 4825924017323379312 5915592292141435844 5832726151436896491 17247780946628644032 810222466 7405754 11549275701007551889 10161648502327149991 570950482 1873618514832459339 313841222762 4452458274095237609 1445774942907271091 6101795934071424788 92406286 5293539447540681024 18331491793766525 197198505 11199980773228349986 32432320526091507 818086838 1997667722089860216 2524806027085153844 1964966944 15270143 1370042529145686776 5565348523104797810 18331539082773742 62718382 2012415014 18413110001679335503 5374107 14282027259104724924 10375505339483621145 9887461037680036022 1873618544926132491 4662355883991631380 18412263939573940270 157614716 3295137431799204142 9870724569630759 491782859 214958343888 16875205763331852041 7241607903360452069 5408471212899110030 23134531 18411417877468545037 27356081166681957 644023149 70582752 816055205 3342460 5246976952665638015 14212253575230457510 576783198 1842511416005692464 806159226 5566476498435574920 15292217517958891614 13516735047310051359 5728764487730398405 468608617008 4025969582498383295 16044698410490725659 1519546451849645365 9870724567599405 5566476545724581156 5619444426388998007 98239009 547095362 27356033875641745 219257112483 8140646021471143544 4713167439824750602 16357059045845960667 5462796881224795644 9138963602338286574 21102898 10905173367761798655 13701595356116683915 2477484405147109478 1880166538706292058 11206864 1283692271244348427 68551110 5885543833259674054 18413673995792875610 2352415791 14947075702982868 5299098870103476096 681145240220994278 163447447 331038328206 38863202 96207382 153551462 2625321606595348609 5461104757014004985 10744889200825601240 1988559907 258343605 6517011693716180143 535167753 2530175340657839273 811991951 15291935475760762248 4397798264919820154 18413674025886548065 12109395139072755174 475082778886408323 104071746 161415815 8697110475982376165 15584540329550678645 13669583335851559254 2625321610894116800 1873618441748286746 18412827963781152832 819856323 6209141854797957852 1783548230307677653 18411981901675757599 637928298 7143606 15855332315905657597 2625321864544389907 12020808312486431384 3076135121411313050 10139438201185111279 6152225744495577231 33560368941368890 210659313158 4278256712 27638024483702949 24904017 32432320525830439 13263754581809432790 817824692 15007995 359800716494834349 18613516794268696 9839328478246341893 62456234 5111959 18411981931769430054 16219982623696489082 6261827792145090364 7692717626264324682 42664306 13806855580317125108 9870724569368358 16269555352897260337 214958081659 11214563466575480865 15636771529559117046 13271165719268362246 2652485274356286816 538968856 3784724792312663401 18263821886743185772 1986666427421953426 5565348480114297669 5352348827359053328 12976359 1873618476140725820 421319345246 70320604 11703165067112811597 21715697223994697 3757107087862401328 60424594 3080312 10697899350700788395 1873618527730534170 468608354196 509280991 50528646 1193603335023233930 16635669954819197974 15426482629288462533 5460499803637156023 2625321602296318353 9870724567336570 97976862 8818864638845060491 14288223544298637564 88080898 6996745855548787140 5566476571519223063 546833214 220421203678071202 31022238513759415 1873618458945389823 6406389097441592980 20840752 813761433 27356085465188671 68288962 5865888353649363875 109394696450803010 12213481117926952067 18413391987988365394 10944716 517145329 5723537903358642458 21715753112570631 7758478083289188556 10675690836223986039 153289315 95945236 11547019543992076059 9649086479758069023 2625321606595086582 258081459 544801575 5887799994573980828 2845029447323880298 18809125 8510103668314541335 6205475701751155414 1990332636357069057 429916882098 2673382969485886910 1873618489039064439 18413392018082037849 10914208898869168291 3773122177597967623 161153669 103809598 14107087915135404740 6366071515245381876 18412545955976642616 15289397371128645360 5462796868327967227 1402930148 28202057290482949 797695489810761887 16777494 18116142943679220675 5142301044413893172 17219576355390295334 5249797112394286460 13735950183222348532 6881458 29048192479791616 16896582888638318388 14517406836956661503 5458848655886518922 313840698753 5197393273133271298 3861350810962691992 6375653898722412075 16885380374869314205 361129707266 210659050964 29048123694646491 3017170418691476659 1873618450347593089 15290243360149277503 14745847 72090103 14546784569801180959 7431889721301470079 6364097387529111599 2435475427475262665 1873618497636600365 6151097734773868363 62194086 17083693200934636558 32150372909516328 4849811 3172873313800750756 2150364429944620611 3862478902367620470 9305858029919208637 2625321597997287853 2508194873 491258567 1408762855 5015996636573993090 2414921941537785811 538706709 5734260728554980678 22610237 12714212 70058456 6208295882974168451 32714336929384395 16643035121679272213 20023641798084435 4770547828131824981 2818164 1930668198955452820 13726068529822894439 468608091255 5569296714050766113 17490170188584258190 8694008299851745161 7073102484926630551 155058804 97714714 40370537 2625321602296056238 1703347206 15895039144349470066 5352348805862656188 3068049059797011246 5880738612678821404 12309852946450942075 33560429128451329 15289397384024950845 4767727591019973374 10682570 10233718743719545342 850088361543927300 2792183694107936667 1107456968073808590 5759560470823897206 162923155 29612216687004362 5875369269012203157 95683088 294416195335096411 22279760122415532 5639662680184522626 17619012653768771484 13237708544183762948 8550520059753138843 27356042474686002 249849483538007723 544539427 13390152586296232130 10906513561824594910 18546980 1873618489038801706 2676033356038342054 6313103561496791450 2063139881 6848542126596623056 160891523 103547450 14101293042239958 6151097653090126690 1584595969 12424382439595706534 17698252132056434004 4129856573689694799 16885259953617962521 12393440069873436875 32432320527338097 21433680821684597 8617826180017097033 1413046597527668667 3973491001936446780 819332033 17305802226190387588 1873618467542665344 16515346 6619310 6206321690771522709 4089771542585346905 1223976962194278208 13487493291780736605 2487491354099451134 8854886172739175692 9870724570875039 2625321593698257851 1535116279 6262673798362565305 91619849 493028049 5352348797264856883 8143564249694210398 6151097683183797493 9386257309953099582 196412070 3865299044899163405 71827955 18613366323088485 18157949162008873831 7562235583526800081 817300400 4618470194090937269 4587663 3932922014897081298 61931938 1873618497636337289 2522831856378710008 6364097413323754682 6053028402293443390 42140016 12287601267178473523 2625321597997025900 538444562 15991329612793777185 15291089478142986477 12452064 2676033644081056812 2556016 16508579235574254010 805372789 59900299 14787093348585572176 2575517759332551933 2412665810316625225 7730749911729375728 6155298010574883251 10488220504998020326 1311572948 883931539946605906 5352348805862394041 2786543383251193103 546308920 3346269252 5782296426993943791 4469799173763958889 6205475671656957491 7872981661881076049 18116424960081923281 2676033351739311464 516621038 1465168459078698840 5677488692584514734 105316943 4562124351240801677 5245848874158263187 16432982289349543214 162661010 3971798877726246151 4787251587800828866 5875369294806846690 12217235256243064050 95420943 5354604868299326678 4502324021619918399 544277281 5940918086979029952 2014710471177341259 2140013610 1873618463243635741 18284834 2676033356038079832 10531295876509927029 5458848625792321791 18411699898170343448 7410231625909407077 3478039985316562895 6204347606046083061 31586254122912349 6829167320236755019 27920101074341046 13165236096819726043 32432389312220424 571933524 5727354401416743090 10225919154718574351 4127600472563058730 160629376 103285302 8483828720842049762 15740334315622960494 206359759935 9813006656186419950 9319686106503382840 5515085278788979157 232154663489 26149204 6208295848581203181 3094190453106412515 6520986101609793850 32432320527074663 5245848925746038203 5942328186188203485 1873618467542403595 16253198 15881445561639371975 6357162 63701435 15515478115209971466 5833854247140395797 283181761 19177532404009207 16567374854657149772 684134257893509654 9870724570613070 15680489859993767209 12826571498698443033 2625321593697995819 10329316755526125416 10754752208794748192 10758418391935812957 12105446909435186010 3143159678306028631 236453432350 540214046 14848239906707278405 29330157293274228 684134210602468610 817038254 4977791693940394179 71565807 1873618497636075077 807142269 61669791 11287403619712895066 4325515 13819298136066198 7734678113259293802 6098975847429179176 99222062 18056758355458722638 9870724568582655 16224960573811657069 2625321597996763849 4078298757842341053 17625510063045740642 10528906628815718922 490734276 5412367062202975465 22085946 12751507524739009261 538182415 12189916 18413109984482951243 2541195915421354200 6671860954713623381 2893509029140760671 69534164 747829823970020707 6770804071406897080 2293868 5566476498434524382 6534429686359852912 18412263922377556010 164430493 9870724566550039 154534512 10167299845199168903 12754891682880490747 5250413516934022944 3315661715940248009 451651625195343029 32432333423379563 5941764217869305943 2141783083 283748271730 10161648493728303880 5240846595623881868 67502526 15618641120352995308 2676033351739049517 6205475697451599682 4023356732265137752 14986955239351847842 31304272112126853 516358893 2207492698791414354 477207135345 1309279186 105054795 17859691850682797212 162398863 4238330517036600601 152502880 18412263952471228465 257295025 10905173350565414454 17498716255300421272 8881019260503721949 18022689 534119176 18411417890365833232 6293435910568086045 9374458755688828226 820839372 6153071780807051278 5909364179964069981 8126661 3735453693364143828 6155045908522469290 745740842898098858 2625321589398965240 12142525752872799042 160367231 17958290734101235336 9523554809025136564 16892239439269464715 15289397371127860096 1736311827 15991050 63439289 6095014 12484855343804124176 9658025172156550406 18067928153034001057 292345808939 16572875051796793000 10542598463376395267 12772641161582545873 18413674008690163805 1544487931 14737352740221028816 282919615 12808641794728789765 2625321593697733840 17128487303121020 1706624008 14101026494875963 11214563466576463780 18412827946584768572 11966722661119888545 6156455943247300775 5300226909920168653 6004915412369541960 816776108 4223816177647290930 71303659 1873618476141710425 12477949191893683608 417019528294 9511403338599564690 4063367 61407645 2543805385922512178 9870724578216632 5407707525201267705 9870724568320021 2564752444 98959914 15494005608834598990 15140097999495498431 21823800 12734096628671909131 537920267 18412827976678441027 11927769 69272016 18411981914573045794 2571498445011814318 10592171188278987146 2057911839619745748 9870724566287831 154272366 545784627 17616192489740896443 21715680027609308 16886908734816455284 583336804 2246313005 516096747 2625321585099935141 620888934 162136717 331037018572 477206873177 503001777494 15592058013925444099 1652810939277510396 10531295803425490030 3205882223899445065 31304323701671300 28484129580057898 1873618441749006513 16893851890367073119 820577224 16904712944498838074 1394017249 17760542 4160689491693538063 4047541379259827663 7864513 14219872676477209184 504169174 17244622751296785814 2625321589398702921 4278977611 7239633818635733091 5462796868326918190 1334641629 73073152 7460569593843485201 15287141188316891641 818545595 9339868219275806468 15728902 5382561551670903978 9373330690077689939 18413392000885653589 5832866 63177141 438515402871 2373415502940997016 2148672322930150296 168849237244054062 12339564610979564477 8327325764367420682 7630443591734791098 12608147700378373379 9870724570088730 2150364451439708714 18412545938780258356 13221120945827219803 492241614 4129856608083381232 15740733274947783803 15858116883009440274 1873618476141446514 816513961 17564225130023161250 13697261 10668197763104573447 71041511 5357143003026951378 31022281504720056 1873618501936351339 3801219 442814170389 5701610621477129021 8520914754064026558 15289397306641222853 108593749 98697768 9870724568058057 5780604294184830225 156041850 5192881006389626514 32150304123324262 219257572663 18412545968873930811 5249797099496672683 11127945220196076778 9103100569952650951 11665621 421318034537 17619012718254098754 14443179094226111164 1873618480440216958 69009868 10594427319499622429 814482337 13968724050119231192 28202091681875145 27638110466671725 16166203682344470241 1712194570 472907842721 507970270 15580874172203795679 23689855033805297 154010219 17092164759424403479 12893049762838873864 6877309693745106245 545522479 5887800020369606783 14977809576148535095 19530026 14105033451515939293 6795216411027442152 2543452128325209336 1385890784 114426460 6444189713816225654 6152225714402364510 524384476410219715 17953567922355439196 17113993018971653874 573178715 515834601 17090754617222956318 161874570 1538130937 47186305 30458188512103543 2449021711964768402 2414448843017751282 5214737420442796133 505938649 2625321610894575340 13965057806789381527 970700105235760464 15223822230290106035 16285378285009240167 16940455997476965252 2601013084734032090 5248157445900799208 1580068669843704469 15043322265989680207 29048166685607288 3863606942184311140 820315079 17045009756596405420 29048192480512516 11510172448171493799 5885976160280708469 7602365 17785259896117529586 8856014216854897981 14477731067643038195 1873618514832657292 2578187325 15292499491370895395 33560368941827284 13146357072728951328 17353152791227993245 159842942 15530553734630409457 5569296726948055802 494159375523777824 1812923415 6366353518750729401 4278715465 17097308613030775025 35258719 1899651063193471062 12103109825679658143 6364338522051512284 2429880031182916564 11621189233770302317 72811005 15466754 3880024017885400135 818283447 62914993 4076606625033226775 1873618497637320883 7746405201714873917 5570718 10859426818132543221 6925759835249836137 3506237898852665380 23407812836853915 1873618523432225060 17166316876055971050 18008952305986046279 43123062 9870724569826462 7410173966093388838 33560399035500221 511599051947 214958540605 13237708557081051143 20587696099952690 15339421027537585423 6104586261132347910 11103300151687644832 1456931819 1873618450346281005 9181531069949872018 14650572868605052119 17783567759008991682 575239712866634722 15288269284022357372 6206321673575138470 644219759 13435115 399811749952817933 145335345147610979 70779363 6366071455058494624 7529998377695250462 519635711 3539071 576979807 9568723490388248888 634323816 13012951802393594980 853643387796785445 98435620 28766107292140894 9181555677596944971 5195701200510977145 5129024196560096606 5831598124518278362 4844858457232050089 219257310372 7569568047215545466 5461104800004441485 1518418407735101149 814220189 11403474 18005251247539029895 10333839787251271664 1836516380 8054758354584013306 507708124 163644058 9001701177466488459 2625321606595545096 153748072 4787251587801811388 39059811 545260331 2036204584 5356296971014964874 19267879 9714916684781063078 3055188874828713383 14576212124415364447 2150364417046743283 4662355849599126556 1372824966366170355 1318388695 15289397293744393060 8423108281783224429 505676503 104268357 477206348880 5831598081526006949 4625631396377398109 2625321610894313322 6206321759557388696 12237654281284815334 17236251 9391897711091583990 3891732840317912522 8856014216854636141 5758903550139959418 7340217 638124907 810156929 6206321690772243584 112132697 15287987228927658628 339636063086 7721139320100816372 684134305183500639 22279768720672168 5831598111619679502 14814059355306855043 4211213383 15290243360149735302 18411699880973959188 15204606 11507341268100646834 62652845 6365225483234117329 5308570 3491703531359374171 17791918762976347730 4127600455366674792 11130039777759856047 13951205954302381098 18115578910873816258 8659114857360722535 6153353844499089111 157549179 9870724569564298 16327183209838150989 491717322 214958278120 32432303330691092 17684252729367202593 16965951797418331227 23068994 2272905061487347697 1873618450346019367 7515799761807542411 815989668 2576363817137867614 70517215 17763448248357489818 13172970 3276923 806093689 17621268802185464283 60621205 18411699911067631643 576717661 1685722535145180234 23689824939607125 17256155806064642777 5516892801706297876 12982659022915898414 9870724567533791 15515140725455259155 547029825 219257046468 4180850416920431050 21037361 68485573 11141327 813958043 189614828176542708 1873618480439692390 279448454880 16253215886083360174 572110149897422243 9896616181508082455 153485925 8021450371307931626 38797665 19177566795402134 27356016680241600 669582195 2625321606595283106 554894151 5512098557251945790 9568883447315500158 1440671446449589035 4502324021620638916 3249068390006196153 15292781563660995825 821822415 27356063969248337 18413109967286566983 10911952793442192048 6064503826171693679 11161692095903435283 1004761907965660269 2207210695286917386 6388664954993575829 46662016 5885976061401368013 104006209 5572809636517250553 2625321610894051277 17955470565775510239 4661227814082512385 6368045642960996241 5463642874544129714 16974104 533070599 809894783 18413109997380239438 7078069 637862761 6288511205539515238 3974700764184054454 18613559784442970 2791055594105669609 4504298205224635444 18412263935274844205 2605266760616185153 15287987228927396675 339635799228 92078603 8501910827968825512 5991347884504386492 210659247559 17284241873202253123 16893851873170950707 651404368114879038 18411417873169448972 24838480 5726226344404977639 10259573046193883986 2676958769323838072 72286714 6886936648282539655 14942458 521143041 5046422 13980703149896829784 1495991284 62390697 18199185222634702635 8834282535679560676 15925946803693423456 42598769 9870724569302153 5459976661309982295 11084138473134491150 5303047078245827995 214958016090 12451287838412704489 5509410202188647833 2681814701524780811 10628953736434486617 9774054990929462949 18411417903263121427 3865299049198390675 12910822 5356297009705911966 2421359666 70255067 2248112069177510680 3493395634074945822 60359057 12654580528992553525 519111421 3808100888100343209 3014775 13513632858283052077 15289397310941235057 8861613698626554738 9697577994188492052 155255415 10381427610856195682 9870724567271440 2625321602296252770 14512708438227029368 97911325 489423554 4022831255438034250 30671195 1873618458945324208 20775215 5459976691403654584 813695896 12665415616966166285 5645056620059298667 68223425 1319896024 2390363305266056430 17634738504986593825 20305632407192782 17462509665872383079 1606616067 305243098454 163119765 48431492 10590197086357423689 2787671431665157349 6366353484357502971 18413674021587452000 17620986833073014515 105775699 20869665212206112 4445946672738929841 95879699 2625321606595021110 10906583445476542150 18412827959482056767 17205553309096938840 12294570438877711433 5461104782808583112 544736038 9950019055828534995 5991347927496394467 811664269 5403008449516603011 18411981897376661534 572392279 7677136701370927115 6155045908523191668 18067928196024961188 20587511236070012 103744061 161088132 335336768790 6155045934318095559 13322381941750499717 15291371425760087333 30740222110467489 5245848925746498573 5349308051975768286 4548309565419816229 255984301 5461104787107351969 16711957 10906583475570214623 6365225453139920066 6177363118375897150 6815921 7032232753418799293 5558136817694803400 4030203865610717075 12718336251608304605 18411981927470333989 1545208828 15287141235606883137 5837238474067478018 11705421198335413148 5524868651610213131 210658985303 6098975770044925746 24576334 13151687854617134836 4662073803102881076 72024566 817497011 29330157293733695 17096567568145714575 1454859013759438228 14680310 4784274 62128549 1493907215600323645 6364097387529046615 12583654612056476062 12851509922494416016 1495729137 15287141218411547437 828143439367899804 2523959969279970191 3919394969679695174 7595953279435999504 2625321597997222413 491193030 1839046019115124804 7241043922144659849 18613499598604650 18413391983689269329 10594427319500605883 12648675 4861149623842704773 5782296448490276391 5516046782590617836 518849275 10015828607276288922 15662612681012938353 2752627 60096910 5133829485924779401 7003516464553396964 12903069678853164419 2625321602295990612 97649177 259785401 5464488953846367762 546505531 30409049 374027977988 1396769762 21715680028329254 5637072609524124450 7731877951544692100 1873618458945062288 6767393152337644543 9467310877347154547 5429433323061448040 10617033 1730937871 107356700000258304 425617786716 451412690018 18413392013782941784 12020684574736647824 105513554 3541851256594893702 16038494049631274933 497025749 4661227783988316231 18412545951677546551 5565348467217401524 14428481252717692252 544473890 3344434243 2169005683868174908 5993603989931887912 12972952285742288 13117263636444153530 811402123 2676033356038276482 1873618514833639109 514786024 572130134 160825986 1938490399 10280579133800254203 285938493736356261 6425213859614951480 103481913 11364576519499679975 1881294612915292853 15739206202722094240 4397798316509039896 17011915733784398286 1873618446048496233 14383326641327005 26345813 6156455960443095577 14975681650483333306 819266496 16449809 15288269301218674108 1873618493337504776 5782296461386581535 12162857194684744950 16633695839999756254 6553773 6206321690771457172 5411573444917201071 14273081993166850387 17297538988880889355 9870724570810095 339635275824 101450287 2625321593698192308 91554312 3812049113439014303 492962512 15289397349632182266 342928503145892901 9257009393629660721 13674941621707869313 17952462371364276975 24314188 7676326001635166459 12622921449567619867 14471968401314024391 14418163 71762418 4522126 1873618497636273356 1873618523431177265 31304285008889193 2625321597996960522 42074479 18895601982637667 14883032307819284131 32178524 490930885 5459976661309458015 194314911 1873618454646032908 9386257314251803173 13950077918785243724 5831598146013367591 5882159627828332650 69730775 6100103913039400051 15744000533156660854 12386527 518587129 59834762 9231865831523354279 2490479 2148672331528407961 2908260051937332390 16876615841046071902 9950583114428779661 154731123 13237708539884666883 30458205708158447 2964529530791004471 40042856 2933734509745341832 5459976691403131036 1730675726 1873618484739705502 2676033351739245930 15215179494928287321 14866462842593414402 5463642917535614049 631243623 5885261859847867262 11391362031143292020 506659547 105251406 5778348197355914873 16324853745603185849 5509410163496651347 152699489 15292499534361856724 496763604 544211744 4078298792234977417 5461104782808057591 14648423506775771515 10504814416598927327 8709732826087622782 2544766567488424310 811139977 17088205463377873568 15798241638577276499 2676033356038014277 2785415326238639918 12562453432512743836 12350988444867431112 1873618514833377412 16940553195690134509 45875581 103219765 8854886168440079511 5941764153383128192 2625321589399162008 11818157132458100908 2785415278947600352 15257764832492062794 232154598652 819004351 16187661 4644563108626631009 4000515045253449269 16872667624306444468 1873618493337242815 6291625 6156737968247080128 292346005443 283116224 3220426554520570467 12356593998396393868 684134257893444250 17175427809786595961 9870724570547380 1992881803100621054 2625321593697930351 9450798976826149302 16655465042802838677 6474545510181176536 11740202404159819072 15289397349631921063 9714916620293637762 6098975770044401989 16364556117061994922 196084388 540148509 24052042 11065179658016983681 12480382642832672298 71500270 7285785859232107205 14156017 17632571483632043275 61604254 4259978 17750109864738752812 1873618523430913566 9830100417878166271 14425661002709010016 4794173760728861833 464308734399 510460641 2507605048 41812332 2679637056 99156525 16044698410491643447 9870724568517151 5516046735301085409 6261263733545503259 3759645248384009814 538116878 5779476232874035736 6104586261131037638 10531295842117158093 12124379 69468627 5565348505908348542 814941090 5299098870104394759 14322284629040564382 10440328872292254866 2228331 518324983 16872385650894636566 6284197438710222140 8098722631875955846 5727354392818878727 9870724566484489 154468975 2292825785040636736 3172873343893834792 14418466534433295118 2707725182771857350 15293345523383077603 259261111 19988781 15371922320578972378 19741625396299098 18411699893871247383 12818875419963886521 2676033351738984017 14268291611706526293 1309213649 104989258 6367324841362000185 7432602967203907143 11331649863678691999 15292499534361593441 1815413785 5778348223150556659 5572809636518234139 11408348231855703653 2446197814 13001682102565734253 17186370630874106258 2785415274648570354 14264783202905229777 7171706723174648069 820773835 4645667113710455153 16425638839461284611 5353476806987745228 1840738151924108521 6153071806601889790 810877831 8061124 5356297048398365877 4770547841029572913 12804866717273491655 15580874133512784221 514261733 571605843 12346762090311779845 102957618 10907429529076434052 2625321589398899121 5354604872597767596 4279174221 27638024484621167 8483828720841721486 1459422188 23689889426704296 17648172271756969893 232154335723 15925513 10811668319096800853 6365225478934037607 9763237054719266042 11633356565151157114 63373752 1873618493336979326 6029477 3580814869236944221 5199085482290645376 282854078 2625321593697668091 9870724570285675 7449919019336600171 1839046014815569788 23789896 9131616131521448314 5779476228575003910 5511666277521099409 13940760354079114484 18413109980183855178 644678512 71238122 417019463453 15131353489256221185 447360420122266222 520094464 3997830 15096032016463431129 1873618501936549084 61342108 1873618523430651633 18412263918078459945 5344573059048999857 5155859771100236117 5405598659939206416 27356033876298083 2146416200305806198 5303893093062347743 21758263 3189961199463959445 527958790 69206479 11862232 6364097396127827248 1320879066 365262179507571896 23689855034002659 1473119215 18412263948172132400 31243224015702806 39518566 9870724566222277 545719090 5301355009924597043 9391897706793274792 11514789185312918199 18411417886066737167 5299098848607995194 2284412389694637269 10530167802300925091 10427987387505837891 14322803714593785119 2625321585099869531 6829167367527204602 6013889919468112625 4181978486829943864 8698802578697685482 1654120425802828663 5569296748444387676 1873618441748940565 256967343 5245848947241584851 15862817677379702068 14633483086300318059 288046714075 2203332276215481610 7798976 810615685 237175467 11340219378265033230 313841615983 513999587 18413674004391067740 2116750858326574509 8070938101082033295 2625321589398637514 25099937047839912 5245848878456439955 12118995007347033900 4562124381333884039 31586327206235137 16436648502583690678 9181481831755875838 5516046752497929091 4183106466458307862 1991460714865167155 17082847207615301902 818480058 15663365 73007615 3701600990787603378 63111604 5767329 579208034 1493907215601306869 11535686880442518166 3313969578832561394 2704904932763174902 6570315963541227654 282591932 5726226297114658480 17160329975787685834 8843457619279611284 18413674034484740195 9870724570023121 492176077 30740204914083091 21433663625497129 1629160452 1873618450346477252 18412827972379344962 5243108696682924272 7260902865540482639 816448424 70975974 15287423196122254433 1873618501936285414 5151629580948802356 3735682 61079961 18411981910273949729 7837634943338155161 3597357340772992368 5133829485925763690 51184007 10956724774926813288 98632231 17309267256018536307 9870724567992379 29048106498198701 3544107379218385465 14386655907412249373 219257507157 21496117 68944331 16330874579771459902 11600084 11124082762859154482 5459935770830768809 814416800 347984565637089693 11923578915473263059 575144796 517800693 3297856681506178941 326737923180 16038494049632258844 15104099179857577674 32996413518841137 153944682 2152780467316001469 8722536002903082945 10646954815923686447 545456942 14458654042895551171 3935742187522887052 16064731596255856452 19464489 17648172288953812474 6213874949885069218 14851060135220743194 6471725260172231870 4504298175131421894 573113178 11701191021079496730 12314601354656483126 13957562954616997312 161809033 563217229 104464968 1366033375 1133620930477295468 6209141923583494372 2625321610894509848 5052785364214352114 6155298040667702671 5246977012853376412 4074350485214726972 27328854 1873618441748677997 2000487899013646903 7465404271946632160 7239351853821397993 11742834345080916462 6368045642961454306 5516046795487905107 434216307724 3493677603186412637 810353539 16633695840000739887 821147663836514852 18413391996586557524 7536828 4151361015346562251 14540810596246030644 5995296139937712949 159777405 8816997369364548341 45089144 18412545934481162291 9298403582666148514 15108492788614827244 35193182 5568582435113995179 5570988833963444820 15289397375428069113 15401217 8430474765433179073 10750398672578676906 72745468 5405598728725859379 9250794030848869727 62849456 17422075106091075868 5505181 1873618497637255436 578945889 13106160036035691955 282329787 5570988786672405753 9870724569761068 7031431794891230329 43057525 1706034183 491913932 214958474959 90505732 18412545964574834746 32432303330887118 846140170598090257 5458848587099997499 17607182983838566334 195297952 539362075 5460499872422693597 23265605 943759021439519007 70713826 816186278 2207492642904016905 644154222 60817815 806290300 3473534 1873618501936022824 13307798926833551183 1873618527730926929 11349795265056081195 567018319 9388513449772451585 165610142 2625321576501808484 7290339324003420579 15287141244205140113 41025899 9870724567730368 5569296739846327213 98370083 1531970550 219257244681 2065251783916127931 6151097665987347595 1407386597 3973490993339565383 12463417266756127924 17631161371525515669 21233971 3232498753 4767727591020628301 8972557000702888938 1873618458945784014 15290525376551717170 1559626750 68682184 12689613402799605860 527434500 517538547 3542979343701772038 447112610911 163578521 326737659857 30458205707109873 2625321606595479619 498702419026 555090760 11846037961957312985 2286775792223980496 2676819007 11599686562536949325 3968978683605551949 5831598103022077418 15175534989820758889 3812049126336301758 545194794 12348736218027264207 12743882002561631754 12318365723906541324 8882845388820581451 12769623874203027091 1732546160493595960 10430737389551487761 9512531412808567772 21433723812579518 812123024 9140909979694467183 4025048830681353606 1873618489039455401 18331530485106038 5516046791188875281 6156456003434055463 12474564753552836994 17621561863500597513 104202820 29612220986426501 1996555300 2625321610894247837 17489156252859434801 103179363763095696 15920335005095365860 13112992413209136128 2034107431 17291573824845253535 9772926989806013640 819987397 17170714 1873618467543321286 16156684754098128751 6925759830950740072 7274680 16161820259100396848 3698377064120454404 10296839827164892306 13913370016116443160 1363739614 92275213 210659444315 1784112314702629632 5461104765611674055 507299956084 13237708552781955078 197067432 4211147846 14657391675119111356 25035091 1735459858 15139069 14426056237756189706 12771845711499103316 9940375093616053431 6523880655054768550 62587308 10967349376607587326 1873618497636993704 15290807392954681807 5243033 1133620917580466754 1873618523431898109 11613165301442872555 282067642 9870724569498781 2141513421469058406 14318336791419094928 5885976069999102359 6153917830015027393 214958212644 548995910 90243587 16101055855214332856 9409295256684857617 539099930 30458248699119542 23003457 252379820 6173800107753209956 70451678 13107433 815924131 1873618476140856959 3188833133853148985 3211386 60555668 5514354727165429372 18430745393540238720 5566476498435442740 8821966780582857359 806028152 31022281504130688 15273884660262766886 17153706162049649384 15568274631689570656 98107936 9870724567468020 2625321602296449309 5250413516934940017 10377197347619277484 546964288 2429420595 68420036 13840095604897025041 11075790 1873618506234530930 517276402 31304293607146613 10225919150420460684 32714392818354350 163316374 17480593072628501093 3653991426073234491 28202143271093720 2625321606595217579 669516658 11075097734987253589 544932649 5248951136269502637 24535874148371011 5247593352907000017 13750803869111880047 821756878 5565348488711963913 18940198 23407778443822783 811860878 3910652327921846506 2372569380647405649 6151097721875664077 8481290603310483360 15289115311734721621 5197393238738928914 8858552325786961082 15270695523793439937 103940672 6206603741566403719 151388766 2531021385567766485 7563081637033018620 13044533461222491710 6154199872212897041 9126223058424237061 1160107295621122785 32714349826081871 6152225697206437786 4333982245204396969 7012532 5411521012994803182 5249797159683425776 570557265 17619527108083517000 3758799224970808644 11069796609748044689 210659181949 14926165161459649868 7570985824906512457 3234866947851553000 1906986264008723742 24772943 1873618446046923526 7516607870825792868 14876921 72221177 18411699906768535578 1495925747 62325160 288043895627 31304259214443724 3685635809078676834 4980885 313838798363 13951205954302051853 464309454125 7151957518376504179 6153353870293665804 365428606574 14319322726341872694 3493083035910933027 214957950334 13222096480399396057 22741311 538837783 12845285 1675756474409617568 7676326031729298383 1873618476140594617 70189530 2861086850442987769 12590629664748537952 15501473033754248808 1733166096 2949238 5833854255738587405 6405261049027955879 60293520 6364097417622914469 50397573 15289397310941170468 1436145094782551981 9870724567205432 155189878 7996312456522828750 2413828615876118471 1818166298 97845788 2625321602296187261 4451323549999957434 3544953467117898450 40501610 6364097443417820330 1543385872365455415 12606726616442537392 16436379939763522008 7562235540534921217 546702141 20709678 18413109962987470918 10939233345785957508 1384869222252743071 14383042897579063 245051624454 813630359 5881866613803452649 1455946274504313841 68157888 10813643 4502606072414800438 9388513432576593267 517014256 16739161091967945306 6203168539198949844 20305658202031811 15122676476569913436 48365955 5941764144784016877 12601357272775920269 5900805793554762144 163054228 6155327937823509637 95814162 2625321606594955469 544670501 11092808190891527547 6365225423046182853 3545799490531822688 5991347927496329957 2676033356038473537 6928358494714596151 18895516000586505 18413109993081143373 1317798870 3242943116712479419 8468495303965871404 10215782083327823122 295544243748734701 7536133444401891169 13880529192106527090 18412263930975748140 103678524 8816997365064994109 5513226652957347114 13427220419978791304 4279895118 2581508047683782932 151126621 16436648502584675667 5245789596497153220 18411417868870352907 1574831104 5512098613140196086 16646420 16881311723980129501 580191075 6750384 460010423829 17142588721119759321 5411521012994540776 13331692090551241408 2236213724530672835 10512763733196344280 91750922 493159123 210658919829 5353476789791099071 2973047420892220660 102615266471184862 817431474 71959029 14614773 29330157293667421 18411417898964025362 8854886129749066875 62063012 1631882651478526261 1873618497636468806 1626046306171619904 4718737 6971710725545264615 15463390673086056969 5996988225456246061 2625321597997156982 1258091056198584472 2365498112266798670 12258209558853782455 548471621 200191596416994196 5565348480113903112 10159392401199270768 538575636 5782296448490211725 15289115277341755866 12583138 4959080478982475006 4237766475632413481 2687090 60031373 11241814380293784908 18413674017288355935 10162787574158199843 5625593289148533238 605557034314828631 2625321602295925195 97583640 16546579671803956126 546439994 13513914891881875478 18412827955182960702 18142877345697171235 8716776878113885241 5991347923197297866 21715680028265805 5299098848608717979 2686971790050919863 10551496 2676033351739442523 5246976935469649046 4236074403011431549 5561348123192067576 516752111 13525196865559988902 451412624470 6813843502384089093 3452050537366752044 2723374776553770162 105448017 14284319595218536933 356832576945 1987904546 2789363555876800106 17063697102470777209 6584302816815089825 5727354422913010657 13944415416121166662 28311895 11906248855590275274 3707523343842937215 18412827985276633157 821232589 18415907 2676033356038210923 17257283880273643533 18331556279224644 9117971362513815455 18411981923171237924 309541536868 113312346 46072191 103416376 27920126869375123 160760449 361131345578 9234597529149245860 14835085562484362568 4585257123188181630 1413046597527538184 6208295874376239521 13217980679449939250 1966081057 6101795981361546864 16384272 10370417990725208293 4196703391028741586 6488236 63832509 5153885660580611393 6155045912821630127 5197393273132877515 2625321593698126810 10720606758114626648 9870724570745030 30740204914804024 91488775 7792373120121047026 3579577413 5458848587100981064 755605599842665887 17404805271631431757 417019921504 9386257335747873389 817169327 18413391979390173264 71696881 8328637003859953646 14665059300281706 6101796011455220816 4456589 13070886371126478108 8733200714257204941 10913926882465549337 29330183088310857 61800865 14949273699027977966 1873618523431110190 3573803894998305775 5569296709751605280 5835546375651263675 9870724568714358 42008942 1746899701160150410 9664889374910385451 7406761759861377295 2625321597996894992 365428082633 11888218815508973537 6311975551774360856 1408369638 6101795942670075923 15515140772745448064 27638058877519937 13361048879788721990 2430665780 22217020 538313489 927164962728314711 69665238 27638084672424186 2573543627316201844 12320990 2424942 18413392009483845719 3660444556051220001 18412545947378450486 154665586 9870724566681132 546177847 2229804632046437624 5245848917148372136 15906307047154976446 827351178595273968 5780604350074062990 6350640494756627870 9198943117821938833 2676033351739180486 1192315303887243384 67633599 6205475723246636047 17419818910382754661 162529937 17083693235326683482 105185869 8912366315847026281 5249797202674912471 2446394423 1461650414 257426098 17299513133793348673 4451048243670025981 14597841535548131734 14130457194541352666 15290525359355331959 9195012299735698785 524354306 429916226796 6153353788611431303 1728578573 6153071806602085789 2676033356037948725 8257735 2785415326238575484 1873618489038408278 8072726556923202784 7731878007432940921 16271603835638319461 11229884474259868248 5835546388547569431 2704904949958969710 103154228 2625321589399096275 6887529782530082437 45810044 16365628939578247566 4408861808311732424 3554388240579364748 3431353251379022211 4131548706499659810 3229097897723824621 818938814 16122124 10831084194895235709 6226088 6366071472254485645 10441809166173275876 9538952396691934382 5994450030541998229 6835382734606174906 4397798273518472097 2625321593697864817 9870724570481756 17782439637510195701 31304332299601191 4074350515307087985 10758418391935682553 11405246090117384413 196018851 17943317531894613402 15289397375426759758 1801651221 12716605781588708278 5353476789790574588 1873618450346936800 14462121002204464918 2785415309041207732 71434733 10770155859627543824 1873618476141841211 5780604362970367638 2530739313276357975 14090480 5567604589840172352 296644709200 11266915032714840583 4194441 2200512120787569683 2549492329236335496 6211116016906930204 99090988 9625506809262378259 13237708535585570818 490103571663 14541340640523322842 9870724568450966 1793158821936040552 9486667438472824267 21954873 538051341 1398211555 5408700909154273182 5356297014005859746 8444237263823374707 69403090 2599235317101562153 15897859265386515143 6097847713031849822 2162794 9796067026192895123 13117159209037203716 164299420 17088031212435737557 8099682237308012832 8971880411373045432 3099205763721988894 9870724566418979 545915701 13237708565679243273 4449074137450482853 18115860927276518423 5247593352907982888 16533468055605152863 1873618458944474091 19923244 3188833116656765520 2676033351738918494 4501477955215362649 17621268784989013395 14581169549127125939 6206321707968234614 33278352538406314 516227820 6890349946557761313 1411918553413126104 162267790 2474797953316292924 1694703987789596868 18172096623373846790 28766090095429261 1223976979390989739 3221822110943152678 104923721 15185362616787929146 10003084053115964048 2625321585100065781 437798118096833445 1815348248 31304323701802109 152371807 14046027923586223423 2021331689141374237 20869691006257762 13044533461223476582 16778219695595128445 12057002331826554305 17465760298758178660 7576852735584046364 129168850403198609 820708298 17891616 1873618489038145001 7995587 11911353550167017696 4522983015860209939 12612941966326959190 102892081 2625321589398833886 45547899 11548493110908749415 4076606693818764590 7851156332894489575 12779163922391107832 5991347884505304103 1095239150174145285 3863606920688567965 10771469979967884371 15859976 14312864964518020808 17245750799710423012 5963940 10655291933708585535 4162099616697747321 63308215 1873618519131818153 30176189305784773 53412232 318140582948 15611911946388048179 12640696470018459947 30176223702288623 9870724570219682 33278412725750974 1409876968 28766150282773591 1873618450346674286 15290243360148359553 14036340911856223966 6365225461738636619 816645035 417019398489 6206321673575531611 12057284352529139627 71172585 13828334 7528870385169533979 5832726134240118664 2785415334835848520 2572415553107265488 61276571 3932293 9870724568188981 1873618549225491555 2360543918673038210 98828841 12512221777814685432 17939922315943150958 6045857707735386835 21692726 4502324038816629924 11490081257974859839 17639632887023929831 1316357237551401394 6101795994259359091 11796695 69140942 18411699889572151318 12074216556992400767 1320813529 8618954206934993224 164037275 4160546838840674266 12591757708863407913 555549513 9870724566156739 154141293 32714414313178248 545653553 223556471268 12613788024133322735 812581780 5778348150066318224 1500709877 6741138607599781046 9227353569080969220 515965674 13884327378110449525 18411699919665823773 16340493341965880015 162005644 620757861 21997756618049241 17007720368052373541 13001845694847518363 227855238971 17629469 1737950228 9288263741171697848 20305615210743190 1873618489037883086 18613533990193666 7733439 313841551493 15288551330518206781 17302333254828493968 6153071832396467338 2979056014524680527 8857706336766199103 2625321589398571980 45285754 5991347884505041337 4502324004423927097 16874702537456224943 14911447610171655366 13944990587222231178 3308118261903721908 18413109975884759113 8412057600244518110 15597828 2538734651 818414521 17082847207615236134 18276979644936029994 5701792 63046067 5882159696614657105 1410790466305853323 18412263913779363880 32714379920475611 539325825270679628 1873618519131556994 13536993689470216 9870724569957729 43254135 5153885686374731086 9387385384162626351 8336200085500660803 5303047104041388600 5512098595943810546 5717788221838658971 2324121364801391676 12012735189037878155 2192639020 1873618476141316771 70910437 3670145 2219404100148201532 2544580112253650683 61014424 6155045921420412650 18412263943873036335 1873618549225229533 9870724567926898 98566694 29894215892535509 155910777 6366353527348399255 9956242218935388443 31586340104504804 219257441372 13522668389390157414 18411417881767641102 11534547 279448847671 7242736046355514492 68878794 814351263 1192315299587689576 2524775482 34124461934314600 507839197 5539270545646881104 4974759074281293673 5337229686545450161 153879145 12644080653952551280 30458205707308380 545391405 17877509356004052233 17520266449292560845 11065487246536017596 2011949215506761725 6155045882728942511 812319634 1130753852548581517 573047641 5299098874402571932 18413674000091971675 18331556280207363 17269866578628118199 15289397293744523027 161743496 10649664295314066054 6051485356288903427 4347925833116091776 30458188511970924 104399431 10184384893691038634 7401639761433855789 1308623824 563151692 2625321610894444316 7239069803025663720 11434534198373320614 1873618441748613384 5622264654903379074 29330122899915877 15636380174699072146 820184006 2597848126 10233694917695638297 14585410861575638263 7471291 85348920764927349 6366353492955694732 18413674030185644130 4127600472562141528 35127645 5780604337176709161 541328159 2524806001290315567 13850612818404510827 18412827968080248897 15335680 3493395603981665996 17858552114457937219 62783919 3875793754648151904 5564423899624572258 292345154665 3489447322753895731 18411981905974853664 5439644 42991988 9870724569695611 12269921124804135698 559088458 33278386930321618 15289397353931868100 214958409445 6219166245997316001 15289397379726773461 30458248699315998 23200068 12163381674616883890 70648289 9000175594581527004 806224763 89657146100418951 15475002888547338265 3407997 60752278 18411981936068526119 14267039342724252928 13726068525522684375 1873618527730862181 4504298213822565083 155648632 98304546 9870724567665640 13681696359428851594 219257178788 24535844054893958 50011031689890353 10532987940533372886 11272401 23407795639356361 68616647 814089116 15635925519041823968 1998521381 163512984 797977540607610221 32150286927595340 4709060078846741586 5967447917778832244 5885976078596834724 2625321606595414132 153616999 1744643526947965735 17461812017531651650 987047180239768912 30740239306197230 15288833278135765839 525337347 5885976155981547843 18413391992287461459 10532987970627045461 56689033 5722409915131627177 114033243 10159956468397444373 18412545930182066226 5349367342193968413 13819010092172884 104137283 17953636526298302297 2224234517276395067 2789363555875490728 2625321610894182276 12426051065400527122 9355193091131312182 30740222110861163 14361095630442006439 3137288237381257087 17105177 819921860 7209143 1727529996 810025856 805679481429165719 17298949057997047589 21997713627284659 16120716880803858984 33560368941433940 1535706104 10229733804179524009 18412545960275738681 9714916620294556051 4078298775038527628 5461104765611607541 210659378559 92209676 13418544886826534789 14264208172476401284 1917322269 197001895 24969554 5405598728725530322 15073532 817890229 72417787 1873618471842024407 17091318705916150977 5946696443085589628 5177496 5847102830955857465 62521771 1873618523431831649 5835546371351184527 14824583848163281869 42729843 9870724569433729 5780604315680310424 16385074671182940805 214958147231 3007753865419557454 491586249 17943317531893566468 1801912319444323213 22937920 539034393 27356055371580547 1873618476140792146 5198803303557629187 6103488088376871190 13041896 1733362705 70386141 2306802734 643826540 3145849 14637903957824965363 519242494 60490131 805962615 5784522635265967958 1873618527730601376 18301216972082383618 11644189250161151139 2625321602296383846 9870724567402585 98042399 15741861301866530650 494403323033 6729754102968812754 546898751 6208295835683456476 33560403333875446 14409153078548760239 15530271666638163275 1873618458945456185 16951650337051970851 5144036663261072615 813826970 12133908888583014197 68354499 11010253 279448324634 14749580058850363919 6633286351216577743 2089265852158774334 8929038315166239946 31586271318836879 13678484518713821516 105906772 96010773 2625321606595152102 153354852 10831360821402142464 5652457623480305518 8503320935775669540 16483453074211931840 363084051790629688 544867112 258146996 5944020284604679310 5782296431293302176 28484176870181368 23407778443758207 3973491023432910866 5778348175860436286 1873618514834032208 5438906422044199526 103875135 7697026996393675938 1709507593 161219206 13237708548482859013 3701601059573925529 879419277503368073 3822179681402096264 5565348445721659362 532291916112267238 256115374 1460339693 13351948495571782591 14665351642484132 3008657884776564221 2341393787733871788 16904712944497920326 3967850626592737364 16843031 4131548702199581670 6946995 809763710 1928986057181235415 11964228788262537512 2989761681675848960 1873618519132801026 7276444624641068235 5994450030542718433 12284124821458521275 111739480 4076606646528706921 13650504529854072320 15804734059994287439 14425661019905001872 2395604016 14465116522071263669 210659116497 15290243360149343057 15777957523720635747 10167863869407233224 18331517588211470 12884708026702235763 14811384 72155640 7042731044489660311 15288269305517836796 5675796551176948530 14264208198271043974 1495860210 5787083718919720300 25099894056749168 683965395648908415 62259623 4915348 12974919760129952993 6155045917120857525 1873618523431569790 9013091190501541709 4392112055939237960 2625321597997353452 15897908900500866947 6177363174264606048 15872788267758849077 491324104 33560399034844286 22675774 17542946455516547053 2431124533 538772246 27920040887322186 8704274751914773568 12085352355710699032 6153353775713551670 70123993 27356081166223293 7885152524183078888 60227983 2883701 11700344903086704893 7329667560521271617 518980348 5833854255738521265 8618954206935976415 3901910077209972079 1713308683 1992881785903908578 4530582984922301900 16130159995999161574 155124341 2625321602296121720 1884114794138700522 5778348218852443426 97780251 4240022615453076686 6097847786116483627 6361518319333476776 30540122 28484146776247610 546636604 5741055947585816645 6100103891543657570 8807886331112851129 813564822 10223260478367337870 746324852 15287423226215073909 11226550812567014265 1491796976 8097653480026868144 5995296157134227520 1873618532029106835 1539245050 48300418 331037869860 95748625 6314795724398267312 5888081980883929307 544604964 34124418943289166 5245848947242502849 32432363517642192 2676033356038407648 811533196 1317733333 8920676095134336910 17149817495305717193 918014392040164136 103612987 8695136395555507435 18349504802666319185 14847634415788362123 1584661506 4287350266942457603 525512494730316455 5881302580997523790 1574765567 3784125305237867347 819397570 8326286517935867839 16149105318148965958 16580883 6684847 18411699902469439513 11229983338076703492 15292499491369977714 339635406848 9870724570940976 100 101 102
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests/data
rapidsai_public_repos/cudf/python/cudf/cudf/tests/data/text/chess.pgn
[Event "F/S Return Match"] [Site "Belgrade, Serbia JUG"] [Date "1992.11.04"] [Round "29"] [White "Fischer, Robert J."] [Black "Spassky, Boris V."] [Result "1/2-1/2"] 1. e4 e5 2. Nf3 Nc6 3. Bb5 a6 {This opening is called the Ruy Lopez.} 4. Ba4 Nf6 5. O-O Be7 6. Re1 b5 7. Bb3 d6 8. c3 O-O 9. h3 Nb8 10. d4 Nbd7 11. c4 c6 12. cxb5 axb5 13. Nc3 Bb7 14. Bg5 b4 15. Nb1 h6 16. Bh4 c5 17. dxe5 Nxe4 18. Bxe7 Qxe7 19. exd6 Qf6 20. Nbd2 Nxd6 21. Nc4 Nxc4 22. Bxc4 Nb6 23. Ne5 Rae8 24. Bxf7+ Rxf7 25. Nxf7 Rxe1+ 26. Qxe1 Kxf7 27. Qe3 Qg5 28. Qxg5 hxg5 29. b3 Ke6 30. a3 Kd6 31. axb4 cxb4 32. Ra5 Nd5 33. f3 Bc8 34. Kf2 Bf5 35. Ra7 g6 36. Ra6+ Kc5 37. Ke1 Nf4 38. g3 Nxh3 39. Kd2 Kb5 40. Rd6 Kc5 41. Ra6 Nf2 42. g4 Bd3 43. Re6 1/2-1/2
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/structs/test_struct_methods.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/options/test_options.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/text/test_text_methods.py
# Copyright (c) 2019-2023, NVIDIA CORPORATION. import random import string import numpy as np import pytest import cudf from cudf.core.byte_pair_encoding import BytePairEncoder from cudf.core.tokenize_vocabulary import TokenizeVocabulary from cudf.testing._utils import assert_eq def test_tokenize(): strings = cudf.Series( [ "the quick fox jumped over the lazy dog", "the siamésé cat jumped under the sofa", None, "", ] ) expected_values = [ "the", "quick", "fox", "jumped", "over", "the", "lazy", "dog", "the", "siamésé", "cat", "jumped", "under", "the", "sofa", ] expected_index = strings.index.repeat(strings.str.token_count()) expected = cudf.Series(expected_values, index=expected_index) actual = strings.str.tokenize() assert type(expected) == type(actual) assert_eq(expected, actual) def test_tokenize_delimiter(): strings = cudf.Series( [ "the quick fox jumped over the lazy dog", "the siamésé cat jumped under the sofa", None, "", ] ) expected_values = [ "the quick f", "x jumped ", "ver the lazy d", "g", "the siamésé cat jumped under the s", "fa", ] expected_index = strings.index.repeat(strings.str.token_count("o")) expected = cudf.Series(expected_values, index=expected_index) actual = strings.str.tokenize(delimiter="o") assert type(expected) == type(actual) assert_eq(expected, actual) def test_detokenize(): strings = cudf.Series( [ "the", "quick", "fox", "jumped", "over", "the", "lazy", "dog", "the", "siamésé", "cat", "jumped", "under", "the", "sofa", ] ) indices = cudf.Series([0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3]) actual = strings.str.detokenize(indices) expected = cudf.Series( [ "the quick fox", "jumped over", "the lazy dog", "the siamésé cat jumped under the sofa", ] ) assert type(expected) == type(actual) assert_eq(expected, actual) indices = cudf.Series( [4, 0, 0, 0, 0, 4, 1, 1, 4, 2, 2, 2, 2, 4, 3], dtype=np.int8 ) actual = strings.str.detokenize(indices, "+") expected = cudf.Series( [ "quick+fox+jumped+over", "lazy+dog", "siamésé+cat+jumped+under", "sofa", "the+the+the+the", ] ) assert type(expected) == type(actual) assert_eq(expected, actual) @pytest.mark.parametrize( "delimiter, expected_token_counts", [ ("", [10, 9, 0, 0, 5]), ("o", [6, 3, 0, 0, 1]), (["a", "e", "i", "o", "u"], [13, 13, 0, 0, 6]), (["a", "e", "i", "o"], [12, 11, 0, 0, 6]), ], ) def test_token_count(delimiter, expected_token_counts): strings = cudf.Series( [ "the quick brown fox jumped over the lazy brown dog", "the sable siamésé cat jumped under the brown sofa", None, "", "test_str\x01test_str\x02test_str\x03test_str\x04test_str\x05", ] ) expected = cudf.Series(expected_token_counts) actual = strings.str.token_count(delimiter) assert type(expected) == type(actual) assert_eq(expected, actual, check_dtype=False) @pytest.mark.parametrize( "delimiter, input, default_id, results", [ ( "", "the quick brown fox jumps over the lazy brown dog", 99, [0, 1, 2, 3, 4, 5, 0, 99, 2, 6], ), ( " ", " the sable siamésé cat jumps under the brown sofa ", -1, [0, 7, 8, 9, 4, 10, 0, 2, 11], ), ( "_", "the_quick_brown_fox_jumped__over_the_lazy_brown_dog", -99, [0, 1, 2, 3, -99, 5, 0, -99, 2, 6], ), ], ) def test_tokenize_with_vocabulary(delimiter, input, default_id, results): vocabulary = cudf.Series( [ "the", "quick", "brown", "fox", "jumps", "over", "dog", "sable", "siamésé", "cat", "under", "sofa", ] ) tokenizer = TokenizeVocabulary(vocabulary) strings = cudf.Series([input, None, "", input]) expected = cudf.Series( [ cudf.Series(results, dtype=np.int32), None, cudf.Series([], dtype=np.int32), cudf.Series(results, dtype=np.int32), ] ) actual = tokenizer.tokenize(strings, delimiter, default_id) assert type(expected) == type(actual) assert_eq(expected, actual) def test_normalize_spaces(): strings = cudf.Series( [ " the\t quick fox jumped over the lazy dog", "the siamésé cat\f jumped\t\tunder the sofa ", None, "", ] ) expected = cudf.Series( [ "the quick fox jumped over the lazy dog", "the siamésé cat jumped under the sofa", None, "", ] ) actual = strings.str.normalize_spaces() assert type(expected) == type(actual) assert_eq(expected, actual) def test_normalize_characters(): strings = cudf.Series( ["乾 \t 乿", "ĂĆCĖÑTÜATE", "âscénd, Descend", "", None, "Stock^ $1"] ) expected = cudf.Series( [ " 乾 乿 ", "accentuate", "ascend , descend", "", None, "stock ^ $ 1", ] ) actual = strings.str.normalize_characters() assert type(expected) == type(actual) assert_eq(expected, actual) expected = cudf.Series( [ " 乾 乿 ", "ĂĆCĖÑTÜATE", "âscénd , Descend", "", None, "Stock ^ $ 1", ] ) actual = strings.str.normalize_characters(do_lower=False) assert type(expected) == type(actual) assert_eq(expected, actual) @pytest.mark.parametrize( "n, separator, expected_values", [ ( 2, "_", [ "this_is", "is_my", "my_favorite", "favorite_book", "book_on", "on_my", "my_bookshelf", ], ), ( 3, "-", [ "this-is-my", "is-my-favorite", "my-favorite-book", "favorite-book-on", "book-on-my", "on-my-bookshelf", ], ), ], ) def test_ngrams(n, separator, expected_values): strings = cudf.Series( ["this", "is", "my", "favorite", "book", "on", "my", "bookshelf"] ) expected = cudf.Series(expected_values) actual = strings.str.ngrams(n=n, separator=separator) assert type(expected) == type(actual) assert_eq(expected, actual) @pytest.mark.parametrize( "n, expected_values, expected_index, as_list", [ ( 2, [ "th", "hi", "is", "is", "my", "bo", "oo", "ok", "he", "er", "re", cudf.NA, ], [1, 1, 1, 2, 3, 4, 4, 4, 5, 5, 5, 6], False, ), ( 3, [ "thi", "his", cudf.NA, cudf.NA, "boo", "ook", "her", "ere", cudf.NA, ], [1, 1, 2, 3, 4, 4, 5, 5, 6], False, ), ( 3, [["thi", "his"], [], [], ["boo", "ook"], ["her", "ere"], []], [1, 2, 3, 4, 5, 6], True, ), ], ) def test_character_ngrams(n, expected_values, expected_index, as_list): strings = cudf.Series( ["this", "is", "my", "book", "here", ""], index=[1, 2, 3, 4, 5, 6] ) expected = cudf.Series(expected_values, index=expected_index) actual = strings.str.character_ngrams(n=n, as_list=as_list) assert type(expected) == type(actual) assert_eq(expected, actual) def test_hash_character_ngrams(): strings = cudf.Series(["abcdefg", "stuvwxyz"]) expected = cudf.Series( [ cudf.Series([3902511862, 570445242, 4202475763], dtype=np.uint32), cudf.Series( [556054766, 3166857694, 3760633458, 192452857], dtype=np.uint32 ), ] ) actual = strings.str.hash_character_ngrams(5, True) assert type(expected) == type(actual) assert_eq(expected, actual) actual = strings.str.hash_character_ngrams(5) expected = expected.explode() assert type(expected) == type(actual) assert_eq(expected, actual) @pytest.mark.parametrize( "n, separator, expected_values", [ ( 2, "_", [ "this_is", "is_my", "my_favorite", "book_on", "on_my", "my_bookshelf", ], ), ( 3, "-", ["this-is-my", "is-my-favorite", "book-on-my", "on-my-bookshelf"], ), ], ) def test_ngrams_tokenize(n, separator, expected_values): strings = cudf.Series(["this is my favorite", "book on my bookshelf"]) expected = cudf.Series(expected_values) actual = strings.str.ngrams_tokenize(n=n, separator=separator) assert type(expected) == type(actual) assert_eq(expected, actual) def test_character_tokenize_series(): sr = cudf.Series( [ "hello world", "sdf", None, ( "goodbye, one-two:three~four+five_six@sev" "en#eight^nine heŒŽ‘•™œ$µ¾ŤƠé DŽ" ), ] ) expected_values = [ "h", "e", "l", "l", "o", " ", "w", "o", "r", "l", "d", "s", "d", "f", "g", "o", "o", "d", "b", "y", "e", ",", " ", "o", "n", "e", "-", "t", "w", "o", ":", "t", "h", "r", "e", "e", "~", "f", "o", "u", "r", "+", "f", "i", "v", "e", "_", "s", "i", "x", "@", "s", "e", "v", "e", "n", "#", "e", "i", "g", "h", "t", "^", "n", "i", "n", "e", " ", "h", "e", "Œ", "Ž", "‘", "•", "™", "œ", "$", "µ", "¾", "Ť", "Ơ", "é", " ", "DŽ", ] expected_index = sr.index.repeat(sr.str.len().fillna(0)) expected = cudf.Series(expected_values, index=expected_index) actual = sr.str.character_tokenize() assert_eq(expected, actual) sr = cudf.Series([""]) expected = cudf.Series([], dtype="object") actual = sr.str.character_tokenize() assert_eq(expected, actual) sr = cudf.Series(["a"]) expected = cudf.Series(["a"]) actual = sr.str.character_tokenize() assert_eq(expected, actual) def test_character_tokenize_index(): sr = cudf.core.index.as_index( [ "hello world", "sdf", None, ( "goodbye, one-two:three~four+five_six@sev" "en#eight^nine heŒŽ‘•™œ$µ¾ŤƠé DŽ" ), ] ) expected = cudf.core.index.as_index( [ "h", "e", "l", "l", "o", " ", "w", "o", "r", "l", "d", "s", "d", "f", "g", "o", "o", "d", "b", "y", "e", ",", " ", "o", "n", "e", "-", "t", "w", "o", ":", "t", "h", "r", "e", "e", "~", "f", "o", "u", "r", "+", "f", "i", "v", "e", "_", "s", "i", "x", "@", "s", "e", "v", "e", "n", "#", "e", "i", "g", "h", "t", "^", "n", "i", "n", "e", " ", "h", "e", "Œ", "Ž", "‘", "•", "™", "œ", "$", "µ", "¾", "Ť", "Ơ", "é", " ", "DŽ", ] ) actual = sr.str.character_tokenize() assert_eq(expected, actual) sr = cudf.Index([""]) expected = cudf.Index([], dtype="object") actual = sr.str.character_tokenize() assert_eq(expected, actual) sr = cudf.core.index.as_index(["a"]) expected = cudf.core.index.as_index(["a"]) actual = sr.str.character_tokenize() assert_eq(expected, actual) def test_text_replace_tokens(): sr = cudf.Series(["this is me", "theme music", ""]) targets = cudf.Series(["is", "me"]) expected = cudf.Series(["this _ _", "theme music", ""]) actual = sr.str.replace_tokens(targets, "_") assert_eq(expected, actual) replacements = cudf.Series(["IS", "ME"]) expected = cudf.Series(["this IS ME", "theme music", ""]) actual = sr.str.replace_tokens(targets, replacements) assert_eq(expected, actual) sr = cudf.Series( [ "this is a small text ☕", "this \t\t is ; ; - + a looooooooooonnnnnnnggggggg text \n\t", "emptyme", ], ) targets = cudf.Series( ["a", "☕", "\t", "looooooooooonnnnnnnggggggg", "emptyme"] ) replacements = cudf.Series(["the", "🚒", "🚒🚒🚒🚒", "🔥🔥", ""]) expected = cudf.Series( [ "this is the small text 🚒", "this \t\t is ; ; - + the 🔥🔥 text \n\t", "", ] ) actual = sr.str.replace_tokens(targets, replacements) assert_eq(expected, actual) sr = cudf.Series( ["All-we-need;is;🔥", "\tall-we-need0is;🌊", "all;we:need+is;🌬"] ) targets = cudf.Series(["🌬", "🔥", "🌊"]) replacements = "🚰" expected = cudf.Series( ["All-we-need;is;🚰", "\tall-we-need0is;🚰", "all;we:need+is;🚰"] ) actual = sr.str.replace_tokens(targets, replacements, delimiter=";") assert_eq(expected, actual) assert_eq(sr, sr.str.replace_tokens(targets, replacements)) assert_eq(sr, sr.str.replace_tokens([""], [""])) def test_text_replace_tokens_error_cases(): sr = cudf.Series(["this is me", "theme music", ""]) with pytest.raises( TypeError, match="targets should be an array-like or a Series object, " "found <class 'str'>", ): sr.str.replace_tokens("me", ["a"]) with pytest.raises( ValueError, match="targets and replacements should be same size" " sequences unless replacements is a string.", ): sr.str.replace_tokens(["a"], ["me", "ki"]) with pytest.raises( TypeError, match="replacements should be an str, array-like or Series object," " found <class 'set'>", ): sr.str.replace_tokens(["a"], {"s"}) with pytest.raises( TypeError, match="Type of delimiter should be a string, found <class 'list'>", ): sr.str.replace_tokens(["a"], ["s"], delimiter=["a", "b"]) def test_text_filter_tokens(): sr = cudf.Series(["the quick brown fox jumped", "over the lazy dog", ""]) expected = cudf.Series([" quick brown jumped", " ", ""]) actual = sr.str.filter_tokens(5) assert_eq(expected, actual) expected = cudf.Series(["🔥 quick brown 🔥 jumped", "🔥 🔥 🔥 🔥", ""]) actual = sr.str.filter_tokens(5, "🔥") assert_eq(expected, actual) sr = cudf.Series( ["All-we-need;is;🔥", "\tall-we-need0is;🌊", "all;we:need+is;🌬"] ) expected = cudf.Series( ["All-we-need;is;--", "\tall-we-need0is;--", "all;we:need+is;--"] ) actual = sr.str.filter_tokens(2, "--", ";") assert_eq(expected, actual) assert_eq(sr, sr.str.filter_tokens(1)) def test_text_filter_tokens_error_cases(): sr = cudf.Series(["abc", "def", ""]) with pytest.raises( TypeError, match="Type of replacement should be a string, found <class 'list'>", ): sr.str.filter_tokens(3, replacement=["a", "b"]) with pytest.raises( TypeError, match="Type of delimiter should be a string, found <class 'list'>", ): sr.str.filter_tokens(3, delimiter=["a", "b"]) def test_edit_distance(): sr = cudf.Series(["kitten", "saturday", "address", "book"]) tg = cudf.Series(["sitting", "sunday", "addressee", "back"]) expected = cudf.Series([3, 3, 2, 2], dtype=np.int32) actual = sr.str.edit_distance(tg) assert_eq(expected, actual) expected = cudf.Series([0, 7, 6, 6], dtype=np.int32) actual = sr.str.edit_distance("kitten") assert_eq(expected, actual) def test_edit_distance_matrix(): # normal sr = cudf.Series(["rounded", "bounded", "bounce", "trounce", "ounce"]) expected = cudf.Series( [ [0, 1, 3, 3, 3], [1, 0, 2, 4, 3], [3, 2, 0, 2, 1], [3, 4, 2, 0, 2], [3, 3, 1, 2, 0], ] ) got = sr.str.edit_distance_matrix() assert_eq(expected, got, check_dtype=False) # 1-row series sr2 = cudf.Series(["x"]) with pytest.raises(ValueError, match="Require size >= 2"): sr2.str.edit_distance_matrix() # null rows sr3 = cudf.Series(["rounded", None, "bounce", "trounce", "ounce"]) with pytest.raises(ValueError, match="Cannot compute"): sr3.str.edit_distance_matrix() def test_porter_stemmer_measure(): strings = cudf.Series( [ "tr", "ee", "tree", "y", "by", "trouble", "oats", "trees", "ivy", "troubles", "private", "oaten", "orrery", None, "", ] ) expected = cudf.Series( [0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, None, 0], dtype=np.int32 ) actual = strings.str.porter_stemmer_measure() assert type(expected) == type(actual) assert_eq(expected, actual) def test_is_vowel_consonant(): strings = cudf.Series( ["tr", "ee", "tree", "y", "by", "oats", "ivy", "orrery", None, ""] ) expected = cudf.Series( [False, False, True, False, False, False, True, False, None, False] ) actual = strings.str.is_vowel(2) assert type(expected) == type(actual) assert_eq(expected, actual) expected = cudf.Series( [True, False, True, False, False, False, True, True, None, False] ) actual = strings.str.is_consonant(1) assert type(expected) == type(actual) assert_eq(expected, actual) indices = cudf.Series([2, 1, 0, 0, 1, 2, 0, 3, 0, 0]) expected = cudf.Series( [False, True, False, False, True, False, True, True, None, False] ) actual = strings.str.is_vowel(indices) assert type(expected) == type(actual) assert_eq(expected, actual) expected = cudf.Series( [False, False, True, True, False, True, False, False, None, False] ) actual = strings.str.is_consonant(indices) assert type(expected) == type(actual) assert_eq(expected, actual) def test_minhash(): strings = cudf.Series(["this is my", "favorite book", None, ""]) expected = cudf.Series( [ cudf.Series([21141582], dtype=np.uint32), cudf.Series([962346254], dtype=np.uint32), None, cudf.Series([0], dtype=np.uint32), ] ) actual = strings.str.minhash() assert_eq(expected, actual) seeds = cudf.Series([0, 1, 2], dtype=np.uint32) expected = cudf.Series( [ cudf.Series([1305480167, 668155704, 34311509], dtype=np.uint32), cudf.Series([32665384, 3470118, 363147162], dtype=np.uint32), None, cudf.Series([0, 0, 0], dtype=np.uint32), ] ) actual = strings.str.minhash(seeds=seeds, width=5) assert_eq(expected, actual) expected = cudf.Series( [ cudf.Series([3232308021562742685], dtype=np.uint64), cudf.Series([23008204270530356], dtype=np.uint64), None, cudf.Series([0], dtype=np.uint64), ] ) actual = strings.str.minhash64() assert_eq(expected, actual) seeds = cudf.Series([0, 1, 2], dtype=np.uint64) expected = cudf.Series( [ cudf.Series( [7082801294247314046, 185949556058924788, 167570629329462454], dtype=np.uint64, ), cudf.Series( [382665377781028452, 86243762733551437, 7688750597953083512], dtype=np.uint64, ), None, cudf.Series([0, 0, 0], dtype=np.uint64), ] ) actual = strings.str.minhash64(seeds=seeds, width=5) assert_eq(expected, actual) # test wrong seed types with pytest.raises(ValueError): strings.str.minhash(seeds="a") with pytest.raises(ValueError): seeds = cudf.Series([0, 1, 2], dtype=np.int32) strings.str.minhash(seeds=seeds) with pytest.raises(ValueError): seeds = cudf.Series([0, 1, 2], dtype=np.uint32) strings.str.minhash64(seeds=seeds) def test_jaccard_index(): str1 = cudf.Series(["the brown dog", "jumped about"]) str2 = cudf.Series(["the black cat", "jumped around"]) expected = cudf.Series([0.058824, 0.307692], dtype=np.float32) actual = str1.str.jaccard_index(str2, 5) assert_eq(expected, actual) actual = str2.str.jaccard_index(str1, 5) assert_eq(expected, actual) with pytest.raises(ValueError): str1.str.jaccard_index(str2, 1) with pytest.raises(ValueError): str3 = cudf.Series(["not enough rows"]) str1.str.jaccard_index(str3, 5) def _make_list_of_strings_of_random_length( num_strings, min_length, max_length ): return [ "".join( random.choice(string.ascii_lowercase) for _ in range(random.randint(min_length, max_length)) ) for _ in range(num_strings) ] def test_jaccard_index_random_strings(): # Seed the rng before random string generation. random.seed(42) num_strings = 100 jaccard_width = 5 common_strings = _make_list_of_strings_of_random_length( num_strings, jaccard_width, 50 ) uncommon_strings1 = _make_list_of_strings_of_random_length( num_strings, jaccard_width, 10 ) uncommon_strings2 = _make_list_of_strings_of_random_length( num_strings, jaccard_width, 20 ) str1 = cudf.Series(uncommon_strings1).str.cat(cudf.Series(common_strings)) str2 = cudf.Series(uncommon_strings2).str.cat(cudf.Series(common_strings)) # adopted from https://github.com/rapidsai/rapids-deduplication/issues/36 da = str1.str.character_ngrams(jaccard_width, True) db = str2.str.character_ngrams(jaccard_width, True) da = da.list.unique() db = db.list.unique() da = da.explode() db = db.explode() da = da.to_frame() db = db.to_frame() da = da.reset_index() db = db.reset_index() da = da.rename(columns={0: "token"}) db = db.rename(columns={0: "token"}) db["match"] = 1 inter = da.merge(db, on=["index", "token"], how="left") inter = inter.groupby("index")["match"].sum() union = da.merge(db, on=["index", "token"], how="outer") union = union.groupby("index").size() res = inter / union res.fillna(0, inplace=True) res = res.sort_index() res = res.values.astype("float32") expected = cudf.Series(res) actual = str1.str.jaccard_index(str2, jaccard_width) assert_eq(expected, actual) @pytest.mark.parametrize( "separator, input, results", [ (" ", "thetestsentence", "the test sent ence"), ("_", "sentenceistest", "sent_ence_is_test"), ("$", "istestsentencehere", "is$test$sent$ence$he$r$e"), ], ) def test_byte_pair_encoding(separator, input, results): pairs_table = cudf.Series( [ "t he", "h e", "e n", "i t", "i s", "e s", "en t", "c e", "es t", "en ce", "t h", "h i", "th is", "t est", "s i", "s ent", ] ) encoder = BytePairEncoder(pairs_table) strings = cudf.Series([input, None, "", input]) expected = cudf.Series([results, None, "", results]) actual = encoder(strings, separator) assert type(expected) == type(actual) assert_eq(expected, actual)
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/text/test_subword_tokenizer.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. import os import cupy import numpy as np import pytest import cudf from cudf.core.subword_tokenizer import SubwordTokenizer from cudf.testing._utils import assert_eq @pytest.fixture(scope="module") def datadir(datadir): return os.path.join(datadir, "subword_tokenizer_data") def assert_equal_tokenization_outputs(hf_output, cudf_output): assert ( np.sum(hf_output["input_ids"] != cudf_output["input_ids"].get()) == 0 ) assert ( np.sum( hf_output["attention_mask"] != cudf_output["attention_mask"].get() ) == 0 ) @pytest.mark.parametrize("seq_len", [32, 64]) @pytest.mark.parametrize("stride", [0, 15, 30]) @pytest.mark.parametrize("add_special_tokens", [True, False]) @pytest.mark.parametrize("do_lower_case", [True, False]) def test_subword_tokenize( seq_len, stride, add_special_tokens, do_lower_case, datadir ): with open( os.path.join(datadir, "test_sentences.txt"), encoding="utf-8" ) as file: input_sentence_ls = [line.strip() for line in file] vocab_dir = os.path.join(datadir, "bert_base_cased_sampled") transformers = pytest.importorskip("transformers") hf_tokenizer = transformers.BertTokenizer.from_pretrained( vocab_dir, do_lower_case=do_lower_case ) hf_output = hf_tokenizer( input_sentence_ls, max_length=seq_len, stride=stride, padding="max_length", return_tensors="np", truncation=True, add_special_tokens=add_special_tokens, ) vocab_hash = os.path.join(vocab_dir, "vocab-hash.txt") str_series = cudf.Series(input_sentence_ls) cudf_tokenizer = SubwordTokenizer(vocab_hash, do_lower_case=do_lower_case) cudf_output = cudf_tokenizer( str_series, max_length=seq_len, max_num_rows=len(str_series), stride=stride, padding="max_length", return_tensors="cp", truncation=True, add_special_tokens=add_special_tokens, ) assert_equal_tokenization_outputs(hf_output, cudf_output) def test_subword_tokenize_with_truncation(datadir): vocab_dir = os.path.join(datadir, "bert_base_cased_sampled") vocab_hash = os.path.join(vocab_dir, "vocab-hash.txt") str_series = cudf.Series(["Test error"]) cudf_tokenizer = SubwordTokenizer(vocab_hash) error_msg = ( "Adding special tokens is not supported with truncation = False. " "Custom Cupy kernel can potentially " "be used to add it. For reference " "see: _bert_add_special_tokens" ) with pytest.raises(NotImplementedError, match=error_msg): cudf_tokenizer( str_series, max_length=64, max_num_rows=len(str_series), truncation=False, add_special_tokens=True, ) def test_text_subword_tokenize(tmpdir): sr = cudf.Series( [ "This is a test", "A test this is", "Is test a this", "Test test", "this This", ] ) hash_file = tmpdir.mkdir("nvtext").join("tmp_hashed_vocab.txt") content = "1\n0\n23\n" coefficients = [65559] * 23 for c in coefficients: content = content + str(c) + " 0\n" # based on values from the bert_hash_table.txt file for the # test words used here: 'this' 'is' 'a' test' table = [0] * 23 table[0] = 3015668 table[1] = 6205475701751155871 table[5] = 6358029 table[16] = 451412625363 table[20] = 6206321707968235495 content = content + "23\n" for v in table: content = content + str(v) + "\n" content = content + "100\n101\n102\n\n" hash_file.write(content) cudf_tokenizer = SubwordTokenizer(hash_file) token_d = cudf_tokenizer( sr, 8, 8, add_special_tokens=False, truncation=True ) tokens, masks, metadata = ( token_d["input_ids"], token_d["attention_mask"], token_d["metadata"], ) expected_tokens = cupy.asarray( [ 2023, 2003, 1037, 3231, 0, 0, 0, 0, 1037, 3231, 2023, 2003, 0, 0, 0, 0, 2003, 3231, 1037, 2023, 0, 0, 0, 0, 3231, 3231, 0, 0, 0, 0, 0, 0, 2023, 2023, 0, 0, 0, 0, 0, 0, ], dtype=np.uint32, ) expected_tokens = expected_tokens.reshape(-1, 8) assert_eq(expected_tokens, tokens) expected_masks = cupy.asarray( [ 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, ], dtype=np.uint32, ) expected_masks = expected_masks.reshape(-1, 8) assert_eq(expected_masks, masks) expected_metadata = cupy.asarray( [0, 0, 3, 1, 0, 3, 2, 0, 3, 3, 0, 1, 4, 0, 1], dtype=np.uint32 ) expected_metadata = expected_metadata.reshape(-1, 3) assert_eq(expected_metadata, metadata)
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/input_output/test_parquet.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/input_output/test_avro.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/input_output/test_hdf5.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/input_output/test_csv.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/input_output/test_orc.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/input_output/test_text.py
# Copyright (c) 2019-2023, NVIDIA CORPORATION. from io import StringIO import pytest import cudf from cudf.testing._utils import assert_eq @pytest.fixture(scope="module") def datadir(datadir): return datadir / "text" def test_read_text(datadir): chess_file = str(datadir) + "/chess.pgn" delimiter = "1." with open(chess_file) as f: content = f.read().split(delimiter) # Since Python split removes the delimiter and read_text does # not we need to add it back to the 'content' expected = cudf.Series( [ c + delimiter if i < (len(content) - 1) else c for i, c in enumerate(content) ] ) actual = cudf.read_text(chess_file, delimiter=delimiter) assert_eq(expected, actual) def test_read_text_byte_range(datadir): chess_file = str(datadir) + "/chess.pgn" delimiter = "1." with open(chess_file, "r") as f: data = f.read() content = data.split(delimiter) # Since Python split removes the delimiter and read_text does # not we need to add it back to the 'content' expected = cudf.Series( [ c + delimiter if i < (len(content) - 1) else c for i, c in enumerate(content) ] ) byte_range_size = (len(data) // 3) + (len(data) % 3 != 0) actual_0 = cudf.read_text( chess_file, delimiter=delimiter, byte_range=[byte_range_size * 0, byte_range_size], ) actual_1 = cudf.read_text( chess_file, delimiter=delimiter, byte_range=[byte_range_size * 1, byte_range_size], ) actual_2 = cudf.read_text( chess_file, delimiter=delimiter, byte_range=[byte_range_size * 2, byte_range_size], ) actual = cudf.concat([actual_0, actual_1, actual_2], ignore_index=True) assert_eq(expected, actual) def test_read_text_byte_range_large(tmpdir): content = "".join(("\n" if x % 5 == 4 else "x") for x in range(0, 3000)) delimiter = "\n" temp_file = str(tmpdir) + "/temp.txt" with open(temp_file, "w") as f: f.write(content) expected = cudf.Series(["xxxx\n" for i in range(0, 200)]) actual = cudf.read_text( temp_file, delimiter=delimiter, byte_range=[1000, 1000] ) assert_eq(expected, actual) def test_read_text_in_memory(datadir): # Since Python split removes the delimiter and read_text does # not we need to add it back to the 'content' expected = cudf.Series(["x::", "y::", "z"]) actual = cudf.read_text(StringIO("x::y::z"), delimiter="::") assert_eq(expected, actual) def test_read_text_in_memory_strip_delimiter(datadir): # Since Python split removes the delimiter and read_text does # not we need to add it back to the 'content' expected = cudf.Series(["x", "y", "z"]) actual = cudf.read_text( StringIO("x::y::z"), delimiter="::", strip_delimiters=True ) assert_eq(expected, actual) def test_read_text_bgzip(datadir): chess_file_compressed = str(datadir) + "/chess.pgn.gz" chess_file = str(datadir) + "/chess.pgn" delimiter = "1." with open(chess_file) as f: content = f.read().split(delimiter) # Since Python split removes the delimiter and read_text does # not we need to add it back to the 'content' expected = cudf.Series( [ c + delimiter if i < (len(content) - 1) else c for i, c in enumerate(content) ] ) actual = cudf.read_text( chess_file_compressed, compression="bgzip", delimiter=delimiter ) assert_eq(expected, actual) def test_read_text_bgzip_offsets(datadir): chess_file_compressed = str(datadir) + "/chess.pgn.gz" chess_file = str(datadir) + "/chess.pgn" delimiter = "1." with open(chess_file) as f: content = f.read()[29:695].split(delimiter) # Since Python split removes the delimiter and read_text does # not we need to add it back to the 'content' expected = cudf.Series( [ c + delimiter if i < (len(content) - 1) else c for i, c in enumerate(content) ] ) actual = cudf.read_text( chess_file_compressed, compression="bgzip", compression_offsets=[58 * 2**16 + 2, 781 * 2**16 + 7], delimiter=delimiter, ) assert_eq(expected, actual)
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/input_output/test_feather.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf/tests
rapidsai_public_repos/cudf/python/cudf/cudf/tests/input_output/test_json.py
# Copyright (c) 2023, NVIDIA CORPORATION.
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/profiler.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 import inspect import operator import pickle import sys import time from collections import defaultdict from typing import Union from rich.console import Console from rich.syntax import Syntax from rich.table import Table from .fast_slow_proxy import ( _FinalProxy, _FunctionProxy, _IntermediateProxy, _MethodProxy, ) # This text is used in contexts where the profiler is injected into the # original code. The profiler is injected at the top of the cell, so the line # numbers in the profiler results are offset by 2. _profile_injection_text = """\ from cudf.pandas import Profiler with Profiler() as profiler: {original_lines} # Patch the results to shift the line numbers back to the original before the # profiler injection. new_results = {{}} for (lineno, currfile, line), v in profiler._results.items(): new_results[(lineno - 2, currfile, line)] = v profiler._results = new_results profiler.print_per_line_stats() {function_profile_printer} """ _cpu_issue_text = """\ Not all pandas operations ran on the GPU. \ The following functions required CPU fallback: {cpu_functions_used} """ def format_cpu_functions_used(cpu_funcs): output_str = "" for each in cpu_funcs: output_str += f"- {each}\n" # remove final newline character output_str = output_str[:-1] return output_str def lines_with_profiling(lines, print_function_profile=False): """Inject profiling code into the given lines of code.""" cleaned_lines = "\n".join( [(" " * 4) + line.replace("\t", " " * 4) for line in lines] ) return _profile_injection_text.format( original_lines=cleaned_lines, function_profile_printer="profiler.print_per_function_stats()" if print_function_profile else "", ) class Profiler: _IGNORE_LIST = ["Profiler()", "settrace(None)"] def __init__(self): self._results = {} # Map func-name to list of calls (was_fast, time) self._per_func_results = defaultdict(lambda: defaultdict(list)) # Current fast_slow_function_call stack frame recording name # and start time self._call_stack = [] self._currkey = None self._timer = {} self._currfile = None self.start_time = None self.end_time = None def __enter__(self, *args, **kwargs): self.start_time = time.perf_counter() self._oldtrace = sys.gettrace() # Setting the global trace function with sys.settrace does not affect # the current call stack, so in addition to this we must also set the # current frame's f_trace attribute as done below. sys.settrace(self._tracefunc) # Following excerpt from: # https://docs.python.org/3/library/sys.html#sys.settrace # For more fine-grained usage, it is possible # to set a trace function by assigning # frame.f_trace = tracefunc explicitly, rather than # relying on it being set indirectly via the return # value from an already installed trace function # Hence we need to perform `f_trace = self._tracefunc` # we need to `f_back` because current frame will be # of this file. frame = inspect.currentframe().f_back self._currfile = frame.f_code.co_filename self._f_back_oldtrace = frame.f_trace frame.f_trace = self._tracefunc return self def __exit__(self, *args, **kwargs): sys.settrace(self._oldtrace) inspect.currentframe().f_back.f_trace = self._f_back_oldtrace self.end_time = time.perf_counter() @staticmethod def get_namespaced_function_name( func_obj: Union[ _FunctionProxy, _MethodProxy, type[_FinalProxy], type[_IntermediateProxy], ] ): if isinstance(func_obj, _MethodProxy): # Extract classname from method object type_name = type(func_obj._fsproxy_wrapped.__self__).__name__ # Explicitly ask for __name__ on _fsproxy_wrapped to avoid # getting a private attribute and forcing a slow-path copy func_name = func_obj._fsproxy_wrapped.__name__ return ".".join([type_name, func_name]) elif isinstance(func_obj, _FunctionProxy) or issubclass( func_obj, (_FinalProxy, _IntermediateProxy) ): return func_obj.__name__ else: raise NotImplementedError( f"Don't know how to get namespaced name for {func_obj}" ) def _tracefunc(self, frame, event, arg): if event == "line" and frame.f_code.co_filename == self._currfile: key = "".join(inspect.stack()[1].code_context) if not any( ignore_word in key for ignore_word in Profiler._IGNORE_LIST ): self._currkey = (frame.f_lineno, self._currfile, key) self._results.setdefault(self._currkey, {}) self._timer[self._currkey] = time.perf_counter() elif ( event == "call" and frame.f_code.co_name == "_fast_slow_function_call" ): if self._currkey is not None: self._timer[self._currkey] = time.perf_counter() # Store per-function information for free functions and methods frame_locals = inspect.getargvalues(frame).locals if ( isinstance( func_obj := frame_locals["args"][0], (_MethodProxy, _FunctionProxy), ) or isinstance(func_obj, type) and issubclass(func_obj, (_FinalProxy, _IntermediateProxy)) ): func_name = self.get_namespaced_function_name(func_obj) self._call_stack.append((func_name, time.perf_counter())) elif ( event == "return" and frame.f_code.co_name == "_fast_slow_function_call" ): if self._currkey is not None and arg is not None: if arg[1]: # fast run_time = time.perf_counter() - self._timer[self._currkey] self._results[self._currkey][ "gpu_time" ] = run_time + self._results[self._currkey].get( "gpu_time", 0 ) else: run_time = time.perf_counter() - self._timer[self._currkey] self._results[self._currkey][ "cpu_time" ] = run_time + self._results[self._currkey].get( "cpu_time", 0 ) frame_locals = inspect.getargvalues(frame).locals if ( isinstance( func_obj := frame_locals["args"][0], (_MethodProxy, _FunctionProxy), ) or isinstance(func_obj, type) and issubclass(func_obj, (_FinalProxy, _IntermediateProxy)) ): func_name, start = self._call_stack.pop() if arg is not None: key = "gpu" if arg[1] else "cpu" self._per_func_results[func_name][key].append( time.perf_counter() - start ) return self._tracefunc @property def per_line_stats(self): list_data = [] for key, val in self._results.items(): cpu_time = val.get("cpu_time", 0) gpu_time = val.get("gpu_time", 0) line_no, _, line = key list_data.append([line_no, line, gpu_time, cpu_time]) return sorted(list_data, key=operator.itemgetter(0)) @property def per_function_stats(self): return self._per_func_results def print_per_line_stats(self): table = Table() table.add_column("Line no.") table.add_column("Line") table.add_column("GPU TIME(s)") table.add_column("CPU TIME(s)") for line_no, line, gpu_time, cpu_time in self.per_line_stats: table.add_row( str(line_no), Syntax(str(line), "python"), "" if gpu_time == 0 else "{:.9f}".format(gpu_time), "" if cpu_time == 0 else "{:.9f}".format(cpu_time), ) time_elapsed = self.end_time - self.start_time table.title = f"""\n\ Total time elapsed: {time_elapsed:.3f} seconds Stats """ console = Console() console.print(table) def print_per_function_stats(self): cpu_funcs = [] n_gpu_func_calls = 0 n_cpu_func_calls = 0 total_gpu_time = 0 total_cpu_time = 0 table = Table() for col in ( "Function", "GPU ncalls", "GPU cumtime", "GPU percall", "CPU ncalls", "CPU cumtime", "CPU percall", ): table.add_column(col) for func_name, func_data in self.per_function_stats.items(): gpu_times = func_data["gpu"] cpu_times = func_data["cpu"] table.add_row( func_name, f"{len(gpu_times)}", f"{sum(gpu_times):.3f}", f"{sum(gpu_times) / max(len(gpu_times), 1):.3f}", f"{len(cpu_times)}", f"{sum(cpu_times):.3f}", f"{sum(cpu_times) / max(len(cpu_times), 1):.3f}", ) total_gpu_time += sum(gpu_times) total_cpu_time += sum(cpu_times) n_gpu_func_calls += len(gpu_times) n_cpu_func_calls += len(cpu_times) if cpu_times and func_name not in cpu_funcs: cpu_funcs.append(func_name) time_elapsed = self.end_time - self.start_time table.title = f"""\n\ Total time elapsed: {time_elapsed:.3f} seconds {n_gpu_func_calls} GPU function calls in {total_gpu_time:.3f} seconds {n_cpu_func_calls} CPU function calls in {total_cpu_time:.3f} seconds Stats """ console = Console() console.print(table) if cpu_funcs: call_to_action = ( "To request GPU support for any of these functions, " "please file a Github issue here: " "[link=https://github.com/rapidsai/cudf/issues/new?assignees" "=&labels=%3F+-+Needs+Triage%2C+feature+request&projects=" "&template=pandas_function_request.md&title=%5BFEA%5D]" "https://github.com/rapidsai/cudf/issues/new/choose" "[/link]." ) console.print( _cpu_issue_text.format( cpu_functions_used=format_cpu_functions_used(cpu_funcs) ) ) console.print(call_to_action) def dump_stats(self, file_name): with open(file_name, "wb") as f: pickle.dump(self, f) def load_stats(file_name): with open(file_name, "rb") as f: return pickle.load(f)
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/magics.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 try: from IPython.core.magic import Magics, cell_magic, magics_class from .profiler import Profiler, lines_with_profiling @magics_class class CudfPandasMagics(Magics): @cell_magic("cudf.pandas.profile") def profile(self, _, cell): with Profiler() as profiler: get_ipython().run_cell(cell) # noqa: F821 profiler.print_per_function_stats() @cell_magic("cudf.pandas.line_profile") def line_profile(self, _, cell): new_cell = lines_with_profiling(cell.split("\n")) get_ipython().run_cell(new_cell) # noqa: F821 def load_ipython_extension(ip): from . import install install() ip.register_magics(CudfPandasMagics) except ImportError: def load_ipython_extension(ip): pass
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/annotation.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 from __future__ import annotations try: import nvtx except ImportError: class nvtx: # type: ignore """Noop-stub with the same API as nvtx.""" push_range = lambda *args, **kwargs: None # noqa: E731 pop_range = lambda *args, **kwargs: None # noqa: E731 class annotate: """No-op annotation/context-manager""" def __init__( self, message: str | None = None, color: str | None = None, domain: str | None = None, category: str | int | None = None, ): pass def __enter__(self): return self def __exit__(self, *exc): return False __call__ = lambda self, fn: fn # noqa: E731
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/module_accelerator.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 from __future__ import annotations import contextlib import functools import importlib import importlib.abc import importlib.machinery import os import pathlib import sys import threading import warnings from abc import abstractmethod from importlib._bootstrap import _ImportLockContext as ImportLock from types import ModuleType from typing import Any, ContextManager, Dict, List, NamedTuple from typing_extensions import Self from .fast_slow_proxy import ( _FunctionProxy, _is_function_or_method, _Unusable, get_final_type_map, get_intermediate_type_map, get_registered_functions, ) def rename_root_module(module: str, root: str, new_root: str) -> str: """ Rename a module to a new root. Parameters ---------- module Module to rename root Original root new_root New root Returns ------- New module name (if it matches root) otherwise original name. """ if module.startswith(root): return new_root + module[len(root) :] else: return module class DeducedMode(NamedTuple): use_fast_lib: bool slow_lib: str fast_lib: str def deduce_cudf_pandas_mode(slow_lib: str, fast_lib: str) -> DeducedMode: """ Determine if cudf.pandas should use the requested fast library. Parameters ---------- slow_lib Name of the slow library fast_lib Name of the fast library Returns ------- Whether the fast library is being used, and the resulting names of the "slow" and "fast" libraries. """ if "CUDF_PANDAS_FALLBACK_MODE" not in os.environ: try: importlib.import_module(fast_lib) return DeducedMode( use_fast_lib=True, slow_lib=slow_lib, fast_lib=fast_lib ) except Exception as e: warnings.warn( f"Exception encountered importing {fast_lib}: {e}." f"Falling back to only using {slow_lib}." ) return DeducedMode( use_fast_lib=False, slow_lib=slow_lib, fast_lib=slow_lib ) class ModuleAcceleratorBase( importlib.abc.MetaPathFinder, importlib.abc.Loader ): _instance: ModuleAcceleratorBase | None = None mod_name: str fast_lib: str slow_lib: str # When walking the module tree and wrapping module attributes, # we often will come across the same object more than once. We # don't want to create separate wrappers for each # instance, so we keep a registry of all module attributes # that we can look up to see if we have already wrapped an # attribute before _wrapped_objs: dict[Any, Any] def __new__( cls, mod_name: str, fast_lib: str, slow_lib: str, ): """Build a custom module finder that will provide wrapped modules on demand. Parameters ---------- mod_name Import name to deliver modules under. fast_lib Name of package that provides "fast" implementation slow_lib Name of package that provides "slow" fallback implementation """ if ModuleAcceleratorBase._instance is not None: raise RuntimeError( "Only one instance of ModuleAcceleratorBase allowed" ) self = object.__new__(cls) self.mod_name = mod_name self.fast_lib = fast_lib self.slow_lib = slow_lib # When walking the module tree and wrapping module attributes, # we often will come across the same object more than once. We # don't want to create separate wrappers for each # instance, so we keep a registry of all module attributes # that we can look up to see if we have already wrapped an # attribute before self._wrapped_objs = {} self._wrapped_objs.update(get_final_type_map()) self._wrapped_objs.update(get_intermediate_type_map()) self._wrapped_objs.update(get_registered_functions()) ModuleAcceleratorBase._instance = self return self def __repr__(self) -> str: return ( f"{self.__class__.__name__}" f"(fast={self.fast_lib}, slow={self.slow_lib})" ) def find_spec( self, fullname: str, path, target=None ) -> importlib.machinery.ModuleSpec | None: """Provide ourselves as a module loader. Parameters ---------- fullname Name of module to be imported, if it starts with the name that we are using to wrap, we will deliver ourselves as a loader, otherwise defer to the standard Python loaders. Returns ------- A ModuleSpec with ourself as loader if we're interposing, otherwise None to pass off to the next loader. """ if fullname == self.mod_name or fullname.startswith( f"{self.mod_name}." ): return importlib.machinery.ModuleSpec( name=fullname, loader=self, # Note, this influences the repr of the module, so we may want # to change it if we ever want to control that. origin=None, loader_state=None, is_package=True, ) return None def create_module(self, spec) -> ModuleType | None: return None def exec_module(self, mod: ModuleType): # importlib calls this function with the global import lock held. self._populate_module(mod) @abstractmethod def disabled(self) -> ContextManager: pass def _postprocess_module( self, mod: ModuleType, slow_mod: ModuleType, fast_mod: ModuleType | None, ) -> ModuleType: """Ensure that the wrapped module satisfies required invariants. Parameters ---------- mod Wrapped module to postprocess slow_mod Slow version that we are mimicking fast_mod Fast module that provides accelerated implementations (may be None Returns ------- Checked and validated module Notes ----- The implementation of fast-slow proxies imposes certain requirements on the wrapped modules that it delivers. This function encodes those requirements and raises if the module does not satisfy them. This post-processing routine should be kept up to date with any requirements encoded by fast_slow_proxy.py """ mod.__dict__["_fsproxy_slow"] = slow_mod if fast_mod is not None: mod.__dict__["_fsproxy_fast"] = fast_mod return mod @abstractmethod def _populate_module(self, mod: ModuleType) -> ModuleType: """Populate given module with appropriate attributes. This traverses the attributes of the slow module corresponding to mod and mirrors those in the provided module in a wrapped mode that attempts to execute them using the fast module first. Parameters ---------- mod Module to populate Returns ------- ModuleType Populated module Notes ----- In addition to the attributes of the slow module, the returned module must have the following attributes: - '_fsproxy_slow': the corresponding slow module - '_fsproxy_fast': the corresponding fast module This is necessary for correct rewriting of UDFs when calling to the respective fast/slow libraries. The necessary invariants are checked and applied in :meth:`_postprocess_module`. """ pass def _wrap_attribute( self, slow_attr: Any, fast_attr: Any | _Unusable, name: str, ) -> Any: """ Return the wrapped version of an attribute. Parameters ---------- slow_attr : Any The attribute from the slow module fast_mod : Any (or None) The same attribute from the fast module, if it exists name Name of attribute Returns ------- Wrapped attribute """ wrapped_attr: Any # TODO: what else should we make sure not to get from the fast # library? if name in {"__all__", "__dir__", "__file__", "__doc__"}: wrapped_attr = slow_attr elif self.fast_lib == self.slow_lib: # no need to create a fast-slow wrapper wrapped_attr = slow_attr if any( [ slow_attr in get_registered_functions(), slow_attr in get_final_type_map(), slow_attr in get_intermediate_type_map(), ] ): # attribute already registered in self._wrapped_objs return self._wrapped_objs[slow_attr] if isinstance(slow_attr, ModuleType) and slow_attr.__name__.startswith( self.slow_lib ): # attribute is a submodule of the slow library, # replace the string "{slow_lib}" in the submodule's # name with "{self.mod_name}" # now, attempt to import the wrapped module, which will # recursively wrap all of its attributes: return importlib.import_module( rename_root_module( slow_attr.__name__, self.slow_lib, self.mod_name ) ) if slow_attr in self._wrapped_objs: if type(fast_attr) is _Unusable: # we don't want to replace a wrapped object that # has a usable fast object with a wrapped object # with a an unusable fast object. return self._wrapped_objs[slow_attr] if _is_function_or_method(slow_attr): wrapped_attr = _FunctionProxy(fast_attr, slow_attr) else: wrapped_attr = slow_attr return wrapped_attr @classmethod @abstractmethod def install( cls, destination_module: str, fast_lib: str, slow_lib: str ) -> Self | None: """ Install the loader in sys.meta_path. Parameters ---------- destination_module Name under which the importer will kick in fast_lib Name of fast module slow_lib Name of slow module we are trying to mimic Returns ------- Instance of the class (or None if the loader was not installed) Notes ----- This function is idempotent. If called with the same arguments a second time, it does not create a new loader, but instead returns the existing loader from ``sys.meta_path``. """ pass class ModuleAccelerator(ModuleAcceleratorBase): """ A finder and loader that produces "accelerated" modules. When someone attempts to import the specified slow library with this finder enabled, we intercept the import and deliver an equivalent, accelerated, version of the module. This provides attributes and modules that check if they are being used from "within" the slow (or fast) library themselves. If this is the case, the implementation is forwarded to the actual slow library implementation, otherwise a proxy implementation is used (which attempts to call the fast version first). """ _denylist: List[str] _use_fast_lib: bool _use_fast_lib_lock: threading.RLock _module_cache_prefix: str = "_slow_lib_" # TODO: Add possibility for either an explicit allow-list of # libraries where the slow_lib should be wrapped, or, more likely # a block-list that adds to the set of libraries where no proxying occurs. def __new__( cls, fast_lib, slow_lib, ): self = super().__new__( cls, slow_lib, fast_lib, slow_lib, ) # Import the real versions of the modules so that we can # rewrite the sys.modules cache. slow_module = importlib.import_module(slow_lib) fast_module = importlib.import_module(fast_lib) # Note, this is not thread safe, but install() below grabs the # lock for the whole initialisation and modification of # sys.meta_path. for mod in sys.modules.copy(): if mod.startswith(self.slow_lib): sys.modules[self._module_cache_prefix + mod] = sys.modules[mod] del sys.modules[mod] self._denylist = [*slow_module.__path__, *fast_module.__path__] # Lock to manage temporarily disabling delivering wrapped attributes self._use_fast_lib_lock = threading.RLock() self._use_fast_lib = True return self def _populate_module(self, mod: ModuleType): mod_name = mod.__name__ # Here we attempt to import "_fsproxy_slow_lib.x.y.z", but # "_fsproxy_slow_lib" does not exist anywhere as a real file, so # how does this work? # The importer attempts to import ".z" by first importing # "_fsproxy_slow_lib.x.y", this recurses until we find # "_fsproxy_slow_lib.x" (say), which does exist because we set that up # in __init__. Now the importer looks at the __path__ # attribute of "x" and uses that to find the relative location # to look for "y". This __path__ points to the real location # of "slow_lib.x". So, as long as we rewire the _already imported_ # slow_lib modules in sys.modules to _fsproxy_slow_lib, when we # get here this will find the right thing. # The above exposition is for lazily imported submodules (e.g. # avoiding circular imports by putting an import at function # level). For everything that is eagerly imported when we do # "import slow_lib" this import line is trivial because we # immediately pull the correct result out of sys.modules. slow_mod = importlib.import_module( rename_root_module( mod_name, self.slow_lib, self._module_cache_prefix + self.slow_lib, ) ) try: fast_mod = importlib.import_module( rename_root_module(mod_name, self.slow_lib, self.fast_lib) ) except Exception: fast_mod = None # The version that will be used if called within a denylist # package real_attributes = {} # The version that will be used outside denylist packages for key in slow_mod.__dir__(): with warnings.catch_warnings(): warnings.simplefilter("ignore", FutureWarning) slow_attr = getattr(slow_mod, key) fast_attr = getattr(fast_mod, key, _Unusable()) real_attributes[key] = slow_attr try: wrapped_attr = self._wrap_attribute(slow_attr, fast_attr, key) self._wrapped_objs[slow_attr] = wrapped_attr except TypeError: # slow_attr is not hashable pass # Our module has (basically) no static attributes and instead # always delivers them dynamically where the behaviour is # dependent on the calling module. setattr( mod, "__getattr__", functools.partial( self.getattr_real_or_wrapped, real=real_attributes, wrapped_objs=self._wrapped_objs, loader=self, ), ) # ...but, we want to pretend like we expose the same attributes # as the equivalent slow module setattr(mod, "__dir__", slow_mod.__dir__) # We set __path__ to the real path so that importers like # jinja2.PackageLoader("slow_mod") work correctly. if getattr(slow_mod, "__path__", False): assert mod.__spec__ mod.__path__ = slow_mod.__path__ mod.__spec__.submodule_search_locations = [*slow_mod.__path__] return self._postprocess_module(mod, slow_mod, fast_mod) @contextlib.contextmanager def disabled(self): """Return a context manager for disabling the module accelerator. Within the block, any wrapped objects will instead deliver attributes from their real counterparts (as if the current nested block were in the denylist). Returns ------- Context manager for disabling things """ try: self._use_fast_lib_lock.acquire() # The same thread might enter this context manager # multiple times, so we need to remember the previous # value saved = self._use_fast_lib self._use_fast_lib = False yield finally: self._use_fast_lib = saved self._use_fast_lib_lock.release() @staticmethod def getattr_real_or_wrapped( name: str, *, real: Dict[str, Any], wrapped_objs, loader: ModuleAccelerator, ) -> Any: """ Obtain an attribute from a module from either the real or wrapped namespace. Parameters ---------- name Attribute to return real Unwrapped "original" attributes wrapped Wrapped attributes loader Loader object that manages denylist and other skipping Returns ------- The requested attribute (either real or wrapped) """ with loader._use_fast_lib_lock: # Have to hold the lock to read this variable since # another thread might modify it. # Modification has to happen with the lock held for the # duration, so if someone else has modified things, then # we block trying to acquire the lock (hence it is safe to # release the lock after reading this value) use_real = not loader._use_fast_lib if not use_real: # Only need to check the denylist if we're not turned off. frame = sys._getframe() # We cannot possibly be at the top level. assert frame.f_back calling_module = pathlib.PurePath(frame.f_back.f_code.co_filename) use_real = any( calling_module.is_relative_to(path) for path in loader._denylist ) try: if use_real: return real[name] else: return wrapped_objs[real[name]] except KeyError: raise AttributeError(f"No attribute '{name}'") except TypeError: # real[name] is an unhashable type return real[name] @classmethod def install( cls, destination_module: str, fast_lib: str, slow_lib: str, ) -> Self | None: # This grabs the global _import_ lock to avoid concurrent # threads modifying sys.modules. # We also make sure that we finish installing ourselves in # sys.meta_path before releasing the lock so that there isn't # a race between our modification of sys.modules and someone # else importing the slow_lib before we have added ourselves # to the meta_path with ImportLock(): if destination_module != slow_lib: raise RuntimeError( f"Destination module '{destination_module}' must match" f"'{slow_lib}' for this to work." ) mode = deduce_cudf_pandas_mode(slow_lib, fast_lib) if mode.use_fast_lib: importlib.import_module( f".._wrappers.{mode.slow_lib}", __name__ ) try: (self,) = ( p for p in sys.meta_path if isinstance(p, cls) and p.slow_lib == mode.slow_lib and p.fast_lib == mode.fast_lib ) except ValueError: self = cls(mode.fast_lib, mode.slow_lib) sys.meta_path.insert(0, self) return self def disable_module_accelerator() -> contextlib.ExitStack: """ Temporarily disable any module acceleration. """ with contextlib.ExitStack() as stack: for finder in sys.meta_path: if isinstance(finder, ModuleAcceleratorBase): stack.enter_context(finder.disabled()) return stack.pop_all() assert False # pacify type checker
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/fast_slow_proxy.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 from __future__ import annotations import functools import inspect import operator import pickle import types from collections.abc import Iterator from enum import IntEnum from typing import ( Any, Callable, Dict, Literal, Mapping, Optional, Set, Tuple, Type, ) from .annotation import nvtx _CUDF_PANDAS_NVTX_COLORS = { "COPY_SLOW_TO_FAST": 0xCA0020, "COPY_FAST_TO_SLOW": 0xF4A582, "EXECUTE_FAST": 0x92C5DE, "EXECUTE_SLOW": 0x0571B0, } _WRAPPER_ASSIGNMENTS = tuple( attr for attr in functools.WRAPPER_ASSIGNMENTS # Skip __doc__ because we assign it on class creation using exec_body # callable that updates the namespace of the class. # Skip __annotations__ because there are differences between Python # versions on how it is initialized for a class that doesn't explicitly # define it and we don't want to force eager evaluation of anything that # would normally be lazy (mostly for consistency, shouldn't cause any # significant issues). if attr not in ("__annotations__", "__doc__") ) def callers_module_name(): # Call f_back twice since this function adds an extra frame return inspect.currentframe().f_back.f_back.f_globals["__name__"] class _State(IntEnum): """Simple enum to track the type of wrapped object of a final proxy""" SLOW = 0 FAST = 1 class _Unusable: """ A totally unusable type. When a "fast" object is not available, it's useful to set it to _Unusable() so that any operations on it fail, and ensure fallback to the corresponding "slow" object. """ def __call__(self, *args: Any, **kwds: Any) -> Any: raise NotImplementedError( "Fast implementation not available. " "Falling back to the slow implementation" ) def __getattribute__(self, name: str) -> Any: if name in {"__class__"}: # needed for type introspection return super().__getattribute__(name) raise TypeError("Unusable type. Falling back to the slow object") class _PickleConstructor: """A pickleable object to support construction in __reduce__. This object is used to avoid having unpickling call __init__ on the objects, instead only invoking __new__. __init__ may have required arguments or otherwise perform invalid initialization that we could skip altogether since we're going to overwrite the wrapped object. """ def __init__(self, type_): self._type = type_ def __call__(self): return object.__new__(self._type) _DELETE = object() def make_final_proxy_type( name: str, fast_type: type, slow_type: type, *, fast_to_slow: Callable, slow_to_fast: Callable, module: Optional[str] = None, additional_attributes: Mapping[str, Any] | None = None, postprocess: Callable[[_FinalProxy, Any, Any], Any] | None = None, bases: Tuple = (), ) -> Type[_FinalProxy]: """ Defines a fast-slow proxy type for a pair of "final" fast and slow types. Final types are types for which known operations exist for converting an object of "fast" type to "slow" and vice-versa. Parameters ---------- name: str The name of the class returned fast_type: type slow_type: type fast_to_slow: callable Function that accepts a single argument of type `fast_type` and returns an object of type `slow_type` slow_to_fast: callable Function that accepts a single argument of type `slow_type` and returns an object of type `fast_type` additional_attributes Mapping of additional attributes to add to the class (optional), these will override any defaulted attributes (e.g. ``__init__`). If you want to remove a defaulted attribute completely, pass the special sentinel ``_DELETE`` as a value. postprocess Optional function called to allow the proxy to postprocess itself when being wrapped up, called with the proxy object, the unwrapped result object, and the function that was used to construct said unwrapped object. See also `_maybe_wrap_result`. bases Optional tuple of base classes to insert into the mro. Notes ----- As a side-effect, this function adds `fast_type` and `slow_type` to a global mapping of final types to their corresponding proxy types, accessible via `get_final_type_map()`. """ def __init__(self, *args, **kwargs): _fast_slow_function_call( lambda cls, args, kwargs: setattr( self, "_fsproxy_wrapped", cls(*args, **kwargs) ), type(self), args, kwargs, ) @nvtx.annotate( "COPY_SLOW_TO_FAST", color=_CUDF_PANDAS_NVTX_COLORS["COPY_SLOW_TO_FAST"], domain="cudf_pandas", ) def _fsproxy_slow_to_fast(self): # if we are wrapping a slow object, # convert it to a fast one if self._fsproxy_state is _State.SLOW: return slow_to_fast(self._fsproxy_wrapped) return self._fsproxy_wrapped @nvtx.annotate( "COPY_FAST_TO_SLOW", color=_CUDF_PANDAS_NVTX_COLORS["COPY_FAST_TO_SLOW"], domain="cudf_pandas", ) def _fsproxy_fast_to_slow(self): # if we are wrapping a fast object, # convert it to a slow one if self._fsproxy_state is _State.FAST: return fast_to_slow(self._fsproxy_wrapped) return self._fsproxy_wrapped @property # type: ignore def _fsproxy_state(self) -> _State: return ( _State.FAST if isinstance(self._fsproxy_wrapped, self._fsproxy_fast_type) else _State.SLOW ) def __reduce__(self): # Need a local import to avoid circular import issues from .module_accelerator import disable_module_accelerator with disable_module_accelerator(): pickled_wrapped_obj = pickle.dumps(self._fsproxy_wrapped) return (_PickleConstructor(type(self)), (), pickled_wrapped_obj) def __setstate__(self, state): # Need a local import to avoid circular import issues from .module_accelerator import disable_module_accelerator with disable_module_accelerator(): unpickled_wrapped_obj = pickle.loads(state) self._fsproxy_wrapped = unpickled_wrapped_obj slow_dir = dir(slow_type) cls_dict = { "__init__": __init__, "__doc__": inspect.getdoc(slow_type), "_fsproxy_slow_dir": slow_dir, "_fsproxy_fast_type": fast_type, "_fsproxy_slow_type": slow_type, "_fsproxy_slow_to_fast": _fsproxy_slow_to_fast, "_fsproxy_fast_to_slow": _fsproxy_fast_to_slow, "_fsproxy_state": _fsproxy_state, "__reduce__": __reduce__, "__setstate__": __setstate__, } if additional_attributes is None: additional_attributes = {} for method in _SPECIAL_METHODS: if getattr(slow_type, method, False): cls_dict[method] = _FastSlowAttribute(method) for k, v in additional_attributes.items(): if v is _DELETE and k in cls_dict: del cls_dict[k] elif v is not _DELETE: cls_dict[k] = v cls = types.new_class( name, (*bases, _FinalProxy), {"metaclass": _FastSlowProxyMeta}, lambda ns: ns.update(cls_dict), ) functools.update_wrapper( cls, slow_type, assigned=_WRAPPER_ASSIGNMENTS, updated=(), ) cls.__module__ = module if module is not None else callers_module_name() final_type_map = get_final_type_map() if fast_type is not _Unusable: final_type_map[fast_type] = cls final_type_map[slow_type] = cls return cls def make_intermediate_proxy_type( name: str, fast_type: type, slow_type: type, *, module: Optional[str] = None, ) -> Type[_IntermediateProxy]: """ Defines a proxy type for a pair of "intermediate" fast and slow types. Intermediate types are the types of the results of operations invoked on final types. As a side-effect, this function adds `fast_type` and `slow_type` to a global mapping of intermediate types to their corresponding proxy types, accessible via `get_intermediate_type_map()`. Parameters ---------- name: str The name of the class returned fast_type: type slow_type: type """ def __init__(self, *args, **kwargs): # disallow __init__. An intermediate proxy type can only be # instantiated from (possibly chained) operations on a final # proxy type. raise TypeError( f"Cannot directly instantiate object of type {type(self)}" ) @property # type: ignore def _fsproxy_state(self): return ( _State.FAST if isinstance(self._fsproxy_wrapped, self._fsproxy_fast_type) else _State.SLOW ) @nvtx.annotate( "COPY_SLOW_TO_FAST", color=_CUDF_PANDAS_NVTX_COLORS["COPY_SLOW_TO_FAST"], domain="cudf_pandas", ) def _fsproxy_slow_to_fast(self): if self._fsproxy_state is _State.SLOW: return super(type(self), self)._fsproxy_slow_to_fast() return self._fsproxy_wrapped @nvtx.annotate( "COPY_FAST_TO_SLOW", color=_CUDF_PANDAS_NVTX_COLORS["COPY_FAST_TO_SLOW"], domain="cudf_pandas", ) def _fsproxy_fast_to_slow(self): if self._fsproxy_state is _State.FAST: return super(type(self), self)._fsproxy_fast_to_slow() return self._fsproxy_wrapped slow_dir = dir(slow_type) cls_dict = { "__init__": __init__, "__doc__": inspect.getdoc(slow_type), "_fsproxy_slow_dir": slow_dir, "_fsproxy_fast_type": fast_type, "_fsproxy_slow_type": slow_type, "_fsproxy_slow_to_fast": _fsproxy_slow_to_fast, "_fsproxy_fast_to_slow": _fsproxy_fast_to_slow, "_fsproxy_state": _fsproxy_state, } for method in _SPECIAL_METHODS: if getattr(slow_type, method, False): cls_dict[method] = _FastSlowAttribute(method) cls = types.new_class( name, (_IntermediateProxy,), {"metaclass": _FastSlowProxyMeta}, lambda ns: ns.update(cls_dict), ) functools.update_wrapper( cls, slow_type, assigned=_WRAPPER_ASSIGNMENTS, updated=(), ) cls.__module__ = module if module is not None else callers_module_name() intermediate_type_map = get_intermediate_type_map() if fast_type is not _Unusable: intermediate_type_map[fast_type] = cls intermediate_type_map[slow_type] = cls return cls def register_proxy_func(slow_func: Callable): """ Decorator to register custom function as a proxy for slow_func. Parameters ---------- slow_func: Callable The function to register a wrapper for. Returns ------- Callable """ def wrapper(func): registered_functions = get_registered_functions() registered_functions[slow_func] = func functools.update_wrapper(func, slow_func) return func return wrapper @functools.lru_cache(maxsize=None) def get_final_type_map(): """ Return the mapping of all known fast and slow final types to their corresponding proxy types. """ return dict() @functools.lru_cache(maxsize=None) def get_intermediate_type_map(): """ Return a mapping of all known fast and slow intermediate types to their corresponding proxy types. """ return dict() @functools.lru_cache(maxsize=None) def get_registered_functions(): return dict() def _raise_attribute_error(obj, name): """ Raise an AttributeError with a message that is consistent with the error raised by Python for a non-existent attribute on a proxy object. """ raise AttributeError(f"'{obj}' object has no attribute '{name}'") class _FastSlowAttribute: """ A descriptor type used to define attributes of fast-slow proxies. """ def __init__(self, name: str): self._name = name def __get__(self, obj, owner=None) -> Any: if obj is None: # class attribute obj = owner if not ( isinstance(obj, _FastSlowProxy) or issubclass(type(obj), _FastSlowProxyMeta) ): # we only want to look up attributes on the underlying # fast/slow objects for instances of _FastSlowProxy or # subtypes of _FastSlowProxyMeta: _raise_attribute_error(owner if owner else obj, self._name) result, _ = _fast_slow_function_call(getattr, obj, self._name) if isinstance(result, functools.cached_property): # TODO: temporary workaround until dask is able # to correctly inspect cached_property objects. # GH: 264 result = property(result.func) if isinstance(result, (_MethodProxy, property)): from .module_accelerator import disable_module_accelerator type_ = owner if owner else type(obj) slow_result_type = getattr(type_._fsproxy_slow, self._name) with disable_module_accelerator(): result.__doc__ = inspect.getdoc( # type: ignore slow_result_type ) if isinstance(result, _MethodProxy): # Note that this will produce the wrong result for bound # methods because dir for the method won't be the same as for # the pure unbound function, but the alternative is # materializing the slow object when we don't really want to. result._fsproxy_slow_dir = dir( slow_result_type ) # type: ignore return result class _FastSlowProxyMeta(type): """ Metaclass used to dynamically find class attributes and classmethods of fast-slow proxy types. """ @property def _fsproxy_slow(self) -> type: return self._fsproxy_slow_type @property def _fsproxy_fast(self) -> type: return self._fsproxy_fast_type def __dir__(self): # Try to return the cached dir of the slow object, but if it # doesn't exist, fall back to the default implementation. try: return self._fsproxy_slow_dir except AttributeError: return type.__dir__(self) def __getattr__(self, name: str) -> Any: if name.startswith("_fsproxy") or name.startswith("__"): # an AttributeError was raised when trying to evaluate # an internal attribute, we just need to propagate this _raise_attribute_error(self.__class__.__name__, name) attr = _FastSlowAttribute(name) return attr.__get__(None, owner=self) def __subclasscheck__(self, __subclass: type) -> bool: if super().__subclasscheck__(__subclass): return True if hasattr(__subclass, "_fsproxy_slow"): return issubclass(__subclass._fsproxy_slow, self._fsproxy_slow) return False def __instancecheck__(self, __instance: Any) -> bool: if super().__instancecheck__(__instance): return True elif hasattr(type(__instance), "_fsproxy_slow"): return issubclass(type(__instance), self) return False class _FastSlowProxy: """ Base class for all fast=slow proxy types. A fast-slow proxy is proxy for a pair of types that provide "fast" and "slow" implementations of the same API. At any time, a fast-slow proxy wraps an object of either "fast" type, or "slow" type. Operations invoked on the fast-slow proxy are first delegated to the "fast" type, and if that fails, to the "slow" type. """ _fsproxy_wrapped: Any def _fsproxy_fast_to_slow(self) -> Any: """ If the wrapped object is of "fast" type, returns the corresponding "slow" object. Otherwise, returns the wrapped object as-is. """ raise NotImplementedError("Abstract base class") def _fsproxy_slow_to_fast(self) -> Any: """ If the wrapped object is of "slow" type, returns the corresponding "fast" object. Otherwise, returns the wrapped object as-is. """ raise NotImplementedError("Abstract base class") @property def _fsproxy_fast(self) -> Any: """ Returns the wrapped object. If the wrapped object is of "slow" type, replaces it with the corresponding "fast" object before returning it. """ self._fsproxy_wrapped = self._fsproxy_slow_to_fast() return self._fsproxy_wrapped @property def _fsproxy_slow(self) -> Any: """ Returns the wrapped object. If the wrapped object is of "fast" type, replaces it with the corresponding "slow" object before returning it. """ self._fsproxy_wrapped = self._fsproxy_fast_to_slow() return self._fsproxy_wrapped def __dir__(self): # Try to return the cached dir of the slow object, but if it # doesn't exist, fall back to the default implementation. try: return self._fsproxy_slow_dir except AttributeError: return object.__dir__(self) def __getattr__(self, name: str) -> Any: if name.startswith("_fsproxy"): # an AttributeError was raised when trying to evaluate # an internal attribute, we just need to propagate this _raise_attribute_error(self.__class__.__name__, name) if name in { "_ipython_canary_method_should_not_exist_", "_ipython_display_", "_repr_mimebundle_", # Workaround for https://github.com/numpy/numpy/issues/5350 # see GH:216 for details "__array_struct__", }: # IPython always looks for these names in its display # logic. See #GH:70 and #GH:172 for more details but the # gist is that not raising an AttributeError immediately # results in slow display in IPython (since the fast # object will be copied to the slow one to look for # attributes there which then also won't exist). # This is somewhat delicate to the order in which IPython # implements special display fallbacks. _raise_attribute_error(self.__class__.__name__, name) if name.startswith("_"): # private attributes always come from `._fsproxy_slow`: return getattr(self._fsproxy_slow, name) attr = _FastSlowAttribute(name) return attr.__get__(self) def __setattr__(self, name, value): if name.startswith("_"): object.__setattr__(self, name, value) return return _FastSlowAttribute("__setattr__").__get__(self)(name, value) def __add__(self, other): return _fast_slow_function_call(operator.add, self, other)[0] def __radd__(self, other): return _fast_slow_function_call(operator.add, other, self)[0] def __sub__(self, other): return _fast_slow_function_call(operator.sub, self, other)[0] def __rsub__(self, other): return _fast_slow_function_call(operator.sub, other, self)[0] def __mul__(self, other): return _fast_slow_function_call(operator.mul, self, other)[0] def __rmul__(self, other): return _fast_slow_function_call(operator.mul, other, self)[0] def __truediv__(self, other): return _fast_slow_function_call(operator.truediv, self, other)[0] def __rtruediv__(self, other): return _fast_slow_function_call(operator.truediv, other, self)[0] def __floordiv__(self, other): return _fast_slow_function_call(operator.floordiv, self, other)[0] def __rfloordiv__(self, other): return _fast_slow_function_call(operator.floordiv, other, self)[0] def __mod__(self, other): return _fast_slow_function_call(operator.mod, self, other)[0] def __rmod__(self, other): return _fast_slow_function_call(operator.mod, other, self)[0] def __divmod__(self, other): return _fast_slow_function_call(divmod, self, other)[0] def __rdivmod__(self, other): return _fast_slow_function_call(divmod, other, self)[0] def __pow__(self, other): return _fast_slow_function_call(operator.pow, self, other)[0] def __rpow__(self, other): return _fast_slow_function_call(operator.pow, other, self)[0] def __lshift__(self, other): return _fast_slow_function_call(operator.lshift, self, other)[0] def __rlshift__(self, other): return _fast_slow_function_call(operator.lshift, other, self)[0] def __rshift__(self, other): return _fast_slow_function_call(operator.rshift, self, other)[0] def __rrshift__(self, other): return _fast_slow_function_call(operator.rshift, other, self)[0] def __and__(self, other): return _fast_slow_function_call(operator.and_, self, other)[0] def __rand__(self, other): return _fast_slow_function_call(operator.and_, other, self)[0] def __xor__(self, other): return _fast_slow_function_call(operator.xor, self, other)[0] def __rxor__(self, other): return _fast_slow_function_call(operator.xor, other, self)[0] def __or__(self, other): return _fast_slow_function_call(operator.or_, self, other)[0] def __ror__(self, other): return _fast_slow_function_call(operator.or_, other, self)[0] def __matmul__(self, other): return _fast_slow_function_call(operator.matmul, self, other)[0] def __rmatmul__(self, other): return _fast_slow_function_call(operator.matmul, other, self)[0] class _FinalProxy(_FastSlowProxy): """ Proxy type for a pair of fast and slow "final" types for which there is a known conversion from fast to slow, and vice-versa. The conversion between fast and slow types is done using user-provided conversion functions. Do not attempt to use this class directly. Instead, use `make_final_proxy_type` to create subtypes. """ @classmethod def _fsproxy_wrap(cls, value, func): """Default mechanism to wrap a value in a proxy type Parameters ---------- cls The proxy type value The value to wrap up func The function called that constructed value Returns ------- A new proxied object Notes ----- _FinalProxy subclasses can override this classmethod if they need particular behaviour when wrapped up. """ proxy = object.__new__(cls) proxy._fsproxy_wrapped = value return proxy class _IntermediateProxy(_FastSlowProxy): """ Proxy type for a pair of "intermediate" types that appear as intermediate values when invoking operations on "final" types. The conversion between fast and slow types is done by keeping track of the sequence of operations that created the wrapped object, and "playing back" that sequence starting from the "slow" version of the originating _FinalProxy. Do not attempt to use this class directly. Instead, use `make_intermediate_proxy_type` to create subtypes. """ _method_chain: Tuple[Callable, Tuple, Dict] @classmethod def _fsproxy_wrap( cls, obj: Any, method_chain: Tuple[Callable, Tuple, Dict], ): """ Parameters ---------- obj: The object to wrap method_chain: A tuple of the form (func, args, kwargs) where `func` is the function that was called to create `obj`, and `args` and `kwargs` are the arguments that were passed to `func`. """ proxy = object.__new__(cls) proxy._fsproxy_wrapped = obj proxy._method_chain = method_chain return proxy @nvtx.annotate( "COPY_SLOW_TO_FAST", color=_CUDF_PANDAS_NVTX_COLORS["COPY_SLOW_TO_FAST"], domain="cudf_pandas", ) def _fsproxy_slow_to_fast(self) -> Any: func, args, kwargs = self._method_chain args, kwargs = _fast_arg(args), _fast_arg(kwargs) return func(*args, **kwargs) @nvtx.annotate( "COPY_FAST_TO_SLOW", color=_CUDF_PANDAS_NVTX_COLORS["COPY_FAST_TO_SLOW"], domain="cudf_pandas", ) def _fsproxy_fast_to_slow(self) -> Any: func, args, kwargs = self._method_chain args, kwargs = _slow_arg(args), _slow_arg(kwargs) return func(*args, **kwargs) class _CallableProxyMixin: """ Mixin class that implements __call__ for fast-slow proxies. """ # For wrapped callables isinstance(self, FunctionType) should return True __class__ = types.FunctionType # type: ignore def __call__(self, *args, **kwargs) -> Any: result, _ = _fast_slow_function_call( # We cannot directly call self here because we need it to be # converted into either the fast or slow object (by # _fast_slow_function_call) to avoid infinite recursion. # TODO: When Python 3.11 is the minimum supported Python version # this can use operator.call lambda fn, args, kwargs: fn(*args, **kwargs), self, args, kwargs, ) return result class _FunctionProxy(_CallableProxyMixin): """ Proxy for a pair of fast and slow functions. """ __name__: str def __init__(self, fast: Callable | _Unusable, slow: Callable): self._fsproxy_fast = fast self._fsproxy_slow = slow functools.update_wrapper(self, slow) class _MethodProxy(_CallableProxyMixin, _IntermediateProxy): """ Methods of fast-slow proxies are of type _MethodProxy. """ def _fast_slow_function_call(func: Callable, /, *args, **kwargs) -> Any: """ Call `func` with all `args` and `kwargs` converted to their respective fast type. If that fails, call `func` with all `args` and `kwargs` converted to their slow type. Wrap the result in a fast-slow proxy if it is a type we know how to wrap. """ from .module_accelerator import disable_module_accelerator fast = False try: with nvtx.annotate( "EXECUTE_FAST", color=_CUDF_PANDAS_NVTX_COLORS["EXECUTE_FAST"], domain="cudf_pandas", ): fast_args, fast_kwargs = _fast_arg(args), _fast_arg(kwargs) result = func(*fast_args, **fast_kwargs) if result is NotImplemented: # try slow path raise Exception() fast = True except Exception: with nvtx.annotate( "EXECUTE_SLOW", color=_CUDF_PANDAS_NVTX_COLORS["EXECUTE_SLOW"], domain="cudf_pandas", ): slow_args, slow_kwargs = _slow_arg(args), _slow_arg(kwargs) with disable_module_accelerator(): result = func(*slow_args, **slow_kwargs) return _maybe_wrap_result(result, func, *args, **kwargs), fast def _transform_arg( arg: Any, attribute_name: Literal["_fsproxy_slow", "_fsproxy_fast"], seen: Set[int], ) -> Any: """ Transform "arg" into its corresponding slow (or fast) type. """ import numpy as np if isinstance(arg, (_FastSlowProxy, _FastSlowProxyMeta, _FunctionProxy)): typ = getattr(arg, attribute_name) if typ is _Unusable: raise Exception("Cannot transform _Unusable") return typ elif isinstance(arg, types.ModuleType) and attribute_name in arg.__dict__: return arg.__dict__[attribute_name] elif isinstance(arg, list): return type(arg)(_transform_arg(a, attribute_name, seen) for a in arg) elif isinstance(arg, tuple): # This attempts to handle arbitrary subclasses of tuple by # assuming that if you've subclassed tuple with some special # behaviour you'll also make the object pickleable by # implementing the custom pickle protocol interface (either # __getnewargs_ex__ or __getnewargs__). Perhaps this should # use __reduce_ex__ instead... if type(arg) is tuple: # Must come first to avoid infinite recursion return tuple(_transform_arg(a, attribute_name, seen) for a in arg) elif hasattr(arg, "__getnewargs_ex__"): # Partial implementation of to reconstruct with # transformed pieces # This handles scipy._lib._bunch._make_tuple_bunch args, kwargs = ( _transform_arg(a, attribute_name, seen) for a in arg.__getnewargs_ex__() ) obj = type(arg).__new__(type(arg), *args, **kwargs) if hasattr(obj, "__setstate__"): raise NotImplementedError( "Transforming tuple-like with __getnewargs_ex__ and " "__setstate__ not implemented" ) if not hasattr(obj, "__dict__") and kwargs: raise NotImplementedError( "Transforming tuple-like with kwargs from " "__getnewargs_ex__ and no __dict__ not implemented" ) obj.__dict__.update(kwargs) return obj elif hasattr(arg, "__getnewargs__"): # This handles namedtuple, and would catch tuple if we # didn't handle it above. args = _transform_arg(arg.__getnewargs__(), attribute_name, seen) return type(arg).__new__(type(arg), *args) else: # Hope we can just call the constructor with transformed entries. return type(arg)( _transform_arg(a, attribute_name, seen) for a in args ) elif isinstance(arg, dict): return { _transform_arg(k, attribute_name, seen): _transform_arg( a, attribute_name, seen ) for k, a in arg.items() } elif isinstance(arg, np.ndarray) and arg.dtype == "O": transformed = [ _transform_arg(a, attribute_name, seen) for a in arg.flat ] # Keep the same memory layout as arg (the default is C_CONTIGUOUS) if arg.flags["F_CONTIGUOUS"] and not arg.flags["C_CONTIGUOUS"]: order = "F" else: order = "C" result = np.empty(int(np.prod(arg.shape)), dtype=object, order=order) result[...] = transformed return result.reshape(arg.shape) elif isinstance(arg, Iterator) and attribute_name == "_fsproxy_fast": # this may include consumable objects like generators or # IOBase objects, which we don't want unavailable to the slow # path in case of fallback. So, we raise here and ensure the # slow path is taken: raise Exception() elif isinstance(arg, types.FunctionType): if id(arg) in seen: # `arg` is mutually recursive with another function. We # can't handle these cases yet: return arg seen.add(id(arg)) return _replace_closurevars(arg, attribute_name, seen) else: return arg def _fast_arg(arg: Any) -> Any: """ Transform "arg" into its corresponding fast type. """ seen: Set[int] = set() return _transform_arg(arg, "_fsproxy_fast", seen) def _slow_arg(arg: Any) -> Any: """ Transform "arg" into its corresponding slow type. """ seen: Set[int] = set() return _transform_arg(arg, "_fsproxy_slow", seen) def _maybe_wrap_result(result: Any, func: Callable, /, *args, **kwargs) -> Any: """ Wraps "result" in a fast-slow proxy if is a "proxiable" object. """ if _is_final_type(result): typ = get_final_type_map()[type(result)] return typ._fsproxy_wrap(result, func) elif _is_intermediate_type(result): typ = get_intermediate_type_map()[type(result)] return typ._fsproxy_wrap(result, method_chain=(func, args, kwargs)) elif _is_final_class(result): return get_final_type_map()[result] elif isinstance(result, list): return type(result)( [ _maybe_wrap_result(r, operator.getitem, result, i) for i, r in enumerate(result) ] ) elif isinstance(result, tuple): wrapped = ( _maybe_wrap_result(r, operator.getitem, result, i) for i, r in enumerate(result) ) if hasattr(result, "_make"): # namedtuple return type(result)._make(wrapped) else: return type(result)(wrapped) elif isinstance(result, Iterator): return (_maybe_wrap_result(r, lambda x: x, r) for r in result) elif _is_function_or_method(result): return _MethodProxy._fsproxy_wrap( result, method_chain=(func, args, kwargs) ) else: return result def _is_final_type(result: Any) -> bool: return type(result) in get_final_type_map() def _is_final_class(result: Any) -> bool: if not isinstance(result, type): return False return result in get_final_type_map() def _is_intermediate_type(result: Any) -> bool: return type(result) in get_intermediate_type_map() def _is_function_or_method(obj: Any) -> bool: return isinstance( obj, ( types.FunctionType, types.BuiltinFunctionType, types.MethodType, types.WrapperDescriptorType, types.MethodWrapperType, types.MethodDescriptorType, types.BuiltinMethodType, ), ) def _replace_closurevars( f: types.FunctionType, attribute_name: Literal["_fsproxy_slow", "_fsproxy_fast"], seen: Set[int], ) -> types.FunctionType: """ Return a copy of `f` with its closure variables replaced with their corresponding slow (or fast) types. """ if f.__closure__: # GH #254: If empty cells are present - which can happen in # situations like when `f` is a method that invokes the # "empty" `super()` - the call to `getclosurevars` below will # fail. For now, we just return `f` in this case. If needed, # we can consider populating empty cells with a placeholder # value to allow the call to `getclosurevars` to succeed. if any(c == types.CellType() for c in f.__closure__): return f f_nonlocals, f_globals, f_builtins, _ = inspect.getclosurevars(f) g_globals = _transform_arg(f_globals, attribute_name, seen) g_nonlocals = _transform_arg(f_nonlocals, attribute_name, seen) # if none of the globals/nonlocals were transformed, we # can just return f: if all(f_globals[k] is g_globals[k] for k in f_globals) and all( g_nonlocals[k] is f_nonlocals[k] for k in f_nonlocals ): return f g_closure = tuple(types.CellType(val) for val in g_nonlocals.values()) g_globals["__builtins__"] = f_builtins g = types.FunctionType( f.__code__, g_globals, name=f.__name__, argdefs=f.__defaults__, closure=g_closure, ) g = functools.update_wrapper( g, f, assigned=functools.WRAPPER_ASSIGNMENTS + ("__kwdefaults__",), ) return g _SPECIAL_METHODS: Set[str] = { "__repr__", "__str__", "__len__", "__contains__", "__getitem__", "__setitem__", "__delitem__", "__getslice__", "__setslice__", "__delslice__", "__iter__", "__lt__", "__le__", "__eq__", "__ne__", "__gt__", "__ge__", "__pos__", "__neg__", "__invert__", "__abs__", "__round__", "__format__", "__bool__", "__float__", "__int__", "__complex__", "__enter__", "__exit__", "__next__", "__copy__", "__deepcopy__", "__dataframe__", "__call__", # Added on a per-proxy basis # https://github.com/rapidsai/xdf/pull/306#pullrequestreview-1636155428 # "__hash__", }
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 from .magics import load_ipython_extension from .profiler import Profiler __all__ = ["Profiler", "load_ipython_extension", "install"] LOADED = False def install(): """Enable Pandas Accelerator Mode.""" from .module_accelerator import ModuleAccelerator loader = ModuleAccelerator.install("pandas", "cudf", "pandas") global LOADED LOADED = loader is not None def pytest_load_initial_conftests(early_config, parser, args): # We need to install ourselves before conftest.py import (which # might import pandas) This hook is guaranteed to run before that # happens see # https://docs.pytest.org/en/7.1.x/reference/\ # reference.html#pytest.hookspec.pytest_load_initial_conftests try: install() except RuntimeError: raise RuntimeError( "An existing plugin has already loaded pandas. Interposing failed." )
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/__main__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 """ Usage: python -m cudf.pandas <script.py> <args> python -m cudf.pandas -m module <args> """ import argparse import runpy import sys import tempfile from contextlib import contextmanager from . import install from .profiler import Profiler, lines_with_profiling @contextmanager def profile(function_profile, line_profile, fn): if line_profile: with open(fn) as f: lines = f.readlines() with tempfile.NamedTemporaryFile(mode="w+b", suffix=".py") as f: f.write(lines_with_profiling(lines, function_profile).encode()) f.seek(0) yield f.name elif function_profile: with Profiler() as profiler: yield fn profiler.print_per_func_stats() else: yield fn def main(): parser = argparse.ArgumentParser( prog="python -m cudf.pandas", description=( "Run a Python script with Pandas Accelerator Mode enabled. " "In Pandas Accelerator Mode, all imports of pandas will " "automatically use GPU accelerated cuDF equivalents where " "possible." ), ) parser.add_argument( "-m", dest="module", nargs=1, ) parser.add_argument( "--profile", action="store_true", help="Perform per-function profiling of this script.", ) parser.add_argument( "--line-profile", action="store_true", help="Perform per-line profiling of this script.", ) parser.add_argument( "args", nargs=argparse.REMAINDER, help="Arguments to pass on to the script", ) args = parser.parse_args() install() with profile(args.profile, args.line_profile, args.args[0]) as fn: args.args[0] = fn if args.module: (module,) = args.module # run the module passing the remaining arguments # as if it were run with python -m <module> <args> sys.argv[:] = [module] + args.args # not thread safe? runpy.run_module(module, run_name="__main__") elif len(args.args) >= 1: # Remove ourself from argv and continue sys.argv[:] = args.args runpy.run_path(args.args[0], run_name="__main__") if __name__ == "__main__": main()
0
rapidsai_public_repos/cudf/python/cudf/cudf/pandas
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/_wrappers/common.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 # Utility custom overrides for special methods/properties from ..fast_slow_proxy import ( _FastSlowAttribute, _FastSlowProxy, _maybe_wrap_result, _slow_arg, ) def array_method(self: _FastSlowProxy, *args, **kwargs): return self._fsproxy_slow.__array__(*args, **kwargs) def array_function_method(self, func, types, args, kwargs): try: return _FastSlowAttribute("__array_function__").__get__(self)( func, types, args, kwargs ) except Exception: # if something went wrong with __array_function__ we # attempt to call the function directly on the slow # object. This ensures that the function call is # handled in the same way as if the slow object was # passed directly to the function. slow_args, slow_kwargs = _slow_arg(args), _slow_arg(kwargs) return _maybe_wrap_result( func(*slow_args, **slow_kwargs), func, *args, **kwargs ) def arrow_array_method(self: _FastSlowProxy, *args, **kwargs): import pyarrow as pa try: return self._fsproxy_fast.to_arrow(*args, **kwargs) except Exception: return pa.array(self._fsproxy_slow, *args, **kwargs) @property # type: ignore def cuda_array_interface(self: _FastSlowProxy): return self._fsproxy_fast.__cuda_array_interface__ def custom_iter(self: _FastSlowProxy): return iter(self._fsproxy_slow)
0
rapidsai_public_repos/cudf/python/cudf/cudf/pandas
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/_wrappers/numpy.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 from __future__ import annotations import cupy import cupy._core.flags import numpy import numpy.core.multiarray from ..fast_slow_proxy import ( make_final_proxy_type, make_intermediate_proxy_type, ) from .common import ( array_method, arrow_array_method, cuda_array_interface, custom_iter, ) # https://docs.cupy.dev/en/stable/reference/creation.html _CONSTRUCTORS = frozenset( [ cupy.empty, cupy.empty_like, cupy.eye, cupy.identity, cupy.ones, cupy.ones_like, cupy.zeros, cupy.zeros_like, cupy.full, cupy.full_like, cupy.array, cupy.asarray, cupy.asanyarray, cupy.ascontiguousarray, cupy.copy, cupy.frombuffer, cupy.fromfile, cupy.fromfunction, cupy.fromiter, cupy.fromstring, cupy.loadtxt, cupy.arange, cupy.linspace, cupy.logspace, cupy.meshgrid, cupy.diag, cupy.diagflat, cupy.tri, cupy.tril, cupy.triu, cupy.vander, ] ) def wrap_ndarray(cls, arr: cupy.ndarray | numpy.ndarray, constructor): """Wrap an ndarray in a proxy type Parameters ---------- cls Proxy type for ndarray arr Concrete result ndarray (cupy or numpy) constructor Function that was called to construct the concrete array, used to check against a denylist to avoid unwrapping. Returns ------- The scalar .item() wrapped in its numpy dtype if arr is a zero-dimensional cupy array (and wasn't just constructed as such), a new proxy type otherwise. Notes ----- Axis-reducing operations in numpy return scalar objects but zero-dimensional arrays in cupy. This confuses downstream libraries when they get a fast (device-based) zero-dim array when they were expecting a scalar. To avoid this, if the provided array is a cupy array, and its shape is zero, unwrap it. """ if ( isinstance(arr, cupy.ndarray) and arr.shape == () and constructor not in _CONSTRUCTORS ): return arr.dtype.type(arr.item()) else: # Note, this super call means that the constructed ndarray # class cannot be subclassed (because then super(cls, # cls)._fsproxy_wrap produces an infinite loop). Really this # should be super(ndarray, cls), but we don't have access to # the ndarray type until after we need to pass this function # in. So it works for now since without subclassing, # super(ndarray, cls) == super(ndarray, ndarray) == super(cls, # cls) return super(cls, cls)._fsproxy_wrap(arr, constructor) ndarray = make_final_proxy_type( "ndarray", cupy.ndarray, numpy.ndarray, fast_to_slow=cupy.ndarray.get, slow_to_fast=cupy.asarray, additional_attributes={ "__array__": array_method, # So that pa.array(wrapped-numpy-array) works "__arrow_array__": arrow_array_method, "__cuda_array_interface__": cuda_array_interface, # ndarrays are unhashable "__hash__": None, # iter(cupy-array) produces an iterable of zero-dim device # arrays, which is not usable in many settings (whereas # iter(numpy-array) produces an iterable of scalars) "__iter__": custom_iter, # Special wrapping to handle scalar values "_fsproxy_wrap": classmethod(wrap_ndarray), }, ) # Mapping flags between slow and fast types _ndarray_flags = make_intermediate_proxy_type( "_ndarray_flags", cupy._core.flags.Flags, numpy.core.multiarray.flagsobj, )
0
rapidsai_public_repos/cudf/python/cudf/cudf/pandas
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/_wrappers/__init__.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 from . import numpy, pandas
0
rapidsai_public_repos/cudf/python/cudf/cudf/pandas
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/_wrappers/pandas.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 import sys import pandas as pd import cudf from ..annotation import nvtx from ..fast_slow_proxy import ( _CUDF_PANDAS_NVTX_COLORS, _DELETE, _fast_slow_function_call, _FastSlowAttribute, _FunctionProxy, _Unusable, get_final_type_map, make_final_proxy_type as _make_final_proxy_type, make_intermediate_proxy_type as _make_intermediate_proxy_type, register_proxy_func, ) from .common import ( array_function_method, array_method, arrow_array_method, cuda_array_interface, custom_iter, ) from pandas.io.sas.sas7bdat import ( # isort: skip SAS7BDATReader as pd_SAS7BDATReader, ) from pandas.io.sas.sas_xport import ( # isort: skip XportReader as pd_XportReader, ) # TODO(pandas2.1): Can import from pandas.api.typing from pandas.core.resample import ( # isort: skip Resampler as pd_Resampler, TimeGrouper as pd_TimeGrouper, ) cudf.set_option("mode.pandas_compatible", True) def make_final_proxy_type( name, fast_type, slow_type, **kwargs, ): assert "module" not in kwargs return _make_final_proxy_type( name, fast_type, slow_type, module=slow_type.__module__, **kwargs ) def make_intermediate_proxy_type(name, fast_type, slow_type): return _make_intermediate_proxy_type( name, fast_type, slow_type, module=slow_type.__module__ ) class _AccessorAttr: """ Descriptor that ensures that accessors like `.dt` and `.str` return the corresponding accessor types when accessed on `Series` and `Index` _types_ (not instances).n Attribute access for _instances_ uses the regular fast-then-slow lookup defined in `__getattr__`. """ def __init__(self, typ): self.__typ = typ def __get__(self, obj, cls=None): if obj is None: return self.__typ else: # allow __getattr__ to handle this raise AttributeError() DatetimeProperties = make_intermediate_proxy_type( "DatetimeProperties", cudf.core.series.DatetimeProperties, pd.core.indexes.accessors.DatetimeProperties, ) TimedeltaProperties = make_intermediate_proxy_type( "TimedeltaProperties", cudf.core.series.TimedeltaProperties, pd.core.indexes.accessors.TimedeltaProperties, ) CombinedDatetimelikeProperties = make_intermediate_proxy_type( "CombinedDatetimelikeProperties", cudf.core.series.DatetimeProperties, pd.core.indexes.accessors.CombinedDatetimelikeProperties, ) StringMethods = make_intermediate_proxy_type( "StringMethods", cudf.core.column.string.StringMethods, pd.core.strings.accessor.StringMethods, ) _CategoricalAccessor = make_intermediate_proxy_type( "CategoricalAccessor", cudf.core.column.categorical.CategoricalAccessor, pd.core.arrays.categorical.CategoricalAccessor, ) def _DataFrame__dir__(self): # Column names that are string identifiers are added to the dir of the # DataFrame # See https://github.com/pandas-dev/pandas/blob/43691a2f5d235b08f0f3aa813d8fdcb7c4ce1e47/pandas/core/indexes/base.py#L878 # noqa: E501 _pd_df_dir = dir(pd.DataFrame) return _pd_df_dir + [ colname for colname in self.columns if isinstance(colname, str) and colname.isidentifier() ] DataFrame = make_final_proxy_type( "DataFrame", cudf.DataFrame, pd.DataFrame, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, additional_attributes={ "__array__": array_method, "__dir__": _DataFrame__dir__, "_constructor": _FastSlowAttribute("_constructor"), "_constructor_sliced": _FastSlowAttribute("_constructor_sliced"), }, ) Series = make_final_proxy_type( "Series", cudf.Series, pd.Series, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, additional_attributes={ "__array__": array_method, "__array_function__": array_function_method, "__array_ufunc__": _FastSlowAttribute("__array_ufunc__"), "__arrow_array__": arrow_array_method, "__cuda_array_interface__": cuda_array_interface, "__iter__": custom_iter, "dt": _AccessorAttr(DatetimeProperties), "str": _AccessorAttr(StringMethods), "cat": _AccessorAttr(_CategoricalAccessor), "_constructor": _FastSlowAttribute("_constructor"), "_constructor_expanddim": _FastSlowAttribute("_constructor_expanddim"), }, ) def Index__new__(cls, *args, **kwargs): # Call fast/slow constructor # This takes care of running __init__ as well, but must be paired # with a removal of the defaulted __init__ that # make_final_proxy_type provides. self, _ = _fast_slow_function_call( lambda cls, args, kwargs: cls(*args, **kwargs), cls, args, kwargs, ) return self Index = make_final_proxy_type( "Index", cudf.Index, pd.Index, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, additional_attributes={ "__array__": array_method, "__array_function__": array_function_method, "__arrow_array__": arrow_array_method, "__cuda_array_interface__": cuda_array_interface, "dt": _AccessorAttr(DatetimeProperties), "str": _AccessorAttr(StringMethods), "cat": _AccessorAttr(_CategoricalAccessor), "__iter__": custom_iter, "__init__": _DELETE, "__new__": Index__new__, "_constructor": _FastSlowAttribute("_constructor"), "__array_ufunc__": _FastSlowAttribute("__array_ufunc__"), }, ) get_final_type_map()[cudf.StringIndex] = Index get_final_type_map()[cudf.Int8Index] = Index get_final_type_map()[cudf.Int8Index] = Index get_final_type_map()[cudf.Int16Index] = Index get_final_type_map()[cudf.Int32Index] = Index get_final_type_map()[cudf.UInt8Index] = Index get_final_type_map()[cudf.UInt16Index] = Index get_final_type_map()[cudf.UInt32Index] = Index get_final_type_map()[cudf.UInt64Index] = Index get_final_type_map()[cudf.Float32Index] = Index get_final_type_map()[cudf.GenericIndex] = Index RangeIndex = make_final_proxy_type( "RangeIndex", cudf.RangeIndex, pd.RangeIndex, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, bases=(Index,), additional_attributes={"__init__": _DELETE}, ) SparseDtype = make_final_proxy_type( "SparseDtype", _Unusable, pd.SparseDtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) SparseArray = make_final_proxy_type( "SparseDtype", _Unusable, pd.arrays.SparseArray, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) CategoricalIndex = make_final_proxy_type( "CategoricalIndex", cudf.CategoricalIndex, pd.CategoricalIndex, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, bases=(Index,), additional_attributes={"__init__": _DELETE}, ) Categorical = make_final_proxy_type( "Categorical", _Unusable, pd.Categorical, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) CategoricalDtype = make_final_proxy_type( "CategoricalDtype", cudf.CategoricalDtype, pd.CategoricalDtype, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) DatetimeIndex = make_final_proxy_type( "DatetimeIndex", cudf.DatetimeIndex, pd.DatetimeIndex, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, bases=(Index,), additional_attributes={"__init__": _DELETE}, ) DatetimeArray = make_final_proxy_type( "DatetimeArray", _Unusable, pd.arrays.DatetimeArray, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) DatetimeTZDtype = make_final_proxy_type( "DatetimeTZDtype", _Unusable, pd.DatetimeTZDtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) TimedeltaIndex = make_final_proxy_type( "TimedeltaIndex", cudf.TimedeltaIndex, pd.TimedeltaIndex, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, bases=(Index,), additional_attributes={"__init__": _DELETE}, ) TimedeltaArray = make_final_proxy_type( "TimedeltaArray", _Unusable, pd.arrays.TimedeltaArray, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) PeriodIndex = make_final_proxy_type( "PeriodIndex", _Unusable, pd.PeriodIndex, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), bases=(Index,), additional_attributes={"__init__": _DELETE}, ) PeriodArray = make_final_proxy_type( "PeriodArray", _Unusable, pd.arrays.PeriodArray, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) PeriodDtype = make_final_proxy_type( "PeriodDtype", _Unusable, pd.PeriodDtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) Period = make_final_proxy_type( "Period", _Unusable, pd.Period, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) MultiIndex = make_final_proxy_type( "MultiIndex", cudf.MultiIndex, pd.MultiIndex, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, bases=(Index,), additional_attributes={"__init__": _DELETE}, ) TimeGrouper = make_intermediate_proxy_type( "TimeGrouper", _Unusable, pd_TimeGrouper, ) Grouper = make_final_proxy_type( "Grouper", cudf.Grouper, pd.Grouper, fast_to_slow=lambda fast: pd.Grouper( **{ k: getattr(fast, k) for k in {"key", "level", "freq", "closed", "label"} if getattr(fast, k) is not None } ), slow_to_fast=lambda slow: cudf.Grouper( **{ k: getattr(slow, k) for k in {"key", "level", "freq", "closed", "label"} if getattr(slow, k) is not None } ), ) StringArray = make_final_proxy_type( "StringArray", _Unusable, pd.arrays.StringArray, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) StringDtype = make_final_proxy_type( "StringDtype", _Unusable, pd.StringDtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BooleanArray = make_final_proxy_type( "BooleanArray", _Unusable, pd.arrays.BooleanArray, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={ "__array_ufunc__": _FastSlowAttribute("__array_ufunc__") }, ) BooleanDtype = make_final_proxy_type( "BooleanDtype", _Unusable, pd.BooleanDtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) IntegerArray = make_final_proxy_type( "IntegerArray", _Unusable, pd.arrays.IntegerArray, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={ "__array_ufunc__": _FastSlowAttribute("__array_ufunc__") }, ) Int8Dtype = make_final_proxy_type( "Int8Dtype", _Unusable, pd.Int8Dtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Int16Dtype = make_final_proxy_type( "Int16Dtype", _Unusable, pd.Int16Dtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Int32Dtype = make_final_proxy_type( "Int32Dtype", _Unusable, pd.Int32Dtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Int64Dtype = make_final_proxy_type( "Int64Dtype", _Unusable, pd.Int64Dtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Int64Index = make_final_proxy_type( "Int64Index", cudf.Int64Index, pd.core.indexes.numeric.Int64Index, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, bases=(Index,), additional_attributes={"__init__": _DELETE}, ) UInt8Dtype = make_final_proxy_type( "UInt8Dtype", _Unusable, pd.UInt8Dtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) UInt16Dtype = make_final_proxy_type( "UInt16Dtype", _Unusable, pd.UInt16Dtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) UInt32Dtype = make_final_proxy_type( "UInt32Dtype", _Unusable, pd.UInt32Dtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) UInt64Dtype = make_final_proxy_type( "UInt64Dtype", _Unusable, pd.UInt64Dtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) UInt64Index = make_final_proxy_type( "UInt64Index", cudf.UInt64Index, pd.core.indexes.numeric.UInt64Index, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, bases=(Index,), additional_attributes={"__init__": _DELETE}, ) IntervalIndex = make_final_proxy_type( "IntervalIndex", cudf.IntervalIndex, pd.IntervalIndex, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, bases=(Index,), additional_attributes={"__init__": _DELETE}, ) IntervalArray = make_final_proxy_type( "IntervalArray", _Unusable, pd.arrays.IntervalArray, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) IntervalDtype = make_final_proxy_type( "IntervalDtype", cudf.IntervalDtype, pd.IntervalDtype, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Interval = make_final_proxy_type( "Interval", _Unusable, pd.Interval, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) FloatingArray = make_final_proxy_type( "FloatingArray", _Unusable, pd.arrays.FloatingArray, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={ "__array_ufunc__": _FastSlowAttribute("__array_ufunc__") }, ) Float32Dtype = make_final_proxy_type( "Float32Dtype", _Unusable, pd.Float32Dtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Float64Dtype = make_final_proxy_type( "Float64Dtype", _Unusable, pd.Float64Dtype, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Float64Index = make_final_proxy_type( "Float64Index", cudf.Float64Index, pd.core.indexes.numeric.Float64Index, fast_to_slow=lambda fast: fast.to_pandas(), slow_to_fast=cudf.from_pandas, bases=(Index,), additional_attributes={"__init__": _DELETE}, ) SeriesGroupBy = make_intermediate_proxy_type( "SeriesGroupBy", cudf.core.groupby.groupby.SeriesGroupBy, pd.core.groupby.SeriesGroupBy, ) DataFrameGroupBy = make_intermediate_proxy_type( "DataFrameGroupBy", cudf.core.groupby.groupby.DataFrameGroupBy, pd.core.groupby.DataFrameGroupBy, ) RollingGroupBy = make_intermediate_proxy_type( "RollingGroupBy", cudf.core.window.rolling.RollingGroupby, pd.core.window.rolling.RollingGroupby, ) _SeriesIlocIndexer = make_intermediate_proxy_type( "_SeriesIlocIndexer", cudf.core.series._SeriesIlocIndexer, pd.core.indexing._iLocIndexer, ) _DataFrameIlocIndexer = make_intermediate_proxy_type( "_SeriesIlocIndexer", cudf.core.dataframe._DataFrameIlocIndexer, pd.core.indexing._iLocIndexer, ) _SeriesLocIndexer = make_intermediate_proxy_type( "_SeriesLocIndexer", cudf.core.series._SeriesLocIndexer, pd.core.indexing._LocIndexer, ) _DataFrameLocIndexer = make_intermediate_proxy_type( "_DataFrameLocIndexer", cudf.core.dataframe._DataFrameLocIndexer, pd.core.indexing._LocIndexer, ) FixedForwardWindowIndexer = make_final_proxy_type( "FixedForwardWindowIndexer", _Unusable, pd.api.indexers.FixedForwardWindowIndexer, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) VariableOffsetWindowIndexer = make_final_proxy_type( "VariableOffsetWindowIndexer", _Unusable, pd.api.indexers.VariableOffsetWindowIndexer, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) Window = make_intermediate_proxy_type( "Window", _Unusable, pd.core.window.rolling.Window, ) Rolling = make_intermediate_proxy_type( "Rolling", cudf.core.window.Rolling, pd.core.window.Rolling, ) ExponentialMovingWindow = make_intermediate_proxy_type( "ExponentialMovingWindow", _Unusable, pd.core.window.ewm.ExponentialMovingWindow, ) ExponentialMovingWindowGroupby = make_intermediate_proxy_type( "ExponentialMovingWindowGroupby", _Unusable, pd.core.window.ewm.ExponentialMovingWindowGroupby, ) EWMMeanState = make_intermediate_proxy_type( "EWMMeanState", _Unusable, pd.core.window.online.EWMMeanState, ) Expanding = make_intermediate_proxy_type( "Expanding", _Unusable, pd.core.window.expanding.Expanding, ) ExpandingGroupby = make_intermediate_proxy_type( "ExpandingGroupby", _Unusable, pd.core.window.expanding.ExpandingGroupby, ) Resampler = make_intermediate_proxy_type( "Resampler", cudf.core.resample._Resampler, pd_Resampler ) StataReader = make_intermediate_proxy_type( "StataReader", _Unusable, pd.io.stata.StataReader, ) HDFStore = make_final_proxy_type( "HDFStore", _Unusable, pd.HDFStore, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) ExcelFile = make_final_proxy_type( "ExcelFile", _Unusable, pd.ExcelFile, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) ExcelWriter = make_final_proxy_type( "ExcelWriter", _Unusable, pd.ExcelWriter, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) try: from pandas.io.formats.style import Styler as pd_Styler # isort: skip Styler = make_final_proxy_type( "Styler", _Unusable, pd_Styler, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) except ImportError: # Styler requires Jinja to be installed pass _eval_func = _FunctionProxy(_Unusable(), pd.eval) def _get_eval_locals_and_globals(level, local_dict=None, global_dict=None): frame = sys._getframe(level + 3) local_dict = frame.f_locals if local_dict is None else local_dict global_dict = frame.f_globals if global_dict is None else global_dict return local_dict, global_dict @register_proxy_func(pd.eval) @nvtx.annotate( "CUDF_PANDAS_EVAL", color=_CUDF_PANDAS_NVTX_COLORS["EXECUTE_SLOW"], domain="cudf_pandas", ) def _eval( *args, parser="pandas", engine=None, local_dict=None, global_dict=None, **kwargs, ): # Custom implementation of to pre-process globals and # locals before calling pd.eval. level = kwargs.get("level", 0) local_dict, global_dict = _get_eval_locals_and_globals( level, local_dict, global_dict ) return _eval_func( *args, parser=parser, engine=engine, local_dict=local_dict, global_dict=global_dict, **kwargs, ) @nvtx.annotate( "CUDF_PANDAS_DATAFRAME_EVAL", color=_CUDF_PANDAS_NVTX_COLORS["EXECUTE_SLOW"], domain="cudf_pandas", ) def _df_eval_method(self, *args, local_dict=None, global_dict=None, **kwargs): level = kwargs.get("level", 0) local_dict, global_dict = _get_eval_locals_and_globals( level, local_dict, global_dict ) return super(type(self), self).__getattr__("eval")( *args, local_dict=local_dict, global_dict=global_dict, **kwargs ) @nvtx.annotate( "CUDF_PANDAS_DATAFRAME_QUERY", color=_CUDF_PANDAS_NVTX_COLORS["EXECUTE_SLOW"], domain="cudf_pandas", ) def _df_query_method(self, *args, local_dict=None, global_dict=None, **kwargs): # `query` API internally calls `eval`, hence we are making use of # helps of `eval` to populate locals and globals dict. level = kwargs.get("level", 0) local_dict, global_dict = _get_eval_locals_and_globals( level, local_dict, global_dict ) return super(type(self), self).__getattr__("query")( *args, local_dict=local_dict, global_dict=global_dict, **kwargs ) DataFrame.eval = _df_eval_method # type: ignore DataFrame.query = _df_query_method # type: ignore _JsonReader = make_intermediate_proxy_type( "_JsonReader", _Unusable, pd.io.json._json.JsonReader, ) _TextFileReader = make_intermediate_proxy_type( "_TextFileReader", _Unusable, pd.io.parsers.readers.TextFileReader ) _XportReader = make_intermediate_proxy_type( "_XportReader", _Unusable, pd_XportReader ) _SAS7BDATReader = make_intermediate_proxy_type( "_SAS7BDATReader", _Unusable, pd_SAS7BDATReader ) FY5253 = make_final_proxy_type( "FY5253", _Unusable, pd.offsets.FY5253, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BDay = make_final_proxy_type( "BDay", _Unusable, pd.offsets.BDay, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BMonthBegin = make_final_proxy_type( "BMonthBegin", _Unusable, pd.offsets.BMonthBegin, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BMonthEnd = make_final_proxy_type( "BMonthEnd", _Unusable, pd.offsets.BMonthEnd, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BQuarterBegin = make_final_proxy_type( "BQuarterBegin", _Unusable, pd.offsets.BQuarterBegin, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BQuarterEnd = make_final_proxy_type( "BQuarterEnd", _Unusable, pd.offsets.BQuarterEnd, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BusinessDay = make_final_proxy_type( "BusinessDay", _Unusable, pd.offsets.BusinessDay, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BusinessHour = make_final_proxy_type( "BusinessHour", _Unusable, pd.offsets.BusinessHour, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BusinessMonthBegin = make_final_proxy_type( "BusinessMonthBegin", _Unusable, pd.offsets.BusinessMonthBegin, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BusinessMonthEnd = make_final_proxy_type( "BusinessMonthEnd", _Unusable, pd.offsets.BusinessMonthEnd, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BYearBegin = make_final_proxy_type( "BYearBegin", _Unusable, pd.offsets.BYearBegin, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) BYearEnd = make_final_proxy_type( "BYearEnd", _Unusable, pd.offsets.BYearEnd, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) CBMonthBegin = make_final_proxy_type( "CBMonthBegin", _Unusable, pd.offsets.CBMonthBegin, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) CBMonthEnd = make_final_proxy_type( "CBMonthEnd", _Unusable, pd.offsets.CBMonthEnd, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) CDay = make_final_proxy_type( "CDay", _Unusable, pd.offsets.CDay, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) CustomBusinessDay = make_final_proxy_type( "CustomBusinessDay", _Unusable, pd.offsets.CustomBusinessDay, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) CustomBusinessHour = make_final_proxy_type( "CustomBusinessHour", _Unusable, pd.offsets.CustomBusinessHour, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) CustomBusinessMonthBegin = make_final_proxy_type( "CustomBusinessMonthBegin", _Unusable, pd.offsets.CustomBusinessMonthBegin, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) CustomBusinessMonthEnd = make_final_proxy_type( "CustomBusinessMonthEnd", _Unusable, pd.offsets.CustomBusinessMonthEnd, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) DateOffset = make_final_proxy_type( "DateOffset", _Unusable, pd.offsets.DateOffset, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Day = make_final_proxy_type( "Day", _Unusable, pd.offsets.Day, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Easter = make_final_proxy_type( "Easter", _Unusable, pd.offsets.Easter, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) FY5253Quarter = make_final_proxy_type( "FY5253Quarter", _Unusable, pd.offsets.FY5253Quarter, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Hour = make_final_proxy_type( "Hour", _Unusable, pd.offsets.Hour, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) LastWeekOfMonth = make_final_proxy_type( "LastWeekOfMonth", _Unusable, pd.offsets.LastWeekOfMonth, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Micro = make_final_proxy_type( "Micro", _Unusable, pd.offsets.Micro, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Milli = make_final_proxy_type( "Milli", _Unusable, pd.offsets.Milli, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Minute = make_final_proxy_type( "Minute", _Unusable, pd.offsets.Minute, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) MonthBegin = make_final_proxy_type( "MonthBegin", _Unusable, pd.offsets.MonthBegin, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) MonthEnd = make_final_proxy_type( "MonthEnd", _Unusable, pd.offsets.MonthEnd, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Nano = make_final_proxy_type( "Nano", _Unusable, pd.offsets.Nano, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) QuarterBegin = make_final_proxy_type( "QuarterBegin", _Unusable, pd.offsets.QuarterBegin, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) QuarterEnd = make_final_proxy_type( "QuarterEnd", _Unusable, pd.offsets.QuarterEnd, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Second = make_final_proxy_type( "Second", _Unusable, pd.offsets.Second, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) SemiMonthBegin = make_final_proxy_type( "SemiMonthBegin", _Unusable, pd.offsets.SemiMonthBegin, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) SemiMonthEnd = make_final_proxy_type( "SemiMonthEnd", _Unusable, pd.offsets.SemiMonthEnd, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Tick = make_final_proxy_type( "Tick", _Unusable, pd.offsets.Tick, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Week = make_final_proxy_type( "Week", _Unusable, pd.offsets.Week, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) WeekOfMonth = make_final_proxy_type( "WeekOfMonth", _Unusable, pd.offsets.WeekOfMonth, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) YearBegin = make_final_proxy_type( "YearBegin", _Unusable, pd.offsets.YearBegin, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) YearEnd = make_final_proxy_type( "YearEnd", _Unusable, pd.offsets.YearEnd, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) Flags = make_final_proxy_type( "Flags", _Unusable, pd.Flags, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) NamedAgg = make_final_proxy_type( "NamedAgg", _Unusable, pd.NamedAgg, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={"__hash__": _FastSlowAttribute("__hash__")}, ) ArrowExtensionArray = make_final_proxy_type( "ExtensionArray", _Unusable, pd.arrays.ArrowExtensionArray, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), ) # The following are subclasses of `pandas.core.base.PandasObj`, # excluding subclasses defined in `pandas.core.internals`. These are # not strictly part of the Pandas public API, but they do appear as # return types. _PANDAS_OBJ_FINAL_TYPES = [ pd.core.arrays.sparse.array.SparseArray, pd.core.indexes.frozen.FrozenList, pd.core.indexes.category.CategoricalIndex, pd.core.indexes.datetimelike.DatetimeTimedeltaMixin, pd.core.indexes.datetimelike.DatetimeIndexOpsMixin, pd.core.indexes.extension.NDArrayBackedExtensionIndex, pd.core.indexes.numeric.IntegerIndex, pd.core.indexes.numeric.NumericIndex, pd.core.generic.NDFrame, pd.core.indexes.accessors.PeriodProperties, pd.core.indexes.accessors.Properties, pd.plotting._core.PlotAccessor, pd.io.sql.SQLiteTable, pd.io.sql.SQLTable, pd.io.sql.SQLDatabase, pd.io.sql.SQLiteDatabase, pd.io.sql.PandasSQL, ] _PANDAS_OBJ_INTERMEDIATE_TYPES = [ pd.core.groupby.groupby.GroupByPlot, pd.core.groupby.groupby.GroupBy, pd.core.groupby.groupby.BaseGroupBy, ] for typ in _PANDAS_OBJ_FINAL_TYPES: if typ.__name__ in globals(): # if we already defined a proxy type # corresponding to this type, use that. continue globals()[typ.__name__] = make_final_proxy_type( typ.__name__, _Unusable, typ, fast_to_slow=_Unusable(), slow_to_fast=_Unusable(), additional_attributes={ "__array__": array_method, "__array_function__": array_function_method, "__array_ufunc__": _FastSlowAttribute("__array_ufunc__"), "__hash__": _FastSlowAttribute("__hash__"), }, ) for typ in _PANDAS_OBJ_INTERMEDIATE_TYPES: if typ.__name__ in globals(): # if we already defined a proxy type # corresponding to this type, use that. continue globals()[typ.__name__] = make_intermediate_proxy_type( typ.__name__, _Unusable, typ, )
0
rapidsai_public_repos/cudf/python/cudf/cudf/pandas
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/scripts/run-pandas-tests.sh
#!/usr/bin/env bash # SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 # Run Pandas unit tests with cudf.pandas. # # Usage: # run-pandas-tests.sh <pytest args> <path to pandas tests (optional)> # # Examples # Run a single test # run-pandas-tests.sh -n auto -v tests/groupby/test_groupby_dropna.py # Run all tests # run-pandas-tests.sh --tb=line --report-log=log.json # # This script creates a `pandas-testing` directory if it doesn't exist # Grab the Pandas source corresponding to the version # of Pandas installed. PANDAS_VERSION=$(python -c "import pandas; print(pandas.__version__)") PYTEST_IGNORES="--ignore=tests/io/test_user_agent.py" mkdir -p pandas-testing cd pandas-testing if [ ! -d "pandas" ]; then git clone https://github.com/pandas-dev/pandas fi cd pandas && git clean -fdx && git checkout v$PANDAS_VERSION && cd ../ if [ ! -d "pandas-tests" ]; then # Copy just the tests out of the Pandas source tree. # Not exactly sure why this is needed but Pandas # imports fail if we don't do this: mkdir -p pandas-tests cp -r pandas/pandas/tests pandas-tests/ # directory layout requirement # conftest.py # pyproject.toml # tests/ cp pandas/pandas/conftest.py pandas-tests/conftest.py # Vendored from pandas/pyproject.toml cat > pandas-tests/pyproject.toml << \EOF [tool.pytest.ini_options] xfail_strict = true filterwarnings = [ "error:Sparse:FutureWarning", "error:The SparseArray:FutureWarning", # Deprecation gives warning on import during pytest collection "ignore:pandas.core.index is deprecated:FutureWarning:importlib", "ignore:pandas.util.testing is deprecated:FutureWarning:importlib", # Will be fixed in numba 0.56: https://github.com/numba/numba/issues/7758 "ignore:`np.MachAr` is deprecated:DeprecationWarning:numba", ] markers = [ "single_cpu: tests that should run on a single cpu only", "slow: mark a test as slow", "network: mark a test as network", "db: tests requiring a database (mysql or postgres)", "clipboard: mark a pd.read_clipboard test", "arm_slow: mark a test as slow for arm64 architecture", "arraymanager: mark a test to run with ArrayManager enabled", ] EOF # append the contents of patch-confest.py to conftest.py cat ../python/cudf/cudf/pandas/scripts/conftest-patch.py >> pandas-tests/conftest.py # Substitute `pandas.tests` with a relative import. # This will depend on the location of the test module relative to # the pandas-tests directory. for hit in $(find . -iname '*.py' | xargs grep "pandas.tests" | cut -d ":" -f 1 | sort | uniq); do # Get the relative path to the test module test_module=$(echo $hit | cut -d "/" -f 2-) # Get the number of directories to go up num_dirs=$(echo $test_module | grep -o "/" | wc -l) num_dots=$(($num_dirs - 2)) # Construct the relative import relative_import=$(printf "%0.s." $(seq 1 $num_dots)) # Replace the import sed -i "s/pandas.tests/${relative_import}/g" $hit done fi # append the contents of patch-confest.py to conftest.py cat ../python/cudf/cudf/pandas/scripts/conftest-patch.py >> pandas-tests/conftest.py # Run the tests cd pandas-tests/ # TODO: Get a postgres & mysql container set up on the CI # test_overwrite_warns unsafely patchs over Series.mean affecting other tests when run in parallel # test_complex_series_frame_alignment randomly selects a DataFrames and axis to test but particular random selection(s) always fails # test_numpy_ufuncs_basic compares floating point values to unbounded precision, sometimes leading to failures TEST_NUMPY_UFUNCS_BASIC_FLAKY="test_numpy_ufuncs_basic[float-exp] \ and not test_numpy_ufuncs_basic[float-exp2] \ and not test_numpy_ufuncs_basic[float-expm1] \ and not test_numpy_ufuncs_basic[float-log] \ and not test_numpy_ufuncs_basic[float-log2] \ and not test_numpy_ufuncs_basic[float-log10] \ and not test_numpy_ufuncs_basic[float-log1p] \ and not test_numpy_ufuncs_basic[float-sqrt] \ and not test_numpy_ufuncs_basic[float-sin] \ and not test_numpy_ufuncs_basic[float-cos] \ and not test_numpy_ufuncs_basic[float-tan] \ and not test_numpy_ufuncs_basic[float-arcsin] \ and not test_numpy_ufuncs_basic[float-arccos] \ and not test_numpy_ufuncs_basic[float-arctan] \ and not test_numpy_ufuncs_basic[float-sinh] \ and not test_numpy_ufuncs_basic[float-cosh] \ and not test_numpy_ufuncs_basic[float-tanh] \ and not test_numpy_ufuncs_basic[float-arcsinh] \ and not test_numpy_ufuncs_basic[float-arccosh] \ and not test_numpy_ufuncs_basic[float-arctanh] \ and not test_numpy_ufuncs_basic[float-deg2rad] \ and not test_numpy_ufuncs_basic[float-rad2deg] \ and not test_numpy_ufuncs_basic[num_float64-exp] \ and not test_numpy_ufuncs_basic[num_float64-exp2] \ and not test_numpy_ufuncs_basic[num_float64-expm1] \ and not test_numpy_ufuncs_basic[num_float64-log] \ and not test_numpy_ufuncs_basic[num_float64-log2] \ and not test_numpy_ufuncs_basic[num_float64-log10] \ and not test_numpy_ufuncs_basic[num_float64-log1p] \ and not test_numpy_ufuncs_basic[num_float64-sqrt] \ and not test_numpy_ufuncs_basic[num_float64-sin] \ and not test_numpy_ufuncs_basic[num_float64-cos] \ and not test_numpy_ufuncs_basic[num_float64-tan] \ and not test_numpy_ufuncs_basic[num_float64-arcsin] \ and not test_numpy_ufuncs_basic[num_float64-arccos] \ and not test_numpy_ufuncs_basic[num_float64-arctan] \ and not test_numpy_ufuncs_basic[num_float64-sinh] \ and not test_numpy_ufuncs_basic[num_float64-cosh] \ and not test_numpy_ufuncs_basic[num_float64-tanh] \ and not test_numpy_ufuncs_basic[num_float64-arcsinh] \ and not test_numpy_ufuncs_basic[num_float64-arccosh] \ and not test_numpy_ufuncs_basic[num_float64-arctanh] \ and not test_numpy_ufuncs_basic[num_float64-deg2rad] \ and not test_numpy_ufuncs_basic[num_float64-rad2deg] \ and not test_numpy_ufuncs_basic[num_float32-exp] \ and not test_numpy_ufuncs_basic[num_float32-exp2] \ and not test_numpy_ufuncs_basic[num_float32-expm1] \ and not test_numpy_ufuncs_basic[num_float32-log] \ and not test_numpy_ufuncs_basic[num_float32-log2] \ and not test_numpy_ufuncs_basic[num_float32-log10] \ and not test_numpy_ufuncs_basic[num_float32-log1p] \ and not test_numpy_ufuncs_basic[num_float32-sqrt] \ and not test_numpy_ufuncs_basic[num_float32-sin] \ and not test_numpy_ufuncs_basic[num_float32-cos] \ and not test_numpy_ufuncs_basic[num_float32-tan] \ and not test_numpy_ufuncs_basic[num_float32-arcsin] \ and not test_numpy_ufuncs_basic[num_float32-arccos] \ and not test_numpy_ufuncs_basic[num_float32-arctan] \ and not test_numpy_ufuncs_basic[num_float32-sinh] \ and not test_numpy_ufuncs_basic[num_float32-cosh] \ and not test_numpy_ufuncs_basic[num_float32-tanh] \ and not test_numpy_ufuncs_basic[num_float32-arcsinh] \ and not test_numpy_ufuncs_basic[num_float32-arccosh] \ and not test_numpy_ufuncs_basic[num_float32-arctanh] \ and not test_numpy_ufuncs_basic[num_float32-deg2rad] \ and not test_numpy_ufuncs_basic[num_float32-rad2deg] \ and not test_numpy_ufuncs_basic[nullable_float-exp] \ and not test_numpy_ufuncs_basic[nullable_float-exp2] \ and not test_numpy_ufuncs_basic[nullable_float-expm1] \ and not test_numpy_ufuncs_basic[nullable_float-log] \ and not test_numpy_ufuncs_basic[nullable_float-log2] \ and not test_numpy_ufuncs_basic[nullable_float-log10] \ and not test_numpy_ufuncs_basic[nullable_float-log1p] \ and not test_numpy_ufuncs_basic[nullable_float-sqrt] \ and not test_numpy_ufuncs_basic[nullable_float-sin] \ and not test_numpy_ufuncs_basic[nullable_float-cos] \ and not test_numpy_ufuncs_basic[nullable_float-tan] \ and not test_numpy_ufuncs_basic[nullable_float-arcsin] \ and not test_numpy_ufuncs_basic[nullable_float-arccos] \ and not test_numpy_ufuncs_basic[nullable_float-arctan] \ and not test_numpy_ufuncs_basic[nullable_float-sinh] \ and not test_numpy_ufuncs_basic[nullable_float-cosh] \ and not test_numpy_ufuncs_basic[nullable_float-tanh] \ and not test_numpy_ufuncs_basic[nullable_float-arcsinh] \ and not test_numpy_ufuncs_basic[nullable_float-arccosh] \ and not test_numpy_ufuncs_basic[nullable_float-arctanh] \ and not test_numpy_ufuncs_basic[nullable_float-deg2rad] \ and not test_numpy_ufuncs_basic[nullable_float-rad2deg]" PANDAS_CI="1" python -m pytest -p cudf.pandas \ -m "not single_cpu and not db" \ -k "not test_overwrite_warns and not test_complex_series_frame_alignment and not $TEST_NUMPY_UFUNCS_BASIC_FLAKY" \ --durations=50 \ --import-mode=importlib \ -o xfail_strict=True \ ${PYTEST_IGNORES} $@ mv *.json .. cd .. rm -rf pandas-testing/pandas-tests/
0
rapidsai_public_repos/cudf/python/cudf/cudf/pandas
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/scripts/conftest-patch.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 import contextlib import os import sys from functools import wraps import pytest def replace_kwargs(new_kwargs): def wrapper(func): @wraps(func) def wrapped(*args, **kwargs): kwargs.update(new_kwargs) return func(*args, **kwargs) return wrapped return wrapper @contextlib.contextmanager def null_assert_warnings(*args, **kwargs): try: yield [] finally: pass @pytest.fixture(scope="session", autouse=True) # type: ignore def patch_testing_functions(): tm.assert_produces_warning = null_assert_warnings pytest.raises = replace_kwargs({"match": None})(pytest.raises) sys.path.append(os.path.dirname(__file__))
0
rapidsai_public_repos/cudf/python/cudf/cudf/pandas
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/scripts/summarize-test-results.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 """ Summarizes the test results per module. Examples: python summarize-test-results.py log.json python summarize-test-results.py log.json --output json python summarize-test-results.py log.json --output table """ import argparse import json from rich.console import Console from rich.table import Table PANDAS_TEST_PREFIX = "pandas-tests/" def get_per_module_results(log_file_name): per_module_results = {} with open(log_file_name) as f: for line in f: try: line = json.loads(line) except Exception: line = {} if "outcome" in line: outcome = line["outcome"] # outcome can be "passed", "failed", or "skipped". # Depending on other fields, it can indicate # an errored, xpassed, or xfailed test. if line.get("when", None) != "call": # when != call indicates test setup or teardown if outcome == "failed": # if the test failed during setup or teardown, # it counts as an "errored" test: outcome = "errored" else: # we don't care about other outcomes during # setup or teardown continue else: if line.get("wasxfail", False) and outcome == "passed": # it's an xpassed test outcome = "failed" module_name = ( line["nodeid"] .split("::")[0] .removeprefix(PANDAS_TEST_PREFIX) ) per_module_results.setdefault(module_name, {}) per_module_results[module_name].setdefault("total", 0) per_module_results[module_name].setdefault(outcome, 0) per_module_results[module_name]["total"] += 1 per_module_results[module_name][outcome] += 1 return per_module_results def sort_results(results): sorted_keys = sorted( results, key=lambda key: results[key].get("failed", 0) ) return {key: results[key] for key in sorted_keys} def print_results_as_json(results): print(json.dumps(results, indent=4)) def print_results_as_table(results): table = Table() table.add_column("Test module") table.add_column("Total tests") table.add_column("Passed tests") table.add_column("Failed tests") table.add_column("Errored tests") table.add_column("Skipped tests") totals = {"total": 0, "passed": 0, "failed": 0, "errored": 0, "skipped": 0} for module_name, row in results.items(): values = [] for key in ("total", "passed", "failed", "errored", "skipped"): totals[key] += row.get(key, 0) values.append(row.get(key, 0)) table.add_row(module_name, *map(str, values)) table.add_section() table.add_row( "total={}, passed={}, failed={}, errored={}, skipped={}".format( *map(str, totals.values()) ) ) console = Console() console.print(table) if __name__ == "__main__": # parse arguments parser = argparse.ArgumentParser() parser.add_argument( "log_file_name", nargs=1, help="The input log file name" ) parser.add_argument( "--output", choices=["json", "table"], default="table", help="The output format", ) args = parser.parse_args() results = sort_results(get_per_module_results(args.log_file_name[0])) if args.output == "json": print_results_as_json(results) else: print_results_as_table(results)
0
rapidsai_public_repos/cudf/python/cudf/cudf/pandas
rapidsai_public_repos/cudf/python/cudf/cudf/pandas/scripts/analyze-test-failures.py
# SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. # All rights reserved. # SPDX-License-Identifier: Apache-2.0 """ Prints the most common test failures for the given tests. Usage: python analyze-test-failures.py <path-to-test-log> <file-or-pattern> Example: python analyze-test-failures.py log.json frame/* """ import json import sys from collections import Counter from fnmatch import fnmatch from rich.console import Console from rich.table import Table PANDAS_TEST_PREFIX = "pandas-tests/" def count_failures(log_file_name, pattern): counter = Counter() with open(log_file_name) as f: for line in f: try: line = json.loads(line) except Exception: continue if ( "location" in line and line["when"] == "call" and line["outcome"] == "failed" ): line_module_name = line["location"][0].removeprefix( PANDAS_TEST_PREFIX ) if fnmatch(line_module_name, pattern): if "longrepr" in line and line["longrepr"]: if isinstance(line["longrepr"], (tuple, list)): message = line["longrepr"][2].splitlines()[0] elif isinstance(line["longrepr"], str): message = line["longrepr"] else: message = line["longrepr"]["reprcrash"][ "message" ].splitlines()[0] counter[message] += 1 return counter def render_results(results, num_rows=20): table = Table() table.add_column("Failure message") table.add_column("Number of occurences") for msg, num in results.most_common(20): table.add_row(msg, str(num)) console = Console() console.print(table) if __name__ == "__main__": log_file_name = sys.argv[1] pattern = sys.argv[2] render_results(count_failures(log_file_name, pattern), num_rows=20)
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/testing/_utils.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. import itertools import string import warnings from collections import abc from contextlib import contextmanager from decimal import Decimal import cupy import numpy as np import pandas as pd import pytest from numba.core.typing import signature as nb_signature from numba.core.typing.templates import AbstractTemplate from numba.cuda.cudadecl import registry as cuda_decl_registry from numba.cuda.cudaimpl import lower as cuda_lower from pandas import testing as tm import cudf from cudf._lib.null_mask import bitmask_allocation_size_bytes from cudf.api.types import is_scalar from cudf.core.column.timedelta import _unit_to_nanoseconds_conversion from cudf.core.udf.strings_lowering import cast_string_view_to_udf_string from cudf.core.udf.strings_typing import StringView, string_view, udf_string from cudf.utils import dtypes as dtypeutils supported_numpy_dtypes = [ "bool", "int8", "int16", "int32", "int64", "float32", "float64", "datetime64[ms]", "datetime64[us]", ] SIGNED_INTEGER_TYPES = sorted(list(dtypeutils.SIGNED_INTEGER_TYPES)) UNSIGNED_TYPES = sorted(list(dtypeutils.UNSIGNED_TYPES)) INTEGER_TYPES = sorted(list(dtypeutils.INTEGER_TYPES)) FLOAT_TYPES = sorted(list(dtypeutils.FLOAT_TYPES)) SIGNED_TYPES = sorted(list(dtypeutils.SIGNED_TYPES)) NUMERIC_TYPES = sorted(list(dtypeutils.NUMERIC_TYPES)) DATETIME_TYPES = sorted(list(dtypeutils.DATETIME_TYPES)) TIMEDELTA_TYPES = sorted(list(dtypeutils.TIMEDELTA_TYPES)) OTHER_TYPES = sorted(list(dtypeutils.OTHER_TYPES)) ALL_TYPES = sorted(list(dtypeutils.ALL_TYPES)) SERIES_OR_INDEX_NAMES = [ None, pd.NA, cudf.NA, np.nan, float("NaN"), "abc", 1, pd.NaT, np.datetime64("nat"), np.timedelta64("NaT"), np.timedelta64(10, "D"), np.timedelta64(5, "D"), np.datetime64("1970-01-01 00:00:00.000000001"), np.datetime64("1970-01-01 00:00:00.000000002"), pd.Timestamp(1), pd.Timestamp(2), pd.Timedelta(1), pd.Timedelta(2), Decimal("NaN"), Decimal("1.2"), np.int64(1), np.int32(1), np.float32(1), pd.Timestamp(1), ] def set_random_null_mask_inplace(series, null_probability=0.5, seed=None): """Randomly nullify elements in series with the provided probability.""" probs = [null_probability, 1 - null_probability] rng = np.random.default_rng(seed=seed) mask = rng.choice([False, True], size=len(series), p=probs) series.iloc[mask] = None # TODO: This function should be removed. Anywhere that it is being used should # instead be generating a random boolean array (bytemask) and use the public # APIs to set those elements to None. def random_bitmask(size): """ Parameters ---------- size : int number of bits """ sz = bitmask_allocation_size_bytes(size) data = np.random.randint(0, 255, dtype="u1", size=sz) return data.view("i1") def expand_bits_to_bytes(arr): def fix_binary(bstr): bstr = bstr[2:] diff = 8 - len(bstr) return ("0" * diff + bstr)[::-1] ba = bytearray(arr.data) return list(map(int, "".join(map(fix_binary, map(bin, ba))))) def count_zero(arr): arr = np.asarray(arr) return np.count_nonzero(arr == 0) def assert_eq(left, right, **kwargs): """Assert that two cudf-like things are equivalent This equality test works for pandas/cudf dataframes/series/indexes/scalars in the same way, and so makes it easier to perform parametrized testing without switching between assert_frame_equal/assert_series_equal/... functions. """ # dtypes that we support but Pandas doesn't will convert to # `object`. Check equality before that happens: if kwargs.get("check_dtype", True): if hasattr(left, "dtype") and hasattr(right, "dtype"): if isinstance( left.dtype, cudf.core.dtypes._BaseDtype ) and not isinstance( left.dtype, cudf.CategoricalDtype ): # leave categorical comparison to Pandas assert_eq(left.dtype, right.dtype) if hasattr(left, "to_pandas"): left = left.to_pandas() if hasattr(right, "to_pandas"): right = right.to_pandas() if isinstance(left, cupy.ndarray): left = cupy.asnumpy(left) if isinstance(right, cupy.ndarray): right = cupy.asnumpy(right) if isinstance(left, (pd.DataFrame, pd.Series, pd.Index)): # TODO: A warning is emitted from the function # pandas.testing.assert_[series, frame, index]_equal for some inputs: # "DeprecationWarning: elementwise comparison failed; this will raise # an error in the future." # or "FutureWarning: elementwise ..." # This warning comes from a call from pandas to numpy. It is ignored # here because it cannot be fixed within cudf. with warnings.catch_warnings(): warnings.simplefilter( "ignore", (DeprecationWarning, FutureWarning) ) if isinstance(left, pd.DataFrame): tm.assert_frame_equal(left, right, **kwargs) elif isinstance(left, pd.Series): tm.assert_series_equal(left, right, **kwargs) else: tm.assert_index_equal(left, right, **kwargs) elif isinstance(left, np.ndarray) and isinstance(right, np.ndarray): if np.issubdtype(left.dtype, np.floating) and np.issubdtype( right.dtype, np.floating ): assert np.allclose(left, right, equal_nan=True) else: assert np.array_equal(left, right) else: # Use the overloaded __eq__ of the operands if left == right: return True elif any(np.issubdtype(type(x), np.floating) for x in (left, right)): np.testing.assert_almost_equal(left, right) else: np.testing.assert_equal(left, right) return True def assert_neq(left, right, **kwargs): __tracebackhide__ = True try: assert_eq(left, right, **kwargs) except AssertionError: pass else: raise AssertionError def assert_exceptions_equal( lfunc, rfunc, lfunc_args_and_kwargs=None, rfunc_args_and_kwargs=None, check_exception_type=True, ): """Compares if two functions ``lfunc`` and ``rfunc`` raise same exception or not. Parameters ---------- lfunc : callable A callable function to obtain the Exception. rfunc : callable A callable function to compare the Exception obtained by calling ``rfunc``. lfunc_args_and_kwargs : tuple, default None Tuple containing positional arguments at first position, and key-word arguments at second position that need to be passed into ``lfunc``. If the tuple is of length 1, it must either contain positional arguments(as a Sequence) or key-word arguments(as a Mapping dict). rfunc_args_and_kwargs : tuple, default None Tuple containing positional arguments at first position, and key-word arguments at second position that need to be passed into ``rfunc``. If the tuple is of length 1, it must either contain positional arguments(as a Sequence) or key-word arguments(as a Mapping dict). check_exception_type : boolean, default True Whether to compare the exception types raised by ``lfunc`` with ``rfunc`` exception type or not. If False, ``rfunc`` is simply evaluated against `Exception` type. Returns ------- None If exceptions raised by ``lfunc`` and ``rfunc`` match. Raises ------ AssertionError If call to ``lfunc`` doesn't raise any Exception. """ lfunc_args, lfunc_kwargs = _get_args_kwars_for_assert_exceptions( lfunc_args_and_kwargs ) rfunc_args, rfunc_kwargs = _get_args_kwars_for_assert_exceptions( rfunc_args_and_kwargs ) try: lfunc(*lfunc_args, **lfunc_kwargs) except KeyboardInterrupt: raise except Exception as e: with pytest.raises(type(e) if check_exception_type else Exception): rfunc(*rfunc_args, **rfunc_kwargs) else: raise AssertionError("Expected to fail with an Exception.") def _get_args_kwars_for_assert_exceptions(func_args_and_kwargs): if func_args_and_kwargs is None: return [], {} else: if len(func_args_and_kwargs) == 1: func_args, func_kwargs = [], {} if isinstance(func_args_and_kwargs[0], abc.Sequence): func_args = func_args_and_kwargs[0] elif isinstance(func_args_and_kwargs[0], abc.Mapping): func_kwargs = func_args_and_kwargs[0] else: raise ValueError( "length 1 func_args_and_kwargs must be " "either a Sequence or a Mapping" ) elif len(func_args_and_kwargs) == 2: if not isinstance(func_args_and_kwargs[0], abc.Sequence): raise ValueError( "Positional argument at 1st position of " "func_args_and_kwargs should be a sequence." ) if not isinstance(func_args_and_kwargs[1], abc.Mapping): raise ValueError( "Key-word argument at 2nd position of " "func_args_and_kwargs should be a dictionary mapping." ) func_args, func_kwargs = func_args_and_kwargs else: raise ValueError("func_args_and_kwargs must be of length 1 or 2") return func_args, func_kwargs def gen_rand(dtype, size, **kwargs): dtype = cudf.dtype(dtype) if dtype.kind == "f": res = np.random.random(size=size).astype(dtype) if kwargs.get("positive_only", False): return res else: return res * 2 - 1 elif dtype == np.int8 or dtype == np.int16: low = kwargs.get("low", -32) high = kwargs.get("high", 32) return np.random.randint(low=low, high=high, size=size).astype(dtype) elif dtype.kind == "i": low = kwargs.get("low", -10000) high = kwargs.get("high", 10000) return np.random.randint(low=low, high=high, size=size).astype(dtype) elif dtype == np.uint8 or dtype == np.uint16: low = kwargs.get("low", 0) high = kwargs.get("high", 32) return np.random.randint(low=low, high=high, size=size).astype(dtype) elif dtype.kind == "u": low = kwargs.get("low", 0) high = kwargs.get("high", 128) return np.random.randint(low=low, high=high, size=size).astype(dtype) elif dtype.kind == "b": low = kwargs.get("low", 0) high = kwargs.get("high", 2) return np.random.randint(low=low, high=high, size=size).astype( np.bool_ ) elif dtype.kind == "M": low = kwargs.get("low", 0) time_unit, _ = np.datetime_data(dtype) high = kwargs.get( "high", int(1e18) / _unit_to_nanoseconds_conversion[time_unit], ) return pd.to_datetime( np.random.randint(low=low, high=high, size=size), unit=time_unit ) elif dtype.kind in ("O", "U"): low = kwargs.get("low", 10) high = kwargs.get("high", 11) nchars = np.random.randint(low=low, high=high, size=1)[0] char_options = np.array(list(string.ascii_letters + string.digits)) all_chars = "".join(np.random.choice(char_options, nchars * size)) return np.array( [all_chars[nchars * i : nchars * (i + 1)] for i in range(size)] ) raise NotImplementedError(f"dtype.kind={dtype.kind}") def gen_rand_series(dtype, size, **kwargs): values = gen_rand(dtype, size, **kwargs) if kwargs.get("has_nulls", False): return cudf.Series.from_masked_array(values, random_bitmask(size)) return cudf.Series(values) def _decimal_series(input, dtype): return cudf.Series( [x if x is None else Decimal(x) for x in input], dtype=dtype, ) @contextmanager def does_not_raise(): yield def assert_column_memory_eq( lhs: cudf.core.column.ColumnBase, rhs: cudf.core.column.ColumnBase ): """Assert the memory location and size of `lhs` and `rhs` are equivalent. Both data pointer and mask pointer are checked. Also recursively check for children to the same constraints. Also fails check if the number of children mismatches at any level. """ def get_ptr(x) -> int: return x.get_ptr(mode="read") if x else 0 assert get_ptr(lhs.base_data) == get_ptr(rhs.base_data) assert get_ptr(lhs.base_mask) == get_ptr(rhs.base_mask) assert lhs.base_size == rhs.base_size assert lhs.offset == rhs.offset assert lhs.size == rhs.size assert len(lhs.base_children) == len(rhs.base_children) for lhs_child, rhs_child in zip(lhs.base_children, rhs.base_children): assert_column_memory_eq(lhs_child, rhs_child) if isinstance(lhs, cudf.core.column.CategoricalColumn) and isinstance( rhs, cudf.core.column.CategoricalColumn ): assert_column_memory_eq(lhs.categories, rhs.categories) assert_column_memory_eq(lhs.codes, rhs.codes) def assert_column_memory_ne( lhs: cudf.core.column.ColumnBase, rhs: cudf.core.column.ColumnBase ): try: assert_column_memory_eq(lhs, rhs) except AssertionError: return raise AssertionError("lhs and rhs holds the same memory.") def _create_pandas_series_float64_default( data=None, index=None, dtype=None, *args, **kwargs ): # Wrapper around pd.Series using a float64 # default dtype for empty data to silence warnings. # TODO: Remove this in pandas-2.0 upgrade if dtype is None and ( data is None or (not is_scalar(data) and len(data) == 0) ): dtype = "float64" return pd.Series(data=data, index=index, dtype=dtype, *args, **kwargs) def _create_cudf_series_float64_default( data=None, index=None, dtype=None, *args, **kwargs ): # Wrapper around cudf.Series using a float64 # default dtype for empty data to silence warnings. # TODO: Remove this in pandas-2.0 upgrade if dtype is None and ( data is None or (not is_scalar(data) and len(data) == 0) ): dtype = "float64" return cudf.Series(data=data, index=index, dtype=dtype, *args, **kwargs) parametrize_numeric_dtypes_pairwise = pytest.mark.parametrize( "left_dtype,right_dtype", list(itertools.combinations_with_replacement(NUMERIC_TYPES, 2)), ) @contextmanager def expect_warning_if(condition, warning=FutureWarning, *args, **kwargs): """Catch a warning using pytest.warns if the expect_warning is True. All arguments are forwarded to pytest.warns if expect_warning is True. """ if condition: with pytest.warns(warning, *args, **kwargs): yield else: yield def sv_to_udf_str(sv): """ Cast a string_view object to a udf_string object This placeholder function never runs in python It exists only for numba to have something to replace with the typing and lowering code below This is similar conceptually to needing a translation engine to emit an expression in target language "B" when there is no equivalent in the source language "A" to translate from. This function effectively defines the expression in language "A" and the associated typing and lowering describe the translation process, despite the expression having no meaning in language "A" """ pass @cuda_decl_registry.register_global(sv_to_udf_str) class StringViewToUDFStringDecl(AbstractTemplate): def generic(self, args, kws): if isinstance(args[0], StringView) and len(args) == 1: return nb_signature(udf_string, string_view) @cuda_lower(sv_to_udf_str, string_view) def sv_to_udf_str_testing_lowering(context, builder, sig, args): return cast_string_view_to_udf_string( context, builder, sig.args[0], sig.return_type, args[0] )
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/testing/testing.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. from __future__ import annotations from typing import Union import cupy as cp import numpy as np import pandas as pd import cudf from cudf._lib.unary import is_nan from cudf.api.types import ( is_categorical_dtype, is_decimal_dtype, is_interval_dtype, is_list_dtype, is_numeric_dtype, is_string_dtype, is_struct_dtype, ) from cudf.core.missing import NA, NaT def dtype_can_compare_equal_to_other(dtype): # return True if values of this dtype can compare # as equal to equal values of a different dtype return not ( is_string_dtype(dtype) or is_list_dtype(dtype) or is_struct_dtype(dtype) or is_decimal_dtype(dtype) or is_interval_dtype(dtype) ) def _check_isinstance(left, right, obj): if not isinstance(left, obj): raise AssertionError( f"{obj} Expected type {obj}, found {type(left)} instead" ) elif not isinstance(right, obj): raise AssertionError( f"{obj} Expected type {obj}, found {type(right)} instead" ) def raise_assert_detail(obj, message, left, right, diff=None): msg = f"""{obj} are different {message} [left]: {left} [right]: {right}""" if diff is not None: msg += f"\n[diff]: {diff}" raise AssertionError(msg) def _check_types( left, right, check_categorical=True, exact="equiv", obj="Index" ): if not exact or exact == "equiv": if ( isinstance(left, cudf.RangeIndex) and isinstance( right, ( cudf.Int8Index, cudf.Int16Index, cudf.Int32Index, cudf.Int64Index, ), ) ) or ( isinstance(right, cudf.RangeIndex) and isinstance( left, ( cudf.Int8Index, cudf.Int16Index, cudf.Int32Index, cudf.Int64Index, ), ) ): return if type(left) != type(right): raise_assert_detail( obj, "Class types are different", f"{type(left)}", f"{type(right)}" ) if ( exact and not isinstance(left, cudf.MultiIndex) and is_categorical_dtype(left) ): if left.dtype != right.dtype: raise_assert_detail( obj, "Categorical difference", f"{left}", f"{right}" ) def assert_column_equal( left, right, check_dtype=True, check_column_type="equiv", check_less_precise=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_category_order=True, rtol=1e-05, atol=1e-08, obj="ColumnBase", ): """ Check that left and right columns are equal This function is intended to compare two columns and output any differences. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : Column left Column to compare right : Column right Column to compare check_dtype : bool, default True Whether to check the Column dtype is identical. check_column_type : bool or {'equiv'}, default 'equiv' Whether to check the columns class, dtype and inferred_type are identical. Currently it is idle, and similar to pandas. check_less_precise : bool or int, default False Not yet supported check_exact : bool, default False Whether to compare number exactly. check_datetime_like_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_category_order : bool, default True Whether to compare category order of internal Categoricals rtol : float, default 1e-5 Relative tolerance. Only used when `check_exact` is False. atol : float, default 1e-8 Absolute tolerance. Only used when `check_exact` is False. obj : str, default 'ColumnBase' Specify object name being compared, internally used to show appropriate assertion message. """ if check_dtype is True: if ( is_categorical_dtype(left) and is_categorical_dtype(right) and not check_categorical ): pass else: if type(left) != type(right) or left.dtype != right.dtype: msg1 = f"{left.dtype}" msg2 = f"{right.dtype}" raise_assert_detail(obj, "Dtypes are different", msg1, msg2) else: if left.null_count == len(left) and right.null_count == len(right): return True if check_datetimelike_compat: if np.issubdtype(left.dtype, np.datetime64): right = right.astype(left.dtype) elif np.issubdtype(right.dtype, np.datetime64): left = left.astype(right.dtype) if np.issubdtype(left.dtype, np.datetime64): if not left.equals(right): raise AssertionError( f"[datetimelike_compat=True] {left.values} " f"is not equal to {right.values}." ) return if check_exact and check_categorical: if is_categorical_dtype(left) and is_categorical_dtype(right): left_cat = left.categories right_cat = right.categories if check_category_order: assert_index_equal( left_cat, right_cat, exact=check_dtype, check_exact=True, check_categorical=False, rtol=rtol, atol=atol, ) assert_column_equal( left.codes, right.codes, check_dtype=check_dtype, check_exact=True, check_categorical=False, check_category_order=False, rtol=rtol, atol=atol, ) if left.ordered != right.ordered: msg1 = f"{left.ordered}" msg2 = f"{right.ordered}" raise_assert_detail( f"{obj} category", "Orders are different", msg1, msg2 ) if ( not check_dtype and is_categorical_dtype(left) and is_categorical_dtype(right) ): left = left.astype(left.categories.dtype) right = right.astype(right.categories.dtype) columns_equal = False if left.size == right.size == 0: columns_equal = True elif not ( ( not dtype_can_compare_equal_to_other(left.dtype) and is_numeric_dtype(right) ) or ( is_numeric_dtype(left) and not dtype_can_compare_equal_to_other(right) ) ): try: # nulls must be in the same places for all dtypes columns_equal = cp.all( left.isnull().values == right.isnull().values ) if columns_equal and not check_exact and is_numeric_dtype(left): # non-null values must be the same columns_equal = cp.allclose( left.apply_boolean_mask( left.isnull().unary_operator("not") ).values, right.apply_boolean_mask( right.isnull().unary_operator("not") ).values, ) if columns_equal and ( left.dtype.kind == right.dtype.kind == "f" ): columns_equal = cp.all( is_nan(left).values == is_nan(right).values ) else: columns_equal = left.equals(right) except TypeError as e: if str(e) != "Categoricals can only compare with the same type": raise e else: columns_equal = False if is_categorical_dtype(left) and is_categorical_dtype(right): left = left.astype(left.categories.dtype) right = right.astype(right.categories.dtype) if not columns_equal: ldata = str([val for val in left.to_pandas(nullable=True)]) rdata = str([val for val in right.to_pandas(nullable=True)]) try: diff = 0 for i in range(left.size): if not null_safe_scalar_equals(left[i], right[i]): diff += 1 diff = diff * 100.0 / left.size except BaseException: diff = 100.0 raise_assert_detail( obj, f"values are different ({np.round(diff, 5)} %)", {ldata}, {rdata}, ) def null_safe_scalar_equals(left, right): if left in {NA, NaT, np.nan} or right in {NA, NaT, np.nan}: return left is right return left == right def assert_index_equal( left, right, exact="equiv", check_names: bool = True, check_less_precise: Union[bool, int] = False, check_exact: bool = True, check_categorical: bool = True, check_order: bool = True, rtol: float = 1e-5, atol: float = 1e-8, obj: str = "Index", ): """ Check that left and right Index are equal This function is intended to compare two Index and output any differences. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : Index left Index to compare right : Index right Index to compare exact : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. If 'equiv', then RangeIndex can be substituted for Int8Index, Int16Index, Int32Index, Int64Index as well. check_names : bool, default True Whether to check the names attribute. check_less_precise : bool or int, default False Not yet supported check_exact : bool, default False Whether to compare number exactly. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_order : bool, default True Whether to compare the order of index entries as well as their values. If True, both indexes must contain the same elements, in the same order. If False, both indexes must contain the same elements, but in any order. rtol : float, default 1e-5 Relative tolerance. Only used when `check_exact` is False. atol : float, default 1e-8 Absolute tolerance. Only used when `check_exact` is False. obj : str, default 'Index' Specify object name being compared, internally used to show appropriate assertion message. Examples -------- >>> import cudf >>> id1 = cudf.Index([1, 2, 3, 4]) >>> id2 = cudf.Index([1, 2, 3, 5]) >>> cudf.testing.assert_index_equal(id1, id2) ...... ...... AssertionError: ColumnBase are different <BLANKLINE> values are different (25.0 %) [left]: [1 2 3 4] [right]: [1 2 3 5] >>> id2 = cudf.Index([1, 2, 3, 4], name="b") >>> cudf.testing.assert_index_equal(id1, id2) ...... ...... AssertionError: Index are different <BLANKLINE> name mismatch [left]: a [right]: b This will pass without any hitch: >>> id2 = cudf.Index([1, 2, 3, 4], name="a") >>> cudf.testing.assert_index_equal(id1, id2) """ # instance validation _check_isinstance(left, right, cudf.BaseIndex) _check_types( left, right, exact=exact, check_categorical=check_categorical, obj=obj ) if len(left) != len(right): raise_assert_detail( obj, "lengths are different", f"{len(left)}", f"{len(right)}" ) # If order doesn't matter then sort the index entries if not check_order: left = left.sort_values() right = right.sort_values() if isinstance(left, cudf.MultiIndex): if left.nlevels != right.nlevels: raise AssertionError( "Number of levels mismatch, " f"left has {left.nlevels} levels and right has {right.nlevels}" ) for level in range(left.nlevels): llevel = cudf.Index(left._columns[level], name=left.names[level]) rlevel = cudf.Index(right._columns[level], name=right.names[level]) mul_obj = f"MultiIndex level [{level}]" assert_index_equal( llevel, rlevel, exact=check_exact, check_names=check_names, check_exact=check_exact, check_less_precise=check_less_precise, check_order=check_order, rtol=rtol, atol=atol, obj=mul_obj, ) return assert_column_equal( left._columns[0], right._columns[0], check_dtype=exact, check_exact=check_exact, check_categorical=check_categorical, obj=obj, ) # metadata comparison if check_names and (left.name != right.name): raise_assert_detail( obj, "name mismatch", f"{left.name}", f"{right.name}" ) def assert_series_equal( left, right, check_dtype=True, check_index_type="equiv", check_series_type=True, check_less_precise=False, check_names=True, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_category_order=True, rtol=1e-5, atol=1e-8, obj="Series", ): """ Check that left and right Series are equal This function is intended to compare two Series and output any differences. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : Series left Series to compare right : Series right Series to compare check_dtype : bool, default True Whether to check the Series dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_series_type : bool, default True Whether to check the series class, dtype and inferred_type are identical. Currently it is idle, and similar to pandas. check_less_precise : bool or int, default False Not yet supported check_names : bool, default True Whether to check that the names attribute for both the index and column attributes of the Series is identical. check_exact : bool, default False Whether to compare number exactly. check_datetime_like_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_category_order : bool, default True Whether to compare category order of internal Categoricals rtol : float, default 1e-5 Relative tolerance. Only used when `check_exact` is False. atol : float, default 1e-8 Absolute tolerance. Only used when `check_exact` is False. obj : str, default 'Series' Specify object name being compared, internally used to show appropriate assertion message. Examples -------- >>> import cudf >>> sr1 = cudf.Series([1, 2, 3, 4], name="a") >>> sr2 = cudf.Series([1, 2, 3, 5], name="b") >>> cudf.testing.assert_series_equal(sr1, sr2) ...... ...... AssertionError: ColumnBase are different <BLANKLINE> values are different (25.0 %) [left]: [1 2 3 4] [right]: [1 2 3 5] >>> sr2 = cudf.Series([1, 2, 3, 4], name="b") >>> cudf.testing.assert_series_equal(sr1, sr2) ...... ...... AssertionError: Series are different <BLANKLINE> name mismatch [left]: a [right]: b This will pass without any hitch: >>> sr2 = cudf.Series([1, 2, 3, 4], name="a") >>> cudf.testing.assert_series_equal(sr1, sr2) """ # instance validation _check_isinstance(left, right, cudf.Series) if len(left) != len(right): msg1 = f"{len(left)}, {left.index}" msg2 = f"{len(right)}, {right.index}" raise_assert_detail(obj, "Series length are different", msg1, msg2) # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_less_precise=check_less_precise, check_exact=check_exact, check_categorical=check_categorical, rtol=rtol, atol=atol, obj=f"{obj}.index", ) assert_column_equal( left._column, right._column, check_dtype=check_dtype, check_column_type=check_series_type, check_less_precise=check_less_precise, check_exact=check_exact, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, check_category_order=check_category_order, rtol=rtol, atol=atol, ) # metadata comparison if check_names and (left.name != right.name): raise_assert_detail( obj, "name mismatch", f"{left.name}", f"{right.name}" ) def assert_frame_equal( left, right, check_dtype=True, check_index_type="equiv", check_column_type="equiv", check_frame_type=True, check_names=True, by_blocks=False, check_exact=False, check_datetimelike_compat=False, check_categorical=True, check_like=False, rtol=1e-5, atol=1e-8, obj="DataFrame", ): """ Check that left and right DataFrame are equal This function is intended to compare two DataFrame and output any differences. Additional parameters allow varying the strictness of the equality checks performed. Parameters ---------- left : DataFrame left DataFrame to compare right : DataFrame right DataFrame to compare check_dtype : bool, default True Whether to check the DataFrame dtype is identical. check_index_type : bool or {'equiv'}, default 'equiv' Whether to check the Index class, dtype and inferred_type are identical. check_column_type : bool, default True Whether to check the column class, dtype and inferred_type are identical. Currently it is idle, and similar to pandas. check_frame_type : bool, default True Whether to check the DataFrame class is identical. check_names : bool, default True Whether to check that the names attribute for both the index and column attributes of the DataFrame is identical. check_exact : bool, default False Whether to compare number exactly. by_blocks : bool, default False Not supported check_exact : bool, default False Whether to compare number exactly. check_datetime_like_compat : bool, default False Compare datetime-like which is comparable ignoring dtype. check_categorical : bool, default True Whether to compare internal Categorical exactly. check_like : bool, default False If True, ignore the order of index & columns. Note: index labels must match their respective rows (same as in columns) - same labels must be with the same data. rtol : float, default 1e-5 Relative tolerance. Only used when `check_exact` is False. atol : float, default 1e-8 Absolute tolerance. Only used when `check_exact` is False. obj : str, default 'DataFrame' Specify object name being compared, internally used to show appropriate assertion message. Examples -------- >>> import cudf >>> df1 = cudf.DataFrame({"a":[1, 2], "b":[1.0, 2.0]}, index=[1, 2]) >>> df2 = cudf.DataFrame({"a":[1, 2], "b":[1.0, 2.0]}, index=[2, 3]) >>> cudf.testing.assert_frame_equal(df1, df2) ...... ...... AssertionError: ColumnBase are different <BLANKLINE> values are different (100.0 %) [left]: [1 2] [right]: [2 3] >>> df2 = cudf.DataFrame({"a":[1, 2], "c":[1.0, 2.0]}, index=[1, 2]) >>> cudf.testing.assert_frame_equal(df1, df2) ...... ...... AssertionError: DataFrame.columns are different <BLANKLINE> DataFrame.columns values are different (50.0 %) [left]: Index(['a', 'b'], dtype='object') right]: Index(['a', 'c'], dtype='object') >>> df2 = cudf.DataFrame({"a":[1, 2], "b":[1.0, 3.0]}, index=[1, 2]) >>> cudf.testing.assert_frame_equal(df1, df2) ...... ...... AssertionError: Column name="b" are different <BLANKLINE> values are different (50.0 %) [left]: [1. 2.] [right]: [1. 3.] This will pass without any hitch: >>> df2 = cudf.DataFrame({"a":[1, 2], "b":[1.0, 2.0]}, index=[1, 2]) >>> cudf.testing.assert_frame_equal(df1, df2) """ _check_isinstance(left, right, cudf.DataFrame) if check_frame_type: assert isinstance(left, type(right)) # shape comparison if left.shape != right.shape: raise AssertionError("left and right shape mismatch") if check_like: left, right = left.reindex(index=right.index), right right = right[list(left._data.names)] # index comparison assert_index_equal( left.index, right.index, exact=check_index_type, check_names=check_names, check_exact=check_exact, check_categorical=check_categorical, rtol=rtol, atol=atol, obj=f"{obj}.index", ) pd.testing.assert_index_equal( left._data.to_pandas_index(), right._data.to_pandas_index(), exact=check_column_type, check_names=check_names, check_exact=check_exact, check_categorical=check_categorical, rtol=rtol, atol=atol, obj=f"{obj}.columns", ) for col in left._column_names: assert_column_equal( left._data[col], right._data[col], check_dtype=check_dtype, check_exact=check_exact, check_datetimelike_compat=check_datetimelike_compat, check_categorical=check_categorical, rtol=rtol, atol=atol, obj=f'Column name="{col}"', )
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/testing/__init__.py
# Copyright (c) 2020, NVIDIA CORPORATION. from cudf.testing.testing import ( assert_frame_equal, assert_index_equal, assert_series_equal, )
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/testing/dataset_generator.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. # This module is for generating "synthetic" datasets. It was originally # designed for testing filtered reading. Generally, it should be useful # if you want to generate data where certain phenomena (e.g., cardinality) # are exaggerated. import copy import random import string import uuid from multiprocessing import Pool import mimesis import numpy as np import pandas as pd import pyarrow as pa from mimesis import Generic from pyarrow import parquet as pq import cudf from cudf.utils.dtypes import np_to_pa_dtype class ColumnParameters: """Parameters for generating column of data Attributes ---------- cardinality : int or None Size of a random set of values that generated data is sampled from. The values in the random set are derived from the given generator. If cardinality is None, the Iterable returned by the given generator is invoked for each value to be generated. null_frequency : 0.1 Probability of a generated value being null generator : Callable Function for generating random data. It is passed a Mimesis Generic provider and returns an Iterable that generates data. is_sorted : bool Sort this column. Columns are sorted in same order as ColumnParameters instances stored in column_params of Parameters. If there are one or more columns marked as sorted, the generated PyArrow Table will be converted to a Pandas DataFrame to do the sorting. This may implicitly convert numbers to floats in the presence of nulls. dtype : optional a numpy dtype to control the format of the data """ def __init__( self, cardinality=100, null_frequency=0.1, generator=lambda g: [g.address.country for _ in range(100)], is_sorted=True, dtype=None, ): self.cardinality = cardinality self.null_frequency = null_frequency self.generator = generator self.is_sorted = is_sorted self.dtype = dtype class Parameters: """Parameters for random dataset generation Attributes ---------- num_rows : int Number of rows to generate column_parameters : List[ColumnParams] ColumnParams for each column seed : int or None, default None Seed for random data generation """ def __init__( self, num_rows=2048, column_parameters=None, seed=None, ): self.num_rows = num_rows if column_parameters is None: column_parameters = [] self.column_parameters = column_parameters self.seed = seed def _write(tbl, path, format): if format["name"] == "parquet": if isinstance(tbl, pa.Table): pq.write_table(tbl, path, row_group_size=format["row_group_size"]) elif isinstance(tbl, pd.DataFrame): tbl.to_parquet(path, row_group_size=format["row_group_size"]) def _generate_column(column_params, num_rows): # If cardinality is specified, we create a set to sample from. # Otherwise, we simply use the given generator to generate each value. if column_params.cardinality is not None: # Construct set of values to sample from where # set size = cardinality if ( isinstance(column_params.dtype, str) and column_params.dtype == "category" ): vals = pa.array( column_params.generator, size=column_params.cardinality, safe=False, ) return pa.DictionaryArray.from_arrays( dictionary=vals, indices=np.random.randint( low=0, high=len(vals), size=num_rows ), mask=np.random.choice( [True, False], size=num_rows, p=[ column_params.null_frequency, 1 - column_params.null_frequency, ], ) if column_params.null_frequency > 0.0 else None, ) if hasattr(column_params.dtype, "to_arrow"): arrow_type = column_params.dtype.to_arrow() elif column_params.dtype is not None: arrow_type = np_to_pa_dtype(cudf.dtype(column_params.dtype)) else: arrow_type = None if isinstance(column_params.dtype, cudf.StructDtype): vals = pa.StructArray.from_arrays( column_params.generator, names=column_params.dtype.fields.keys(), mask=pa.array( np.random.choice( [True, False], size=num_rows, p=[ column_params.null_frequency, 1 - column_params.null_frequency, ], ) ) if column_params.null_frequency > 0.0 else None, ) return vals elif not isinstance(arrow_type, pa.lib.Decimal128Type): vals = pa.array( column_params.generator, size=column_params.cardinality, safe=False, type=arrow_type, ) vals = pa.array( np.random.choice(column_params.generator, size=num_rows) if isinstance(arrow_type, pa.lib.Decimal128Type) else np.random.choice(vals, size=num_rows), mask=np.random.choice( [True, False], size=num_rows, p=[ column_params.null_frequency, 1 - column_params.null_frequency, ], ) if column_params.null_frequency > 0.0 else None, size=num_rows, safe=False, type=None if isinstance(arrow_type, pa.lib.Decimal128Type) else arrow_type, ) if isinstance(arrow_type, pa.lib.Decimal128Type): vals = vals.cast(arrow_type, safe=False) return vals else: # Generate data for current column return pa.array( column_params.generator, mask=np.random.choice( [True, False], size=num_rows, p=[ column_params.null_frequency, 1 - column_params.null_frequency, ], ) if column_params.null_frequency > 0.0 else None, size=num_rows, safe=False, ) def generate( path, parameters, format=None, use_threads=True, ): """ Generate dataset using given parameters and write to given format Parameters ---------- path : str or file-like object Path to write to parameters : Parameters Parameters specifying how to randomly generate data format : Dict Format to write """ if format is None: format = {"name": "parquet", "row_group_size": 64} df = get_dataframe(parameters, use_threads) # Write _write(df, path, format) def get_dataframe(parameters, use_threads): # Initialize seeds if parameters.seed is not None: np.random.seed(parameters.seed) # For each column, use a generic Mimesis producer to create an Iterable # for generating data for i, column_params in enumerate(parameters.column_parameters): if column_params.dtype is None: column_params.generator = column_params.generator( Generic("en", seed=parameters.seed) ) else: column_params.generator = column_params.generator() # Get schema for each column table_fields = [] for i, column_params in enumerate(parameters.column_parameters): if ( isinstance(column_params.dtype, str) and column_params.dtype == "category" ): arrow_type = pa.dictionary( index_type=pa.int64(), value_type=np_to_pa_dtype( cudf.dtype(type(next(iter(column_params.generator)))) ), ) elif hasattr(column_params.dtype, "to_arrow"): arrow_type = column_params.dtype.to_arrow() else: arrow_type = np_to_pa_dtype( cudf.dtype(type(next(iter(column_params.generator)))) if column_params.dtype is None else column_params.dtype ) table_fields.append( pa.field( name=str(i), type=arrow_type, nullable=column_params.null_frequency > 0, ) ) schema = pa.schema(table_fields) # Initialize column data and which columns should be sorted column_data = [None] * len(parameters.column_parameters) columns_to_sort = [ str(i) for i, column_params in enumerate(parameters.column_parameters) if column_params.is_sorted ] # Generate data if not use_threads: for i, column_params in enumerate(parameters.column_parameters): column_data[i] = _generate_column( column_params, parameters.num_rows ) else: pool = Pool(pa.cpu_count()) column_data = pool.starmap( _generate_column, [ (column_params, parameters.num_rows) for i, column_params in enumerate(parameters.column_parameters) ], ) pool.close() pool.join() # Convert to Pandas DataFrame and sort columns appropriately tbl = pa.Table.from_arrays( column_data, schema=schema, ) if columns_to_sort: tbl = tbl.to_pandas() tbl = tbl.sort_values(columns_to_sort) tbl = pa.Table.from_pandas(tbl, schema) return tbl def rand_dataframe( dtypes_meta, rows, seed=random.randint(0, 2**32 - 1), use_threads=True ): """ Generates a random table. Parameters ---------- dtypes_meta : List of dict Specifies list of dtype meta data. dtype meta data should be a dictionary of the form example: {"dtype": "int64", "null_frequency": 0.4, "cardinality": 10} `"str"` dtype can contain an extra key `max_string_length` to control the maximum size of the strings being generated in each row. If not specified, it will default to 1000. rows : int Specifies the number of rows to be generated. seed : int Specifies the `seed` value to be utilized by all downstream random data generation APIs. use_threads : bool Indicates whether to use threads pools to build the columns Returns ------- PyArrow Table A Table with columns of corresponding dtypes mentioned in `dtypes_meta` """ # Apply seed random.seed(seed) np.random.seed(seed) mimesis.random.random.seed(seed) column_params = [] for meta in dtypes_meta: dtype = copy.deepcopy(meta["dtype"]) null_frequency = copy.deepcopy(meta["null_frequency"]) cardinality = copy.deepcopy(meta["cardinality"]) if dtype == "list": lists_max_length = meta["lists_max_length"] nesting_max_depth = meta["nesting_max_depth"] value_type = meta["value_type"] nesting_depth = np.random.randint(1, nesting_max_depth) dtype = cudf.core.dtypes.ListDtype(value_type) # Determining the `dtype` from the `value_type` # and the nesting_depth i = 1 while i < nesting_depth: dtype = cudf.core.dtypes.ListDtype(dtype) i += 1 column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=list_generator( dtype=value_type, size=cardinality, nesting_depth=nesting_depth, lists_max_length=lists_max_length, ), is_sorted=False, dtype=dtype, ) ) elif dtype == "struct": nesting_max_depth = meta["nesting_max_depth"] max_types_at_each_level = meta["max_types_at_each_level"] max_null_frequency = meta["max_null_frequency"] nesting_depth = np.random.randint(1, nesting_max_depth) structDtype = create_nested_struct_type( max_types_at_each_level=max_types_at_each_level, nesting_level=nesting_depth, ) column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=struct_generator( dtype=structDtype, cardinality=cardinality, size=rows, max_null_frequency=max_null_frequency, ), is_sorted=False, dtype=structDtype, ) ) elif dtype == "decimal64": max_precision = meta.get( "max_precision", cudf.Decimal64Dtype.MAX_PRECISION ) precision = np.random.randint(1, max_precision) scale = np.random.randint(0, precision) dtype = cudf.Decimal64Dtype(precision=precision, scale=scale) column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=decimal_generator(dtype=dtype, size=cardinality), is_sorted=False, dtype=dtype, ) ) elif dtype == "decimal32": max_precision = meta.get( "max_precision", cudf.Decimal32Dtype.MAX_PRECISION ) precision = np.random.randint(1, max_precision) scale = np.random.randint(0, precision) dtype = cudf.Decimal32Dtype(precision=precision, scale=scale) column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=decimal_generator(dtype=dtype, size=cardinality), is_sorted=False, dtype=dtype, ) ) elif dtype == "decimal128": max_precision = meta.get( "max_precision", cudf.Decimal128Dtype.MAX_PRECISION ) precision = np.random.randint(1, max_precision) scale = np.random.randint(0, precision) dtype = cudf.Decimal128Dtype(precision=precision, scale=scale) column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=decimal_generator(dtype=dtype, size=cardinality), is_sorted=False, dtype=dtype, ) ) elif dtype == "category": column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=lambda cardinality=cardinality: [ _unique_string() for _ in range(cardinality) ], is_sorted=False, dtype="category", ) ) else: dtype = cudf.dtype(dtype) if dtype.kind in ("i", "u"): column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=int_generator( dtype=dtype, size=cardinality, min_bound=meta.get("min_bound", None), max_bound=meta.get("max_bound", None), ), is_sorted=False, dtype=dtype, ) ) elif dtype.kind == "f": column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=float_generator( dtype=dtype, size=cardinality, min_bound=meta.get("min_bound", None), max_bound=meta.get("max_bound", None), ), is_sorted=False, dtype=dtype, ) ) elif dtype.kind in ("U", "O"): column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=lambda cardinality=cardinality: [ _generate_string( string.printable, np.random.randint( low=0, high=meta.get("max_string_length", 1000), size=1, )[0], ) for _ in range(cardinality) ], is_sorted=False, dtype=dtype, ) ) elif dtype.kind == "M": column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=datetime_generator( dtype=dtype, size=cardinality, min_bound=meta.get("min_bound", None), max_bound=meta.get("max_bound", None), ), is_sorted=False, dtype=cudf.dtype(dtype), ) ) elif dtype.kind == "m": column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=timedelta_generator( dtype=dtype, size=cardinality, min_bound=meta.get("min_bound", None), max_bound=meta.get("max_bound", None), ), is_sorted=False, dtype=cudf.dtype(dtype), ) ) elif dtype.kind == "b": column_params.append( ColumnParameters( cardinality=cardinality, null_frequency=null_frequency, generator=boolean_generator(cardinality), is_sorted=False, dtype=cudf.dtype(dtype), ) ) else: raise TypeError(f"Unsupported dtype: {dtype}") # TODO: Add List column support once # https://github.com/rapidsai/cudf/pull/6075 # is merged. df = get_dataframe( Parameters( num_rows=rows, column_parameters=column_params, seed=seed, ), use_threads=use_threads, ) return df def int_generator(dtype, size, min_bound=None, max_bound=None): """ Generator for int data """ if min_bound is not None and max_bound is not None: low, high = min_bound, max_bound else: iinfo = np.iinfo(dtype) low, high = iinfo.min, iinfo.max return lambda: np.random.randint( low=low, high=high, size=size, dtype=dtype, ) def float_generator(dtype, size, min_bound=None, max_bound=None): """ Generator for float data """ if min_bound is not None and max_bound is not None: low, high = min_bound, max_bound return lambda: np.random.uniform( low=low, high=high, size=size, ) else: finfo = np.finfo(dtype) return ( lambda: np.random.uniform( low=finfo.min / 2, high=finfo.max / 2, size=size, ) * 2 ) def datetime_generator(dtype, size, min_bound=None, max_bound=None): """ Generator for datetime data """ if min_bound is not None and max_bound is not None: low, high = min_bound, max_bound else: iinfo = np.iinfo("int64") low, high = iinfo.min + 1, iinfo.max return lambda: np.random.randint( low=np.datetime64(low, "ns").astype(dtype).astype("int"), high=np.datetime64(high, "ns").astype(dtype).astype("int"), size=size, ) def timedelta_generator(dtype, size, min_bound=None, max_bound=None): """ Generator for timedelta data """ if min_bound is not None and max_bound is not None: low, high = min_bound, max_bound else: iinfo = np.iinfo("int64") low, high = iinfo.min + 1, iinfo.max return lambda: np.random.randint( low=np.timedelta64(low, "ns").astype(dtype).astype("int"), high=np.timedelta64(high, "ns").astype(dtype).astype("int"), size=size, ) def boolean_generator(size): """ Generator for bool data """ return lambda: np.random.choice(a=[False, True], size=size) def decimal_generator(dtype, size): max_integral = 10 ** (dtype.precision - dtype.scale) - 1 max_float = (10**dtype.scale - 1) if dtype.scale != 0 else 0 return lambda: ( np.random.uniform( low=-max_integral, high=max_integral + (max_float / 10**dtype.scale), size=size, ) ) def get_values_for_nested_data(dtype, lists_max_length=None, size=None): """ Returns list of values based on dtype. """ if size is None: cardinality = np.random.randint(0, lists_max_length) else: cardinality = size dtype = cudf.dtype(dtype) if dtype.kind in ("i", "u"): values = int_generator(dtype=dtype, size=cardinality)() elif dtype.kind == "f": values = float_generator(dtype=dtype, size=cardinality)() elif dtype.kind in ("U", "O"): values = [ _generate_string( string.printable, 100, ) for _ in range(cardinality) ] elif dtype.kind == "M": values = datetime_generator(dtype=dtype, size=cardinality)().astype( dtype ) elif dtype.kind == "m": values = timedelta_generator(dtype=dtype, size=cardinality)().astype( dtype ) elif dtype.kind == "b": values = boolean_generator(cardinality)().astype(dtype) else: raise TypeError(f"Unsupported dtype: {dtype}") return values def make_lists(dtype, lists_max_length, nesting_depth, top_level_list): """ Helper to create random list of lists with `nesting_depth` and specified value type `dtype`. """ nesting_depth -= 1 if nesting_depth >= 0: L = np.random.randint(1, lists_max_length) for i in range(L): top_level_list.append( make_lists( dtype=dtype, lists_max_length=lists_max_length, nesting_depth=nesting_depth, top_level_list=[], ) ) else: top_level_list = get_values_for_nested_data( dtype=dtype, lists_max_length=lists_max_length ) # To ensure numpy arrays are not passed as input to # list constructor, returning a python list object here. if isinstance(top_level_list, np.ndarray): top_level_list = top_level_list.tolist() return top_level_list def make_array_for_struct(dtype, cardinality, size, max_null_frequency): """ Helper to create a pa.array with `size` and `dtype` for a `StructArray`. """ null_frequency = np.random.uniform(low=0, high=max_null_frequency) local_cardinality = max(np.random.randint(low=0, high=cardinality), 1) data = get_values_for_nested_data( dtype=dtype.type.to_pandas_dtype(), size=local_cardinality ) vals = np.random.choice(data, size=size) return pa.array( vals, mask=np.random.choice( [True, False], size=size, p=[null_frequency, 1 - null_frequency], ) if null_frequency > 0.0 else None, size=size, safe=False, type=dtype.type, ) def get_nested_lists(dtype, size, nesting_depth, lists_max_length): """ Returns a list of nested lists with random nesting depth and random nested lists length. """ list_of_lists = [] while len(list_of_lists) <= size: list_of_lists.extend( make_lists( dtype=dtype, lists_max_length=lists_max_length, nesting_depth=nesting_depth, top_level_list=[], ) ) return list_of_lists def get_nested_structs(dtype, cardinality, size, max_null_frequency): """ Returns a list of arrays with random data corresponding to the dtype provided. ``dtype`` here should be a ``cudf.StructDtype`` """ list_of_arrays = [] for name, col_dtype in dtype.fields.items(): if isinstance(col_dtype, cudf.StructDtype): result_arrays = get_nested_structs( col_dtype, cardinality, size, max_null_frequency ) result_arrays = pa.StructArray.from_arrays( result_arrays, names=col_dtype.fields.keys() ) else: result_arrays = make_array_for_struct( dtype=dtype._typ[name], cardinality=cardinality, size=size, max_null_frequency=max_null_frequency, ) list_of_arrays.append(result_arrays) return list_of_arrays def list_generator(dtype, size, nesting_depth, lists_max_length): """ Generator for list data """ return lambda: get_nested_lists( dtype=dtype, size=size, nesting_depth=nesting_depth, lists_max_length=lists_max_length, ) def struct_generator(dtype, cardinality, size, max_null_frequency): """ Generator for struct data """ return lambda: get_nested_structs( dtype=dtype, cardinality=cardinality, size=size, max_null_frequency=max_null_frequency, ) def create_nested_struct_type(max_types_at_each_level, nesting_level): dtypes_list = cudf.utils.dtypes.ALL_TYPES picked_types = np.random.choice(list(dtypes_list), max_types_at_each_level) type_dict = {} for name, type_ in enumerate(picked_types): if type_ == "struct": type_dict[str(name)] = create_nested_struct_type( max_types_at_each_level, nesting_level - 1 ) else: type_dict[str(name)] = cudf.dtype(type_) return cudf.StructDtype(type_dict) def _generate_string(str_seq: str, length: int = 10) -> str: return "".join(random.choices(str_seq, k=length)) def _unique_string() -> str: return str(uuid.uuid4()).replace("-", "")
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/core/indexing_utils.py
# Copyright (c) 2023, NVIDIA CORPORATION. from __future__ import annotations from dataclasses import dataclass from typing import Any, List, Tuple, Union from typing_extensions import TypeAlias import cudf from cudf.api.types import ( _is_scalar_or_zero_d_array, is_bool_dtype, is_integer, is_integer_dtype, ) from cudf.core.copy_types import BooleanMask, GatherMap class EmptyIndexer: """An indexer that will produce an empty result.""" pass @dataclass class MapIndexer: """An indexer for a gather map.""" key: GatherMap @dataclass class MaskIndexer: """An indexer for a boolean mask.""" key: BooleanMask @dataclass class SliceIndexer: """An indexer for a slice.""" key: slice @dataclass class ScalarIndexer: """An indexer for a scalar value.""" key: GatherMap IndexingSpec: TypeAlias = Union[ EmptyIndexer, MapIndexer, MaskIndexer, ScalarIndexer, SliceIndexer ] ColumnLabels: TypeAlias = List[str] def destructure_iloc_key( key: Any, frame: Union[cudf.Series, cudf.DataFrame] ) -> tuple[Any, ...]: """ Destructure a potentially tuple-typed key into row and column indexers. Tuple arguments to iloc indexing are treated specially. They are picked apart into indexers for the row and column. If the number of entries is less than the number of modes of the frame, missing entries are slice-expanded. If the user-provided key is not a tuple, it is treated as if it were a singleton tuple, and then slice-expanded. Once this destructuring has occurred, any entries that are callables are then called with the indexed frame. This should return a valid indexing object for the rows (respectively columns), namely one of: - A boolean mask of the same length as the frame in the given dimension - A scalar integer that indexes the frame - An array-like of integers that index the frame - A slice that indexes the frame Integer and slice-based indexing follows usual Python conventions. Parameters ---------- key The key to destructure frame DataFrame or Series to provide context Returns ------- tuple Indexers with length equal to the dimension of the frame Raises ------ IndexError If there are too many indexers, or any individual indexer is a tuple. """ n = len(frame.shape) if isinstance(key, tuple): # Key potentially indexes rows and columns, slice-expand to # shape of frame indexers = key + (slice(None),) * (n - len(key)) if len(indexers) > n: raise IndexError( f"Too many indexers: got {len(indexers)} expected {n}" ) else: # Key indexes rows, slice-expand to shape of frame indexers = (key, *(slice(None),) * (n - 1)) indexers = tuple(k(frame) if callable(k) else k for k in indexers) if any(isinstance(k, tuple) for k in indexers): raise IndexError( "Too many indexers: can't have nested tuples in iloc indexing" ) return indexers def destructure_dataframe_iloc_indexer( key: Any, frame: cudf.DataFrame ) -> Tuple[Any, Tuple[bool, ColumnLabels]]: """Destructure an index key for DataFrame iloc getitem. Parameters ---------- key Key to destructure frame DataFrame to provide context context Returns ------- tuple 2-tuple of a key for the rows and tuple of (column_index_is_scalar, column_names) for the columns Raises ------ TypeError If the column indexer is invalid IndexError If the provided key does not destructure correctly NotImplementedError If the requested column indexer repeats columns """ rows, cols = destructure_iloc_key(key, frame) if cols is Ellipsis: cols = slice(None) scalar = is_integer(cols) try: column_names: ColumnLabels = list( frame._data.get_labels_by_index(cols) ) if len(set(column_names)) != len(column_names): raise NotImplementedError( "cudf DataFrames do not support repeated column names" ) except TypeError: raise TypeError( "Column indices must be integers, slices, " "or list-like of integers" ) if scalar: assert ( len(column_names) == 1 ), "Scalar column indexer should not produce more than one column" return rows, (scalar, column_names) def destructure_series_iloc_indexer(key: Any, frame: cudf.Series) -> Any: """Destructure an index key for Series iloc getitem. Parameters ---------- key Key to destructure frame Series for unpacking context Returns ------- Single key that will index the rows """ (rows,) = destructure_iloc_key(key, frame) return rows def parse_row_iloc_indexer(key: Any, n: int) -> IndexingSpec: """ Normalize and produce structured information about a row indexer. Given a row indexer that has already been destructured by :func:`destructure_iloc_key`, inspect further and produce structured information for indexing operations to act upon. Parameters ---------- key Suitably destructured key for row indexing n Length of frame to index Returns ------- IndexingSpec Structured data for indexing. A tag + parsed data. Raises ------ IndexError If a valid type of indexer is provided, but it is out of bounds TypeError If the indexing key is otherwise invalid. """ if key is Ellipsis: return SliceIndexer(slice(None)) elif isinstance(key, slice): return SliceIndexer(key) elif _is_scalar_or_zero_d_array(key): return ScalarIndexer(GatherMap(key, n, nullify=False)) else: key = cudf.core.column.as_column(key) if isinstance(key, cudf.core.column.CategoricalColumn): key = key.as_numerical_column(key.codes.dtype) if is_bool_dtype(key.dtype): return MaskIndexer(BooleanMask(key, n)) elif len(key) == 0: return EmptyIndexer() elif is_integer_dtype(key.dtype): return MapIndexer(GatherMap(key, n, nullify=False)) else: raise TypeError( "Cannot index by location " f"with non-integer key of type {type(key)}" )
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/core/subword_tokenizer.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. from __future__ import annotations import warnings from typing import Union import cupy as cp from cudf._lib.nvtext.subword_tokenize import ( Hashed_Vocabulary as cpp_hashed_vocabulary, subword_tokenize_inmem_hash as cpp_subword_tokenize, ) def _cast_to_appropriate_type(ar, cast_type): if cast_type == "cp": return ar if cast_type == "pt": from torch.utils.dlpack import from_dlpack elif cast_type == "tf": from tensorflow.experimental.dlpack import from_dlpack return from_dlpack(ar.astype("int32").toDlpack()) class SubwordTokenizer: """ Run CUDA BERT subword tokenizer on cuDF strings column. Encodes words to token ids using vocabulary from a pretrained tokenizer. This function requires about 21x the number of character bytes in the input strings column as working memory. Parameters ---------- hash_file : str Path to hash file containing vocabulary of words with token-ids. This can be created from the raw vocabulary using the ``cudf.utils.hash_vocab_utils.hash_vocab`` function do_lower : bool, Default is True If set to True, original text will be lowercased before encoding. Returns ------- SubwordTokenizer """ def __init__(self, hash_file: str, do_lower_case: bool = True): self.do_lower_case = do_lower_case self.vocab_file = cpp_hashed_vocabulary(hash_file) def __call__( self, text, max_length: int, max_num_rows: int, add_special_tokens: bool = True, padding: str = "max_length", truncation: Union[bool, str] = False, stride: int = 0, return_tensors: str = "cp", return_token_type_ids: bool = False, ): """ Run CUDA BERT subword tokenizer on cuDF strings column. Encodes words to token ids using vocabulary from a pretrained tokenizer. Parameters ---------- text : cudf string series The batch of sequences to be encoded. max_length : int Controls the maximum length to use or pad to. max_num_rows : int Maximum number of rows for the output token-ids expected to be generated by the tokenizer. Used for allocating temporary working memory on the GPU device. If the output generates a larger number of rows, behavior is undefined. This will vary based on stride, truncation, and max_length. For example, for non-overlapping sequences output rows will be the same as input rows. A good default can be twice the max_length add_special_tokens : bool, optional, defaults to True Whether or not to encode the sequences with the special tokens of the BERT classification model padding : "max_length" Pad to a maximum length specified with the argument max_length truncation : bool, defaults to False True: Truncate to a maximum length specified with the argument max_length False or 'do_not_truncate': default No truncation (Output differs from HuggingFace) stride : int, optional, defaults to 0 The value of this argument defines the number of overlapping tokens. The information about the overlapping tokens is present in the metadata outputted. return_tensors : str, {"cp", "pt", "tf"} defaults to "cp" "cp" : Return cupy cp.ndarray objects "tf" : Return TensorFlow tf.constant objects "pt" : Return PyTorch torch.Tensor objects return_token_type_ids : bool, optional Only False currently supported Returns ------- An encoding with the following fields: input_ids:(type defined by return_tensors) A tensor of token ids to be fed to the model. attention_mask: (type defined by return_tensors) A tensor of indices specifying which tokens should be attended to by the model metadata: (type defined by return_tensors) Each row contains the index id of the original string and the first and last index of the token-ids that are non-padded and non-overlapping Examples -------- >>> import cudf >>> from cudf.utils.hash_vocab_utils import hash_vocab >>> hash_vocab('bert-base-cased-vocab.txt', 'voc_hash.txt') >>> from cudf.core.subword_tokenizer import SubwordTokenizer >>> cudf_tokenizer = SubwordTokenizer('voc_hash.txt', ... do_lower_case=True) >>> str_series = cudf.Series(['This is the', 'best book']) >>> tokenizer_output = cudf_tokenizer(str_series, ... max_length=8, ... max_num_rows=len(str_series), ... padding='max_length', ... return_tensors='pt', ... truncation=True) >>> tokenizer_output['input_ids'] tensor([[ 101, 1142, 1110, 1103, 102, 0, 0, 0], [ 101, 1436, 1520, 102, 0, 0, 0, 0]], device='cuda:0', dtype=torch.int32) >>> tokenizer_output['attention_mask'] tensor([[1, 1, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0]], device='cuda:0', dtype=torch.int32) >>> tokenizer_output['metadata'] tensor([[0, 1, 3], [1, 1, 2]], device='cuda:0', dtype=torch.int32) """ if return_token_type_ids: # raise not currently supported # Can also return zeros error_msg = "Returning token_type_ids is currently supported" raise NotImplementedError(error_msg) if truncation in (False, "do_not_truncate"): if add_special_tokens: error_msg = ( "Adding special tokens is not supported " f"with truncation = {truncation}. " ) recommendation = ( "Custom Cupy kernel can potentially " "be used to add it. For reference " "see: _bert_add_special_tokens" ) raise NotImplementedError(error_msg + recommendation) truncation = False warning_msg = ( "When truncation is not True, the behavior currently differs " "from HuggingFace as cudf always returns overflowing tokens" ) warnings.warn(warning_msg) if padding != "max_length": error_msg = ( "Only padding to the provided max_length" "is currently supported" ) raise NotImplementedError(error_msg) if max_length <= stride: error_msg = "Stride should be less than max_length" raise ValueError(error_msg) if return_tensors not in {"cp", "pt", "tf"}: error_msg = ( "Only cupy(cp), pytorch(pt) and tensorflow(tf) " "tensors are supported" ) raise NotImplementedError(error_msg) stride = max_length - stride # behavior varies from subword_tokenize but maps with huggingface input_ids, attention_mask, metadata = cpp_subword_tokenize( text._column, self.vocab_file, max_sequence_length=max_length, stride=stride, do_lower=self.do_lower_case, do_truncate=truncation, ) tokenizer_output = { "input_ids": cp.asarray(input_ids).reshape(-1, max_length), "attention_mask": cp.asarray(attention_mask).reshape( -1, max_length ), "metadata": cp.asarray(metadata).reshape(-1, 3), } if add_special_tokens: tokenizer_output = _bert_add_special_tokens(tokenizer_output) tokenizer_output = { k: _cast_to_appropriate_type(v, return_tensors) for k, v in tokenizer_output.items() } return tokenizer_output def _bert_add_special_tokens(token_o): """ Adds special tokens (CLS,SEP) which are often used by pre-trained BERT models to input_ids and adjusts attention_mask and metadata to account for them. """ max_length = token_o["input_ids"].shape[1] seq_end_col = max_length - (token_o["input_ids"][:, ::-1] != 0).argmax(1) # clipping to take overflow into account seq_end_col = cp.clip(seq_end_col + 1, a_min=None, a_max=max_length - 1) _bert_add_special_tokens_input_ids(token_o["input_ids"], seq_end_col) _bert_add_special_tokens_attention_mask( token_o["attention_mask"], seq_end_col ) _bert_add_special_tokens_metadata(token_o["metadata"], max_length) return token_o def _bert_add_special_tokens_input_ids(input_ids, seq_end_col): """ Add token ids for special tokens ([CLS] and [SEP]) to the start and end of each sequence """ # Mark sequence start with [CLS] token mapping to the start of sequence input_ids[:, 1:-1] = input_ids[:, 0:-2] input_ids[:, 0] = 101 # Mark end of sequence [SEP] input_ids[ cp.arange(0, input_ids.shape[0], dtype=cp.uint32), seq_end_col ] = 102 def _bert_add_special_tokens_attention_mask(attention_mask, seq_end_col): """ Mark attention mask for special tokens ([CLS] and [SEP]) with 1 """ # Copy attention masks for all but last two attention_mask[:, 1:-1] = attention_mask[:, 0:-2] # Mark [CLS] token with 1 attention_mask[:, 0] = 1 # Mark [SEP] token with 1 attention_mask[ cp.arange(0, attention_mask.shape[0], dtype=cp.uint32), seq_end_col ] = 1 def _bert_add_special_tokens_metadata(metadata, max_length): """ Edit metadata to account for the added special tokens ([CLS] and [SEP]) """ # metadata seq starts from plus 1 metadata[:, 1] = metadata[:, 1] + 1 # clip done to take overflow into account metadata[:, 2] = cp.clip( metadata[:, 2] + 1, a_min=None, a_max=max_length - 2 )
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/core/frame.py
# Copyright (c) 2020-2023, NVIDIA CORPORATION. from __future__ import annotations import copy import itertools import operator import pickle import warnings from collections import abc from typing import ( Any, Callable, Dict, List, MutableMapping, Optional, Tuple, Union, ) # TODO: The `numpy` import is needed for typing purposes during doc builds # only, need to figure out why the `np` alias is insufficient then remove. import cupy import numpy import numpy as np import pyarrow as pa from typing_extensions import Self import cudf from cudf import _lib as libcudf from cudf._typing import Dtype from cudf.api.extensions import no_default from cudf.api.types import is_bool_dtype, is_dtype_equal, is_scalar from cudf.core.buffer import acquire_spill_lock from cudf.core.column import ( ColumnBase, as_column, build_categorical_column, deserialize_columns, serialize_columns, ) from cudf.core.column_accessor import ColumnAccessor from cudf.core.mixins import BinaryOperand, Scannable from cudf.core.window import Rolling from cudf.utils import ioutils from cudf.utils.docutils import copy_docstring from cudf.utils.dtypes import can_convert_to_column, find_common_type from cudf.utils.nvtx_annotation import _cudf_nvtx_annotate from cudf.utils.utils import _array_ufunc, _warn_no_dask_cudf # TODO: It looks like Frame is missing a declaration of `copy`, need to add class Frame(BinaryOperand, Scannable): """A collection of Column objects with an optional index. Parameters ---------- data : dict An dict mapping column names to Columns index : Table A Frame representing the (optional) index columns. """ _data: "ColumnAccessor" _VALID_BINARY_OPERATIONS = BinaryOperand._SUPPORTED_BINARY_OPERATIONS def __init__(self, data=None): if data is None: data = {} self._data = cudf.core.column_accessor.ColumnAccessor(data) @property def _num_columns(self) -> int: return len(self._data) @property def _num_rows(self) -> int: return 0 if self._num_columns == 0 else len(self._data.columns[0]) @property def _column_names(self) -> Tuple[Any, ...]: # TODO: Tuple[str]? return tuple(self._data.names) @property def _columns(self) -> Tuple[Any, ...]: # TODO: Tuple[Column]? return tuple(self._data.columns) @property def _dtypes(self): return dict( zip(self._data.names, (col.dtype for col in self._data.columns)) ) @property def _has_nulls(self): return any(col.has_nulls() for col in self._data.values()) @_cudf_nvtx_annotate def serialize(self): header = { "type-serialized": pickle.dumps(type(self)), "column_names": pickle.dumps(tuple(self._data.names)), } header["columns"], frames = serialize_columns(self._columns) return header, frames @classmethod @_cudf_nvtx_annotate def deserialize(cls, header, frames): cls_deserialize = pickle.loads(header["type-serialized"]) column_names = pickle.loads(header["column_names"]) columns = deserialize_columns(header["columns"], frames) return cls_deserialize._from_data(dict(zip(column_names, columns))) @classmethod @_cudf_nvtx_annotate def _from_data(cls, data: MutableMapping): obj = cls.__new__(cls) Frame.__init__(obj, data) return obj @_cudf_nvtx_annotate def _from_data_like_self(self, data: MutableMapping): return self._from_data(data) @classmethod @_cudf_nvtx_annotate def _from_columns( cls, columns: List[ColumnBase], column_names: abc.Iterable[str], ): """Construct a `Frame` object from a list of columns.""" data = {name: columns[i] for i, name in enumerate(column_names)} return cls._from_data(data) @_cudf_nvtx_annotate def _from_columns_like_self( self, columns: List[ColumnBase], column_names: Optional[abc.Iterable[str]] = None, *, override_dtypes: Optional[abc.Iterable[Optional[Dtype]]] = None, ): """Construct a Frame from a list of columns with metadata from self. If `column_names` is None, use column names from self. """ if column_names is None: column_names = self._column_names frame = self.__class__._from_columns(columns, column_names) return frame._copy_type_metadata(self, override_dtypes=override_dtypes) @_cudf_nvtx_annotate def _mimic_inplace( self, result: Self, inplace: bool = False ) -> Optional[Self]: if inplace: for col in self._data: if col in result._data: self._data[col]._mimic_inplace( result._data[col], inplace=True ) self._data = result._data return None else: return result @property @_cudf_nvtx_annotate def size(self): """ Return the number of elements in the underlying data. Returns ------- size : Size of the DataFrame / Index / Series / MultiIndex Examples -------- Size of an empty dataframe is 0. >>> import cudf >>> df = cudf.DataFrame() >>> df Empty DataFrame Columns: [] Index: [] >>> df.size 0 >>> df = cudf.DataFrame(index=[1, 2, 3]) >>> df Empty DataFrame Columns: [] Index: [1, 2, 3] >>> df.size 0 DataFrame with values >>> df = cudf.DataFrame({'a': [10, 11, 12], ... 'b': ['hello', 'rapids', 'ai']}) >>> df a b 0 10 hello 1 11 rapids 2 12 ai >>> df.size 6 >>> df.index RangeIndex(start=0, stop=3) >>> df.index.size 3 Size of an Index >>> index = cudf.Index([]) >>> index Float64Index([], dtype='float64') >>> index.size 0 >>> index = cudf.Index([1, 2, 3, 10]) >>> index Int64Index([1, 2, 3, 10], dtype='int64') >>> index.size 4 Size of a MultiIndex >>> midx = cudf.MultiIndex( ... levels=[["a", "b", "c", None], ["1", None, "5"]], ... codes=[[0, 0, 1, 2, 3], [0, 2, 1, 1, 0]], ... names=["x", "y"], ... ) >>> midx MultiIndex([( 'a', '1'), ( 'a', '5'), ( 'b', <NA>), ( 'c', <NA>), (<NA>, '1')], names=['x', 'y']) >>> midx.size 5 """ return self._num_columns * self._num_rows @_cudf_nvtx_annotate def memory_usage(self, deep=False): """Return the memory usage of an object. Parameters ---------- deep : bool The deep parameter is ignored and is only included for pandas compatibility. Returns ------- The total bytes used. """ raise NotImplementedError @_cudf_nvtx_annotate def __len__(self): return self._num_rows @_cudf_nvtx_annotate def astype(self, dtype, copy=False, **kwargs): result_data = {} for col_name, col in self._data.items(): dt = dtype.get(col_name, col.dtype) if not is_dtype_equal(dt, col.dtype): result_data[col_name] = col.astype(dt, copy=copy, **kwargs) else: result_data[col_name] = col.copy() if copy else col return ColumnAccessor._create_unsafe( data=result_data, multiindex=self._data.multiindex, level_names=self._data.level_names, ) @_cudf_nvtx_annotate def equals(self, other): """ Test whether two objects contain the same elements. This function allows two objects to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The column headers do not need to have the same type. Parameters ---------- other : Index, Series, DataFrame The other object to be compared with. Returns ------- bool True if all elements are the same in both objects, False otherwise. Examples -------- >>> import cudf Comparing Series with `equals`: >>> s = cudf.Series([1, 2, 3]) >>> other = cudf.Series([1, 2, 3]) >>> s.equals(other) True >>> different = cudf.Series([1.5, 2, 3]) >>> s.equals(different) False Comparing DataFrames with `equals`: >>> df = cudf.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 >>> exactly_equal = cudf.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True For two DataFrames to compare equal, the types of column values must be equal, but the types of column labels need not: >>> different_column_type = cudf.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True """ if self is other: return True if ( other is None or not isinstance(other, type(self)) or len(self) != len(other) ): return False return all( self_col.equals(other_col, check_dtypes=True) for self_col, other_col in zip( self._data.values(), other._data.values() ) ) @_cudf_nvtx_annotate def _get_columns_by_label(self, labels, *, downcast=False) -> Self: """ Returns columns of the Frame specified by `labels` """ return self.__class__._from_data(self._data.select_by_label(labels)) @property @_cudf_nvtx_annotate def values(self): """ Return a CuPy representation of the DataFrame. Only the values in the DataFrame will be returned, the axes labels will be removed. Returns ------- cupy.ndarray The values of the DataFrame. """ return self.to_cupy() @property @_cudf_nvtx_annotate def values_host(self): """ Return a NumPy representation of the data. Only the values in the DataFrame will be returned, the axes labels will be removed. Returns ------- numpy.ndarray A host representation of the underlying data. """ return self.to_numpy() @_cudf_nvtx_annotate def __array__(self, dtype=None): raise TypeError( "Implicit conversion to a host NumPy array via __array__ is not " "allowed, To explicitly construct a GPU matrix, consider using " ".to_cupy()\nTo explicitly construct a host matrix, consider " "using .to_numpy()." ) @_cudf_nvtx_annotate def __arrow_array__(self, type=None): raise TypeError( "Implicit conversion to a host PyArrow object via __arrow_array__ " "is not allowed. Consider using .to_arrow()" ) @_cudf_nvtx_annotate def _to_array( self, get_column_values: Callable, make_empty_matrix: Callable, dtype: Union[Dtype, None] = None, na_value=None, ) -> Union[cupy.ndarray, np.ndarray]: # Internal function to implement to_cupy and to_numpy, which are nearly # identical except for the attribute they access to generate values. def get_column_values_na(col): if na_value is not None: col = col.fillna(na_value) return get_column_values(col) # Early exit for an empty Frame. ncol = self._num_columns if ncol == 0: return make_empty_matrix( shape=(len(self), ncol), dtype=np.dtype("float64"), order="F" ) if dtype is None: dtypes = [col.dtype for col in self._data.values()] for dtype in dtypes: if isinstance( dtype, ( cudf.ListDtype, cudf.core.dtypes.DecimalDtype, cudf.StructDtype, ), ): raise NotImplementedError( f"{dtype} cannot be exposed as a cupy array" ) dtype = find_common_type(dtypes) matrix = make_empty_matrix( shape=(len(self), ncol), dtype=dtype, order="F" ) for i, col in enumerate(self._data.values()): # TODO: col.values may fail if there is nullable data or an # unsupported dtype. We may want to catch and provide a more # suitable error. matrix[:, i] = get_column_values_na(col) return matrix # TODO: As of now, calling cupy.asarray is _much_ faster than calling # to_cupy. We should investigate the reasons why and whether we can provide # a more efficient method here by exploiting __cuda_array_interface__. In # particular, we need to benchmark how much of the overhead is coming from # (potentially unavoidable) local copies in to_cupy and how much comes from # inefficiencies in the implementation. @_cudf_nvtx_annotate def to_cupy( self, dtype: Union[Dtype, None] = None, copy: bool = False, na_value=None, ) -> cupy.ndarray: """Convert the Frame to a CuPy array. Parameters ---------- dtype : str or :class:`numpy.dtype`, optional The dtype to pass to :func:`numpy.asarray`. copy : bool, default False Whether to ensure that the returned value is not a view on another array. Note that ``copy=False`` does not *ensure* that ``to_cupy()`` is no-copy. Rather, ``copy=True`` ensure that a copy is made, even if not strictly necessary. na_value : Any, default None The value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns. Returns ------- cupy.ndarray """ return self._to_array( (lambda col: col.values.copy()) if copy else (lambda col: col.values), cupy.empty, dtype, na_value, ) @_cudf_nvtx_annotate def to_numpy( self, dtype: Union[Dtype, None] = None, copy: bool = True, na_value=None, ) -> numpy.ndarray: """Convert the Frame to a NumPy array. Parameters ---------- dtype : str or :class:`numpy.dtype`, optional The dtype to pass to :func:`numpy.asarray`. copy : bool, default True Whether to ensure that the returned value is not a view on another array. This parameter must be ``True`` since cuDF must copy device memory to host to provide a numpy array. na_value : Any, default None The value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns. Returns ------- numpy.ndarray """ if not copy: raise ValueError( "copy=False is not supported because conversion to a numpy " "array always copies the data." ) return self._to_array( (lambda col: col.values_host), np.empty, dtype, na_value ) @_cudf_nvtx_annotate def where(self, cond, other=None, inplace=False): """ Replace values where the condition is False. Parameters ---------- cond : bool Series/DataFrame, array-like Where cond is True, keep the original value. Where False, replace with corresponding value from other. Callables are not supported. other: scalar, list of scalars, Series/DataFrame Entries where cond is False are replaced with corresponding value from other. Callables are not supported. Default is None. DataFrame expects only Scalar or array like with scalars or dataframe with same dimension as self. Series expects only scalar or series like with same length inplace : bool, default False Whether to perform the operation in place on the data. Returns ------- Same type as caller Examples -------- >>> import cudf >>> df = cudf.DataFrame({"A":[1, 4, 5], "B":[3, 5, 8]}) >>> df.where(df % 2 == 0, [-1, -1]) A B 0 -1 -1 1 4 -1 2 -1 8 >>> ser = cudf.Series([4, 3, 2, 1, 0]) >>> ser.where(ser > 2, 10) 0 4 1 3 2 10 3 10 4 10 dtype: int64 >>> ser.where(ser > 2) 0 4 1 3 2 <NA> 3 <NA> 4 <NA> dtype: int64 .. pandas-compat:: Note that ``where`` treats missing values as falsy, in parallel with pandas treatment of nullable data: >>> gsr = cudf.Series([1, 2, 3]) >>> gsr.where([True, False, cudf.NA]) 0 1 1 <NA> 2 <NA> dtype: int64 >>> gsr.where([True, False, False]) 0 1 1 <NA> 2 <NA> dtype: int64 """ raise NotImplementedError @_cudf_nvtx_annotate def mask(self, cond, other=None, inplace=False): """ Replace values where the condition is True. Parameters ---------- cond : bool Series/DataFrame, array-like Where cond is False, keep the original value. Where True, replace with corresponding value from other. Callables are not supported. other: scalar, list of scalars, Series/DataFrame Entries where cond is True are replaced with corresponding value from other. Callables are not supported. Default is None. DataFrame expects only Scalar or array like with scalars or dataframe with same dimension as self. Series expects only scalar or series like with same length inplace : bool, default False Whether to perform the operation in place on the data. Returns ------- Same type as caller Examples -------- >>> import cudf >>> df = cudf.DataFrame({"A":[1, 4, 5], "B":[3, 5, 8]}) >>> df.mask(df % 2 == 0, [-1, -1]) A B 0 1 3 1 -1 5 2 5 -1 >>> ser = cudf.Series([4, 3, 2, 1, 0]) >>> ser.mask(ser > 2, 10) 0 10 1 10 2 2 3 1 4 0 dtype: int64 >>> ser.mask(ser > 2) 0 <NA> 1 <NA> 2 2 3 1 4 0 dtype: int64 """ if not hasattr(cond, "__invert__"): # We Invert `cond` below and call `where`, so # making sure the object supports # `~`(inversion) operator or `__invert__` method cond = cupy.asarray(cond) return self.where(cond=~cond, other=other, inplace=inplace) @_cudf_nvtx_annotate def pipe(self, func, *args, **kwargs): """ Apply ``func(self, *args, **kwargs)``. Parameters ---------- func : function Function to apply to the Series/DataFrame/Index. ``args``, and ``kwargs`` are passed into ``func``. Alternatively a ``(callable, data_keyword)`` tuple where ``data_keyword`` is a string indicating the keyword of ``callable`` that expects the Series/DataFrame/Index. args : iterable, optional Positional arguments passed into ``func``. kwargs : mapping, optional A dictionary of keyword arguments passed into ``func``. Returns ------- object : the return type of ``func``. Examples -------- Use ``.pipe`` when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead of writing >>> func(g(h(df), arg1=a), arg2=b, arg3=c) You can write >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe(func, arg2=b, arg3=c) ... ) If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose ``f`` takes its data as ``arg2``: >>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe((func, 'arg2'), arg1=a, arg3=c) ... ) """ return cudf.core.common.pipe(self, func, *args, **kwargs) @_cudf_nvtx_annotate def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None ): """Fill null values with ``value`` or specified ``method``. Parameters ---------- value : scalar, Series-like or dict Value to use to fill nulls. If Series-like, null values are filled with values in corresponding indices. A dict can be used to provide different values to fill nulls in different columns. Cannot be used with ``method``. method : {'ffill', 'bfill'}, default None Method to use for filling null values in the dataframe or series. `ffill` propagates the last non-null values forward to the next non-null value. `bfill` propagates backward with the next non-null value. Cannot be used with ``value``. Returns ------- result : DataFrame, Series, or Index Copy with nulls filled. Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, None], 'b': [3, None, 5]}) >>> df a b 0 1 3 1 2 <NA> 2 <NA> 5 >>> df.fillna(4) a b 0 1 3 1 2 4 2 4 5 >>> df.fillna({'a': 3, 'b': 4}) a b 0 1 3 1 2 4 2 3 5 ``fillna`` on a Series object: >>> ser = cudf.Series(['a', 'b', None, 'c']) >>> ser 0 a 1 b 2 <NA> 3 c dtype: object >>> ser.fillna('z') 0 a 1 b 2 z 3 c dtype: object ``fillna`` can also supports inplace operation: >>> ser.fillna('z', inplace=True) >>> ser 0 a 1 b 2 z 3 c dtype: object >>> df.fillna({'a': 3, 'b': 4}, inplace=True) >>> df a b 0 1 3 1 2 4 2 3 5 ``fillna`` specified with fill ``method`` >>> ser = cudf.Series([1, None, None, 2, 3, None, None]) >>> ser.fillna(method='ffill') 0 1 1 1 2 1 3 2 4 3 5 3 6 3 dtype: int64 >>> ser.fillna(method='bfill') 0 1 1 2 2 2 3 2 4 3 5 <NA> 6 <NA> dtype: int64 """ if limit is not None: raise NotImplementedError("The limit keyword is not supported") if axis: raise NotImplementedError("The axis keyword is not supported") if value is not None and method is not None: raise ValueError("Cannot specify both 'value' and 'method'.") if method: if method not in {"ffill", "bfill", "pad", "backfill"}: raise NotImplementedError( f"Fill method {method} is not supported" ) if method == "pad": method = "ffill" elif method == "backfill": method = "bfill" # TODO: This logic should be handled in different subclasses since # different Frames support different types of values. if isinstance(value, cudf.Series): value = value.reindex(self._data.names) elif isinstance(value, cudf.DataFrame): if not self.index.equals(value.index): value = value.reindex(self.index) else: value = value elif not isinstance(value, abc.Mapping): value = {name: copy.deepcopy(value) for name in self._data.names} else: value = { key: value.reindex(self.index) if isinstance(value, cudf.Series) else value for key, value in value.items() } filled_data = {} for col_name, col in self._data.items(): if col_name in value and method is None: replace_val = value[col_name] else: replace_val = None should_fill = ( col_name in value and col.contains_na_entries and not libcudf.scalar._is_null_host_scalar(replace_val) ) or method is not None if should_fill: filled_data[col_name] = col.fillna(replace_val, method) else: filled_data[col_name] = col.copy(deep=True) return self._mimic_inplace( self._from_data( data=ColumnAccessor._create_unsafe( data=filled_data, multiindex=self._data.multiindex, level_names=self._data.level_names, ) ), inplace=inplace, ) @_cudf_nvtx_annotate def _drop_column(self, name): """Drop a column by *name*""" if name not in self._data: raise KeyError(f"column '{name}' does not exist") del self._data[name] @_cudf_nvtx_annotate def _drop_na_columns(self, how="any", subset=None, thresh=None): """ Drop columns containing nulls """ out_cols = [] if subset is None: df = self else: df = self.take(subset) if thresh is None: if how == "all": thresh = 1 else: thresh = len(df) for name, col in df._data.items(): try: check_col = col.nans_to_nulls() except AttributeError: check_col = col no_threshold_valid_count = ( len(col) - check_col.null_count ) < thresh if no_threshold_valid_count: continue out_cols.append(name) return self[out_cols] @_cudf_nvtx_annotate def _quantile_table( self, q, interpolation="LINEAR", is_sorted=False, column_order=(), null_precedence=(), ): interpolation = libcudf.types.Interpolation[interpolation] is_sorted = libcudf.types.Sorted["YES" if is_sorted else "NO"] column_order = [libcudf.types.Order[key] for key in column_order] null_precedence = [ libcudf.types.NullOrder[key] for key in null_precedence ] return self._from_columns_like_self( libcudf.quantiles.quantile_table( [*self._columns], q, interpolation, is_sorted, column_order, null_precedence, ), column_names=self._column_names, ) @classmethod @_cudf_nvtx_annotate def from_arrow(cls, data): """Convert from PyArrow Table to Frame Parameters ---------- data : PyArrow Table Raises ------ TypeError for invalid input type. Examples -------- >>> import cudf >>> import pyarrow as pa >>> data = pa.table({"a":[1, 2, 3], "b":[4, 5, 6]}) >>> cudf.core.frame.Frame.from_arrow(data) a b 0 1 4 1 2 5 2 3 6 """ if not isinstance(data, (pa.Table)): raise TypeError( "To create a multicolumn cudf data, " "the data should be an arrow Table" ) column_names = data.column_names pandas_dtypes = {} np_dtypes = {} if isinstance(data.schema.pandas_metadata, dict): metadata = data.schema.pandas_metadata pandas_dtypes = { col["field_name"]: col["pandas_type"] for col in metadata["columns"] if "field_name" in col } np_dtypes = { col["field_name"]: col["numpy_type"] for col in metadata["columns"] if "field_name" in col } # Currently we don't have support for # pyarrow.DictionaryArray -> cudf Categorical column, # so handling indices and dictionary as two different columns. # This needs be removed once we have hooked libcudf dictionary32 # with categorical. dict_indices = {} dict_dictionaries = {} dict_ordered = {} for field in data.schema: if isinstance(field.type, pa.DictionaryType): dict_ordered[field.name] = field.type.ordered dict_indices[field.name] = pa.chunked_array( [chunk.indices for chunk in data[field.name].chunks], type=field.type.index_type, ) dict_dictionaries[field.name] = pa.chunked_array( [chunk.dictionary for chunk in data[field.name].chunks], type=field.type.value_type, ) # Handle dict arrays cudf_category_frame = {} if len(dict_indices): dict_indices_table = pa.table(dict_indices) data = data.drop(dict_indices_table.column_names) indices_columns = libcudf.interop.from_arrow(dict_indices_table) # as dictionary size can vary, it can't be a single table cudf_dictionaries_columns = { name: ColumnBase.from_arrow(dict_dictionaries[name]) for name in dict_dictionaries.keys() } cudf_category_frame = { name: build_categorical_column( cudf_dictionaries_columns[name], codes, mask=codes.base_mask, size=codes.size, ordered=dict_ordered[name], ) for name, codes in zip( dict_indices_table.column_names, indices_columns ) } # Handle non-dict arrays cudf_non_category_frame = { name: col for name, col in zip( data.column_names, libcudf.interop.from_arrow(data) ) } result = {**cudf_non_category_frame, **cudf_category_frame} # There are some special cases that need to be handled # based on metadata. for name in result: if ( len(result[name]) == 0 and pandas_dtypes.get(name) == "categorical" ): # When pandas_dtype is a categorical column and the size # of column is 0 (i.e., empty) then we will have an # int8 column in result._data[name] returned by libcudf, # which needs to be type-casted to 'category' dtype. result[name] = result[name].as_categorical_column("category") elif ( pandas_dtypes.get(name) == "empty" and np_dtypes.get(name) == "object" ): # When a string column has all null values, pandas_dtype is # is specified as 'empty' and np_dtypes as 'object', # hence handling this special case to type-cast the empty # float column to str column. result[name] = result[name].as_string_column(cudf.dtype("str")) elif name in data.column_names and isinstance( data[name].type, ( pa.StructType, pa.ListType, pa.Decimal128Type, pa.TimestampType, ), ): # In case of struct column, libcudf is not aware of names of # struct fields, hence renaming the struct fields is # necessary by extracting the field names from arrow # struct types. # In case of decimal column, libcudf is not aware of the # decimal precision. # In case of list column, there is a possibility of nested # list columns to have struct or decimal columns inside them. # Datetimes ("timestamps") may need timezone metadata # attached to them, as libcudf is timezone-unaware # All of these cases are handled by calling the # _with_type_metadata method on the column. result[name] = result[name]._with_type_metadata( cudf.utils.dtypes.cudf_dtype_from_pa_type(data[name].type) ) return cls._from_data({name: result[name] for name in column_names}) @_cudf_nvtx_annotate def to_arrow(self): """ Convert to arrow Table Examples -------- >>> import cudf >>> df = cudf.DataFrame( ... {"a":[1, 2, 3], "b":[4, 5, 6]}, index=[1, 2, 3]) >>> df.to_arrow() pyarrow.Table a: int64 b: int64 index: int64 ---- a: [[1,2,3]] b: [[4,5,6]] index: [[1,2,3]] """ return pa.Table.from_pydict( {str(name): col.to_arrow() for name, col in self._data.items()} ) @_cudf_nvtx_annotate def _positions_from_column_names(self, column_names): """Map each column name into their positions in the frame. The order of indices returned corresponds to the column order in this Frame. """ return [ i for i, name in enumerate(self._column_names) if name in set(column_names) ] @_cudf_nvtx_annotate def _copy_type_metadata( self, other: Self, *, override_dtypes: Optional[abc.Iterable[Optional[Dtype]]] = None, ) -> Self: """ Copy type metadata from each column of `other` to the corresponding column of `self`. If override_dtypes is provided, any non-None entry will be used in preference to the relevant column of other to provide the new dtype. See `ColumnBase._with_type_metadata` for more information. """ if override_dtypes is None: override_dtypes = itertools.repeat(None) dtypes = ( dtype if dtype is not None else col.dtype for (dtype, col) in zip(override_dtypes, other._data.values()) ) for (name, col), dtype in zip(self._data.items(), dtypes): self._data.set_by_label( name, col._with_type_metadata(dtype), validate=False ) return self @_cudf_nvtx_annotate def isna(self): """ Identify missing values. Return a boolean same-sized object indicating if the values are ``<NA>``. ``<NA>`` values gets mapped to ``True`` values. Everything else gets mapped to ``False`` values. ``<NA>`` values include: * Values where null mask is set. * ``NaN`` in float dtype. * ``NaT`` in datetime64 and timedelta64 types. Characters such as empty strings ``''`` or ``inf`` in case of float are not considered ``<NA>`` values. Returns ------- DataFrame/Series/Index Mask of bool values for each element in the object that indicates whether an element is an NA value. Examples -------- Show which entries in a DataFrame are NA. >>> import cudf >>> import numpy as np >>> import pandas as pd >>> df = cudf.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5 <NA> Alfred <NA> 1 6 1939-05-27 00:00:00.000000 Batman Batmobile 2 <NA> 1940-04-25 00:00:00.000000 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False Show which entries in a Series are NA. >>> ser = cudf.Series([5, 6, np.NaN, np.inf, -np.inf]) >>> ser 0 5.0 1 6.0 2 <NA> 3 Inf 4 -Inf dtype: float64 >>> ser.isna() 0 False 1 False 2 True 3 False 4 False dtype: bool Show which entries in an Index are NA. >>> idx = cudf.Index([1, 2, None, np.NaN, 0.32, np.inf]) >>> idx Float64Index([1.0, 2.0, <NA>, <NA>, 0.32, Inf], dtype='float64') >>> idx.isna() array([False, False, True, True, False, False]) """ data_columns = (col.isnull() for col in self._columns) return self._from_data_like_self(zip(self._column_names, data_columns)) # Alias for isna isnull = isna @_cudf_nvtx_annotate def notna(self): """ Identify non-missing values. Return a boolean same-sized object indicating if the values are not ``<NA>``. Non-missing values get mapped to ``True``. ``<NA>`` values get mapped to ``False`` values. ``<NA>`` values include: * Values where null mask is set. * ``NaN`` in float dtype. * ``NaT`` in datetime64 and timedelta64 types. Characters such as empty strings ``''`` or ``inf`` in case of float are not considered ``<NA>`` values. Returns ------- DataFrame/Series/Index Mask of bool values for each element in the object that indicates whether an element is not an NA value. Examples -------- Show which entries in a DataFrame are NA. >>> import cudf >>> import numpy as np >>> import pandas as pd >>> df = cudf.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5 <NA> Alfred <NA> 1 6 1939-05-27 00:00:00.000000 Batman Batmobile 2 <NA> 1940-04-25 00:00:00.000000 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True Show which entries in a Series are NA. >>> ser = cudf.Series([5, 6, np.NaN, np.inf, -np.inf]) >>> ser 0 5.0 1 6.0 2 <NA> 3 Inf 4 -Inf dtype: float64 >>> ser.notna() 0 True 1 True 2 False 3 True 4 True dtype: bool Show which entries in an Index are NA. >>> idx = cudf.Index([1, 2, None, np.NaN, 0.32, np.inf]) >>> idx Float64Index([1.0, 2.0, <NA>, <NA>, 0.32, Inf], dtype='float64') >>> idx.notna() array([ True, True, False, False, True, True]) """ data_columns = (col.notnull() for col in self._columns) return self._from_data_like_self(zip(self._column_names, data_columns)) # Alias for notna notnull = notna @_cudf_nvtx_annotate def searchsorted( self, values, side="left", ascending=True, na_position="last" ): """Find indices where elements should be inserted to maintain order Parameters ---------- value : Frame (Shape must be consistent with self) Values to be hypothetically inserted into Self side : str {'left', 'right'} optional, default 'left' If 'left', the index of the first suitable location found is given If 'right', return the last such index ascending : bool optional, default True Sorted Frame is in ascending order (otherwise descending) na_position : str {'last', 'first'} optional, default 'last' Position of null values in sorted order Returns ------- 1-D cupy array of insertion points Examples -------- >>> s = cudf.Series([1, 2, 3]) >>> s.searchsorted(4) 3 >>> s.searchsorted([0, 4]) array([0, 3], dtype=int32) >>> s.searchsorted([1, 3], side='left') array([0, 2], dtype=int32) >>> s.searchsorted([1, 3], side='right') array([1, 3], dtype=int32) If the values are not monotonically sorted, wrong locations may be returned: >>> s = cudf.Series([2, 1, 3]) >>> s.searchsorted(1) 0 # wrong result, correct would be 1 >>> df = cudf.DataFrame({'a': [1, 3, 5, 7], 'b': [10, 12, 14, 16]}) >>> df a b 0 1 10 1 3 12 2 5 14 3 7 16 >>> values_df = cudf.DataFrame({'a': [0, 2, 5, 6], ... 'b': [10, 11, 13, 15]}) >>> values_df a b 0 0 10 1 2 17 2 5 13 3 6 15 >>> df.searchsorted(values_df, ascending=False) array([4, 4, 4, 0], dtype=int32) """ # Call libcudf search_sorted primitive if na_position not in {"first", "last"}: raise ValueError(f"invalid na_position: {na_position}") scalar_flag = None if is_scalar(values): scalar_flag = True if not isinstance(values, Frame): values = [as_column(values)] else: values = [*values._columns] if len(values) != len(self._data): raise ValueError("Mismatch number of columns to search for.") # TODO: Change behavior based on the decision in # https://github.com/pandas-dev/pandas/issues/54668 common_dtype_list = [ find_common_type([col.dtype, val.dtype]) for col, val in zip(self._columns, values) ] sources = [ col if is_dtype_equal(col.dtype, common_dtype) else col.astype(common_dtype) for col, common_dtype in zip(self._columns, common_dtype_list) ] values = [ val if is_dtype_equal(val.dtype, common_dtype) else val.astype(common_dtype) for val, common_dtype in zip(values, common_dtype_list) ] outcol = libcudf.search.search_sorted( sources, values, side, ascending=ascending, na_position=na_position, ) # Return result as cupy array if the values is non-scalar # If values is scalar, result is expected to be scalar. result = cupy.asarray(outcol.data_array_view(mode="read")) if scalar_flag: return result[0].item() else: return result @_cudf_nvtx_annotate def argsort( self, by=None, axis=0, kind="quicksort", order=None, ascending=True, na_position="last", ): """Return the integer indices that would sort the Series values. Parameters ---------- by : str or list of str, default None Name or list of names to sort by. If None, sort by all columns. axis : {0 or "index"} Has no effect but is accepted for compatibility with numpy. kind : {'mergesort', 'quicksort', 'heapsort', 'stable'}, default 'quicksort' Choice of sorting algorithm. See :func:`numpy.sort` for more information. 'mergesort' and 'stable' are the only stable algorithms. Only quicksort is supported in cuDF. order : None Has no effect but is accepted for compatibility with numpy. ascending : bool or list of bool, default True If True, sort values in ascending order, otherwise descending. na_position : {'first' or 'last'}, default 'last' Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Returns ------- cupy.ndarray: The indices sorted based on input. Examples -------- **Series** >>> import cudf >>> s = cudf.Series([3, 1, 2]) >>> s 0 3 1 1 2 2 dtype: int64 >>> s.argsort() 0 1 1 2 2 0 dtype: int32 >>> s[s.argsort()] 1 1 2 2 0 3 dtype: int64 **DataFrame** >>> import cudf >>> df = cudf.DataFrame({'foo': [3, 1, 2]}) >>> df.argsort() array([1, 2, 0], dtype=int32) **Index** >>> import cudf >>> idx = cudf.Index([3, 1, 2]) >>> idx.argsort() array([1, 2, 0], dtype=int32) """ # noqa: E501 if na_position not in {"first", "last"}: raise ValueError(f"invalid na_position: {na_position}") if kind != "quicksort": if kind not in {"mergesort", "heapsort", "stable"}: raise AttributeError( f"{kind} is not a valid sorting algorithm for " f"'DataFrame' object" ) warnings.warn( f"GPU-accelerated {kind} is currently not supported, " "defaulting to quicksort." ) if isinstance(by, str): by = [by] return self._get_sorted_inds( by=by, ascending=ascending, na_position=na_position ).values @_cudf_nvtx_annotate def _get_sorted_inds(self, by=None, ascending=True, na_position="last"): """ Get the indices required to sort self according to the columns specified in by. """ to_sort = [ *( self if by is None else self._get_columns_by_label(list(by), downcast=False) )._columns ] # If given a scalar need to construct a sequence of length # of columns if np.isscalar(ascending): ascending = [ascending] * len(to_sort) return libcudf.sort.order_by( to_sort, ascending, na_position, stable=True, ) @_cudf_nvtx_annotate def abs(self): """ Return a Series/DataFrame with absolute numeric value of each element. This function only applies to elements that are all numeric. Returns ------- DataFrame/Series Absolute value of each element. Examples -------- Absolute numeric values in a Series >>> s = cudf.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64 """ return self._unaryop("abs") @_cudf_nvtx_annotate def _is_sorted(self, ascending=None, null_position=None): """ Returns a boolean indicating whether the data of the Frame are sorted based on the parameters given. Does not account for the index. Parameters ---------- self : Frame Frame whose columns are to be checked for sort order ascending : None or list-like of booleans None or list-like of boolean values indicating expected sort order of each column. If list-like, size of list-like must be len(columns). If None, all columns expected sort order is set to ascending. False (0) - ascending, True (1) - descending. null_position : None or list-like of booleans None or list-like of boolean values indicating desired order of nulls compared to other elements. If list-like, size of list-like must be len(columns). If None, null order is set to before. False (0) - before, True (1) - after. Returns ------- returns : boolean Returns True, if sorted as expected by ``ascending`` and ``null_position``, False otherwise. """ if ascending is not None and not cudf.api.types.is_list_like( ascending ): raise TypeError( f"Expected a list-like or None for `ascending`, got " f"{type(ascending)}" ) if null_position is not None and not cudf.api.types.is_list_like( null_position ): raise TypeError( f"Expected a list-like or None for `null_position`, got " f"{type(null_position)}" ) return libcudf.sort.is_sorted( [*self._columns], ascending=ascending, null_position=null_position ) @_cudf_nvtx_annotate def _split(self, splits): """Split a frame with split points in ``splits``. Returns a list of Frames of length `len(splits) + 1`. """ return [ self._from_columns_like_self( libcudf.copying.columns_split([*self._data.columns], splits)[ split_idx ], self._column_names, ) for split_idx in range(len(splits) + 1) ] @_cudf_nvtx_annotate def _encode(self): columns, indices = libcudf.transform.table_encode([*self._columns]) keys = self._from_columns_like_self(columns) return keys, indices @_cudf_nvtx_annotate def _unaryop(self, op): data_columns = (col.unary_operator(op) for col in self._columns) return self._from_data_like_self(zip(self._column_names, data_columns)) @classmethod @_cudf_nvtx_annotate def _colwise_binop( cls, operands: Dict[Optional[str], Tuple[ColumnBase, Any, bool, Any]], fn: str, ): """Implement binary ops between two frame-like objects. Binary operations for Frames can be reduced to a sequence of binary operations between column-like objects. Different types of frames need to preprocess different inputs, so subclasses should implement binary operations as a preprocessing step that calls this method. Parameters ---------- operands : Dict[Optional[str], Tuple[ColumnBase, Any, bool, Any]] A mapping from column names to a tuple containing left and right operands as well as a boolean indicating whether or not to reflect an operation and fill value for nulls. fn : str The operation to perform. Returns ------- Dict[ColumnBase] A dict of columns constructed from the result of performing the requested operation on the operands. """ # Now actually perform the binop on the columns in left and right. output = {} for ( col, (left_column, right_column, reflect, fill_value), ) in operands.items(): output_mask = None if fill_value is not None: left_is_column = isinstance(left_column, ColumnBase) right_is_column = isinstance(right_column, ColumnBase) if left_is_column and right_is_column: # If both columns are nullable, pandas semantics dictate # that nulls that are present in both left_column and # right_column are not filled. if left_column.nullable and right_column.nullable: with acquire_spill_lock(): lmask = as_column(left_column.nullmask) rmask = as_column(right_column.nullmask) output_mask = (lmask | rmask).data left_column = left_column.fillna(fill_value) right_column = right_column.fillna(fill_value) elif left_column.nullable: left_column = left_column.fillna(fill_value) elif right_column.nullable: right_column = right_column.fillna(fill_value) elif left_is_column: if left_column.nullable: left_column = left_column.fillna(fill_value) elif right_is_column: if right_column.nullable: right_column = right_column.fillna(fill_value) else: assert False, "At least one operand must be a column." # TODO: Disable logical and binary operators between columns that # are not numerical using the new binops mixin. outcol = ( getattr(operator, fn)(right_column, left_column) if reflect else getattr(operator, fn)(left_column, right_column) ) if output_mask is not None: outcol = outcol.set_mask(output_mask) output[col] = outcol return output @_cudf_nvtx_annotate def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): return _array_ufunc(self, ufunc, method, inputs, kwargs) @_cudf_nvtx_annotate @acquire_spill_lock() def _apply_cupy_ufunc_to_operands( self, ufunc, cupy_func, operands, **kwargs ): # Note: There are some operations that may be supported by libcudf but # are not supported by pandas APIs. In particular, libcudf binary # operations support logical and/or operations as well as # trigonometric, but those operations are not defined on # pd.Series/DataFrame. For now those operations will dispatch to cupy, # but if ufuncs are ever a bottleneck we could add special handling to # dispatch those (or any other) functions that we could implement # without cupy. mask = None data = [{} for _ in range(ufunc.nout)] for name, (left, right, _, _) in operands.items(): cupy_inputs = [] for inp in (left, right) if ufunc.nin == 2 else (left,): if isinstance(inp, ColumnBase) and inp.has_nulls(): new_mask = as_column(inp.nullmask) # TODO: This is a hackish way to perform a bitwise and # of bitmasks. Once we expose # cudf::detail::bitwise_and, then we can use that # instead. mask = new_mask if mask is None else (mask & new_mask) # Arbitrarily fill with zeros. For ufuncs, we assume # that the end result propagates nulls via a bitwise # and, so these elements are irrelevant. inp = inp.fillna(0) cupy_inputs.append(cupy.asarray(inp)) cp_output = cupy_func(*cupy_inputs, **kwargs) if ufunc.nout == 1: cp_output = (cp_output,) for i, out in enumerate(cp_output): data[i][name] = as_column(out).set_mask(mask) return data @_cudf_nvtx_annotate def dot(self, other, reflect=False): """ Get dot product of frame and other, (binary operator `dot`). Among flexible wrappers (`add`, `sub`, `mul`, `div`, `mod`, `pow`, `dot`) to arithmetic operators: `+`, `-`, `*`, `/`, `//`, `%`, `**`, `@`. Parameters ---------- other : Sequence, Series, or DataFrame Any multiple element data structure, or list-like object. reflect : bool, default False If ``True``, swap the order of the operands. See https://docs.python.org/3/reference/datamodel.html#object.__ror__ for more information on when this is necessary. Returns ------- scalar, Series, or DataFrame The result of the operation. Examples -------- >>> import cudf >>> df = cudf.DataFrame([[1, 2, 3, 4], ... [5, 6, 7, 8]]) >>> df @ df.T 0 1 0 30 70 1 70 174 >>> s = cudf.Series([1, 1, 1, 1]) >>> df @ s 0 10 1 26 dtype: int64 >>> [1, 2, 3, 4] @ s 10 """ # TODO: This function does not currently support nulls. lhs = self.values result_index = None result_cols = None if isinstance(self, cudf.Series) and isinstance( other, (cudf.Series, cudf.DataFrame) ): common = self.index.union(other.index) if len(common) > len(self.index) or len(common) > len(other.index): raise ValueError("matrices are not aligned") lhs = self.reindex(index=common, copy=False).values rhs = other.reindex(index=common, copy=False).values if isinstance(other, cudf.DataFrame): result_index = other._data.to_pandas_index() elif isinstance(self, cudf.DataFrame) and isinstance( other, (cudf.Series, cudf.DataFrame) ): common = self._data.to_pandas_index().union( other.index.to_pandas() ) if len(common) > len(self._data.names) or len(common) > len( other.index ): raise ValueError("matrices are not aligned") lhs = self.reindex(columns=common, copy=False) result_index = lhs.index rhs = other.reindex(index=common, copy=False).values lhs = lhs.values if isinstance(other, cudf.DataFrame): result_cols = other._data.to_pandas_index() elif isinstance( other, (cupy.ndarray, np.ndarray) ) or can_convert_to_column(other): rhs = cupy.asarray(other) else: # TODO: This should raise an exception, not return NotImplemented, # but __matmul__ relies on the current behavior. We should either # move this implementation to __matmul__ and call it from here # (checking for NotImplemented and raising NotImplementedError if # that's what's returned), or __matmul__ should catch a # NotImplementedError from here and return NotImplemented. The # latter feels cleaner (putting the implementation in this method # rather than in the operator) but will be slower in the (highly # unlikely) case that we're multiplying a cudf object with another # type of object that somehow supports this behavior. return NotImplemented if reflect: lhs, rhs = rhs, lhs result = lhs.dot(rhs) if len(result.shape) == 1: return cudf.Series( result, index=self.index if result_index is None else result_index, ) if len(result.shape) == 2: return cudf.DataFrame( result, index=self.index if result_index is None else result_index, columns=result_cols, ) return result.item() @_cudf_nvtx_annotate def __matmul__(self, other): return self.dot(other) @_cudf_nvtx_annotate def __rmatmul__(self, other): return self.dot(other, reflect=True) # Unary logical operators @_cudf_nvtx_annotate def __neg__(self): """Negate for integral dtypes, logical NOT for bools.""" return self._from_data_like_self( { name: col.unary_operator("not") if is_bool_dtype(col.dtype) else -1 * col for name, col in self._data.items() } ) @_cudf_nvtx_annotate def __pos__(self): return self.copy(deep=True) @_cudf_nvtx_annotate def __abs__(self): return self._unaryop("abs") # Reductions @classmethod @_cudf_nvtx_annotate def _get_axis_from_axis_arg(cls, axis): try: return cls._SUPPORT_AXIS_LOOKUP[axis] except KeyError: raise ValueError(f"No axis named {axis} for object type {cls}") @_cudf_nvtx_annotate def _reduce(self, *args, **kwargs): raise NotImplementedError( f"Reductions are not supported for objects of type {type(self)}." ) @_cudf_nvtx_annotate def min( self, axis=no_default, skipna=True, level=None, numeric_only=None, **kwargs, ): """ Return the minimum of the values in the DataFrame. Parameters ---------- axis: {index (0), columns(1)} Axis for the function to be applied on. skipna: bool, default True Exclude NA/null values when computing the result. level: int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. numeric_only: bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Returns ------- Series Notes ----- Parameters currently not supported are `level`, `numeric_only`. Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.min() a 1 b 7 dtype: int64 """ return self._reduce( "min", axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, **kwargs, ) @_cudf_nvtx_annotate def max( self, axis=no_default, skipna=True, level=None, numeric_only=None, **kwargs, ): """ Return the maximum of the values in the DataFrame. Parameters ---------- axis: {index (0), columns(1)} Axis for the function to be applied on. skipna: bool, default True Exclude NA/null values when computing the result. level: int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. numeric_only: bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Returns ------- Series Notes ----- Parameters currently not supported are `level`, `numeric_only`. Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.max() a 4 b 10 dtype: int64 """ return self._reduce( "max", axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, **kwargs, ) @_cudf_nvtx_annotate def sum( self, axis=no_default, skipna=True, dtype=None, level=None, numeric_only=None, min_count=0, **kwargs, ): """ Return sum of the values in the DataFrame. Parameters ---------- axis: {index (0), columns(1)} Axis for the function to be applied on. skipna: bool, default True Exclude NA/null values when computing the result. dtype: data type Data type to cast the result to. min_count: int, default 0 The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA. The default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1. Returns ------- Series Notes ----- Parameters currently not supported are `level`, `numeric_only`. Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.sum() a 10 b 34 dtype: int64 """ return self._reduce( "sum", axis=axis, skipna=skipna, dtype=dtype, level=level, numeric_only=numeric_only, min_count=min_count, **kwargs, ) @_cudf_nvtx_annotate def product( self, axis=no_default, skipna=True, dtype=None, level=None, numeric_only=None, min_count=0, **kwargs, ): """ Return product of the values in the DataFrame. Parameters ---------- axis: {index (0), columns(1)} Axis for the function to be applied on. skipna: bool, default True Exclude NA/null values when computing the result. dtype: data type Data type to cast the result to. min_count: int, default 0 The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA. The default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1. Returns ------- Series Notes ----- Parameters currently not supported are level`, `numeric_only`. Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.product() a 24 b 5040 dtype: int64 """ return self._reduce( # cuDF columns use "product" as the op name, but cupy uses "prod" # and we need cupy if axis == 1. "prod" if axis in {1, "columns"} else "product", axis=axis, skipna=skipna, dtype=dtype, level=level, numeric_only=numeric_only, min_count=min_count, **kwargs, ) # Alias for pandas compatibility. prod = product @_cudf_nvtx_annotate def mean( self, axis=no_default, skipna=True, level=None, numeric_only=None, **kwargs, ): """ Return the mean of the values for the requested axis. Parameters ---------- axis : {0 or 'index', 1 or 'columns'} Axis for the function to be applied on. skipna : bool, default True Exclude NA/null values when computing the result. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series. numeric_only : bool, default None Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series. **kwargs Additional keyword arguments to be passed to the function. Returns ------- mean : Series or DataFrame (if level specified) Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.mean() a 2.5 b 8.5 dtype: float64 """ return self._reduce( "mean", axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, **kwargs, ) @_cudf_nvtx_annotate def std( self, axis=no_default, skipna=True, level=None, ddof=1, numeric_only=None, **kwargs, ): """ Return sample standard deviation of the DataFrame. Normalized by N-1 by default. This can be changed using the `ddof` argument Parameters ---------- axis: {index (0), columns(1)} Axis for the function to be applied on. skipna: bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. ddof: int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. Returns ------- Series Notes ----- Parameters currently not supported are `level` and `numeric_only` Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.std() a 1.290994 b 1.290994 dtype: float64 """ return self._reduce( "std", axis=axis, skipna=skipna, level=level, ddof=ddof, numeric_only=numeric_only, **kwargs, ) @_cudf_nvtx_annotate def var( self, axis=no_default, skipna=True, level=None, ddof=1, numeric_only=None, **kwargs, ): """ Return unbiased variance of the DataFrame. Normalized by N-1 by default. This can be changed using the ddof argument. Parameters ---------- axis: {index (0), columns(1)} Axis for the function to be applied on. skipna: bool, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. ddof: int, default 1 Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. Returns ------- scalar Notes ----- Parameters currently not supported are `level` and `numeric_only` Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.var() a 1.666667 b 1.666667 dtype: float64 """ return self._reduce( "var", axis=axis, skipna=skipna, level=level, ddof=ddof, numeric_only=numeric_only, **kwargs, ) @_cudf_nvtx_annotate def kurtosis( self, axis=no_default, skipna=True, level=None, numeric_only=None, **kwargs, ): """ Return Fisher's unbiased kurtosis of a sample. Kurtosis obtained using Fisher's definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1. Parameters ---------- axis: {index (0), columns(1)} Axis for the function to be applied on. skipna: bool, default True Exclude NA/null values when computing the result. Returns ------- Series or scalar Notes ----- Parameters currently not supported are `level` and `numeric_only` Examples -------- **Series** >>> import cudf >>> series = cudf.Series([1, 2, 3, 4]) >>> series.kurtosis() -1.1999999999999904 **DataFrame** >>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.kurt() a -1.2 b -1.2 dtype: float64 """ if axis not in (0, "index", None, no_default): raise NotImplementedError("Only axis=0 is currently supported.") return self._reduce( "kurtosis", axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, **kwargs, ) # Alias for kurtosis. kurt = kurtosis @_cudf_nvtx_annotate def skew( self, axis=no_default, skipna=True, level=None, numeric_only=None, **kwargs, ): """ Return unbiased Fisher-Pearson skew of a sample. Parameters ---------- skipna: bool, default True Exclude NA/null values when computing the result. Returns ------- Series Notes ----- Parameters currently not supported are `axis`, `level` and `numeric_only` Examples -------- **Series** >>> import cudf >>> series = cudf.Series([1, 2, 3, 4, 5, 6, 6]) >>> series 0 1 1 2 2 3 3 4 4 5 5 6 6 6 dtype: int64 **DataFrame** >>> import cudf >>> df = cudf.DataFrame({'a': [3, 2, 3, 4], 'b': [7, 8, 10, 10]}) >>> df.skew() a 0.00000 b -0.37037 dtype: float64 """ if axis not in (0, "index", None, no_default): raise NotImplementedError("Only axis=0 is currently supported.") return self._reduce( "skew", axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, **kwargs, ) @_cudf_nvtx_annotate def all(self, axis=0, skipna=True, level=None, **kwargs): """ Return whether all elements are True in DataFrame. Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default 0 Indicate which axis or axes should be reduced. For `Series` this parameter is unused and defaults to `0`. - 0 or 'index' : reduce the index, return a Series whose index is the original column labels. - 1 or 'columns' : reduce the columns, return a Series whose index is the original index. - None : reduce all axes, return a scalar. skipna: bool, default True Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero. Returns ------- Series Notes ----- Parameters currently not supported are `bool_only`, `level`. Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [3, 2, 3, 4], 'b': [7, 0, 10, 10]}) >>> df.all() a True b False dtype: bool """ return self._reduce( "all", axis=axis, skipna=skipna, level=level, **kwargs, ) @_cudf_nvtx_annotate def any(self, axis=0, skipna=True, level=None, **kwargs): """ Return whether any elements is True in DataFrame. Parameters ---------- axis : {0 or 'index', 1 or 'columns', None}, default 0 Indicate which axis or axes should be reduced. For `Series` this parameter is unused and defaults to `0`. - 0 or 'index' : reduce the index, return a Series whose index is the original column labels. - 1 or 'columns' : reduce the columns, return a Series whose index is the original index. - None : reduce all axes, return a scalar. skipna: bool, default True Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be False, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero. Returns ------- Series Notes ----- Parameters currently not supported are `bool_only`, `level`. Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [3, 2, 3, 4], 'b': [7, 0, 10, 10]}) >>> df.any() a True b True dtype: bool """ return self._reduce( "any", axis=axis, skipna=skipna, level=level, **kwargs, ) @_cudf_nvtx_annotate def median( self, axis=None, skipna=True, level=None, numeric_only=None, **kwargs ): """ Return the median of the values for the requested axis. Parameters ---------- skipna : bool, default True Exclude NA/null values when computing the result. Returns ------- scalar Notes ----- Parameters currently not supported are `level` and `numeric_only`. Examples -------- >>> import cudf >>> ser = cudf.Series([10, 25, 3, 25, 24, 6]) >>> ser 0 10 1 25 2 3 3 25 4 24 5 6 dtype: int64 >>> ser.median() 17.0 """ return self._reduce( "median", axis=axis, skipna=skipna, level=level, numeric_only=numeric_only, **kwargs, ) @_cudf_nvtx_annotate @ioutils.doc_to_json() def to_json(self, path_or_buf=None, *args, **kwargs): """{docstring}""" return cudf.io.json.to_json( self, path_or_buf=path_or_buf, *args, **kwargs ) @_cudf_nvtx_annotate @ioutils.doc_to_hdf() def to_hdf(self, path_or_buf, key, *args, **kwargs): """{docstring}""" cudf.io.hdf.to_hdf(path_or_buf, key, self, *args, **kwargs) @_cudf_nvtx_annotate @ioutils.doc_to_dlpack() def to_dlpack(self): """{docstring}""" return cudf.io.dlpack.to_dlpack(self) @_cudf_nvtx_annotate def to_string(self): r""" Convert to string cuDF uses Pandas internals for efficient string formatting. Set formatting options using pandas string formatting options and cuDF objects will print identically to Pandas objects. cuDF supports `null/None` as a value in any column type, which is transparently supported during this output process. Examples -------- >>> import cudf >>> df = cudf.DataFrame() >>> df['key'] = [0, 1, 2] >>> df['val'] = [float(i + 10) for i in range(3)] >>> df.to_string() ' key val\n0 0 10.0\n1 1 11.0\n2 2 12.0' """ return repr(self) @_cudf_nvtx_annotate def __str__(self): return self.to_string() @_cudf_nvtx_annotate def __deepcopy__(self, memo): return self.copy(deep=True) @_cudf_nvtx_annotate def __copy__(self): return self.copy(deep=False) @_cudf_nvtx_annotate def head(self, n=5): """ Return the first `n` rows. This function returns the first `n` rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. For negative values of `n`, this function returns all rows except the last `n` rows, equivalent to ``df[:-n]``. Parameters ---------- n : int, default 5 Number of rows to select. Returns ------- DataFrame or Series The first `n` rows of the caller object. Examples -------- **Series** >>> ser = cudf.Series(['alligator', 'bee', 'falcon', ... 'lion', 'monkey', 'parrot', 'shark', 'whale', 'zebra']) >>> ser 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra dtype: object Viewing the first 5 lines >>> ser.head() 0 alligator 1 bee 2 falcon 3 lion 4 monkey dtype: object Viewing the first `n` lines (three in this case) >>> ser.head(3) 0 alligator 1 bee 2 falcon dtype: object For negative values of `n` >>> ser.head(-3) 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot dtype: object **DataFrame** >>> df = cudf.DataFrame() >>> df['key'] = [0, 1, 2, 3, 4] >>> df['val'] = [float(i + 10) for i in range(5)] # insert column >>> df.head(2) key val 0 0 10.0 1 1 11.0 """ return self.iloc[:n] @_cudf_nvtx_annotate def tail(self, n=5): """ Returns the last n rows as a new DataFrame or Series Examples -------- **DataFrame** >>> import cudf >>> df = cudf.DataFrame() >>> df['key'] = [0, 1, 2, 3, 4] >>> df['val'] = [float(i + 10) for i in range(5)] # insert column >>> df.tail(2) key val 3 3 13.0 4 4 14.0 **Series** >>> import cudf >>> ser = cudf.Series([4, 3, 2, 1, 0]) >>> ser.tail(2) 3 1 4 0 """ if n == 0: return self.iloc[0:0] return self.iloc[-n:] @_cudf_nvtx_annotate @copy_docstring(Rolling) def rolling( self, window, min_periods=None, center=False, axis=0, win_type=None ): return Rolling( self, window, min_periods=min_periods, center=center, axis=axis, win_type=win_type, ) @_cudf_nvtx_annotate def nans_to_nulls(self): """ Convert nans (if any) to nulls Returns ------- DataFrame or Series Examples -------- **Series** >>> import cudf, numpy as np >>> series = cudf.Series([1, 2, np.nan, None, 10], nan_as_null=False) >>> series 0 1.0 1 2.0 2 NaN 3 <NA> 4 10.0 dtype: float64 >>> series.nans_to_nulls() 0 1.0 1 2.0 2 <NA> 3 <NA> 4 10.0 dtype: float64 **DataFrame** >>> df = cudf.DataFrame() >>> df['a'] = cudf.Series([1, None, np.nan], nan_as_null=False) >>> df['b'] = cudf.Series([None, 3.14, np.nan], nan_as_null=False) >>> df a b 0 1.0 <NA> 1 <NA> 3.14 2 NaN NaN >>> df.nans_to_nulls() a b 0 1.0 <NA> 1 <NA> 3.14 2 <NA> <NA> """ result_data = {} for name, col in self._data.items(): try: result_data[name] = col.nans_to_nulls() except AttributeError: result_data[name] = col.copy() return self._from_data_like_self(result_data) @_cudf_nvtx_annotate def __invert__(self): """Bitwise invert (~) for integral dtypes, logical NOT for bools.""" return self._from_data_like_self( { name: _apply_inverse_column(col) for name, col in self._data.items() } ) @_cudf_nvtx_annotate def nunique(self, dropna: bool = True): """ Returns a per column mapping with counts of unique values for each column. Parameters ---------- dropna : bool, default True Don't include NaN in the counts. Returns ------- dict Name and unique value counts of each column in frame. """ return { name: col.distinct_count(dropna=dropna) for name, col in self._data.items() } @staticmethod @_cudf_nvtx_annotate def _repeat( columns: List[ColumnBase], repeats, axis=None ) -> List[ColumnBase]: if axis is not None: raise NotImplementedError( "Only axis=`None` supported at this time." ) if not is_scalar(repeats): repeats = as_column(repeats) return libcudf.filling.repeat(columns, repeats) @_cudf_nvtx_annotate @_warn_no_dask_cudf def __dask_tokenize__(self): return [ type(self), self._dtypes, self.to_pandas(), ] def _apply_inverse_column(col: ColumnBase) -> ColumnBase: """Bitwise invert (~) for integral dtypes, logical NOT for bools.""" if np.issubdtype(col.dtype, np.integer): return col.unary_operator("invert") elif is_bool_dtype(col.dtype): return col.unary_operator("not") else: raise TypeError( f"Operation `~` not supported on {col.dtype.type.__name__}" )
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/core/common.py
# Copyright (c) 2020, NVIDIA CORPORATION. def pipe(obj, func, *args, **kwargs): """ Apply a function ``func`` to object ``obj`` either by passing obj as the first argument to the function or, in the case that the func is a tuple, interpret the first element of the tuple as a function and pass the obj to that function as a keyword argument whose key is the value of the second element of the tuple. Parameters ---------- func : callable or tuple of (callable, str) Function to apply to this object or, alternatively, a ``(callable, data_keyword)`` tuple where ``data_keyword`` is a string indicating the keyword of `callable`` that expects the object. *args : iterable, optional Positional arguments passed into ``func``. **kwargs : dict, optional A dictionary of keyword arguments passed into ``func``. Returns ------- object : the return type of ``func``. """ if isinstance(func, tuple): func, target = func if target in kwargs: raise ValueError( f"{target} is both the pipe target and a keyword argument" ) kwargs[target] = obj return func(*args, **kwargs) else: return func(obj, *args, **kwargs)
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/core/byte_pair_encoding.py
# Copyright (c) 2023, NVIDIA CORPORATION. from __future__ import annotations import cudf from cudf._lib.nvtext.byte_pair_encode import ( BPEMergePairs as cpp_merge_pairs, byte_pair_encoding as cpp_byte_pair_encoding, ) class BytePairEncoder: """ Given a merge pairs strings series, performs byte pair encoding on a strings series using the provided separator. Parameters ---------- merges_pairs : str Strings column of merge pairs Returns ------- BytePairEncoder """ def __init__(self, merges_pair: "cudf.Series"): self.merge_pairs = cpp_merge_pairs(merges_pair._column) def __call__(self, text, separator: str = " "): """ Parameters ---------- text : cudf string series The strings to be encoded. Returns ------- Encoded strings Examples -------- >>> import cudf >>> from cudf.core.byte_pair_encoding import BytePairEncoder >>> mps = cudf.Series(["e n", "i t", "i s", "e s", "en t", ... "c e", "es t", "en ce", "T h", "Th is", ... "t est", "s ent", "t h", "th is"]) >>> bpe = BytePairEncoder(mps) >>> str_series = cudf.Series(['This is the sentence', 'thisisit']) >>> bpe(str_series) 0 This is a sent ence 1 this is it dtype: object """ sep = cudf.Scalar(separator, dtype="str") result = cpp_byte_pair_encoding(text._column, self.merge_pairs, sep) return cudf.Series(result)
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/core/missing.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. # Pandas NAType enforces a single instance exists at a time # instantiating this class will yield the existing instance # of pandas._libs.missing.NAType, id(cudf.NA) == id(pd.NA). from pandas import NA, NaT __all__ = ["NA", "NaT"]
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/core/series.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. from __future__ import annotations import functools import inspect import pickle import textwrap import warnings from collections import abc from shutil import get_terminal_size from typing import ( Any, Dict, MutableMapping, Optional, Sequence, Set, Tuple, Union, ) import cupy import numpy as np import pandas as pd from pandas._config import get_option from pandas.core.dtypes.common import is_float from typing_extensions import Self, assert_never import cudf from cudf import _lib as libcudf from cudf._typing import ( ColumnLike, DataFrameOrSeries, NotImplementedType, ScalarLike, ) from cudf.api.extensions import no_default from cudf.api.types import ( _is_non_decimal_numeric_dtype, _is_scalar_or_zero_d_array, is_bool_dtype, is_decimal_dtype, is_dict_like, is_float_dtype, is_integer, is_integer_dtype, is_list_dtype, is_scalar, is_string_dtype, is_struct_dtype, ) from cudf.core import indexing_utils from cudf.core.abc import Serializable from cudf.core.buffer import acquire_spill_lock from cudf.core.column import ( ColumnBase, DatetimeColumn, IntervalColumn, TimeDeltaColumn, arange, as_column, column, full, ) from cudf.core.column.categorical import ( CategoricalAccessor as CategoricalAccessor, ) from cudf.core.column.column import concat_columns from cudf.core.column.lists import ListMethods from cudf.core.column.string import StringMethods from cudf.core.column.struct import StructMethods from cudf.core.column_accessor import ColumnAccessor from cudf.core.groupby.groupby import SeriesGroupBy, groupby_doc_template from cudf.core.index import BaseIndex, DatetimeIndex, RangeIndex, as_index from cudf.core.indexed_frame import ( IndexedFrame, _FrameIndexer, _get_label_range_or_mask, _indices_from_labels, doc_reset_index_template, ) from cudf.core.resample import SeriesResampler from cudf.core.single_column_frame import SingleColumnFrame from cudf.core.udf.scalar_function import _get_scalar_kernel from cudf.errors import MixedTypeError from cudf.utils import docutils from cudf.utils.docutils import copy_docstring from cudf.utils.dtypes import ( can_convert_to_column, find_common_type, is_mixed_with_object_dtype, to_cudf_compatible_scalar, ) from cudf.utils.nvtx_annotation import _cudf_nvtx_annotate def _format_percentile_names(percentiles): return [f"{int(x * 100)}%" for x in percentiles] def _describe_numeric(obj, percentiles): # Helper for Series.describe with numerical data. data = { "count": obj.count(), "mean": obj.mean(), "std": obj.std(), "min": obj.min(), **dict( zip( _format_percentile_names(percentiles), obj.quantile(percentiles).to_numpy(na_value=np.nan).tolist(), ) ), "max": obj.max(), } return {k: round(v, 6) for k, v in data.items()} def _describe_timetype(obj, percentiles, typ): # Common helper for Series.describe with timedelta/timestamp data. data = { "count": str(obj.count()), "mean": str(typ(obj.mean())), "std": "", "min": str(typ(obj.min())), **dict( zip( _format_percentile_names(percentiles), obj.quantile(percentiles) .astype("str") .to_numpy(na_value=np.nan) .tolist(), ) ), "max": str(typ(obj.max())), } if typ is pd.Timedelta: data["std"] = str(obj.std()) else: data.pop("std") return data def _describe_timedelta(obj, percentiles): # Helper for Series.describe with timedelta data. return _describe_timetype(obj, percentiles, pd.Timedelta) def _describe_timestamp(obj, percentiles): # Helper for Series.describe with timestamp data. return _describe_timetype(obj, percentiles, pd.Timestamp) def _describe_categorical(obj, percentiles): # Helper for Series.describe with categorical data. data = { "count": obj.count(), "unique": len(obj.unique()), "top": None, "freq": None, } if data["count"] > 0: # In case there's a tie, break the tie by sorting the index # and take the top. val_counts = obj.value_counts(ascending=False) tied_val_counts = val_counts[ val_counts == val_counts.iloc[0] ].sort_index() data.update( { "top": tied_val_counts.index[0], "freq": tied_val_counts.iloc[0], } ) return data def _append_new_row_inplace(col: ColumnLike, value: ScalarLike): """Append a scalar `value` to the end of `col` inplace. Cast to common type if possible """ to_type = find_common_type([type(value), col.dtype]) val_col = as_column(value, dtype=to_type) old_col = col.astype(to_type) col._mimic_inplace(concat_columns([old_col, val_col]), inplace=True) class _SeriesIlocIndexer(_FrameIndexer): """ For integer-location based selection. """ _frame: cudf.Series @_cudf_nvtx_annotate def __getitem__(self, arg): indexing_spec = indexing_utils.parse_row_iloc_indexer( indexing_utils.destructure_series_iloc_indexer(arg, self._frame), len(self._frame), ) return self._frame._getitem_preprocessed(indexing_spec) @_cudf_nvtx_annotate def __setitem__(self, key, value): from cudf.core.column import column if isinstance(key, tuple): key = list(key) # coerce value into a scalar or column if is_scalar(value): value = to_cudf_compatible_scalar(value) if ( not isinstance( self._frame._column, ( cudf.core.column.DatetimeColumn, cudf.core.column.TimeDeltaColumn, ), ) and cudf.utils.utils._isnat(value) and not ( isinstance( self._frame._column, cudf.core.column.StringColumn ) and isinstance(value, str) ) ): raise MixedTypeError( f"Cannot assign {value=} to non-datetime/non-timedelta " "columns" ) elif ( not ( is_float_dtype(self._frame._column.dtype) or ( isinstance( self._frame._column.dtype, cudf.CategoricalDtype ) and is_float_dtype( self._frame._column.dtype.categories.dtype ) ) ) and isinstance(value, (np.float32, np.float64)) and np.isnan(value) ): raise MixedTypeError( f"Cannot assign {value=} to " f"non-float dtype={self._frame._column.dtype}" ) elif ( is_bool_dtype(self._frame._column.dtype) and not is_bool_dtype(value) and value not in {None, cudf.NA} ): raise MixedTypeError( f"Cannot assign {value=} to " f"bool dtype={self._frame._column.dtype}" ) elif not ( isinstance(value, (list, dict)) and isinstance( self._frame._column.dtype, (cudf.ListDtype, cudf.StructDtype) ) ): value = column.as_column(value) if ( ( _is_non_decimal_numeric_dtype(self._frame._column.dtype) or is_string_dtype(self._frame._column.dtype) ) and hasattr(value, "dtype") and _is_non_decimal_numeric_dtype(value.dtype) ): # normalize types if necessary: # In contrast to Column.__setitem__ (which downcasts the value to # the dtype of the column) here we upcast the series to the # larger data type mimicking pandas to_dtype = np.result_type(value.dtype, self._frame._column.dtype) value = value.astype(to_dtype) if to_dtype != self._frame._column.dtype: self._frame._column._mimic_inplace( self._frame._column.astype(to_dtype), inplace=True ) self._frame._column[key] = value class _SeriesLocIndexer(_FrameIndexer): """ Label-based selection """ @_cudf_nvtx_annotate def __getitem__(self, arg: Any) -> Union[ScalarLike, DataFrameOrSeries]: if isinstance(arg, pd.MultiIndex): arg = cudf.from_pandas(arg) if isinstance(self._frame.index, cudf.MultiIndex) and not isinstance( arg, cudf.MultiIndex ): if is_scalar(arg): row_arg = (arg,) else: row_arg = arg result = self._frame.index._get_row_major(self._frame, row_arg) if ( isinstance(arg, tuple) and len(arg) == self._frame._index.nlevels and not any(isinstance(x, slice) for x in arg) ): result = result.iloc[0] return result try: arg = self._loc_to_iloc(arg) except (TypeError, KeyError, IndexError, ValueError): raise KeyError(arg) return self._frame.iloc[arg] @_cudf_nvtx_annotate def __setitem__(self, key, value): try: key = self._loc_to_iloc(key) except KeyError as e: if ( is_scalar(key) and not isinstance(self._frame.index, cudf.MultiIndex) and is_scalar(value) ): # TODO: Modifying index in place is bad because # our index are immutable, but columns are not (which # means our index are mutable with internal APIs). # Get rid of the deep copy once columns too are # immutable. idx_copy = self._frame._index.copy(deep=True) if ( isinstance(idx_copy, cudf.RangeIndex) and isinstance(key, int) and (key == idx_copy[-1] + idx_copy.step) ): idx_copy = cudf.RangeIndex( start=idx_copy.start, stop=idx_copy.stop + idx_copy.step, step=idx_copy.step, name=idx_copy.name, ) else: if isinstance(idx_copy, cudf.RangeIndex): idx_copy = idx_copy._as_int_index() _append_new_row_inplace(idx_copy._values, key) self._frame._index = idx_copy _append_new_row_inplace(self._frame._column, value) return else: raise e if isinstance(value, (pd.Series, cudf.Series)): value = cudf.Series(value) value = value._align_to_index(self._frame.index, how="right") self._frame.iloc[key] = value def _loc_to_iloc(self, arg): if isinstance(arg, tuple) and arg and isinstance(arg[0], slice): if len(arg) > 1: raise IndexError("Too many Indexers") arg = arg[0] if _is_scalar_or_zero_d_array(arg): index_dtype = self._frame.index.dtype if not _is_non_decimal_numeric_dtype(index_dtype) and not ( isinstance(index_dtype, cudf.CategoricalDtype) and is_integer_dtype(index_dtype.categories.dtype) ): # TODO: switch to cudf.utils.dtypes.is_integer(arg) if isinstance(arg, cudf.Scalar) and is_integer_dtype( arg.dtype ): found_index = arg.value return found_index elif is_integer(arg): found_index = arg return found_index try: indices = self._frame.index._indices_of(arg) if (n := len(indices)) == 0: raise KeyError("Label scalar is out of bounds") elif n == 1: return indices.element_indexing(0) else: return indices except (TypeError, KeyError, IndexError, ValueError): raise KeyError("Label scalar is out of bounds") elif isinstance(arg, slice): return _get_label_range_or_mask( self._frame.index, arg.start, arg.stop, arg.step ) elif isinstance(arg, (cudf.MultiIndex, pd.MultiIndex)): if isinstance(arg, pd.MultiIndex): arg = cudf.MultiIndex.from_pandas(arg) return _indices_from_labels(self._frame, arg) else: arg = cudf.core.series.Series(cudf.core.column.as_column(arg)) if arg.dtype in (bool, np.bool_): return arg else: indices = _indices_from_labels(self._frame, arg) if indices.null_count > 0: raise KeyError("label scalar is out of bound") return indices class Series(SingleColumnFrame, IndexedFrame, Serializable): """ One-dimensional GPU array (including time series). Labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as null/NaN). Operations between Series (`+`, `-`, `/`, `*`, `**`) align values based on their associated index values, they need not be the same length. The result index will be the sorted union of the two indexes. ``Series`` objects are used as columns of ``DataFrame``. Parameters ---------- data : array-like, Iterable, dict, or scalar value Contains data stored in Series. index : array-like or Index (1d) Values must be hashable and have the same length as data. Non-unique index values are allowed. Will default to RangeIndex (0, 1, 2, ..., n) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict. dtype : str, :class:`numpy.dtype`, or ExtensionDtype, optional Data type for the output Series. If not specified, this will be inferred from data. name : str, optional The name to give to the Series. copy : bool, default False Copy input data. Only affects Series or 1d ndarray input. nan_as_null : bool, Default True If ``None``/``True``, converts ``np.nan`` values to ``null`` values. If ``False``, leaves ``np.nan`` values as is. """ _accessors: Set[Any] = set() _loc_indexer_type = _SeriesLocIndexer _iloc_indexer_type = _SeriesIlocIndexer _groupby = SeriesGroupBy _resampler = SeriesResampler # The `constructor*` properties are used by `dask` (and `dask_cudf`) @property def _constructor(self): return Series @property def _constructor_sliced(self): raise NotImplementedError( "_constructor_sliced not supported for Series!" ) @property def _constructor_expanddim(self): return cudf.DataFrame @classmethod @_cudf_nvtx_annotate def from_categorical(cls, categorical, codes=None): """Creates from a pandas.Categorical Parameters ---------- categorical : pandas.Categorical Contains data stored in a pandas Categorical. codes : array-like, optional. The category codes of this categorical. If ``codes`` are defined, they are used instead of ``categorical.codes`` Returns ------- Series A cudf categorical series. Examples -------- >>> import cudf >>> import pandas as pd >>> pd_categorical = pd.Categorical(pd.Series(['a', 'b', 'c', 'a'], dtype='category')) >>> pd_categorical ['a', 'b', 'c', 'a'] Categories (3, object): ['a', 'b', 'c'] >>> series = cudf.Series.from_categorical(pd_categorical) >>> series 0 a 1 b 2 c 3 a dtype: category Categories (3, object): ['a', 'b', 'c'] """ # noqa: E501 col = cudf.core.column.categorical.pandas_categorical_as_column( categorical, codes=codes ) return Series(data=col) @classmethod @_cudf_nvtx_annotate def from_masked_array(cls, data, mask, null_count=None): """Create a Series with null-mask. This is equivalent to: Series(data).set_mask(mask, null_count=null_count) Parameters ---------- data : 1D array-like The values. Null values must not be skipped. They can appear as garbage values. mask : 1D array-like The null-mask. Valid values are marked as ``1``; otherwise ``0``. The mask bit given the data index ``idx`` is computed as:: (mask[idx // 8] >> (idx % 8)) & 1 null_count : int, optional The number of null values. If None, it is calculated automatically. Returns ------- Series Examples -------- >>> import cudf >>> a = cudf.Series([1, 2, 3, None, 4, None]) >>> a 0 1 1 2 2 3 3 <NA> 4 4 5 <NA> dtype: int64 >>> b = cudf.Series([10, 11, 12, 13, 14]) >>> cudf.Series.from_masked_array(data=b, mask=a._column.mask) 0 10 1 11 2 12 3 <NA> 4 14 dtype: int64 """ col = column.as_column(data).set_mask(mask) return cls(data=col) @_cudf_nvtx_annotate def __init__( self, data=None, index=None, dtype=None, name=None, copy=False, nan_as_null=True, ): if ( isinstance(data, Sequence) and len(data) == 0 and dtype is None and getattr(data, "dtype", None) is None ): warnings.warn( "The default dtype for empty Series will be 'object' instead " "of 'float64' in a future version. Specify a dtype explicitly " "to silence this warning.", FutureWarning, ) if isinstance(data, pd.Series): if name is None: name = data.name if isinstance(data.index, pd.MultiIndex): index = cudf.from_pandas(data.index) else: index = as_index(data.index) elif isinstance(data, pd.Index): if name is None: name = data.name data = as_column(data, nan_as_null=nan_as_null, dtype=dtype) elif isinstance(data, BaseIndex): if name is None: name = data.name data = data._values if dtype is not None: data = data.astype(dtype) elif isinstance(data, ColumnAccessor): raise TypeError( "Use cudf.Series._from_data for constructing a Series from " "ColumnAccessor" ) if isinstance(data, Series): if index is not None: data = data.reindex(index) else: index = data._index if name is None: name = data.name data = data._column if copy: data = data.copy(deep=True) if dtype is not None: data = data.astype(dtype) if isinstance(data, dict): if not data: current_index = RangeIndex(0) else: current_index = data.keys() if index is not None: series = Series( list(data.values()), nan_as_null=nan_as_null, dtype=dtype, index=current_index, ) new_index = as_index(index) if not series.index.equals(new_index): series = series.reindex(new_index) data = series._column index = series._index else: data = column.as_column( list(data.values()), nan_as_null=nan_as_null, dtype=dtype ) index = current_index if data is None: if index is not None: data = column.column_empty( row_count=len(index), dtype=None, masked=True ) else: data = {} if not isinstance(data, ColumnBase): # Using `getattr_static` to check if # `data` is on device memory and perform # a deep copy later. This is different # from `hasattr` because, it doesn't # invoke the property we are looking # for and the latter actually invokes # the property, which in this case could # be expensive or mark a buffer as # unspillable. has_cai = ( type( inspect.getattr_static( data, "__cuda_array_interface__", None ) ) is property ) data = column.as_column( data, nan_as_null=nan_as_null, dtype=dtype, length=len(index) if index is not None else None, ) if copy and has_cai: data = data.copy(deep=True) else: if dtype is not None: data = data.astype(dtype) if index is not None and not isinstance(index, BaseIndex): index = as_index(index) assert isinstance(data, ColumnBase) super().__init__({name: data}) self._index = RangeIndex(len(data)) if index is None else index self._check_data_index_length_match() @classmethod @_cudf_nvtx_annotate def _from_data( cls, data: MutableMapping, index: Optional[BaseIndex] = None, name: Any = no_default, ) -> Series: out = super()._from_data(data=data, index=index) if name is not no_default: out.name = name return out @_cudf_nvtx_annotate def __contains__(self, item): return item in self._index @classmethod @_cudf_nvtx_annotate def from_pandas(cls, s, nan_as_null=no_default): """ Convert from a Pandas Series. Parameters ---------- s : Pandas Series object A Pandas Series object which has to be converted to cuDF Series. nan_as_null : bool, Default None If ``None``/``True``, converts ``np.nan`` values to ``null`` values. If ``False``, leaves ``np.nan`` values as is. Raises ------ TypeError for invalid input type. Examples -------- >>> import cudf >>> import pandas as pd >>> import numpy as np >>> data = [10, 20, 30, np.nan] >>> pds = pd.Series(data, dtype='float64') >>> cudf.Series.from_pandas(pds) 0 10.0 1 20.0 2 30.0 3 <NA> dtype: float64 >>> cudf.Series.from_pandas(pds, nan_as_null=False) 0 10.0 1 20.0 2 30.0 3 NaN dtype: float64 """ if nan_as_null is no_default: nan_as_null = ( False if cudf.get_option("mode.pandas_compatible") else None ) with warnings.catch_warnings(): warnings.simplefilter("ignore") result = cls(s, nan_as_null=nan_as_null) return result @property # type: ignore @_cudf_nvtx_annotate def is_unique(self): """Return boolean if values in the object are unique. Returns ------- bool """ return self._column.is_unique @property # type: ignore @_cudf_nvtx_annotate def dt(self): """ Accessor object for datetime-like properties of the Series values. Examples -------- >>> s = cudf.Series(cudf.date_range( ... start='2001-02-03 12:00:00', ... end='2001-02-03 14:00:00', ... freq='1H')) >>> s.dt.hour 0 12 1 13 dtype: int16 >>> s.dt.second 0 0 1 0 dtype: int16 >>> s.dt.day 0 3 1 3 dtype: int16 Returns ------- A Series indexed like the original Series. Raises ------ TypeError if the Series does not contain datetimelike values. """ if isinstance(self._column, DatetimeColumn): return DatetimeProperties(self) elif isinstance(self._column, TimeDeltaColumn): return TimedeltaProperties(self) else: raise AttributeError( "Can only use .dt accessor with datetimelike values" ) @property # type:ignore @_cudf_nvtx_annotate def axes(self): """ Return a list representing the axes of the Series. Series.axes returns a list containing the row index. Examples -------- >>> import cudf >>> csf1 = cudf.Series([1, 2, 3, 4]) >>> csf1.axes [RangeIndex(start=0, stop=4, step=1)] """ return [self.index] @property # type: ignore @_cudf_nvtx_annotate def hasnans(self): """ Return True if there are any NaNs or nulls. Returns ------- out : bool If Series has at least one NaN or null value, return True, if not return False. Examples -------- >>> import cudf >>> import numpy as np >>> series = cudf.Series([1, 2, np.nan, 3, 4], nan_as_null=False) >>> series 0 1.0 1 2.0 2 NaN 3 3.0 4 4.0 dtype: float64 >>> series.hasnans True `hasnans` returns `True` for the presence of any `NA` values: >>> series = cudf.Series([1, 2, 3, None, 4]) >>> series 0 1 1 2 2 3 3 <NA> 4 4 dtype: int64 >>> series.hasnans True """ return self._column.has_nulls(include_nan=True) @_cudf_nvtx_annotate def serialize(self): header, frames = super().serialize() header["index"], index_frames = self._index.serialize() header["index_frame_count"] = len(index_frames) # For backwards compatibility with older versions of cuDF, index # columns are placed before data columns. frames = index_frames + frames return header, frames @classmethod @_cudf_nvtx_annotate def deserialize(cls, header, frames): index_nframes = header["index_frame_count"] obj = super().deserialize( header, frames[header["index_frame_count"] :] ) idx_typ = pickle.loads(header["index"]["type-serialized"]) index = idx_typ.deserialize(header["index"], frames[:index_nframes]) obj._index = index return obj def _get_columns_by_label(self, labels, *, downcast=False) -> Self: """Return the column specified by `labels` For cudf.Series, either the column, or an empty series is returned. Parameter `downcast` does not have effects. """ ca = self._data.select_by_label(labels) return ( self.__class__._from_data(data=ca, index=self.index) if len(ca) > 0 else self.__class__(dtype=self.dtype, name=self.name) ) @_cudf_nvtx_annotate def drop( self, labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors="raise", ): if axis == 1: raise ValueError("No axis named 1 for object type Series") # Ignore columns for Series if columns is not None: columns = [] return super().drop( labels, axis, index, columns, level, inplace, errors ) def tolist(self): # noqa: D102 raise TypeError( "cuDF does not support conversion to host memory " "via the `tolist()` method. Consider using " "`.to_arrow().to_pylist()` to construct a Python list." ) to_list = tolist @_cudf_nvtx_annotate def to_dict(self, into: type[dict] = dict) -> dict: """ Convert Series to {label -> value} dict or dict-like object. Parameters ---------- into : class, default dict The collections.abc.Mapping subclass to use as the return object. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns ------- collections.abc.Mapping Key-value representation of Series. Examples -------- >>> import cudf >>> s = cudf.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.to_dict() {0: 1, 1: 2, 2: 3, 3: 4} >>> from collections import OrderedDict, defaultdict >>> s.to_dict(OrderedDict) OrderedDict([(0, 1), (1, 2), (2, 3), (3, 4)]) >>> dd = defaultdict(list) >>> s.to_dict(dd) defaultdict(<class 'list'>, {0: 1, 1: 2, 2: 3, 3: 4}) """ return self.to_pandas().to_dict(into=into) @_cudf_nvtx_annotate def append(self, to_append, ignore_index=False, verify_integrity=False): """Append values from another ``Series`` or array-like object. If ``ignore_index=True``, the index is reset. Parameters ---------- to_append : Series or list/tuple of Series Series to append with self. ignore_index : boolean, default False. If True, do not use the index. verify_integrity : bool, default False This Parameter is currently not supported. Returns ------- Series A new concatenated series See Also -------- cudf.concat : General function to concatenate DataFrame or Series objects. Examples -------- >>> import cudf >>> s1 = cudf.Series([1, 2, 3]) >>> s2 = cudf.Series([4, 5, 6]) >>> s1 0 1 1 2 2 3 dtype: int64 >>> s2 0 4 1 5 2 6 dtype: int64 >>> s1.append(s2) 0 1 1 2 2 3 0 4 1 5 2 6 dtype: int64 >>> s3 = cudf.Series([4, 5, 6], index=[3, 4, 5]) >>> s3 3 4 4 5 5 6 dtype: int64 >>> s1.append(s3) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 With `ignore_index` set to True: >>> s1.append(s2, ignore_index=True) 0 1 1 2 2 3 3 4 4 5 5 6 dtype: int64 """ return super()._append(to_append, ignore_index, verify_integrity) @_cudf_nvtx_annotate def reindex(self, *args, **kwargs): """ Conform Series to new index. Parameters ---------- index : Index, Series-convertible, default None New labels / index to conform to, should be specified using keywords. method: Not Supported copy : boolean, default True level: Not Supported fill_value : Value to use for missing values. Defaults to ``NA``, but can be any "compatible" value. limit: Not Supported tolerance: Not Supported Returns ------- Series with changed index. Examples -------- >>> import cudf >>> series = cudf.Series([10, 20, 30, 40], index=['a', 'b', 'c', 'd']) >>> series a 10 b 20 c 30 d 40 dtype: int64 >>> series.reindex(['a', 'b', 'y', 'z']) a 10 b 20 y <NA> z <NA> dtype: int64 .. pandas-compat:: **Series.reindex** Note: One difference from Pandas is that ``NA`` is used for rows that do not match, rather than ``NaN``. One side effect of this is that the series retains an integer dtype in cuDF where it is cast to float in Pandas. """ if len(args) > 1: raise TypeError( "Only one positional argument ('index') is allowed" ) if args: (index,) = args if "index" in kwargs: raise TypeError( "'index' passed as both positional and keyword argument" ) else: index = kwargs.get("index", self._index) name = self.name or 0 series = self._reindex( deep=kwargs.get("copy", True), dtypes={name: self.dtype}, index=index, column_names=[name], inplace=False, fill_value=kwargs.get("fill_value", cudf.NA), ) series.name = self.name return series @_cudf_nvtx_annotate @docutils.doc_apply( doc_reset_index_template.format( klass="Series", argument=""" name : object, optional The name to use for the column containing the original Series values. Uses self.name by default. This argument is ignored when ``drop`` is True.""", return_type="Series or DataFrame or None", return_doc=""" For Series, When drop is False (the default), a DataFrame is returned. The newly created columns will come first in the DataFrame, followed by the original Series values. When `drop` is True, a `Series` is returned. In either case, if ``inplace=True``, no value is returned. """, # noqa: E501 example=""" >>> series = cudf.Series(['a', 'b', 'c', 'd'], index=[10, 11, 12, 13]) >>> series 10 a 11 b 12 c 13 d dtype: object >>> series.reset_index() index 0 0 10 a 1 11 b 2 12 c 3 13 d >>> series.reset_index(drop=True) 0 a 1 b 2 c 3 d dtype: object You can also use ``reset_index`` with MultiIndex. >>> s2 = cudf.Series( ... range(4), name='foo', ... index=cudf.MultiIndex.from_tuples([ ... ('bar', 'one'), ('bar', 'two'), ... ('baz', 'one'), ('baz', 'two')], ... names=['a', 'b'] ... )) >>> s2 a b bar one 0 two 1 baz one 2 two 3 Name: foo, dtype: int64 >>> s2.reset_index(level='a') a foo b one bar 0 two bar 1 one baz 2 two baz 3 """, ) ) def reset_index(self, level=None, drop=False, name=None, inplace=False): if not drop and inplace: raise TypeError( "Cannot reset_index inplace on a Series " "to create a DataFrame" ) data, index = self._reset_index(level=level, drop=drop) if not drop: if name is None: name = 0 if self.name is None else self.name data[name] = data.pop(self.name) return cudf.core.dataframe.DataFrame._from_data(data, index) # For ``name`` behavior, see: # https://github.com/pandas-dev/pandas/issues/44575 # ``name`` has to be ignored when `drop=True` return self._mimic_inplace( Series._from_data(data, index, self.name), inplace=inplace, ) @_cudf_nvtx_annotate def to_frame(self, name=None): """Convert Series into a DataFrame Parameters ---------- name : str, default None Name to be used for the column Returns ------- DataFrame cudf DataFrame Examples -------- >>> import cudf >>> series = cudf.Series(['a', 'b', 'c', None, 'd'], name='sample', index=[10, 11, 12, 13, 15]) >>> series 10 a 11 b 12 c 13 <NA> 15 d Name: sample, dtype: object >>> series.to_frame() sample 10 a 11 b 12 c 13 <NA> 15 d """ # noqa: E501 if name is not None: col = name elif self.name is None: col = 0 else: col = self.name return cudf.DataFrame({col: self._column}, index=self.index) @_cudf_nvtx_annotate def memory_usage(self, index=True, deep=False): return self._column.memory_usage + ( self._index.memory_usage() if index else 0 ) @_cudf_nvtx_annotate def __array_function__(self, func, types, args, kwargs): if "out" in kwargs or not all(issubclass(t, Series) for t in types): return NotImplemented try: # Apply a Series method if one exists. if cudf_func := getattr(Series, func.__name__, None): result = cudf_func(*args, **kwargs) if func.__name__ == "unique": # NumPy expects a sorted result for `unique`, which is not # guaranteed by cudf.Series.unique. result = result.sort_values() return result # Assume that cupy subpackages match numpy and search the # corresponding cupy submodule based on the func's __module__. numpy_submodule = func.__module__.split(".")[1:] cupy_func = cupy for name in (*numpy_submodule, func.__name__): cupy_func = getattr(cupy_func, name, None) # Handle case if cupy does not implement the function or just # aliases the numpy function. if not cupy_func or cupy_func is func: return NotImplemented # For now just fail on cases with mismatched indices. There is # almost certainly no general solution for all array functions. index = args[0].index if not all(s.index.equals(index) for s in args): return NotImplemented out = cupy_func(*(s.values for s in args), **kwargs) # Return (host) scalar values immediately. if not isinstance(out, cupy.ndarray): return out # 0D array (scalar) if out.ndim == 0: return to_cudf_compatible_scalar(out) # 1D array elif ( # Only allow 1D arrays ((out.ndim == 1) or (out.ndim == 2 and out.shape[1] == 1)) # If we have an index, it must be the same length as the # output for cupy dispatching to be well-defined. and len(index) == len(out) ): return Series(out, index=index) except Exception: # The rare instance where a "silent" failure is preferable. Except # in the (highly unlikely) case that some other library # interoperates with cudf objects, the result will be that numpy # raises a TypeError indicating that the operation is not # implemented, which is much friendlier than an arbitrary internal # cudf error. pass return NotImplemented @_cudf_nvtx_annotate def map(self, arg, na_action=None) -> "Series": """ Map values of Series according to input correspondence. Used for substituting each value in a Series with another value, that may be derived from a function, a ``dict`` or a :class:`Series`. Parameters ---------- arg : function, collections.abc.Mapping subclass or Series Mapping correspondence. na_action : {None, 'ignore'}, default None If 'ignore', propagate NaN values, without passing them to the mapping correspondence. Returns ------- Series Same index as caller. Examples -------- >>> s = cudf.Series(['cat', 'dog', np.nan, 'rabbit']) >>> s 0 cat 1 dog 2 <NA> 3 rabbit dtype: object ``map`` accepts a ``dict`` or a ``Series``. Values that are not found in the ``dict`` are converted to ``NaN``, default values in dicts are currently not supported.: >>> s.map({'cat': 'kitten', 'dog': 'puppy'}) 0 kitten 1 puppy 2 <NA> 3 <NA> dtype: object It also accepts numeric functions: >>> s = cudf.Series([1, 2, 3, 4, np.nan]) >>> s.map(lambda x: x ** 2) 0 1 1 4 2 9 3 16 4 <NA> dtype: int64 Notes ----- Please note map currently only supports fixed-width numeric type functions. """ if isinstance(arg, dict): if hasattr(arg, "__missing__"): raise NotImplementedError( "default values in dicts are currently not supported." ) lhs = cudf.DataFrame({"x": self, "orig_order": arange(len(self))}) rhs = cudf.DataFrame( { "x": arg.keys(), "s": arg.values(), "bool": full(len(arg), True, dtype=self.dtype), } ) res = lhs.merge(rhs, on="x", how="left").sort_values( by="orig_order" ) result = res["s"] result.name = self.name result.index = self.index elif isinstance(arg, cudf.Series): if not arg.index.is_unique: raise ValueError( "Reindexing only valid with" " uniquely valued Index objects" ) lhs = cudf.DataFrame({"x": self, "orig_order": arange(len(self))}) rhs = cudf.DataFrame( { "x": arg.keys(), "s": arg, "bool": full(len(arg), True, dtype=self.dtype), } ) res = lhs.merge(rhs, on="x", how="left").sort_values( by="orig_order" ) result = res["s"] result.name = self.name result.index = self.index else: result = self.apply(arg) return result def _getitem_preprocessed( self, spec: indexing_utils.IndexingSpec, ) -> Union[Self, ScalarLike]: """Get subset of entries given structured data Parameters ---------- spec Indexing specification Returns ------- Subsetted Series or else scalar (if a scalar entry is requested) Notes ----- This function performs no bounds-checking or massaging of the inputs. """ if isinstance(spec, indexing_utils.MapIndexer): return self._gather(spec.key, keep_index=True) elif isinstance(spec, indexing_utils.MaskIndexer): return self._apply_boolean_mask(spec.key, keep_index=True) elif isinstance(spec, indexing_utils.SliceIndexer): return self._slice(spec.key) elif isinstance(spec, indexing_utils.ScalarIndexer): return self._gather( spec.key, keep_index=False )._column.element_indexing(0) elif isinstance(spec, indexing_utils.EmptyIndexer): return self._empty_like(keep_index=True) assert_never(spec) @_cudf_nvtx_annotate def __getitem__(self, arg): if isinstance(arg, slice): return self.iloc[arg] else: return self.loc[arg] iteritems = SingleColumnFrame.__iter__ items = SingleColumnFrame.__iter__ @_cudf_nvtx_annotate def __setitem__(self, key, value): if isinstance(key, slice): self.iloc[key] = value else: self.loc[key] = value def __repr__(self): _, height = get_terminal_size() max_rows = ( height if get_option("display.max_rows") == 0 else get_option("display.max_rows") ) if max_rows not in (0, None) and len(self) > max_rows: top = self.head(int(max_rows / 2 + 1)) bottom = self.tail(int(max_rows / 2 + 1)) preprocess = cudf.concat([top, bottom]) else: preprocess = self.copy() preprocess.index = preprocess.index._clean_nulls_from_index() if ( preprocess.nullable and not isinstance( preprocess._column, cudf.core.column.CategoricalColumn ) and not is_list_dtype(preprocess.dtype) and not is_struct_dtype(preprocess.dtype) and not is_decimal_dtype(preprocess.dtype) and not is_struct_dtype(preprocess.dtype) ) or isinstance( preprocess._column, cudf.core.column.timedelta.TimeDeltaColumn, ): fill_value = ( str(cudf.NaT) if isinstance( preprocess._column, ( cudf.core.column.TimeDeltaColumn, cudf.core.column.DatetimeColumn, ), ) else str(cudf.NA) ) output = repr( preprocess.astype("str").fillna(fill_value).to_pandas() ) elif isinstance( preprocess._column, cudf.core.column.CategoricalColumn ): min_rows = ( height if get_option("display.min_rows") == 0 else get_option("display.min_rows") ) show_dimensions = get_option("display.show_dimensions") if preprocess._column.categories.dtype.kind == "f": pd_series = ( preprocess.astype("str") .to_pandas() .astype( dtype=pd.CategoricalDtype( categories=preprocess.dtype.categories.astype( "str" ).to_pandas(), ordered=preprocess.dtype.ordered, ) ) ) else: pd_series = preprocess.to_pandas() output = pd_series.to_string( name=self.name, dtype=self.dtype, min_rows=min_rows, max_rows=max_rows, length=show_dimensions, na_rep=str(cudf.NA), ) else: output = repr(preprocess.to_pandas()) lines = output.split("\n") if isinstance(preprocess._column, cudf.core.column.CategoricalColumn): category_memory = lines[-1] if preprocess._column.categories.dtype.kind == "f": category_memory = category_memory.replace("'", "").split(": ") category_memory = ( category_memory[0].replace( "object", preprocess._column.categories.dtype.name ) + ": " + category_memory[1] ) lines = lines[:-1] if len(lines) > 1: if lines[-1].startswith("Name: "): lines = lines[:-1] lines.append("Name: %s" % str(self.name)) if len(self) > len(preprocess): lines[-1] = lines[-1] + ", Length: %d" % len(self) lines[-1] = lines[-1] + ", " elif lines[-1].startswith("Length: "): lines = lines[:-1] lines.append("Length: %d" % len(self)) lines[-1] = lines[-1] + ", " else: lines = lines[:-1] lines[-1] = lines[-1] + "\n" lines[-1] = lines[-1] + "dtype: %s" % self.dtype else: lines = output.split(",") lines[-1] = " dtype: %s)" % self.dtype return ",".join(lines) if isinstance(preprocess._column, cudf.core.column.CategoricalColumn): lines.append(category_memory) return "\n".join(lines) def _make_operands_and_index_for_binop( self, other: Any, fn: str, fill_value: Any = None, reflect: bool = False, can_reindex: bool = False, *args, **kwargs, ) -> Tuple[ Union[ Dict[Optional[str], Tuple[ColumnBase, Any, bool, Any]], NotImplementedType, ], Optional[BaseIndex], bool, ]: # Specialize binops to align indices. if isinstance(other, Series): if ( not can_reindex and fn in cudf.utils.utils._EQUALITY_OPS and not self.index.equals(other.index) ): raise ValueError( "Can only compare identically-labeled Series objects" ) lhs, other = _align_indices([self, other], allow_non_unique=True) else: lhs = self try: can_use_self_column_name = cudf.utils.utils._is_same_name( self.name, other.name ) except AttributeError: can_use_self_column_name = False operands = lhs._make_operands_for_binop(other, fill_value, reflect) return operands, lhs._index, can_use_self_column_name @copy_docstring(CategoricalAccessor) # type: ignore @property @_cudf_nvtx_annotate def cat(self): return CategoricalAccessor(parent=self) @copy_docstring(StringMethods) # type: ignore @property @_cudf_nvtx_annotate def str(self): return StringMethods(parent=self) @copy_docstring(ListMethods) # type: ignore @property @_cudf_nvtx_annotate def list(self): return ListMethods(parent=self) @copy_docstring(StructMethods) # type: ignore @property @_cudf_nvtx_annotate def struct(self): return StructMethods(parent=self) @property # type: ignore @_cudf_nvtx_annotate def dtype(self): """The dtype of the Series.""" return self._column.dtype @classmethod @_cudf_nvtx_annotate def _concat(cls, objs, axis=0, index=True): # Concatenate index if not provided if index is True: if isinstance(objs[0].index, cudf.MultiIndex): index = cudf.MultiIndex._concat([o.index for o in objs]) else: index = cudf.core.index.GenericIndex._concat( [o.index for o in objs] ) names = {obj.name for obj in objs} if len(names) == 1: [name] = names else: name = None if len(objs) > 1: dtype_mismatch = False for obj in objs[1:]: if ( obj.null_count == len(obj) or len(obj) == 0 or isinstance( obj._column, cudf.core.column.CategoricalColumn ) or isinstance( objs[0]._column, cudf.core.column.CategoricalColumn ) ): continue if ( not dtype_mismatch and ( not isinstance( objs[0]._column, cudf.core.column.CategoricalColumn ) and not isinstance( obj._column, cudf.core.column.CategoricalColumn ) ) and objs[0].dtype != obj.dtype ): dtype_mismatch = True if is_mixed_with_object_dtype(objs[0], obj): raise TypeError( "cudf does not support mixed types, please type-cast " "both series to same dtypes." ) if dtype_mismatch: common_dtype = find_common_type([obj.dtype for obj in objs]) objs = [obj.astype(common_dtype) for obj in objs] col = concat_columns([o._column for o in objs]) if len(objs): col = col._with_type_metadata(objs[0].dtype) return cls(data=col, index=index, name=name) @property # type: ignore @_cudf_nvtx_annotate def valid_count(self): """Number of non-null values""" return self._column.valid_count @property # type: ignore @_cudf_nvtx_annotate def null_count(self): """Number of null values""" return self._column.null_count @property # type: ignore @_cudf_nvtx_annotate def nullable(self): """A boolean indicating whether a null-mask is needed""" return self._column.nullable @property # type: ignore @_cudf_nvtx_annotate def has_nulls(self): """ Indicator whether Series contains null values. Returns ------- out : bool If Series has at least one null value, return True, if not return False. Examples -------- >>> import cudf >>> series = cudf.Series([1, 2, None, 3, 4]) >>> series 0 1 1 2 2 <NA> 3 3 4 4 dtype: int64 >>> series.has_nulls True >>> series.dropna().has_nulls False """ return self._column.has_nulls() @_cudf_nvtx_annotate def dropna(self, axis=0, inplace=False, how=None): """ Return a Series with null values removed. Parameters ---------- axis : {0 or 'index'}, default 0 There is only one axis to drop values from. inplace : bool, default False If True, do operation inplace and return None. how : str, optional Not in use. Kept for compatibility. Returns ------- Series Series with null entries dropped from it. See Also -------- Series.isna : Indicate null values. Series.notna : Indicate non-null values. Series.fillna : Replace null values. cudf.DataFrame.dropna : Drop rows or columns which contain null values. cudf.Index.dropna : Drop null indices. Examples -------- >>> import cudf >>> ser = cudf.Series([1, 2, None]) >>> ser 0 1 1 2 2 <NA> dtype: int64 Drop null values from a Series. >>> ser.dropna() 0 1 1 2 dtype: int64 Keep the Series with valid entries in the same variable. >>> ser.dropna(inplace=True) >>> ser 0 1 1 2 dtype: int64 Empty strings are not considered null values. `None` is considered a null value. >>> ser = cudf.Series(['', None, 'abc']) >>> ser 0 1 <NA> 2 abc dtype: object >>> ser.dropna() 0 2 abc dtype: object """ if axis not in (0, "index"): raise ValueError( "Series.dropna supports only one axis to drop values from" ) result = super().dropna(axis=axis) return self._mimic_inplace(result, inplace=inplace) @_cudf_nvtx_annotate def drop_duplicates(self, keep="first", inplace=False, ignore_index=False): """ Return Series with duplicate values removed. Parameters ---------- keep : {'first', 'last', ``False``}, default 'first' Method to handle dropping duplicates: - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. inplace : bool, default ``False`` If ``True``, performs operation inplace and returns None. Returns ------- Series or None Series with duplicates dropped or None if ``inplace=True``. Examples -------- >>> s = cudf.Series(['lama', 'cow', 'lama', 'beetle', 'lama', 'hippo'], ... name='animal') >>> s 0 lama 1 cow 2 lama 3 beetle 4 lama 5 hippo Name: animal, dtype: object With the `keep` parameter, the selection behavior of duplicated values can be changed. The value 'first' keeps the first occurrence for each set of duplicated entries. The default value of keep is 'first'. Note that order of the rows being returned is not guaranteed to be sorted. >>> s.drop_duplicates() 0 lama 1 cow 3 beetle 5 hippo Name: animal, dtype: object The value 'last' for parameter `keep` keeps the last occurrence for each set of duplicated entries. >>> s.drop_duplicates(keep='last') 1 cow 3 beetle 4 lama 5 hippo Name: animal, dtype: object The value `False` for parameter `keep` discards all sets of duplicated entries. Setting the value of 'inplace' to `True` performs the operation inplace and returns `None`. >>> s.drop_duplicates(keep=False, inplace=True) >>> s 1 cow 3 beetle 5 hippo Name: animal, dtype: object """ result = super().drop_duplicates(keep=keep, ignore_index=ignore_index) return self._mimic_inplace(result, inplace=inplace) @_cudf_nvtx_annotate def fillna( self, value=None, method=None, axis=None, inplace=False, limit=None ): if isinstance(value, pd.Series): value = Series.from_pandas(value) if not (is_scalar(value) or isinstance(value, (abc.Mapping, Series))): raise TypeError( f'"value" parameter must be a scalar, dict ' f"or Series, but you passed a " f'"{type(value).__name__}"' ) if isinstance(value, (abc.Mapping, Series)): value = Series(value) if not self.index.equals(value.index): value = value.reindex(self.index) value = value._column return super().fillna( value=value, method=method, axis=axis, inplace=inplace, limit=limit ) def between(self, left, right, inclusive="both") -> Series: """ Return boolean Series equivalent to left <= series <= right. This function returns a boolean vector containing `True` wherever the corresponding Series element is between the boundary values `left` and `right`. NA values are treated as `False`. Parameters ---------- left : scalar or list-like Left boundary. right : scalar or list-like Right boundary. inclusive : {"both", "neither", "left", "right"} Include boundaries. Whether to set each bound as closed or open. Returns ------- Series Series representing whether each element is between left and right (inclusive). See Also -------- Series.gt : Greater than of series and other. Series.lt : Less than of series and other. Notes ----- This function is equivalent to ``(left <= ser) & (ser <= right)`` Examples -------- >>> import cudf >>> s = cudf.Series([2, 0, 4, 8, None]) Boundary values are included by default: >>> s.between(1, 4) 0 True 1 False 2 True 3 False 4 <NA> dtype: bool With `inclusive` set to ``"neither"`` boundary values are excluded: >>> s.between(1, 4, inclusive="neither") 0 True 1 False 2 False 3 False 4 <NA> dtype: bool `left` and `right` can be any scalar value: >>> s = cudf.Series(['Alice', 'Bob', 'Carol', 'Eve']) >>> s.between('Anna', 'Daniel') 0 False 1 True 2 True 3 False dtype: bool """ left_operand = left if is_scalar(left) else as_column(left) right_operand = right if is_scalar(right) else as_column(right) if inclusive == "both": lmask = self._column >= left_operand rmask = self._column <= right_operand elif inclusive == "left": lmask = self._column >= left_operand rmask = self._column < right_operand elif inclusive == "right": lmask = self._column > left_operand rmask = self._column <= right_operand elif inclusive == "neither": lmask = self._column > left_operand rmask = self._column < right_operand else: raise ValueError( "Inclusive has to be either string of 'both', " "'left', 'right', or 'neither'." ) return self._from_data({self.name: lmask & rmask}, self._index) @_cudf_nvtx_annotate def all(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs): if bool_only not in (None, True): raise NotImplementedError( "The bool_only parameter is not supported for Series." ) return super().all(axis, skipna, level, **kwargs) @_cudf_nvtx_annotate def any(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs): if bool_only not in (None, True): raise NotImplementedError( "The bool_only parameter is not supported for Series." ) return super().any(axis, skipna, level, **kwargs) @_cudf_nvtx_annotate def to_pandas(self, index=True, nullable=False, **kwargs): """ Convert to a Pandas Series. Parameters ---------- index : Boolean, Default True If ``index`` is ``True``, converts the index of cudf.Series and sets it to the pandas.Series. If ``index`` is ``False``, no index conversion is performed and pandas.Series will assign a default index. nullable : Boolean, Default False If ``nullable`` is ``True``, the resulting series will be having a corresponding nullable Pandas dtype. If there is no corresponding nullable Pandas dtype present, the resulting dtype will be a regular pandas dtype. If ``nullable`` is ``False``, the resulting series will either convert null values to ``np.nan`` or ``None`` depending on the dtype. Returns ------- out : Pandas Series Examples -------- >>> import cudf >>> ser = cudf.Series([-3, 2, 0]) >>> pds = ser.to_pandas() >>> pds 0 -3 1 2 2 0 dtype: int64 >>> type(pds) <class 'pandas.core.series.Series'> ``nullable`` parameter can be used to control whether dtype can be Pandas Nullable or not: >>> ser = cudf.Series([10, 20, None, 30]) >>> ser 0 10 1 20 2 <NA> 3 30 dtype: int64 >>> ser.to_pandas(nullable=True) 0 10 1 20 2 <NA> 3 30 dtype: Int64 >>> ser.to_pandas(nullable=False) 0 10.0 1 20.0 2 NaN 3 30.0 dtype: float64 """ if index is True: index = self.index.to_pandas() s = self._column.to_pandas(index=index, nullable=nullable) s.name = self.name return s @property # type: ignore @_cudf_nvtx_annotate def data(self): """The gpu buffer for the data Returns ------- out : The GPU buffer of the Series. Examples -------- >>> import cudf >>> series = cudf.Series([1, 2, 3, 4]) >>> series 0 1 1 2 2 3 3 4 dtype: int64 >>> np.array(series.data.memoryview()) array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0], dtype=uint8) """ # noqa: E501 return self._column.data @property # type: ignore @_cudf_nvtx_annotate def nullmask(self): """The gpu buffer for the null-mask""" return cudf.Series(self._column.nullmask) @_cudf_nvtx_annotate def astype(self, dtype, copy=False, errors="raise", **kwargs): if is_dict_like(dtype): if len(dtype) > 1 or self.name not in dtype: raise KeyError( "Only the Series name can be used for the key in Series " "dtype mappings." ) else: dtype = {self.name: dtype} return super().astype(dtype, copy, errors, **kwargs) @_cudf_nvtx_annotate def sort_index(self, axis=0, *args, **kwargs): if axis not in (0, "index"): raise ValueError("Only axis=0 is valid for Series.") return super().sort_index(axis=axis, *args, **kwargs) @_cudf_nvtx_annotate def sort_values( self, axis=0, ascending=True, inplace=False, kind="quicksort", na_position="last", ignore_index=False, ): """Sort by the values along either axis. Parameters ---------- ascending : bool or list of bool, default True Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by. na_position : {'first', 'last'}, default 'last' 'first' puts nulls at the beginning, 'last' puts nulls at the end ignore_index : bool, default False If True, index will not be sorted. Returns ------- Series : Series with sorted values. Notes ----- Difference from pandas: * Support axis='index' only. * Not supporting: inplace, kind Examples -------- >>> import cudf >>> s = cudf.Series([1, 5, 2, 4, 3]) >>> s.sort_values() 0 1 2 2 4 3 3 4 1 5 dtype: int64 """ return super().sort_values( by=self.name, axis=axis, ascending=ascending, inplace=inplace, kind=kind, na_position=na_position, ignore_index=ignore_index, ) @_cudf_nvtx_annotate def nlargest(self, n=5, keep="first"): """Returns a new Series of the *n* largest element. Parameters ---------- n : int, default 5 Return this many descending sorted values. keep : {'first', 'last'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. Returns ------- Series The `n` largest values in the Series, sorted in decreasing order. Examples -------- >>> import cudf >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Malta": 434000, "Maldives": 434000, ... "Brunei": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Montserrat": 5200} >>> series = cudf.Series(countries_population) >>> series Italy 59000000 France 65000000 Malta 434000 Maldives 434000 Brunei 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Montserrat 5200 dtype: int64 >>> series.nlargest() France 65000000 Italy 59000000 Malta 434000 Maldives 434000 Brunei 434000 dtype: int64 >>> series.nlargest(3) France 65000000 Italy 59000000 Malta 434000 dtype: int64 >>> series.nlargest(3, keep='last') France 65000000 Italy 59000000 Brunei 434000 dtype: int64 """ return self._n_largest_or_smallest(True, n, [self.name], keep) @_cudf_nvtx_annotate def nsmallest(self, n=5, keep="first"): """ Returns a new Series of the *n* smallest element. Parameters ---------- n : int, default 5 Return this many ascending sorted values. keep : {'first', 'last'}, default 'first' When there are duplicate values that cannot all fit in a Series of `n` elements: - ``first`` : return the first `n` occurrences in order of appearance. - ``last`` : return the last `n` occurrences in reverse order of appearance. Returns ------- Series The `n` smallest values in the Series, sorted in increasing order. Examples -------- >>> import cudf >>> countries_population = {"Italy": 59000000, "France": 65000000, ... "Brunei": 434000, "Malta": 434000, ... "Maldives": 434000, "Iceland": 337000, ... "Nauru": 11300, "Tuvalu": 11300, ... "Anguilla": 11300, "Montserrat": 5200} >>> s = cudf.Series(countries_population) >>> s Italy 59000000 France 65000000 Brunei 434000 Malta 434000 Maldives 434000 Iceland 337000 Nauru 11300 Tuvalu 11300 Anguilla 11300 Montserrat 5200 dtype: int64 The `n` smallest elements where ``n=5`` by default. >>> s.nsmallest() Montserrat 5200 Nauru 11300 Tuvalu 11300 Anguilla 11300 Iceland 337000 dtype: int64 The `n` smallest elements where ``n=3``. Default `keep` value is 'first' so Nauru and Tuvalu will be kept. >>> s.nsmallest(3) Montserrat 5200 Nauru 11300 Tuvalu 11300 dtype: int64 The `n` smallest elements where ``n=3`` and keeping the last duplicates. Anguilla and Tuvalu will be kept since they are the last with value 11300 based on the index order. >>> s.nsmallest(3, keep='last') Montserrat 5200 Anguilla 11300 Tuvalu 11300 dtype: int64 """ return self._n_largest_or_smallest(False, n, [self.name], keep) @_cudf_nvtx_annotate def argsort( self, axis=0, kind="quicksort", order=None, ascending=True, na_position="last", ): obj = self.__class__._from_data( { None: super().argsort( axis=axis, kind=kind, order=order, ascending=ascending, na_position=na_position, ) } ) obj.name = self.name return obj @_cudf_nvtx_annotate def replace(self, to_replace=None, value=None, *args, **kwargs): if is_dict_like(to_replace) and value is not None: raise ValueError( "Series.replace cannot use dict-like to_replace and non-None " "value" ) return super().replace(to_replace, value, *args, **kwargs) @_cudf_nvtx_annotate def update(self, other): """ Modify Series in place using values from passed Series. Uses non-NA values from passed Series to make updates. Aligns on index. Parameters ---------- other : Series, or object coercible into Series Examples -------- >>> import cudf >>> s = cudf.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.update(cudf.Series([4, 5, 6])) >>> s 0 4 1 5 2 6 dtype: int64 >>> s = cudf.Series(['a', 'b', 'c']) >>> s 0 a 1 b 2 c dtype: object >>> s.update(cudf.Series(['d', 'e'], index=[0, 2])) >>> s 0 d 1 b 2 e dtype: object >>> s = cudf.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.update(cudf.Series([4, 5, 6, 7, 8])) >>> s 0 4 1 5 2 6 dtype: int64 If ``other`` contains NaNs the corresponding values are not updated in the original Series. >>> s = cudf.Series([1.0, 2.0, 3.0]) >>> s 0 1.0 1 2.0 2 3.0 dtype: float64 >>> s.update(cudf.Series([4.0, np.nan, 6.0], nan_as_null=False)) >>> s 0 4.0 1 2.0 2 6.0 dtype: float64 ``other`` can also be a non-Series object type that is coercible into a Series >>> s = cudf.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.update([4, np.nan, 6]) >>> s 0 4 1 2 2 6 dtype: int64 >>> s = cudf.Series([1, 2, 3]) >>> s 0 1 1 2 2 3 dtype: int64 >>> s.update({1: 9}) >>> s 0 1 1 9 2 3 dtype: int64 """ if not isinstance(other, cudf.Series): other = cudf.Series(other) if not self.index.equals(other.index): other = other.reindex(index=self.index) mask = other.notna() self.mask(mask, other, inplace=True) # UDF related @_cudf_nvtx_annotate def apply(self, func, convert_dtype=True, args=(), **kwargs): """ Apply a scalar function to the values of a Series. Similar to ``pandas.Series.apply``. ``apply`` relies on Numba to JIT compile ``func``. Thus the allowed operations within ``func`` are limited to `those supported by the CUDA Python Numba target <https://numba.readthedocs.io/en/stable/cuda/cudapysupported.html>`__. For more information, see the `cuDF guide to user defined functions <https://docs.rapids.ai/api/cudf/stable/user_guide/guide-to-udfs.html>`__. Some string functions and methods are supported. Refer to the guide to UDFs for details. Parameters ---------- func : function Scalar Python function to apply. convert_dtype : bool, default True In cuDF, this parameter is always True. Because cuDF does not support arbitrary object dtypes, the result will always be the common type as determined by numba based on the function logic and argument types. See examples for details. args : tuple Positional arguments passed to func after the series value. **kwargs Not supported Returns ------- result : Series The mask and index are preserved. Notes ----- UDFs are cached in memory to avoid recompilation. The first call to the UDF will incur compilation overhead. `func` may call nested functions that are decorated with the decorator `numba.cuda.jit(device=True)`, otherwise numba will raise a typing error. Examples -------- Apply a basic function to a series: >>> sr = cudf.Series([1,2,3]) >>> def f(x): ... return x + 1 >>> sr.apply(f) 0 2 1 3 2 4 dtype: int64 Apply a basic function to a series with nulls: >>> sr = cudf.Series([1,cudf.NA,3]) >>> def f(x): ... return x + 1 >>> sr.apply(f) 0 2 1 <NA> 2 4 dtype: int64 Use a function that does something conditionally, based on if the value is or is not null: >>> sr = cudf.Series([1,cudf.NA,3]) >>> def f(x): ... if x is cudf.NA: ... return 42 ... else: ... return x - 1 >>> sr.apply(f) 0 0 1 42 2 2 dtype: int64 Results will be upcast to the common dtype required as derived from the UDFs logic. Note that this means the common type will be returned even if such data is passed that would not result in any values of that dtype: >>> sr = cudf.Series([1,cudf.NA,3]) >>> def f(x): ... return x + 1.5 >>> sr.apply(f) 0 2.5 1 <NA> 2 4.5 dtype: float64 UDFs manipulating string data are allowed, as long as they neither modify strings in place nor create new strings. For example, the following UDF is allowed: >>> def f(st): ... if len(st) == 0: ... return -1 ... elif st.startswith('a'): ... return 1 ... elif 'example' in st: ... return 2 ... else: ... return 3 ... >>> sr = cudf.Series(['', 'abc', 'some_example']) >>> sr.apply(f) # doctest: +SKIP 0 -1 1 1 2 2 dtype: int64 However, the following UDF is not allowed since it includes an operation that requires the creation of a new string: a call to the ``upper`` method. Methods that are not supported in this manner will raise an ``AttributeError``. >>> def f(st): ... new = st.upper() ... return 'ABC' in new ... >>> sr.apply(f) # doctest: +SKIP For a complete list of supported functions and methods that may be used to manipulate string data, see the UDF guide, <https://docs.rapids.ai/api/cudf/stable/user_guide/guide-to-udfs.html> """ if convert_dtype is not True: raise ValueError("Series.apply only supports convert_dtype=True") result = self._apply(func, _get_scalar_kernel, *args, **kwargs) result.name = self.name return result # # Stats # @_cudf_nvtx_annotate def count(self, level=None): """ Return number of non-NA/null observations in the Series Returns ------- int Number of non-null values in the Series. Notes ----- Parameters currently not supported is `level`. Examples -------- >>> import cudf >>> ser = cudf.Series([1, 5, 2, 4, 3]) >>> ser.count() 5 """ if level is not None: raise NotImplementedError("level parameter is not implemented yet") return self.valid_count @_cudf_nvtx_annotate def mode(self, dropna=True): """ Return the mode(s) of the dataset. Always returns Series even if only one value is returned. Parameters ---------- dropna : bool, default True Don't consider counts of NA/NaN/NaT. Returns ------- Series Modes of the Series in sorted order. Examples -------- >>> import cudf >>> series = cudf.Series([7, 6, 5, 4, 3, 2, 1]) >>> series 0 7 1 6 2 5 3 4 4 3 5 2 6 1 dtype: int64 >>> series.mode() 0 1 1 2 2 3 3 4 4 5 5 6 6 7 dtype: int64 We can include ``<NA>`` values in mode by passing ``dropna=False``. >>> series = cudf.Series([7, 4, 3, 3, 7, None, None]) >>> series 0 7 1 4 2 3 3 3 4 7 5 <NA> 6 <NA> dtype: int64 >>> series.mode() 0 3 1 7 dtype: int64 >>> series.mode(dropna=False) 0 3 1 7 2 <NA> dtype: int64 """ val_counts = self.value_counts(ascending=False, dropna=dropna) if len(val_counts) > 0: val_counts = val_counts[val_counts == val_counts.iloc[0]] return Series._from_data( {self.name: val_counts.index.sort_values()}, name=self.name ) @_cudf_nvtx_annotate def round(self, decimals=0, how="half_even"): if not is_integer(decimals): raise ValueError( f"decimals must be an int, got {type(decimals).__name__}" ) decimals = int(decimals) return super().round(decimals, how) @_cudf_nvtx_annotate def cov(self, other, min_periods=None): """ Compute covariance with Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the covariance. Returns ------- float Covariance between Series and other normalized by N-1 (unbiased estimator). Notes ----- `min_periods` parameter is not yet supported. Examples -------- >>> import cudf >>> ser1 = cudf.Series([0.9, 0.13, 0.62]) >>> ser2 = cudf.Series([0.12, 0.26, 0.51]) >>> ser1.cov(ser2) -0.015750000000000004 """ if min_periods is not None: raise NotImplementedError( "min_periods parameter is not implemented yet" ) if self.empty or other.empty: return cudf.utils.dtypes._get_nan_for_dtype(self.dtype) lhs = self.nans_to_nulls().dropna() rhs = other.nans_to_nulls().dropna() lhs, rhs = _align_indices([lhs, rhs], how="inner") try: return lhs._column.cov(rhs._column) except AttributeError: raise TypeError( f"cannot perform covariance with types {self.dtype}, " f"{other.dtype}" ) @_cudf_nvtx_annotate def transpose(self): """Return the transpose, which is by definition self.""" return self T = property(transpose, doc=transpose.__doc__) @_cudf_nvtx_annotate def duplicated(self, keep="first"): """ Indicate duplicate Series values. Duplicated values are indicated as ``True`` values in the resulting Series. Either all duplicates, all except the first or all except the last occurrence of duplicates can be indicated. Parameters ---------- keep : {'first', 'last', False}, default 'first' Method to handle dropping duplicates: - ``'first'`` : Mark duplicates as ``True`` except for the first occurrence. - ``'last'`` : Mark duplicates as ``True`` except for the last occurrence. - ``False`` : Mark all duplicates as ``True``. Returns ------- Series[bool] Series indicating whether each value has occurred in the preceding values. See Also -------- Index.duplicated : Equivalent method on cudf.Index. DataFrame.duplicated : Equivalent method on cudf.DataFrame. Series.drop_duplicates : Remove duplicate values from Series. Examples -------- By default, for each set of duplicated values, the first occurrence is set on False and all others on True: >>> import cudf >>> animals = cudf.Series(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> animals.duplicated() 0 False 1 False 2 True 3 False 4 True dtype: bool which is equivalent to >>> animals.duplicated(keep='first') 0 False 1 False 2 True 3 False 4 True dtype: bool By using 'last', the last occurrence of each set of duplicated values is set on False and all others on True: >>> animals.duplicated(keep='last') 0 True 1 False 2 True 3 False 4 False dtype: bool By setting keep on ``False``, all duplicates are True: >>> animals.duplicated(keep=False) 0 True 1 False 2 True 3 False 4 True dtype: bool """ return super().duplicated(keep=keep) @_cudf_nvtx_annotate def corr(self, other, method="pearson", min_periods=None): """Calculates the sample correlation between two Series, excluding missing values. Parameters ---------- other : Series Series with which to compute the correlation. method : {'pearson', 'spearman'}, default 'pearson' Method used to compute correlation: - pearson : Standard correlation coefficient - spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations needed to have a valid result. Examples -------- >>> import cudf >>> ser1 = cudf.Series([0.9, 0.13, 0.62]) >>> ser2 = cudf.Series([0.12, 0.26, 0.51]) >>> ser1.corr(ser2, method="pearson") -0.20454263717316112 >>> ser1.corr(ser2, method="spearman") -0.5 """ if method not in {"pearson", "spearman"}: raise ValueError(f"Unknown method {method}") if min_periods is not None: raise NotImplementedError("Unsupported argument 'min_periods'") if self.empty or other.empty: return cudf.utils.dtypes._get_nan_for_dtype(self.dtype) lhs = self.nans_to_nulls().dropna() rhs = other.nans_to_nulls().dropna() lhs, rhs = _align_indices([lhs, rhs], how="inner") if method == "spearman": lhs = lhs.rank() rhs = rhs.rank() try: return lhs._column.corr(rhs._column) except AttributeError: raise TypeError( f"cannot perform corr with types {self.dtype}, {other.dtype}" ) @_cudf_nvtx_annotate def autocorr(self, lag=1): """Compute the lag-N autocorrelation. This method computes the Pearson correlation between the Series and its shifted self. Parameters ---------- lag : int, default 1 Number of lags to apply before performing autocorrelation. Returns ------- result : float The Pearson correlation between self and self.shift(lag). Examples -------- >>> import cudf >>> s = cudf.Series([0.25, 0.5, 0.2, -0.05, 0.17]) >>> s.autocorr() 0.1438853844... >>> s.autocorr(lag=2) -0.9647548490... """ return self.corr(self.shift(lag)) @_cudf_nvtx_annotate def isin(self, values): """Check whether values are contained in Series. Parameters ---------- values : set or list-like The sequence of values to test. Passing in a single string will raise a TypeError. Instead, turn a single string into a list of one element. Returns ------- result : Series Series of booleans indicating if each element is in values. Raises ------ TypeError If values is a string Examples -------- >>> import cudf >>> s = cudf.Series(['lama', 'cow', 'lama', 'beetle', 'lama', ... 'hippo'], name='animal') >>> s.isin(['cow', 'lama']) 0 True 1 True 2 True 3 False 4 True 5 False Name: animal, dtype: bool Passing a single string as ``s.isin('lama')`` will raise an error. Use a list of one element instead: >>> s.isin(['lama']) 0 True 1 False 2 True 3 False 4 True 5 False Name: animal, dtype: bool Strings and integers are distinct and are therefore not comparable: >>> cudf.Series([1]).isin(['1']) 0 False dtype: bool >>> cudf.Series([1.1]).isin(['1.1']) 0 False dtype: bool """ # Even though only list-like objects are supposed to be passed, only # scalars throw errors. Other types (like dicts) just transparently # return False (see the implementation of ColumnBase.isin). if is_scalar(values): raise TypeError( "only list-like objects are allowed to be passed " f"to isin(), you passed a [{type(values).__name__}]" ) return Series._from_data( {self.name: self._column.isin(values)}, index=self.index ) @_cudf_nvtx_annotate def unique(self): """ Returns unique values of this Series. Returns ------- Series A series with only the unique values. Examples -------- >>> import cudf >>> series = cudf.Series(['a', 'a', 'b', None, 'b', None, 'c']) >>> series 0 a 1 a 2 b 3 <NA> 4 b 5 <NA> 6 c dtype: object >>> series.unique() 0 a 1 b 2 <NA> 3 c dtype: object """ res = self._column.unique() if cudf.get_option("mode.pandas_compatible"): return res.values return Series(res, name=self.name) @_cudf_nvtx_annotate def value_counts( self, normalize=False, sort=True, ascending=False, bins=None, dropna=True, ): """Return a Series containing counts of unique values. The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default. Parameters ---------- normalize : bool, default False If True then the object returned will contain the relative frequencies of the unique values. sort : bool, default True Sort by frequencies. ascending : bool, default False Sort in ascending order. bins : int, optional Rather than count values, group them into half-open bins, only works with numeric data. dropna : bool, default True Don't include counts of NaN and None. Returns ------- result : Series containing counts of unique values. See Also -------- Series.count Number of non-NA elements in a Series. cudf.DataFrame.count Number of non-NA elements in a DataFrame. Examples -------- >>> import cudf >>> sr = cudf.Series([1.0, 2.0, 2.0, 3.0, 3.0, 3.0, None]) >>> sr 0 1.0 1 2.0 2 2.0 3 3.0 4 3.0 5 3.0 6 <NA> dtype: float64 >>> sr.value_counts() 3.0 3 2.0 2 1.0 1 dtype: int64 The order of the counts can be changed by passing ``ascending=True``: >>> sr.value_counts(ascending=True) 1.0 1 2.0 2 3.0 3 dtype: int64 With ``normalize`` set to True, returns the relative frequency by dividing all values by the sum of values. >>> sr.value_counts(normalize=True) 3.0 0.500000 2.0 0.333333 1.0 0.166667 dtype: float64 To include ``NA`` value counts, pass ``dropna=False``: >>> sr = cudf.Series([1.0, 2.0, 2.0, 3.0, None, 3.0, 3.0, None]) >>> sr 0 1.0 1 2.0 2 2.0 3 3.0 4 <NA> 5 3.0 6 3.0 7 <NA> dtype: float64 >>> sr.value_counts(dropna=False) 3.0 3 2.0 2 <NA> 2 1.0 1 dtype: int64 >>> s = cudf.Series([3, 1, 2, 3, 4, np.nan]) >>> s.value_counts(bins=3) (2.0, 3.0] 2 (0.996, 2.0] 2 (3.0, 4.0] 1 dtype: int64 """ if bins is not None: series_bins = cudf.cut(self, bins, include_lowest=True) if dropna and self.null_count == len(self): return Series( [], dtype=np.int64, name=self.name, index=cudf.Index([], dtype=self.dtype), ) if bins is not None: res = self.groupby(series_bins, dropna=dropna).count(dropna=dropna) res = res[res.index.notna()] else: res = self.groupby(self, dropna=dropna).count(dropna=dropna) if isinstance(self.dtype, cudf.CategoricalDtype) and len( res ) != len(self.dtype.categories): # For categorical dtypes: When there exists # categories in dtypes and they are missing in the # column, `value_counts` will have to return # their occurrences as 0. # TODO: Remove this workaround once `observed` # parameter support is added to `groupby` res = res.reindex(self.dtype.categories).fillna(0) res._index = res._index.astype(self.dtype) res.index.name = None if sort: res = res.sort_values(ascending=ascending) if normalize: res = res / float(res._column.sum()) # Pandas returns an IntervalIndex as the index of res # this condition makes sure we do too if bins is given if bins is not None and len(res) == len(res.index.categories): int_index = IntervalColumn.as_interval_column( res.index._column, res.index.categories.dtype ) res.index = int_index return res @_cudf_nvtx_annotate def quantile( self, q=0.5, interpolation="linear", exact=True, quant_index=True ): """ Return values at the given quantile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. exact : boolean Whether to use approximate or exact quantile algorithm. quant_index : boolean Whether to use the list of quantiles as index. Returns ------- float or Series If ``q`` is an array, a Series will be returned where the index is ``q`` and the values are the quantiles, otherwise a float will be returned. Examples -------- >>> import cudf >>> series = cudf.Series([1, 2, 3, 4]) >>> series 0 1 1 2 2 3 3 4 dtype: int64 >>> series.quantile(0.5) 2.5 >>> series.quantile([0.25, 0.5, 0.75]) 0.25 1.75 0.50 2.50 0.75 3.25 dtype: float64 """ return_scalar = is_scalar(q) if return_scalar: np_array_q = np.asarray([float(q)]) else: try: np_array_q = np.asarray(q) except TypeError: try: np_array_q = cudf.core.column.as_column(q).values_host except TypeError: raise TypeError( f"q must be a scalar or array-like, got {type(q)}" ) result = self._column.quantile( np_array_q, interpolation, exact, return_scalar=return_scalar ) if return_scalar: return result return Series._from_data( data={self.name: result}, index=as_index(np_array_q) if quant_index else None, ) @docutils.doc_describe() @_cudf_nvtx_annotate def describe( self, percentiles=None, include=None, exclude=None, datetime_is_numeric=False, ): """{docstring}""" if not datetime_is_numeric: # Do not remove until pandas 2.0 support is added. warnings.warn( "`datetime_is_numeric` is deprecated and will be removed in " "a future release. Specify `datetime_is_numeric=True` to " "silence this warning and adopt the future behavior now.", FutureWarning, ) if percentiles is not None: if not all(0 <= x <= 1 for x in percentiles): raise ValueError( "All percentiles must be between 0 and 1, " "inclusive." ) # describe always includes 50th percentile percentiles = list(percentiles) if 0.5 not in percentiles: percentiles.append(0.5) percentiles = np.sort(percentiles) else: # pandas defaults percentiles = np.array([0.25, 0.5, 0.75]) dtype = "str" if is_bool_dtype(self.dtype): data = _describe_categorical(self, percentiles) elif isinstance(self._column, cudf.core.column.NumericalColumn): data = _describe_numeric(self, percentiles) dtype = None elif isinstance(self._column, TimeDeltaColumn): data = _describe_timedelta(self, percentiles) elif isinstance(self._column, DatetimeColumn): data = _describe_timestamp(self, percentiles) else: data = _describe_categorical(self, percentiles) return Series( data=data.values(), index=data.keys(), dtype=dtype, nan_as_null=False, name=self.name, ) @_cudf_nvtx_annotate def digitize(self, bins, right=False): """Return the indices of the bins to which each value belongs. Notes ----- Monotonicity of bins is assumed and not checked. Parameters ---------- bins : np.array 1-D monotonically, increasing array with same type as this series. right : bool Indicates whether interval contains the right or left bin edge. Returns ------- A new Series containing the indices. Examples -------- >>> import cudf >>> s = cudf.Series([0.2, 6.4, 3.0, 1.6]) >>> bins = cudf.Series([0.0, 1.0, 2.5, 4.0, 10.0]) >>> inds = s.digitize(bins) >>> inds 0 1 1 4 2 3 3 2 dtype: int32 """ return Series( cudf.core.column.numerical.digitize(self._column, bins, right) ) @_cudf_nvtx_annotate def diff(self, periods=1): """First discrete difference of element. Calculates the difference of a Series element compared with another element in the Series (default is element in previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. Returns ------- Series First differences of the Series. Examples -------- >>> import cudf >>> series = cudf.Series([1, 1, 2, 3, 5, 8]) >>> series 0 1 1 1 2 2 3 3 4 5 5 8 dtype: int64 Difference with previous row >>> series.diff() 0 <NA> 1 0 2 1 3 1 4 2 5 3 dtype: int64 Difference with 3rd previous row >>> series.diff(periods=3) 0 <NA> 1 <NA> 2 <NA> 3 2 4 4 5 6 dtype: int64 Difference with following row >>> series.diff(periods=-1) 0 0 1 -1 2 -1 3 -2 4 -3 5 <NA> dtype: int64 """ if not is_integer(periods): if not (is_float(periods) and periods.is_integer()): raise ValueError("periods must be an integer") periods = int(periods) return self - self.shift(periods=periods) @_cudf_nvtx_annotate @docutils.doc_apply( groupby_doc_template.format( ret=textwrap.dedent( """ Returns ------- SeriesGroupBy Returns a SeriesGroupBy object that contains information about the groups. """ ) ) ) def groupby( self, by=None, axis=0, level=None, as_index=True, sort=no_default, group_keys=False, squeeze=False, observed=True, dropna=True, ): return super().groupby( by, axis, level, as_index, sort, group_keys, squeeze, observed, dropna, ) @_cudf_nvtx_annotate def rename(self, index=None, copy=True): """ Alter Series name Change Series.name with a scalar value Parameters ---------- index : Scalar, optional Scalar to alter the Series.name attribute copy : boolean, default True Also copy underlying data Returns ------- Series Notes ----- Difference from pandas: - Supports scalar values only for changing name attribute - Not supporting : inplace, level Examples -------- >>> import cudf >>> series = cudf.Series([10, 20, 30]) >>> series 0 10 1 20 2 30 dtype: int64 >>> series.name >>> renamed_series = series.rename('numeric_series') >>> renamed_series 0 10 1 20 2 30 Name: numeric_series, dtype: int64 >>> renamed_series.name 'numeric_series' """ out_data = self._data.copy(deep=copy) return Series._from_data(out_data, self.index, name=index) @_cudf_nvtx_annotate def add_prefix(self, prefix): return Series._from_data( data=self._data.copy(deep=True), index=prefix + self.index.astype(str), ) @_cudf_nvtx_annotate def add_suffix(self, suffix): return Series._from_data( data=self._data.copy(deep=True), index=self.index.astype(str) + suffix, ) @_cudf_nvtx_annotate def keys(self): """ Return alias for index. Returns ------- Index Index of the Series. Examples -------- >>> import cudf >>> sr = cudf.Series([10, 11, 12, 13, 14, 15]) >>> sr 0 10 1 11 2 12 3 13 4 14 5 15 dtype: int64 >>> sr.keys() RangeIndex(start=0, stop=6, step=1) >>> sr = cudf.Series(['a', 'b', 'c']) >>> sr 0 a 1 b 2 c dtype: object >>> sr.keys() RangeIndex(start=0, stop=3, step=1) >>> sr = cudf.Series([1, 2, 3], index=['a', 'b', 'c']) >>> sr a 1 b 2 c 3 dtype: int64 >>> sr.keys() StringIndex(['a' 'b' 'c'], dtype='object') """ return self.index @_cudf_nvtx_annotate def explode(self, ignore_index=False): """ Transform each element of a list-like to a row, replicating index values. Parameters ---------- ignore_index : bool, default False If True, the resulting index will be labeled 0, 1, …, n - 1. Returns ------- Series Examples -------- >>> import cudf >>> s = cudf.Series([[1, 2, 3], [], None, [4, 5]]) >>> s 0 [1, 2, 3] 1 [] 2 None 3 [4, 5] dtype: list >>> s.explode() 0 1 0 2 0 3 1 <NA> 2 <NA> 3 4 3 5 dtype: int64 """ return super()._explode(self.name, ignore_index) @_cudf_nvtx_annotate def pct_change( self, periods=1, fill_method="ffill", limit=None, freq=None ): """ Calculates the percent change between sequential elements in the Series. Parameters ---------- periods : int, default 1 Periods to shift for forming percent change. fill_method : str, default 'ffill' How to handle NAs before computing percent changes. limit : int, optional The number of consecutive NAs to fill before stopping. Not yet implemented. freq : str, optional Increment to use from time series API. Not yet implemented. Returns ------- Series """ if limit is not None: raise NotImplementedError("limit parameter not supported yet.") if freq is not None: raise NotImplementedError("freq parameter not supported yet.") elif fill_method not in {"ffill", "pad", "bfill", "backfill"}: raise ValueError( "fill_method must be one of 'ffill', 'pad', " "'bfill', or 'backfill'." ) data = self.fillna(method=fill_method, limit=limit) diff = data.diff(periods=periods) change = diff / data.shift(periods=periods, freq=freq) return change @_cudf_nvtx_annotate def where(self, cond, other=None, inplace=False): result_col = super().where(cond, other, inplace) return self._mimic_inplace( self._from_data_like_self({self.name: result_col}), inplace=inplace, ) def make_binop_func(op): # This function is used to wrap binary operations in Frame with an # appropriate API for Series as required for pandas compatibility. The # main effect is reordering and error-checking parameters in # Series-specific ways. wrapped_func = getattr(IndexedFrame, op) @functools.wraps(wrapped_func) def wrapper(self, other, level=None, fill_value=None, axis=0): if axis != 0: raise NotImplementedError("Only axis=0 supported at this time.") return wrapped_func(self, other, axis, level, fill_value) # functools.wraps copies module level attributes to `wrapper` and sets # __wrapped__ attributes to `wrapped_func`. Cpython looks up the signature # string of a function by recursively delving into __wrapped__ until # it hits the first function that has __signature__ attribute set. To make # the signature string of `wrapper` matches with its actual parameter list, # we directly set the __signature__ attribute of `wrapper` below. new_sig = inspect.signature( lambda self, other, level=None, fill_value=None, axis=0: None ) wrapper.__signature__ = new_sig return wrapper # Wrap all Frame binop functions with the expected API for Series. for binop in ( "add", "radd", "subtract", "sub", "rsub", "multiply", "mul", "rmul", "mod", "rmod", "pow", "rpow", "floordiv", "rfloordiv", "truediv", "div", "divide", "rtruediv", "rdiv", "eq", "ne", "lt", "le", "gt", "ge", ): setattr(Series, binop, make_binop_func(binop)) class DatetimeProperties: """ Accessor object for datetimelike properties of the Series values. Returns ------- Returns a Series indexed like the original Series. Examples -------- >>> import cudf >>> import pandas as pd >>> seconds_series = cudf.Series(pd.date_range("2000-01-01", periods=3, ... freq="s")) >>> seconds_series 0 2000-01-01 00:00:00 1 2000-01-01 00:00:01 2 2000-01-01 00:00:02 dtype: datetime64[ns] >>> seconds_series.dt.second 0 0 1 1 2 2 dtype: int16 >>> hours_series = cudf.Series(pd.date_range("2000-01-01", periods=3, ... freq="h")) >>> hours_series 0 2000-01-01 00:00:00 1 2000-01-01 01:00:00 2 2000-01-01 02:00:00 dtype: datetime64[ns] >>> hours_series.dt.hour 0 0 1 1 2 2 dtype: int16 >>> weekday_series = cudf.Series(pd.date_range("2000-01-01", periods=3, ... freq="q")) >>> weekday_series 0 2000-03-31 1 2000-06-30 2 2000-09-30 dtype: datetime64[ns] >>> weekday_series.dt.weekday 0 4 1 4 2 5 dtype: int16 """ def __init__(self, series): self.series = series @property # type: ignore @_cudf_nvtx_annotate def year(self): """ The year of the datetime. Examples -------- >>> import cudf >>> import pandas as pd >>> datetime_series = cudf.Series(pd.date_range("2000-01-01", ... periods=3, freq="Y")) >>> datetime_series 0 2000-12-31 1 2001-12-31 2 2002-12-31 dtype: datetime64[ns] >>> datetime_series.dt.year 0 2000 1 2001 2 2002 dtype: int16 """ return self._get_dt_field("year") @property # type: ignore @_cudf_nvtx_annotate def month(self): """ The month as January=1, December=12. Examples -------- >>> import pandas as pd >>> import cudf >>> datetime_series = cudf.Series(pd.date_range("2000-01-01", ... periods=3, freq="M")) >>> datetime_series 0 2000-01-31 1 2000-02-29 2 2000-03-31 dtype: datetime64[ns] >>> datetime_series.dt.month 0 1 1 2 2 3 dtype: int16 """ return self._get_dt_field("month") @property # type: ignore @_cudf_nvtx_annotate def day(self): """ The day of the datetime. Examples -------- >>> import pandas as pd >>> import cudf >>> datetime_series = cudf.Series(pd.date_range("2000-01-01", ... periods=3, freq="D")) >>> datetime_series 0 2000-01-01 1 2000-01-02 2 2000-01-03 dtype: datetime64[ns] >>> datetime_series.dt.day 0 1 1 2 2 3 dtype: int16 """ return self._get_dt_field("day") @property # type: ignore @_cudf_nvtx_annotate def hour(self): """ The hours of the datetime. Examples -------- >>> import pandas as pd >>> import cudf >>> datetime_series = cudf.Series(pd.date_range("2000-01-01", ... periods=3, freq="h")) >>> datetime_series 0 2000-01-01 00:00:00 1 2000-01-01 01:00:00 2 2000-01-01 02:00:00 dtype: datetime64[ns] >>> datetime_series.dt.hour 0 0 1 1 2 2 dtype: int16 """ return self._get_dt_field("hour") @property # type: ignore @_cudf_nvtx_annotate def minute(self): """ The minutes of the datetime. Examples -------- >>> import pandas as pd >>> import cudf >>> datetime_series = cudf.Series(pd.date_range("2000-01-01", ... periods=3, freq="T")) >>> datetime_series 0 2000-01-01 00:00:00 1 2000-01-01 00:01:00 2 2000-01-01 00:02:00 dtype: datetime64[ns] >>> datetime_series.dt.minute 0 0 1 1 2 2 dtype: int16 """ return self._get_dt_field("minute") @property # type: ignore @_cudf_nvtx_annotate def second(self): """ The seconds of the datetime. Examples -------- >>> import pandas as pd >>> import cudf >>> datetime_series = cudf.Series(pd.date_range("2000-01-01", ... periods=3, freq="s")) >>> datetime_series 0 2000-01-01 00:00:00 1 2000-01-01 00:00:01 2 2000-01-01 00:00:02 dtype: datetime64[ns] >>> datetime_series.dt.second 0 0 1 1 2 2 dtype: int16 """ return self._get_dt_field("second") @property # type: ignore @_cudf_nvtx_annotate def microsecond(self): """ The microseconds of the datetime. Examples -------- >>> import pandas as pd >>> import cudf >>> datetime_series = cudf.Series(pd.date_range("2000-01-01", ... periods=3, freq="us")) >>> datetime_series 0 2000-01-01 00:00:00.000000 1 2000-01-01 00:00:00.000001 2 2000-01-01 00:00:00.000002 dtype: datetime64[ns] >>> datetime_series.dt.microsecond 0 0 1 1 2 2 dtype: int32 """ return Series( data=( # Need to manually promote column to int32 because # pandas-matching binop behaviour requires that this # __mul__ returns an int16 column. self.series._column.get_dt_field("millisecond").astype("int32") * cudf.Scalar(1000, dtype="int32") ) + self.series._column.get_dt_field("microsecond"), index=self.series._index, name=self.series.name, ) @property # type: ignore @_cudf_nvtx_annotate def nanosecond(self): """ The nanoseconds of the datetime. Examples -------- >>> import pandas as pd >>> import cudf >>> datetime_series = cudf.Series(pd.date_range("2000-01-01", ... periods=3, freq="ns")) >>> datetime_series 0 2000-01-01 00:00:00.000000000 1 2000-01-01 00:00:00.000000001 2 2000-01-01 00:00:00.000000002 dtype: datetime64[ns] >>> datetime_series.dt.nanosecond 0 0 1 1 2 2 dtype: int16 """ return self._get_dt_field("nanosecond") @property # type: ignore @_cudf_nvtx_annotate def weekday(self): """ The day of the week with Monday=0, Sunday=6. Examples -------- >>> import pandas as pd >>> import cudf >>> datetime_series = cudf.Series(pd.date_range('2016-12-31', ... '2017-01-08', freq='D')) >>> datetime_series 0 2016-12-31 1 2017-01-01 2 2017-01-02 3 2017-01-03 4 2017-01-04 5 2017-01-05 6 2017-01-06 7 2017-01-07 8 2017-01-08 dtype: datetime64[ns] >>> datetime_series.dt.weekday 0 5 1 6 2 0 3 1 4 2 5 3 6 4 7 5 8 6 dtype: int16 """ return self._get_dt_field("weekday") @property # type: ignore @_cudf_nvtx_annotate def dayofweek(self): """ The day of the week with Monday=0, Sunday=6. Examples -------- >>> import pandas as pd >>> import cudf >>> datetime_series = cudf.Series(pd.date_range('2016-12-31', ... '2017-01-08', freq='D')) >>> datetime_series 0 2016-12-31 1 2017-01-01 2 2017-01-02 3 2017-01-03 4 2017-01-04 5 2017-01-05 6 2017-01-06 7 2017-01-07 8 2017-01-08 dtype: datetime64[ns] >>> datetime_series.dt.dayofweek 0 5 1 6 2 0 3 1 4 2 5 3 6 4 7 5 8 6 dtype: int16 """ return self._get_dt_field("weekday") @property # type: ignore @_cudf_nvtx_annotate def dayofyear(self): """ The day of the year, from 1-365 in non-leap years and from 1-366 in leap years. Examples -------- >>> import pandas as pd >>> import cudf >>> datetime_series = cudf.Series(pd.date_range('2016-12-31', ... '2017-01-08', freq='D')) >>> datetime_series 0 2016-12-31 1 2017-01-01 2 2017-01-02 3 2017-01-03 4 2017-01-04 5 2017-01-05 6 2017-01-06 7 2017-01-07 8 2017-01-08 dtype: datetime64[ns] >>> datetime_series.dt.dayofyear 0 366 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 dtype: int16 """ return self._get_dt_field("day_of_year") @property # type: ignore @_cudf_nvtx_annotate def day_of_year(self): """ The day of the year, from 1-365 in non-leap years and from 1-366 in leap years. Examples -------- >>> import pandas as pd >>> import cudf >>> datetime_series = cudf.Series(pd.date_range('2016-12-31', ... '2017-01-08', freq='D')) >>> datetime_series 0 2016-12-31 1 2017-01-01 2 2017-01-02 3 2017-01-03 4 2017-01-04 5 2017-01-05 6 2017-01-06 7 2017-01-07 8 2017-01-08 dtype: datetime64[ns] >>> datetime_series.dt.day_of_year 0 366 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 dtype: int16 """ return self._get_dt_field("day_of_year") @property # type: ignore @_cudf_nvtx_annotate def is_leap_year(self): """ Boolean indicator if the date belongs to a leap year. A leap year is a year, which has 366 days (instead of 365) including 29th of February as an intercalary day. Leap years are years which are multiples of four with the exception of years divisible by 100 but not by 400. Returns ------- Series Booleans indicating if dates belong to a leap year. Examples -------- >>> import pandas as pd, cudf >>> s = cudf.Series( ... pd.date_range(start='2000-02-01', end='2013-02-01', freq='1Y')) >>> s 0 2000-12-31 1 2001-12-31 2 2002-12-31 3 2003-12-31 4 2004-12-31 5 2005-12-31 6 2006-12-31 7 2007-12-31 8 2008-12-31 9 2009-12-31 10 2010-12-31 11 2011-12-31 12 2012-12-31 dtype: datetime64[ns] >>> s.dt.is_leap_year 0 True 1 False 2 False 3 False 4 True 5 False 6 False 7 False 8 True 9 False 10 False 11 False 12 True dtype: bool """ res = libcudf.datetime.is_leap_year(self.series._column).fillna(False) return Series._from_data( ColumnAccessor({None: res}), index=self.series._index, name=self.series.name, ) @property # type: ignore @_cudf_nvtx_annotate def quarter(self): """ Integer indicator for which quarter of the year the date belongs in. There are 4 quarters in a year. With the first quarter being from January - March, second quarter being April - June, third quarter being July - September and fourth quarter being October - December. Returns ------- Series Integer indicating which quarter the date belongs to. Examples -------- >>> import cudf >>> s = cudf.Series(["2020-05-31 08:00:00","1999-12-31 18:40:00"], ... dtype="datetime64[ms]") >>> s.dt.quarter 0 2 1 4 dtype: int8 """ res = libcudf.datetime.extract_quarter(self.series._column).astype( np.int8 ) return Series._from_data( {None: res}, index=self.series._index, name=self.series.name, ) @_cudf_nvtx_annotate def isocalendar(self): """ Returns a DataFrame with the year, week, and day calculated according to the ISO 8601 standard. Returns ------- DataFrame with columns year, week and day Examples -------- >>> ser = cudf.Series(pd.date_range(start="2021-07-25", ... end="2021-07-30")) >>> ser.dt.isocalendar() year week day 0 2021 29 7 1 2021 30 1 2 2021 30 2 3 2021 30 3 4 2021 30 4 5 2021 30 5 >>> ser.dt.isocalendar().week 0 29 1 30 2 30 3 30 4 30 5 30 Name: week, dtype: object >>> serIndex = cudf.to_datetime(pd.Series(["2010-01-01", pd.NaT])) >>> serIndex.dt.isocalendar() year week day 0 2009 53 5 1 <NA> <NA> <NA> >>> serIndex.dt.isocalendar().year 0 2009 1 <NA> Name: year, dtype: object """ return cudf.core.tools.datetimes._to_iso_calendar(self) @property # type: ignore @_cudf_nvtx_annotate def is_month_start(self): """ Booleans indicating if dates are the first day of the month. """ return (self.day == 1).fillna(False) @property # type: ignore @_cudf_nvtx_annotate def days_in_month(self): """ Get the total number of days in the month that the date falls on. Returns ------- Series Integers representing the number of days in month Examples -------- >>> import pandas as pd, cudf >>> s = cudf.Series( ... pd.date_range(start='2000-08-01', end='2001-08-01', freq='1M')) >>> s 0 2000-08-31 1 2000-09-30 2 2000-10-31 3 2000-11-30 4 2000-12-31 5 2001-01-31 6 2001-02-28 7 2001-03-31 8 2001-04-30 9 2001-05-31 10 2001-06-30 11 2001-07-31 dtype: datetime64[ns] >>> s.dt.days_in_month 0 31 1 30 2 31 3 30 4 31 5 31 6 28 7 31 8 30 9 31 10 30 11 31 dtype: int16 """ res = libcudf.datetime.days_in_month(self.series._column) return Series._from_data( ColumnAccessor({None: res}), index=self.series._index, name=self.series.name, ) @property # type: ignore @_cudf_nvtx_annotate def is_month_end(self): """ Boolean indicator if the date is the last day of the month. Returns ------- Series Booleans indicating if dates are the last day of the month. Examples -------- >>> import pandas as pd, cudf >>> s = cudf.Series( ... pd.date_range(start='2000-08-26', end='2000-09-03', freq='1D')) >>> s 0 2000-08-26 1 2000-08-27 2 2000-08-28 3 2000-08-29 4 2000-08-30 5 2000-08-31 6 2000-09-01 7 2000-09-02 8 2000-09-03 dtype: datetime64[ns] >>> s.dt.is_month_end 0 False 1 False 2 False 3 False 4 False 5 True 6 False 7 False 8 False dtype: bool """ # noqa: E501 last_day = libcudf.datetime.last_day_of_month(self.series._column) last_day = Series._from_data( ColumnAccessor({None: last_day}), index=self.series._index, name=self.series.name, ) return (self.day == last_day.dt.day).fillna(False) @property # type: ignore @_cudf_nvtx_annotate def is_quarter_start(self): """ Boolean indicator if the date is the first day of a quarter. Returns ------- Series Booleans indicating if dates are the beginning of a quarter Examples -------- >>> import pandas as pd, cudf >>> s = cudf.Series( ... pd.date_range(start='2000-09-26', end='2000-10-03', freq='1D')) >>> s 0 2000-09-26 1 2000-09-27 2 2000-09-28 3 2000-09-29 4 2000-09-30 5 2000-10-01 6 2000-10-02 7 2000-10-03 dtype: datetime64[ns] >>> s.dt.is_quarter_start 0 False 1 False 2 False 3 False 4 False 5 True 6 False 7 False dtype: bool """ day = self.series._column.get_dt_field("day") first_month = self.series._column.get_dt_field("month").isin( [1, 4, 7, 10] ) result = ((day == cudf.Scalar(1)) & first_month).fillna(False) return Series._from_data( {None: result}, index=self.series._index, name=self.series.name, ) @property # type: ignore @_cudf_nvtx_annotate def is_quarter_end(self): """ Boolean indicator if the date is the last day of a quarter. Returns ------- Series Booleans indicating if dates are the end of a quarter Examples -------- >>> import pandas as pd, cudf >>> s = cudf.Series( ... pd.date_range(start='2000-09-26', end='2000-10-03', freq='1D')) >>> s 0 2000-09-26 1 2000-09-27 2 2000-09-28 3 2000-09-29 4 2000-09-30 5 2000-10-01 6 2000-10-02 7 2000-10-03 dtype: datetime64[ns] >>> s.dt.is_quarter_end 0 False 1 False 2 False 3 False 4 True 5 False 6 False 7 False dtype: bool """ day = self.series._column.get_dt_field("day") last_day = libcudf.datetime.last_day_of_month(self.series._column) last_day = last_day.get_dt_field("day") last_month = self.series._column.get_dt_field("month").isin( [3, 6, 9, 12] ) result = ((day == last_day) & last_month).fillna(False) return Series._from_data( {None: result}, index=self.series._index, name=self.series.name, ) @property # type: ignore @_cudf_nvtx_annotate def is_year_start(self): """ Boolean indicator if the date is the first day of the year. Returns ------- Series Booleans indicating if dates are the first day of the year. Examples -------- >>> import pandas as pd, cudf >>> s = cudf.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_start 0 False 1 False 2 True dtype: bool """ outcol = self.series._column.get_dt_field( "day_of_year" ) == cudf.Scalar(1) return Series._from_data( {None: outcol.fillna(False)}, index=self.series._index, name=self.series.name, ) @property # type: ignore @_cudf_nvtx_annotate def is_year_end(self): """ Boolean indicator if the date is the last day of the year. Returns ------- Series Booleans indicating if dates are the last day of the year. Examples -------- >>> import pandas as pd, cudf >>> dates = cudf.Series(pd.date_range("2017-12-30", periods=3)) >>> dates 0 2017-12-30 1 2017-12-31 2 2018-01-01 dtype: datetime64[ns] >>> dates.dt.is_year_end 0 False 1 True 2 False dtype: bool """ day_of_year = self.series._column.get_dt_field("day_of_year") leap_dates = libcudf.datetime.is_leap_year(self.series._column) leap = day_of_year == cudf.Scalar(366) non_leap = day_of_year == cudf.Scalar(365) result = cudf._lib.copying.copy_if_else(leap, non_leap, leap_dates) result = result.fillna(False) return Series._from_data( {None: result}, index=self.series._index, name=self.series.name, ) @_cudf_nvtx_annotate def _get_dt_field(self, field): out_column = self.series._column.get_dt_field(field) return Series( data=out_column, index=self.series._index, name=self.series.name ) @_cudf_nvtx_annotate def ceil(self, freq): """ Perform ceil operation on the data to the specified freq. Parameters ---------- freq : str One of ["D", "H", "T", "min", "S", "L", "ms", "U", "us", "N"]. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See `frequency aliases <https://pandas.pydata.org/docs/\ user_guide/timeseries.html#timeseries-offset-aliases>`__ for more details on these aliases. Returns ------- Series Series with all timestamps rounded up to the specified frequency. The index is preserved. Examples -------- >>> import cudf >>> t = cudf.Series(["2001-01-01 00:04:45", "2001-01-01 00:04:58", ... "2001-01-01 00:05:04"], dtype="datetime64[ns]") >>> t.dt.ceil("T") 0 2001-01-01 00:05:00 1 2001-01-01 00:05:00 2 2001-01-01 00:06:00 dtype: datetime64[ns] """ out_column = self.series._column.ceil(freq) return Series._from_data( data={self.series.name: out_column}, index=self.series._index ) @_cudf_nvtx_annotate def floor(self, freq): """ Perform floor operation on the data to the specified freq. Parameters ---------- freq : str One of ["D", "H", "T", "min", "S", "L", "ms", "U", "us", "N"]. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See `frequency aliases <https://pandas.pydata.org/docs/\ user_guide/timeseries.html#timeseries-offset-aliases>`__ for more details on these aliases. Returns ------- Series Series with all timestamps rounded up to the specified frequency. The index is preserved. Examples -------- >>> import cudf >>> t = cudf.Series(["2001-01-01 00:04:45", "2001-01-01 00:04:58", ... "2001-01-01 00:05:04"], dtype="datetime64[ns]") >>> t.dt.floor("T") 0 2001-01-01 00:04:00 1 2001-01-01 00:04:00 2 2001-01-01 00:05:00 dtype: datetime64[ns] """ out_column = self.series._column.floor(freq) return Series._from_data( data={self.series.name: out_column}, index=self.series._index ) @_cudf_nvtx_annotate def round(self, freq): """ Perform round operation on the data to the specified freq. Parameters ---------- freq : str One of ["D", "H", "T", "min", "S", "L", "ms", "U", "us", "N"]. Must be a fixed frequency like 'S' (second) not 'ME' (month end). See `frequency aliases <https://pandas.pydata.org/docs/\ user_guide/timeseries.html#timeseries-offset-aliases>`__ for more details on these aliases. Returns ------- Series Series with all timestamps rounded to the specified frequency. The index is preserved. Examples -------- >>> import cudf >>> dt_sr = cudf.Series([ ... "2001-01-01 00:04:45", ... "2001-01-01 00:04:58", ... "2001-01-01 00:05:04", ... ], dtype="datetime64[ns]") >>> dt_sr.dt.round("T") 0 2001-01-01 00:05:00 1 2001-01-01 00:05:00 2 2001-01-01 00:05:00 dtype: datetime64[ns] """ out_column = self.series._column.round(freq) return Series._from_data( data={self.series.name: out_column}, index=self.series._index ) @_cudf_nvtx_annotate def strftime(self, date_format, *args, **kwargs): """ Convert to Series using specified ``date_format``. Return a Series of formatted strings specified by ``date_format``, which supports the same string format as the python standard library. Details of the string format can be found in `python string format doc <https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior>`_. Parameters ---------- date_format : str Date format string (e.g. "%Y-%m-%d"). Returns ------- Series Series of formatted strings. Notes ----- The following date format identifiers are not yet supported: ``%c``, ``%x``,``%X`` Examples -------- >>> import cudf >>> import pandas as pd >>> weekday_series = cudf.Series(pd.date_range("2000-01-01", periods=3, ... freq="q")) >>> weekday_series.dt.strftime("%Y-%m-%d") >>> weekday_series 0 2000-03-31 1 2000-06-30 2 2000-09-30 dtype: datetime64[ns] 0 2000-03-31 1 2000-06-30 2 2000-09-30 dtype: object >>> weekday_series.dt.strftime("%Y %d %m") 0 2000 31 03 1 2000 30 06 2 2000 30 09 dtype: object >>> weekday_series.dt.strftime("%Y / %d / %m") 0 2000 / 31 / 03 1 2000 / 30 / 06 2 2000 / 30 / 09 dtype: object """ if not isinstance(date_format, str): raise TypeError( f"'date_format' must be str, not {type(date_format)}" ) # TODO: Remove following validations # once https://github.com/rapidsai/cudf/issues/5991 # is implemented not_implemented_formats = { "%c", "%x", "%X", } for d_format in not_implemented_formats: if d_format in date_format: raise NotImplementedError( f"{d_format} date-time format is not " f"supported yet, Please follow this issue " f"https://github.com/rapidsai/cudf/issues/5991 " f"for tracking purposes." ) str_col = self.series._column.as_string_column( dtype="str", format=date_format ) return Series( data=str_col, index=self.series._index, name=self.series.name ) @copy_docstring(DatetimeIndex.tz_localize) def tz_localize(self, tz, ambiguous="NaT", nonexistent="NaT"): from cudf.core._internals.timezones import delocalize, localize if tz is None: result_col = delocalize(self.series._column) else: result_col = localize( self.series._column, tz, ambiguous, nonexistent ) return Series._from_data( data={self.series.name: result_col}, index=self.series._index, ) @copy_docstring(DatetimeIndex.tz_convert) def tz_convert(self, tz): """ Parameters ---------- tz : str Time zone for time. Corresponding timestamps would be converted to this time zone of the Datetime Array/Index. A `tz` of None will convert to UTC and remove the timezone information. """ from cudf.core._internals.timezones import convert if tz is None: result_col = self.series._column._utc_time else: result_col = convert(self.series._column, tz) return Series._from_data( {self.series.name: result_col}, index=self.series._index ) class TimedeltaProperties: """ Accessor object for timedelta-like properties of the Series values. Returns ------- Returns a Series indexed like the original Series. Examples -------- >>> import cudf >>> seconds_series = cudf.Series([1, 2, 3], dtype='timedelta64[s]') >>> seconds_series 0 00:00:01 1 00:00:02 2 00:00:03 dtype: timedelta64[s] >>> seconds_series.dt.seconds 0 1 1 2 2 3 dtype: int64 >>> series = cudf.Series([12231312123, 1231231231, 1123236768712, 2135656, ... 3244334234], dtype='timedelta64[ms]') >>> series 0 141 days 13:35:12.123 1 14 days 06:00:31.231 2 13000 days 10:12:48.712 3 0 days 00:35:35.656 4 37 days 13:12:14.234 dtype: timedelta64[ms] >>> series.dt.components days hours minutes seconds milliseconds microseconds nanoseconds 0 141 13 35 12 123 0 0 1 14 6 0 31 231 0 0 2 13000 10 12 48 712 0 0 3 0 0 35 35 656 0 0 4 37 13 12 14 234 0 0 >>> series.dt.days 0 141 1 14 2 13000 3 0 4 37 dtype: int64 >>> series.dt.seconds 0 48912 1 21631 2 36768 3 2135 4 47534 dtype: int64 >>> series.dt.microseconds 0 123000 1 231000 2 712000 3 656000 4 234000 dtype: int64 >>> s.dt.nanoseconds 0 0 1 0 2 0 3 0 4 0 dtype: int64 """ def __init__(self, series): self.series = series @property # type: ignore @_cudf_nvtx_annotate def days(self): """ Number of days. Returns ------- Series Examples -------- >>> import cudf >>> s = cudf.Series([12231312123, 1231231231, 1123236768712, 2135656, ... 3244334234], dtype='timedelta64[ms]') >>> s 0 141 days 13:35:12.123 1 14 days 06:00:31.231 2 13000 days 10:12:48.712 3 0 days 00:35:35.656 4 37 days 13:12:14.234 dtype: timedelta64[ms] >>> s.dt.days 0 141 1 14 2 13000 3 0 4 37 dtype: int64 """ return self._get_td_field("days") @property # type: ignore @_cudf_nvtx_annotate def seconds(self): """ Number of seconds (>= 0 and less than 1 day). Returns ------- Series Examples -------- >>> import cudf >>> s = cudf.Series([12231312123, 1231231231, 1123236768712, 2135656, ... 3244334234], dtype='timedelta64[ms]') >>> s 0 141 days 13:35:12.123 1 14 days 06:00:31.231 2 13000 days 10:12:48.712 3 0 days 00:35:35.656 4 37 days 13:12:14.234 dtype: timedelta64[ms] >>> s.dt.seconds 0 48912 1 21631 2 36768 3 2135 4 47534 dtype: int64 >>> s.dt.microseconds 0 123000 1 231000 2 712000 3 656000 4 234000 dtype: int64 """ return self._get_td_field("seconds") @property # type: ignore @_cudf_nvtx_annotate def microseconds(self): """ Number of microseconds (>= 0 and less than 1 second). Returns ------- Series Examples -------- >>> import cudf >>> s = cudf.Series([12231312123, 1231231231, 1123236768712, 2135656, ... 3244334234], dtype='timedelta64[ms]') >>> s 0 141 days 13:35:12.123 1 14 days 06:00:31.231 2 13000 days 10:12:48.712 3 0 days 00:35:35.656 4 37 days 13:12:14.234 dtype: timedelta64[ms] >>> s.dt.microseconds 0 123000 1 231000 2 712000 3 656000 4 234000 dtype: int64 """ return self._get_td_field("microseconds") @property # type: ignore @_cudf_nvtx_annotate def nanoseconds(self): """ Return the number of nanoseconds (n), where 0 <= n < 1 microsecond. Returns ------- Series Examples -------- >>> import cudf >>> s = cudf.Series([12231312123, 1231231231, 1123236768712, 2135656, ... 3244334234], dtype='timedelta64[ns]') >>> s 0 00:00:12.231312123 1 00:00:01.231231231 2 00:18:43.236768712 3 00:00:00.002135656 4 00:00:03.244334234 dtype: timedelta64[ns] >>> s.dt.nanoseconds 0 123 1 231 2 712 3 656 4 234 dtype: int64 """ return self._get_td_field("nanoseconds") @property # type: ignore @_cudf_nvtx_annotate def components(self): """ Return a Dataframe of the components of the Timedeltas. Returns ------- DataFrame Examples -------- >>> s = cudf.Series([12231312123, 1231231231, 1123236768712, 2135656, 3244334234], dtype='timedelta64[ms]') >>> s 0 141 days 13:35:12.123 1 14 days 06:00:31.231 2 13000 days 10:12:48.712 3 0 days 00:35:35.656 4 37 days 13:12:14.234 dtype: timedelta64[ms] >>> s.dt.components days hours minutes seconds milliseconds microseconds nanoseconds 0 141 13 35 12 123 0 0 1 14 6 0 31 231 0 0 2 13000 10 12 48 712 0 0 3 0 0 35 35 656 0 0 4 37 13 12 14 234 0 0 """ # noqa: E501 return self.series._column.components(index=self.series._index) @_cudf_nvtx_annotate def _get_td_field(self, field): out_column = getattr(self.series._column, field) return Series( data=out_column, index=self.series._index, name=self.series.name ) @_cudf_nvtx_annotate def _align_indices(series_list, how="outer", allow_non_unique=False): """ Internal util to align the indices of a list of Series objects series_list : list of Series objects how : {"outer", "inner"} If "outer", the values of the resulting index are the unique values of the index obtained by concatenating the indices of all the series. If "inner", the values of the resulting index are the values common to the indices of all series. allow_non_unique : bool Whether or not to allow non-unique valued indices in the input series. """ if len(series_list) <= 1: return series_list # check if all indices are the same head = series_list[0].index all_index_equal = True for sr in series_list[1:]: if not sr.index.equals(head): all_index_equal = False break # check if all names are the same all_names_equal = True for sr in series_list[1:]: if not sr.index.names == head.names: all_names_equal = False new_index_names = [None] * head.nlevels if all_names_equal: new_index_names = head.names if all_index_equal: return series_list combined_index = series_list[0].index for sr in series_list[1:]: combined_index = ( cudf.DataFrame(index=sr.index).join( cudf.DataFrame(index=combined_index), sort=True, how=how, ) ).index combined_index.names = new_index_names # align all Series to the combined index result = [ sr._align_to_index( combined_index, how=how, allow_non_unique=allow_non_unique ) for sr in series_list ] return result @acquire_spill_lock() @_cudf_nvtx_annotate def isclose(a, b, rtol=1e-05, atol=1e-08, equal_nan=False): r"""Returns a boolean array where two arrays are equal within a tolerance. Two values in ``a`` and ``b`` are considered equal when the following equation is satisfied. .. math:: |a - b| \le \mathrm{atol} + \mathrm{rtol} |b| Parameters ---------- a : list-like, array-like or cudf.Series Input sequence to compare. b : list-like, array-like or cudf.Series Input sequence to compare. rtol : float The relative tolerance. atol : float The absolute tolerance. equal_nan : bool If ``True``, null's in ``a`` will be considered equal to null's in ``b``. Returns ------- Series See Also -------- np.isclose : Returns a boolean array where two arrays are element-wise equal within a tolerance. Examples -------- >>> import cudf >>> s1 = cudf.Series([1.9876543, 2.9876654, 3.9876543, None, 9.9, 1.0]) >>> s2 = cudf.Series([1.987654321, 2.987654321, 3.987654321, None, 19.9, ... None]) >>> s1 0 1.9876543 1 2.9876654 2 3.9876543 3 <NA> 4 9.9 5 1.0 dtype: float64 >>> s2 0 1.987654321 1 2.987654321 2 3.987654321 3 <NA> 4 19.9 5 <NA> dtype: float64 >>> cudf.isclose(s1, s2) 0 True 1 True 2 True 3 False 4 False 5 False dtype: bool >>> cudf.isclose(s1, s2, equal_nan=True) 0 True 1 True 2 True 3 True 4 False 5 False dtype: bool >>> cudf.isclose(s1, s2, equal_nan=False) 0 True 1 True 2 True 3 False 4 False 5 False dtype: bool """ if not can_convert_to_column(a): raise TypeError( f"Parameter `a` is expected to be a " f"list-like or Series object, found:{type(a)}" ) if not can_convert_to_column(b): raise TypeError( f"Parameter `b` is expected to be a " f"list-like or Series object, found:{type(a)}" ) if isinstance(a, pd.Series): a = Series.from_pandas(a) if isinstance(b, pd.Series): b = Series.from_pandas(b) index = None if isinstance(a, cudf.Series) and isinstance(b, cudf.Series): b = b.reindex(a.index) index = as_index(a.index) a_col = column.as_column(a) a_array = cupy.asarray(a_col.data_array_view(mode="read")) b_col = column.as_column(b) b_array = cupy.asarray(b_col.data_array_view(mode="read")) result = cupy.isclose( a=a_array, b=b_array, rtol=rtol, atol=atol, equal_nan=equal_nan ) result_col = column.as_column(result) if a_col.null_count and b_col.null_count: a_nulls = a_col.isnull() b_nulls = b_col.isnull() null_values = a_nulls | b_nulls if equal_nan is True: equal_nulls = a_nulls & b_nulls del a_nulls, b_nulls elif a_col.null_count: null_values = a_col.isnull() elif b_col.null_count: null_values = b_col.isnull() else: return Series(result_col, index=index) result_col[null_values] = False if equal_nan is True and a_col.null_count and b_col.null_count: result_col[equal_nulls] = True return Series(result_col, index=index)
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/core/df_protocol.py
# Copyright (c) 2021-2023, NVIDIA CORPORATION. import enum from collections import abc from typing import ( Any, Dict, Iterable, Mapping, Optional, Sequence, Tuple, cast, ) import cupy as cp import numpy as np from numba.cuda import as_cuda_array import rmm import cudf from cudf.core.buffer import Buffer, as_buffer from cudf.core.column import as_column, build_categorical_column, build_column # Implementation of interchange protocol classes # ---------------------------------------------- class _DtypeKind(enum.IntEnum): INT = 0 UINT = 1 FLOAT = 2 BOOL = 20 STRING = 21 # UTF-8 DATETIME = 22 CATEGORICAL = 23 class _Device(enum.IntEnum): CPU = 1 CUDA = 2 CPU_PINNED = 3 OPENCL = 4 VULKAN = 7 METAL = 8 VPI = 9 ROCM = 10 class _MaskKind(enum.IntEnum): NON_NULLABLE = 0 NAN = 1 SENTINEL = 2 BITMASK = 3 BYTEMASK = 4 _SUPPORTED_KINDS = { _DtypeKind.INT, _DtypeKind.UINT, _DtypeKind.FLOAT, _DtypeKind.CATEGORICAL, _DtypeKind.BOOL, _DtypeKind.STRING, } ProtoDtype = Tuple[_DtypeKind, int, str, str] class _CuDFBuffer: """ Data in the buffer is guaranteed to be contiguous in memory. """ def __init__( self, buf: Buffer, dtype: np.dtype, allow_copy: bool = True, ) -> None: """ Use Buffer object. """ # Store the cudf buffer where the data resides as a private # attribute, so we can use it to retrieve the public attributes self._buf = buf self._dtype = dtype self._allow_copy = allow_copy @property def bufsize(self) -> int: """ The Buffer size in bytes. """ return self._buf.size @property def ptr(self) -> int: """ Pointer to start of the buffer as an integer. """ return self._buf.get_ptr(mode="write") def __dlpack__(self): # DLPack not implemented in NumPy yet, so leave it out here. try: cuda_array = as_cuda_array(self._buf).view(self._dtype) return cp.asarray(cuda_array).toDlpack() except ValueError: raise TypeError(f"dtype {self._dtype} unsupported by `dlpack`") def __dlpack_device__(self) -> Tuple[_Device, int]: """ _Device type and _Device ID for where the data in the buffer resides. """ return (_Device.CUDA, cp.asarray(self._buf).device.id) def __repr__(self) -> str: return f"{self.__class__.__name__}(" + str( { "bufsize": self.bufsize, "ptr": self.ptr, "device": self.__dlpack_device__()[0].name, } ) +")" class _CuDFColumn: """ A column object, with only the methods and properties required by the interchange protocol defined. A column can contain one or more chunks. Each chunk can contain up to three buffers - a data buffer, a mask buffer (depending on null representation), and an offsets buffer (if variable-size binary; e.g., variable-length strings). Note: this Column object can only be produced by ``__dataframe__``, so doesn't need its own version or ``__column__`` protocol. """ def __init__( self, column: cudf.core.column.ColumnBase, nan_as_null: bool = True, allow_copy: bool = True, ) -> None: """ Note: doesn't deal with extension arrays yet, just assume a regular Series/ndarray for now. """ if not isinstance(column, cudf.core.column.ColumnBase): raise TypeError( "column must be a subtype of df.core.column.ColumnBase," f"got {type(column)}" ) self._col = column self._nan_as_null = nan_as_null self._allow_copy = allow_copy def size(self) -> int: """ Size of the column, in elements. """ return self._col.size @property def offset(self) -> int: """ Offset of first element. Always zero. """ return 0 @property def dtype(self) -> ProtoDtype: """ Dtype description as a tuple ``(kind, bit-width, format string, endianness)`` Kind : - INT = 0 - UINT = 1 - FLOAT = 2 - BOOL = 20 - STRING = 21 # UTF-8 - DATETIME = 22 - CATEGORICAL = 23 Bit-width : the number of bits as an integer Format string : data type description format string in Apache Arrow C Data Interface format. Endianness : current only native endianness (``=``) is supported Notes ----- - Kind specifiers are aligned with DLPack where possible (hence the jump to 20, leave enough room for future extension) - Masks must be specified as boolean with either bit width 1 (for bit masks) or 8 (for byte masks). - Dtype width in bits was preferred over bytes - Endianness isn't too useful, but included now in case in the future we need to support non-native endianness - Went with Apache Arrow format strings over NumPy format strings because they're more complete from a dataframe perspective - Format strings are mostly useful for datetime specification, and for categoricals. - For categoricals, the format string describes the type of the categorical in the data buffer. In case of a separate encoding of the categorical (e.g. an integer to string mapping), this can be derived from ``self.describe_categorical``. - Data types not included: complex, Arrow-style null, binary, decimal, and nested (list, struct, map, union) dtypes. """ dtype = self._col.dtype # For now, assume that, if the column dtype is 'O' (i.e., `object`), # then we have an array of strings if not isinstance(dtype, cudf.CategoricalDtype) and dtype.kind == "O": return (_DtypeKind.STRING, 8, "u", "=") return self._dtype_from_cudfdtype(dtype) def _dtype_from_cudfdtype(self, dtype) -> ProtoDtype: """ See `self.dtype` for details. """ # Note: 'c' (complex) not handled yet (not in array spec v1). # 'b', 'B' (bytes), 'S', 'a', (old-style string) 'V' (void) # not handled datetime and timedelta both map to datetime # (is timedelta handled?) _np_kinds = { "i": _DtypeKind.INT, "u": _DtypeKind.UINT, "f": _DtypeKind.FLOAT, "b": _DtypeKind.BOOL, "U": _DtypeKind.STRING, "M": _DtypeKind.DATETIME, "m": _DtypeKind.DATETIME, } kind = _np_kinds.get(dtype.kind, None) if kind is None: # Not a NumPy/CuPy dtype. Check if it's a categorical maybe if isinstance(dtype, cudf.CategoricalDtype): kind = _DtypeKind.CATEGORICAL # Codes and categories' dtypes are different. # We use codes' dtype as these are stored in the buffer. codes = cast( cudf.core.column.CategoricalColumn, self._col ).codes dtype = codes.dtype else: raise ValueError( f"Data type {dtype} not supported by exchange protocol" ) if kind not in _SUPPORTED_KINDS: raise NotImplementedError(f"Data type {dtype} not handled yet") bitwidth = dtype.itemsize * 8 format_str = dtype.str endianness = dtype.byteorder if kind != _DtypeKind.CATEGORICAL else "=" return (kind, bitwidth, format_str, endianness) @property def describe_categorical(self) -> Tuple[bool, bool, Dict[int, Any]]: """ If the dtype is categorical, there are two options: - There are only values in the data buffer. - There is a separate dictionary-style encoding for categorical values. Raises TypeError if the dtype is not categorical Content of returned dict: - "is_ordered" : bool, whether the ordering of dictionary indices is semantically meaningful. - "is_dictionary" : bool, whether a dictionary-style mapping of categorical values to other objects exists - "mapping" : dict, Python-level only (e.g. ``{int: str}``). None if not a dictionary-style categorical. """ if not self.dtype[0] == _DtypeKind.CATEGORICAL: raise TypeError( "`describe_categorical only works on " "a column with categorical dtype!" ) categ_col = cast(cudf.core.column.CategoricalColumn, self._col) ordered = bool(categ_col.dtype.ordered) is_dictionary = True # NOTE: this shows the children approach is better, transforming # `categories` to a "mapping" dict is inefficient categories = categ_col.categories mapping = {ix: val for ix, val in enumerate(categories.values_host)} return ordered, is_dictionary, mapping @property def describe_null(self) -> Tuple[int, Any]: """ Return the missing value (or "null") representation the column dtype uses, as a tuple ``(kind, value)``. Kind: - 0 : non-nullable - 1 : NaN/NaT - 2 : sentinel value - 3 : bit mask - 4 : byte mask Value : if kind is "sentinel value", the actual value. If kind is a bit mask or a byte mask, the value (0 or 1) indicating a missing value. None otherwise. """ kind = self.dtype[0] if self.null_count == 0: # there is no validity mask so it is non-nullable return _MaskKind.NON_NULLABLE, None elif kind in _SUPPORTED_KINDS: # currently, we return a bit mask return _MaskKind.BITMASK, 0 else: raise NotImplementedError( f"Data type {self.dtype} not yet supported" ) @property def null_count(self) -> int: """ Number of null elements. Should always be known. """ return self._col.null_count @property def metadata(self) -> Dict[str, Any]: """ Store specific metadata of the column. """ return {} def num_chunks(self) -> int: """ Return the number of chunks the column consists of. """ return 1 def get_chunks( self, n_chunks: Optional[int] = None ) -> Iterable["_CuDFColumn"]: """ Return an iterable yielding the chunks. See `DataFrame.get_chunks` for details on ``n_chunks``. """ return (self,) def get_buffers( self, ) -> Mapping[str, Optional[Tuple[_CuDFBuffer, ProtoDtype]]]: """ Return a dictionary containing the underlying buffers. The returned dictionary has the following contents: - "data": a two-element tuple whose first element is a buffer containing the data and whose second element is the data buffer's associated dtype. - "validity": a two-element tuple whose first element is a buffer containing mask values indicating missing data and whose second element is the mask value buffer's associated dtype. None if the null representation is not a bit or byte mask. - "offsets": a two-element tuple whose first element is a buffer containing the offset values for variable-size binary data (e.g., variable-length strings) and whose second element is the offsets buffer's associated dtype. None if the data buffer does not have an associated offsets buffer. """ buffers = {} try: buffers["validity"] = self._get_validity_buffer() except RuntimeError: buffers["validity"] = None try: buffers["offsets"] = self._get_offsets_buffer() except RuntimeError: buffers["offsets"] = None buffers["data"] = self._get_data_buffer() return buffers def _get_validity_buffer( self, ) -> Optional[Tuple[_CuDFBuffer, ProtoDtype]]: """ Return the buffer containing the mask values indicating missing data and the buffer's associated dtype. Raises RuntimeError if null representation is not a bit or byte mask. """ null, invalid = self.describe_null if null == _MaskKind.BITMASK: assert self._col.mask is not None buffer = _CuDFBuffer( self._col.mask, cp.uint8, allow_copy=self._allow_copy ) dtype = (_DtypeKind.UINT, 8, "C", "=") return buffer, dtype elif null == _MaskKind.NAN: raise RuntimeError( "This column uses NaN as null " "so does not have a separate mask" ) elif null == _MaskKind.NON_NULLABLE: raise RuntimeError( "This column is non-nullable so does not have a mask" ) else: raise NotImplementedError( f"See {self.__class__.__name__}.describe_null method." ) def _get_offsets_buffer( self, ) -> Optional[Tuple[_CuDFBuffer, ProtoDtype]]: """ Return the buffer containing the offset values for variable-size binary data (e.g., variable-length strings) and the buffer's associated dtype. Raises RuntimeError if the data buffer does not have an associated offsets buffer. """ if self.dtype[0] == _DtypeKind.STRING: offsets = self._col.children[0] assert (offsets is not None) and (offsets.data is not None), " " "offsets(.data) should not be None for string column" buffer = _CuDFBuffer( offsets.data, offsets.dtype, allow_copy=self._allow_copy ) dtype = self._dtype_from_cudfdtype(offsets.dtype) else: raise RuntimeError( "This column has a fixed-length dtype " "so does not have an offsets buffer" ) return buffer, dtype def _get_data_buffer( self, ) -> Tuple[_CuDFBuffer, ProtoDtype]: """ Return the buffer containing the data and the buffer's associated dtype. """ if self.dtype[0] in ( _DtypeKind.INT, _DtypeKind.UINT, _DtypeKind.FLOAT, _DtypeKind.BOOL, ): col_data = self._col dtype = self.dtype elif self.dtype[0] == _DtypeKind.CATEGORICAL: col_data = cast( cudf.core.column.CategoricalColumn, self._col ).codes dtype = self._dtype_from_cudfdtype(col_data.dtype) elif self.dtype[0] == _DtypeKind.STRING: col_data = self._col.children[1] dtype = self._dtype_from_cudfdtype(col_data.dtype) else: raise NotImplementedError( f"Data type {self._col.dtype} not handled yet" ) assert (col_data is not None) and (col_data.data is not None), " " f"col_data(.data) should not be None when dtype = {dtype}" buffer = _CuDFBuffer( col_data.data, col_data.dtype, allow_copy=self._allow_copy ) return buffer, dtype class _CuDFDataFrame: """ A data frame class, with only the methods required by the interchange protocol defined. Instances of this (private) class are returned from ``cudf.DataFrame.__dataframe__`` as objects with the methods and attributes defined on this class. """ def __init__( self, df: "cudf.core.dataframe.DataFrame", nan_as_null: bool = True, allow_copy: bool = True, ) -> None: """ Constructor - an instance of this (private) class is returned from `cudf.DataFrame.__dataframe__`. """ self._df = df # ``nan_as_null`` is a keyword intended for the consumer to tell the # producer to overwrite null values in the data with # ``NaN`` (or ``NaT``). # This currently has no effect; once support for nullable extension # dtypes is added, this value should be propagated to columns. self._nan_as_null = nan_as_null self._allow_copy = allow_copy def __dataframe__( self, nan_as_null: bool = False, allow_copy: bool = True ) -> "_CuDFDataFrame": """ See the docstring of the `cudf.DataFrame.__dataframe__` for details """ return _CuDFDataFrame( self._df, nan_as_null=nan_as_null, allow_copy=allow_copy ) @property def metadata(self): # `index` isn't a regular column, and the protocol doesn't support row # labels - so we export it as cuDF-specific metadata here. return {"cudf.index": self._df.index} def num_columns(self) -> int: return len(self._df._column_names) def num_rows(self) -> int: return len(self._df) def num_chunks(self) -> int: return 1 def column_names(self) -> Iterable[str]: return self._df._column_names def get_column(self, i: int) -> _CuDFColumn: return _CuDFColumn( as_column(self._df.iloc[:, i]), allow_copy=self._allow_copy ) def get_column_by_name(self, name: str) -> _CuDFColumn: return _CuDFColumn( as_column(self._df[name]), allow_copy=self._allow_copy ) def get_columns(self) -> Iterable[_CuDFColumn]: return [ _CuDFColumn(as_column(self._df[name]), allow_copy=self._allow_copy) for name in self._df.columns ] def select_columns(self, indices: Sequence[int]) -> "_CuDFDataFrame": if not isinstance(indices, abc.Sequence): raise ValueError("`indices` is not a sequence") return _CuDFDataFrame(self._df.iloc[:, indices]) def select_columns_by_name(self, names: Sequence[str]) -> "_CuDFDataFrame": if not isinstance(names, abc.Sequence): raise ValueError("`names` is not a sequence") return _CuDFDataFrame( self._df.loc[:, names], self._nan_as_null, self._allow_copy ) def get_chunks( self, n_chunks: Optional[int] = None ) -> Iterable["_CuDFDataFrame"]: """ Return an iterator yielding the chunks. """ return (self,) def __dataframe__( self, nan_as_null: bool = False, allow_copy: bool = True ) -> _CuDFDataFrame: """ The public method to attach to cudf.DataFrame. ``nan_as_null`` is a keyword intended for the consumer to tell the producer to overwrite null values in the data with ``NaN`` (or ``NaT``). This currently has no effect; once support for nullable extension dtypes is added, this value should be propagated to columns. ``allow_copy`` is a keyword that defines whether or not the library is allowed to make a copy of the data. For example, copying data would be necessary if a library supports strided buffers, given that this protocol specifies contiguous buffers. """ return _CuDFDataFrame(self, nan_as_null=nan_as_null, allow_copy=allow_copy) """ Implementation of the dataframe exchange protocol. Public API ---------- from_dataframe : construct a cudf.DataFrame from an input data frame which implements the exchange protocol Notes ----- - Interpreting a raw pointer (as in ``Buffer.ptr``) is annoying and unsafe to do in pure Python. It's more general but definitely less friendly than having ``to_arrow`` and ``to_numpy`` methods. So for the buffers which lack ``__dlpack__`` (e.g., because the column dtype isn't supported by DLPack), this is worth looking at again. """ # A typing protocol could be added later to let Mypy validate code using # `from_dataframe` better. DataFrameObject = Any ColumnObject = Any _INTS = {8: cp.int8, 16: cp.int16, 32: cp.int32, 64: cp.int64} _UINTS = {8: cp.uint8, 16: cp.uint16, 32: cp.uint32, 64: cp.uint64} _FLOATS = {32: cp.float32, 64: cp.float64} _CP_DTYPES = { 0: _INTS, 1: _UINTS, 2: _FLOATS, 20: {8: bool}, 21: {8: cp.uint8}, } def from_dataframe( df: DataFrameObject, allow_copy: bool = False ) -> _CuDFDataFrame: """ Construct a ``DataFrame`` from ``df`` if it supports the dataframe interchange protocol (``__dataframe__``). Parameters ---------- df : DataFrameObject Object supporting dataframe interchange protocol allow_copy : bool If ``True``, allow copying of the data. If ``False``, a ``TypeError`` is raised if data copying is required to construct the ``DataFrame`` (e.g., if ``df`` lives in CPU memory). Returns ------- DataFrame Examples -------- >>> import pandas as pd >>> pdf = pd.DataFrame({'a': [1, 2, 3], 'b': ['x', 'y', 'z']}) >>> df = cudf.from_dataframe(pdf, allow_copy=True) >>> type(df) cudf.core.dataframe.DataFrame >>> df a b 0 1 x 1 2 y 2 3 z Notes ----- See https://data-apis.org/dataframe-protocol/latest/index.html for the dataframe interchange protocol spec and API """ if isinstance(df, cudf.DataFrame): return df if not hasattr(df, "__dataframe__"): raise ValueError("`df` does not support __dataframe__") df = df.__dataframe__(allow_copy=allow_copy) # Check number of chunks, if there's more than one we need to iterate if df.num_chunks() > 1: raise NotImplementedError("More than one chunk not handled yet") # We need a dict of columns here, with each column being a cudf column. columns = dict() _buffers = [] # hold on to buffers, keeps memory alive for name in df.column_names(): col = df.get_column_by_name(name) if col.dtype[0] in ( _DtypeKind.INT, _DtypeKind.UINT, _DtypeKind.FLOAT, _DtypeKind.BOOL, ): columns[name], _buf = _protocol_to_cudf_column_numeric( col, allow_copy ) elif col.dtype[0] == _DtypeKind.CATEGORICAL: columns[name], _buf = _protocol_to_cudf_column_categorical( col, allow_copy ) elif col.dtype[0] == _DtypeKind.STRING: columns[name], _buf = _protocol_to_cudf_column_string( col, allow_copy ) else: raise NotImplementedError( f"Data type {col.dtype[0]} not handled yet" ) _buffers.append(_buf) df_new = cudf.DataFrame._from_data(columns) df_new._buffers = _buffers return df_new def _protocol_to_cudf_column_numeric( col, allow_copy: bool ) -> Tuple[ cudf.core.column.ColumnBase, Mapping[str, Optional[Tuple[_CuDFBuffer, ProtoDtype]]], ]: """ Convert an int, uint, float or bool protocol column to the corresponding cudf column """ if col.offset != 0: raise NotImplementedError("column.offset > 0 not handled yet") buffers = col.get_buffers() assert buffers["data"] is not None, "data buffer should not be None" _dbuffer, _ddtype = buffers["data"] _dbuffer = _ensure_gpu_buffer(_dbuffer, _ddtype, allow_copy) cudfcol_num = build_column( _dbuffer._buf, protocol_dtype_to_cupy_dtype(_ddtype), ) return _set_missing_values(col, cudfcol_num, allow_copy), buffers def _ensure_gpu_buffer(buf, data_type, allow_copy: bool) -> _CuDFBuffer: # if `buf` is a (protocol) buffer that lives on the GPU already, # return it as is. Otherwise, copy it to the device and return # the resulting buffer. if buf.__dlpack_device__()[0] != _Device.CUDA: if allow_copy: dbuf = rmm.DeviceBuffer(ptr=buf.ptr, size=buf.bufsize) return _CuDFBuffer( as_buffer(dbuf, exposed=True), protocol_dtype_to_cupy_dtype(data_type), allow_copy, ) else: raise TypeError( "This operation must copy data from CPU to GPU. " "Set `allow_copy=True` to allow it." ) return buf def _set_missing_values( protocol_col, cudf_col: cudf.core.column.ColumnBase, allow_copy: bool, ) -> cudf.core.column.ColumnBase: valid_mask = protocol_col.get_buffers()["validity"] if valid_mask is not None: null, invalid = protocol_col.describe_null if null == _MaskKind.BYTEMASK: valid_mask = _ensure_gpu_buffer( valid_mask[0], valid_mask[1], allow_copy ) boolmask = as_column(valid_mask._buf, dtype="bool") bitmask = cudf._lib.transform.bools_to_mask(boolmask) return cudf_col.set_mask(bitmask) elif null == _MaskKind.BITMASK: valid_mask = _ensure_gpu_buffer( valid_mask[0], valid_mask[1], allow_copy ) bitmask = valid_mask._buf return cudf_col.set_mask(bitmask) return cudf_col def protocol_dtype_to_cupy_dtype(_dtype: ProtoDtype) -> cp.dtype: kind = _dtype[0] bitwidth = _dtype[1] if _dtype[0] not in _SUPPORTED_KINDS: raise RuntimeError(f"Data type {_dtype[0]} not handled yet") return _CP_DTYPES[kind][bitwidth] def _protocol_to_cudf_column_categorical( col, allow_copy: bool ) -> Tuple[ cudf.core.column.ColumnBase, Mapping[str, Optional[Tuple[_CuDFBuffer, ProtoDtype]]], ]: """ Convert a categorical column to a Series instance """ ordered, is_dict, categories = col.describe_categorical if not is_dict: raise NotImplementedError( "Non-dictionary categoricals not supported yet" ) buffers = col.get_buffers() assert buffers["data"] is not None, "data buffer should not be None" codes_buffer, codes_dtype = buffers["data"] codes_buffer = _ensure_gpu_buffer(codes_buffer, codes_dtype, allow_copy) cdtype = protocol_dtype_to_cupy_dtype(codes_dtype) codes = build_column( codes_buffer._buf, cdtype, ) cudfcol = build_categorical_column( categories=categories, codes=codes, mask=codes.base_mask, size=codes.size, ordered=ordered, ) return _set_missing_values(col, cudfcol, allow_copy), buffers def _protocol_to_cudf_column_string( col, allow_copy: bool ) -> Tuple[ cudf.core.column.ColumnBase, Mapping[str, Optional[Tuple[_CuDFBuffer, ProtoDtype]]], ]: """ Convert a string ColumnObject to cudf Column object. """ # Retrieve the data buffers buffers = col.get_buffers() # Retrieve the data buffer containing the UTF-8 code units assert buffers["data"] is not None, "data buffer should never be None" data_buffer, data_dtype = buffers["data"] data_buffer = _ensure_gpu_buffer(data_buffer, data_dtype, allow_copy) encoded_string = build_column( data_buffer._buf, protocol_dtype_to_cupy_dtype(data_dtype), ) # Retrieve the offsets buffer containing the index offsets demarcating # the beginning and end of each string assert buffers["offsets"] is not None, "not possible for string column" offset_buffer, offset_dtype = buffers["offsets"] offset_buffer = _ensure_gpu_buffer(offset_buffer, offset_dtype, allow_copy) offsets = build_column( offset_buffer._buf, protocol_dtype_to_cupy_dtype(offset_dtype), ) offsets = offsets.astype("int32") cudfcol_str = build_column( None, dtype=cp.dtype("O"), children=(offsets, encoded_string) ) return _set_missing_values(col, cudfcol_str, allow_copy), buffers def _protocol_buffer_to_cudf_buffer(protocol_buffer): return as_buffer( rmm.DeviceBuffer( ptr=protocol_buffer.ptr, size=protocol_buffer.bufsize ), exposed=True, )
0
rapidsai_public_repos/cudf/python/cudf/cudf
rapidsai_public_repos/cudf/python/cudf/cudf/core/dataframe.py
# Copyright (c) 2018-2023, NVIDIA CORPORATION. from __future__ import annotations import functools import inspect import itertools import numbers import os import pickle import re import sys import textwrap import warnings from collections import abc, defaultdict from collections.abc import Iterator from typing import ( Any, Callable, Dict, List, MutableMapping, Optional, Set, Tuple, Union, ) import cupy import numba import numpy as np import pandas as pd import pyarrow as pa from nvtx import annotate from packaging.version import Version from pandas._config import get_option from pandas.core.dtypes.common import is_float, is_integer from pandas.io.formats import console from pandas.io.formats.printing import pprint_thing from typing_extensions import Self, assert_never import cudf import cudf.core.common from cudf import _lib as libcudf from cudf._typing import ColumnLike, Dtype, NotImplementedType from cudf.api.extensions import no_default from cudf.api.types import ( _is_scalar_or_zero_d_array, is_bool_dtype, is_categorical_dtype, is_datetime_dtype, is_dict_like, is_dtype_equal, is_list_dtype, is_list_like, is_numeric_dtype, is_object_dtype, is_scalar, is_string_dtype, is_struct_dtype, ) from cudf.core import column, df_protocol, indexing_utils, reshape from cudf.core.abc import Serializable from cudf.core.column import ( CategoricalColumn, ColumnBase, as_column, build_categorical_column, build_column, column_empty, concat_columns, ) from cudf.core.column_accessor import ColumnAccessor from cudf.core.copy_types import BooleanMask from cudf.core.groupby.groupby import DataFrameGroupBy, groupby_doc_template from cudf.core.index import BaseIndex, RangeIndex, _index_from_data, as_index from cudf.core.indexed_frame import ( IndexedFrame, _FrameIndexer, _get_label_range_or_mask, _indices_from_labels, doc_reset_index_template, ) from cudf.core.join import Merge, MergeSemi from cudf.core.missing import NA from cudf.core.multiindex import MultiIndex from cudf.core.resample import DataFrameResampler from cudf.core.series import Series from cudf.core.udf.row_function import _get_row_kernel from cudf.utils import applyutils, docutils, ioutils, queryutils from cudf.utils.docutils import copy_docstring from cudf.utils.dtypes import ( can_convert_to_column, cudf_dtype_from_pydata_dtype, find_common_type, is_column_like, min_scalar_type, numeric_normalize_types, ) from cudf.utils.nvtx_annotation import _cudf_nvtx_annotate from cudf.utils.utils import GetAttrGetItemMixin, _external_only_api _cupy_nan_methods_map = { "min": "nanmin", "max": "nanmax", "sum": "nansum", "prod": "nanprod", "product": "nanprod", "mean": "nanmean", "std": "nanstd", "var": "nanvar", } _numeric_reduction_ops = ( "mean", "min", "max", "sum", "product", "prod", "std", "var", "kurtosis", "kurt", "skew", ) def _shape_mismatch_error(x, y): raise ValueError( f"shape mismatch: value array of shape {x} " f"could not be broadcast to indexing result of " f"shape {y}" ) class _DataFrameIndexer(_FrameIndexer): def __getitem__(self, arg): if ( isinstance(self._frame.index, MultiIndex) or self._frame._data.multiindex ): # This try/except block allows the use of pandas-like # tuple arguments into MultiIndex dataframes. try: return self._getitem_tuple_arg(arg) except (TypeError, KeyError, IndexError, ValueError): return self._getitem_tuple_arg((arg, slice(None))) else: if not isinstance(arg, tuple): arg = (arg, slice(None)) return self._getitem_tuple_arg(arg) def __setitem__(self, key, value): if not isinstance(key, tuple): key = (key, slice(None)) return self._setitem_tuple_arg(key, value) @_cudf_nvtx_annotate def _can_downcast_to_series(self, df, arg): """ This method encapsulates the logic used to determine whether or not the result of a loc/iloc operation should be "downcasted" from a DataFrame to a Series """ if isinstance(df, cudf.Series): return False nrows, ncols = df.shape if nrows == 1: if type(arg[0]) is slice: if not is_scalar(arg[1]): return False elif (is_list_like(arg[0]) or is_column_like(arg[0])) and ( is_list_like(arg[1]) or is_column_like(arg[0]) or type(arg[1]) is slice ): return False else: if is_bool_dtype(as_column(arg[0]).dtype) and not isinstance( arg[1], slice ): return True dtypes = df.dtypes.values.tolist() all_numeric = all(is_numeric_dtype(t) for t in dtypes) if all_numeric or ( len(dtypes) and all(t == dtypes[0] for t in dtypes) ): return True if isinstance(arg[1], tuple): return True if ncols == 1: if type(arg[1]) is slice: return False if isinstance(arg[1], tuple): return len(arg[1]) == df._data.nlevels if not (is_list_like(arg[1]) or is_column_like(arg[1])): return True return False @_cudf_nvtx_annotate def _downcast_to_series(self, df, arg): """ "Downcast" from a DataFrame to a Series based on Pandas indexing rules """ nrows, ncols = df.shape # determine the axis along which the Series is taken: if nrows == 1 and ncols == 1: if is_scalar(arg[0]) and ( is_scalar(arg[1]) or (df._data.multiindex and arg[1] in df._column_names) ): return df[df._column_names[0]].iloc[0] elif not is_scalar(arg[0]): axis = 1 else: axis = 0 elif nrows == 1: axis = 0 elif ncols == 1: axis = 1 else: raise ValueError("Cannot downcast DataFrame selection to Series") # take series along the axis: if axis == 1: return df[df._data.names[0]] else: if df._num_columns > 0: dtypes = df.dtypes.values.tolist() normalized_dtype = np.result_type(*dtypes) for name, col in df._data.items(): df[name] = col.astype(normalized_dtype) sr = df.T return sr[sr._data.names[0]] class _DataFrameLocIndexer(_DataFrameIndexer): """ For selection by label. """ @_cudf_nvtx_annotate def _getitem_scalar(self, arg): return self._frame[arg[1]].loc[arg[0]] @_cudf_nvtx_annotate def _getitem_tuple_arg(self, arg): from uuid import uuid4 # Step 1: Gather columns if isinstance(arg, tuple): columns_df = self._frame._get_columns_by_label(arg[1]) columns_df._index = self._frame._index else: columns_df = self._frame # Step 2: Gather rows if isinstance(columns_df.index, MultiIndex): if isinstance(arg, (MultiIndex, pd.MultiIndex)): if isinstance(arg, pd.MultiIndex): arg = MultiIndex.from_pandas(arg) indices = _indices_from_labels(columns_df, arg) return columns_df.take(indices) else: if isinstance(arg, tuple): row_arg = arg[0] elif is_scalar(arg): row_arg = (arg,) else: row_arg = arg result = columns_df.index._get_row_major(columns_df, row_arg) if ( len(result) == 1 and isinstance(arg, tuple) and len(arg) > 1 and is_scalar(arg[1]) ): return result._data.columns[0].element_indexing(0) return result else: if isinstance(arg[0], slice): out = _get_label_range_or_mask( columns_df.index, arg[0].start, arg[0].stop, arg[0].step ) if isinstance(out, slice): df = columns_df._slice(out) else: df = columns_df._apply_boolean_mask( BooleanMask.from_column_unchecked( cudf.core.column.as_column(out) ) ) else: tmp_arg = arg if is_scalar(arg[0]): # If a scalar, there is possibility of having duplicates. # Join would get all the duplicates. So, converting it to # an array kind. if cudf.get_option("mode.pandas_compatible"): if any( c.dtype != columns_df._columns[0].dtype for c in columns_df._columns ): raise TypeError( "All columns need to be of same type, please " "typecast to common dtype." ) tmp_arg = ([tmp_arg[0]], tmp_arg[1]) if len(tmp_arg[0]) == 0: return columns_df._empty_like(keep_index=True) tmp_arg = ( as_column( tmp_arg[0], dtype=self._frame.index.dtype if is_categorical_dtype(self._frame.index.dtype) else None, ), tmp_arg[1], ) if is_bool_dtype(tmp_arg[0]): df = columns_df._apply_boolean_mask( BooleanMask(tmp_arg[0], len(columns_df)) ) else: tmp_col_name = str(uuid4()) cantor_name = "_" + "_".join( map(str, columns_df._data.names) ) if columns_df._data.multiindex: # column names must be appropriate length tuples extra = tuple( "" for _ in range(columns_df._data.nlevels - 1) ) tmp_col_name = (tmp_col_name, *extra) cantor_name = (cantor_name, *extra) other_df = DataFrame( {tmp_col_name: column.arange(len(tmp_arg[0]))}, index=as_index(tmp_arg[0]), ) columns_df[cantor_name] = column.arange(len(columns_df)) df = other_df.join(columns_df, how="inner") # as join is not assigning any names to index, # update it over here df.index.name = columns_df.index.name df = df.sort_values(by=[tmp_col_name, cantor_name]) df.drop(columns=[tmp_col_name, cantor_name], inplace=True) # There were no indices found if len(df) == 0: raise KeyError(arg) # Step 3: Downcast if self._can_downcast_to_series(df, arg): return self._downcast_to_series(df, arg) return df @_cudf_nvtx_annotate def _setitem_tuple_arg(self, key, value): if ( isinstance(self._frame.index, MultiIndex) or self._frame._data.multiindex ): raise NotImplementedError( "Setting values using df.loc[] not supported on " "DataFrames with a MultiIndex" ) try: columns_df = self._frame._get_columns_by_label(key[1]) except KeyError: if not self._frame.empty and isinstance(key[0], slice): pos_range = _get_label_range_or_mask( self._frame.index, key[0].start, key[0].stop, key[0].step ) idx = self._frame.index[pos_range] elif self._frame.empty and isinstance(key[0], slice): idx = None else: if is_scalar(key[0]): arr = [key[0]] else: arr = key[0] idx = cudf.Index(arr) if is_scalar(value): length = len(idx) if idx is not None else 1 value = as_column(value, length=length) new_col = cudf.Series(value, index=idx) if not self._frame.empty: new_col = new_col._align_to_index( self._frame.index, how="right" ) if self._frame.empty: self._frame.index = ( idx if idx is not None else cudf.RangeIndex(len(new_col)) ) self._frame._data.insert(key[1], new_col) else: if is_scalar(value): for col in columns_df._column_names: self._frame[col].loc[key[0]] = value elif isinstance(value, cudf.DataFrame): if value.shape != self._frame.loc[key[0]].shape: _shape_mismatch_error( value.shape, self._frame.loc[key[0]].shape, ) value_column_names = set(value._column_names) scatter_map = _indices_from_labels(self._frame, key[0]) for col in columns_df._column_names: columns_df[col][scatter_map] = ( value._data[col] if col in value_column_names else NA ) else: value = cupy.asarray(value) if cupy.ndim(value) == 2: # If the inner dimension is 1, it's broadcastable to # all columns of the dataframe. indexed_shape = columns_df.loc[key[0]].shape if value.shape[1] == 1: if value.shape[0] != indexed_shape[0]: _shape_mismatch_error(value.shape, indexed_shape) for i, col in enumerate(columns_df._column_names): self._frame[col].loc[key[0]] = value[:, 0] else: if value.shape != indexed_shape: _shape_mismatch_error(value.shape, indexed_shape) for i, col in enumerate(columns_df._column_names): self._frame[col].loc[key[0]] = value[:, i] else: # handle cases where value is 1d object: # If the key on column axis is a scalar, we indexed # a single column; The 1d value should assign along # the columns. if is_scalar(key[1]): for col in columns_df._column_names: self._frame[col].loc[key[0]] = value # Otherwise, there are two situations. The key on row axis # can be a scalar or 1d. In either of the situation, the # ith element in value corresponds to the ith row in # the indexed object. # If the key is 1d, a broadcast will happen. else: for i, col in enumerate(columns_df._column_names): self._frame[col].loc[key[0]] = value[i] class _DataFrameIlocIndexer(_DataFrameIndexer): """ For selection by index. """ _frame: DataFrame def __getitem__(self, arg): row_key, ( col_is_scalar, column_names, ) = indexing_utils.destructure_dataframe_iloc_indexer(arg, self._frame) row_spec = indexing_utils.parse_row_iloc_indexer( row_key, len(self._frame) ) ca = self._frame._data index = self._frame.index if col_is_scalar: s = Series._from_data( ca._select_by_names(column_names), index=index ) return s._getitem_preprocessed(row_spec) if column_names != list(self._frame._column_names): frame = self._frame._from_data( ca._select_by_names(column_names), index=index ) else: frame = self._frame if isinstance(row_spec, indexing_utils.MapIndexer): return frame._gather(row_spec.key, keep_index=True) elif isinstance(row_spec, indexing_utils.MaskIndexer): return frame._apply_boolean_mask(row_spec.key, keep_index=True) elif isinstance(row_spec, indexing_utils.SliceIndexer): return frame._slice(row_spec.key) elif isinstance(row_spec, indexing_utils.ScalarIndexer): result = frame._gather(row_spec.key, keep_index=True) # Attempt to turn into series. try: # Behaviour difference from pandas, which will merrily # turn any heterogeneous set of columns into a series if # you only ask for one row. new_name = result.index[0] result = Series._concat( [result[name] for name in column_names], index=result.keys(), ) result.name = new_name return result except TypeError: # Couldn't find a common type, Hence: # Raise in pandas compatibility mode, # or just return a 1xN dataframe otherwise if cudf.get_option("mode.pandas_compatible"): raise TypeError( "All columns need to be of same type, please " "typecast to common dtype." ) return result elif isinstance(row_spec, indexing_utils.EmptyIndexer): return frame._empty_like(keep_index=True) assert_never(row_spec) @_cudf_nvtx_annotate def _setitem_tuple_arg(self, key, value): columns_df = self._frame._from_data( self._frame._data.select_by_index(key[1]), self._frame._index ) if is_scalar(value): for col in columns_df._column_names: self._frame[col].iloc[key[0]] = value elif isinstance(value, cudf.DataFrame): if value.shape != self._frame.iloc[key[0]].shape: _shape_mismatch_error( value.shape, self._frame.loc[key[0]].shape, ) value_column_names = set(value._column_names) for col in columns_df._column_names: columns_df[col][key[0]] = ( value._data[col] if col in value_column_names else NA ) else: # TODO: consolidate code path with identical counterpart # in `_DataFrameLocIndexer._setitem_tuple_arg` value = cupy.asarray(value) if cupy.ndim(value) == 2: indexed_shape = columns_df.iloc[key[0]].shape if value.shape[1] == 1: if value.shape[0] != indexed_shape[0]: _shape_mismatch_error(value.shape, indexed_shape) for i, col in enumerate(columns_df._column_names): self._frame[col].iloc[key[0]] = value[:, 0] else: if value.shape != indexed_shape: _shape_mismatch_error(value.shape, indexed_shape) for i, col in enumerate(columns_df._column_names): self._frame._data[col][key[0]] = value[:, i] else: if is_scalar(key[1]): for col in columns_df._column_names: self._frame[col].iloc[key[0]] = value else: for i, col in enumerate(columns_df._column_names): self._frame[col].iloc[key[0]] = value[i] class DataFrame(IndexedFrame, Serializable, GetAttrGetItemMixin): """ A GPU Dataframe object. Parameters ---------- data : array-like, Iterable, dict, or DataFrame. Dict can contain Series, arrays, constants, or list-like objects. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided. columns : Index or array-like Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, …, n) if no column labels are provided. dtype : dtype, default None Data type to force. Only a single dtype is allowed. If None, infer. nan_as_null : bool, Default True If ``None``/``True``, converts ``np.nan`` values to ``null`` values. If ``False``, leaves ``np.nan`` values as is. Examples -------- Build dataframe with ``__setitem__``: >>> import cudf >>> df = cudf.DataFrame() >>> df['key'] = [0, 1, 2, 3, 4] >>> df['val'] = [float(i + 10) for i in range(5)] # insert column >>> df key val 0 0 10.0 1 1 11.0 2 2 12.0 3 3 13.0 4 4 14.0 Build DataFrame via dict of columns: >>> import numpy as np >>> from datetime import datetime, timedelta >>> t0 = datetime.strptime('2018-10-07 12:00:00', '%Y-%m-%d %H:%M:%S') >>> n = 5 >>> df = cudf.DataFrame({ ... 'id': np.arange(n), ... 'datetimes': np.array( ... [(t0+ timedelta(seconds=x)) for x in range(n)]) ... }) >>> df id datetimes 0 0 2018-10-07 12:00:00 1 1 2018-10-07 12:00:01 2 2 2018-10-07 12:00:02 3 3 2018-10-07 12:00:03 4 4 2018-10-07 12:00:04 Build DataFrame via list of rows as tuples: >>> df = cudf.DataFrame([ ... (5, "cats", "jump", np.nan), ... (2, "dogs", "dig", 7.5), ... (3, "cows", "moo", -2.1, "occasionally"), ... ]) >>> df 0 1 2 3 4 0 5 cats jump <NA> <NA> 1 2 dogs dig 7.5 <NA> 2 3 cows moo -2.1 occasionally Convert from a Pandas DataFrame: >>> import pandas as pd >>> pdf = pd.DataFrame({'a': [0, 1, 2, 3],'b': [0.1, 0.2, None, 0.3]}) >>> pdf a b 0 0 0.1 1 1 0.2 2 2 NaN 3 3 0.3 >>> df = cudf.from_pandas(pdf) >>> df a b 0 0 0.1 1 1 0.2 2 2 <NA> 3 3 0.3 """ _PROTECTED_KEYS = frozenset(("_data", "_index")) _accessors: Set[Any] = set() _loc_indexer_type = _DataFrameLocIndexer _iloc_indexer_type = _DataFrameIlocIndexer _groupby = DataFrameGroupBy _resampler = DataFrameResampler @_cudf_nvtx_annotate def __init__( self, data=None, index=None, columns=None, dtype=None, nan_as_null=True ): super().__init__() if isinstance(columns, (Series, cudf.BaseIndex)): columns = columns.to_pandas() if isinstance(data, (DataFrame, pd.DataFrame)): if isinstance(data, pd.DataFrame): data = self.from_pandas(data, nan_as_null=nan_as_null) if index is not None: if not data.index.equals(index): data = data.reindex(index) index = data._index else: index = as_index(index) else: index = data._index self._index = index if columns is not None: self._data = data._data self._reindex( column_names=columns, index=index, deep=False, inplace=True ) if isinstance( columns, (range, pd.RangeIndex, cudf.RangeIndex) ): self._data.rangeindex = True else: self._data = data._data self._data.rangeindex = True elif isinstance(data, (cudf.Series, pd.Series)): if isinstance(data, pd.Series): data = cudf.Series.from_pandas(data, nan_as_null=nan_as_null) # Series.name is not None and Series.name in columns # -> align # Series.name is not None and Series.name not in columns # -> return empty DataFrame # Series.name is None and no columns # -> return 1 column DataFrame # Series.name is None and columns # -> return 1 column DataFrame if len(columns) in {0, 1} if data.name is None and columns is not None: if len(columns) > 1: raise ValueError( "Length of columns must be less than 2 if " f"{type(data).__name__}.name is None." ) name = columns[0] else: name = data.name or 0 self._init_from_dict_like( {name: data}, index=index, columns=columns, nan_as_null=nan_as_null, ) elif data is None: if index is None: self._index = RangeIndex(0) else: self._index = as_index(index) if columns is not None: rangeindex = isinstance( columns, (range, pd.RangeIndex, cudf.RangeIndex) ) label_dtype = getattr(columns, "dtype", None) self._data = ColumnAccessor( { k: column.column_empty( len(self), dtype="object", masked=True ) for k in columns }, level_names=tuple(columns.names) if isinstance(columns, pd.Index) else None, rangeindex=rangeindex, label_dtype=label_dtype, ) elif isinstance(data, ColumnAccessor): raise TypeError( "Use cudf.Series._from_data for constructing a Series from " "ColumnAccessor" ) elif hasattr(data, "__cuda_array_interface__"): arr_interface = data.__cuda_array_interface__ # descr is an optional field of the _cuda_ary_iface_ if "descr" in arr_interface: if len(arr_interface["descr"]) == 1: new_df = self._from_arrays( data, index=index, columns=columns ) else: new_df = self.from_records( data, index=index, columns=columns ) else: new_df = self._from_arrays(data, index=index, columns=columns) self._data = new_df._data self._index = new_df._index self._check_data_index_length_match() elif hasattr(data, "__array_interface__"): arr_interface = data.__array_interface__ if len(arr_interface["descr"]) == 1: # not record arrays new_df = self._from_arrays(data, index=index, columns=columns) else: new_df = self.from_records(data, index=index, columns=columns) self._data = new_df._data self._index = new_df._index self._check_data_index_length_match() else: if isinstance(data, Iterator): data = list(data) if is_list_like(data): if len(data) > 0 and is_scalar(data[0]): if columns is not None: data = dict(zip(columns, [data])) rangeindex = isinstance( columns, (range, pd.RangeIndex, cudf.RangeIndex) ) else: data = dict(enumerate([data])) rangeindex = True new_df = DataFrame(data=data, index=index) self._data = new_df._data self._index = new_df._index self._data._level_names = ( tuple(columns.names) if isinstance(columns, pd.Index) else self._data._level_names ) self._data.rangeindex = rangeindex elif len(data) > 0 and isinstance(data[0], Series): self._init_from_series_list( data=data, columns=columns, index=index ) else: self._init_from_list_like( data, index=index, columns=columns ) self._check_data_index_length_match() else: if not is_dict_like(data): raise TypeError("data must be list or dict-like") self._init_from_dict_like( data, index=index, columns=columns, nan_as_null=nan_as_null ) self._check_data_index_length_match() if dtype: self._data = self.astype(dtype)._data self._data.multiindex = self._data.multiindex or isinstance( columns, pd.MultiIndex ) @_cudf_nvtx_annotate def _init_from_series_list(self, data, columns, index): if index is None: # When `index` is `None`, the final index of # resulting dataframe will be union of # all Series's names. final_index = as_index(_get_union_of_series_names(data)) else: # When an `index` is passed, the final index of # resulting dataframe will be whatever # index passed, but will need # shape validations - explained below data_length = len(data) index_length = len(index) if data_length != index_length: # If the passed `index` length doesn't match # length of Series objects in `data`, we must # check if `data` can be duplicated/expanded # to match the length of index. For that we # check if the length of index is a factor # of length of data. # # 1. If yes, we extend data # until length of data is equal to length of index. # 2. If no, we throw an error stating the # shape of resulting `data` and `index` # Simple example # >>> import pandas as pd # >>> s = pd.Series([1, 2, 3]) # >>> pd.DataFrame([s], index=['a', 'b']) # 0 1 2 # a 1 2 3 # b 1 2 3 # >>> pd.DataFrame([s], index=['a', 'b', 'c']) # 0 1 2 # a 1 2 3 # b 1 2 3 # c 1 2 3 if index_length % data_length == 0: initial_data = data data = [] for _ in range(int(index_length / data_length)): data.extend([o for o in initial_data]) else: raise ValueError( f"Length of values ({data_length}) does " f"not match length of index ({index_length})" ) final_index = as_index(index) series_lengths = list(map(len, data)) data = numeric_normalize_types(*data) if series_lengths.count(series_lengths[0]) == len(series_lengths): # Calculating the final dataframe columns by # getting union of all `index` of the Series objects. final_columns = _get_union_of_indices([d.index for d in data]) if isinstance(final_columns, cudf.RangeIndex): self._data.rangeindex = True for idx, series in enumerate(data): if not series.index.is_unique: raise ValueError( "Reindexing only valid with uniquely valued Index " "objects" ) if not series.index.equals(final_columns): series = series.reindex(final_columns) self._data[idx] = column.as_column(series._column) # Setting `final_columns` to self._index so # that the resulting `transpose` will be have # columns set to `final_columns` self._index = as_index(final_columns) transpose = self.T else: concat_df = cudf.concat(data, axis=1) cols = concat_df._data.to_pandas_index() if cols.dtype == "object": concat_df.columns = cols.astype("str") transpose = concat_df.T transpose._index = final_index self._data = transpose._data self._index = transpose._index # If `columns` is passed, the result dataframe # contain a dataframe with only the # specified `columns` in the same order. if columns is not None: for col_name in columns: if col_name not in self._data: self._data[col_name] = column.column_empty( row_count=len(self), dtype=None, masked=True ) self._data._level_names = ( tuple(columns.names) if isinstance(columns, pd.Index) else self._data._level_names ) self._data = self._data.select_by_label(columns) self._data.rangeindex = isinstance( columns, (range, cudf.RangeIndex, pd.RangeIndex) ) else: self._data.rangeindex = True @_cudf_nvtx_annotate def _init_from_list_like(self, data, index=None, columns=None): if index is None: index = RangeIndex(start=0, stop=len(data)) else: index = as_index(index) self._index = as_index(index) # list-of-dicts case if len(data) > 0 and isinstance(data[0], dict): data = DataFrame.from_pandas(pd.DataFrame(data)) self._data = data._data # interval in a list elif len(data) > 0 and isinstance(data[0], pd.Interval): data = DataFrame.from_pandas(pd.DataFrame(data)) self._data = data._data elif any( not isinstance(col, (abc.Iterable, abc.Sequence)) for col in data ): raise TypeError("Inputs should be an iterable or sequence.") elif len(data) > 0 and not can_convert_to_column(data[0]): raise ValueError("Must pass 2-d input.") else: if ( len(data) > 0 and columns is None and isinstance(data[0], tuple) and hasattr(data[0], "_fields") ): # pandas behavior is to use the fields from the first # namedtuple as the column names columns = data[0]._fields data = list(itertools.zip_longest(*data)) if columns is not None and len(data) == 0: data = [ cudf.core.column.column_empty(row_count=0, dtype=None) for _ in columns ] for col_name, col in enumerate(data): self._data[col_name] = column.as_column(col) self._data.rangeindex = True if columns is not None: if len(columns) != len(data): raise ValueError( f"Shape of passed values is ({len(index)}, {len(data)}), " f"indices imply ({len(index)}, {len(columns)})." ) self.columns = columns self._data.rangeindex = isinstance( columns, (range, pd.RangeIndex, cudf.RangeIndex) ) self._data.label_dtype = getattr(columns, "dtype", None) @_cudf_nvtx_annotate def _init_from_dict_like( self, data, index=None, columns=None, nan_as_null=None ): label_dtype = None if columns is not None: label_dtype = getattr(columns, "dtype", None) # remove all entries in data that are not in columns, # inserting new empty columns for entries in columns that # are not in data if any(c in data for c in columns): # Let the downstream logic determine the length of the # empty columns here empty_column = lambda: None # noqa: E731 else: # If keys is empty, none of the data keys match the # columns, so we need to create an empty DataFrame. To # match pandas, the size of the dataframe must match # the provided index, so we need to return a masked # array of nulls if an index is given. empty_column = functools.partial( cudf.core.column.column_empty, row_count=(0 if index is None else len(index)), dtype=None, masked=index is not None, ) data = { c: data[c] if c in data else empty_column() for c in columns } data, index = self._align_input_series_indices(data, index=index) if index is None: num_rows = 0 if data: keys, values, lengths = zip( *( (k, v, 1) if is_scalar(v) else ( k, vc := as_column(v, nan_as_null=nan_as_null), len(vc), ) for k, v in data.items() ) ) data = dict(zip(keys, values)) try: (num_rows,) = (set(lengths) - {1}) or {1} except ValueError: raise ValueError("All arrays must be the same length") self._index = RangeIndex(0, num_rows) else: self._index = as_index(index) if len(data): self._data.multiindex = True for i, col_name in enumerate(data): self._data.multiindex = self._data.multiindex and isinstance( col_name, tuple ) self._insert( i, col_name, data[col_name], nan_as_null=nan_as_null, ) self._data._level_names = ( tuple(columns.names) if isinstance(columns, pd.Index) else self._data._level_names ) self._data.label_dtype = label_dtype @classmethod def _from_data( cls, data: MutableMapping, index: Optional[BaseIndex] = None, columns: Any = None, ) -> DataFrame: out = super()._from_data(data=data, index=index) if columns is not None: out.columns = columns return out @staticmethod @_cudf_nvtx_annotate def _align_input_series_indices(data, index): data = data.copy() input_series = [ Series(val) for val in data.values() if isinstance(val, (pd.Series, Series, dict)) ] if input_series: if index is not None: aligned_input_series = [ sr._align_to_index(index, how="right", sort=False) for sr in input_series ] else: aligned_input_series = cudf.core.series._align_indices( input_series ) index = aligned_input_series[0].index for name, val in data.items(): if isinstance(val, (pd.Series, Series, dict)): data[name] = aligned_input_series.pop(0) return data, index # The `constructor*` properties are used by `dask` (and `dask_cudf`) @property def _constructor(self): return DataFrame @property def _constructor_sliced(self): return Series @property def _constructor_expanddim(self): raise NotImplementedError( "_constructor_expanddim not supported for DataFrames!" ) def serialize(self): header, frames = super().serialize() header["index"], index_frames = self._index.serialize() header["index_frame_count"] = len(index_frames) # For backwards compatibility with older versions of cuDF, index # columns are placed before data columns. frames = index_frames + frames return header, frames @classmethod def deserialize(cls, header, frames): index_nframes = header["index_frame_count"] obj = super().deserialize( header, frames[header["index_frame_count"] :] ) idx_typ = pickle.loads(header["index"]["type-serialized"]) index = idx_typ.deserialize(header["index"], frames[:index_nframes]) obj._index = index return obj @property @_cudf_nvtx_annotate def shape(self): """Returns a tuple representing the dimensionality of the DataFrame.""" return self._num_rows, self._num_columns @property def dtypes(self): """ Return the dtypes in this object. Returns ------- pandas.Series The data type of each column. Examples -------- >>> import cudf >>> import pandas as pd >>> df = cudf.DataFrame({'float': [1.0], ... 'int': [1], ... 'datetime': [pd.Timestamp('20180310')], ... 'string': ['foo']}) >>> df float int datetime string 0 1.0 1 2018-03-10 foo >>> df.dtypes float float64 int int64 datetime datetime64[us] string object dtype: object """ return pd.Series(self._dtypes, dtype="object") @property def ndim(self): """Dimension of the data. DataFrame ndim is always 2.""" return 2 def __dir__(self): # Add the columns of the DataFrame to the dir output. o = set(dir(type(self))) o.update(self.__dict__) o.update( c for c in self._column_names if isinstance(c, str) and c.isidentifier() ) return list(o) def __setattr__(self, key, col): try: # Preexisting attributes may be set. We cannot rely on checking the # `_PROTECTED_KEYS` because we must also allow for settable # properties, and we must call object.__getattribute__ to bypass # the `__getitem__` behavior inherited from `GetAttrGetItemMixin`. object.__getattribute__(self, key) except AttributeError: if key not in self._PROTECTED_KEYS: try: # Check key existence. self[key] # If a column already exists, set it. self[key] = col return except KeyError: pass # Set a new attribute that is not already a column. super().__setattr__(key, col) except RuntimeError as e: # TODO: This allows setting properties that are marked as forbidden # for internal usage. It is necessary because the __getattribute__ # call in the try block will trigger the error. We should see if # setting these variables can also always be disabled if "External-only API" not in str(e): raise super().__setattr__(key, col) else: super().__setattr__(key, col) @_cudf_nvtx_annotate def __getitem__(self, arg): """ If *arg* is a ``str`` or ``int`` type, return the column Series. If *arg* is a ``slice``, return a new DataFrame with all columns sliced to the specified range. If *arg* is an ``array`` containing column names, return a new DataFrame with the corresponding columns. If *arg* is a ``dtype.bool array``, return the rows marked True Examples -------- >>> df = cudf.DataFrame({ ... 'a': list(range(10)), ... 'b': list(range(10)), ... 'c': list(range(10)), ... }) Get first 4 rows of all columns. >>> df[:4] a b c 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 Get last 5 rows of all columns. >>> df[-5:] a b c 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 Get columns a and c. >>> df[['a', 'c']] a c 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9 Return the rows specified in the boolean mask. >>> df[[True, False, True, False, True, ... False, True, False, True, False]] a b c 0 0 0 0 2 2 2 2 4 4 4 4 6 6 6 6 8 8 8 8 """ if _is_scalar_or_zero_d_array(arg) or isinstance(arg, tuple): return self._get_columns_by_label(arg, downcast=True) elif isinstance(arg, slice): return self._slice(arg) elif can_convert_to_column(arg): mask = arg if is_list_like(mask): # An explicit dtype is needed to avoid pandas warnings from # empty sets of columns. This shouldn't be needed in pandas # 2.0, we don't need to specify a dtype when we know we're not # trying to match any columns so the default is fine. dtype = None if len(mask) == 0: assert Version(pd.__version__) < Version("2.0.0") dtype = "float64" mask = pd.Series(mask, dtype=dtype) if mask.dtype == "bool": return self._apply_boolean_mask(BooleanMask(mask, len(self))) else: return self._get_columns_by_label(mask) elif isinstance(arg, DataFrame): return self.where(arg) else: raise TypeError( f"__getitem__ on type {type(arg)} is not supported" ) @_cudf_nvtx_annotate def __setitem__(self, arg, value): """Add/set column by *arg or DataFrame*""" if isinstance(arg, DataFrame): # not handling set_item where arg = df & value = df if isinstance(value, DataFrame): raise TypeError( f"__setitem__ with arg = {type(value)} and " f"value = {type(arg)} is not supported" ) else: for col_name in self._data: scatter_map = arg._data[col_name] if is_scalar(value): self._data[col_name][scatter_map] = value else: self._data[col_name][scatter_map] = column.as_column( value )[scatter_map] elif is_scalar(arg) or isinstance(arg, tuple): if isinstance(value, DataFrame): _setitem_with_dataframe( input_df=self, replace_df=value, input_cols=[arg], mask=None, ) else: if arg in self._data: if not is_scalar(value) and len(self) == 0: if isinstance(value, (pd.Series, Series)): self._index = as_index(value.index) elif len(value) > 0: self._index = RangeIndex(start=0, stop=len(value)) value = column.as_column(value) new_data = self._data.__class__() for key in self._data: if key == arg: new_data[key] = value else: new_data[key] = column.column_empty_like( self._data[key], masked=True, newsize=len(value), ) self._data = new_data return elif isinstance(value, (pd.Series, Series)): value = Series(value)._align_to_index( self._index, how="right", sort=False, allow_non_unique=True, ) if is_scalar(value): self._data[arg] = column.full(len(self), value) else: value = as_column(value) self._data[arg] = value else: # disc. with pandas here # pandas raises key error here self.insert(len(self._data), arg, value) elif can_convert_to_column(arg): mask = arg if is_list_like(mask): mask = np.array(mask) if mask.dtype == "bool": mask = column.as_column(arg) if isinstance(value, DataFrame): _setitem_with_dataframe( input_df=self, replace_df=value, input_cols=None, mask=mask, ) else: if not is_scalar(value): value = column.as_column(value)[mask] for col_name in self._data: self._data[col_name][mask] = value else: if isinstance(value, (cupy.ndarray, np.ndarray)): _setitem_with_dataframe( input_df=self, replace_df=cudf.DataFrame(value), input_cols=arg, mask=None, ignore_index=True, ) elif isinstance(value, DataFrame): _setitem_with_dataframe( input_df=self, replace_df=value, input_cols=arg, mask=None, ) else: for col in arg: if is_scalar(value): self._data[col] = column.full( size=len(self), fill_value=value ) else: self._data[col] = column.as_column(value) else: raise TypeError( f"__setitem__ on type {type(arg)} is not supported" ) def __delitem__(self, name): self._drop_column(name) @_cudf_nvtx_annotate def memory_usage(self, index=True, deep=False): mem_usage = [col.memory_usage for col in self._data.columns] names = [str(name) for name in self._data.names] if index: mem_usage.append(self._index.memory_usage()) names.append("Index") return Series._from_data( data={None: as_column(mem_usage)}, index=as_index(names), ) @_cudf_nvtx_annotate def __array_function__(self, func, types, args, kwargs): if "out" in kwargs or not all( issubclass(t, (Series, DataFrame)) for t in types ): return NotImplemented try: if func.__name__ in {"any", "all"}: # NumPy default for `axis` is # different from `cudf`/`pandas` # hence need this special handling. kwargs.setdefault("axis", None) if cudf_func := getattr(self.__class__, func.__name__, None): out = cudf_func(*args, **kwargs) # The dot product of two DataFrames returns an array in pandas. if ( func is np.dot and isinstance(args[0], (DataFrame, pd.DataFrame)) and isinstance(args[1], (DataFrame, pd.DataFrame)) ): return out.values return out except Exception: # The rare instance where a "silent" failure is preferable. Except # in the (highly unlikely) case that some other library # interoperates with cudf objects, the result will be that numpy # raises a TypeError indicating that the operation is not # implemented, which is much friendlier than an arbitrary internal # cudf error. pass return NotImplemented # The _get_numeric_data method is necessary for dask compatibility. @_cudf_nvtx_annotate def _get_numeric_data(self): """Return a dataframe with only numeric data types""" columns = [ c for c, dt in self.dtypes.items() if dt != object and not is_categorical_dtype(dt) ] return self[columns] @_cudf_nvtx_annotate def assign(self, **kwargs: Union[Callable[[Self], Any], Any]): """ Assign columns to DataFrame from keyword arguments. Parameters ---------- **kwargs: dict mapping string column names to values The value for each key can either be a literal column (or something that can be converted to a column), or a callable of one argument that will be given the dataframe as an argument and should return the new column (without modifying the input argument). Columns are added in-order, so callables can refer to column names constructed in the assignment. Examples -------- >>> import cudf >>> df = cudf.DataFrame() >>> df = df.assign(a=[0, 1, 2], b=[3, 4, 5]) >>> df a b 0 0 3 1 1 4 2 2 5 """ new_df = self.copy(deep=False) for k, v in kwargs.items(): new_df[k] = v(new_df) if callable(v) else v return new_df @classmethod @_cudf_nvtx_annotate def _concat( cls, objs, axis=0, join="outer", ignore_index=False, sort=False ): # flag to indicate at least one empty input frame also has an index empty_has_index = False # length of output frame's RangeIndex if all input frames are empty, # and at least one has an index result_index_length = 0 # the number of empty input frames num_empty_input_frames = 0 # flag to indicate if all DataFrame's have # RangeIndex as their index are_all_range_index = False for i, obj in enumerate(objs): # shallow-copy the input DFs in case the same DF instance # is concatenated with itself objs[i] = obj.copy(deep=False) # If ignore_index is true, determine if # all or some objs are empty(and have index). # 1. If all objects are empty(and have index), we # should set the index separately using RangeIndex. # 2. If some objects are empty(and have index), we # create empty columns later while populating `columns` # variable. Detailed explanation of second case before # allocation of `columns` variable below. if ignore_index and obj.empty: num_empty_input_frames += 1 result_index_length += len(obj) empty_has_index = empty_has_index or len(obj) > 0 are_all_range_index = ( True if i == 0 else are_all_range_index ) and isinstance(obj.index, cudf.RangeIndex) if join == "inner": sets_of_column_names = [set(obj._column_names) for obj in objs] intersecting_columns = functools.reduce( set.intersection, sets_of_column_names ) union_of_columns = functools.reduce( set.union, sets_of_column_names ) non_intersecting_columns = union_of_columns.symmetric_difference( intersecting_columns ) # Get an ordered list of the intersecting columns to preserve input # order, which is promised by pandas for inner joins. ordered_intersecting_columns = [ name for obj in objs for name in obj._column_names if name in intersecting_columns ] names = dict.fromkeys(ordered_intersecting_columns).keys() if axis == 0: if ignore_index and ( num_empty_input_frames > 0 or len(intersecting_columns) == 0 ): # When ignore_index is True and if there is # at least 1 empty dataframe and no # intersecting columns are present, an empty dataframe # needs to be returned just with an Index. empty_has_index = True num_empty_input_frames = len(objs) result_index_length = sum(len(obj) for obj in objs) # remove columns not present in all objs for obj in objs: obj.drop( columns=non_intersecting_columns, inplace=True, errors="ignore", ) elif join == "outer": # Get a list of the unique table column names names = [name for f in objs for name in f._column_names] names = dict.fromkeys(names).keys() else: raise ValueError( "Only can inner (intersect) or outer (union) when joining" "the other axis" ) if sort: try: # Sorted always returns a list, but will fail to sort if names # include different types that are not comparable. names = sorted(names) except TypeError: # For pandas compatibility, we also try to handle the case # where some column names are strings and others are ints. Just # assume that everything that isn't a str is numerical, we # can't sort anything else. try: str_names = sorted(n for n in names if isinstance(n, str)) non_str_names = sorted( n for n in names if not isinstance(n, str) ) names = non_str_names + str_names except TypeError: names = list(names) else: names = list(names) # Combine the index and table columns for each Frame into a list of # [...index_cols, ...table_cols]. # # If any of the input frames have a non-empty index, include these # columns in the list of columns to concatenate, even if the input # frames are empty and `ignore_index=True`. columns = [ ( [] if are_all_range_index or (ignore_index and not empty_has_index) else list(f._index._data.columns) ) + [f._data[name] if name in f._data else None for name in names] for f in objs ] # Get a list of the combined index and table column indices indices = list(range(functools.reduce(max, map(len, columns)))) # The position of the first table column in each # combined index + table columns list first_data_column_position = len(indices) - len(names) # Get the non-null columns and their dtypes non_null_cols, dtypes = _get_non_null_cols_and_dtypes(indices, columns) # Infer common dtypes between numeric columns # and combine CategoricalColumn categories categories = _find_common_dtypes_and_categories(non_null_cols, dtypes) # Cast all columns to a common dtype, assign combined categories, # and back-fill missing columns with all-null columns _cast_cols_to_common_dtypes(indices, columns, dtypes, categories) # Construct input tables with the index and data columns in the same # order. This strips the given index/column names and replaces the # names with their integer positions in the `cols` list tables = [] for cols in columns: table_index = None if 1 == first_data_column_position: table_index = cudf.core.index.as_index(cols[0]) elif first_data_column_position > 1: table_index = DataFrame._from_data( data=dict( zip( indices[:first_data_column_position], cols[:first_data_column_position], ) ) ) tables.append( DataFrame._from_data( data=dict( zip( indices[first_data_column_position:], cols[first_data_column_position:], ) ), index=table_index, ) ) # Concatenate the Tables out = cls._from_data( *libcudf.concat.concat_tables( tables, ignore_index=ignore_index or are_all_range_index ) ) # If ignore_index is True, all input frames are empty, and at # least one input frame has an index, assign a new RangeIndex # to the result frame. if empty_has_index and num_empty_input_frames == len(objs): out._index = cudf.RangeIndex(result_index_length) elif are_all_range_index and not ignore_index: out._index = cudf.core.index.GenericIndex._concat( [o._index for o in objs] ) # Reassign the categories for any categorical table cols _reassign_categories( categories, out._data, indices[first_data_column_position:] ) # Reassign the categories for any categorical index cols if not isinstance(out._index, cudf.RangeIndex): _reassign_categories( categories, out._index._data, indices[:first_data_column_position], ) if not isinstance(out._index, MultiIndex) and is_categorical_dtype( out._index._values.dtype ): out = out.set_index( cudf.core.index.as_index(out.index._values) ) for name, col in out._data.items(): out._data[name] = col._with_type_metadata( tables[0]._data[name].dtype ) # Reassign index and column names if objs[0]._data.multiindex: out._set_column_names_like(objs[0]) else: out.columns = names if not ignore_index: out._index.name = objs[0]._index.name out._index.names = objs[0]._index.names return out def astype(self, dtype, copy=False, errors="raise", **kwargs): if is_dict_like(dtype): if len(set(dtype.keys()) - set(self._data.names)) > 0: raise KeyError( "Only a column name can be used for the " "key in a dtype mappings argument." ) else: dtype = {cc: dtype for cc in self._data.names} return super().astype(dtype, copy, errors, **kwargs) def _clean_renderable_dataframe(self, output): """ This method takes in partial/preprocessed dataframe and returns correct representation of it with correct dimensions (rows x columns) """ max_rows = get_option("display.max_rows") min_rows = get_option("display.min_rows") max_cols = get_option("display.max_columns") max_colwidth = get_option("display.max_colwidth") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = console.get_console_size() else: width = None output = output.to_pandas().to_string( max_rows=max_rows, min_rows=min_rows, max_cols=max_cols, line_width=width, max_colwidth=max_colwidth, show_dimensions=show_dimensions, ) lines = output.split("\n") if lines[-1].startswith("["): lines = lines[:-1] lines.append( "[%d rows x %d columns]" % (len(self), len(self._data.names)) ) return "\n".join(lines) def _clean_nulls_from_dataframe(self, df): """ This function converts all ``null`` values to ``<NA>`` for representation as a string in `__repr__`. Since we utilize Pandas `__repr__` at all places in our code for formatting purposes, we convert columns to `str` dtype for filling with `<NA>` values. """ for col in df._data: if is_list_dtype(df._data[col]) or is_struct_dtype(df._data[col]): # TODO we need to handle this pass elif df._data[col].has_nulls(): fill_value = ( str(cudf.NaT) if isinstance( df._data[col], ( cudf.core.column.DatetimeColumn, cudf.core.column.TimeDeltaColumn, ), ) else str(cudf.NA) ) df[col] = df._data[col].astype("str").fillna(fill_value) else: df[col] = df._data[col] return df def _get_renderable_dataframe(self): """ Takes rows and columns from pandas settings or estimation from size. pulls quadrants based off of some known parameters then style for multiindex as well producing an efficient representative string for printing with the dataframe. """ max_rows = pd.options.display.max_rows nrows = np.max([len(self) if max_rows is None else max_rows, 1]) if pd.options.display.max_rows == 0: nrows = len(self) ncols = ( pd.options.display.max_columns if pd.options.display.max_columns else pd.options.display.width / 2 ) if len(self) <= nrows and len(self._data.names) <= ncols: output = self.copy(deep=False) elif self.empty and len(self.index) > 0: max_seq_items = pd.options.display.max_seq_items # In case of Empty DataFrame with index, Pandas prints # first `pd.options.display.max_seq_items` index values # followed by ... To obtain ... at the end of index list, # adding 1 extra value. # If `pd.options.display.max_seq_items` is None, # entire sequence/Index is to be printed. # Note : Pandas truncates the dimensions at the end of # the resulting dataframe when `display.show_dimensions` # is set to truncate. Hence to display the dimensions we # need to extract maximum of `max_seq_items` and `nrows` # and have 1 extra value for ... to show up in the output # string. if max_seq_items is not None: output = self.head(max(max_seq_items, nrows) + 1) else: output = self.copy(deep=False) else: left_cols = len(self._data.names) right_cols = 0 upper_rows = len(self) lower_rows = 0 if len(self) > nrows and nrows > 0: upper_rows = int(nrows / 2.0) + 1 lower_rows = upper_rows + (nrows % 2) if len(self._data.names) > ncols: right_cols = len(self._data.names) - int(ncols / 2.0) # adjust right columns for output if multiindex. right_cols = ( right_cols - 1 if isinstance(self.index, MultiIndex) else right_cols ) left_cols = int(ncols / 2.0) + 1 if right_cols > 0: # Pick ncols - left_cols number of columns # from the right side/from the end. right_cols = -(int(ncols) - left_cols + 1) else: # If right_cols is 0 or negative, it means # self has lesser number of columns than ncols. # Hence assign len(self._data.names) which # will result in empty `*_right` quadrants. # This is because `*_left` quadrants will # contain all columns. right_cols = len(self._data.names) upper_left = self.head(upper_rows).iloc[:, :left_cols] upper_right = self.head(upper_rows).iloc[:, right_cols:] lower_left = self.tail(lower_rows).iloc[:, :left_cols] lower_right = self.tail(lower_rows).iloc[:, right_cols:] upper = cudf.concat([upper_left, upper_right], axis=1) lower = cudf.concat([lower_left, lower_right], axis=1) output = cudf.concat([upper, lower]) output = self._clean_nulls_from_dataframe(output) output._index = output._index._clean_nulls_from_index() return output @_cudf_nvtx_annotate def __repr__(self): output = self._get_renderable_dataframe() return self._clean_renderable_dataframe(output) @_cudf_nvtx_annotate def _repr_html_(self): lines = ( self._get_renderable_dataframe() .to_pandas() ._repr_html_() .split("\n") ) if lines[-2].startswith("<p>"): lines = lines[:-2] lines.append( "<p>%d rows × %d columns</p>" % (len(self), len(self._data.names)) ) lines.append("</div>") return "\n".join(lines) @_cudf_nvtx_annotate def _repr_latex_(self): return self._get_renderable_dataframe().to_pandas()._repr_latex_() @_cudf_nvtx_annotate def _get_columns_by_label( self, labels, *, downcast=False ) -> Self | Series: """ Return columns of dataframe by `labels` If downcast is True, try and downcast from a DataFrame to a Series """ ca = self._data.select_by_label(labels) if downcast: if is_scalar(labels): nlevels = 1 elif isinstance(labels, tuple): nlevels = len(labels) if self._data.multiindex is False or nlevels == self._data.nlevels: out = self._constructor_sliced._from_data( ca, index=self.index, name=labels ) return out out = self.__class__._from_data( ca, index=self.index, columns=ca.to_pandas_index() ) return out def _make_operands_and_index_for_binop( self, other: Any, fn: str, fill_value: Any = None, reflect: bool = False, can_reindex: bool = False, *args, **kwargs, ) -> Tuple[ Union[ Dict[Optional[str], Tuple[ColumnBase, Any, bool, Any]], NotImplementedType, ], Optional[BaseIndex], bool, ]: lhs, rhs = self._data, other index = self._index fill_requires_key = False left_default: Any = False equal_columns = False can_use_self_column_name = True if _is_scalar_or_zero_d_array(other): rhs = {name: other for name in self._data} equal_columns = True elif isinstance(other, Series): rhs = dict(zip(other.index.to_pandas(), other.values_host)) # For keys in right but not left, perform binops between NaN (not # NULL!) and the right value (result is NaN). left_default = as_column(np.nan, length=len(self)) equal_columns = other.index.to_pandas().equals( self._data.to_pandas_index() ) can_use_self_column_name = ( equal_columns or list(other._index._data.names) == self._data._level_names ) elif isinstance(other, DataFrame): if ( not can_reindex and fn in cudf.utils.utils._EQUALITY_OPS and ( not self.index.equals(other.index) or not self._data.to_pandas_index().equals( other._data.to_pandas_index() ) ) ): raise ValueError( "Can only compare identically-labeled DataFrame objects" ) new_lhs, new_rhs = _align_indices(self, other) index = new_lhs._index lhs, rhs = new_lhs._data, new_rhs._data fill_requires_key = True # For DataFrame-DataFrame ops, always default to operating against # the fill value. left_default = fill_value equal_columns = self._column_names == other._column_names can_use_self_column_name = ( equal_columns or self._data._level_names == other._data._level_names ) elif isinstance(other, (dict, abc.Mapping)): # Need to fail early on host mapping types because we ultimately # convert everything to a dict. return NotImplemented, None, True if not isinstance(rhs, (dict, abc.Mapping)): return NotImplemented, None, True operands = { k: ( v, rhs.get(k, fill_value), reflect, fill_value if (not fill_requires_key or k in rhs) else None, ) for k, v in lhs.items() } if left_default is not False: for k, v in rhs.items(): if k not in lhs: operands[k] = (left_default, v, reflect, None) if not equal_columns: if isinstance(other, DataFrame): column_names_list = self._data.to_pandas_index().join( other._data.to_pandas_index(), how="outer" ) elif isinstance(other, Series): column_names_list = self._data.to_pandas_index().join( other.index.to_pandas(), how="outer" ) else: raise ValueError("other must be a DataFrame or Series.") sorted_dict = {key: operands[key] for key in column_names_list} return sorted_dict, index, can_use_self_column_name return operands, index, can_use_self_column_name @classmethod @_cudf_nvtx_annotate def from_dict( cls, data: dict, orient: str = "columns", dtype: Optional[Dtype] = None, columns: Optional[list] = None, ) -> DataFrame: """ Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification. Parameters ---------- data : dict Of the form {field : array-like} or {field : dict}. orient : {'columns', 'index', 'tight'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. If 'tight', assume a dict with keys ['index', 'columns', 'data', 'index_names', 'column_names']. dtype : dtype, default None Data type to force, otherwise infer. columns : list, default None Column labels to use when ``orient='index'``. Raises a ``ValueError`` if used with ``orient='columns'`` or ``orient='tight'``. Returns ------- DataFrame See Also -------- DataFrame.from_records : DataFrame from structured ndarray, sequence of tuples or dicts, or DataFrame. DataFrame : DataFrame object creation using constructor. DataFrame.to_dict : Convert the DataFrame to a dictionary. Examples -------- By default the keys of the dict become the DataFrame columns: >>> import cudf >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> cudf.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d Specify ``orient='index'`` to create the DataFrame using dictionary keys as rows: >>> data = {'row_1': [3, 2, 1, 0], 'row_2': [10, 11, 12, 13]} >>> cudf.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 10 11 12 13 When using the 'index' orientation, the column names can be specified manually: >>> cudf.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 10 11 12 13 Specify ``orient='tight'`` to create the DataFrame using a 'tight' format: >>> data = {'index': [('a', 'b'), ('a', 'c')], ... 'columns': [('x', 1), ('y', 2)], ... 'data': [[1, 3], [2, 4]], ... 'index_names': ['n1', 'n2'], ... 'column_names': ['z1', 'z2']} >>> cudf.DataFrame.from_dict(data, orient='tight') z1 x y z2 1 2 n1 n2 a b 1 3 c 2 4 """ # noqa: E501 orient = orient.lower() if orient == "index": if len(data) > 0 and isinstance( next(iter(data.values())), (cudf.Series, cupy.ndarray) ): result = cls(data).T result.columns = columns if dtype is not None: result = result.astype(dtype) return result else: return cls.from_pandas( pd.DataFrame.from_dict( data=data, orient=orient, dtype=dtype, columns=columns, ) ) elif orient == "columns": if columns is not None: raise ValueError( "Cannot use columns parameter with orient='columns'" ) return cls(data, columns=None, dtype=dtype) elif orient == "tight": if columns is not None: raise ValueError( "Cannot use columns parameter with orient='right'" ) index = _from_dict_create_index( data["index"], data["index_names"], cudf ) columns = _from_dict_create_index( data["columns"], data["column_names"], pd ) return cls(data["data"], index=index, columns=columns, dtype=dtype) else: raise ValueError( "Expected 'index', 'columns' or 'tight' for orient " f"parameter. Got '{orient}' instead" ) @_cudf_nvtx_annotate def to_dict( self, orient: str = "dict", into: type[dict] = dict, ) -> dict | list[dict]: """ Convert the DataFrame to a dictionary. The type of the key-value pairs can be customized with the parameters (see below). Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'tight', 'records', 'index'} Determines the type of the values of the dictionary. - 'dict' (default) : dict like {column -> {index -> value}} - 'list' : dict like {column -> [values]} - 'series' : dict like {column -> Series(values)} - 'split' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values]} - 'tight' : dict like {'index' -> [index], 'columns' -> [columns], 'data' -> [values], 'index_names' -> [index.names], 'column_names' -> [column.names]} - 'records' : list like [{column -> value}, ... , {column -> value}] - 'index' : dict like {index -> {column -> value}} Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. into : class, default dict The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized. Returns ------- dict, list or collections.abc.Mapping Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the `orient` parameter. See Also -------- DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format. Examples -------- >>> import cudf >>> df = cudf.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}} You can specify the return orientation. >>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64} >>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]} >>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}] >>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}} >>> df.to_dict('tight') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]], 'index_names': [None], 'column_names': [None]} You can also specify the mapping type. >>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))]) If you want a `defaultdict`, you need to initialize it: >>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})] """ # noqa: E501 orient = orient.lower() if orient == "series": # Special case needed to avoid converting # cudf.Series objects into pd.Series if not inspect.isclass(into): cons = type(into) # type: ignore[assignment] if isinstance(into, defaultdict): cons = functools.partial(cons, into.default_factory) elif issubclass(into, abc.Mapping): cons = into # type: ignore[assignment] if issubclass(into, defaultdict): raise TypeError( "to_dict() only accepts initialized defaultdicts" ) else: raise TypeError(f"unsupported type: {into}") return cons(self.items()) # type: ignore[misc] return self.to_pandas().to_dict(orient=orient, into=into) @_cudf_nvtx_annotate def scatter_by_map( self, map_index, map_size=None, keep_index=True, **kwargs ): """Scatter to a list of dataframes. Uses map_index to determine the destination of each row of the original DataFrame. Parameters ---------- map_index : Series, str or list-like Scatter assignment for each row map_size : int Length of output list. Must be >= uniques in map_index keep_index : bool Conserve original index values for each row Returns ------- A list of cudf.DataFrame objects. Raises ------ ValueError If the map_index has invalid entries (not all in [0, num_partitions)). """ # map_index might be a column name or array, # make it a Column if isinstance(map_index, str): map_index = self._data[map_index] elif isinstance(map_index, cudf.Series): map_index = map_index._column else: map_index = as_column(map_index) # Convert float to integer if map_index.dtype.kind == "f": map_index = map_index.astype(np.int32) # Convert string or categorical to integer if isinstance(map_index, cudf.core.column.StringColumn): map_index = map_index.as_categorical_column( "category" ).as_numerical warnings.warn( "Using StringColumn for map_index in scatter_by_map. " "Use an integer array/column for better performance." ) elif isinstance(map_index, cudf.core.column.CategoricalColumn): map_index = map_index.as_numerical warnings.warn( "Using CategoricalColumn for map_index in scatter_by_map. " "Use an integer array/column for better performance." ) if kwargs.get("debug", False) == 1 and map_size is not None: count = map_index.distinct_count() if map_size < count: raise ValueError( f"ERROR: map_size must be >= {count} (got {map_size})." ) partitioned_columns, output_offsets = libcudf.partitioning.partition( [*(self._index._columns if keep_index else ()), *self._columns], map_index, map_size, ) partitioned = self._from_columns_like_self( partitioned_columns, column_names=self._column_names, index_names=self._index_names if keep_index else None, ) # due to the split limitation mentioned # here: https://github.com/rapidsai/cudf/issues/4607 # we need to remove first & last elements in offsets. # TODO: Remove this after the above issue is fixed. output_offsets = output_offsets[1:-1] result = partitioned._split(output_offsets, keep_index=keep_index) if map_size: result += [ self._empty_like(keep_index) for _ in range(map_size - len(result)) ] return result @_cudf_nvtx_annotate def update( self, other, join="left", overwrite=True, filter_func=None, errors="ignore", ): """ Modify a DataFrame in place using non-NA values from another DataFrame. Aligns on indices. There is no return value. Parameters ---------- other : DataFrame, or object coercible into a DataFrame Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame. join : {'left'}, default 'left' Only left join is implemented, keeping the index and columns of the original object. overwrite : {True, False}, default True How to handle non-NA values for overlapping keys: True: overwrite original DataFrame's values with values from other. False: only update values that are NA in the original DataFrame. filter_func : None filter_func is not supported yet Return True for values that should be updated.S errors : {'raise', 'ignore'}, default 'ignore' If 'raise', will raise a ValueError if the DataFrame and other both contain non-NA data in the same place. Returns ------- None : method directly changes calling object Raises ------ ValueError - When ``errors`` = 'raise' and there's overlapping non-NA data. - When ``errors`` is not either 'ignore' or 'raise' NotImplementedError - If ``join`` != 'left' """ # TODO: Support other joins if join != "left": raise NotImplementedError("Only left join is supported") if errors not in {"ignore", "raise"}: raise ValueError( "The parameter errors must be either 'ignore' or 'raise'" ) if filter_func is not None: raise NotImplementedError("filter_func is not supported yet") if not isinstance(other, DataFrame): other = DataFrame(other) self_cols = self._data.to_pandas_index() if not self_cols.equals(other._data.to_pandas_index()): other = other.reindex(self_cols, axis=1) if not self.index.equals(other.index): other = other.reindex(self.index, axis=0) source_df = self.copy(deep=False) for col in source_df._column_names: this = source_df[col] that = other[col] if errors == "raise": mask_this = that.notna() mask_that = this.notna() if (mask_this & mask_that).any(): raise ValueError("Data overlaps.") if overwrite: mask = that.isna() else: mask = this.notna() # don't overwrite columns unnecessarily if mask.all(): continue source_df[col] = source_df[col].where(mask, that) self._mimic_inplace(source_df, inplace=True) @_cudf_nvtx_annotate def __iter__(self): return iter(self._column_names) @_cudf_nvtx_annotate def __contains__(self, item): # This must check against containment in the pandas Index and not # self._column_names to handle NA, None, nan, etc. correctly. return item in self._data.to_pandas_index() @_cudf_nvtx_annotate def items(self): """Iterate over column names and series pairs""" for k in self: yield (k, self[k]) @_cudf_nvtx_annotate def equals(self, other, **kwargs): ret = super().equals(other) # If all other checks matched, validate names. if ret: for self_name, other_name in zip( self._data.names, other._data.names ): if self_name != other_name: ret = False break return ret @property def iat(self): """ Alias for ``DataFrame.iloc``; provided for compatibility with Pandas. """ return self.iloc @property def at(self): """ Alias for ``DataFrame.loc``; provided for compatibility with Pandas. """ return self.loc @property # type: ignore @_external_only_api( "Use _column_names instead, or _data.to_pandas_index() if a pandas " "index is absolutely necessary. For checking if the columns are a " "MultiIndex, use _data.multiindex." ) @_cudf_nvtx_annotate def columns(self): """Returns a tuple of columns""" return self._data.to_pandas_index() @columns.setter # type: ignore @_cudf_nvtx_annotate def columns(self, columns): if isinstance(columns, cudf.BaseIndex): columns = columns.to_pandas() if columns is None: columns = pd.Index(range(len(self._data.columns))) is_multiindex = isinstance(columns, pd.MultiIndex) if isinstance(columns, (Series, cudf.Index, ColumnBase)): columns = pd.Index(columns.to_numpy(), tupleize_cols=is_multiindex) elif not isinstance(columns, pd.Index): columns = pd.Index(columns, tupleize_cols=is_multiindex) if not len(columns) == len(self._data.names): raise ValueError( f"Length mismatch: expected {len(self._data.names)} elements, " f"got {len(columns)} elements" ) self._set_column_names(columns, is_multiindex, columns.names) def _set_column_names(self, names, multiindex=False, level_names=None): data = dict(zip(names, self._data.columns)) if len(names) != len(data): raise ValueError("Duplicate column names are not allowed") self._data = ColumnAccessor( data, multiindex=multiindex, level_names=level_names, ) def _set_column_names_like(self, other): self._set_column_names( other._data.names, other._data.multiindex, other._data.level_names ) @_cudf_nvtx_annotate def reindex( self, labels=None, index=None, columns=None, axis=None, method=None, copy=True, level=None, fill_value=NA, limit=None, tolerance=None, ): """ Conform DataFrame to new index. Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False. Parameters ---------- labels : Index, Series-convertible, optional, default None New labels / index to conform the axis specified by ``axis`` to. index : Index, Series-convertible, optional, default None The index labels specifying the index to conform to. columns : array-like, optional, default None The column labels specifying the columns to conform to. axis : Axis to target. Can be either the axis name (``index``, ``columns``) or number (0, 1). method : Not supported copy : boolean, default True Return a new object, even if the passed indexes are the same. level : Not supported fill_value : Value to use for missing values. Defaults to ``NA``, but can be any "compatible" value. limit : Not supported tolerance : Not supported Returns ------- DataFrame with changed index. Examples -------- ``DataFrame.reindex`` supports two calling conventions * ``(index=index_labels, columns=column_labels, ...)`` * ``(labels, axis={'index', 'columns'}, ...)`` We _highly_ recommend using keyword arguments to clarify your intent. Create a dataframe with some fictional data. >>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = cudf.DataFrame({'http_status': [200, 200, 404, 404, 301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00 >>> new_index = ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index) http_status response_time Safari 404 0.07 Iceweasel <NA> <NA> Comodo Dragon <NA> <NA> IE10 404 0.08 Chrome 200 0.02 .. pandas-compat:: **DataFrame.reindex** Note: One difference from Pandas is that ``NA`` is used for rows that do not match, rather than ``NaN``. One side effect of this is that the column ``http_status`` retains an integer dtype in cuDF where it is cast to float in Pandas. We can fill in the missing values by passing a value to the keyword ``fill_value``. >>> df.reindex(new_index, fill_value=0) http_status response_time Safari 404 0.07 Iceweasel 0 0.00 Comodo Dragon 0 0.00 IE10 404 0.08 Chrome 200 0.02 We can also reindex the columns. >>> df.reindex(columns=['http_status', 'user_agent']) http_status user_agent Firefox 200 <NA> Chrome 200 <NA> Safari 404 <NA> IE10 404 <NA> Konqueror 301 <NA> Or we can use "axis-style" keyword arguments >>> df.reindex(columns=['http_status', 'user_agent']) http_status user_agent Firefox 200 <NA> Chrome 200 <NA> Safari 404 <NA> IE10 404 <NA> Konqueror 301 <NA> """ if labels is None and index is None and columns is None: return self.copy(deep=copy) # pandas simply ignores the labels keyword if it is provided in # addition to index and columns, but it prohibits the axis arg. if (index is not None or columns is not None) and axis is not None: raise TypeError( "Cannot specify both 'axis' and any of 'index' or 'columns'." ) axis = 0 if axis is None else self._get_axis_from_axis_arg(axis) if axis == 0: if index is None: index = labels else: if columns is None: columns = labels df = ( self if columns is None else self[list(set(self._column_names) & set(columns))] ) return df._reindex( column_names=columns, dtypes=self._dtypes, deep=copy, index=index, inplace=False, fill_value=fill_value, ) @_cudf_nvtx_annotate def set_index( self, keys, drop=True, append=False, inplace=False, verify_integrity=False, ): """Return a new DataFrame with a new index Parameters ---------- keys : Index, Series-convertible, label-like, or list Index : the new index. Series-convertible : values for the new index. Label-like : Label of column to be used as index. List : List of items from above. drop : boolean, default True Whether to drop corresponding column for str index argument append : boolean, default True Whether to append columns to the existing index, resulting in a MultiIndex. inplace : boolean, default False Modify the DataFrame in place (do not create a new object). verify_integrity : boolean, default False Check for duplicates in the new index. Examples -------- >>> df = cudf.DataFrame({ ... "a": [1, 2, 3, 4, 5], ... "b": ["a", "b", "c", "d","e"], ... "c": [1.0, 2.0, 3.0, 4.0, 5.0] ... }) >>> df a b c 0 1 a 1.0 1 2 b 2.0 2 3 c 3.0 3 4 d 4.0 4 5 e 5.0 Set the index to become the 'b' column: >>> df.set_index('b') a c b a 1 1.0 b 2 2.0 c 3 3.0 d 4 4.0 e 5 5.0 Create a MultiIndex using columns 'a' and 'b': >>> df.set_index(["a", "b"]) c a b 1 a 1.0 2 b 2.0 3 c 3.0 4 d 4.0 5 e 5.0 Set new Index instance as index: >>> df.set_index(cudf.RangeIndex(10, 15)) a b c 10 1 a 1.0 11 2 b 2.0 12 3 c 3.0 13 4 d 4.0 14 5 e 5.0 Setting `append=True` will combine current index with column `a`: >>> df.set_index("a", append=True) b c a 0 1 a 1.0 1 2 b 2.0 2 3 c 3.0 3 4 d 4.0 4 5 e 5.0 `set_index` supports `inplace` parameter too: >>> df.set_index("a", inplace=True) >>> df b c a 1 a 1.0 2 b 2.0 3 c 3.0 4 d 4.0 5 e 5.0 """ if not isinstance(keys, list): keys = [keys] # Preliminary type check col_not_found = [] columns_to_add = [] names = [] to_drop = [] for col in keys: # Is column label if is_scalar(col) or isinstance(col, tuple): if col in self._column_names: columns_to_add.append(self[col]) names.append(col) if drop: to_drop.append(col) else: col_not_found.append(col) else: # Try coerce into column if not is_column_like(col): try: col = as_column(col) except TypeError: msg = f"{col} cannot be converted to column-like." raise TypeError(msg) if isinstance(col, (MultiIndex, pd.MultiIndex)): col = ( cudf.from_pandas(col) if isinstance(col, pd.MultiIndex) else col ) cols = [col._data[x] for x in col._data] columns_to_add.extend(cols) names.extend(col.names) else: if isinstance(col, (pd.RangeIndex, cudf.RangeIndex)): # Corner case: RangeIndex does not need to instantiate columns_to_add.append(col) else: # For pandas obj, convert to gpu obj columns_to_add.append(as_column(col)) if isinstance( col, (cudf.Series, cudf.Index, pd.Series, pd.Index) ): names.append(col.name) else: names.append(None) if col_not_found: raise KeyError(f"None of {col_not_found} are in the columns") if append: idx_cols = [self.index._data[x] for x in self.index._data] if isinstance(self.index, MultiIndex): idx_names = self.index.names else: idx_names = [self.index.name] columns_to_add = idx_cols + columns_to_add names = idx_names + names if len(columns_to_add) == 0: raise ValueError("No valid columns to be added to index.") elif ( len(columns_to_add) == 1 and len(keys) == 1 and not isinstance(keys[0], (cudf.MultiIndex, pd.MultiIndex)) ): idx = cudf.Index(columns_to_add[0], name=names[0]) else: idx = MultiIndex._from_data( {i: col for i, col in enumerate(columns_to_add)} ) idx.names = names if not isinstance(idx, BaseIndex): raise ValueError("Parameter index should be type `Index`.") df = self if inplace else self.copy(deep=True) if verify_integrity and not idx.is_unique: raise ValueError(f"Values in Index are not unique: {idx}") if to_drop: df.drop(columns=to_drop, inplace=True) df.index = idx return df if not inplace else None @_cudf_nvtx_annotate def where(self, cond, other=None, inplace=False): from cudf.core._internals.where import ( _check_and_cast_columns_with_other, _make_categorical_like, ) # First process the condition. if isinstance(cond, Series): cond = self._from_data_like_self( {name: cond._column for name in self._column_names}, ) elif hasattr(cond, "__cuda_array_interface__"): cond = DataFrame( cond, columns=self._column_names, index=self.index ) elif ( hasattr(cond, "__array_interface__") and cond.__array_interface__["shape"] != self.shape ): raise ValueError("conditional must be same shape as self") elif not isinstance(cond, DataFrame): cond = cudf.DataFrame(cond) if set(self._column_names).intersection(set(cond._column_names)): if not self.index.equals(cond.index): cond = cond.reindex(self.index) else: if cond.shape != self.shape: raise ValueError( "Array conditional must be same shape as self" ) # Setting `self` column names to `cond` as it has no column names. cond._set_column_names_like(self) # If other was provided, process that next. if isinstance(other, DataFrame): other_cols = [other._data[col] for col in self._column_names] elif cudf.api.types.is_scalar(other): other_cols = [other] * len(self._column_names) elif isinstance(other, cudf.Series): other_cols = other.to_pandas() else: other_cols = other if len(self._columns) != len(other_cols): raise ValueError( """Replacement list length or number of data columns should be equal to number of columns of self""" ) out = {} for (name, col), other_col in zip(self._data.items(), other_cols): col, other_col = _check_and_cast_columns_with_other( source_col=col, other=other_col, inplace=inplace, ) if cond_col := cond._data.get(name): result = cudf._lib.copying.copy_if_else( col, other_col, cond_col ) out[name] = _make_categorical_like(result, self._data[name]) else: out_mask = cudf._lib.null_mask.create_null_mask( len(col), state=cudf._lib.null_mask.MaskState.ALL_NULL, ) out[name] = col.set_mask(out_mask) return self._mimic_inplace( self._from_data_like_self(out), inplace=inplace ) @docutils.doc_apply( doc_reset_index_template.format( klass="DataFrame", argument="", return_type="DataFrame or None", return_doc="", example=""" >>> df = cudf.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal <NA> >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal <NA> >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal <NA> You can also use ``reset_index`` with MultiIndex. >>> index = cudf.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> df = cudf.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=('speed', 'type')) >>> df speed type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey <NA> jump >>> df.reset_index(level='class') class speed type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal <NA> jump """, ) ) def reset_index( self, level=None, drop=False, inplace=False, col_level=0, col_fill="" ): return self._mimic_inplace( DataFrame._from_data( *self._reset_index( level=level, drop=drop, col_level=col_level, col_fill=col_fill, ) ), inplace=inplace, ) @_cudf_nvtx_annotate def insert(self, loc, name, value, nan_as_null=None): """Add a column to DataFrame at the index specified by loc. Parameters ---------- loc : int location to insert by index, cannot be greater then num columns + 1 name : number or string name or label of column to be inserted value : Series or array-like nan_as_null : bool, Default None If ``None``/``True``, converts ``np.nan`` values to ``null`` values. If ``False``, leaves ``np.nan`` values as is. """ return self._insert( loc=loc, name=name, value=value, nan_as_null=nan_as_null, ignore_index=False, ) @_cudf_nvtx_annotate def _insert(self, loc, name, value, nan_as_null=None, ignore_index=True): """ Same as `insert`, with additional `ignore_index` param. ignore_index : bool, default True If True, there will be no index equality check & reindexing happening. If False, a reindexing operation is performed if `value.index` is not equal to `self.index`. """ if name in self._data: raise NameError(f"duplicated column name {name}") num_cols = len(self._data) if loc < 0: loc += num_cols + 1 if not (0 <= loc <= num_cols): raise ValueError( f"insert location must be within range " f"{-(num_cols + 1) * (num_cols > 0)}, " f"{num_cols * (num_cols > 0)}" ) # TODO: This check is currently necessary because # _is_scalar_or_zero_d_array below will treat a length 1 pd.Categorical # as a scalar and attempt to use column.full, which can't handle it. # Maybe _is_scalar_or_zero_d_array should be changed, or maybe we just # shouldn't support pd.Categorical at all, but those changes will at # least require a deprecation cycle because we currently support # inserting a pd.Categorical. if isinstance(value, pd.Categorical): value = cudf.core.column.categorical.pandas_categorical_as_column( value ) if _is_scalar_or_zero_d_array(value): value = column.full( len(self), value, "str" if libcudf.scalar._is_null_host_scalar(value) else None, ) if len(self) == 0: if isinstance(value, (pd.Series, Series)): if not ignore_index: self._index = as_index(value.index) elif len(value) > 0: self._index = RangeIndex(start=0, stop=len(value)) new_data = self._data.__class__() if num_cols != 0: for col_name in self._data: new_data[col_name] = column.column_empty_like( self._data[col_name], masked=True, newsize=len(value), ) self._data = new_data elif isinstance(value, (pd.Series, Series)): value = Series(value, nan_as_null=nan_as_null) if not ignore_index: value = value._align_to_index( self._index, how="right", sort=False ) value = column.as_column(value, nan_as_null=nan_as_null) self._data.insert(name, value, loc=loc) @property # type:ignore @_cudf_nvtx_annotate def axes(self): """ Return a list representing the axes of the DataFrame. DataFrame.axes returns a list of two elements: element zero is the row index and element one is the columns. Examples -------- >>> import cudf >>> cdf1 = cudf.DataFrame() >>> cdf1["key"] = [0,0,1,1] >>> cdf1["k2"] = [1,2,2,3] >>> cdf1["val"] = [1,2,3,4] >>> cdf1["temp"] = [-1,2,2,3] >>> cdf1.axes [RangeIndex(start=0, stop=4, step=1), Index(['key', 'k2', 'val', 'temp'], dtype='object')] """ return [self._index, self._data.to_pandas_index()] def diff(self, periods=1, axis=0): """ First discrete difference of element. Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is element in previous row). Parameters ---------- periods : int, default 1 Periods to shift for calculating difference, accepts negative values. axis : {0 or 'index', 1 or 'columns'}, default 0 Take difference over rows (0) or columns (1). Only row-wise (0) shift is supported. Returns ------- DataFrame First differences of the DataFrame. Notes ----- Diff currently only supports numeric dtype columns. Examples -------- >>> import cudf >>> gdf = cudf.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> gdf a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> gdf.diff(periods=2) a b c 0 <NA> <NA> <NA> 1 <NA> <NA> <NA> 2 2 1 8 3 2 2 12 4 2 3 16 5 2 5 20 """ if not is_integer(periods): if not (is_float(periods) and periods.is_integer()): raise ValueError("periods must be an integer") periods = int(periods) axis = self._get_axis_from_axis_arg(axis) if axis != 0: raise NotImplementedError("Only axis=0 is supported.") if abs(periods) > len(self): df = cudf.DataFrame._from_data( { name: column_empty(len(self), dtype=dtype, masked=True) for name, dtype in zip(self._column_names, self.dtypes) } ) return df return self - self.shift(periods=periods) @_cudf_nvtx_annotate def drop_duplicates( self, subset=None, keep="first", inplace=False, ignore_index=False, ): """ Return DataFrame with duplicate rows removed. Considering certain columns is optional. Indexes, including time indexes are ignored. Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns. keep : {'first', 'last', ``False``}, default 'first' Determines which duplicates (if any) to keep. - 'first' : Drop duplicates except for the first occurrence. - 'last' : Drop duplicates except for the last occurrence. - ``False`` : Drop all duplicates. inplace : bool, default ``False`` Whether to drop duplicates in place or to return a copy. ignore_index : bool, default ``False`` If True, the resulting axis will be labeled 0, 1, ..., n - 1. Returns ------- DataFrame or None DataFrame with duplicates removed or None if ``inplace=True``. See Also -------- DataFrame.value_counts: Count unique combinations of columns. Examples -------- Consider a dataset containing ramen ratings. >>> import cudf >>> df = cudf.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 By default, it removes duplicate rows based on all columns. >>> df.drop_duplicates() brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0 To remove duplicates on specific column(s), use ``subset``. >>> df.drop_duplicates(subset=['brand']) brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 To remove duplicates and keep last occurrences, use ``keep``. >>> df.drop_duplicates(subset=['brand', 'style'], keep='last') brand style rating 1 Yum Yum cup 4.0 2 Indomie cup 3.5 4 Indomie pack 5.0 """ # noqa: E501 outdf = super().drop_duplicates( subset=subset, keep=keep, ignore_index=ignore_index, ) return self._mimic_inplace(outdf, inplace=inplace) @_cudf_nvtx_annotate def pop(self, item): """Return a column and drop it from the DataFrame.""" popped = self[item] del self[item] return popped @_cudf_nvtx_annotate def rename( self, mapper=None, index=None, columns=None, axis=0, copy=True, inplace=False, level=None, errors="ignore", ): """Alter column and index labels. Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error. ``DataFrame.rename`` supports two calling conventions: - ``(index=index_mapper, columns=columns_mapper, ...)`` - ``(mapper, axis={0/'index' or 1/'column'}, ...)`` We highly recommend using keyword arguments to clarify your intent. Parameters ---------- mapper : dict-like or function, default None optional dict-like or functions transformations to apply to the index/column values depending on selected ``axis``. index : dict-like, default None Optional dict-like transformations to apply to the index axis' values. Does not support functions for axis 0 yet. columns : dict-like or function, default None optional dict-like or functions transformations to apply to the columns axis' values. axis : int, default 0 Axis to rename with mapper. 0 or 'index' for index 1 or 'columns' for columns copy : boolean, default True Also copy underlying data inplace : boolean, default False Return new DataFrame. If True, assign columns without copy level : int or level name, default None In case of a MultiIndex, only rename labels in the specified level. errors : {'raise', 'ignore', 'warn'}, default 'ignore' *Only 'ignore' supported* Control raising of exceptions on invalid data for provided dtype. - ``raise`` : allow exceptions to be raised - ``ignore`` : suppress exceptions. On error return original object. - ``warn`` : prints last exceptions as warnings and return original object. Returns ------- DataFrame Notes ----- Difference from pandas: * Not supporting: level Rename will not overwrite column names. If a list with duplicates is passed, column names will be postfixed with a number. Examples -------- >>> import cudf >>> df = cudf.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df A B 0 1 4 1 2 5 2 3 6 Rename columns using a mapping: >>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6 Rename index using a mapping: >>> df.rename(index={0: 10, 1: 20, 2: 30}) A B 10 1 4 20 2 5 30 3 6 """ if errors != "ignore": raise NotImplementedError( "Only errors='ignore' is currently supported" ) if mapper is None and index is None and columns is None: return self.copy(deep=copy) index = mapper if index is None and axis in (0, "index") else index columns = ( mapper if columns is None and axis in (1, "columns") else columns ) if index: if ( any(type(item) == str for item in index.values()) and type(self.index) != cudf.StringIndex ): raise NotImplementedError( "Implicit conversion of index to " "mixed type is not yet supported." ) if level is not None and isinstance(self.index, MultiIndex): out_index = self.index.copy(deep=copy) out_index.get_level_values(level).to_frame().replace( to_replace=list(index.keys()), value=list(index.values()), inplace=True, ) out = DataFrame(index=out_index) else: to_replace = list(index.keys()) vals = list(index.values()) is_all_na = vals.count(None) == len(vals) try: index_data = { name: col.find_and_replace(to_replace, vals, is_all_na) for name, col in self.index._data.items() } except OverflowError: index_data = self.index._data.copy(deep=True) out = DataFrame(index=_index_from_data(index_data)) else: out = DataFrame(index=self.index) if columns: out._data = self._data.rename_levels(mapper=columns, level=level) else: out._data = self._data.copy(deep=copy) if inplace: self._data = out._data else: return out.copy(deep=copy) @_cudf_nvtx_annotate def add_prefix(self, prefix): out = self.copy(deep=True) out.columns = [ prefix + col_name for col_name in list(self._data.keys()) ] return out @_cudf_nvtx_annotate def add_suffix(self, suffix): out = self.copy(deep=True) out.columns = [ col_name + suffix for col_name in list(self._data.keys()) ] return out @_cudf_nvtx_annotate def agg(self, aggs, axis=None): """ Aggregate using one or more operations over the specified axis. Parameters ---------- aggs : Iterable (set, list, string, tuple or dict) Function to use for aggregating data. Accepted types are: * string name, e.g. ``"sum"`` * list of functions, e.g. ``["sum", "min", "max"]`` * dict of axis labels specified operations per column, e.g. ``{"a": "sum"}`` axis : not yet supported Returns ------- Aggregation Result : ``Series`` or ``DataFrame`` When ``DataFrame.agg`` is called with single agg, ``Series`` is returned. When ``DataFrame.agg`` is called with several aggs, ``DataFrame`` is returned. Notes ----- Difference from pandas: * Not supporting: ``axis``, ``*args``, ``**kwargs`` """ # TODO: Remove the typecasting below once issue #6846 is fixed # link <https://github.com/rapidsai/cudf/issues/6846> dtypes = [self[col].dtype for col in self._column_names] common_dtype = find_common_type(dtypes) df_normalized = self.astype(common_dtype) if any(is_string_dtype(dt) for dt in dtypes): raise NotImplementedError( "DataFrame.agg() is not supported for " "frames containing string columns" ) if axis == 0 or axis is not None: raise NotImplementedError("axis not implemented yet") if isinstance(aggs, abc.Iterable) and not isinstance( aggs, (str, dict) ): result = DataFrame() # TODO : Allow simultaneous pass for multi-aggregation as # a future optimization for agg in aggs: result[agg] = getattr(df_normalized, agg)() return result.T.sort_index(axis=1, ascending=True) elif isinstance(aggs, str): if not hasattr(df_normalized, aggs): raise AttributeError( f"{aggs} is not a valid function for " f"'DataFrame' object" ) result = DataFrame() result[aggs] = getattr(df_normalized, aggs)() result = result.iloc[:, 0] result.name = None return result elif isinstance(aggs, dict): cols = aggs.keys() if any(callable(val) for val in aggs.values()): raise NotImplementedError( "callable parameter is not implemented yet" ) elif all(isinstance(val, str) for val in aggs.values()): result = cudf.Series(index=cols) for key, value in aggs.items(): col = df_normalized[key] if not hasattr(col, value): raise AttributeError( f"{value} is not a valid function for " f"'Series' object" ) result[key] = getattr(col, value)() elif all(isinstance(val, abc.Iterable) for val in aggs.values()): idxs = set() for val in aggs.values(): if isinstance(val, str): idxs.add(val) elif isinstance(val, abc.Iterable): idxs.update(val) idxs = sorted(list(idxs)) for agg in idxs: if agg is callable: raise NotImplementedError( "callable parameter is not implemented yet" ) result = DataFrame(index=idxs, columns=cols) for key in aggs.keys(): col = df_normalized[key] col_empty = column_empty( len(idxs), dtype=col.dtype, masked=True ) ans = cudf.Series(data=col_empty, index=idxs) if isinstance(aggs.get(key), abc.Iterable): # TODO : Allow simultaneous pass for multi-aggregation # as a future optimization for agg in aggs.get(key): if not hasattr(col, agg): raise AttributeError( f"{agg} is not a valid function for " f"'Series' object" ) ans[agg] = getattr(col, agg)() elif isinstance(aggs.get(key), str): if not hasattr(col, aggs.get(key)): raise AttributeError( f"{aggs.get(key)} is not a valid function for " f"'Series' object" ) ans[aggs.get(key)] = getattr(col, agg)() result[key] = ans else: raise ValueError("values of dict must be a string or list") return result elif callable(aggs): raise NotImplementedError( "callable parameter is not implemented yet" ) else: raise ValueError("argument must be a string, list or dict") @_cudf_nvtx_annotate def nlargest(self, n, columns, keep="first"): """Return the first *n* rows ordered by *columns* in descending order. Return the first *n* rows with the largest values in *columns*, in descending order. The columns that are not specified are returned as well, but not used for ordering. Parameters ---------- n : int Number of rows to return. columns : label or list of labels Column label(s) to order by. keep : {'first', 'last'}, default 'first' Where there are duplicate values: - `first` : prioritize the first occurrence(s) - `last` : prioritize the last occurrence(s) Returns ------- DataFrame The first `n` rows ordered by the given columns in descending order. Notes ----- Difference from pandas: - Only a single column is supported in *columns* Examples -------- >>> import cudf >>> df = cudf.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN """ return self._n_largest_or_smallest(True, n, columns, keep) def nsmallest(self, n, columns, keep="first"): """Return the first *n* rows ordered by *columns* in ascending order. Return the first *n* rows with the smallest values in *columns*, in ascending order. The columns that are not specified are returned as well, but not used for ordering. Parameters ---------- n : int Number of items to retrieve. columns : list or str Column name or names to order by. keep : {'first', 'last'}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- DataFrame Notes ----- Difference from pandas: - Only a single column is supported in *columns* Examples -------- >>> import cudf >>> df = cudf.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 337000, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 337000 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI In the following example, we will use ``nsmallest`` to select the three rows having the smallest values in column "population". >>> df.nsmallest(3, 'population') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS When using ``keep='last'``, ties are resolved in reverse order: >>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 337000 182 NR """ return self._n_largest_or_smallest(False, n, columns, keep) @_cudf_nvtx_annotate def swaplevel(self, i=-2, j=-1, axis=0): """ Swap level i with level j. Calling this method does not change the ordering of the values. Parameters ---------- i : int or str, default -2 First level of index to be swapped. j : int or str, default -1 Second level of index to be swapped. axis : The axis to swap levels on. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. Examples -------- >>> import cudf >>> midx = cudf.MultiIndex(levels=[['llama', 'cow', 'falcon'], ... ['speed', 'weight', 'length'],['first','second']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2], ... [0, 0, 0, 0, 0, 0, 1, 1, 1]]) >>> cdf = cudf.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], [1, 0.8], [0.3, 0.2]]) >>> cdf big small llama speed first 45.0 30.0 weight first 200.0 100.0 length first 1.5 1.0 cow speed first 30.0 20.0 weight first 250.0 150.0 length first 1.5 0.8 falcon speed second 320.0 250.0 weight second 1.0 0.8 length second 0.3 0.2 >>> cdf.swaplevel() big small llama first speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow first speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon second speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 """ result = self.copy() # To get axis number axis = self._get_axis_from_axis_arg(axis) if axis == 0: if not isinstance(result.index, MultiIndex): raise TypeError("Can only swap levels on a hierarchical axis.") result.index = result.index.swaplevel(i, j) else: if not result._data.multiindex: raise TypeError("Can only swap levels on a hierarchical axis.") result._data = result._data.swaplevel(i, j) return result @_cudf_nvtx_annotate def transpose(self): """Transpose index and columns. Returns ------- a new (ncol x nrow) dataframe. self is (nrow x ncol) Notes ----- Difference from pandas: Not supporting *copy* because default and only behavior is copy=True """ index = self._data.to_pandas_index() columns = self.index.copy(deep=False) if self._num_columns == 0 or self._num_rows == 0: return DataFrame(index=index, columns=columns) # No column from index is transposed with libcudf. source_columns = [*self._columns] source_dtype = source_columns[0].dtype if is_categorical_dtype(source_dtype): if any(not is_categorical_dtype(c.dtype) for c in source_columns): raise ValueError("Columns must all have the same dtype") cats = list(c.categories for c in source_columns) cats = cudf.core.column.concat_columns(cats).unique() source_columns = [ col._set_categories(cats, is_unique=True).codes for col in source_columns ] if any(c.dtype != source_columns[0].dtype for c in source_columns): raise ValueError("Columns must all have the same dtype") result_columns = libcudf.transpose.transpose(source_columns) if is_categorical_dtype(source_dtype): result_columns = [ codes._with_type_metadata( cudf.core.dtypes.CategoricalDtype(categories=cats) ) for codes in result_columns ] else: result_columns = [ result_column._with_type_metadata(source_dtype) for result_column in result_columns ] # Set the old column names as the new index result = self.__class__._from_data( {i: col for i, col in enumerate(result_columns)}, index=as_index(index), ) # Set the old index as the new column names result.columns = columns return result T = property(transpose, doc=transpose.__doc__) @_cudf_nvtx_annotate def melt(self, **kwargs): """Unpivots a DataFrame from wide format to long format, optionally leaving identifier variables set. Parameters ---------- frame : DataFrame id_vars : tuple, list, or ndarray, optional Column(s) to use as identifier variables. default: None value_vars : tuple, list, or ndarray, optional Column(s) to unpivot. default: all columns that are not set as `id_vars`. var_name : scalar Name to use for the `variable` column. default: frame.columns.name or 'variable' value_name : str Name to use for the `value` column. default: 'value' Returns ------- out : DataFrame Melted result """ from cudf.core.reshape import melt return melt(self, **kwargs) @_cudf_nvtx_annotate def merge( self, right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, how="inner", sort=False, lsuffix=None, rsuffix=None, indicator=False, suffixes=("_x", "_y"), ): """Merge GPU DataFrame objects by performing a database-style join operation by columns or indexes. Parameters ---------- right : DataFrame on : label or list; defaults to None Column or index level names to join on. These must be found in both DataFrames. If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames. how : {'left', 'outer', 'inner', 'leftsemi', 'leftanti'}, \ default 'inner' Type of merge to be performed. - left : use only keys from left frame, similar to a SQL left outer join. - right : not supported. - outer : use union of keys from both frames, similar to a SQL full outer join. - inner : use intersection of keys from both frames, similar to a SQL inner join. - leftsemi : similar to ``inner`` join, but only returns columns from the left dataframe and ignores all columns from the right dataframe. - leftanti : returns only rows columns from the left dataframe for non-matched records. This is exact opposite to ``leftsemi`` join. left_on : label or list, or array-like Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns. right_on : label or list, or array-like Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns. left_index : bool, default False Use the index from the left DataFrame as the join key(s). right_index : bool, default False Use the index from the right DataFrame as the join key. sort : bool, default False Sort the resulting dataframe by the columns that were merged on, starting from the left. suffixes: Tuple[str, str], defaults to ('_x', '_y') Suffixes applied to overlapping column names on the left and right sides Returns ------- merged : DataFrame Notes ----- **DataFrames merges in cuDF result in non-deterministic row ordering.** Examples -------- >>> import cudf >>> df_a = cudf.DataFrame() >>> df_a['key'] = [0, 1, 2, 3, 4] >>> df_a['vals_a'] = [float(i + 10) for i in range(5)] >>> df_b = cudf.DataFrame() >>> df_b['key'] = [1, 2, 4] >>> df_b['vals_b'] = [float(i+10) for i in range(3)] >>> df_merged = df_a.merge(df_b, on=['key'], how='left') >>> df_merged.sort_values('key') # doctest: +SKIP key vals_a vals_b 3 0 10.0 0 1 11.0 10.0 1 2 12.0 11.0 4 3 13.0 2 4 14.0 12.0 **Merging on categorical variables is only allowed in certain cases** Categorical variable typecasting logic depends on both `how` and the specifics of the categorical variables to be merged. Merging categorical variables when only one side is ordered is ambiguous and not allowed. Merging when both categoricals are ordered is allowed, but only when the categories are exactly equal and have equal ordering, and will result in the common dtype. When both sides are unordered, the result categorical depends on the kind of join: - For inner joins, the result will be the intersection of the categories - For left or right joins, the result will be the left or right dtype respectively. This extends to semi and anti joins. - For outer joins, the result will be the union of categories from both sides. """ if indicator: raise NotImplementedError( "Only indicator=False is currently supported" ) if lsuffix or rsuffix: raise ValueError( "The lsuffix and rsuffix keywords have been replaced with the " "``suffixes=`` keyword. " "Please provide the following instead: \n\n" " suffixes=('%s', '%s')" % (lsuffix or "_x", rsuffix or "_y") ) else: lsuffix, rsuffix = suffixes lhs, rhs = self, right merge_cls = Merge if how == "right": # Merge doesn't support right, so just swap how = "left" lhs, rhs = right, self left_on, right_on = right_on, left_on left_index, right_index = right_index, left_index suffixes = (suffixes[1], suffixes[0]) elif how in {"leftsemi", "leftanti"}: merge_cls = MergeSemi return merge_cls( lhs, rhs, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, how=how, sort=sort, indicator=indicator, suffixes=suffixes, ).perform_merge() @_cudf_nvtx_annotate def join( self, other, on=None, how="left", lsuffix="", rsuffix="", sort=False, ): """Join columns with other DataFrame on index or on a key column. Parameters ---------- other : DataFrame how : str Only accepts "left", "right", "inner", "outer" lsuffix, rsuffix : str The suffices to add to the left (*lsuffix*) and right (*rsuffix*) column names when avoiding conflicts. sort : bool Set to True to ensure sorted ordering. Returns ------- joined : DataFrame Notes ----- Difference from pandas: - *other* must be a single DataFrame for now. - *on* is not supported yet due to lack of multi-index support. """ if on is not None: raise NotImplementedError("The on parameter is not yet supported") df = self.merge( other, left_index=True, right_index=True, how=how, suffixes=(lsuffix, rsuffix), sort=sort, ) df.index.name = ( None if self.index.name != other.index.name else self.index.name ) return df @_cudf_nvtx_annotate @docutils.doc_apply( groupby_doc_template.format( ret=textwrap.dedent( """ Returns ------- DataFrameGroupBy Returns a DataFrameGroupBy object that contains information about the groups. """ ) ) ) def groupby( self, by=None, axis=0, level=None, as_index=True, sort=no_default, group_keys=False, squeeze=False, observed=True, dropna=True, ): return super().groupby( by, axis, level, as_index, sort, group_keys, squeeze, observed, dropna, ) def query(self, expr, local_dict=None): """ Query with a boolean expression using Numba to compile a GPU kernel. See pandas.DataFrame.query. Parameters ---------- expr : str A boolean expression. Names in expression refer to columns. `index` can be used instead of index name, but this is not supported for MultiIndex. Names starting with `@` refer to Python variables. An output value will be `null` if any of the input values are `null` regardless of expression. local_dict : dict Containing the local variable to be used in query. Returns ------- filtered : DataFrame Examples -------- >>> df = cudf.DataFrame({ ... "a": [1, 2, 2], ... "b": [3, 4, 5], ... }) >>> expr = "(a == 2 and b == 4) or (b == 3)" >>> df.query(expr) a b 0 1 3 1 2 4 DateTime conditionals: >>> import numpy as np >>> import datetime >>> df = cudf.DataFrame() >>> data = np.array(['2018-10-07', '2018-10-08'], dtype='datetime64') >>> df['datetimes'] = data >>> search_date = datetime.datetime.strptime('2018-10-08', '%Y-%m-%d') >>> df.query('datetimes==@search_date') datetimes 1 2018-10-08 Using local_dict: >>> import numpy as np >>> import datetime >>> df = cudf.DataFrame() >>> data = np.array(['2018-10-07', '2018-10-08'], dtype='datetime64') >>> df['datetimes'] = data >>> search_date2 = datetime.datetime.strptime('2018-10-08', '%Y-%m-%d') >>> df.query('datetimes==@search_date', ... local_dict={'search_date': search_date2}) datetimes 1 2018-10-08 .. pandas-compat:: **DataFrame.query** One difference from pandas is that ``query`` currently only supports numeric, datetime, timedelta, or bool dtypes. """ # can't use `annotate` decorator here as we inspect the calling # environment. with annotate("DATAFRAME_QUERY", color="purple", domain="cudf_python"): if local_dict is None: local_dict = {} if self.empty: return self.copy() if not isinstance(local_dict, dict): raise TypeError( f"local_dict type: expected dict but found " f"{type(local_dict)}" ) # Get calling environment callframe = inspect.currentframe().f_back callenv = { "locals": callframe.f_locals, "globals": callframe.f_globals, "local_dict": local_dict, } # Run query boolmask = queryutils.query_execute(self, expr, callenv) return self._apply_boolean_mask( BooleanMask.from_column_unchecked(boolmask) ) @_cudf_nvtx_annotate def apply( self, func, axis=1, raw=False, result_type=None, args=(), **kwargs ): """ Apply a function along an axis of the DataFrame. ``apply`` relies on Numba to JIT compile ``func``. Thus the allowed operations within ``func`` are limited to `those supported by the CUDA Python Numba target <https://numba.readthedocs.io/en/stable/cuda/cudapysupported.html>`__. For more information, see the `cuDF guide to user defined functions <https://docs.rapids.ai/api/cudf/stable/user_guide/guide-to-udfs.html>`__. Some string functions and methods are supported. Refer to the guide to UDFs for details. Parameters ---------- func : function Function to apply to each row. axis : {0 or 'index', 1 or 'columns'}, default 0 Axis along which the function is applied. - 0 or 'index': apply function to each column (not yet supported). - 1 or 'columns': apply function to each row. raw: bool, default False Not yet supported result_type: {'expand', 'reduce', 'broadcast', None}, default None Not yet supported args: tuple Positional arguments to pass to func in addition to the dataframe. Examples -------- Simple function of a single variable which could be NA: >>> def f(row): ... if row['a'] is cudf.NA: ... return 0 ... else: ... return row['a'] + 1 ... >>> df = cudf.DataFrame({'a': [1, cudf.NA, 3]}) >>> df.apply(f, axis=1) 0 2 1 0 2 4 dtype: int64 Function of multiple variables will operate in a null aware manner: >>> def f(row): ... return row['a'] - row['b'] ... >>> df = cudf.DataFrame({ ... 'a': [1, cudf.NA, 3, cudf.NA], ... 'b': [5, 6, cudf.NA, cudf.NA] ... }) >>> df.apply(f) 0 -4 1 <NA> 2 <NA> 3 <NA> dtype: int64 Functions may conditionally return NA as in pandas: >>> def f(row): ... if row['a'] + row['b'] > 3: ... return cudf.NA ... else: ... return row['a'] + row['b'] ... >>> df = cudf.DataFrame({ ... 'a': [1, 2, 3], ... 'b': [2, 1, 1] ... }) >>> df.apply(f, axis=1) 0 3 1 3 2 <NA> dtype: int64 Mixed types are allowed, but will return the common type, rather than object as in pandas: >>> def f(row): ... return row['a'] + row['b'] ... >>> df = cudf.DataFrame({ ... 'a': [1, 2, 3], ... 'b': [0.5, cudf.NA, 3.14] ... }) >>> df.apply(f, axis=1) 0 1.5 1 <NA> 2 6.14 dtype: float64 Functions may also return scalar values, however the result will be promoted to a safe type regardless of the data: >>> def f(row): ... if row['a'] > 3: ... return row['a'] ... else: ... return 1.5 ... >>> df = cudf.DataFrame({ ... 'a': [1, 3, 5] ... }) >>> df.apply(f, axis=1) 0 1.5 1 1.5 2 5.0 dtype: float64 Ops against N columns are supported generally: >>> def f(row): ... v, w, x, y, z = ( ... row['a'], row['b'], row['c'], row['d'], row['e'] ... ) ... return x + (y - (z / w)) % v ... >>> df = cudf.DataFrame({ ... 'a': [1, 2, 3], ... 'b': [4, 5, 6], ... 'c': [cudf.NA, 4, 4], ... 'd': [8, 7, 8], ... 'e': [7, 1, 6] ... }) >>> df.apply(f, axis=1) 0 <NA> 1 4.8 2 5.0 dtype: float64 UDFs manipulating string data are allowed, as long as they neither modify strings in place nor create new strings. For example, the following UDF is allowed: >>> def f(row): ... st = row['str_col'] ... scale = row['scale'] ... if len(st) == 0: ... return -1 ... elif st.startswith('a'): ... return 1 - scale ... elif 'example' in st: ... return 1 + scale ... else: ... return 42 ... >>> df = cudf.DataFrame({ ... 'str_col': ['', 'abc', 'some_example'], ... 'scale': [1, 2, 3] ... }) >>> df.apply(f, axis=1) # doctest: +SKIP 0 -1 1 -1 2 4 dtype: int64 However, the following UDF is not allowed since it includes an operation that requires the creation of a new string: a call to the ``upper`` method. Methods that are not supported in this manner will raise an ``AttributeError``. >>> def f(row): ... st = row['str_col'].upper() ... return 'ABC' in st >>> df.apply(f, axis=1) # doctest: +SKIP For a complete list of supported functions and methods that may be used to manipulate string data, see the UDF guide, <https://docs.rapids.ai/api/cudf/stable/user_guide/guide-to-udfs.html> """ if axis != 1: raise ValueError( "DataFrame.apply currently only supports row wise ops" ) if raw: raise ValueError("The `raw` kwarg is not yet supported.") if result_type is not None: raise ValueError("The `result_type` kwarg is not yet supported.") return self._apply(func, _get_row_kernel, *args, **kwargs) def applymap( self, func: Callable[[Any], Any], na_action: Union[str, None] = None, **kwargs, ) -> DataFrame: """ Apply a function to a Dataframe elementwise. This method applies a function that accepts and returns a scalar to every element of a DataFrame. Parameters ---------- func : callable Python function, returns a single value from a single value. na_action : {None, 'ignore'}, default None If 'ignore', propagate NaN values, without passing them to func. Returns ------- DataFrame Transformed DataFrame. """ if kwargs: raise NotImplementedError( "DataFrame.applymap does not yet support **kwargs." ) if na_action not in {"ignore", None}: raise ValueError( f"na_action must be 'ignore' or None. Got {repr(na_action)}" ) if na_action == "ignore": devfunc = numba.cuda.jit(device=True)(func) # promote to a null-ignoring function # this code is never run in python, it only # exists to provide numba with the correct # bytecode to generate the equivalent PTX # as a null-ignoring version of the function def _func(x): # pragma: no cover if x is NA: return NA else: return devfunc(x) else: _func = func # TODO: naive implementation # this could be written as a single kernel result = {} for name, col in self._data.items(): apply_sr = Series._from_data({None: col}) result[name] = apply_sr.apply(_func) return DataFrame._from_data(result, index=self.index) @_cudf_nvtx_annotate @applyutils.doc_apply() def apply_rows( self, func, incols, outcols, kwargs, pessimistic_nulls=True, cache_key=None, ): """ Apply a row-wise user defined function. Parameters ---------- {params} Examples -------- The user function should loop over the columns and set the output for each row. Loop execution order is arbitrary, so each iteration of the loop **MUST** be independent of each other. When ``func`` is invoked, the array args corresponding to the input/output are strided so as to improve GPU parallelism. The loop in the function resembles serial code, but executes concurrently in multiple threads. >>> import cudf >>> import numpy as np >>> df = cudf.DataFrame() >>> nelem = 3 >>> df['in1'] = np.arange(nelem) >>> df['in2'] = np.arange(nelem) >>> df['in3'] = np.arange(nelem) Define input columns for the kernel >>> in1 = df['in1'] >>> in2 = df['in2'] >>> in3 = df['in3'] >>> def kernel(in1, in2, in3, out1, out2, kwarg1, kwarg2): ... for i, (x, y, z) in enumerate(zip(in1, in2, in3)): ... out1[i] = kwarg2 * x - kwarg1 * y ... out2[i] = y - kwarg1 * z Call ``.apply_rows`` with the name of the input columns, the name and dtype of the output columns, and, optionally, a dict of extra arguments. >>> df.apply_rows(kernel, ... incols=['in1', 'in2', 'in3'], ... outcols=dict(out1=np.float64, out2=np.float64), ... kwargs=dict(kwarg1=3, kwarg2=4)) in1 in2 in3 out1 out2 0 0 0 0 0.0 0.0 1 1 1 1 1.0 -2.0 2 2 2 2 2.0 -4.0 """ for col in incols: current_col_dtype = self._data[col].dtype if is_string_dtype(current_col_dtype) or is_categorical_dtype( current_col_dtype ): raise TypeError( "User defined functions are currently not " "supported on Series with dtypes `str` and `category`." ) return applyutils.apply_rows( self, func, incols, outcols, kwargs, pessimistic_nulls, cache_key=cache_key, ) @_cudf_nvtx_annotate @applyutils.doc_applychunks() def apply_chunks( self, func, incols, outcols, kwargs=None, pessimistic_nulls=True, chunks=None, blkct=None, tpb=None, ): """ Transform user-specified chunks using the user-provided function. Parameters ---------- {params} {params_chunks} Examples -------- For ``tpb > 1``, ``func`` is executed by ``tpb`` number of threads concurrently. To access the thread id and count, use ``numba.cuda.threadIdx.x`` and ``numba.cuda.blockDim.x``, respectively (See `numba CUDA kernel documentation`_). .. _numba CUDA kernel documentation:\ https://numba.readthedocs.io/en/stable/cuda/kernels.html In the example below, the *kernel* is invoked concurrently on each specified chunk. The *kernel* computes the corresponding output for the chunk. By looping over the range ``range(cuda.threadIdx.x, in1.size, cuda.blockDim.x)``, the *kernel* function can be used with any *tpb* in an efficient manner. >>> from numba import cuda >>> @cuda.jit ... def kernel(in1, in2, in3, out1): ... for i in range(cuda.threadIdx.x, in1.size, cuda.blockDim.x): ... x = in1[i] ... y = in2[i] ... z = in3[i] ... out1[i] = x * y + z See also -------- DataFrame.apply_rows """ if kwargs is None: kwargs = {} if chunks is None: raise ValueError("*chunks* must be defined") return applyutils.apply_chunks( self, func, incols, outcols, kwargs, pessimistic_nulls, chunks, tpb=tpb, ) @_cudf_nvtx_annotate def partition_by_hash(self, columns, nparts, keep_index=True): """Partition the dataframe by the hashed value of data in *columns*. Parameters ---------- columns : sequence of str The names of the columns to be hashed. Must have at least one name. nparts : int Number of output partitions keep_index : boolean Whether to keep the index or drop it Returns ------- partitioned: list of DataFrame """ key_indices = [self._column_names.index(k) for k in columns] if keep_index: cols = [*self._index._columns, *self._columns] key_indices = [i + len(self._index._columns) for i in key_indices] else: cols = [*self._columns] output_columns, offsets = libcudf.hash.hash_partition( cols, key_indices, nparts ) outdf = self._from_columns_like_self( output_columns, self._column_names, self._index_names if keep_index else None, ) # Slice into partitions. Notice, `hash_partition` returns the start # offset of each partition thus we skip the first offset ret = outdf._split(offsets[1:], keep_index=keep_index) # Calling `_split()` on an empty dataframe returns an empty list # so we add empty partitions here ret += [self._empty_like(keep_index) for _ in range(nparts - len(ret))] return ret def info( self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None, ): """ Print a concise summary of a DataFrame. This method prints information about a DataFrame including the index dtype and column dtypes, non-null values and memory usage. Parameters ---------- verbose : bool, optional Whether to print the full summary. By default, the setting in ``pandas.options.display.max_info_columns`` is followed. buf : writable buffer, defaults to sys.stdout Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output. max_cols : int, optional When to switch from the verbose to the truncated output. If the DataFrame has more than `max_cols` columns, the truncated output is used. By default, the setting in ``pandas.options.display.max_info_columns`` is used. memory_usage : bool, str, optional Specifies whether total memory usage of the DataFrame elements (including the index) should be displayed. By default, this follows the ``pandas.options.display.memory_usage`` setting. True always show memory usage. False never shows memory usage. A value of 'deep' is equivalent to "True with deep introspection". Memory usage is shown in human-readable units (base-2 representation). Without deep introspection a memory estimation is made based in column dtype and number of rows assuming values consume the same memory amount for corresponding dtypes. With deep memory introspection, a real memory usage calculation is performed at the cost of computational resources. null_counts : bool, optional Whether to show the non-null counts. By default, this is shown only if the frame is smaller than ``pandas.options.display.max_info_rows`` and ``pandas.options.display.max_info_columns``. A value of True always shows the counts, and False never shows the counts. Returns ------- None This method prints a summary of a DataFrame and returns None. See Also -------- DataFrame.describe: Generate descriptive statistics of DataFrame columns. DataFrame.memory_usage: Memory usage of DataFrame columns. Examples -------- >>> import cudf >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = cudf.DataFrame({"int_col": int_values, ... "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00 Prints information of all columns: >>> df.info(verbose=True) <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes Prints a summary of columns count and its dtypes but not per column information: >>> df.info(verbose=False) <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes Pipe output of DataFrame.info to a buffer instead of sys.stdout and print buffer contents: >>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> print(buffer.getvalue()) <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes The `memory_usage` parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization: >>> import numpy as np >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) >>> df = cudf.DataFrame({ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) ... }) >>> df.info(memory_usage='deep') <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 14.3 MB """ if buf is None: buf = sys.stdout lines = [str(type(self))] index_name = type(self._index).__name__ if len(self._index) > 0: entries_summary = f", {self._index[0]} to {self._index[-1]}" else: entries_summary = "" index_summary = ( f"{index_name}: {len(self._index)} entries{entries_summary}" ) lines.append(index_summary) if len(self._data) == 0: lines.append(f"Empty {type(self).__name__}") cudf.utils.ioutils.buffer_write_lines(buf, lines) return cols = self._column_names col_count = len(cols) if max_cols is None: max_cols = pd.options.display.max_info_columns max_rows = pd.options.display.max_info_rows if null_counts is None: show_counts = (col_count <= max_cols) and (len(self) < max_rows) else: show_counts = null_counts exceeds_info_cols = col_count > max_cols def _put_str(s, space): return str(s)[:space].ljust(space) def _verbose_repr(): lines.append(f"Data columns (total {col_count} columns):") id_head = " # " column_head = "Column" col_space = 2 max_col = max(len(pprint_thing(k)) for k in cols) len_column = len(pprint_thing(column_head)) space = max(max_col, len_column) + col_space max_id = len(pprint_thing(col_count)) len_id = len(pprint_thing(id_head)) space_num = max(max_id, len_id) + col_space counts = None header = _put_str(id_head, space_num) + _put_str( column_head, space ) if show_counts: counts = self.count().to_pandas().tolist() if col_count != len(counts): raise AssertionError( f"Columns must equal " f"counts ({col_count} != {len(counts)})" ) count_header = "Non-Null Count" len_count = len(count_header) non_null = " non-null" max_count = max(len(pprint_thing(k)) for k in counts) + len( non_null ) space_count = max(len_count, max_count) + col_space count_temp = "{count}" + non_null else: count_header = "" space_count = len(count_header) len_count = space_count count_temp = "{count}" dtype_header = "Dtype" len_dtype = len(dtype_header) max_dtypes = max(len(pprint_thing(k)) for k in self.dtypes) space_dtype = max(len_dtype, max_dtypes) header += ( _put_str(count_header, space_count) + _put_str(dtype_header, space_dtype).rstrip() ) lines.append(header) lines.append( _put_str("-" * len_id, space_num) + _put_str("-" * len_column, space) + _put_str("-" * len_count, space_count) + _put_str("-" * len_dtype, space_dtype).rstrip() ) for i, col in enumerate(self._column_names): dtype = self.dtypes.iloc[i] col = pprint_thing(col) line_no = _put_str(f" {i}", space_num) count = "" if show_counts: count = counts[i] lines.append( line_no + _put_str(col, space) + _put_str(count_temp.format(count=count), space_count) + _put_str(dtype, space_dtype).rstrip() ) def _non_verbose_repr(): if col_count > 0: entries_summary = f", {cols[0]} to {cols[-1]}" else: entries_summary = "" columns_summary = f"Columns: {col_count} entries{entries_summary}" lines.append(columns_summary) def _sizeof_fmt(num, size_qualifier): # returns size in human readable format for x in ["bytes", "KB", "MB", "GB", "TB"]: if num < 1024.0: return f"{num:3.1f}{size_qualifier} {x}" num /= 1024.0 return f"{num:3.1f}{size_qualifier} PB" if verbose: _verbose_repr() elif verbose is False: # specifically set to False, not nesc None _non_verbose_repr() else: if exceeds_info_cols: _non_verbose_repr() else: _verbose_repr() dtype_counts = defaultdict(int) for col in self._data: dtype_counts[self._data[col].dtype.name] += 1 dtypes = [f"{k[0]}({k[1]:d})" for k in sorted(dtype_counts.items())] lines.append(f"dtypes: {', '.join(dtypes)}") if memory_usage is None: memory_usage = pd.options.display.memory_usage if memory_usage: # append memory usage of df to display size_qualifier = "" if memory_usage == "deep": deep = True else: deep = False if "object" in dtype_counts or self.index.dtype == "object": size_qualifier = "+" mem_usage = self.memory_usage(index=True, deep=deep).sum() lines.append( f"memory usage: {_sizeof_fmt(mem_usage, size_qualifier)}\n" ) cudf.utils.ioutils.buffer_write_lines(buf, lines) @_cudf_nvtx_annotate @docutils.doc_describe() def describe( self, percentiles=None, include=None, exclude=None, datetime_is_numeric=False, ): """{docstring}""" if not include and not exclude: default_include = [np.number] if datetime_is_numeric: default_include.append("datetime") else: # Do not remove until pandas 2.0 support is added. warnings.warn( "`datetime_is_numeric` is deprecated. Specify " "`datetime_is_numeric=True` to silence this " "warning and adopt the future behavior now.", FutureWarning, ) data_to_describe = self.select_dtypes(include=default_include) if data_to_describe._num_columns == 0: data_to_describe = self elif include == "all": if exclude is not None: raise ValueError("exclude must be None when include is 'all'") data_to_describe = self else: data_to_describe = self.select_dtypes( include=include, exclude=exclude ) if data_to_describe.empty: raise ValueError("No data of included types.") describe_series_list = [ data_to_describe[col].describe( percentiles=percentiles, datetime_is_numeric=datetime_is_numeric, ) for col in data_to_describe._column_names ] if len(describe_series_list) == 1: return describe_series_list[0].to_frame() else: ldesc_indexes = sorted( (x.index for x in describe_series_list), key=len ) names = dict.fromkeys( [ name for idxnames in ldesc_indexes for name in idxnames.to_pandas() ], None, ) return cudf.concat( [ series.reindex(names, copy=False) for series in describe_series_list ], axis=1, sort=False, ) @_cudf_nvtx_annotate def to_pandas(self, nullable=False, **kwargs): """ Convert to a Pandas DataFrame. Parameters ---------- nullable : Boolean, Default False If ``nullable`` is ``True``, the resulting columns in the dataframe will be having a corresponding nullable Pandas dtype. If there is no corresponding nullable Pandas dtype present, the resulting dtype will be a regular pandas dtype. If ``nullable`` is ``False``, the resulting columns will either convert null values to ``np.nan`` or ``None`` depending on the dtype. Returns ------- out : Pandas DataFrame Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [0, 1, 2], 'b': [-3, 2, 0]}) >>> pdf = df.to_pandas() >>> pdf a b 0 0 -3 1 1 2 2 2 0 >>> type(pdf) <class 'pandas.core.frame.DataFrame'> ``nullable`` parameter can be used to control whether dtype can be Pandas Nullable or not: >>> df = cudf.DataFrame({'a': [0, None, 2], 'b': [True, False, None]}) >>> df a b 0 0 True 1 <NA> False 2 2 <NA> >>> pdf = df.to_pandas(nullable=True) >>> pdf a b 0 0 True 1 <NA> False 2 2 <NA> >>> pdf.dtypes a Int64 b boolean dtype: object >>> pdf = df.to_pandas(nullable=False) >>> pdf a b 0 0.0 True 1 NaN False 2 2.0 None >>> pdf.dtypes a float64 b object dtype: object """ out_data = {} out_index = self.index.to_pandas() for i, col_key in enumerate(self._data): out_data[i] = self._data[col_key].to_pandas( index=out_index, nullable=nullable ) out_df = pd.DataFrame(out_data, index=out_index) out_df.columns = self._data.to_pandas_index() return out_df @classmethod @_cudf_nvtx_annotate def from_pandas(cls, dataframe, nan_as_null=no_default): """ Convert from a Pandas DataFrame. Parameters ---------- dataframe : Pandas DataFrame object A Pandas DataFrame object which has to be converted to cuDF DataFrame. nan_as_null : bool, Default True If ``True``, converts ``np.nan`` values to ``null`` values. If ``False``, leaves ``np.nan`` values as is. Raises ------ TypeError for invalid input type. Examples -------- >>> import cudf >>> import pandas as pd >>> data = [[0,1], [1,2], [3,4]] >>> pdf = pd.DataFrame(data, columns=['a', 'b'], dtype=int) >>> cudf.from_pandas(pdf) a b 0 0 1 1 1 2 2 3 4 """ if nan_as_null is no_default: nan_as_null = ( False if cudf.get_option("mode.pandas_compatible") else None ) if isinstance(dataframe, pd.DataFrame): if not dataframe.columns.is_unique: raise ValueError("Duplicate column names are not allowed") # Set columns data = {} for col_name, col_value in dataframe.items(): # necessary because multi-index can return multiple # columns for a single key if len(col_value.shape) == 1: data[col_name] = column.as_column( col_value.array, nan_as_null=nan_as_null ) else: vals = col_value.values.T if vals.shape[0] == 1: data[col_name] = column.as_column( vals.flatten(), nan_as_null=nan_as_null ) else: if isinstance(col_name, tuple): col_name = str(col_name) for idx in range(len(vals.shape)): data[col_name] = column.as_column( vals[idx], nan_as_null=nan_as_null ) index = cudf.from_pandas(dataframe.index, nan_as_null=nan_as_null) df = cls._from_data(data, index) df._data._level_names = tuple(dataframe.columns.names) if isinstance(dataframe.columns, pd.RangeIndex): df._data.rangeindex = True # Set columns only if it is a MultiIndex elif isinstance(dataframe.columns, pd.MultiIndex): df.columns = dataframe.columns return df else: try: return from_dataframe(dataframe, allow_copy=True) except Exception: raise TypeError( f"Could not construct DataFrame from {type(dataframe)}" ) @classmethod @_cudf_nvtx_annotate def from_arrow(cls, table): """ Convert from PyArrow Table to DataFrame. Parameters ---------- table : PyArrow Table Object PyArrow Table Object which has to be converted to cudf DataFrame. Raises ------ TypeError for invalid input type. Returns ------- cudf DataFrame Notes ----- - Does not support automatically setting index column(s) similar to how ``to_pandas`` works for PyArrow Tables. Examples -------- >>> import cudf >>> import pyarrow as pa >>> data = pa.table({"a":[1, 2, 3], "b":[4, 5, 6]}) >>> cudf.DataFrame.from_arrow(data) a b 0 1 4 1 2 5 2 3 6 """ index_col = None col_index_names = None if isinstance(table, pa.Table) and isinstance( table.schema.pandas_metadata, dict ): index_col = table.schema.pandas_metadata["index_columns"] if "column_indexes" in table.schema.pandas_metadata: col_index_names = [] for col_meta in table.schema.pandas_metadata["column_indexes"]: col_index_names.append(col_meta["name"]) out = super().from_arrow(table) if col_index_names is not None: out._data._level_names = col_index_names if index_col: if isinstance(index_col[0], dict): idx = cudf.RangeIndex( index_col[0]["start"], index_col[0]["stop"], name=index_col[0]["name"], ) if len(idx) == len(out): # `idx` is generated from arrow `pandas_metadata` # which can get out of date with many of the # arrow operations. Hence verifying if the # lengths match, or else don't need to set # an index at all i.e., Default RangeIndex # will be set. # See more about the discussion here: # https://github.com/apache/arrow/issues/15178 out = out.set_index(idx) else: out = out.set_index(index_col[0]) return out @_cudf_nvtx_annotate def to_arrow(self, preserve_index=True): """ Convert to a PyArrow Table. Parameters ---------- preserve_index : bool, default True whether index column and its meta data needs to be saved or not Returns ------- PyArrow Table Examples -------- >>> import cudf >>> df = cudf.DataFrame( ... {"a":[1, 2, 3], "b":[4, 5, 6]}, index=[1, 2, 3]) >>> df.to_arrow() pyarrow.Table a: int64 b: int64 index: int64 ---- a: [[1,2,3]] b: [[4,5,6]] index: [[1,2,3]] >>> df.to_arrow(preserve_index=False) pyarrow.Table a: int64 b: int64 ---- a: [[1,2,3]] b: [[4,5,6]] """ data = self.copy(deep=False) index_descr = [] if preserve_index: if isinstance(self.index, cudf.RangeIndex): descr = { "kind": "range", "name": self.index.name, "start": self.index._start, "stop": self.index._stop, "step": 1, } else: if isinstance(self.index, MultiIndex): gen_names = tuple( f"level_{i}" for i, _ in enumerate(self.index._data.names) ) else: gen_names = ( self.index.names if self.index.name is not None else ("index",) ) for gen_name, col_name in zip( gen_names, self.index._data.names ): data._insert( data.shape[1], gen_name, self.index._data[col_name], ) descr = gen_names[0] index_descr.append(descr) out = super(DataFrame, data).to_arrow() metadata = pa.pandas_compat.construct_metadata( columns_to_convert=[self[col] for col in self._data.names], df=self, column_names=out.schema.names, index_levels=[self.index], index_descriptors=index_descr, preserve_index=preserve_index, types=out.schema.types, ) return out.replace_schema_metadata(metadata) @_cudf_nvtx_annotate def to_records(self, index=True): """Convert to a numpy recarray Parameters ---------- index : bool Whether to include the index in the output. Returns ------- numpy recarray """ members = [("index", self.index.dtype)] if index else [] members += [(col, self[col].dtype) for col in self._data.names] dtype = np.dtype(members) ret = np.recarray(len(self), dtype=dtype) if index: ret["index"] = self.index.to_numpy() for col in self._data.names: ret[col] = self[col].to_numpy() return ret @classmethod @_cudf_nvtx_annotate def from_records(cls, data, index=None, columns=None, nan_as_null=False): """ Convert structured or record ndarray to DataFrame. Parameters ---------- data : numpy structured dtype or recarray of ndim=2 index : str, array-like The name of the index column in *data*. If None, the default index is used. columns : list of str List of column names to include. Returns ------- DataFrame """ if data.ndim != 1 and data.ndim != 2: raise ValueError( f"records dimension expected 1 or 2 but found {data.ndim}" ) num_cols = len(data[0]) if columns is None and data.dtype.names is None: names = [i for i in range(num_cols)] elif data.dtype.names is not None: names = data.dtype.names else: if len(columns) != num_cols: raise ValueError( f"columns length expected {num_cols} " f"but found {len(columns)}" ) names = columns df = DataFrame() if data.ndim == 2: for i, k in enumerate(names): df._data[k] = column.as_column( data[:, i], nan_as_null=nan_as_null ) elif data.ndim == 1: for k in names: df._data[k] = column.as_column( data[k], nan_as_null=nan_as_null ) if index is None: df._index = RangeIndex(start=0, stop=len(data)) elif is_scalar(index): df._index = RangeIndex(start=0, stop=len(data)) df = df.set_index(index) else: df._index = as_index(index) if isinstance(columns, pd.Index): df._data._level_names = tuple(columns.names) return df @classmethod @_cudf_nvtx_annotate def _from_arrays(cls, data, index=None, columns=None, nan_as_null=False): """Convert a numpy/cupy array to DataFrame. Parameters ---------- data : numpy/cupy array of ndim 1 or 2, dimensions greater than 2 are not supported yet. index : Index or array-like Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided. columns : list of str List of column names to include. Returns ------- DataFrame """ data = cupy.asarray(data) if data.ndim != 1 and data.ndim != 2: raise ValueError( f"records dimension expected 1 or 2 but found: {data.ndim}" ) if data.ndim == 2: num_cols = data.shape[1] else: # Since we validate ndim to be either 1 or 2 above, # this case can be assumed to be ndim == 1. num_cols = 1 if columns is None: names = range(num_cols) else: if len(columns) != num_cols: raise ValueError( f"columns length expected {num_cols} but " f"found {len(columns)}" ) elif len(columns) != len(set(columns)): raise ValueError("Duplicate column names are not allowed") names = columns df = cls() if data.ndim == 2: for i, k in enumerate(names): df._data[k] = column.as_column( data[:, i], nan_as_null=nan_as_null ) elif data.ndim == 1: df._data[names[0]] = column.as_column( data, nan_as_null=nan_as_null ) if isinstance(columns, pd.Index): df._data._level_names = tuple(columns.names) if isinstance(columns, (range, pd.RangeIndex, cudf.RangeIndex)): df._data.rangeindex = True if index is None: df._index = RangeIndex(start=0, stop=len(data)) else: df._index = as_index(index) return df @_cudf_nvtx_annotate def interpolate( self, method="linear", axis=0, limit=None, inplace=False, limit_direction=None, limit_area=None, downcast=None, **kwargs, ): if all(dt == np.dtype("object") for dt in self.dtypes): raise TypeError( "Cannot interpolate with all object-dtype " "columns in the DataFrame. Try setting at " "least one column to a numeric dtype." ) return super().interpolate( method=method, axis=axis, limit=limit, inplace=inplace, limit_direction=limit_direction, limit_area=limit_area, downcast=downcast, **kwargs, ) @_cudf_nvtx_annotate def quantile( self, q=0.5, axis=0, numeric_only=True, interpolation=None, columns=None, exact=True, method="single", ): """ Return values at the given quantile. Parameters ---------- q : float or array-like 0 <= q <= 1, the quantile(s) to compute axis : int axis is a NON-FUNCTIONAL parameter numeric_only : bool, default True If False, the quantile of datetime and timedelta data will be computed as well. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j. Default is ``'linear'`` for ``method="single"``, and ``'nearest'`` for ``method="table"``. * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. columns : list of str List of column names to include. exact : boolean Whether to use approximate or exact quantile algorithm. method : {'single', 'table'}, default `'single'` Whether to compute quantiles per-column ('single') or over all columns ('table'). When 'table', the only allowed interpolation methods are 'nearest', 'lower', and 'higher'. Returns ------- Series or DataFrame If q is an array or numeric_only is set to False, a DataFrame will be returned where index is q, the columns are the columns of self, and the values are the quantile. If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. .. pandas-compat:: **DataFrame.quantile** One notable difference from Pandas is when DataFrame is of non-numeric types and result is expected to be a Series in case of Pandas. cuDF will return a DataFrame as it doesn't support mixed types under Series. Examples -------- >>> import cupy as cp >>> import cudf >>> df = cudf.DataFrame(cp.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df a b 0 1 1 1 2 10 2 3 100 3 4 100 >>> df.quantile(0.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 """ # noqa: E501 if axis not in (0, None): raise NotImplementedError("axis is not implemented yet") data_df = self if numeric_only: data_df = data_df.select_dtypes( include=[np.number], exclude=["datetime64", "timedelta64"] ) if columns is None: columns = data_df._data.names if isinstance(q, numbers.Number): q_is_number = True qs = [float(q)] elif pd.api.types.is_list_like(q): q_is_number = False qs = q else: msg = "`q` must be either a single element or list" raise TypeError(msg) if method == "table": interpolation = interpolation or "nearest" result = self._quantile_table(qs, interpolation.upper()) if q_is_number: result = result.transpose() return Series( data=result._columns[0], index=result.index, name=q ) else: # Ensure that qs is non-scalar so that we always get a column back. interpolation = interpolation or "linear" result = {} for k in data_df._data.names: if k in columns: ser = data_df[k] res = ser.quantile( qs, interpolation=interpolation, exact=exact, quant_index=False, )._column if len(res) == 0: res = column.column_empty_like( qs, dtype=ser.dtype, masked=True, newsize=len(qs) ) result[k] = res result = DataFrame._from_data(result) if q_is_number and numeric_only: result = result.fillna(np.nan).iloc[0] result.index = data_df.keys() result.name = q return result result.index = cudf.Index(list(map(float, qs)), dtype="float64") return result @_cudf_nvtx_annotate def isin(self, values): """ Whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dict The result will only be true at a location if all the labels match. If values is a Series, that's the index. If values is a dict, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame: DataFrame of booleans showing whether each element in the DataFrame is contained in values. Examples -------- >>> import cudf >>> df = cudf.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0 When ``values`` is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings) >>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True When ``values`` is a dict, we can pass values to check for each column separately: >>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True When ``values`` is a Series or DataFrame the index and column must match. Note that 'falcon' does not match based on the number of legs in other. >>> other = cudf.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False """ # TODO: propagate nulls through isin # https://github.com/rapidsai/cudf/issues/7556 fill_value = cudf.Scalar(False) def make_false_column_like_self(): return column.full(len(self), fill_value, "bool") # Preprocess different input types into a mapping from column names to # a list of values to check. result = {} if isinstance(values, IndexedFrame): # Note: In the case where values is a Series, computing some # information about the values column outside the loop may result # in performance gains. However, since categorical conversion # depends on the current column in the loop, using the correct # precomputed variables inside the loop requires nontrivial logic. # This optimization could be attempted if `isin` ever becomes a # bottleneck. if ( isinstance(values, (Series, DataFrame)) and not values.index.is_unique ): # if DataFrame ever supports duplicate columns # would need to check that here raise ValueError("cannot compute isin with a duplicate axis.") values = values.reindex(self.index) other_cols = ( values._data if isinstance(values, DataFrame) else {name: values._column for name in self._data} ) for col, self_col in self._data.items(): if col in other_cols: other_col = other_cols[col] self_is_cat = isinstance(self_col, CategoricalColumn) other_is_cat = isinstance(other_col, CategoricalColumn) if self_is_cat != other_is_cat: # It is valid to compare the levels of a categorical # column to a non-categorical column. if self_is_cat: self_col = self_col._get_decategorized_column() else: other_col = other_col._get_decategorized_column() # We use the type checks from _before_ the conversion # because if only one was categorical then it's already # been converted and we have to check if they're strings. if self_is_cat and other_is_cat: self_is_str = other_is_str = False else: # These checks must happen after the conversions above # since numpy can't handle categorical dtypes. self_is_str = is_string_dtype(self_col.dtype) other_is_str = is_string_dtype(other_col.dtype) if self_is_str != other_is_str: # Strings can't compare to anything else. result[col] = make_false_column_like_self() else: result[col] = (self_col == other_col).fillna(False) else: result[col] = make_false_column_like_self() elif is_dict_like(values): for name, col in self._data.items(): if name in values: result[name] = col.isin(values[name]) else: result[name] = make_false_column_like_self() elif is_list_like(values): for name, col in self._data.items(): result[name] = col.isin(values) else: raise TypeError( "only list-like or dict-like objects are " "allowed to be passed to DataFrame.isin(), " "you passed a " f"'{type(values).__name__}'" ) # TODO: Update this logic to properly preserve MultiIndex columns. return DataFrame._from_data(result, self.index) # # Stats # @_cudf_nvtx_annotate def _prepare_for_rowwise_op(self, method, skipna): """Prepare a DataFrame for CuPy-based row-wise operations.""" if method not in _cupy_nan_methods_map and any( col.nullable for col in self._columns ): msg = ( f"Row-wise operations to calculate '{method}' do not " f"currently support columns with null values. " f"Consider removing them with .dropna() " f"or using .fillna()." ) raise ValueError(msg) is_pure_dt = all(is_datetime_dtype(dt) for dt in self.dtypes) if not is_pure_dt: filtered = self.select_dtypes(include=[np.number, np.bool_]) else: filtered = self.copy(deep=False) common_dtype = find_common_type(filtered.dtypes) if filtered._num_columns < self._num_columns: # When we update our pandas compatibility target to 2.0, pandas # will stop supporting numeric_only=None and users will have to # specify True/False. At that time we should also top our implicit # removal of non-numeric columns here. assert Version(pd.__version__) < Version("2.0.0") msg = ( "Row-wise operations currently only support int, float " "and bool dtypes. Non numeric columns are ignored." ) warnings.warn(msg) if not skipna and any(col.nullable for col in filtered._columns): mask = DataFrame( { name: filtered._data[name]._get_mask_as_column() if filtered._data[name].nullable else column.full(len(filtered._data[name]), True) for name in filtered._data.names } ) mask = mask.all(axis=1) else: mask = None coerced = filtered.astype(common_dtype, copy=False) if is_pure_dt: # Further convert into cupy friendly types coerced = coerced.astype("int64", copy=False) return coerced, mask, common_dtype @_cudf_nvtx_annotate def count(self, axis=0, level=None, numeric_only=False, **kwargs): """ Count ``non-NA`` cells for each column or row. The values ``None``, ``NaN``, ``NaT`` are considered ``NA``. Returns ------- Series For each column/row the number of non-NA/null entries. Notes ----- Parameters currently not supported are `axis`, `level`, `numeric_only`. Examples -------- >>> import cudf >>> import numpy as np >>> df = cudf.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df.count() Person 5 Age 4 Single 5 dtype: int64 """ axis = self._get_axis_from_axis_arg(axis) if axis != 0: raise NotImplementedError("Only axis=0 is currently supported.") return Series._from_data( {None: [self._data[col].valid_count for col in self._data.names]}, as_index(self._data.names), ) _SUPPORT_AXIS_LOOKUP = { 0: 0, 1: 1, "index": 0, "columns": 1, } @_cudf_nvtx_annotate def _reduce( self, op, axis=None, level=None, numeric_only=None, **kwargs, ): if level is not None: raise NotImplementedError("level parameter is not implemented yet") source = self if numeric_only: numeric_cols = ( name for name in self._data.names if is_numeric_dtype(self._data[name]) ) source = self._get_columns_by_label(numeric_cols) if source.empty: return Series(index=cudf.Index([], dtype="str")) if axis is None: if op in {"any", "all"}: axis = 2 else: # Do not remove until pandas 2.0 support is added. warnings.warn( f"In a future version, {type(self).__name__}" f".{op}(axis=None) will return a scalar {op} over " "the entire DataFrame. To retain the old behavior, " f"use '{type(self).__name__}.{op}(axis=0)' or " f"just '{type(self)}.{op}()'", FutureWarning, ) axis = 0 elif axis is no_default: axis = 0 else: axis = source._get_axis_from_axis_arg(axis) if axis in {0, 2}: try: result = [ getattr(source._data[col], op)(**kwargs) for col in source._data.names ] except AttributeError: if numeric_only is None and op in _numeric_reduction_ops: # Do not remove until pandas 2.0 support is added. warnings.warn( f"The default value of numeric_only in DataFrame.{op} " "is deprecated. In a future version, it will default " "to False. In addition, specifying " "'numeric_only=None' is deprecated. Select only valid " "columns or specify the value of numeric_only to " "silence this warning.", FutureWarning, ) numeric_cols = ( name for name in self._data.names if is_numeric_dtype(self._data[name]) ) source = self._get_columns_by_label(numeric_cols) if source.empty: if axis == 2: return getattr(as_column([]), op)(**kwargs) else: return Series(index=cudf.Index([], dtype="str")) try: result = [ getattr(source._data[col], op)(**kwargs) for col in source._data.names ] except AttributeError: raise TypeError( f"Not all column dtypes support op {op}" ) else: raise if axis == 2: return getattr(as_column(result), op)(**kwargs) else: source_dtypes = [c.dtype for c in source._data.columns] common_dtype = find_common_type(source_dtypes) if is_object_dtype(common_dtype) and any( not is_object_dtype(dtype) for dtype in source_dtypes ): raise TypeError( "Columns must all have the same dtype to " f"perform {op=} with {axis=}" ) return Series._from_data( {None: as_column(result)}, as_index(source._data.names) ) elif axis == 1: return source._apply_cupy_method_axis_1(op, **kwargs) else: raise ValueError(f"Invalid value of {axis=} received for {op}") @_cudf_nvtx_annotate def _scan( self, op, axis=None, *args, **kwargs, ): if axis is None: axis = 0 axis = self._get_axis_from_axis_arg(axis) if axis == 0: return super()._scan(op, axis=axis, *args, **kwargs) elif axis == 1: return self._apply_cupy_method_axis_1(op, **kwargs) @_cudf_nvtx_annotate def mode(self, axis=0, numeric_only=False, dropna=True): """ Get the mode(s) of each element along the selected axis. The mode of a set of values is the value that appears most often. It can be multiple values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to iterate over while searching for the mode: - 0 or 'index' : get mode of each column - 1 or 'columns' : get mode of each row. numeric_only : bool, default False If True, only apply to numeric columns. dropna : bool, default True Don't consider counts of NA/NaN/NaT. Returns ------- DataFrame The modes of each column or row. See Also -------- cudf.Series.mode : Return the highest frequency value in a Series. cudf.Series.value_counts : Return the counts of values in a Series. Notes ----- ``axis`` parameter is currently not supported. Examples -------- >>> import cudf >>> df = cudf.DataFrame({ ... "species": ["bird", "mammal", "arthropod", "bird"], ... "legs": [2, 4, 8, 2], ... "wings": [2.0, None, 0.0, None] ... }) >>> df species legs wings 0 bird 2 2.0 1 mammal 4 <NA> 2 arthropod 8 0.0 3 bird 2 <NA> By default, missing values are not considered, and the mode of wings are both 0 and 2. The second row of species and legs contains ``NA``, because they have only one mode, but the DataFrame has two rows. >>> df.mode() species legs wings 0 bird 2 0.0 1 <NA> <NA> 2.0 Setting ``dropna=False``, ``NA`` values are considered and they can be the mode (like for wings). >>> df.mode(dropna=False) species legs wings 0 bird 2 <NA> Setting ``numeric_only=True``, only the mode of numeric columns is computed, and columns of other types are ignored. >>> df.mode(numeric_only=True) legs wings 0 2 0.0 1 <NA> 2.0 """ if axis not in (0, "index"): raise NotImplementedError("Only axis=0 is currently supported") if numeric_only: data_df = self.select_dtypes( include=[np.number], exclude=["datetime64", "timedelta64"] ) else: data_df = self mode_results = [ data_df[col].mode(dropna=dropna) for col in data_df._data ] if len(mode_results) == 0: return DataFrame() df = cudf.concat(mode_results, axis=1) if isinstance(df, Series): df = df.to_frame() df._set_column_names_like(data_df) return df @_cudf_nvtx_annotate def all(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs): obj = self.select_dtypes(include="bool") if bool_only else self return super(DataFrame, obj).all(axis, skipna, level, **kwargs) @_cudf_nvtx_annotate def any(self, axis=0, bool_only=None, skipna=True, level=None, **kwargs): obj = self.select_dtypes(include="bool") if bool_only else self return super(DataFrame, obj).any(axis, skipna, level, **kwargs) @_cudf_nvtx_annotate def _apply_cupy_method_axis_1(self, method, *args, **kwargs): # This method uses cupy to perform scans and reductions along rows of a # DataFrame. Since cuDF is designed around columnar storage and # operations, we convert DataFrames to 2D cupy arrays for these ops. # for dask metadata compatibility skipna = kwargs.pop("skipna", None) skipna = True if skipna is None else skipna if method not in _cupy_nan_methods_map and skipna not in ( None, True, 1, ): raise NotImplementedError( f"Row-wise operations to calculate '{method}'" f" currently do not support `skipna=False`." ) level = kwargs.pop("level", None) if level not in (None,): raise NotImplementedError( "Row-wise operations currently do not support `level`." ) numeric_only = kwargs.pop("numeric_only", None) if numeric_only not in (None, True): raise NotImplementedError( "Row-wise operations currently do not " "support `numeric_only=False`." ) min_count = kwargs.pop("min_count", None) if min_count not in (None, 0): raise NotImplementedError( "Row-wise operations currently do not support `min_count`." ) bool_only = kwargs.pop("bool_only", None) if bool_only not in (None, True): raise NotImplementedError( "Row-wise operations currently do not support `bool_only`." ) # This parameter is only necessary for axis 0 reductions that cuDF # performs internally. cupy already upcasts smaller integer/bool types # to int64 when accumulating. kwargs.pop("cast_to_int", None) prepared, mask, common_dtype = self._prepare_for_rowwise_op( method, skipna ) for col in prepared._data.names: if prepared._data[col].nullable: prepared._data[col] = ( prepared._data[col] .astype( cudf.utils.dtypes.get_min_float_dtype( prepared._data[col] ) if not is_datetime_dtype(common_dtype) else cudf.dtype("float64") ) .fillna(np.nan) ) arr = prepared.to_cupy() if skipna is not False and method in _cupy_nan_methods_map: method = _cupy_nan_methods_map[method] result = getattr(cupy, method)(arr, axis=1, **kwargs) if result.ndim == 1: type_coerced_methods = { "count", "min", "max", "sum", "prod", "cummin", "cummax", "cumsum", "cumprod", } result_dtype = ( common_dtype if method in type_coerced_methods or is_datetime_dtype(common_dtype) else None ) result = column.as_column(result, dtype=result_dtype) if mask is not None: result = result.set_mask( cudf._lib.transform.bools_to_mask(mask._column) ) return Series( result, index=self.index, dtype=result_dtype, ) else: result_df = DataFrame(result).set_index(self.index) result_df._set_column_names_like(prepared) return result_df @_cudf_nvtx_annotate def _columns_view(self, columns): """ Return a subset of the DataFrame's columns as a view. """ return DataFrame( {col: self._data[col] for col in columns}, index=self.index ) @_cudf_nvtx_annotate def select_dtypes(self, include=None, exclude=None): """Return a subset of the DataFrame's columns based on the column dtypes. Parameters ---------- include : str or list which columns to include based on dtypes exclude : str or list which columns to exclude based on dtypes Returns ------- DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Raises ------ ValueError - If both of ``include`` and ``exclude`` are empty - If ``include`` and ``exclude`` have overlapping elements Examples -------- >>> import cudf >>> df = cudf.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0 """ # noqa: E501 # code modified from: # https://github.com/pandas-dev/pandas/blob/master/pandas/core/frame.py#L3196 if not isinstance(include, (list, tuple)): include = (include,) if include is not None else () if not isinstance(exclude, (list, tuple)): exclude = (exclude,) if exclude is not None else () df = DataFrame(index=self.index) # cudf_dtype_from_pydata_dtype can distinguish between # np.float and np.number selection = tuple(map(frozenset, (include, exclude))) if not any(selection): raise ValueError( "at least one of include or exclude must be nonempty" ) include, exclude = map( lambda x: frozenset(map(cudf_dtype_from_pydata_dtype, x)), selection, ) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError( f"include and exclude overlap on {(include & exclude)}" ) # include all subtypes include_subtypes = set() for dtype in self.dtypes: for i_dtype in include: # category handling if is_categorical_dtype(i_dtype): include_subtypes.add(i_dtype) elif inspect.isclass(dtype.type): if issubclass(dtype.type, i_dtype): include_subtypes.add(dtype.type) # exclude all subtypes exclude_subtypes = set() for dtype in self.dtypes: for e_dtype in exclude: # category handling if is_categorical_dtype(e_dtype): exclude_subtypes.add(e_dtype) elif inspect.isclass(dtype.type): if issubclass(dtype.type, e_dtype): exclude_subtypes.add(dtype.type) include_all = {cudf_dtype_from_pydata_dtype(d) for d in self.dtypes} if include: inclusion = include_all & include_subtypes elif exclude: inclusion = include_all else: inclusion = set() # remove all exclude types inclusion = inclusion - exclude_subtypes for k, col in self._data.items(): infered_type = cudf_dtype_from_pydata_dtype(col.dtype) if infered_type in inclusion: df._insert(len(df._data), k, col) return df @ioutils.doc_to_parquet() def to_parquet( self, path, engine="cudf", compression="snappy", index=None, partition_cols=None, partition_file_name=None, partition_offsets=None, statistics="ROWGROUP", metadata_file_path=None, int96_timestamps=False, row_group_size_bytes=ioutils._ROW_GROUP_SIZE_BYTES_DEFAULT, row_group_size_rows=None, max_page_size_bytes=None, max_page_size_rows=None, storage_options=None, return_metadata=False, use_dictionary=True, header_version="1.0", *args, **kwargs, ): """{docstring}""" from cudf.io import parquet return parquet.to_parquet( self, path=path, engine=engine, compression=compression, index=index, partition_cols=partition_cols, partition_file_name=partition_file_name, partition_offsets=partition_offsets, statistics=statistics, metadata_file_path=metadata_file_path, int96_timestamps=int96_timestamps, row_group_size_bytes=row_group_size_bytes, row_group_size_rows=row_group_size_rows, max_page_size_bytes=max_page_size_bytes, max_page_size_rows=max_page_size_rows, storage_options=storage_options, return_metadata=return_metadata, use_dictionary=use_dictionary, header_version=header_version, *args, **kwargs, ) @ioutils.doc_to_feather() def to_feather(self, path, *args, **kwargs): """{docstring}""" from cudf.io import feather feather.to_feather(self, path, *args, **kwargs) @ioutils.doc_dataframe_to_csv() def to_csv( self, path_or_buf=None, sep=",", na_rep="", columns=None, header=True, index=True, encoding=None, compression=None, lineterminator=None, chunksize=None, storage_options=None, ): """{docstring}""" from cudf.io import csv if lineterminator is None: lineterminator = os.linesep return csv.to_csv( self, path_or_buf=path_or_buf, sep=sep, na_rep=na_rep, columns=columns, header=header, index=index, lineterminator=lineterminator, chunksize=chunksize, encoding=encoding, compression=compression, storage_options=storage_options, ) @ioutils.doc_to_orc() def to_orc( self, fname, compression="snappy", statistics="ROWGROUP", stripe_size_bytes=None, stripe_size_rows=None, row_index_stride=None, cols_as_map_type=None, storage_options=None, index=None, ): """{docstring}""" from cudf.io import orc return orc.to_orc( df=self, fname=fname, compression=compression, statistics=statistics, stripe_size_bytes=stripe_size_bytes, stripe_size_rows=stripe_size_rows, row_index_stride=row_index_stride, cols_as_map_type=cols_as_map_type, storage_options=storage_options, index=index, ) @_cudf_nvtx_annotate def stack(self, level=-1, dropna=True): """Stack the prescribed level(s) from columns to index Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe: - if the columns have a single level, the output is a Series; - if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame. Parameters ---------- level : int, str, list default -1 Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels. dropna : bool, default True Whether to drop rows in the resulting Frame/Series with missing values. When multiple levels are specified, `dropna==False` is unsupported. Returns ------- DataFrame or Series Stacked dataframe or series. See Also -------- DataFrame.unstack : Unstack prescribed level(s) from index axis onto column axis. DataFrame.pivot : Reshape dataframe from long format to wide format. DataFrame.pivot_table : Create a spreadsheet-style pivot table as a DataFrame. Notes ----- The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe). Examples -------- **Single level columns** >>> df_single_level_cols = cudf.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height']) Stacking a dataframe with a single level column axis returns a Series: >>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat height 1 weight 0 dog height 3 weight 2 dtype: int64 **Multi level columns: simple case** >>> import pandas as pd >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = cudf.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1) Stacking a dataframe with a multi-level column axis: >>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4 **Missing values** >>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = cudf.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2) It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NULLs: >>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg <NA> 1.0 m 2.0 <NA> dog kg <NA> 3.0 m 4.0 <NA> **Prescribing the level(s) to be stacked** The first parameter controls which level or levels are stacked: >>> df_multi_level_cols2.stack(0) kg m cat height <NA> 2.0 weight 1.0 <NA> dog height <NA> 4.0 weight 3.0 <NA> >>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64 """ if isinstance(level, (int, str)): level = [level] elif isinstance(level, list): if not all(isinstance(lv, (int, str)) for lv in level): raise ValueError( "level must be either an int/str, or a list of int/str." ) else: raise ValueError( "level must be either an int/str, or a list of int/str." ) level = [level] if not isinstance(level, list) else level if len(level) > 1 and not dropna: raise NotImplementedError( "When stacking multiple levels, setting `dropna` to False " "will generate new column combination that does not exist " "in original dataframe. This behavior is unsupported in " "cuDF. See pandas deprecation note: " "https://github.com/pandas-dev/pandas/issues/53515" ) # Compute the columns to stack based on specified levels level_indices: list[int] = [] # If all passed in level names match up to the dataframe column's level # names, cast them to indices if all(lv in self._data.level_names for lv in level): level_indices = [self._data.level_names.index(lv) for lv in level] elif not all(isinstance(lv, int) for lv in level): raise ValueError( "`level` must either be a list of names or positions, not a " "mixture of both." ) else: # Must be a list of positions, normalize negative positions level_indices = [ lv + self._data.nlevels if lv < 0 else lv for lv in level ] unnamed_levels_indices = [ i for i in range(self._data.nlevels) if i not in level_indices ] has_unnamed_levels = len(unnamed_levels_indices) > 0 column_name_idx = self._data.to_pandas_index() # Construct new index from the levels specified by `level` named_levels = pd.MultiIndex.from_arrays( [column_name_idx.get_level_values(lv) for lv in level_indices] ) # Since `level` may only specify a subset of all levels, `unique()` is # required to remove duplicates. In pandas, the order of the keys in # the specified levels are always sorted. unique_named_levels = named_levels.unique().sort_values() # Each index from the original dataframe should repeat by the number # of unique values in the named_levels repeated_index = self.index.repeat(len(unique_named_levels)) # Each column name should tile itself by len(df) times tiled_index = libcudf.reshape.tile( [ as_column(unique_named_levels.get_level_values(i)) for i in range(unique_named_levels.nlevels) ], self.shape[0], ) # Assemble the final index new_index_columns = [*repeated_index._columns, *tiled_index] index_names = [*self._index.names, *unique_named_levels.names] new_index = MultiIndex.from_frame( DataFrame._from_data( dict(zip(range(0, len(new_index_columns)), new_index_columns)) ), names=index_names, ) # Compute the column indices that serves as the input for # `interleave_columns` column_idx_df = pd.DataFrame( data=range(len(self._data)), index=named_levels ) column_indices: list[list[int]] = [] if has_unnamed_levels: unnamed_level_values = list( map(column_name_idx.get_level_values, unnamed_levels_indices) ) unnamed_level_values = pd.MultiIndex.from_arrays( unnamed_level_values ) def unnamed_group_generator(): if has_unnamed_levels: for _, grpdf in column_idx_df.groupby(by=unnamed_level_values): # When stacking part of the levels, some combinations # of keys may not be present in this group but can be # present in others. Reindexing with the globally computed # `unique_named_levels` assigns -1 to these key # combinations, representing an all-null column that # is used in the subsequent libcudf call. yield grpdf.reindex( unique_named_levels, axis=0, fill_value=-1 ).sort_index().values else: yield column_idx_df.sort_index().values column_indices = list(unnamed_group_generator()) # For each of the group constructed from the unnamed levels, # invoke `interleave_columns` to stack the values. stacked = [] for column_idx in column_indices: # Collect columns based on indices, append None for -1 indices. columns = [ None if i == -1 else self._data.select_by_index(i).columns[0] for i in column_idx ] # Collect datatypes and cast columns as that type common_type = np.result_type( *(col.dtype for col in columns if col is not None) ) all_nulls = functools.cache( functools.partial( column_empty, self.shape[0], common_type, masked=True ) ) # homogenize the dtypes of the columns homogenized = [ col.astype(common_type) if col is not None else all_nulls() for col in columns ] stacked.append(libcudf.reshape.interleave_columns(homogenized)) # Construct the resulting dataframe / series if not has_unnamed_levels: result = Series._from_data( data={None: stacked[0]}, index=new_index ) else: if unnamed_level_values.nlevels == 1: unnamed_level_values = unnamed_level_values.get_level_values(0) unnamed_level_values = unnamed_level_values.unique().sort_values() data = ColumnAccessor( dict(zip(unnamed_level_values, stacked)), isinstance(unnamed_level_values, pd.MultiIndex), unnamed_level_values.names, ) result = DataFrame._from_data(data, index=new_index) if dropna: return result.dropna(how="all") else: return result @_cudf_nvtx_annotate def cov(self, **kwargs): """Compute the covariance matrix of a DataFrame. Parameters ---------- **kwargs Keyword arguments to be passed to cupy.cov Returns ------- cov : DataFrame """ cov = cupy.cov(self.values, rowvar=False) cols = self._data.to_pandas_index() df = DataFrame(cupy.asfortranarray(cov)).set_index(cols) df._set_column_names_like(self) return df def corr(self, method="pearson", min_periods=None): """Compute the correlation matrix of a DataFrame. Parameters ---------- method : {'pearson', 'spearman'}, default 'pearson' Method used to compute correlation: - pearson : Standard correlation coefficient - spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- DataFrame The requested correlation matrix. """ if method == "pearson": values = self.values elif method == "spearman": values = self.rank().values else: raise ValueError("method must be either 'pearson', 'spearman'") if min_periods is not None: raise NotImplementedError("Unsupported argument 'min_periods'") corr = cupy.corrcoef(values, rowvar=False) cols = self._data.to_pandas_index() df = DataFrame(cupy.asfortranarray(corr)).set_index(cols) df._set_column_names_like(self) return df @_cudf_nvtx_annotate def to_struct(self, name=None): """ Return a struct Series composed of the columns of the DataFrame. Parameters ---------- name: optional Name of the resulting Series Notes ----- Note that a copy of the columns is made. """ if not all(isinstance(name, str) for name in self._data.names): warnings.warn( "DataFrame contains non-string column name(s). Struct column " "requires field name to be string. Non-string column names " "will be casted to string as the field name." ) field_names = [str(name) for name in self._data.names] col = cudf.core.column.build_struct_column( names=field_names, children=tuple(col.copy(deep=True) for col in self._data.columns), size=len(self), ) return cudf.Series._from_data( cudf.core.column_accessor.ColumnAccessor({name: col}), index=self.index, name=name, ) @_cudf_nvtx_annotate def keys(self): """ Get the columns. This is index for Series, columns for DataFrame. Returns ------- Index Columns of DataFrame. Examples -------- >>> import cudf >>> df = cudf.DataFrame({'one' : [1, 2, 3], 'five' : ['a', 'b', 'c']}) >>> df one five 0 1 a 1 2 b 2 3 c >>> df.keys() Index(['one', 'five'], dtype='object') >>> df = cudf.DataFrame(columns=[0, 1, 2, 3]) >>> df Empty DataFrame Columns: [0, 1, 2, 3] Index: [] >>> df.keys() Int64Index([0, 1, 2, 3], dtype='int64') """ return self._data.to_pandas_index() def itertuples(self, index=True, name="Pandas"): """ Iteration is unsupported. See :ref:`iteration <pandas-comparison/iteration>` for more information. """ raise TypeError( "cuDF does not support iteration of DataFrame " "via itertuples. Consider using " "`.to_pandas().itertuples()` " "if you wish to iterate over namedtuples." ) def iterrows(self): """ Iteration is unsupported. See :ref:`iteration <pandas-comparison/iteration>` for more information. """ raise TypeError( "cuDF does not support iteration of DataFrame " "via iterrows. Consider using " "`.to_pandas().iterrows()` " "if you wish to iterate over each row." ) @_cudf_nvtx_annotate def append( self, other, ignore_index=False, verify_integrity=False, sort=False ): """ Append rows of `other` to the end of caller, returning a new object. Columns in `other` that are not in the caller are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : bool, default False If True, do not use the index labels. sort : bool, default False Sort columns ordering if the columns of `self` and `other` are not aligned. verify_integrity : bool, default False This Parameter is currently not supported. Returns ------- DataFrame See Also -------- cudf.concat : General function to concatenate DataFrame or objects. Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a cudf DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. `verify_integrity` parameter is not supported yet. Examples -------- >>> import cudf >>> df = cudf.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = cudf.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df2 A B 0 5 6 1 7 8 >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient: >>> df = cudf.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4 More efficient than above: >>> cudf.concat([cudf.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4 """ if isinstance(other, dict): if not ignore_index: raise TypeError("Can only append a dict if ignore_index=True") other = DataFrame(other) elif isinstance(other, Series): if other.name is None and not ignore_index: raise TypeError( "Can only append a Series if ignore_index=True " "or if the Series has a name" ) current_cols = self._data.to_pandas_index() combined_columns = other.index.to_pandas() if len(current_cols): if cudf.utils.dtypes.is_mixed_with_object_dtype( current_cols, combined_columns ): raise TypeError( "cudf does not support mixed types, please type-cast " "the column index of dataframe and index of series " "to same dtypes." ) combined_columns = current_cols.union( combined_columns, sort=False ) if sort: combined_columns = combined_columns.sort_values() other = other.reindex(combined_columns, copy=False).to_frame().T if not current_cols.equals(combined_columns): self = self.reindex(columns=combined_columns) elif ( isinstance(other, list) and other and not isinstance(other[0], DataFrame) ): other = DataFrame(other) cols = self._data.to_pandas_index() if (cols.get_indexer(other._data.to_pandas_index()) >= 0).all(): other = other.reindex(columns=cols) return super()._append(other, ignore_index, verify_integrity, sort) @_cudf_nvtx_annotate @copy_docstring(reshape.pivot) def pivot(self, index, columns, values=None): return cudf.core.reshape.pivot( self, index=index, columns=columns, values=values ) @_cudf_nvtx_annotate @copy_docstring(reshape.pivot_table) def pivot_table( self, values=None, index=None, columns=None, aggfunc="mean", fill_value=None, margins=False, dropna=None, margins_name="All", observed=False, sort=True, ): return cudf.core.reshape.pivot_table( self, values=values, index=index, columns=columns, aggfunc=aggfunc, fill_value=fill_value, margins=margins, dropna=dropna, margins_name=margins_name, observed=observed, sort=sort, ) @_cudf_nvtx_annotate @copy_docstring(reshape.unstack) def unstack(self, level=-1, fill_value=None): return cudf.core.reshape.unstack( self, level=level, fill_value=fill_value ) @_cudf_nvtx_annotate def explode(self, column, ignore_index=False): """ Transform each element of a list-like to a row, replicating index values. Parameters ---------- column : str Column to explode. ignore_index : bool, default False If True, the resulting index will be labeled 0, 1, …, n - 1. Returns ------- DataFrame Examples -------- >>> import cudf >>> df = cudf.DataFrame({ ... "a": [[1, 2, 3], [], None, [4, 5]], ... "b": [11, 22, 33, 44], ... }) >>> df a b 0 [1, 2, 3] 11 1 [] 22 2 None 33 3 [4, 5] 44 >>> df.explode('a') a b 0 1 11 0 2 11 0 3 11 1 <NA> 22 2 <NA> 33 3 4 44 3 5 44 """ if column not in self._column_names: raise KeyError(column) return super()._explode(column, ignore_index) def pct_change( self, periods=1, fill_method="ffill", limit=None, freq=None ): """ Calculates the percent change between sequential elements in the DataFrame. Parameters ---------- periods : int, default 1 Periods to shift for forming percent change. fill_method : str, default 'ffill' How to handle NAs before computing percent changes. limit : int, optional The number of consecutive NAs to fill before stopping. Not yet implemented. freq : str, optional Increment to use from time series API. Not yet implemented. Returns ------- DataFrame """ if limit is not None: raise NotImplementedError("limit parameter not supported yet.") if freq is not None: raise NotImplementedError("freq parameter not supported yet.") elif fill_method not in {"ffill", "pad", "bfill", "backfill"}: raise ValueError( "fill_method must be one of 'ffill', 'pad', " "'bfill', or 'backfill'." ) data = self.fillna(method=fill_method, limit=limit) return data.diff(periods=periods) / data.shift( periods=periods, freq=freq ) def __dataframe__( self, nan_as_null: bool = False, allow_copy: bool = True ): return df_protocol.__dataframe__( self, nan_as_null=nan_as_null, allow_copy=allow_copy ) def nunique(self, axis=0, dropna=True): """ Count number of distinct elements in specified axis. Return Series with number of distinct elements. Can ignore NaN values. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise. dropna : bool, default True Don't include NaN in the counts. Returns ------- Series Examples -------- >>> import cudf >>> df = cudf.DataFrame({'A': [4, 5, 6], 'B': [4, 1, 1]}) >>> df.nunique() A 3 B 2 dtype: int64 """ if axis != 0: raise NotImplementedError("axis parameter is not supported yet.") return cudf.Series(super().nunique(dropna=dropna)) def _sample_axis_1( self, n: int, weights: Optional[ColumnLike], replace: bool, random_state: np.random.RandomState, ignore_index: bool, ): if replace: # Since cuDF does not support multiple columns with same name, # sample with replace=True at axis 1 is unsupported. raise NotImplementedError( "Sample is not supported for axis 1/`columns` when" "`replace=True`." ) sampled_column_labels = random_state.choice( self._column_names, size=n, replace=False, p=weights ) result = self._get_columns_by_label(sampled_column_labels) if ignore_index: result.reset_index(drop=True) return result def _from_columns_like_self( self, columns: List[ColumnBase], column_names: abc.Iterable[str], index_names: Optional[List[str]] = None, *, override_dtypes: Optional[abc.Iterable[Optional[Dtype]]] = None, ) -> DataFrame: result = super()._from_columns_like_self( columns, column_names, index_names, override_dtypes=override_dtypes, ) result._set_column_names_like(self) return result @_cudf_nvtx_annotate def interleave_columns(self): """ Interleave Series columns of a table into a single column. Converts the column major table `cols` into a row major column. Parameters ---------- cols : input Table containing columns to interleave. Examples -------- >>> import cudf >>> df = cudf.DataFrame({0: ['A1', 'A2', 'A3'], 1: ['B1', 'B2', 'B3']}) >>> df 0 1 0 A1 B1 1 A2 B2 2 A3 B3 >>> df.interleave_columns() 0 A1 1 B1 2 A2 3 B2 4 A3 5 B3 dtype: object Returns ------- The interleaved columns as a single column """ if ("category" == self.dtypes).any(): raise ValueError( "interleave_columns does not support 'category' dtype." ) return self._constructor_sliced._from_data( {None: libcudf.reshape.interleave_columns([*self._columns])} ) @_cudf_nvtx_annotate def eval(self, expr: str, inplace: bool = False, **kwargs): """Evaluate a string describing operations on DataFrame columns. Operates on columns only, not specific rows or elements. Parameters ---------- expr : str The expression string to evaluate. inplace : bool, default False If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned. **kwargs Not supported. Returns ------- DataFrame, Series, or None Series if a single column is returned (the typical use case), DataFrame if any assignment statements are included in ``expr``, or None if ``inplace=True``. Notes ----- Difference from pandas: * Additional kwargs are not supported. * Bitwise and logical operators are not dtype-dependent. Specifically, `&` must be used for bitwise operators on integers, not `and`, which is specifically for the logical and between booleans. * Only numerical types currently support all operators. * String types currently support comparison operators. * Operators generally will not cast automatically. Users are responsible for casting columns to suitable types before evaluating a function. * Multiple assignments to the same name (i.e. a sequence of assignment statements where later statements are conditioned upon the output of earlier statements) is not supported. Examples -------- >>> df = cudf.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64 Assignment is allowed though by default the original DataFrame is not modified. >>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 Use ``inplace=True`` to modify the original DataFrame. >>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 Multiple columns can be assigned to using multi-line expressions: >>> df.eval( ... ''' ... C = A + B ... D = A - B ... ''' ... ) A B C D 0 1 10 11 -9 1 2 8 10 -6 2 3 6 9 -3 3 4 4 8 0 4 5 2 7 3 """ if kwargs: raise ValueError( "Keyword arguments other than `inplace` are not supported" ) # Have to use a regex match to avoid capturing ==, >=, or <= equals_sign_regex = "[^=><]=[^=]" includes_assignment = re.search(equals_sign_regex, expr) is not None # Check if there were multiple statements. Filter out empty lines. statements = tuple(filter(None, expr.strip().split("\n"))) if len(statements) > 1 and any( re.search(equals_sign_regex, st) is None for st in statements ): raise ValueError( "Multi-line expressions are only valid if all expressions " "contain an assignment." ) if not includes_assignment: if inplace: raise ValueError( "Cannot operate inplace if there is no assignment" ) return Series._from_data( { None: libcudf.transform.compute_column( [*self._columns], self._column_names, statements[0] ) } ) targets = [] exprs = [] for st in statements: try: t, e = re.split("[^=]=[^=]", st) except ValueError as err: if "too many values" in str(err): raise ValueError( f"Statement {st} contains too many assignments ('=')" ) raise targets.append(t.strip()) exprs.append(e.strip()) cols = ( libcudf.transform.compute_column( [*self._columns], self._column_names, e ) for e in exprs ) ret = self if inplace else self.copy(deep=False) for name, col in zip(targets, cols): ret._data[name] = col if not inplace: return ret def value_counts( self, subset=None, normalize=False, sort=True, ascending=False, dropna=True, ): """ Return a Series containing counts of unique rows in the DataFrame. Parameters ---------- subset: list-like, optional Columns to use when counting unique combinations. normalize: bool, default False Return proportions rather than frequencies. sort: bool, default True Sort by frequencies. ascending: bool, default False Sort in ascending order. dropna: bool, default True Don't include counts of rows that contain NA values. Returns ------- Series Notes ----- The returned Series will have a MultiIndex with one level per input column. By default, rows that contain any NA values are omitted from the result. By default, the resulting Series will be in descending order so that the first element is the most frequently-occurring row. Examples -------- >>> import cudf >>> df = cudf.DataFrame({'num_legs': [2, 4, 4, 6], ... 'num_wings': [2, 0, 0, 0]}, ... index=['falcon', 'dog', 'cat', 'ant']) >>> df.value_counts() num_legs num_wings 4 0 2 2 2 1 6 0 1 dtype: int64 """ if subset: diff = set(subset) - set(self._data) if len(diff) != 0: raise KeyError(f"columns {diff} do not exist") columns = list(self._data.names) if subset is None else subset result = ( self.groupby( by=columns, dropna=dropna, ) .size() .astype("int64") ) if sort: result = result.sort_values(ascending=ascending) if normalize: result = result / result._column.sum() # Pandas always returns MultiIndex even if only one column. if not isinstance(result.index, MultiIndex): result.index = MultiIndex._from_data(result._index._data) return result def from_dataframe(df, allow_copy=False): return df_protocol.from_dataframe(df, allow_copy=allow_copy) def make_binop_func(op, postprocess=None): # This function is used to wrap binary operations in Frame with an # appropriate API for DataFrame as required for pandas compatibility. The # main effect is reordering and error-checking parameters in # DataFrame-specific ways. The postprocess argument is a callable that may # optionally be provided to modify the result of the binop if additional # processing is needed for pandas compatibility. The callable must have the # signature # def postprocess(left, right, output) # where left and right are the inputs to the binop and output is the result # of calling the wrapped Frame binop. wrapped_func = getattr(IndexedFrame, op) @functools.wraps(wrapped_func) def wrapper(self, other, axis="columns", level=None, fill_value=None): if axis not in (1, "columns"): raise NotImplementedError("Only axis=1 supported at this time.") output = wrapped_func(self, other, axis, level, fill_value) if postprocess is None: return output return postprocess(self, other, output) # functools.wraps copies module level attributes to `wrapper` and sets # __wrapped__ attributes to `wrapped_func`. Cpython looks up the signature # string of a function by recursively delving into __wrapped__ until # it hits the first function that has __signature__ attribute set. To make # the signature string of `wrapper` matches with its actual parameter list, # we directly set the __signature__ attribute of `wrapper` below. new_sig = inspect.signature( lambda self, other, axis="columns", level=None, fill_value=None: None ) wrapper.__signature__ = new_sig return wrapper # Wrap arithmetic Frame binop functions with the expected API for Series. for binop in [ "add", "radd", "subtract", "sub", "rsub", "multiply", "mul", "rmul", "mod", "rmod", "pow", "rpow", "floordiv", "rfloordiv", "truediv", "div", "divide", "rtruediv", "rdiv", ]: setattr(DataFrame, binop, make_binop_func(binop)) def _make_replacement_func(value): # This function generates a postprocessing function suitable for use with # make_binop_func that fills null columns with the desired fill value. def func(left, right, output): # This function may be passed as the postprocess argument to # make_binop_func. Columns that are only present in one of the inputs # will be null in the output. This function postprocesses the output to # replace those nulls with some desired output. if isinstance(right, Series): uncommon_columns = set(left._column_names) ^ set(right.index) elif isinstance(right, DataFrame): uncommon_columns = set(left._column_names) ^ set( right._column_names ) elif _is_scalar_or_zero_d_array(right): for name, col in output._data.items(): output._data[name] = col.fillna(value) return output else: return output for name in uncommon_columns: output._data[name] = column.full( size=len(output), fill_value=value, dtype="bool" ) return output return func # The ne comparator needs special postprocessing because elements that missing # in one operand should be treated as null and result in True in the output # rather than simply propagating nulls. DataFrame.ne = make_binop_func("ne", _make_replacement_func(True)) # All other comparison operators needs return False when one of the operands is # missing in the input. for binop in [ "eq", "lt", "le", "gt", "ge", ]: setattr( DataFrame, binop, make_binop_func(binop, _make_replacement_func(False)) ) @_cudf_nvtx_annotate def from_pandas(obj, nan_as_null=no_default): """ Convert certain Pandas objects into the cudf equivalent. Supports DataFrame, Series, Index, or MultiIndex. Returns ------- DataFrame/Series/Index/MultiIndex Return type depends on the passed input. Raises ------ TypeError for invalid input type. Examples -------- >>> import cudf >>> import pandas as pd >>> data = [[0, 1], [1, 2], [3, 4]] >>> pdf = pd.DataFrame(data, columns=['a', 'b'], dtype=int) >>> pdf a b 0 0 1 1 1 2 2 3 4 >>> gdf = cudf.from_pandas(pdf) >>> gdf a b 0 0 1 1 1 2 2 3 4 >>> type(gdf) <class 'cudf.core.dataframe.DataFrame'> >>> type(pdf) <class 'pandas.core.frame.DataFrame'> Converting a Pandas Series to cuDF Series: >>> psr = pd.Series(['a', 'b', 'c', 'd'], name='apple', dtype='str') >>> psr 0 a 1 b 2 c 3 d Name: apple, dtype: object >>> gsr = cudf.from_pandas(psr) >>> gsr 0 a 1 b 2 c 3 d Name: apple, dtype: object >>> type(gsr) <class 'cudf.core.series.Series'> >>> type(psr) <class 'pandas.core.series.Series'> Converting a Pandas Index to cuDF Index: >>> pidx = pd.Index([1, 2, 10, 20]) >>> pidx Int64Index([1, 2, 10, 20], dtype='int64') >>> gidx = cudf.from_pandas(pidx) >>> gidx Int64Index([1, 2, 10, 20], dtype='int64') >>> type(gidx) <class 'cudf.core.index.Int64Index'> >>> type(pidx) <class 'pandas.core.indexes.numeric.Int64Index'> Converting a Pandas MultiIndex to cuDF MultiIndex: >>> pmidx = pd.MultiIndex( ... levels=[[1, 3, 4, 5], [1, 2, 5]], ... codes=[[0, 0, 1, 2, 3], [0, 2, 1, 1, 0]], ... names=["x", "y"], ... ) >>> pmidx MultiIndex([(1, 1), (1, 5), (3, 2), (4, 2), (5, 1)], names=['x', 'y']) >>> gmidx = cudf.from_pandas(pmidx) >>> gmidx MultiIndex([(1, 1), (1, 5), (3, 2), (4, 2), (5, 1)], names=['x', 'y']) >>> type(gmidx) <class 'cudf.core.multiindex.MultiIndex'> >>> type(pmidx) <class 'pandas.core.indexes.multi.MultiIndex'> """ if nan_as_null is no_default: nan_as_null = ( False if cudf.get_option("mode.pandas_compatible") else None ) if isinstance(obj, pd.DataFrame): return DataFrame.from_pandas(obj, nan_as_null=nan_as_null) elif isinstance(obj, pd.Series): return Series.from_pandas(obj, nan_as_null=nan_as_null) # This carveout for cudf.pandas is undesirable, but fixes crucial issues # for core RAPIDS projects like cuML and cuGraph that rely on # `cudf.from_pandas`, so we allow it for now. elif (ret := getattr(obj, "_fsproxy_wrapped", None)) is not None: return ret elif isinstance(obj, pd.MultiIndex): return MultiIndex.from_pandas(obj, nan_as_null=nan_as_null) elif isinstance(obj, pd.RangeIndex): return cudf.core.index.RangeIndex( start=obj.start, stop=obj.stop, step=obj.step, name=obj.name ) elif isinstance(obj, pd.Index): return cudf.Index.from_pandas(obj, nan_as_null=nan_as_null) elif isinstance(obj, pd.CategoricalDtype): return cudf.CategoricalDtype.from_pandas(obj) else: raise TypeError( "from_pandas only accepts Pandas Dataframes, Series, " "Index, RangeIndex and MultiIndex objects. " "Got %s" % type(obj) ) @_cudf_nvtx_annotate def merge(left, right, *args, **kwargs): if isinstance(left, Series): left = left.to_frame() return left.merge(right, *args, **kwargs) # a bit of fanciness to inject docstring with left parameter merge_doc = DataFrame.merge.__doc__ if merge_doc is not None: idx = merge_doc.find("right") merge.__doc__ = "".join( [ merge_doc[:idx], "\n\tleft : Series or DataFrame\n\t", merge_doc[idx:], ] ) def _align_indices(lhs, rhs): """ Internal util to align the indices of two DataFrames. Returns a tuple of the aligned dataframes, or the original arguments if the indices are the same, or if rhs isn't a DataFrame. """ lhs_out, rhs_out = lhs, rhs if isinstance(rhs, DataFrame) and not lhs.index.equals(rhs.index): df = lhs.merge( rhs, sort=True, how="outer", left_index=True, right_index=True, suffixes=("_x", "_y"), ) df = df.sort_index() lhs_out = DataFrame(index=df.index) rhs_out = DataFrame(index=df.index) common = set(lhs._column_names) & set(rhs._column_names) common_x = {f"{x}_x": x for x in common} common_y = {f"{x}_y": x for x in common} for col in df._column_names: if col in common_x: lhs_out[common_x[col]] = df[col] elif col in common_y: rhs_out[common_y[col]] = df[col] elif col in lhs: lhs_out[col] = df[col] elif col in rhs: rhs_out[col] = df[col] return lhs_out, rhs_out def _setitem_with_dataframe( input_df: DataFrame, replace_df: DataFrame, input_cols: Any = None, mask: Optional[ColumnBase] = None, ignore_index: bool = False, ): """ This function sets item dataframes relevant columns with replacement df :param input_df: Dataframe to be modified inplace :param replace_df: Replacement DataFrame to replace values with :param input_cols: columns to replace in the input dataframe :param mask: boolean mask in case of masked replacing :param ignore_index: Whether to conduct index equality and reindex """ if input_cols is None: input_cols = input_df._column_names if len(input_cols) != len(replace_df._column_names): raise ValueError( "Number of Input Columns must be same replacement Dataframe" ) if ( not ignore_index and len(input_df) != 0 and not input_df.index.equals(replace_df.index) ): replace_df = replace_df.reindex(input_df.index) for col_1, col_2 in zip(input_cols, replace_df._column_names): if col_1 in input_df._column_names: if mask is not None: input_df._data[col_1][mask] = column.as_column( replace_df[col_2] ) else: input_df._data[col_1] = column.as_column(replace_df[col_2]) else: if mask is not None: raise ValueError("Can not insert new column with a bool mask") else: # handle append case input_df._insert( loc=len(input_df._data), name=col_1, value=replace_df[col_2], ) def extract_col(df, col): """ Extract column from dataframe `df` with their name `col`. If `col` is index and there are no columns with name `index`, then this will return index column. """ try: return df._data[col] except KeyError: if ( col == "index" and col not in df.index._data and not isinstance(df.index, MultiIndex) ): return df.index._data.columns[0] return df.index._data[col] def _get_union_of_indices(indexes): if len(indexes) == 1: return indexes[0] else: merged_index = cudf.core.index.GenericIndex._concat(indexes) return merged_index.drop_duplicates() def _get_union_of_series_names(series_list): names_list = [] unnamed_count = 0 for series in series_list: if series.name is None: names_list.append(f"Unnamed {unnamed_count}") unnamed_count += 1 else: names_list.append(series.name) if unnamed_count == len(series_list): names_list = range(len(series_list)) return names_list # Create a dictionary of the common, non-null columns def _get_non_null_cols_and_dtypes(col_idxs, list_of_columns): # A mapping of {idx: np.dtype} dtypes = dict() # A mapping of {idx: [...columns]}, where `[...columns]` # is a list of columns with at least one valid value for each # column name across all input frames non_null_columns = dict() for idx in col_idxs: for cols in list_of_columns: # Skip columns not in this frame if idx >= len(cols) or cols[idx] is None: continue # Store the first dtype we find for a column, even if it's # all-null. This ensures we always have at least one dtype # for each name. This dtype will be overwritten later if a # non-null Column with the same name is found. if idx not in dtypes: dtypes[idx] = cols[idx].dtype if cols[idx].valid_count > 0: if idx not in non_null_columns: non_null_columns[idx] = [cols[idx]] else: non_null_columns[idx].append(cols[idx]) return non_null_columns, dtypes def _find_common_dtypes_and_categories(non_null_columns, dtypes): # A mapping of {idx: categories}, where `categories` is a # column of all the unique categorical values from each # categorical column across all input frames categories = dict() for idx, cols in non_null_columns.items(): # default to the first non-null dtype dtypes[idx] = cols[0].dtype # If all the non-null dtypes are int/float, find a common dtype if all(is_numeric_dtype(col.dtype) for col in cols): dtypes[idx] = find_common_type([col.dtype for col in cols]) # If all categorical dtypes, combine the categories elif all( isinstance(col, cudf.core.column.CategoricalColumn) for col in cols ): # Combine and de-dupe the categories categories[idx] = cudf.Series( concat_columns([col.categories for col in cols]) )._column.unique() # Set the column dtype to the codes' dtype. The categories # will be re-assigned at the end dtypes[idx] = min_scalar_type(len(categories[idx])) # Otherwise raise an error if columns have different dtypes elif not all(is_dtype_equal(c.dtype, dtypes[idx]) for c in cols): raise ValueError("All columns must be the same type") return categories def _cast_cols_to_common_dtypes(col_idxs, list_of_columns, dtypes, categories): # Cast all columns to a common dtype, assign combined categories, # and back-fill missing columns with all-null columns for idx in col_idxs: dtype = dtypes[idx] for cols in list_of_columns: # If column not in this df, fill with an all-null column if idx >= len(cols) or cols[idx] is None: n = len(next(x for x in cols if x is not None)) cols[idx] = column_empty(row_count=n, dtype=dtype, masked=True) else: # If column is categorical, rebase the codes with the # combined categories, and cast the new codes to the # min-scalar-sized dtype if idx in categories: cols[idx] = ( cols[idx] ._set_categories( categories[idx], is_unique=True, ) .codes ) cols[idx] = cols[idx].astype(dtype) def _reassign_categories(categories, cols, col_idxs): for name, idx in zip(cols, col_idxs): if idx in categories: cols[name] = build_categorical_column( categories=categories[idx], codes=build_column( cols[name].base_data, dtype=cols[name].dtype ), mask=cols[name].base_mask, offset=cols[name].offset, size=cols[name].size, ) def _from_dict_create_index(indexlist, namelist, library): if len(namelist) > 1: index = library.MultiIndex.from_tuples(indexlist, names=namelist) else: index = library.Index(indexlist, name=namelist[0]) return index
0