repo_id
stringlengths 21
96
| file_path
stringlengths 31
155
| content
stringlengths 1
92.9M
| __index_level_0__
int64 0
0
|
---|---|---|---|
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/replace.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_replace
* @{
* @file
*/
/**
* @brief Replaces target string within each string with the specified
* replacement string.
*
* This function searches each string in the column for the target string.
* If found, the target string is replaced by the repl string within the
* input string. If not found, the output entry is just a copy of the
* corresponding input string.
*
* Specifying an empty string for repl will essentially remove the target
* string if found in each string.
*
* Null string entries will return null output string entries.
*
* @code{.pseudo}
* Example:
* s = ["hello", "goodbye"]
* r1 = replace(s,"o","OOO")
* r1 is now ["hellOOO","gOOOOOOdbye"]
* r2 = replace(s,"oo","")
* r2 is now ["hello","gdbye"]
* @endcode
*
* @throw cudf::logic_error if target is an empty string.
*
* @param input Strings column for this operation
* @param target String to search for within each string
* @param repl Replacement string if target is found
* @param maxrepl Maximum times to replace if target appears multiple times in the input string.
* Default of -1 specifies replace all occurrences of target in each string.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
std::unique_ptr<column> replace(
strings_column_view const& input,
string_scalar const& target,
string_scalar const& repl,
cudf::size_type maxrepl = -1,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief This function replaces each string in the column with the provided
* repl string within the [start,stop) character position range.
*
* Null string entries will return null output string entries.
*
* Position values are 0-based meaning position 0 is the first character
* of each string.
*
* This function can be used to insert a string into specific position
* by specifying the same position value for start and stop. The repl
* string can be appended to each string by specifying -1 for both
* start and stop.
*
* @code{.pseudo}
* Example:
* s = ["abcdefghij","0123456789"]
* r = s.replace_slice(s,2,5,"z")
* r is now ["abzfghij", "01z56789"]
* @endcode
*
* @throw cudf::logic_error if start is greater than stop.
*
* @param input Strings column for this operation.
* @param repl Replacement string for specified positions found.
* Default is empty string.
* @param start Start position where repl will be added.
* Default is 0, first character position.
* @param stop End position (exclusive) to use for replacement.
* Default of -1 specifies the end of each string.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
std::unique_ptr<column> replace_slice(
strings_column_view const& input,
string_scalar const& repl = string_scalar(""),
size_type start = 0,
size_type stop = -1,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Replaces substrings matching a list of targets with the corresponding
* replacement strings.
*
* For each string in strings, the list of targets is searched within that string.
* If a target string is found, it is replaced by the corresponding entry in the repls column.
* All occurrences found in each string are replaced.
*
* This does not use regex to match targets in the string.
*
* Null string entries will return null output string entries.
*
* The repls argument can optionally contain a single string. In this case, all
* matching target substrings will be replaced by that single string.
*
* @code{.pseudo}
* Example:
* s = ["hello", "goodbye"]
* tgts = ["e","o"]
* repls = ["EE","OO"]
* r1 = replace(s,tgts,repls)
* r1 is now ["hEEllO", "gOOOOdbyEE"]
* tgts = ["e","oo"]
* repls = ["33",""]
* r2 = replace(s,tgts,repls)
* r2 is now ["h33llo", "gdby33"]
* @endcode
*
* @throw cudf::logic_error if targets and repls are different sizes except
* if repls is a single string.
* @throw cudf::logic_error if targets or repls contain null entries.
*
* @param input Strings column for this operation
* @param targets Strings to search for in each string
* @param repls Corresponding replacement strings for target strings
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
std::unique_ptr<column> replace(
strings_column_view const& input,
strings_column_view const& targets,
strings_column_view const& repls,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/repeat_strings.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_copy
* @{
* @file
* @brief Strings APIs for copying strings.
*/
/**
* @brief Repeat the given string scalar a given number of times
*
* An output string scalar is generated by repeating the input string by a number of times given by
* the `repeat_times` parameter.
*
* In special cases:
* - If `repeat_times` is not a positive value, an empty (valid) string scalar will be returned.
* - An invalid input scalar will always result in an invalid output scalar regardless of the
* value of `repeat_times` parameter.
*
* @code{.pseudo}
* Example:
* s = '123XYZ-'
* out = repeat_strings(s, 3)
* out is '123XYZ-123XYZ-123XYZ-'
* @endcode
*
* @throw std::overflow_error if the size of the output string scalar exceeds the maximum value that
* can be stored by the scalar: `input.size() * repeat_times > max of size_type`
*
* @param input The scalar containing the string to repeat
* @param repeat_times The number of times the input string is repeated
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned string scalar
* @return New string scalar in which the input string is repeated
*/
std::unique_ptr<string_scalar> repeat_string(
string_scalar const& input,
size_type repeat_times,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Repeat each string in the given strings column a given number of times
*
* An output strings column is generated by repeating each string from the input strings column by
* the number of times given by the `repeat_times` parameter.
*
* In special cases:
* - If `repeat_times` is not a positive number, a non-null input string will always result in
* an empty output string.
* - A null input string will always result in a null output string regardless of the value of the
* `repeat_times` parameter.
*
* @code{.pseudo}
* Example:
* strs = ['aa', null, '', 'bbc']
* out = repeat_strings(strs, 3)
* out is ['aaaaaa', null, '', 'bbcbbcbbc']
* @endcode
*
* @param input The column containing strings to repeat
* @param repeat_times The number of times each input string is repeated
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned strings column
* @return New column containing the repeated strings
*/
std::unique_ptr<column> repeat_strings(
strings_column_view const& input,
size_type repeat_times,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Repeat each string in the given strings column by the numbers of times given in another
* numeric column
*
* An output strings column is generated by repeating each of the input string by a number of times
* given by the corresponding row in a `repeat_times` numeric column.
*
* In special cases:
* - Any null row (from either the input strings column or the `repeat_times` column) will always
* result in a null output string.
* - If any value in the `repeat_times` column is not a positive number and its corresponding input
* string is not null, the output string will be an empty string.
*
* @code{.pseudo}
* Example:
* strs = ['aa', null, '', 'bbc-']
* repeat_times = [ 1, 2, 3, 4 ]
* out = repeat_strings(strs, repeat_times)
* out is ['aa', null, '', 'bbc-bbc-bbc-bbc-']
* @endcode
*
* @throw cudf::logic_error if the input `repeat_times` is not an integer type
* @throw cudf::logic_error if the input columns have different sizes.
*
* @param input The column containing strings to repeat
* @param repeat_times The column containing numbers of times that the corresponding input strings
* for each row are repeated
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned strings column
* @return New column containing the repeated strings.
*/
std::unique_ptr<column> repeat_strings(
strings_column_view const& input,
column_view const& repeat_times,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/padding.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/side_type.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_modify
* @{
* @file
*/
/**
* @brief Add padding to each string using a provided character.
*
* If the string is already `width` or more characters, no padding is performed.
* Also, no strings are truncated.
*
* Null string entries result in corresponding null entries in the output column.
*
* @code{.pseudo}
* Example:
* s = ['aa','bbb','cccc','ddddd']
* r = pad(s,4)
* r is now ['aa ','bbb ','cccc','ddddd']
* @endcode
*
* @param input Strings instance for this operation
* @param width The minimum number of characters for each string
* @param side Where to place the padding characters;
* Default is pad right (left justify)
* @param fill_char Single UTF-8 character to use for padding;
* Default is the space character
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column with padded strings
*/
std::unique_ptr<column> pad(
strings_column_view const& input,
size_type width,
side_type side = side_type::RIGHT,
std::string_view fill_char = " ",
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Add '0' as padding to the left of each string.
*
* This is equivalent to `pad(width,left,'0')` but preserves the sign character
* if it appears in the first position.
*
* If the string is already width or more characters, no padding is performed.
* No strings are truncated.
*
* Null rows in the input result in corresponding null rows in the output column.
*
* @code{.pseudo}
* Example:
* s = ['1234','-9876','+0.34','-342567', '2+2']
* r = zfill(s,6)
* r is now ['001234','-09876','+00.34','-342567', '0002+2']
* @endcode
*
* @param input Strings instance for this operation
* @param width The minimum number of characters for each string
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column of strings
*/
std::unique_ptr<column> zfill(
strings_column_view const& input,
size_type width,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/char_types/char_cases.hpp
|
/*
* Copyright (c) 2020, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Regenerates the special case mapping tables used to handle non-trivial unicode
* character case conversions.
*
* 'special' cased characters are those defined as not having trivial single->single character
* mappings when having upper(), lower() or titlecase() operations applied. Typically this is
* for cases where a single character maps to multiple, but there are also cases of
* non-reversible mappings, where: codepoint != lower(upper(code_point)).
*/
void generate_special_mapping_hash_table();
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/char_types/char_types.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/char_types/char_types_enum.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_types
* @{
* @file
*/
/**
* @brief Returns a boolean column identifying strings entries in which all
* characters are of the type specified.
*
* The output row entry will be set to false if the corresponding string element
* is empty or has at least one character not of the specified type. If all
* characters fit the type then true is set in that output row entry.
*
* To ignore all but specific types, set the `verify_types` to those types
* which should be checked. Otherwise, the default `ALL_TYPES` will verify all
* characters match `types`.
*
* @code{.pseudo}
* Example:
* s = ['ab', 'a b', 'a7', 'a B']
* b1 = s.all_characters_of_type(s,LOWER)
* b1 is [true, false, false, false]
* b2 = s.all_characters_of_type(s,LOWER,LOWER|UPPER)
* b2 is [true, true, true, false]
* @endcode
*
* Any null row results in a null entry for that row in the output column.
*
* @param input Strings instance for this operation
* @param types The character types to check in each string
* @param verify_types Only verify against these character types.
* Default `ALL_TYPES` means return `true`
* iff all characters match `types`.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column of boolean results for each string
*/
std::unique_ptr<column> all_characters_of_type(
strings_column_view const& input,
string_character_types types,
string_character_types verify_types = string_character_types::ALL_TYPES,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Filter specific character types from a column of strings.
*
* To remove all characters of a specific type, set that type in
* `types_to_remove` and set `types_to_keep` to `ALL_TYPES`.
*
* To filter out characters NOT of a select type, specify `ALL_TYPES` for
* `types_to_remove` and which types to not remove in `types_to_keep`.
*
* @code{.pseudo}
* Example:
* s = ['ab', 'a b', 'a7bb', 'A7B234']
* s1 = s.filter_characters_of_type(s,NUMERIC,"",ALL_TYPES)
* s1 is ['ab', 'a b', 'abb', 'AB']
* s2 = s.filter_characters_of_type(s,ALL_TYPES,"-",LOWER)
* s2 is ['ab', 'a-b', 'a-bb', '------']
* @endcode
*
* In `s1` all NUMERIC types have been removed.
* In `s2` all non-LOWER types have been replaced.
*
* One but not both parameters `types_to_remove` and `types_to_keep` must
* be set to `ALL_TYPES`.
*
* Any null row results in a null entry for that row in the output column.
*
* @throw cudf::logic_error if neither or both `types_to_remove` and
* `types_to_keep` are set to `ALL_TYPES`.
*
* @param input Strings instance for this operation
* @param types_to_remove The character types to check in each string.
* Use `ALL_TYPES` here to specify `types_to_keep` instead.
* @param replacement The replacement character to use when removing characters
* @param types_to_keep Default `ALL_TYPES` means all characters of
* `types_to_remove` will be filtered.
* @param mr Device memory resource used to allocate the returned column's device memory
* @param stream CUDA stream used for device memory operations and kernel launches
* @return New column of boolean results for each string
*/
std::unique_ptr<column> filter_characters_of_type(
strings_column_view const& input,
string_character_types types_to_remove,
string_scalar const& replacement = string_scalar(""),
string_character_types types_to_keep = string_character_types::ALL_TYPES,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/char_types/char_types_enum.hpp
|
/*
* Copyright (c) 2019-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cstdint>
#include <type_traits>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_types
* @{
* @file
*/
/**
* @brief Character type values.
* These types can be or'd to check for any combination of types.
*
* This cannot be turned into an enum class because or'd entries can
* result in values that are not in the class. For example,
* combining NUMERIC|SPACE is a valid, reasonable combination but
* does not match to any explicitly named enumerator.
*/
enum string_character_types : uint32_t {
DECIMAL = 1 << 0, ///< all decimal characters
NUMERIC = 1 << 1, ///< all numeric characters
DIGIT = 1 << 2, ///< all digit characters
ALPHA = 1 << 3, ///< all alphabetic characters
SPACE = 1 << 4, ///< all space characters
UPPER = 1 << 5, ///< all upper case characters
LOWER = 1 << 6, ///< all lower case characters
ALPHANUM = DECIMAL | NUMERIC | DIGIT | ALPHA, ///< all alphanumeric characters
CASE_TYPES = UPPER | LOWER, ///< all case-able characters
ALL_TYPES = ALPHANUM | CASE_TYPES | SPACE ///< all character types
};
/**
* @brief OR operator for combining string_character_types
*
* @param lhs left-hand side of OR operation
* @param rhs right-hand side of OR operation
* @return combined string_character_types
*/
constexpr string_character_types operator|(string_character_types lhs, string_character_types rhs)
{
return static_cast<string_character_types>(
static_cast<std::underlying_type_t<string_character_types>>(lhs) |
static_cast<std::underlying_type_t<string_character_types>>(rhs));
}
/**
* @brief Compound assignment OR operator for combining string_character_types
*
* @param lhs left-hand side of OR operation
* @param rhs right-hand side of OR operation
* @return Reference to `lhs` after combining `lhs` and `rhs`
*/
constexpr string_character_types& operator|=(string_character_types& lhs,
string_character_types rhs)
{
lhs = static_cast<string_character_types>(
static_cast<std::underlying_type_t<string_character_types>>(lhs) |
static_cast<std::underlying_type_t<string_character_types>>(rhs));
return lhs;
}
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/gather.cuh
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_device_view.cuh>
#include <cudf/column/column_factories.hpp>
#include <cudf/detail/sizes_to_offsets_iterator.cuh>
#include <cudf/detail/utilities/cuda.cuh>
#include <cudf/strings/detail/utilities.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/utilities/span.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/advance.h>
#include <thrust/binary_search.h>
#include <thrust/distance.h>
#include <thrust/execution_policy.h>
#include <thrust/functional.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
namespace cudf {
namespace strings {
namespace detail {
// Helper function for loading 16B from a potentially unaligned memory location to registers.
__forceinline__ __device__ uint4 load_uint4(char const* ptr)
{
auto const offset = reinterpret_cast<std::uintptr_t>(ptr) % 4;
auto const* aligned_ptr = reinterpret_cast<unsigned int const*>(ptr - offset);
auto const shift = offset * 8;
uint4 regs = {aligned_ptr[0], aligned_ptr[1], aligned_ptr[2], aligned_ptr[3]};
uint tail = 0;
if (shift) tail = aligned_ptr[4];
regs.x = __funnelshift_r(regs.x, regs.y, shift);
regs.y = __funnelshift_r(regs.y, regs.z, shift);
regs.z = __funnelshift_r(regs.z, regs.w, shift);
regs.w = __funnelshift_r(regs.w, tail, shift);
return regs;
}
/**
* @brief Gather characters from the input iterator, with string parallel strategy.
*
* This strategy assigns strings to warps so that each warp can cooperatively copy from the input
* location of the string to the corresponding output location. Large datatype (uint4) is used for
* stores. This strategy is best suited for large strings.
*
* @tparam StringIterator Iterator should produce `string_view` objects.
* @tparam MapIterator Iterator for retrieving integer indices of the `StringIterator`.
*
* @param strings_begin Start of the iterator to retrieve `string_view` instances.
* @param out_chars Output buffer for gathered characters.
* @param out_offsets The offset values associated with the output buffer.
* @param string_indices Start of index iterator.
* @param total_out_strings Number of output strings to be gathered.
*/
template <typename StringIterator, typename MapIterator>
__global__ void gather_chars_fn_string_parallel(StringIterator strings_begin,
char* out_chars,
cudf::device_span<int32_t const> const out_offsets,
MapIterator string_indices,
size_type total_out_strings)
{
constexpr size_t out_datatype_size = sizeof(uint4);
constexpr size_t in_datatype_size = sizeof(uint);
int global_thread_id = blockIdx.x * blockDim.x + threadIdx.x;
int global_warp_id = global_thread_id / cudf::detail::warp_size;
int warp_lane = global_thread_id % cudf::detail::warp_size;
int nwarps = gridDim.x * blockDim.x / cudf::detail::warp_size;
auto const alignment_offset = reinterpret_cast<std::uintptr_t>(out_chars) % out_datatype_size;
uint4* out_chars_aligned = reinterpret_cast<uint4*>(out_chars - alignment_offset);
for (size_type istring = global_warp_id; istring < total_out_strings; istring += nwarps) {
auto const out_start = out_offsets[istring];
auto const out_end = out_offsets[istring + 1];
// This check is necessary because string_indices[istring] may be out of bound.
if (out_start == out_end) continue;
char const* in_start = strings_begin[string_indices[istring]].data();
// Both `out_start_aligned` and `out_end_aligned` are indices into `out_chars`.
// `out_start_aligned` is the first 16B aligned memory location after `out_start + 4`.
// `out_end_aligned` is the last 16B aligned memory location before `out_end - 4`. Characters
// between `[out_start_aligned, out_end_aligned)` will be copied using uint4.
// `out_start + 4` and `out_end - 4` are used instead of `out_start` and `out_end` to avoid
// `load_uint4` reading beyond string boundaries.
int32_t out_start_aligned =
(out_start + in_datatype_size + alignment_offset + out_datatype_size - 1) /
out_datatype_size * out_datatype_size -
alignment_offset;
int32_t out_end_aligned =
(out_end - in_datatype_size + alignment_offset) / out_datatype_size * out_datatype_size -
alignment_offset;
for (size_type ichar = out_start_aligned + warp_lane * out_datatype_size;
ichar < out_end_aligned;
ichar += cudf::detail::warp_size * out_datatype_size) {
*(out_chars_aligned + (ichar + alignment_offset) / out_datatype_size) =
load_uint4(in_start + ichar - out_start);
}
// Tail logic: copy characters of the current string outside `[out_start_aligned,
// out_end_aligned)`.
if (out_end_aligned <= out_start_aligned) {
// In this case, `[out_start_aligned, out_end_aligned)` is an empty set, and we copy the
// entire string.
for (int32_t ichar = out_start + warp_lane; ichar < out_end;
ichar += cudf::detail::warp_size) {
out_chars[ichar] = in_start[ichar - out_start];
}
} else {
// Copy characters in range `[out_start, out_start_aligned)`.
if (out_start + warp_lane < out_start_aligned) {
out_chars[out_start + warp_lane] = in_start[warp_lane];
}
// Copy characters in range `[out_end_aligned, out_end)`.
int32_t ichar = out_end_aligned + warp_lane;
if (ichar < out_end) { out_chars[ichar] = in_start[ichar - out_start]; }
}
}
}
/**
* @brief Gather characters from the input iterator, with char parallel strategy.
*
* This strategy assigns characters to threads, and uses binary search for getting the string
* index. To improve the binary search performance, fixed number of strings per threadblock is
* used. This strategy is best suited for small strings.
*
* @tparam StringIterator Iterator should produce `string_view` objects.
* @tparam MapIterator Iterator for retrieving integer indices of the `StringIterator`.
*
* @param strings_begin Start of the iterator to retrieve `string_view` instances.
* @param out_chars Output buffer for gathered characters.
* @param out_offsets The offset values associated with the output buffer.
* @param string_indices Start of index iterator.
* @param total_out_strings Number of output strings to be gathered.
*/
template <int strings_per_threadblock, typename StringIterator, typename MapIterator>
__global__ void gather_chars_fn_char_parallel(StringIterator strings_begin,
char* out_chars,
cudf::device_span<int32_t const> const out_offsets,
MapIterator string_indices,
size_type total_out_strings)
{
__shared__ int32_t out_offsets_threadblock[strings_per_threadblock + 1];
// Current thread block will process output strings starting at `begin_out_string_idx`.
size_type begin_out_string_idx = blockIdx.x * strings_per_threadblock;
// Number of strings to be processed by the current threadblock.
size_type strings_current_threadblock =
min(strings_per_threadblock, total_out_strings - begin_out_string_idx);
if (strings_current_threadblock <= 0) return;
// Collectively load offsets of strings processed by the current thread block.
for (size_type idx = threadIdx.x; idx <= strings_current_threadblock; idx += blockDim.x) {
out_offsets_threadblock[idx] = out_offsets[idx + begin_out_string_idx];
}
__syncthreads();
for (int32_t out_ibyte = threadIdx.x + out_offsets_threadblock[0];
out_ibyte < out_offsets_threadblock[strings_current_threadblock];
out_ibyte += blockDim.x) {
// binary search for the string index corresponding to out_ibyte
auto const string_idx_iter =
thrust::prev(thrust::upper_bound(thrust::seq,
out_offsets_threadblock,
out_offsets_threadblock + strings_current_threadblock,
out_ibyte));
size_type string_idx = thrust::distance(out_offsets_threadblock, string_idx_iter);
// calculate which character to load within the string
int32_t icharacter = out_ibyte - out_offsets_threadblock[string_idx];
size_type in_string_idx = string_indices[begin_out_string_idx + string_idx];
out_chars[out_ibyte] = strings_begin[in_string_idx].data()[icharacter];
}
}
/**
* @brief Returns a new chars column using the specified indices to select
* strings from the input iterator.
*
* This uses a character-parallel gather CUDA kernel that performs very
* well on a strings column with long strings (e.g. average > 64 bytes).
*
* @tparam StringIterator Iterator should produce `string_view` objects.
* @tparam MapIterator Iterator for retrieving integer indices of the `StringIterator`.
*
* @param strings_begin Start of the iterator to retrieve `string_view` instances.
* @param map_begin Start of index iterator.
* @param map_end End of index iterator.
* @param offsets The offset values to be associated with the output chars column.
* @param chars_bytes The total number of bytes for the output chars column.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New chars column fit for a strings column.
*/
template <typename StringIterator, typename MapIterator>
std::unique_ptr<cudf::column> gather_chars(StringIterator strings_begin,
MapIterator map_begin,
MapIterator map_end,
cudf::device_span<int32_t const> const offsets,
size_type chars_bytes,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
auto const output_count = std::distance(map_begin, map_end);
if (output_count == 0) return make_empty_column(type_id::INT8);
auto chars_column = create_chars_child_column(chars_bytes, stream, mr);
auto const d_chars = chars_column->mutable_view().template data<char>();
constexpr int warps_per_threadblock = 4;
// String parallel strategy will be used if average string length is above this threshold.
// Otherwise, char parallel strategy will be used.
constexpr size_type string_parallel_threshold = 32;
size_type average_string_length = chars_bytes / output_count;
if (average_string_length > string_parallel_threshold) {
constexpr int max_threadblocks = 65536;
gather_chars_fn_string_parallel<<<
min((static_cast<int>(output_count) + warps_per_threadblock - 1) / warps_per_threadblock,
max_threadblocks),
warps_per_threadblock * cudf::detail::warp_size,
0,
stream.value()>>>(strings_begin, d_chars, offsets, map_begin, output_count);
} else {
constexpr int strings_per_threadblock = 32;
gather_chars_fn_char_parallel<strings_per_threadblock>
<<<(output_count + strings_per_threadblock - 1) / strings_per_threadblock,
warps_per_threadblock * cudf::detail::warp_size,
0,
stream.value()>>>(strings_begin, d_chars, offsets, map_begin, output_count);
}
return chars_column;
}
/**
* @brief Returns a new strings column using the specified indices to select
* elements from the `strings` column.
*
* Caller must update the validity mask in the output column.
*
* ```
* s1 = ["a", "b", "c", "d", "e", "f"]
* map = [0, 2]
* s2 = gather<true>( s1, map.begin(), map.end() )
* s2 is ["a", "c"]
* ```
*
* @tparam NullifyOutOfBounds If true, indices outside the column's range are nullified.
* @tparam MapIterator Iterator for retrieving integer indices of the column.
*
* @param strings Strings instance for this operation.
* @param begin Start of index iterator.
* @param end End of index iterator.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New strings column containing the gathered strings.
*/
template <bool NullifyOutOfBounds, typename MapIterator>
std::unique_ptr<cudf::column> gather(strings_column_view const& strings,
MapIterator begin,
MapIterator end,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
auto const output_count = std::distance(begin, end);
if (output_count == 0) return make_empty_column(type_id::STRING);
// build offsets column
auto const d_strings = column_device_view::create(strings.parent(), stream);
auto const d_in_offsets = !strings.is_empty() ? strings.offsets_begin() : nullptr;
auto offsets_itr = thrust::make_transform_iterator(
begin, [d_strings = *d_strings, d_in_offsets] __device__(size_type idx) {
if (NullifyOutOfBounds && (idx < 0 || idx >= d_strings.size())) { return 0; }
if (not d_strings.is_valid(idx)) { return 0; }
return d_in_offsets[idx + 1] - d_in_offsets[idx];
});
auto [out_offsets_column, total_bytes] =
cudf::detail::make_offsets_child_column(offsets_itr, offsets_itr + output_count, stream, mr);
// build chars column
auto const offsets_view = out_offsets_column->view();
auto out_chars_column = gather_chars(
d_strings->begin<string_view>(), begin, end, offsets_view, total_bytes, stream, mr);
return make_strings_column(output_count,
std::move(out_offsets_column),
std::move(out_chars_column),
0, // caller sets these
rmm::device_buffer{});
}
/**
* @brief Returns a new strings column using the specified indices to select
* elements from the `strings` column.
*
* Caller must update the validity mask in the output column.
*
* ```
* s1 = ["a", "b", "c", "d", "e", "f"]
* map = [0, 2]
* s2 = gather( s1, map.begin(), map.end(), true )
* s2 is ["a", "c"]
* ```
*
* @tparam MapIterator Iterator for retrieving integer indices of the column.
*
* @param strings Strings instance for this operation.
* @param begin Start of index iterator.
* @param end End of index iterator.
* @param nullify_out_of_bounds If true, indices outside the column's range are nullified.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New strings column containing the gathered strings.
*/
template <typename MapIterator>
std::unique_ptr<cudf::column> gather(strings_column_view const& strings,
MapIterator begin,
MapIterator end,
bool nullify_out_of_bounds,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
if (nullify_out_of_bounds) return gather<true>(strings, begin, end, stream, mr);
return gather<false>(strings, begin, end, stream, mr);
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/strings_column_factories.cuh
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/detail/nvtx/ranges.hpp>
#include <cudf/detail/valid_if.cuh>
#include <cudf/strings/detail/gather.cuh>
#include <cudf/strings/detail/strings_children.cuh>
#include <cudf/utilities/error.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/copy.h>
#include <thrust/distance.h>
#include <thrust/for_each.h>
#include <thrust/functional.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/iterator/zip_iterator.h>
#include <thrust/pair.h>
#include <thrust/transform.h>
#include <thrust/tuple.h>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Basic type expected for iterators passed to `make_strings_column` that represent string
* data in device memory.
*/
using string_index_pair = thrust::pair<char const*, size_type>;
/**
* @brief Average string byte-length threshold for deciding character-level
* vs. row-level parallel algorithm.
*
* This value was determined by running the factory_benchmark against different
* string lengths and observing the point where the performance is faster for
* long strings.
*/
constexpr size_type FACTORY_BYTES_PER_ROW_THRESHOLD = 64;
/**
* @brief Create a strings-type column from iterators of pointer/size pairs
*
* @tparam IndexPairIterator iterator over type `pair<char const*,size_type>` values
*
* @param begin First string row (inclusive)
* @param end Last string row (exclusive)
* @param stream CUDA stream used for device memory operations
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
template <typename IndexPairIterator>
std::unique_ptr<column> make_strings_column(IndexPairIterator begin,
IndexPairIterator end,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
CUDF_FUNC_RANGE();
size_type strings_count = thrust::distance(begin, end);
if (strings_count == 0) return make_empty_column(type_id::STRING);
// build offsets column from the strings sizes
auto offsets_transformer = [] __device__(string_index_pair item) -> size_type {
return (item.first != nullptr ? static_cast<size_type>(item.second) : size_type{0});
};
auto offsets_transformer_itr = thrust::make_transform_iterator(begin, offsets_transformer);
auto [offsets_column, bytes] = cudf::detail::make_offsets_child_column(
offsets_transformer_itr, offsets_transformer_itr + strings_count, stream, mr);
auto offsets_view = offsets_column->view();
// create null mask
auto validator = [] __device__(string_index_pair const item) { return item.first != nullptr; };
auto new_nulls = cudf::detail::valid_if(begin, end, validator, stream, mr);
auto const null_count = new_nulls.second;
auto null_mask =
(null_count > 0) ? std::move(new_nulls.first) : rmm::device_buffer{0, stream, mr};
// build chars column
std::unique_ptr<column> chars_column =
[offsets_view, bytes = bytes, begin, strings_count, null_count, stream, mr] {
auto const avg_bytes_per_row = bytes / std::max(strings_count - null_count, 1);
// use a character-parallel kernel for long string lengths
if (avg_bytes_per_row > FACTORY_BYTES_PER_ROW_THRESHOLD) {
auto const d_data = offsets_view.template data<size_type>();
auto const d_offsets =
device_span<size_type const>{d_data, static_cast<std::size_t>(offsets_view.size())};
auto const str_begin = thrust::make_transform_iterator(begin, [] __device__(auto ip) {
return string_view{ip.first, ip.second};
});
return gather_chars(str_begin,
thrust::make_counting_iterator<size_type>(0),
thrust::make_counting_iterator<size_type>(strings_count),
d_offsets,
bytes,
stream,
mr);
} else {
// this approach is 2-3x faster for a large number of smaller string lengths
auto chars_column = create_chars_child_column(bytes, stream, mr);
auto d_chars = chars_column->mutable_view().template data<char>();
auto copy_chars = [d_chars] __device__(auto item) {
string_index_pair const str = thrust::get<0>(item);
size_type const offset = thrust::get<1>(item);
if (str.first != nullptr) memcpy(d_chars + offset, str.first, str.second);
};
thrust::for_each_n(rmm::exec_policy(stream),
thrust::make_zip_iterator(
thrust::make_tuple(begin, offsets_view.template begin<int32_t>())),
strings_count,
copy_chars);
return chars_column;
}
}();
return make_strings_column(strings_count,
std::move(offsets_column),
std::move(chars_column),
null_count,
std::move(null_mask));
}
/**
* @brief Create a strings-type column from iterators to chars, offsets, and bitmask.
*
* @tparam CharIterator iterator over character bytes (int8)
* @tparam OffsetIterator iterator over offset values (size_type)
*
* @param chars_begin First character byte (inclusive)
* @param chars_end Last character byte (exclusive)
* @param offset_begin First offset value (inclusive)
* @param offset_end Last offset value (exclusive)
* @param null_count Number of null rows
* @param null_mask The validity bitmask in Arrow format
* @param stream CUDA stream used for device memory operations
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
template <typename CharIterator, typename OffsetIterator>
std::unique_ptr<column> make_strings_column(CharIterator chars_begin,
CharIterator chars_end,
OffsetIterator offsets_begin,
OffsetIterator offsets_end,
size_type null_count,
rmm::device_buffer&& null_mask,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
CUDF_FUNC_RANGE();
size_type strings_count = thrust::distance(offsets_begin, offsets_end) - 1;
size_type bytes = std::distance(chars_begin, chars_end) * sizeof(char);
if (strings_count == 0) return make_empty_column(type_id::STRING);
CUDF_EXPECTS(bytes >= 0, "invalid offsets data");
// build offsets column -- this is the number of strings + 1
auto offsets_column = make_numeric_column(
data_type{type_to_id<size_type>()}, strings_count + 1, mask_state::UNALLOCATED, stream, mr);
auto offsets_view = offsets_column->mutable_view();
thrust::transform(rmm::exec_policy(stream),
offsets_begin,
offsets_end,
offsets_view.data<int32_t>(),
[] __device__(auto offset) { return static_cast<int32_t>(offset); });
// build chars column
auto chars_column = strings::detail::create_chars_child_column(bytes, stream, mr);
auto chars_view = chars_column->mutable_view();
thrust::copy(rmm::exec_policy(stream), chars_begin, chars_end, chars_view.data<char>());
return make_strings_column(strings_count,
std::move(offsets_column),
std::move(chars_column),
null_count,
std::move(null_mask));
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/fill.hpp
|
/*
* Copyright (c) 2019-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Returns a strings column replacing a range of rows
* with the specified string.
*
* If the value parameter is invalid, the specified rows are filled with
* null entries.
*
* @throw cudf::logic_error if [begin,end) is outside the range of the input column.
*
* @param strings Strings column to fill.
* @param begin First row index to include the new string.
* @param end Last row index (exclusive).
* @param value String to use when filling the range.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New strings column.
*/
std::unique_ptr<column> fill(strings_column_view const& strings,
size_type begin,
size_type end,
string_scalar const& value,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/utilities.cuh
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/strings/string_view.cuh>
#include <cudf/utilities/error.hpp>
#include <thrust/copy.h>
#include <thrust/execution_policy.h>
#include <mutex>
#include <unordered_map>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Copies input string data into a buffer and increments the pointer by the number of bytes
* copied.
*
* @param buffer Device buffer to copy to
* @param input Data to copy from
* @param bytes Number of bytes to copy
* @return Pointer to the end of the output buffer after the copy
*/
__device__ inline char* copy_and_increment(char* buffer, char const* input, size_type bytes)
{
// this can be slightly faster than memcpy
thrust::copy_n(thrust::seq, input, bytes, buffer);
return buffer + bytes;
}
/**
* @brief Copies input string data into a buffer and increments the pointer by the number of bytes
* copied.
*
* @param buffer Device buffer to copy to.
* @param d_string String to copy.
* @return Pointer to the end of the output buffer after the copy.
*/
__device__ inline char* copy_string(char* buffer, string_view const& d_string)
{
return copy_and_increment(buffer, d_string.data(), d_string.size_bytes());
}
// This template is a thin wrapper around per-context singleton objects.
// It maintains a single object for each CUDA context.
template <typename TableType>
class per_context_cache {
public:
// Find an object cached for a current CUDA context.
// If there is no object available in the cache, it calls the initializer
// `init` to create a new one and cache it for later uses.
template <typename Initializer>
TableType* find_or_initialize(Initializer const& init)
{
int device_id;
CUDF_CUDA_TRY(cudaGetDevice(&device_id));
auto finder = cache_.find(device_id);
if (finder == cache_.end()) {
TableType* result = init();
cache_[device_id] = result;
return result;
} else
return finder->second;
}
private:
std::unordered_map<int, TableType*> cache_;
};
// This template is a thread-safe version of per_context_cache.
template <typename TableType>
class thread_safe_per_context_cache : public per_context_cache<TableType> {
public:
template <typename Initializer>
TableType* find_or_initialize(Initializer const& init)
{
std::lock_guard<std::mutex> guard(mutex);
return per_context_cache<TableType>::find_or_initialize(init);
}
private:
std::mutex mutex;
};
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/utilities.hpp
|
/*
* Copyright (c) 2019-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/span.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/device_uvector.hpp>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Create a chars column to be a child of a strings column.
*
* This will return the properly sized column to be filled in by the caller.
*
* @param bytes Number of bytes for the chars column.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return The chars child column for a strings column.
*/
std::unique_ptr<column> create_chars_child_column(size_type bytes,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @brief Creates a string_view vector from a strings column.
*
* @param strings Strings column instance.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned vector's device memory.
* @return Device vector of string_views
*/
rmm::device_uvector<string_view> create_string_vector_from_column(
cudf::strings_column_view const strings,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/copying.hpp
|
/*
* Copyright (c) 2019-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Returns a new strings column created from a subset of
* of the strings column.
*
* The subset of strings selected is between
* start (inclusive) and end (exclusive).
*
* @code{.pseudo}
* Example:
* s1 = ["a", "b", "c", "d", "e", "f"]
* s2 = copy_slice( s1, 2 )
* s2 is ["c", "d", "e", "f"]
* s2 = copy_slice( s1, 1, 3 )
* s2 is ["b", "c"]
* @endcode
*
* @param strings Strings instance for this operation.
* @param start Index to first string to select in the column (inclusive).
* @param end Index to last string to select in the column (exclusive).
* Default -1 indicates the last element.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New strings column of size (end-start)/step.
*/
std::unique_ptr<cudf::column> copy_slice(strings_column_view const& strings,
size_type start,
size_type end,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @brief Returns a new strings column created by shifting the rows by a specified offset.
*
* @code{.pseudo}
* Example:
* s = ["a", "b", "c", "d", "e", "f"]
* r1 = shift(s, 2, "_")
* r1 is now ["_", "_", "a", "b", "c", "d"]
* r2 = shift(s, -2, "_")
* r2 is now ["c", "d", "e", "f", "_", "_"]
* @endcode
*
* The caller should set the validity mask in the output column.
*
* @param input Strings instance for this operation.
* @param offset The offset by which to shift the input.
* @param fill_value Fill value for indeterminable outputs.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New strings column.
*/
std::unique_ptr<column> shift(strings_column_view const& input,
size_type offset,
scalar const& fill_value,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/strings_children.cuh
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_factories.hpp>
#include <cudf/detail/sizes_to_offsets_iterator.cuh>
#include <cudf/strings/detail/utilities.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/for_each.h>
#include <thrust/iterator/counting_iterator.h>
#include <stdexcept>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Creates child offsets and chars columns by applying the template function that
* can be used for computing the output size of each string as well as create the output
*
* @throws std::overflow_error if the output strings column exceeds the column size limit
*
* @tparam SizeAndExecuteFunction Function must accept an index and return a size.
* It must also have members d_offsets and d_chars which are set to
* memory containing the offsets and chars columns during write.
*
* @param size_and_exec_fn This is called twice. Once for the output size of each string
* and once again to fill in the memory pointed to by d_chars.
* @param exec_size Number of rows for executing the `size_and_exec_fn` function.
* @param strings_count Number of strings.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned columns' device memory.
* @return offsets child column and chars child column for a strings column
*/
template <typename SizeAndExecuteFunction>
auto make_strings_children(SizeAndExecuteFunction size_and_exec_fn,
size_type exec_size,
size_type strings_count,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
auto offsets_column = make_numeric_column(
data_type{type_to_id<size_type>()}, strings_count + 1, mask_state::UNALLOCATED, stream, mr);
auto offsets_view = offsets_column->mutable_view();
auto d_offsets = offsets_view.template data<int32_t>();
size_and_exec_fn.d_offsets = d_offsets;
// This is called twice -- once for offsets and once for chars.
// Reducing the number of places size_and_exec_fn is inlined speeds up compile time.
auto for_each_fn = [exec_size, stream](SizeAndExecuteFunction& size_and_exec_fn) {
thrust::for_each_n(rmm::exec_policy(stream),
thrust::make_counting_iterator<size_type>(0),
exec_size,
size_and_exec_fn);
};
// Compute the output sizes
for_each_fn(size_and_exec_fn);
// Convert the sizes to offsets
auto const bytes =
cudf::detail::sizes_to_offsets(d_offsets, d_offsets + strings_count + 1, d_offsets, stream);
CUDF_EXPECTS(bytes <= std::numeric_limits<size_type>::max(),
"Size of output exceeds the column size limit",
std::overflow_error);
// Now build the chars column
std::unique_ptr<column> chars_column =
create_chars_child_column(static_cast<size_type>(bytes), stream, mr);
// Execute the function fn again to fill the chars column.
// Note that if the output chars column has zero size, the function fn should not be called to
// avoid accidentally overwriting the offsets.
if (bytes > 0) {
size_and_exec_fn.d_chars = chars_column->mutable_view().template data<char>();
for_each_fn(size_and_exec_fn);
}
return std::pair(std::move(offsets_column), std::move(chars_column));
}
/**
* @brief Creates child offsets and chars columns by applying the template function that
* can be used for computing the output size of each string as well as create the output.
*
* @tparam SizeAndExecuteFunction Function must accept an index and return a size.
* It must also have members d_offsets and d_chars which are set to
* memory containing the offsets and chars columns during write.
*
* @param size_and_exec_fn This is called twice. Once for the output size of each string
* and once again to fill in the memory pointed to by d_chars.
* @param strings_count Number of strings.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned columns' device memory.
* @return offsets child column and chars child column for a strings column
*/
template <typename SizeAndExecuteFunction>
auto make_strings_children(SizeAndExecuteFunction size_and_exec_fn,
size_type strings_count,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
return make_strings_children(size_and_exec_fn, strings_count, strings_count, stream, mr);
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/merge.cuh
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_device_view.cuh>
#include <cudf/column/column_factories.hpp>
#include <cudf/detail/merge.hpp>
#include <cudf/detail/null_mask.hpp>
#include <cudf/strings/detail/strings_children.cuh>
#include <cudf/strings/string_view.cuh>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/for_each.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/tuple.h>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Merges two strings columns.
*
* Caller must set the validity mask in the output column.
*
* @tparam row_order_iterator This must be an iterator for type thrust::tuple<side,size_type>.
*
* @param lhs First column.
* @param rhs Second column.
* @param row_order Indexes for each column.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New strings column.
*/
template <typename index_type, typename row_order_iterator>
std::unique_ptr<column> merge(strings_column_view const& lhs,
strings_column_view const& rhs,
row_order_iterator begin,
row_order_iterator end,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
using cudf::detail::side;
size_type strings_count = static_cast<size_type>(std::distance(begin, end));
if (strings_count == 0) return make_empty_column(type_id::STRING);
auto lhs_column = column_device_view::create(lhs.parent(), stream);
auto d_lhs = *lhs_column;
auto rhs_column = column_device_view::create(rhs.parent(), stream);
auto d_rhs = *rhs_column;
// caller will set the null mask
rmm::device_buffer null_mask{0, stream, mr};
size_type null_count = lhs.null_count() + rhs.null_count();
if (null_count > 0)
null_mask = cudf::detail::create_null_mask(strings_count, mask_state::ALL_VALID, stream, mr);
// build offsets column
auto offsets_transformer = [d_lhs, d_rhs] __device__(auto index_pair) {
auto const [side, index] = index_pair;
if (side == side::LEFT ? d_lhs.is_null(index) : d_rhs.is_null(index)) return 0;
auto d_str =
side == side::LEFT ? d_lhs.element<string_view>(index) : d_rhs.element<string_view>(index);
return d_str.size_bytes();
};
auto offsets_transformer_itr = thrust::make_transform_iterator(begin, offsets_transformer);
auto [offsets_column, bytes] = cudf::detail::make_offsets_child_column(
offsets_transformer_itr, offsets_transformer_itr + strings_count, stream, mr);
auto d_offsets = offsets_column->view().template data<int32_t>();
// create the chars column
auto chars_column = strings::detail::create_chars_child_column(bytes, stream, mr);
// merge the strings
auto d_chars = chars_column->mutable_view().template data<char>();
thrust::for_each_n(rmm::exec_policy(stream),
thrust::make_counting_iterator<size_type>(0),
strings_count,
[d_lhs, d_rhs, begin, d_offsets, d_chars] __device__(size_type idx) {
auto const [side, index] = begin[idx];
if (side == side::LEFT ? d_lhs.is_null(index) : d_rhs.is_null(index)) return;
auto d_str = side == side::LEFT ? d_lhs.element<string_view>(index)
: d_rhs.element<string_view>(index);
memcpy(d_chars + d_offsets[idx], d_str.data(), d_str.size_bytes());
});
return make_strings_column(strings_count,
std::move(offsets_column),
std::move(chars_column),
null_count,
std::move(null_mask));
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/copy_range.cuh
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column_device_view.cuh>
#include <cudf/detail/valid_if.cuh>
#include <cudf/strings/detail/strings_children.cuh>
#include <cudf/strings/string_view.cuh>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/types.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/device_ptr.h>
#include <thrust/for_each.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
namespace {
template <bool source_has_nulls,
bool target_has_nulls,
typename SourceValueIterator,
typename SourceValidityIterator>
struct compute_element_size {
SourceValueIterator source_value_begin;
SourceValidityIterator source_validity_begin;
cudf::column_device_view d_target;
cudf::size_type target_begin;
cudf::size_type target_end;
__device__ cudf::size_type operator()(cudf::size_type idx)
{
if (idx >= target_begin && idx < target_end) {
if (source_has_nulls) {
return *(source_validity_begin + (idx - target_begin))
? (*(source_value_begin + (idx - target_begin))).size_bytes()
: 0;
} else {
return (*(source_value_begin + (idx - target_begin))).size_bytes();
}
} else {
if (target_has_nulls) {
return d_target.is_valid_nocheck(idx)
? d_target.element<cudf::string_view>(idx).size_bytes()
: 0;
} else {
return d_target.element<cudf::string_view>(idx).size_bytes();
}
}
}
};
} // namespace
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Internal API to copy a range of string elements out-of-place from
* source iterators to a target column.
*
* Creates a new column as if an in-place copy was performed into @p target.
* The elements indicated by the indices [@p target_begin, @p target_end) were
* replaced with the elements retrieved from source iterators;
* *(@p source_value_begin + idx) if *(@p source_validity_begin + idx) is true,
* invalidate otherwise (where idx = [0, @p target_end - @p target_begin)).
* Elements outside the range are copied from @p target into the new target
* column to return.
*
* @throws cudf::logic_error for invalid range (if @p target_begin < 0,
* target_begin >= @p target.size(), or @p target_end > @p target.size()).
*
* @tparam SourceValueIterator Iterator for retrieving source values
* @tparam SourceValidityIterator Iterator for retrieving source validities
* @param source_value_begin Start of source value iterator
* @param source_validity_begin Start of source validity iterator
* @param target The strings column to copy from outside the range.
* @param target_begin The starting index of the target range (inclusive)
* @param target_end The index of the last element in the target range
* (exclusive)
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return std::unique_ptr<column> The result target column
*/
template <typename SourceValueIterator, typename SourceValidityIterator>
std::unique_ptr<column> copy_range(SourceValueIterator source_value_begin,
SourceValidityIterator source_validity_begin,
strings_column_view const& target,
size_type target_begin,
size_type target_end,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
CUDF_EXPECTS(
(target_begin >= 0) && (target_begin < target.size()) && (target_end <= target.size()),
"Range is out of bounds.");
if (target_end == target_begin) {
return std::make_unique<column>(target.parent(), stream, mr);
} else {
auto p_target_device_view = column_device_view::create(target.parent(), stream);
auto d_target = *p_target_device_view;
// create resulting null mask
std::pair<rmm::device_buffer, size_type> valid_mask{};
if (target.has_nulls()) { // check validities for both source & target
valid_mask = cudf::detail::valid_if(
thrust::make_counting_iterator<size_type>(0),
thrust::make_counting_iterator<size_type>(target.size()),
[source_validity_begin, d_target, target_begin, target_end] __device__(size_type idx) {
return (idx >= target_begin && idx < target_end)
? *(source_validity_begin + (idx - target_begin))
: d_target.is_valid_nocheck(idx);
},
stream,
mr);
} else { // check validities for source only
valid_mask = cudf::detail::valid_if(
thrust::make_counting_iterator<size_type>(0),
thrust::make_counting_iterator<size_type>(target.size()),
[source_validity_begin, d_target, target_begin, target_end] __device__(size_type idx) {
return (idx >= target_begin && idx < target_end)
? *(source_validity_begin + (idx - target_begin))
: true;
},
stream,
mr);
}
auto null_count = valid_mask.second;
rmm::device_buffer null_mask{0, stream, mr};
if (target.parent().nullable() || null_count > 0) { null_mask = std::move(valid_mask.first); }
// build offsets column
std::unique_ptr<column> p_offsets_column{nullptr};
size_type chars_bytes = 0;
if (target.has_nulls()) { // check validities for both source & target
auto string_size_begin = thrust::make_transform_iterator(
thrust::make_counting_iterator(0),
compute_element_size<true, true, SourceValueIterator, SourceValidityIterator>{
source_value_begin, source_validity_begin, d_target, target_begin, target_end});
std::tie(p_offsets_column, chars_bytes) = cudf::detail::make_offsets_child_column(
string_size_begin, string_size_begin + target.size(), stream, mr);
} else if (null_count > 0) { // check validities for source only
auto string_size_begin = thrust::make_transform_iterator(
thrust::make_counting_iterator(0),
compute_element_size<true, false, SourceValueIterator, SourceValidityIterator>{
source_value_begin, source_validity_begin, d_target, target_begin, target_end});
std::tie(p_offsets_column, chars_bytes) = cudf::detail::make_offsets_child_column(
string_size_begin, string_size_begin + target.size(), stream, mr);
} else { // no need to check validities
auto string_size_begin = thrust::make_transform_iterator(
thrust::make_counting_iterator(0),
compute_element_size<false, false, SourceValueIterator, SourceValidityIterator>{
source_value_begin, source_validity_begin, d_target, target_begin, target_end});
std::tie(p_offsets_column, chars_bytes) = cudf::detail::make_offsets_child_column(
string_size_begin, string_size_begin + target.size(), stream, mr);
}
// create the chars column
auto p_offsets =
thrust::device_pointer_cast(p_offsets_column->view().template data<size_type>());
auto p_chars_column = strings::detail::create_chars_child_column(chars_bytes, stream, mr);
// copy to the chars column
auto p_chars = (p_chars_column->mutable_view()).template data<char>();
thrust::for_each(rmm::exec_policy(stream),
thrust::make_counting_iterator(0),
thrust::make_counting_iterator(target.size()),
[source_value_begin,
source_validity_begin,
d_target,
target_begin,
target_end,
p_offsets,
p_chars] __device__(size_type idx) {
if (p_offsets[idx + 1] - p_offsets[idx] > 0) {
const auto source = (idx >= target_begin && idx < target_end)
? *(source_value_begin + (idx - target_begin))
: d_target.element<string_view>(idx);
memcpy(p_chars + p_offsets[idx], source.data(), source.size_bytes());
}
});
return make_strings_column(target.size(),
std::move(p_offsets_column),
std::move(p_chars_column),
null_count,
std::move(null_mask));
}
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/utf8.hpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/types.hpp>
/**
* @file
* @brief Standalone string functions.
*/
namespace cudf {
using char_utf8 = uint32_t; ///< UTF-8 characters are 1-4 bytes
namespace strings {
namespace detail {
/**
* @brief This will return true if passed a continuation byte of a UTF-8 character.
*
* @param chr Any single byte from a valid UTF-8 character
* @return true if this is not the first byte of the character
*/
constexpr bool is_utf8_continuation_char(unsigned char chr)
{
// The (0xC0 & 0x80) bit pattern identifies a continuation byte of a character.
return (chr & 0xC0) == 0x80;
}
/**
* @brief This will return true if passed the first byte of a UTF-8 character.
*
* @param chr Any single byte from a valid UTF-8 character
* @return true if this the first byte of the character
*/
constexpr bool is_begin_utf8_char(unsigned char chr) { return not is_utf8_continuation_char(chr); }
/**
* @brief This will return true if the passed in byte could be the start of
* a valid UTF-8 character.
*
* This differs from is_begin_utf8_char(uint8_t) in that byte may not be valid
* UTF-8, so a more rigorous check is performed.
*
* @param byte The byte to be tested
* @return true if this can be the first byte of a character
*/
constexpr bool is_valid_begin_utf8_char(uint8_t byte)
{
// to be the first byte of a valid (up to 4 byte) UTF-8 char, byte must be one of:
// 0b0vvvvvvv a 1 byte character
// 0b110vvvvv start of a 2 byte character
// 0b1110vvvv start of a 3 byte character
// 0b11110vvv start of a 4 byte character
return (byte & 0x80) == 0 || (byte & 0xE0) == 0xC0 || (byte & 0xF0) == 0xE0 ||
(byte & 0xF8) == 0xF0;
}
/**
* @brief Returns the number of bytes in the specified character.
*
* @param character Single character
* @return Number of bytes
*/
constexpr size_type bytes_in_char_utf8(char_utf8 character)
{
return 1 + static_cast<size_type>((character & 0x0000'FF00u) > 0) +
static_cast<size_type>((character & 0x00FF'0000u) > 0) +
static_cast<size_type>((character & 0xFF00'0000u) > 0);
}
/**
* @brief Returns the number of bytes used to represent the provided byte.
*
* This could be 0 to 4 bytes. 0 is returned for intermediate bytes within a
* single character. For example, for the two-byte 0xC3A8 single character,
* the first byte would return 2 and the second byte would return 0.
*
* @param byte Byte from an encoded character.
* @return Number of bytes.
*/
constexpr size_type bytes_in_utf8_byte(uint8_t byte)
{
return 1 + static_cast<size_type>((byte & 0xF0) == 0xF0) // 4-byte character prefix
+ static_cast<size_type>((byte & 0xE0) == 0xE0) // 3-byte character prefix
+ static_cast<size_type>((byte & 0xC0) == 0xC0) // 2-byte character prefix
- static_cast<size_type>((byte & 0xC0) == 0x80); // intermediate byte
}
/**
* @brief Convert a char array into a char_utf8 value.
*
* @param str String containing encoded char bytes.
* @param[out] character Single char_utf8 value.
* @return The number of bytes in the character
*/
constexpr size_type to_char_utf8(char const* str, char_utf8& character)
{
size_type const chr_width = bytes_in_utf8_byte(static_cast<uint8_t>(*str));
character = static_cast<char_utf8>(*str++) & 0xFF;
if (chr_width > 1) {
character = character << 8;
character |= (static_cast<char_utf8>(*str++) & 0xFF); // << 8;
if (chr_width > 2) {
character = character << 8;
character |= (static_cast<char_utf8>(*str++) & 0xFF); // << 16;
if (chr_width > 3) {
character = character << 8;
character |= (static_cast<char_utf8>(*str++) & 0xFF); // << 24;
}
}
}
return chr_width;
}
/**
* @brief Place a char_utf8 value into a char array.
*
* @param character Single character
* @param[out] str Output array.
* @return The number of bytes in the character
*/
constexpr inline size_type from_char_utf8(char_utf8 character, char* str)
{
size_type const chr_width = bytes_in_char_utf8(character);
for (size_type idx = 0; idx < chr_width; ++idx) {
str[chr_width - idx - 1] = static_cast<char>(character) & 0xFF;
character = character >> 8;
}
return chr_width;
}
/**
* @brief Converts a single UTF-8 character into a code-point value that
* can be used for lookup in the character flags or the character case tables.
*
* @param utf8_char Single UTF-8 character to convert.
* @return Code-point for the UTF-8 character.
*/
constexpr uint32_t utf8_to_codepoint(cudf::char_utf8 utf8_char)
{
uint32_t unchr = 0;
if (utf8_char < 0x0000'0080) // single-byte pass thru
unchr = utf8_char;
else if (utf8_char < 0x0000'E000) // two bytes
{
unchr = (utf8_char & 0x1F00) >> 2; // shift and
unchr |= (utf8_char & 0x003F); // unmask
} else if (utf8_char < 0x00F0'0000) // three bytes
{
unchr = (utf8_char & 0x0F'0000) >> 4; // get upper 4 bits
unchr |= (utf8_char & 0x00'3F00) >> 2; // shift and
unchr |= (utf8_char & 0x00'003F); // unmask
} else if (utf8_char <= 0xF800'0000u) // four bytes
{
unchr = (utf8_char & 0x0300'0000) >> 6; // upper 3 bits
unchr |= (utf8_char & 0x003F'0000) >> 4; // next 6 bits
unchr |= (utf8_char & 0x0000'3F00) >> 2; // next 6 bits
unchr |= (utf8_char & 0x0000'003F); // unmask
}
return unchr;
}
/**
* @brief Converts a character code-point value into a UTF-8 character.
*
* @param unchr Character code-point to convert.
* @return Single UTF-8 character.
*/
constexpr cudf::char_utf8 codepoint_to_utf8(uint32_t unchr)
{
cudf::char_utf8 utf8 = 0;
if (unchr < 0x0000'0080) // single byte utf8
utf8 = unchr;
else if (unchr < 0x0000'0800) // double byte utf8
{
utf8 = (unchr << 2) & 0x1F00; // shift bits for
utf8 |= (unchr & 0x3F); // utf8 encoding
utf8 |= 0x0000'C080;
} else if (unchr < 0x0001'0000) // triple byte utf8
{
utf8 = (unchr << 4) & 0x0F'0000; // upper 4 bits
utf8 |= (unchr << 2) & 0x00'3F00; // next 6 bits
utf8 |= (unchr & 0x3F); // last 6 bits
utf8 |= 0x00E0'8080;
} else if (unchr < 0x0011'0000) // quadruple byte utf8
{
utf8 = (unchr << 6) & 0x0700'0000; // upper 3 bits
utf8 |= (unchr << 4) & 0x003F'0000; // next 6 bits
utf8 |= (unchr << 2) & 0x0000'3F00; // next 6 bits
utf8 |= (unchr & 0x3F); // last 6 bits
utf8 |= 0xF080'8080u;
}
return utf8;
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/char_tables.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cstdint>
namespace cudf {
namespace strings {
namespace detail {
// Type for the character flags table.
using character_flags_table_type = std::uint8_t;
/**
* @brief Returns pointer to device memory that contains the static
* characters flags table. On first call, this will copy the table into
* device memory and is guaranteed to be thread-safe.
*
* This table is used to check the type of character like
* alphanumeric, decimal, etc.
*
* @return Device memory pointer to character flags table.
*/
character_flags_table_type const* get_character_flags_table();
// utilities to dissect a character-table flag
constexpr uint8_t IS_DECIMAL(uint8_t x) { return ((x) & (1 << 0)); }
constexpr uint8_t IS_NUMERIC(uint8_t x) { return ((x) & (1 << 1)); }
constexpr uint8_t IS_DIGIT(uint8_t x) { return ((x) & (1 << 2)); }
constexpr uint8_t IS_ALPHA(uint8_t x) { return ((x) & (1 << 3)); }
constexpr uint8_t IS_SPACE(uint8_t x) { return ((x) & (1 << 4)); }
constexpr uint8_t IS_UPPER(uint8_t x) { return ((x) & (1 << 5)); }
constexpr uint8_t IS_LOWER(uint8_t x) { return ((x) & (1 << 6)); }
constexpr uint8_t IS_SPECIAL(uint8_t x) { return ((x) & (1 << 7)); }
constexpr uint8_t IS_ALPHANUM(uint8_t x) { return ((x) & (0x0F)); }
constexpr uint8_t IS_UPPER_OR_LOWER(uint8_t x) { return ((x) & ((1 << 5) | (1 << 6))); }
constexpr uint8_t ALL_FLAGS = 0xFF;
// Type for the character cases table.
using character_cases_table_type = uint16_t;
/**
* @brief Returns pointer to device memory that contains the static
* characters case table. On first call, this will copy the table into
* device memory and is guaranteed to be thread-safe.
*
* This table is used to map upper and lower case characters with
* their counterpart.
*
* @return Device memory pointer to character cases table.
*/
character_cases_table_type const* get_character_cases_table();
/**
* @brief Case mapping structure for special characters.
*
* This is used for special mapping of a small set of characters that do not
* fit in the character-cases-table.
*
* @see cpp/src/strings/char_types/char_cases.h
*/
struct special_case_mapping {
uint16_t num_upper_chars;
uint16_t upper[3];
uint16_t num_lower_chars;
uint16_t lower[3];
};
/**
* @brief Returns pointer to device memory that contains the special
* case mapping table. On first call, this will copy the table into
* device memory and is guaranteed to be thread-safe.
*
* This table is used to handle special case character mappings that
* don't trivially work with the normal character cases table.
*
* @return Device memory pointer to the special case mapping table
*/
const struct special_case_mapping* get_special_case_mapping_table();
/**
* @brief Get the special mapping table index for a given code-point.
*
* @see cpp/src/strings/char_types/char_cases.h
*/
constexpr uint16_t get_special_case_hash_index(uint32_t code_point)
{
constexpr uint16_t special_case_prime = 499; // computed from generate_special_mapping_hash_table
return static_cast<uint16_t>(code_point % special_case_prime);
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/strip.cuh
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/strings/side_type.hpp>
#include <cudf/strings/string_view.cuh>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Strips a specified character from the either or both ends of a string
*
* @param d_str Input string to strip
* @param d_to_strip String containing the character to strip;
* only the first character is used
* @param side Which ends of the input string to strip from
* @return New string excluding the stripped ends
*/
__device__ cudf::string_view strip(cudf::string_view const d_str,
cudf::string_view const d_to_strip,
side_type side = side_type::BOTH)
{
if (d_str.empty()) { return cudf::string_view{}; } // sanitize empty return
auto is_strip_character = [d_to_strip](char_utf8 chr) -> bool {
if (d_to_strip.empty()) return chr <= ' '; // whitespace check
for (auto c : d_to_strip) {
if (c == chr) return true;
}
return false;
};
auto const left_offset = [&] {
if (side != side_type::LEFT && side != side_type::BOTH) return 0;
for (auto itr = d_str.begin(); itr < d_str.end(); ++itr) {
if (!is_strip_character(*itr)) return itr.byte_offset();
}
return d_str.size_bytes();
}();
auto const right_offset = [&] {
if (side != side_type::RIGHT && side != side_type::BOTH) return d_str.size_bytes();
for (auto itr = d_str.end(); itr > d_str.begin(); --itr) {
if (!is_strip_character(*(itr - 1))) return itr.byte_offset();
}
return 0;
}();
auto const bytes = (right_offset > left_offset) ? right_offset - left_offset : 0;
return cudf::string_view{d_str.data() + left_offset, bytes};
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/combine.hpp
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/combine.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace strings {
namespace detail {
/**
* @copydoc concatenate(table_view const&,string_scalar const&,string_scalar
* const&,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> concatenate(table_view const& strings_columns,
string_scalar const& separator,
string_scalar const& narep,
separator_on_nulls separate_nulls,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc join_strings(table_view const&,string_scalar const&,string_scalar
* const&,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> join_strings(strings_column_view const& strings,
string_scalar const& separator,
string_scalar const& narep,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc join_list_elements(table_view const&,string_scalar const&,string_scalar
* const&,separator_on_nulls,output_if_empty_list,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> join_list_elements(lists_column_view const& lists_strings_column,
string_scalar const& separator,
string_scalar const& narep,
separator_on_nulls separate_nulls,
output_if_empty_list empty_list_policy,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/concatenate.hpp
|
/*
* Copyright (c) 2019-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/span.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Returns a single column by vertically concatenating the given vector of
* strings columns.
*
* ```
* s1 = ['aa', 'bb', 'cc']
* s2 = ['dd', 'ee']
* r = concatenate_vertically([s1,s2])
* r is now ['aa', 'bb', 'cc', 'dd', 'ee']
* ```
*
* @param columns List of string columns to concatenate.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New column with concatenated results.
*/
std::unique_ptr<column> concatenate(host_span<column_view const> columns,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/split_utils.cuh
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/strings/string_view.cuh>
namespace cudf {
namespace strings {
namespace detail {
constexpr bool is_whitespace(char_utf8 ch) { return ch <= ' '; }
/**
* @brief Count tokens delimited by whitespace
*
* @param d_str String to tokenize
* @param max_tokens Maximum number of tokens to count
* @return Number of tokens delimited by whitespace
*/
__device__ inline size_type count_tokens_whitespace(
string_view d_str, size_type const max_tokens = std::numeric_limits<size_type>::max())
{
auto token_count = size_type{0};
auto spaces = true;
auto itr = d_str.data();
auto const end = itr + d_str.size_bytes();
while (itr < end && token_count < max_tokens) {
cudf::char_utf8 ch = 0;
auto const chr_width = cudf::strings::detail::to_char_utf8(itr, ch);
if (spaces == is_whitespace(ch)) {
itr += chr_width;
} else {
token_count += static_cast<size_type>(spaces);
spaces = !spaces;
}
}
return token_count;
}
// JIT has trouble including thrust/pair.h
struct position_pair {
size_type first;
size_type second;
};
/**
* @brief Instantiated for each string to manage navigating tokens from
* the beginning or the end of that string.
*/
struct whitespace_string_tokenizer {
/**
* @brief Identifies the position range of the next token in the given
* string at the specified iterator position.
*
* Tokens are delimited by one or more whitespace characters.
*
* @return true if a token has been found
*/
__device__ bool next_token()
{
if (start_position >= d_str.size_bytes()) { return false; }
auto const src_ptr = d_str.data();
if (current_position != 0) {
current_position += cudf::strings::detail::bytes_in_char_utf8(src_ptr[current_position]);
start_position = current_position;
}
if (start_position >= d_str.size_bytes()) { return false; }
// continue search for the next token
end_position = d_str.size_bytes();
while (current_position < d_str.size_bytes()) {
cudf::char_utf8 ch = 0;
auto const chr_width = cudf::strings::detail::to_char_utf8(src_ptr + current_position, ch);
if (spaces == is_whitespace(ch)) {
current_position += chr_width;
if (spaces) {
start_position = current_position;
} else {
end_position = current_position;
}
continue;
}
spaces = !spaces;
if (spaces) {
end_position = current_position;
break;
}
current_position += chr_width;
}
return start_position < end_position;
}
/**
* @brief Identifies the position range of the previous token in the given
* string at the specified iterator position.
*
* Tokens are delimited by one or more whitespace characters.
*
* @return true if a token has been found
*/
__device__ bool prev_token()
{
end_position = start_position - 1;
--itr;
if (end_position <= 0) return false;
// continue search for the next token
start_position = 0;
for (; itr >= d_str.begin(); --itr) {
if (spaces == (*itr <= ' ')) {
if (spaces)
end_position = itr.byte_offset();
else
start_position = itr.byte_offset();
continue;
}
spaces = !spaces;
if (spaces) {
start_position = (itr + 1).byte_offset();
break;
}
}
return start_position < end_position;
}
__device__ position_pair get_token() const { return position_pair{start_position, end_position}; }
__device__ whitespace_string_tokenizer(string_view const& d_str, bool reverse = false)
: d_str{d_str},
spaces(true),
start_position{reverse ? d_str.size_bytes() + 1 : 0},
end_position{d_str.size_bytes()},
itr{reverse ? d_str.end() : d_str.begin()},
current_position{0}
{
}
private:
string_view const d_str;
bool spaces; // true if current position is whitespace
cudf::string_view::const_iterator itr;
size_type start_position;
size_type end_position;
size_type current_position;
};
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/pad_impl.cuh
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/strings/detail/utf8.hpp>
#include <cudf/strings/detail/utilities.cuh>
#include <cudf/strings/side_type.hpp>
#include <cudf/strings/string_view.cuh>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Return the size in bytes of padding d_str to width characters using a fill character
* with byte length of fill_char_size
*
* Pad does not perform truncation. That is, If `d_str.length() > width` then `d_str.size_bytes()`
* is returned.
*
* @param d_str String to pad
* @param width Number of characters for the padded string result
* @param fill_char_size Size of the fill character in bytes
* @return The number of bytes required for the pad
*/
__device__ size_type compute_padded_size(string_view d_str,
size_type width,
size_type fill_char_size)
{
auto const length = d_str.length();
auto bytes = d_str.size_bytes();
if (width > length) // no truncating;
bytes += fill_char_size * (width - length); // add padding
return bytes;
}
/**
* @brief Pad d_str with fill_char into output up to width characters
*
* Pad does not perform truncation. That is, If `d_str.length() > width` then
* then d_str is copied into output.
*
* @tparam side Specifies where fill_char is added to d_str
* @param d_str String to pad
* @param width Number of characters for the padded string result
* @param fill_char Size of the fill character in bytes
* @param output Device memory to copy the padded string into
*/
template <side_type side = side_type::RIGHT>
__device__ void pad_impl(cudf::string_view d_str,
cudf::size_type width,
cudf::char_utf8 fill_char,
char* output)
{
auto length = d_str.length();
if constexpr (side == side_type::LEFT) {
while (length++ < width) {
output += from_char_utf8(fill_char, output);
}
copy_string(output, d_str);
}
if constexpr (side == side_type::RIGHT) {
output = copy_string(output, d_str);
while (length++ < width) {
output += from_char_utf8(fill_char, output);
}
}
if constexpr (side == side_type::BOTH) {
auto const pad_size = width - length;
// an odd width will right-justify
auto right_pad = (width % 2) ? pad_size / 2 : (pad_size - pad_size / 2);
auto left_pad = pad_size - right_pad; // e.g. width=7: "++foxx+"; width=6: "+fox++"
while (left_pad-- > 0) {
output += from_char_utf8(fill_char, output);
}
output = copy_string(output, d_str);
while (right_pad-- > 0) {
output += from_char_utf8(fill_char, output);
}
}
}
/**
* @brief Prepend d_str with '0' into output up to width characters
*
* Pad does not perform truncation. That is, If `d_str.length() > width` then
* then d_str is copied into output.
*
* If d_str starts with a sign character ('-' or '+') then '0' padding
* starts after the sign.
*
* @param d_str String to pad
* @param width Number of characters for the padded string result
* @param output Device memory to copy the padded string into
*/
__device__ void zfill_impl(cudf::string_view d_str, cudf::size_type width, char* output)
{
auto length = d_str.length();
auto in_ptr = d_str.data();
// if the string starts with a sign, output the sign first
if (!d_str.empty() && (*in_ptr == '-' || *in_ptr == '+')) {
*output++ = *in_ptr++;
d_str = cudf::string_view{in_ptr, d_str.size_bytes() - 1};
}
while (length++ < width)
*output++ = '0'; // prepend zero char
copy_string(output, d_str);
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/converters.hpp
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace strings {
namespace detail {
/**
* @copydoc to_integers(strings_column_view const&,data_type,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> to_integers(strings_column_view const& strings,
data_type output_type,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc from_integers(strings_column_view const&,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> from_integers(column_view const& integers,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc to_floats(strings_column_view const&,data_type,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> to_floats(strings_column_view const& strings,
data_type output_type,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc from_floats(strings_column_view const&,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> from_floats(column_view const& floats,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc to_booleans(strings_column_view const&,string_scalar
* const&,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> to_booleans(strings_column_view const& strings,
string_scalar const& true_string,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc from_booleans(strings_column_view const&,string_scalar const&,string_scalar
* const&,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> from_booleans(column_view const& booleans,
string_scalar const& true_string,
string_scalar const& false_string,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc to_timestamps(strings_column_view const&,data_type,std::string_view,
* rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<cudf::column> to_timestamps(strings_column_view const& strings,
data_type timestamp_type,
std::string_view format,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc from_timestamps(strings_column_view const&,std::string_view,
* strings_column_view const&,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> from_timestamps(column_view const& timestamps,
std::string_view format,
strings_column_view const& names,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc to_durations(strings_column_view const&,data_type,std::string_view,
* rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> to_durations(strings_column_view const& strings,
data_type duration_type,
std::string_view format,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc from_durations(strings_column_view const&,std::string_view.
* rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> from_durations(column_view const& durations,
std::string_view format,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc to_fixed_point(strings_column_view const&,data_type,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> to_fixed_point(strings_column_view const& strings,
data_type output_type,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc from_fixed_point(strings_column_view const&,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> from_fixed_point(column_view const& integers,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/scatter.cuh
|
/*
* Copyright (c) 2019-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column_factories.hpp>
#include <cudf/strings/detail/utilities.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/span.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/device_uvector.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/distance.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/scatter.h>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Scatters strings into a copy of the target column
* according to a scatter map.
*
* The scatter is performed according to the scatter iterator such that row
* `scatter_map[i]` of the output column is replaced by the source string.
* All other rows of the output column equal corresponding rows of the target table.
*
* If the same index appears more than once in the scatter map, the result is
* undefined.
*
* The caller must update the null mask in the output column.
*
* @tparam SourceIterator must produce string_view objects
* @tparam MapIterator must produce index values within the target column.
*
* @param source The iterator of source strings to scatter into the output column.
* @param scatter_map Iterator of indices into the output column.
* @param target The set of columns into which values from the source column
* are to be scattered.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column.
*/
template <typename SourceIterator, typename MapIterator>
std::unique_ptr<column> scatter(SourceIterator begin,
SourceIterator end,
MapIterator scatter_map,
strings_column_view const& target,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
if (target.is_empty()) return make_empty_column(type_id::STRING);
// create vector of string_view's to scatter into
rmm::device_uvector<string_view> target_vector =
create_string_vector_from_column(target, stream, rmm::mr::get_current_device_resource());
// this ensures empty strings are not mapped to nulls in the make_strings_column function
auto const size = thrust::distance(begin, end);
auto itr = thrust::make_transform_iterator(
begin, [] __device__(string_view const sv) { return sv.empty() ? string_view{} : sv; });
// do the scatter
thrust::scatter(
rmm::exec_policy_nosync(stream), itr, itr + size, scatter_map, target_vector.begin());
// build the output column
auto sv_span = cudf::device_span<string_view const>(target_vector);
return make_strings_column(sv_span, string_view{nullptr, 0}, stream, mr);
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/copy_if_else.cuh
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_device_view.cuh>
#include <cudf/detail/valid_if.cuh>
#include <cudf/strings/detail/strings_children.cuh>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/for_each.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/optional.h>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Returns a new strings column using the specified Filter to select
* strings from the lhs iterator or the rhs iterator.
*
* ```
* output[i] = filter_fn(i) ? lhs(i) : rhs(i)
* ```
*
* @tparam StringIterLeft A random access iterator whose value_type is
* `thrust::optional<string_view>` where the `optional` has a value iff the element is valid.
* @tparam StringIterRight A random access iterator whose value_type is
* `thrust::optional<string_view>` where the `optional` has a value iff the element is valid.
* @tparam Filter Functor that takes an index and returns a boolean.
*
* @param lhs_begin Start of first set of data. Used when `filter_fn` returns true.
* @param lhs_end End of first set of data.
* @param rhs_begin Strings of second set of data. Used when `filter_fn` returns false.
* @param filter_fn Called to determine which iterator to use for a specific row.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New strings column.
*/
template <typename StringIterLeft, typename StringIterRight, typename Filter>
std::unique_ptr<cudf::column> copy_if_else(StringIterLeft lhs_begin,
StringIterLeft lhs_end,
StringIterRight rhs_begin,
Filter filter_fn,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
auto strings_count = std::distance(lhs_begin, lhs_end);
if (strings_count == 0) return make_empty_column(type_id::STRING);
// create null mask
auto valid_mask = cudf::detail::valid_if(
thrust::make_counting_iterator<size_type>(0),
thrust::make_counting_iterator<size_type>(strings_count),
[lhs_begin, rhs_begin, filter_fn] __device__(size_type idx) {
return filter_fn(idx) ? lhs_begin[idx].has_value() : rhs_begin[idx].has_value();
},
stream,
mr);
size_type null_count = valid_mask.second;
auto null_mask = (null_count > 0) ? std::move(valid_mask.first) : rmm::device_buffer{};
// build offsets column
auto offsets_transformer = [lhs_begin, rhs_begin, filter_fn] __device__(size_type idx) {
auto const result = filter_fn(idx) ? lhs_begin[idx] : rhs_begin[idx];
return result.has_value() ? result->size_bytes() : 0;
};
auto offsets_transformer_itr = thrust::make_transform_iterator(
thrust::make_counting_iterator<size_type>(0), offsets_transformer);
auto [offsets_column, bytes] = cudf::detail::make_offsets_child_column(
offsets_transformer_itr, offsets_transformer_itr + strings_count, stream, mr);
auto d_offsets = offsets_column->view().template data<int32_t>();
// build chars column
auto chars_column = create_chars_child_column(bytes, stream, mr);
auto d_chars = chars_column->mutable_view().template data<char>();
// fill in chars
thrust::for_each_n(
rmm::exec_policy(stream),
thrust::make_counting_iterator<size_type>(0),
strings_count,
[lhs_begin, rhs_begin, filter_fn, d_offsets, d_chars] __device__(size_type idx) {
auto const result = filter_fn(idx) ? lhs_begin[idx] : rhs_begin[idx];
if (!result.has_value()) return;
auto const d_str = *result;
memcpy(d_chars + d_offsets[idx], d_str.data(), d_str.size_bytes());
});
return make_strings_column(strings_count,
std::move(offsets_column),
std::move(chars_column),
null_count,
std::move(null_mask));
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/replace.hpp
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief The type of algorithm to use for a replace operation.
*/
enum class replace_algorithm {
AUTO, ///< Automatically choose the algorithm based on heuristics
ROW_PARALLEL, ///< Row-level parallelism
CHAR_PARALLEL ///< Character-level parallelism
};
/**
* @copydoc cudf::strings::replace(strings_column_view const&, string_scalar const&,
* string_scalar const&, int32_t, rmm::mr::device_memory_resource*)
*
* @tparam alg Replacement algorithm to use
* @param[in] stream CUDA stream used for device memory operations and kernel launches.
*/
template <replace_algorithm alg = replace_algorithm::AUTO>
std::unique_ptr<column> replace(strings_column_view const& strings,
string_scalar const& target,
string_scalar const& repl,
int32_t maxrepl,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::strings::replace_slice(strings_column_view const&, string_scalar const&,
* size_type. size_type, rmm::mr::device_memory_resource*)
*
* @param[in] stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> replace_slice(strings_column_view const& strings,
string_scalar const& repl,
size_type start,
size_type stop,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::strings::replace(strings_column_view const&, strings_column_view const&,
* strings_column_view const&, rmm::mr::device_memory_resource*)
*
* @param[in] stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> replace(strings_column_view const& strings,
strings_column_view const& targets,
strings_column_view const& repls,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @brief Replaces any null string entries with the given string.
*
* This returns a strings column with no null entries.
*
* @code{.pseudo}
* Example:
* s = ["hello", nullptr, "goodbye"]
* r = replace_nulls(s,"**")
* r is now ["hello", "**", "goodbye"]
* @endcode
*
* @param strings Strings column for this operation.
* @param repl Replacement string for null entries. Default is empty string.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New strings column.
*/
std::unique_ptr<column> replace_nulls(strings_column_view const& strings,
string_scalar const& repl,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/scan.hpp
|
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Scan function for strings
*
* Called by cudf::scan() with only min and max aggregates.
*
* @tparam Op Either DeviceMin or DeviceMax operations
*
* @param input Input strings column
* @param mask Mask for scan
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
template <typename Op>
std::unique_ptr<column> scan_inclusive(column_view const& input,
bitmask_type const* mask,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/convert/is_float.cuh
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/strings/string_view.cuh>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Returns true if input contains the not-a-number string.
*
* The following are valid for this function: "NAN" and "NaN"
* @param d_str input string
* @return true if input is as valid NaN string.
*/
inline __device__ bool is_nan_str(string_view const& d_str)
{
auto const ptr = d_str.data();
return (d_str.size_bytes() == 3) && (ptr[0] == 'N' || ptr[0] == 'n') &&
(ptr[1] == 'A' || ptr[1] == 'a') && (ptr[2] == 'N' || ptr[2] == 'n');
}
/**
* @brief Returns true if input contains the infinity string.
*
* The following are valid for this function: "INF", "INFINITY", and "Inf"
* @param d_str input string
* @return true if input is as valid Inf string.
*/
inline __device__ bool is_inf_str(string_view const& d_str)
{
auto const ptr = d_str.data();
auto const size = d_str.size_bytes();
if (size != 3 && size != 8) return false;
auto const prefix_valid = (ptr[0] == 'I' || ptr[0] == 'i') && (ptr[1] == 'N' || ptr[1] == 'n') &&
(ptr[2] == 'F' || ptr[2] == 'f');
return prefix_valid &&
((size == 3) || ((ptr[3] == 'I' || ptr[3] == 'i') && (ptr[4] == 'N' || ptr[4] == 'n') &&
(ptr[5] == 'I' || ptr[5] == 'i') && (ptr[6] == 'T' || ptr[6] == 't') &&
(ptr[7] == 'Y' || ptr[7] == 'y')));
}
/**
* @brief Returns `true` if all characters in the string
* are valid for conversion to a float type.
*
* Valid characters are in [-+0-9eE.]. The sign character (+/-)
* is optional but if present must be the first character.
* The sign character may also optionally appear right after the 'e' or 'E'
* if the string is formatted with scientific notation.
* The decimal character can appear only once and never after the
* 'e' or 'E' character.
* An empty string returns `false`.
* No bounds checking is performed to verify if the value would fit
* within a specific float type.
* The following strings are also allowed and will return true:
* "NaN", "NAN", "Inf", "INF", "INFINITY"
*
* @param d_str String to check.
* @return true if string has valid float characters
*/
inline __device__ bool is_float(string_view const& d_str)
{
if (d_str.empty()) return false;
bool decimal_found = false;
bool exponent_found = false;
size_type bytes = d_str.size_bytes();
char const* data = d_str.data();
// sign character allowed at the beginning of the string
size_type ch_idx = (*data == '-' || *data == '+') ? 1 : 0;
bool result = ch_idx < bytes;
// check for nan and infinity strings
if (result && data[ch_idx] > '9') {
auto const inf_nan = string_view(data + ch_idx, bytes - ch_idx);
if (is_nan_str(inf_nan) || is_inf_str(inf_nan)) return true;
}
// check for float chars [0-9] and a single decimal '.'
// and scientific notation [eE][+-][0-9]
for (; ch_idx < bytes; ++ch_idx) {
auto chr = data[ch_idx];
if (chr >= '0' && chr <= '9') continue;
if (!decimal_found && chr == '.') {
decimal_found = true; // no more decimals
continue;
}
if (!exponent_found && (chr == 'e' || chr == 'E')) {
if (ch_idx + 1 < bytes) chr = data[ch_idx + 1];
if (chr == '-' || chr == '+') ++ch_idx;
decimal_found = true; // no decimal allowed in exponent
exponent_found = true; // no more exponents
continue;
}
return false;
}
return result;
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/convert/string_to_int.cuh
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/strings/string_view.cuh>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Converts a single string into an integer.
*
* The '+' and '-' are allowed but only at the beginning of the string.
* The string is expected to contain base-10 [0-9] characters only.
* Any other character will end the parse.
* Overflow of the int64 type is not detected.
*/
__device__ inline int64_t string_to_integer(string_view const& d_str)
{
int64_t value = 0;
size_type bytes = d_str.size_bytes();
if (bytes == 0) return value;
char const* ptr = d_str.data();
int sign = 1;
if (*ptr == '-' || *ptr == '+') {
sign = (*ptr == '-' ? -1 : 1);
++ptr;
--bytes;
}
for (size_type idx = 0; idx < bytes; ++idx) {
char chr = *ptr++;
if (chr < '0' || chr > '9') break;
value = (value * 10) + static_cast<int64_t>(chr - '0');
}
return value * static_cast<int64_t>(sign);
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/convert/string_to_float.cuh
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/strings/detail/convert/is_float.cuh>
#include <cudf/strings/string_view.cuh>
#include <cmath>
#include <limits>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief This function converts the given string into a
* floating point double value.
*
* This will also map strings containing "NaN", "Inf", etc.
* to the appropriate float values.
*
* This function will also handle scientific notation format.
*/
__device__ inline double stod(string_view const& d_str)
{
char const* in_ptr = d_str.data();
char const* end = in_ptr + d_str.size_bytes();
if (end == in_ptr) return 0.0;
double sign{1.0};
if (*in_ptr == '-' || *in_ptr == '+') {
sign = (*in_ptr == '-' ? -1 : 1);
++in_ptr;
}
#ifndef CUDF_JIT_UDF
constexpr double infinity = std::numeric_limits<double>::infinity();
constexpr uint64_t max_holding = (std::numeric_limits<uint64_t>::max() - 9L) / 10L;
#else
constexpr double infinity = (1.0 / 0.0);
constexpr uint64_t max_holding = (18446744073709551615UL - 9UL) / 10UL;
#endif
// special strings: NaN, Inf
if ((in_ptr < end) && *in_ptr > '9') {
auto const inf_nan = string_view(in_ptr, static_cast<size_type>(end - in_ptr));
if (is_nan_str(inf_nan)) return nan("");
if (is_inf_str(inf_nan)) return sign * infinity;
}
// Parse and store the mantissa as much as we can,
// until we are about to exceed the limit of uint64_t
uint64_t digits = 0;
int exp_off = 0;
bool decimal = false;
while (in_ptr < end) {
char ch = *in_ptr;
if (ch == '.') {
decimal = true;
++in_ptr;
continue;
}
if (ch < '0' || ch > '9') break;
if (digits > max_holding)
exp_off += (int)!decimal;
else {
digits = (digits * 10L) + static_cast<uint64_t>(ch - '0');
if (digits > max_holding) {
digits = digits / 10L;
exp_off += (int)!decimal;
} else
exp_off -= (int)decimal;
}
++in_ptr;
}
if (digits == 0) return sign * static_cast<double>(0);
// check for exponent char
int exp_ten = 0;
int exp_sign = 1;
if (in_ptr < end) {
char ch = *in_ptr++;
if (ch == 'e' || ch == 'E') {
if (in_ptr < end) {
ch = *in_ptr;
if (ch == '-' || ch == '+') {
exp_sign = (ch == '-' ? -1 : 1);
++in_ptr;
}
while (in_ptr < end) {
ch = *in_ptr++;
if (ch < '0' || ch > '9') break;
exp_ten = (exp_ten * 10) + (int)(ch - '0');
}
}
}
}
int const num_digits = static_cast<int>(log10(static_cast<double>(digits))) + 1;
exp_ten *= exp_sign;
exp_ten += exp_off;
exp_ten += num_digits - 1;
if (exp_ten > std::numeric_limits<double>::max_exponent10) {
return sign > 0 ? infinity : -infinity;
}
double base = sign * static_cast<double>(digits);
exp_ten += 1 - num_digits;
// If 10^exp_ten would result in a subnormal value, the base and
// exponent should be adjusted so that 10^exp_ten is a normal value
auto const subnormal_shift = std::numeric_limits<double>::min_exponent10 - exp_ten;
if (subnormal_shift > 0) {
// Handle subnormal values. Ensure that both base and exponent are
// normal values before computing their product.
base = base / exp10(static_cast<double>(num_digits - 1 + subnormal_shift));
exp_ten += num_digits - 1; // adjust exponent
auto const exponent = exp10(static_cast<double>(exp_ten + subnormal_shift));
return base * exponent;
}
double const exponent = exp10(static_cast<double>(std::abs(exp_ten)));
return exp_ten < 0 ? base / exponent : base * exponent;
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/convert/int_to_string.cuh
|
/*
* Copyright (c) 2021-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/detail/utilities/integer_utils.hpp>
#include <cudf/strings/string_view.cuh>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Converts an integer into string
*
* @tparam IntegerType integer type to convert from
* @param value integer value to convert
* @param d_buffer character buffer to store the converted string
*/
template <typename IntegerType>
__device__ inline size_type integer_to_string(IntegerType value, char* d_buffer)
{
if (value == 0) {
*d_buffer = '0';
return 1;
}
bool const is_negative = cuda::std::is_signed<IntegerType>() ? (value < 0) : false;
constexpr IntegerType base = 10;
// largest 64-bit integer is 20 digits; largest 128-bit integer is 39 digits
constexpr int MAX_DIGITS = cuda::std::numeric_limits<IntegerType>::digits10 + 1;
char digits[MAX_DIGITS]; // place-holder for digit chars
int digits_idx = 0;
while (value != 0) {
assert(digits_idx < MAX_DIGITS);
digits[digits_idx++] = '0' + cudf::util::absolute_value(value % base);
// next digit
value = value / base;
}
size_type const bytes = digits_idx + static_cast<size_type>(is_negative);
char* ptr = d_buffer;
if (is_negative) *ptr++ = '-';
// digits are backwards, reverse the string into the output
while (digits_idx-- > 0)
*ptr++ = digits[digits_idx];
return bytes;
}
/**
* @brief Counts number of digits in a integer value including '-' sign
*
* @tparam IntegerType integer type of input value
* @param value input value to count the digits of
* @return size_type number of digits in input value
*/
template <typename IntegerType>
constexpr size_type count_digits(IntegerType value)
{
if (value == 0) return 1;
bool const is_negative = cuda::std::is_signed<IntegerType>() ? (value < 0) : false;
// abs(std::numeric_limits<IntegerType>::min()) is negative;
// for all integer types, the max() and min() values have the same number of digits
value = (value == cuda::std::numeric_limits<IntegerType>::min())
? cuda::std::numeric_limits<IntegerType>::max()
: cudf::util::absolute_value(value);
auto const digits = [value] {
// largest 8-byte unsigned value is 18446744073709551615 (20 digits)
// largest 16-byte unsigned value is 340282366920938463463374607431768211455 (39 digits)
auto constexpr max_digits = cuda::std::numeric_limits<IntegerType>::digits10 + 1;
size_type digits = 1;
__int128_t pow10 = 10;
for (; digits < max_digits; ++digits, pow10 *= 10)
if (value < pow10) break;
return digits;
}();
return digits + static_cast<size_type>(is_negative);
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/convert/fixed_point.cuh
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/fixed_point/temporary.hpp>
#include <thrust/optional.h>
#include <thrust/pair.h>
#include <cuda/std/type_traits>
namespace cudf {
namespace strings {
namespace detail {
/**
* @brief Return the integer component of a decimal string.
*
* This reads everything up to the exponent 'e' notation.
* The return includes the integer digits and any exponent offset.
*
* @tparam UnsignedDecimalType The unsigned version of the desired decimal type.
* Use the `std::make_unsigned_t` to create the
* unsigned type from the storage type.
*
* @param[in,out] iter Start of characters to parse
* @param[in] end End of characters to parse
* @return Integer component and exponent offset.
*/
template <typename UnsignedDecimalType>
__device__ inline thrust::pair<UnsignedDecimalType, int32_t> parse_integer(
char const*& iter, char const* iter_end, char const decimal_pt_char = '.')
{
// highest value where another decimal digit cannot be appended without an overflow;
// this preserves the most digits when scaling the final result for this type
constexpr UnsignedDecimalType decimal_max =
(std::numeric_limits<UnsignedDecimalType>::max() - 9L) / 10L;
__uint128_t value = 0; // for checking overflow
int32_t exp_offset = 0;
bool decimal_found = false;
while (iter < iter_end) {
auto const ch = *iter++;
if (ch == decimal_pt_char && !decimal_found) {
decimal_found = true;
continue;
}
if (ch < '0' || ch > '9') {
--iter;
break;
}
if (value > decimal_max) {
exp_offset += static_cast<int32_t>(!decimal_found);
} else {
value = (value * 10) + static_cast<UnsignedDecimalType>(ch - '0');
exp_offset -= static_cast<int32_t>(decimal_found);
}
}
return {value, exp_offset};
}
/**
* @brief Return the exponent of a decimal string.
*
* This should only be called after the exponent 'e' notation was detected.
* The return is the exponent (base-10) integer and can only be
* invalid if `check_only == true` and invalid characters are found or the
* exponent overflows an int32.
*
* @tparam check_only Set to true to verify the characters are valid and the
* exponent value in the decimal string does not overflow int32
* @param[in,out] iter Start of characters to parse
* (points to the character after the 'E' or 'e')
* @param[in] end End of characters to parse
* @return Integer value of the exponent
*/
template <bool check_only = false>
__device__ thrust::optional<int32_t> parse_exponent(char const* iter, char const* iter_end)
{
constexpr uint32_t exponent_max = static_cast<uint32_t>(std::numeric_limits<int32_t>::max());
// get optional exponent sign
int32_t const exp_sign = [&iter] {
auto const ch = *iter;
if (ch != '-' && ch != '+') { return 1; }
++iter;
return (ch == '-' ? -1 : 1);
}();
// parse exponent integer
int32_t exp_ten = 0;
while (iter < iter_end) {
auto const ch = *iter++;
if (ch < '0' || ch > '9') {
if (check_only) { return thrust::nullopt; }
break;
}
uint32_t exp_check = static_cast<uint32_t>(exp_ten * 10) + static_cast<uint32_t>(ch - '0');
if (check_only && (exp_check > exponent_max)) { return thrust::nullopt; } // check overflow
exp_ten = static_cast<int32_t>(exp_check);
}
return exp_ten * exp_sign;
}
/**
* @brief Converts the string in the range [iter, iter_end) into a decimal.
*
* @tparam DecimalType The decimal type to be returned
* @param iter The beginning of the string
* @param iter_end The end of the characters to parse
* @param scale The scale to be applied
* @return
*/
template <typename DecimalType>
__device__ DecimalType parse_decimal(char const* iter, char const* iter_end, int32_t scale)
{
auto const sign = [&] {
if (iter_end <= iter) { return 0; }
if (*iter == '-') { return -1; }
if (*iter == '+') { return 1; }
return 0;
}();
// if string begins with a sign, continue with next character
if (sign != 0) ++iter;
using UnsignedDecimalType = cuda::std::make_unsigned_t<DecimalType>;
auto [value, exp_offset] = parse_integer<UnsignedDecimalType>(iter, iter_end);
if (value == 0) { return DecimalType{0}; }
// check for exponent
int32_t exp_ten = 0;
if ((iter < iter_end) && (*iter == 'e' || *iter == 'E')) {
++iter;
if (iter < iter_end) { exp_ten = parse_exponent<false>(iter, iter_end).value(); }
}
exp_ten += exp_offset;
// shift the output value based on the exp_ten and the scale values
auto const shift_adjust =
abs(scale - exp_ten) > cuda::std::numeric_limits<UnsignedDecimalType>::digits10
? cuda::std::numeric_limits<UnsignedDecimalType>::max()
: numeric::detail::exp10<UnsignedDecimalType>(abs(scale - exp_ten));
value = exp_ten < scale ? value / shift_adjust : value * shift_adjust;
return static_cast<DecimalType>(value) * (sign == 0 ? 1 : sign);
}
} // namespace detail
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/detail/convert/fixed_point_to_string.cuh
|
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/strings/detail/convert/int_to_string.cuh>
namespace cudf::strings::detail {
/**
* @brief Returns the number of digits in the given fixed point number.
*
* @param value The value of the fixed point number
* @param scale The scale of the fixed point number
* @return int32_t The number of digits required to represent the fixed point number
*/
__device__ inline int32_t fixed_point_string_size(__int128_t const& value, int32_t scale)
{
if (scale >= 0) return count_digits(value) + scale;
auto const abs_value = numeric::detail::abs(value);
auto const exp_ten = numeric::detail::exp10<__int128_t>(-scale);
auto const fraction = count_digits(abs_value % exp_ten);
auto const num_zeros = std::max(0, (-scale - fraction));
return static_cast<int32_t>(value < 0) + // sign if negative
count_digits(abs_value / exp_ten) + // integer
1 + // decimal point
num_zeros + // zeros padding
fraction; // size of fraction
}
/**
* @brief Converts the given fixed point number to a string.
*
* Caller is responsible for ensuring that the output buffer is large enough. The required output
* buffer size can be obtained by calling `fixed_point_string_size`.
*
* @param value The value of the fixed point number
* @param scale The scale of the fixed point number
* @param out_ptr The pointer to the output string
*/
__device__ inline void fixed_point_to_string(__int128_t const& value, int32_t scale, char* out_ptr)
{
if (scale >= 0) {
out_ptr += integer_to_string(value, out_ptr);
thrust::generate_n(thrust::seq, out_ptr, scale, []() { return '0'; }); // add zeros
return;
}
// scale < 0
// write format: [-]integer.fraction
// where integer = abs(value) / (10^abs(scale))
// fraction = abs(value) % (10^abs(scale))
if (value < 0) *out_ptr++ = '-'; // add sign
auto const abs_value = numeric::detail::abs(value);
auto const exp_ten = numeric::detail::exp10<__int128_t>(-scale);
auto const num_zeros = std::max(0, (-scale - count_digits(abs_value % exp_ten)));
out_ptr += integer_to_string(abs_value / exp_ten, out_ptr); // add the integer part
*out_ptr++ = '.'; // add decimal point
thrust::generate_n(thrust::seq, out_ptr, num_zeros, []() { return '0'; }); // add zeros
out_ptr += num_zeros;
integer_to_string(abs_value % exp_ten, out_ptr); // add the fraction part
}
} // namespace cudf::strings::detail
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/split/split_re.hpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/table/table.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
struct regex_program;
/**
* @addtogroup strings_split
* @{
* @file
*/
/**
* @brief Splits strings elements into a table of strings columns
* using a regex_program's pattern to delimit each string
*
* Each element generates a vector of strings that are stored in corresponding
* rows in the output table -- `table[col,row] = token[col] of strings[row]`
* where `token` is a substring between delimiters.
*
* The number of rows in the output table will be the same as the number of
* elements in the input column. The resulting number of columns will be the
* maximum number of tokens found in any input row.
*
* The `pattern` is used to identify the delimiters within a string
* and splitting stops when either `maxsplit` or the end of the string is reached.
*
* An empty input string will produce a corresponding empty string in the
* corresponding row of the first column.
* A null row will produce corresponding null rows in the output table.
*
* The regex_program's regex_flags are ignored.
*
* @code{.pseudo}
* s = ["a_bc def_g", "a__bc", "_ab cd", "ab_cd "]
* p1 = regex_program::create("[_ ]")
* s1 = split_re(s, p1)
* s1 is a table of strings columns:
* [ ["a", "a", "", "ab"],
* ["bc", "", "ab", "cd"],
* ["def", "bc", "cd", ""],
* ["g", null, null, null] ]
* p2 = regex_program::create("[ _]")
* s2 = split_re(s, p2, 1)
* s2 is a table of strings columns:
* [ ["a", "a", "", "ab"],
* ["bc def_g", "_bc", "ab cd", "cd "] ]
* @endcode
*
* @throw cudf::logic_error if `pattern` is empty.
*
* @param input A column of string elements to be split
* @param prog Regex program instance
* @param maxsplit Maximum number of splits to perform.
* Default of -1 indicates all possible splits on each string.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned result's device memory
* @return A table of columns of strings
*/
std::unique_ptr<table> split_re(
strings_column_view const& input,
regex_program const& prog,
size_type maxsplit = -1,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Splits strings elements into a table of strings columns using a
* regex_program's pattern to delimit each string starting from the end of the string
*
* Each element generates a vector of strings that are stored in corresponding
* rows in the output table -- `table[col,row] = token[col] of string[row]`
* where `token` is the substring between each delimiter.
*
* The number of rows in the output table will be the same as the number of
* elements in the input column. The resulting number of columns will be the
* maximum number of tokens found in any input row.
*
* Splitting occurs by traversing starting from the end of the input string.
* The `pattern` is used to identify the delimiters within a string
* and splitting stops when either `maxsplit` or the beginning of the string
* is reached.
*
* An empty input string will produce a corresponding empty string in the
* corresponding row of the first column.
* A null row will produce corresponding null rows in the output table.
*
* The regex_program's regex_flags are ignored.
*
* @code{.pseudo}
* s = ["a_bc def_g", "a__bc", "_ab cd", "ab_cd "]
* p1 = regex_program::create("[_ ]")
* s1 = rsplit_re(s, p1)
* s1 is a table of strings columns:
* [ ["a", "a", "", "ab"],
* ["bc", "", "ab", "cd"],
* ["def", "bc", "cd", ""],
* ["g", null, null, null] ]
* p2 = regex_program::create("[ _]")
* s2 = rsplit_re(s, p2, 1)
* s2 is a table of strings columns:
* [ ["a_bc def", "a_", "_ab", "ab"],
* ["g", "bc", "cd", "cd "] ]
* @endcode
*
* @throw cudf::logic_error if `pattern` is empty.
*
* @param input A column of string elements to be split
* @param prog Regex program instance
* @param maxsplit Maximum number of splits to perform.
* Default of -1 indicates all possible splits on each string.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned result's device memory
* @return A table of columns of strings
*/
std::unique_ptr<table> rsplit_re(
strings_column_view const& input,
regex_program const& prog,
size_type maxsplit = -1,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Splits strings elements into a list column of strings
* using the given regex_program to delimit each string
*
* Each element generates an array of strings that are stored in an output
* lists column -- `list[row] = [token1, token2, ...] found in input[row]`
* where `token` is a substring between delimiters.
*
* The number of elements in the output column will be the same as the number of
* elements in the input column. Each individual list item will contain the
* new strings for that row. The resulting number of strings in each row can vary
* from 0 to `maxsplit + 1`.
*
* The `pattern` is used to identify the delimiters within a string
* and splitting stops when either `maxsplit` or the end of the string is reached.
*
* An empty input string will produce a corresponding empty list item output row.
* A null row will produce a corresponding null output row.
*
* The regex_program's regex_flags are ignored.
*
* @code{.pseudo}
* s = ["a_bc def_g", "a__bc", "_ab cd", "ab_cd "]
* p1 = regex_program::create("[_ ]")
* s1 = split_record_re(s, p1)
* s1 is a lists column of strings:
* [ ["a", "bc", "def", "g"],
* ["a", "", "bc"],
* ["", "ab", "cd"],
* ["ab", "cd", ""] ]
* p2 = regex_program::create("[ _]")
* s2 = split_record_re(s, p2, 1)
* s2 is a lists column of strings:
* [ ["a", "bc def_g"],
* ["a", "_bc"],
* ["", "ab cd"],
* ["ab", "cd "] ]
* @endcode
*
* @throw cudf::logic_error if `pattern` is empty.
*
* See the @ref md_regex "Regex Features" page for details on patterns supported by this API.
*
* @param input A column of string elements to be split
* @param prog Regex program instance
* @param maxsplit Maximum number of splits to perform.
* Default of -1 indicates all possible splits on each string.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned result's device memory
* @return Lists column of strings
*/
std::unique_ptr<column> split_record_re(
strings_column_view const& input,
regex_program const& prog,
size_type maxsplit = -1,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Splits strings elements into a list column of strings using the given
* regex_program to delimit each string starting from the end of the string
*
* Each element generates a vector of strings that are stored in an output
* lists column -- `list[row] = [token1, token2, ...] found in input[row]`
* where `token` is a substring between delimiters.
*
* The number of elements in the output column will be the same as the number of
* elements in the input column. Each individual list item will contain the
* new strings for that row. The resulting number of strings in each row can vary
* from 0 to `maxsplit + 1`.
*
* Splitting occurs by traversing starting from the end of the input string.
* The `pattern` is used to identify the separation points within a string
* and splitting stops when either `maxsplit` or the beginning of the string
* is reached.
*
* An empty input string will produce a corresponding empty list item output row.
* A null row will produce a corresponding null output row.
*
* The regex_program's regex_flags are ignored.
*
* @code{.pseudo}
* s = ["a_bc def_g", "a__bc", "_ab cd", "ab_cd "]
* p1 = regex_program::create("[_ ]")
* s1 = rsplit_record_re(s, p1)
* s1 is a lists column of strings:
* [ ["a", "bc", "def", "g"],
* ["a", "", "bc"],
* ["", "ab", "cd"],
* ["ab", "cd", ""] ]
* p2 = regex_program::create("[ _]")
* s2 = rsplit_record_re(s, p2, 1)
* s2 is a lists column of strings:
* [ ["a_bc def", "g"],
* ["a_", "bc"],
* ["_ab", "cd"],
* ["ab_cd", ""] ]
* @endcode
*
* See the @ref md_regex "Regex Features" page for details on patterns supported by this API.
*
* @throw cudf::logic_error if `pattern` is empty.
*
* @param input A column of string elements to be split
* @param prog Regex program instance
* @param maxsplit Maximum number of splits to perform.
* Default of -1 indicates all possible splits on each string.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned result's device memory
* @return Lists column of strings
*/
std::unique_ptr<column> rsplit_record_re(
strings_column_view const& input,
regex_program const& prog,
size_type maxsplit = -1,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/split/split.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/table/table.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_split
* @{
* @file
*/
/**
* @brief Returns a list of columns by splitting each string using the
* specified delimiter.
*
* The number of rows in the output columns will be the same as the
* input column. The first column will contain the first tokens of
* each string as a result of the split. Subsequent columns contain
* the next token strings. Null entries are added for a row where
* split results have been exhausted. The total number of columns
* will equal the maximum number of splits encountered on any string
* in the input column.
*
* Any null string entries return corresponding null output columns.
*
* @param strings_column Strings instance for this operation
* @param delimiter UTF-8 encoded string indicating the split points in each string;
* Default of empty string indicates split on whitespace.
* @param maxsplit Maximum number of splits to perform;
* Default of -1 indicates all possible splits on each string.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned table's device memory
* @return New table of strings columns
*/
std::unique_ptr<table> split(
strings_column_view const& strings_column,
string_scalar const& delimiter = string_scalar(""),
size_type maxsplit = -1,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a list of columns by splitting each string using the
* specified delimiter starting from the end of each string.
*
* The number of rows in the output columns will be the same as the
* input column. The first column will contain the first tokens encountered
* in each string as a result of the split. Subsequent columns contain
* the next token strings. Null entries are added for a row where
* split results have been exhausted. The total number of columns
* will equal the maximum number of splits encountered on any string
* in the input column.
*
* Any null string entries return corresponding null output columns.
*
* @param strings_column Strings instance for this operation
* @param delimiter UTF-8 encoded string indicating the split points in each string;
* Default of empty string indicates split on whitespace.
* @param maxsplit Maximum number of splits to perform;
* Default of -1 indicates all possible splits on each string.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned table's device memory
* @return New strings columns.
*/
std::unique_ptr<table> rsplit(
strings_column_view const& strings_column,
string_scalar const& delimiter = string_scalar(""),
size_type maxsplit = -1,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Splits individual strings elements into a list of strings.
*
* Each element generates an array of strings that are stored in an output
* lists column.
*
* The number of elements in the output column will be the same as the number of
* elements in the input column. Each individual list item will contain the
* new strings for that row. The resulting number of strings in each row can vary
* from 0 to `maxsplit + 1`.
*
* The `delimiter` is searched within each string from beginning to end
* and splitting stops when either `maxsplit` or the end of the string is reached.
*
* If a delimiter is not whitespace and occurs adjacent to another delimiter,
* an empty string is produced for that split occurrence. Likewise, a non-whitespace
* delimiter produces an empty string if it appears at the beginning or the end
* of a string.
*
* @code{.pseudo}
* s = ["a_bc_def_g", "a__bc", "_ab_cd", "ab_cd_"]
* s1 = split_record(s, "_")
* s1 is a lists column of strings:
* [ ["a", "bc", "def", "g"],
* ["a", "", "bc"],
* ["", "ab", "cd"],
* ["ab", "cd", ""] ]
* s2 = split_record(s, "_", 1)
* s2 is a lists column of strings:
* [ ["a", "bc_def_g"],
* ["a", "_bc"],
* ["", "ab_cd"],
* ["ab", "cd_"] ]
* @endcode
*
* A whitespace delimiter produces no empty strings.
* @code{.pseudo}
* s = ["a bc def", "a bc", " ab cd", "ab cd "]
* s1 = split_record(s, "")
* s1 is a lists column of strings:
* [ ["a", "bc", "def"],
* ["a", "bc"],
* ["ab", "cd"],
* ["ab", "cd"] ]
* s2 = split_record(s, "", 1)
* s2 is a lists column of strings:
* [ ["a", "bc def"],
* ["a", "bc"],
* ["ab", "cd"],
* ["ab", "cd "] ]
* @endcode
*
* A null string element will result in a null list item for that row.
*
* @throw cudf:logic_error if `delimiter` is invalid.
*
* @param strings A column of string elements to be split
* @param delimiter The string to identify split points in each string;
* Default of empty string indicates split on whitespace.
* @param maxsplit Maximum number of splits to perform;
* Default of -1 indicates all possible splits on each string
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned result's device memory
* @return Lists column of strings;
* Each row of the lists column holds splits from a single row
* element of the input column.
*/
std::unique_ptr<column> split_record(
strings_column_view const& strings,
string_scalar const& delimiter = string_scalar(""),
size_type maxsplit = -1,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Splits individual strings elements into a list of strings starting
* from the end of each string.
*
* Each element generates an array of strings that are stored in an output
* lists column.
*
* The number of elements in the output column will be the same as the number of
* elements in the input column. Each individual list item will contain the
* new strings for that row. The resulting number of strings in each row can vary
* from 0 to `maxsplit + 1`.
*
* The `delimiter` is searched from end to beginning within each string
* and splitting stops when either `maxsplit` or the beginning of the string
* is reached.
*
* If a delimiter is not whitespace and occurs adjacent to another delimiter,
* an empty string is produced for that split occurrence. Likewise, a non-whitespace
* delimiter produces an empty string if it appears at the beginning or the end
* of a string.
*
* Note that `rsplit_record` and `split_record` produce equivalent results for
* the default `maxsplit` value.
*
* @code{.pseudo}
* s = ["a_bc_def_g", "a__bc", "_ab_cd", "ab_cd_"]
* s1 = rsplit_record(s, "_")
* s1 is a lists column of strings:
* [ ["a", "bc", "def", "g"],
* ["a", "", "bc"],
* ["", "ab", "cd"],
* ["ab", "cd", ""] ]
* s2 = rsplit_record(s, "_", 1)
* s2 is a lists column of strings:
* [ ["a_bc_def", "g"],
* ["a_", "bc"],
* ["_ab", "cd"],
* ["ab_cd", ""] ]
* @endcode
*
* A whitespace delimiter produces no empty strings.
* @code{.pseudo}
* s = ["a bc def", "a bc", " ab cd", "ab cd "]
* s1 = rsplit_record(s, "")
* s1 is a lists column of strings:
* [ ["a", "bc", "def"],
* ["a", "bc"],
* ["ab", "cd"],
* ["ab", "cd"] ]
* s2 = rsplit_record(s, "", 1)
* s2 is a lists column of strings:
* [ ["a bc", "def"],
* ["a", "bc"],
* [" ab", "cd"],
* ["ab", "cd"] ]
* @endcode
*
* A null string element will result in a null list item for that row.
*
* @throw cudf:logic_error if `delimiter` is invalid.
*
* @param strings A column of string elements to be split
* @param delimiter The string to identify split points in each string;
* Default of empty string indicates split on whitespace.
* @param maxsplit Maximum number of splits to perform;
* Default of -1 indicates all possible splits on each string
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned result's device memory
* @return Lists column of strings;
* Each row of the lists column holds splits from a single row
* element of the input column.
*/
std::unique_ptr<column> rsplit_record(
strings_column_view const& strings,
string_scalar const& delimiter = string_scalar(""),
size_type maxsplit = -1,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/split/partition.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/table/table.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_split
* @{
* @file strings/split/partition.hpp
* @brief Strings partition APIs
*/
/**
* @brief Returns a set of 3 columns by splitting each string using the
* specified delimiter.
*
* The number of rows in the output columns will be the same as the
* input column. The first column will contain the first tokens of
* each string as a result of the split. The second column will contain
* the delimiter. The third column will contain the remaining characters
* of each string after the delimiter.
*
* Any null string entries return corresponding null output columns.
*
* @code{.pseudo}
* Example:
* s = ["ab_cd","def_g_h"]
* r = partition(s,"_")
* r[0] is ["ab","def"]
* r[1] is ["_","_"]
* r[2] is ["cd","g_h"]
* @endcode
*
* @param input Strings instance for this operation
* @param delimiter UTF-8 encoded string indicating where to split each string.
* Default of empty string indicates split on whitespace.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned table's device memory
* @return New table of strings columns
*/
std::unique_ptr<table> partition(
strings_column_view const& input,
string_scalar const& delimiter = string_scalar(""),
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a set of 3 columns by splitting each string using the
* specified delimiter starting from the end of each string.
*
* The number of rows in the output columns will be the same as the
* input column. The first column will contain the characters of
* each string before the last delimiter found. The second column will contain
* the delimiter. The third column will contain the remaining characters
* of each string after the delimiter.
*
* Any null string entries return corresponding null output columns.
*
* @code{.pseudo}
* Example:
* s = ["ab_cd","def_g_h"]
* r = rpartition(s,"_")
* r[0] is ["ab","def_g"]
* r[1] is ["_","_"]
* r[2] is ["cd","h"]
* @endcode
*
* @param input Strings instance for this operation
* @param delimiter UTF-8 encoded string indicating where to split each string.
* Default of empty string indicates split on whitespace.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned table's device memory
* @return New strings columns
*/
std::unique_ptr<table> rpartition(
strings_column_view const& input,
string_scalar const& delimiter = string_scalar(""),
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/regex/flags.hpp
|
/*
* Copyright (c) 2021-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cstdint>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_regex
* @{
*/
/**
* @brief Regex flags.
*
* These types can be or'd to combine them.
* The values are chosen to leave room for future flags
* and to match the Python flag values.
*/
enum regex_flags : uint32_t {
DEFAULT = 0, ///< default
MULTILINE = 8, ///< the '^' and '$' honor new-line characters
DOTALL = 16, ///< the '.' matching includes new-line characters
ASCII = 256 ///< use only ASCII when matching built-in character classes
};
/**
* @brief Returns true if the given flags contain MULTILINE.
*
* @param f Regex flags to check
* @return true if `f` includes MULTILINE
*/
constexpr bool is_multiline(regex_flags const f)
{
return (f & regex_flags::MULTILINE) == regex_flags::MULTILINE;
}
/**
* @brief Returns true if the given flags contain DOTALL.
*
* @param f Regex flags to check
* @return true if `f` includes DOTALL
*/
constexpr bool is_dotall(regex_flags const f)
{
return (f & regex_flags::DOTALL) == regex_flags::DOTALL;
}
/**
* @brief Returns true if the given flags contain ASCII.
*
* @param f Regex flags to check
* @return true if `f` includes ASCII
*/
constexpr bool is_ascii(regex_flags const f)
{
return (f & regex_flags::ASCII) == regex_flags::ASCII;
}
/**
* @brief Capture groups setting
*
* For processing a regex pattern containing capture groups.
* These can be used to optimize the generated regex instructions
* where the capture groups do not require extracting the groups.
*/
enum class capture_groups : uint32_t {
EXTRACT, ///< Capture groups processed normally for extract
NON_CAPTURE ///< Convert all capture groups to non-capture groups
};
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/regex/regex_program.hpp
|
/*
* Copyright (c) 2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/strings/regex/flags.hpp>
#include <cudf/types.hpp>
#include <memory>
#include <string>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_regex
* @{
*/
/**
* @brief Regex program class
*
* Create an instance from a regex pattern and use it to call the appropriate
* strings APIs. An instance can be reused.
*
* See the @ref md_regex "Regex Features" page for details on patterns and APIs that support regex.
*/
struct regex_program {
struct regex_program_impl;
/**
* @brief Create a program from a pattern
*
* @throw cudf::logic_error If pattern is invalid or contains unsupported features
*
* @param pattern Regex pattern
* @param flags Regex flags for interpreting special characters in the pattern
* @param capture Controls how capture groups in the pattern are used
* @return Instance of this object
*/
static std::unique_ptr<regex_program> create(std::string_view pattern,
regex_flags flags = regex_flags::DEFAULT,
capture_groups capture = capture_groups::EXTRACT);
/**
* @brief Move constructor
*
* @param other Object to move from
*/
regex_program(regex_program&& other);
/**
* @brief Move operator assignment
*
* @param other Object to move from
* @return this object
*/
regex_program& operator=(regex_program&& other);
/**
* @brief Return the pattern used to create this instance
*
* @return regex pattern as a string
*/
std::string pattern() const;
/**
* @brief Return the regex_flags used to create this instance
*
* @return regex flags setting
*/
regex_flags flags() const;
/**
* @brief Return the capture_groups used to create this instance
*
* @return capture groups setting
*/
capture_groups capture() const;
/**
* @brief Return the number of instructions in this instance
*
* @return Number of instructions
*/
int32_t instructions_count() const;
/**
* @brief Return the number of capture groups in this instance
*
* @return Number of groups
*/
int32_t groups_count() const;
/**
* @brief Return the size of the working memory for the regex execution
*
* @param num_strings Number of strings for computation
* @return Size of the working memory in bytes
*/
std::size_t compute_working_memory_size(int32_t num_strings) const;
~regex_program();
private:
regex_program() = delete;
std::string _pattern;
regex_flags _flags;
capture_groups _capture;
std::unique_ptr<regex_program_impl> _impl;
/**
* @brief Constructor
*
* Called by create()
*/
regex_program(std::string_view pattern, regex_flags flags, capture_groups capture);
friend struct regex_device_builder;
};
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/convert/convert_floats.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_convert
* @{
* @file
*/
/**
* @brief Returns a new numeric column by parsing float values from each string
* in the provided strings column.
*
* Any null entries will result in corresponding null entries in the output column.
*
* Only characters [0-9] plus a prefix '-' and '+' and decimal '.' are recognized.
* Additionally, scientific notation is also supported (e.g. "-1.78e+5").
*
* @throw cudf::logic_error if output_type is not float type.
*
* @param strings Strings instance for this operation
* @param output_type Type of float numeric column to return
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column with floats converted from strings
*/
std::unique_ptr<column> to_floats(
strings_column_view const& strings,
data_type output_type,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a new strings column converting the float values from the
* provided column into strings.
*
* Any null entries will result in corresponding null entries in the output column.
*
* For each float, a string is created in base-10 decimal.
* Negative numbers will include a '-' prefix.
* Numbers producing more than 10 significant digits will produce a string that
* includes scientific notation (e.g. "-1.78e+15").
*
* @throw cudf::logic_error if floats column is not float type.
*
* @param floats Numeric column to convert
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column with floats as strings
*/
std::unique_ptr<column> from_floats(
column_view const& floats,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a boolean column identifying strings in which all
* characters are valid for conversion to floats.
*
* The output row entry will be set to `true` if the corresponding string element
* has at least one character in [-+0-9eE.].
*
* @code{.pseudo}
* Example:
* s = ['123', '-456', '', 'A', '+7', '8.9' '3.7e+5']
* b = s.is_float(s)
* b is [true, true, false, false, true, true, true]
* @endcode
*
* Any null row results in a null entry for that row in the output column.
*
* @param input Strings instance for this operation
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column of boolean results for each string
*/
std::unique_ptr<column> is_float(
strings_column_view const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/convert/convert_booleans.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_convert
* @{
* @file
*/
/**
* @brief Returns a new BOOL8 column by parsing boolean values from the strings
* in the provided strings column.
*
* Any null entries will result in corresponding null entries in the output column.
*
* @param input Strings instance for this operation
* @param true_string String to expect for true. Non-matching strings are false
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New BOOL8 column converted from strings
*/
std::unique_ptr<column> to_booleans(
strings_column_view const& input,
string_scalar const& true_string,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a new strings column converting the boolean values from the
* provided column into strings.
*
* Any null entries will result in corresponding null entries in the output column.
*
* @throw cudf::logic_error if the input column is not BOOL8 type.
*
* @param booleans Boolean column to convert
* @param true_string String to use for true in the output column
* @param false_string String to use for false in the output column
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
std::unique_ptr<column> from_booleans(
column_view const& booleans,
string_scalar const& true_string,
string_scalar const& false_string,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/convert/convert_durations.hpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_convert
* @{
* @file
*/
/**
* @brief Returns a new duration column converting a strings column into
* durations using the provided format pattern.
*
* The format pattern can include the following specifiers:
* "%%,%n,%t,%D,%H,%I,%M,%S,%p,%R,%T,%r,%OH,%OI,%OM,%OS"
*
* | Specifier | Description | Range |
* | :-------: | ----------- | ---------------- |
* | %% | A literal % character | % |
* | \%n | A newline character | \\n |
* | \%t | A horizontal tab character | \\t |
* | \%D | Days | -2,147,483,648 to 2,147,483,647 |
* | \%H | 24-hour of the day | 00 to 23 |
* | \%I | 12-hour of the day | 00 to 11 |
* | \%M | Minute of the hour | 00 to 59 |
* | \%S | Second of the minute | 00 to 59.999999999 |
* | \%OH | same as %H but without sign | 00 to 23 |
* | \%OI | same as %I but without sign | 00 to 11 |
* | \%OM | same as %M but without sign | 00 to 59 |
* | \%OS | same as %S but without sign | 00 to 59 |
* | \%p | AM/PM designations associated with a 12-hour clock | 'AM' or 'PM' |
* | \%R | Equivalent to "%H:%M" | |
* | \%T | Equivalent to "%H:%M:%S" | |
* | \%r | Equivalent to "%OI:%OM:%OS %p" | |
*
* Other specifiers are not currently supported.
*
* Invalid formats are not checked. If the string contains unexpected
* or insufficient characters, that output row entry's duration value is undefined.
*
* Any null string entry will result in a corresponding null row in the output column.
*
* The resulting time units are specified by the `duration_type` parameter.
*
* @throw cudf::logic_error if duration_type is not a duration type.
*
* @param input Strings instance for this operation
* @param duration_type The duration type used for creating the output column
* @param format String specifying the duration format in strings
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New duration column
*/
std::unique_ptr<column> to_durations(
strings_column_view const& input,
data_type duration_type,
std::string_view format,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a new strings column converting a duration column into
* strings using the provided format pattern.
*
* The format pattern can include the following specifiers:
* "%%,%n,%t,%D,%H,%I,%M,%S,%p,%R,%T,%r,%OH,%OI,%OM,%OS"
*
* | Specifier | Description | Range |
* | :-------: | ----------- | ---------------- |
* | %% | A literal % character | % |
* | \%n | A newline character | \\n |
* | \%t | A horizontal tab character | \\t |
* | \%D | Days | -2,147,483,648 to 2,147,483,647 |
* | \%H | 24-hour of the day | 00 to 23 |
* | \%I | 12-hour of the day | 00 to 11 |
* | \%M | Minute of the hour | 00 to 59 |
* | \%S | Second of the minute | 00 to 59.999999999 |
* | \%OH | same as %H but without sign | 00 to 23 |
* | \%OI | same as %I but without sign | 00 to 11 |
* | \%OM | same as %M but without sign | 00 to 59 |
* | \%OS | same as %S but without sign | 00 to 59 |
* | \%p | AM/PM designations associated with a 12-hour clock | 'AM' or 'PM' |
* | \%R | Equivalent to "%H:%M" | |
* | \%T | Equivalent to "%H:%M:%S" | |
* | \%r | Equivalent to "%OI:%OM:%OS %p" | |
*
* No checking is done for invalid formats or invalid duration values. Formatting sticks to
* specifications of `std::formatter<std::chrono::duration>` as much as possible.
*
* Any null input entry will result in a corresponding null entry in the output column.
*
* The time units of the input column influence the number of digits in decimal of seconds.
* It uses 3 digits for milliseconds, 6 digits for microseconds and 9 digits for nanoseconds.
* If duration value is negative, only one negative sign is written to output string. The specifiers
* with signs are "%H,%I,%M,%S,%R,%T".
*
* @throw cudf::logic_error if `durations` column parameter is not a duration type.
*
* @param durations Duration values to convert
* @param format The string specifying output format.
* Default format is ""%D days %H:%M:%S".
* @param mr Device memory resource used to allocate the returned column's device memory
* @param stream CUDA stream used for device memory operations and kernel launches
* @return New strings column with formatted durations
*/
std::unique_ptr<column> from_durations(
column_view const& durations,
std::string_view format = "%D days %H:%M:%S",
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/convert/convert_fixed_point.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_convert
* @{
* @file
*/
/**
* @brief Returns a new fixed-point column parsing decimal values from the
* provided strings column.
*
* Any null entries result in corresponding null entries in the output column.
*
* The expected format is `[sign][integer][.][fraction]`, where the sign is either
* not present, `-` or `+`, The decimal point `[.]` may or may not be present, and
* `integer` and `fraction` are comprised of zero or more digits in [0-9].
* An invalid data format results in undefined behavior in the corresponding
* output row result.
*
* @code{.pseudo}
* Example:
* s = ['123', '-876', '543.2', '-0.12']
* datatype = {DECIMAL32, scale=-2}
* fp = to_fixed_point(s, datatype)
* fp is [123400, -87600, 54320, -12]
* @endcode
*
* Overflow of the resulting value type is not checked.
* The scale in the `output_type` is used for setting the integer component.
*
* @throw cudf::logic_error if `output_type` is not a fixed-point decimal type.
*
* @param input Strings instance for this operation
* @param output_type Type of fixed-point column to return including the scale value
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column of `output_type`
*/
std::unique_ptr<column> to_fixed_point(
strings_column_view const& input,
data_type output_type,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a new strings column converting the fixed-point values
* into a strings column.
*
* Any null entries result in corresponding null entries in the output column.
*
* For each value, a string is created in base-10 decimal.
* Negative numbers include a '-' prefix in the output string.
* The column's scale value is used to place the decimal point.
* A negative scale value may add padded zeros after the decimal point.
*
* @code{.pseudo}
* Example:
* fp is [110, 222, 3330, -440, -1] with scale = -2
* s = from_fixed_point(fp)
* s is now ['1.10', '2.22', '33.30', '-4.40', '-0.01']
* @endcode
*
* @throw cudf::logic_error if the `input` column is not a fixed-point decimal type.
*
* @param input Fixed-point column to convert
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
std::unique_ptr<column> from_fixed_point(
column_view const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a boolean column identifying strings in which all
* characters are valid for conversion to fixed-point.
*
* The sign and the exponent is optional. The decimal point may only appear once.
* Also, the integer component must fit within the size limits of the
* underlying fixed-point storage type. The value of the integer component
* is based on the scale of the `decimal_type` provided.
*
* @code{.pseudo}
* Example:
* s = ['123', '-456', '', '1.2.3', '+17E30', '12.34', '.789', '-0.005]
* b = is_fixed_point(s)
* b is [true, true, false, false, true, true, true, true]
* @endcode
*
* Any null entries result in corresponding null entries in the output column.
*
* @throw cudf::logic_error if the `decimal_type` is not a fixed-point decimal type.
*
* @param input Strings instance for this operation
* @param decimal_type Fixed-point type (with scale) used only for checking overflow
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column of boolean results for each string
*/
std::unique_ptr<column> is_fixed_point(
strings_column_view const& input,
data_type decimal_type = data_type{type_id::DECIMAL64},
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/convert/convert_urls.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_convert
* @{
* @file
*/
/**
* @brief Decodes each string using URL encoding.
*
* Converts mostly non-ascii characters and control characters into UTF-8 hex code-points
* prefixed with '%'. For example, the space character must be converted to characters '%20' where
* the '20' indicates the hex value for space in UTF-8. Likewise, multi-byte characters are
* converted to multiple hex characters. For example, the é character is converted to characters
* '%C3%A9' where 'C3A9' is the UTF-8 bytes 0xC3A9 for this character.
*
* Any null entries will result in corresponding null entries in the output column.
*
* @param input Strings instance for this operation
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
std::unique_ptr<column> url_encode(
strings_column_view const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Encodes each string using URL encoding.
*
* Converts all character sequences starting with '%' into character code-points
* interpreting the 2 following characters as hex values to create the code-point.
* For example, the sequence '%20' is converted into byte (0x20) which is a single
* space character. Another example converts '%C3%A9' into 2 sequential bytes
* (0xc3 and 0xa9 respectively) which is the é character. Overall, 3 characters
* are converted into one char byte whenever a '%%' (single percent) character
* is encountered in the string.
*
* Any null entries will result in corresponding null entries in the output column.
*
* @param input Strings instance for this operation
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
std::unique_ptr<column> url_decode(
strings_column_view const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/convert/convert_lists.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_convert
* @{
* @file
*/
/**
* @brief Convert a list column of strings into a formatted strings column.
*
* The `separators` column should contain 3 strings elements in the following order:
* - element separator (default is comma `,`)
* - left-hand enclosure (default is `[`)
* - right-hand enclosure (default is `]`)
*
* @code{.pseudo}
* l1 = { [[a,b,c], [d,e]], [[f,g], [h]] }
* s1 = format_list_column(l1)
* s1 is now ["[[a,b,c],[d,e]]", "[[f,g],[h]]"]
*
* l2 = { [[a,b,c], [d,e]], [NULL], [[f,g], NULL, [h]] }
* s2 = format_list_column(l1, '-', [':', '{', '}'])
* s2 is now ["{{a:b:c}:{d:e}}", "{-}", "{{f:g}:-:{h}}"]
* @endcode
*
* @throw cudf::logic_error if the input column is not a LIST type with a STRING child.
*
* @param input Lists column to format
* @param na_rep Replacement string for null elements
* @param separators Strings to use for enclosing list components and separating elements
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
std::unique_ptr<column> format_list_column(
lists_column_view const& input,
string_scalar const& na_rep = string_scalar(""),
strings_column_view const& separators = strings_column_view(column_view{
data_type{type_id::STRING}, 0, nullptr, nullptr, 0}),
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/convert/convert_integers.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_convert
* @{
* @file
*/
/**
* @brief Returns a new integer numeric column parsing integer values from the
* provided strings column.
*
* Any null entries will result in corresponding null entries in the output column.
*
* Only characters [0-9] plus a prefix '-' and '+' are recognized.
* When any other character is encountered, the parsing ends for that string
* and the current digits are converted into an integer.
*
* Overflow of the resulting integer type is not checked.
* Each string is converted using an int64 type and then cast to the
* target integer type before storing it into the output column.
* If the resulting integer type is too small to hold the value,
* the stored value will be undefined.
*
* @throw cudf::logic_error if output_type is not integral type.
*
* @param input Strings instance for this operation
* @param output_type Type of integer numeric column to return
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column with integers converted from strings
*/
std::unique_ptr<column> to_integers(
strings_column_view const& input,
data_type output_type,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a new strings column converting the integer values from the
* provided column into strings.
*
* Any null entries will result in corresponding null entries in the output column.
*
* For each integer, a string is created in base-10 decimal.
* Negative numbers will include a '-' prefix.
*
* @throw cudf::logic_error if integers column is not integral type.
*
* @param integers Numeric column to convert
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column with integers as strings
*/
std::unique_ptr<column> from_integers(
column_view const& integers,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a boolean column identifying strings in which all
* characters are valid for conversion to integers.
*
* The output row entry will be set to `true` if the corresponding string element
* have all characters in [-+0-9]. The optional sign character must only be in the first
* position. Notice that the integer value is not checked to be within its storage limits.
* For strict integer type check, use the other `is_integer()` API which accepts `data_type`
* argument.
*
* @code{.pseudo}
* Example:
* s = ['123', '-456', '', 'A', '+7']
* b = s.is_integer(s)
* b is [true, true, false, false, true]
* @endcode
*
* Any null row results in a null entry for that row in the output column.
*
* @param input Strings instance for this operation
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column of boolean results for each string
*/
std::unique_ptr<column> is_integer(
strings_column_view const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a boolean column identifying strings in which all
* characters are valid for conversion to integers.
*
* The output row entry will be set to `true` if the corresponding string element
* has all characters in [-+0-9]. The optional sign character must only be in the first
* position. Also, the integer component must fit within the size limits of the underlying
* storage type, which is provided by the int_type parameter.
*
* @code{.pseudo}
* Example:
* s = ['123456', '-456', '', 'A', '+7']
*
* output1 = s.is_integer(s, data_type{type_id::INT32})
* output1 is [true, true, false, false, true]
*
* output2 = s.is_integer(s, data_type{type_id::INT8})
* output2 is [false, false, false, false, true]
* @endcode
*
* Any null row results in a null entry for that row in the output column.
*
* @param input Strings instance for this operation
* @param int_type Integer type used for checking underflow and overflow
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column of boolean results for each string
*/
std::unique_ptr<column> is_integer(
strings_column_view const& input,
data_type int_type,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a new integer numeric column parsing hexadecimal values from the
* provided strings column.
*
* Any null entries will result in corresponding null entries in the output column.
*
* Only characters [0-9] and [A-F] are recognized.
* When any other character is encountered, the parsing ends for that string.
* No interpretation is made on the sign of the integer.
*
* Overflow of the resulting integer type is not checked.
* Each string is converted using an int64 type and then cast to the
* target integer type before storing it into the output column.
* If the resulting integer type is too small to hold the value,
* the stored value will be undefined.
*
* @throw cudf::logic_error if output_type is not integral type.
*
* @param input Strings instance for this operation
* @param output_type Type of integer numeric column to return
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column with integers converted from strings
*/
std::unique_ptr<column> hex_to_integers(
strings_column_view const& input,
data_type output_type,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a boolean column identifying strings in which all
* characters are valid for conversion to integers from hex.
*
* The output row entry will be set to `true` if the corresponding string element
* has at least one character in [0-9A-Za-z]. Also, the string may start
* with '0x'.
*
* @code{.pseudo}
* Example:
* s = ['123', '-456', '', 'AGE', '+17EA', '0x9EF' '123ABC']
* b = is_hex(s)
* b is [true, false, false, false, false, true, true]
* @endcode
*
* Any null row results in a null entry for that row in the output column.
*
* @param input Strings instance for this operation
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column of boolean results for each string
*/
std::unique_ptr<column> is_hex(
strings_column_view const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a new strings column converting integer columns to hexadecimal
* characters.
*
* Any null entries will result in corresponding null entries in the output column.
*
* The output character set is '0'-'9' and 'A'-'F'. The output string width will
* be a multiple of 2 depending on the size of the integer type. A single leading
* zero is applied to the first non-zero output byte if it less than 0x10.
*
* @code{.pseudo}
* Example:
* input = [1234, -1, 0, 27, 342718233] // int32 type input column
* s = integers_to_hex(input)
* s is [ '04D2', 'FFFFFFFF', '00', '1B', '146D7719']
* @endcode
*
* The example above shows an `INT32` type column where each integer is 4 bytes.
* Leading zeros are suppressed unless filling out a complete byte as in
* `1234 -> '04D2'` instead of `000004D2` or `4D2`.
*
* @throw cudf::logic_error if the input column is not integral type.
*
* @param input Integer column to convert to hex
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column with hexadecimal characters
*/
std::unique_ptr<column> integers_to_hex(
column_view const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/convert/convert_ipv4.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_convert
* @{
* @file
*/
/**
* @brief Converts IPv4 addresses into integers.
*
* The IPv4 format is 1-3 character digits [0-9] between 3 dots
* (e.g. 123.45.67.890). Each section can have a value between [0-255].
*
* The four sets of digits are converted to integers and placed in 8-bit fields inside
* the resulting integer.
* ```
* i0.i1.i2.i3 -> (i0 << 24) | (i1 << 16) | (i2 << 8) | (i3)
* ```
*
* No checking is done on the format. If a string is not in IPv4 format, the resulting
* integer is undefined.
*
* The resulting 32-bit integer is placed in an int64_t to avoid setting the sign-bit
* in an int32_t type. This could be changed if cudf supported a UINT32 type in the future.
*
* Any null entries will result in corresponding null entries in the output column.
*
* @param input Strings instance for this operation
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New INT64 column converted from strings
*/
std::unique_ptr<column> ipv4_to_integers(
strings_column_view const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Converts integers into IPv4 addresses as strings.
*
* The IPv4 format is 1-3 character digits [0-9] between 3 dots
* (e.g. 123.45.67.890). Each section can have a value between [0-255].
*
* Each input integer is dissected into four integers by dividing the input into 8-bit sections.
* These sub-integers are then converted into [0-9] characters and placed between '.' characters.
*
* No checking is done on the input integer value. Only the lower 32-bits are used.
*
* Any null entries will result in corresponding null entries in the output column.
*
* @throw cudf::logic_error if the input column is not INT64 type.
*
* @param integers Integer (INT64) column to convert
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column
*/
std::unique_ptr<column> integers_to_ipv4(
column_view const& integers,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a boolean column identifying strings in which all
* characters are valid for conversion to integers from IPv4 format.
*
* The output row entry will be set to `true` if the corresponding string element
* has the following format `xxx.xxx.xxx.xxx` where `xxx` is integer digits
* between 0-255.
*
* @code{.pseudo}
* Example:
* s = ['123.255.0.7', '127.0.0.1', '', '1.2.34' '123.456.789.10']
* b = s.is_ipv4(s)
* b is [true, true, false, false, true]
* @endcode
*
* Any null row results in a null entry for that row in the output column.
*
* @param input Strings instance for this operation
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column of boolean results for each string
*/
std::unique_ptr<column> is_ipv4(
strings_column_view const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/strings
|
rapidsai_public_repos/cudf/cpp/include/cudf/strings/convert/convert_datetime.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/strings/strings_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
#include <string>
#include <vector>
namespace cudf {
namespace strings {
/**
* @addtogroup strings_convert
* @{
* @file
*/
/**
* @brief Returns a new timestamp column converting a strings column into
* timestamps using the provided format pattern.
*
* The format pattern can include the following specifiers: "%Y,%y,%m,%d,%H,%I,%p,%M,%S,%f,%z"
*
* | Specifier | Description |
* | :-------: | ----------- |
* | \%d | Day of the month: 01-31 |
* | \%m | Month of the year: 01-12 |
* | \%y | Year without century: 00-99. [0,68] maps to [2000,2068] and [69,99] maps to [1969,1999] |
* | \%Y | Year with century: 0001-9999 |
* | \%H | 24-hour of the day: 00-23 |
* | \%I | 12-hour of the day: 01-12 |
* | \%M | Minute of the hour: 00-59 |
* | \%S | Second of the minute: 00-59. Leap second is not supported. |
* | \%f | 6-digit microsecond: 000000-999999 |
* | \%z | UTC offset with format ±HHMM Example +0500 |
* | \%j | Day of the year: 001-366 |
* | \%p | Only 'AM', 'PM' or 'am', 'pm' are recognized |
* | \%W | Week of the year with Monday as the first day of the week: 00-53 |
* | \%w | Day of week: 0-6 = Sunday-Saturday |
* | \%U | Week of the year with Sunday as the first day of the week: 00-53 |
* | \%u | Day of week: 1-7 = Monday-Sunday |
*
* Other specifiers are not currently supported.
*
* Invalid formats are not checked. If the string contains unexpected
* or insufficient characters, that output row entry's timestamp value is undefined.
*
* Any null string entry will result in a corresponding null row in the output column.
*
* The resulting time units are specified by the `timestamp_type` parameter.
* The time units are independent of the number of digits parsed by the "%f" specifier.
* The "%f" supports a precision value to read the numeric digits. Specify the
* precision with a single integer value (1-9) as follows:
* use "%3f" for milliseconds, "%6f" for microseconds and "%9f" for nanoseconds.
*
* Although leap second is not supported for "%S", no checking is performed on the value.
* The cudf::strings::is_timestamp can be used to verify the valid range of values.
*
* If "%W"/"%w" (or "%U/%u") and "%m"/"%d" are both specified, the "%W"/%U and "%w"/%u values
* take precedent when computing the date part of the timestamp result.
*
* @throw cudf::logic_error if timestamp_type is not a timestamp type.
*
* @param input Strings instance for this operation
* @param timestamp_type The timestamp type used for creating the output column
* @param format String specifying the timestamp format in strings
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New datetime column
*/
std::unique_ptr<column> to_timestamps(
strings_column_view const& input,
data_type timestamp_type,
std::string_view format,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Verifies the given strings column can be parsed to timestamps using the provided format
* pattern.
*
* The format pattern can include the following specifiers: "%Y,%y,%m,%d,%H,%I,%p,%M,%S,%f,%z"
*
* | Specifier | Description |
* | :-------: | ----------- |
* | \%d | Day of the month: 01-31 |
* | \%m | Month of the year: 01-12 |
* | \%y | Year without century: 00-99. [0,68] maps to [2000,2068] and [69,99] maps to [1969,1999] |
* | \%Y | Year with century: 0001-9999 |
* | \%H | 24-hour of the day: 00-23 |
* | \%I | 12-hour of the day: 01-12 |
* | \%M | Minute of the hour: 00-59|
* | \%S | Second of the minute: 00-59. Leap second is not supported. |
* | \%f | 6-digit microsecond: 000000-999999 |
* | \%z | UTC offset with format ±HHMM Example +0500 |
* | \%j | Day of the year: 001-366 |
* | \%p | Only 'AM', 'PM' or 'am', 'pm' are recognized |
* | \%W | Week of the year with Monday as the first day of the week: 00-53 |
* | \%w | Day of week: 0-6 = Sunday-Saturday |
* | \%U | Week of the year with Sunday as the first day of the week: 00-53 |
* | \%u | Day of week: 1-7 = Monday-Sunday |
*
* Other specifiers are not currently supported.
* The "%f" supports a precision value to read the numeric digits. Specify the
* precision with a single integer value (1-9) as follows:
* use "%3f" for milliseconds, "%6f" for microseconds and "%9f" for nanoseconds.
*
* Any null string entry will result in a corresponding null row in the output column.
*
* This will return a column of type BOOL8 where a `true` row indicates the corresponding
* input string can be parsed correctly with the given format.
*
* @param input Strings instance for this operation
* @param format String specifying the timestamp format in strings
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New BOOL8 column
*/
std::unique_ptr<column> is_timestamp(
strings_column_view const& input,
std::string_view format,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Returns a new strings column converting a timestamp column into
* strings using the provided format pattern.
*
* The format pattern can include the following specifiers: "%Y,%y,%m,%d,%H,%I,%p,%M,%S,%f,%z,%Z"
*
* | Specifier | Description |
* | :-------: | ----------- |
* | \%d | Day of the month: 01-31 |
* | \%m | Month of the year: 01-12 |
* | \%y | Year without century: 00-99 |
* | \%Y | Year with century: 0001-9999 |
* | \%H | 24-hour of the day: 00-23 |
* | \%I | 12-hour of the day: 01-12 |
* | \%M | Minute of the hour: 00-59|
* | \%S | Second of the minute: 00-59 |
* | \%f | 6-digit microsecond: 000000-999999 |
* | \%z | Always outputs "+0000" |
* | \%Z | Always outputs "UTC" |
* | \%j | Day of the year: 001-366 |
* | \%u | ISO weekday where Monday is 1 and Sunday is 7 |
* | \%w | Weekday where Sunday is 0 and Saturday is 6 |
* | \%U | Week of the year with Sunday as the first day: 00-53 |
* | \%W | Week of the year with Monday as the first day: 00-53 |
* | \%V | Week of the year per ISO-8601 format: 01-53 |
* | \%G | Year based on the ISO-8601 weeks: 0000-9999 |
* | \%p | AM/PM from `timestamp_names::am_str/pm_str` |
* | \%a | Weekday abbreviation from the `names` parameter |
* | \%A | Weekday from the `names` parameter |
* | \%b | Month name abbreviation from the `names` parameter |
* | \%B | Month name from the `names` parameter |
*
* Additional descriptions can be found here:
* https://en.cppreference.com/w/cpp/chrono/system_clock/formatter
*
* No checking is done for invalid formats or invalid timestamp values.
* All timestamps values are formatted to UTC.
*
* Any null input entry will result in a corresponding null entry in the output column.
*
* The time units of the input column do not influence the number of digits written by
* the "%f" specifier. The "%f" supports a precision value to write out numeric digits
* for the subsecond value. Specify the precision with a single integer value (1-9)
* between the "%" and the "f" as follows: use "%3f" for milliseconds, use "%6f" for
* microseconds and use "%9f" for nanoseconds. If the precision is higher than the
* units, then zeroes are padded to the right of the subsecond value. If the precision
* is lower than the units, the subsecond value may be truncated.
*
* If the "%a", "%A", "%b", "%B" specifiers are included in the format, the caller
* should provide the format names in the `names` strings column using the following
* as a guide:
*
* @code{.pseudo}
* ["AM", "PM", // specify the AM/PM strings
* "Sunday", "Monday", ..., "Saturday", // Weekday full names
* "Sun", "Mon", ..., "Sat", // Weekday abbreviated names
* "January", "February", ..., "December", // Month full names
* "Jan", "Feb", ..., "Dec"] // Month abbreviated names
* @endcode
*
* The result is undefined if the format names are not provided for these specifiers.
*
* These format names can be retrieved for specific locales using the `nl_langinfo`
* functions from C++ `clocale` (std) library or the Python `locale` library.
*
* The following code is an example of retrieving these strings from the locale
* using c++ std functions:
*
* @code{.cpp}
* #include <clocale>
* #include <langinfo.h>
*
* // note: install language pack on Ubuntu using 'apt-get install language-pack-de'
* {
* // set to a German language locale for date settings
* std::setlocale(LC_TIME, "de_DE.UTF-8");
*
* std::vector<std::string> names({nl_langinfo(AM_STR), nl_langinfo(PM_STR),
* nl_langinfo(DAY_1), nl_langinfo(DAY_2), nl_langinfo(DAY_3), nl_langinfo(DAY_4),
* nl_langinfo(DAY_5), nl_langinfo(DAY_6), nl_langinfo(DAY_7),
* nl_langinfo(ABDAY_1), nl_langinfo(ABDAY_2), nl_langinfo(ABDAY_3), nl_langinfo(ABDAY_4),
* nl_langinfo(ABDAY_5), nl_langinfo(ABDAY_6), nl_langinfo(ABDAY_7),
* nl_langinfo(MON_1), nl_langinfo(MON_2), nl_langinfo(MON_3), nl_langinfo(MON_4),
* nl_langinfo(MON_5), nl_langinfo(MON_6), nl_langinfo(MON_7), nl_langinfo(MON_8),
* nl_langinfo(MON_9), nl_langinfo(MON_10), nl_langinfo(MON_11), nl_langinfo(MON_12),
* nl_langinfo(ABMON_1), nl_langinfo(ABMON_2), nl_langinfo(ABMON_3), nl_langinfo(ABMON_4),
* nl_langinfo(ABMON_5), nl_langinfo(ABMON_6), nl_langinfo(ABMON_7), nl_langinfo(ABMON_8),
* nl_langinfo(ABMON_9), nl_langinfo(ABMON_10), nl_langinfo(ABMON_11), nl_langinfo(ABMON_12)});
*
* std::setlocale(LC_TIME,""); // reset to default locale
* }
* @endcode
*
* @throw cudf::logic_error if `timestamps` column parameter is not a timestamp type.
* @throw cudf::logic_error if the `format` string is empty
* @throw cudf::logic_error if `names.size()` is an invalid size. Must be 0 or 40 strings.
*
* @param timestamps Timestamp values to convert
* @param format The string specifying output format.
* Default format is "%Y-%m-%dT%H:%M:%SZ".
* @param names The string names to use for weekdays ("%a", "%A") and months ("%b", "%B")
* Default is an empty `strings_column_view`.
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New strings column with formatted timestamps
*/
std::unique_ptr<column> from_timestamps(
column_view const& timestamps,
std::string_view format = "%Y-%m-%dT%H:%M:%SZ",
strings_column_view const& names = strings_column_view(column_view{
data_type{type_id::STRING}, 0, nullptr, nullptr, 0}),
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace strings
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/dictionary_factories.hpp
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
/**
* @addtogroup column_factories Factories
* @{
* @file
*/
/**
* @brief Construct a dictionary column by copying the provided `keys`
* and `indices`.
*
* It is expected that `keys_column.has_nulls() == false`.
* It is assumed the elements in `keys_column` are unique and
* are in a strict, total order. Meaning, `keys_column[i]` is ordered before
* `keys_column[i+1]` for all `i in [0,n-1)` where `n` is the number of keys.
*
* The indices values must be in the range [0,keys_column.size()).
*
* The null_mask and null count for the output column are copied from the indices column.
* If element `i` in `indices_column` is null, then element `i` in the returned dictionary column
* will also be null.
*
* ```
* k = ["a","c","d"]
* i = [1,0,null,2,2]
* d = make_dictionary_column(k,i)
* d is now {["a","c","d"],[1,0,undefined,2,2]} bitmask={1,1,0,1,1}
* ```
*
* The null_mask and null count for the output column are copied from the indices column.
*
* @throw cudf::logic_error if keys_column contains nulls
* @throw cudf::logic_error if indices_column type is not INT32
*
* @param keys_column Column of unique, ordered values to use as the new dictionary column's keys.
* @param indices_column Indices to use for the new dictionary column.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New dictionary column.
*/
std::unique_ptr<column> make_dictionary_column(
column_view const& keys_column,
column_view const& indices_column,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Construct a dictionary column by taking ownership of the provided keys
* and indices columns.
*
* The keys_column and indices columns must contain no nulls.
* It is assumed the elements in `keys_column` are unique and
* are in a strict, total order. Meaning, `keys_column[i]` is ordered before
* `keys_column[i+1]` for all `i in [0,n-1)` where `n` is the number of keys.
*
* The indices values must be in the range [0,keys_column.size()).
*
* @throw cudf::logic_error if keys_column or indices_column contains nulls
* @throw cudf::logic_error if indices_column type is not an unsigned integer type
*
* @param keys_column Column of unique, ordered values to use as the new dictionary column's keys.
* @param indices_column Indices to use for the new dictionary column.
* @param null_mask Null mask for the output column.
* @param null_count Number of nulls for the output column.
* @return New dictionary column.
*/
std::unique_ptr<column> make_dictionary_column(std::unique_ptr<column> keys_column,
std::unique_ptr<column> indices_column,
rmm::device_buffer&& null_mask,
size_type null_count);
/**
* @brief Construct a dictionary column by taking ownership of the provided keys
* and indices columns.
*
* The `keys_column` must contain no nulls and is assumed to have elements
* that are unique and are in a strict, total order. Meaning, `keys_column[i]`
* is ordered before `keys_column[i+1]` for all `i in [0,n-1)` where `n` is the
* number of keys.
*
* The `indices_column` can be any integer type and should contain the null-mask
* to be used for the output column.
* The indices values must be in the range [0,keys_column.size()).
*
* @throw cudf::logic_error if keys_column contains nulls
*
* @param keys_column Column of unique, ordered values to use as the new dictionary column's keys.
* @param indices_column Indices values and null-mask to use for the new dictionary column.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New dictionary column.
*/
std::unique_ptr<column> make_dictionary_column(
std::unique_ptr<column> keys_column,
std::unique_ptr<column> indices_column,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/update_keys.hpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <cudf/utilities/span.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace dictionary {
/**
* @addtogroup dictionary_update
* @{
* @file
*/
/**
* @brief Create a new dictionary column by adding the new keys elements
* to the existing dictionary_column.
*
* The indices are updated if any of the new keys are sorted
* before any of the existing dictionary elements.
*
* @code{.pseudo}
* d1 = { keys=["a", "c", "d"], indices=[2, 0, 1, 0, 1]}
* d2 = add_keys( d1, ["b", "c"] )
* d2 is now {keys=["a", "b", "c", "d"], indices=[3, 0, 2, 0, 2]}
* @endcode
*
* The output column will have the same number of rows as the input column.
* Null entries from the input column are copied to the output column.
* No new null entries are created by this operation.
*
* @throw cudf_logic_error if the new_keys type does not match the keys type in
* the dictionary_column.
* @throw cudf_logic_error if the new_keys contain nulls.
*
* @param dictionary_column Existing dictionary column.
* @param new_keys New keys to incorporate into the dictionary_column.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New dictionary column.
*/
std::unique_ptr<column> add_keys(
dictionary_column_view const& dictionary_column,
column_view const& new_keys,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a new dictionary column by removing the specified keys
* from the existing dictionary_column.
*
* The output column will have the same number of rows as the input column.
* Null entries from the input column and copied to the output column.
* The indices are updated to the new positions of the remaining keys.
* Any indices pointing to removed keys sets that row to null.
*
* @code{.pseudo}
* d1 = {keys=["a", "c", "d"], indices=[2, 0, 1, 0, 2]}
* d2 = remove_keys( d1, ["b", "c"] )
* d2 is now {keys=["a", "d"], indices=[1, 0, x, 0, 1], valids=[1, 1, 0, 1, 1]}
* @endcode
* Note that "a" has been removed so output row[2] becomes null.
*
* @throw cudf_logic_error if the keys_to_remove type does not match the keys type in
* the dictionary_column.
* @throw cudf_logic_error if the keys_to_remove contain nulls.
*
* @param dictionary_column Existing dictionary column.
* @param keys_to_remove The keys to remove from the dictionary_column.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New dictionary column.
*/
std::unique_ptr<column> remove_keys(
dictionary_column_view const& dictionary_column,
column_view const& keys_to_remove,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a new dictionary column by removing any keys
* that are not referenced by any of the indices.
*
* The indices are updated to the new position values of the remaining keys.
*
* @code{.pseudo}
* d1 = {["a","c","d"],[2,0,2,0]}
* d2 = remove_unused_keys(d1)
* d2 is now {["a","d"],[1,0,1,0]}
* @endcode
*
* @param dictionary_column Existing dictionary column.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New dictionary column.
*/
std::unique_ptr<column> remove_unused_keys(
dictionary_column_view const& dictionary_column,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a new dictionary column by applying only the specified keys
* to the existing dictionary_column.
*
* Any new elements found in the keys parameter are added to the output dictionary.
* Any existing keys not in the keys parameter are removed.
*
* The number of rows in the output column will be the same as the number of rows
* in the input column. Existing null entries are copied to the output column.
* The indices are updated to reflect the position values of the new keys.
* Any indices pointing to removed keys sets those rows to null.
*
* @code{.pseudo}
* d1 = {keys=["a", "b", "c"], indices=[2, 0, 1, 2, 1]}
* d2 = set_keys(existing_dict, ["b","c","d"])
* d2 is now {keys=["b", "c", "d"], indices=[1, x, 0, 1, 0], valids=[1, 0, 1, 1, 1]}
* @endcode
*
* @throw cudf_logic_error if the keys type does not match the keys type in
* the dictionary_column.
* @throw cudf_logic_error if the keys contain nulls.
*
* @param dictionary_column Existing dictionary column.
* @param keys New keys to use for the output column. Must not contain nulls.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New dictionary column.
*/
std::unique_ptr<column> set_keys(
dictionary_column_view const& dictionary_column,
column_view const& keys,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create new dictionaries that have keys merged from the input dictionaries.
*
* This will concatenate the keys for each dictionary and then call `set_keys` on each.
* The result is a vector of new dictionaries with a common set of keys.
*
* @param input Dictionary columns to match keys.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New dictionary columns.
*/
std::vector<std::unique_ptr<column>> match_dictionaries(
cudf::host_span<dictionary_column_view const> input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace dictionary
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/search.hpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <cudf/scalar/scalar.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace dictionary {
/**
* @addtogroup dictionary_search
* @{
* @file
*/
/**
* @brief Return the index value for a given key.
*
* If the key does not exist in the dictionary the returned scalar will have `is_valid()==false`
*
* @throw cudf::logic_error if `key.type() != dictionary.keys().type()`
*
* @param dictionary The dictionary to search for the key.
* @param key The value to search for in the dictionary keyset.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned scalar's device memory.
* @return Numeric scalar index value of the key within the dictionary.
*/
std::unique_ptr<scalar> get_index(
dictionary_column_view const& dictionary,
scalar const& key,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace dictionary
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/encode.hpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace dictionary {
/**
* @addtogroup dictionary_encode
* @{
* @file
* @brief Dictionary column encode and decode APIs
*/
/**
* @brief Construct a dictionary column by dictionary encoding an existing column
*
* The output column is a DICTIONARY type with a keys column of non-null, unique values
* that are in a strict, total order. Meaning, `keys[i]` is _ordered before
* `keys[i+1]` for all `i in [0,n-1)` where `n` is the number of keys.
* The output column has a child indices column that is of integer type and with
* the same size as the input column.
*
* The null mask and null count are copied from the input column to the output column.
*
* @throw cudf::logic_error if indices type is not an unsigned integer type
* @throw cudf::logic_error if the column to encode is already a DICTIONARY type
*
* @code{.pseudo}
* c = [429, 111, 213, 111, 213, 429, 213]
* d = encode(c)
* d now has keys [111, 213, 429] and indices [2, 0, 1, 0, 1, 2, 1]
* @endcode
*
* @param column The column to dictionary encode
* @param indices_type The integer type to use for the indices
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return Returns a dictionary column
*/
std::unique_ptr<column> encode(
column_view const& column,
data_type indices_type = data_type{type_id::UINT32},
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a column by gathering the keys from the provided
* dictionary_column into a new column using the indices from that column.
*
* @code{.pseudo}
* d1 = {["a", "c", "d"], [2, 0, 1, 0]}
* s = decode(d1)
* s is now ["d", "a", "c", "a"]
* @endcode
*
* @param dictionary_column Existing dictionary column
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column with type matching the dictionary_column's keys
*/
std::unique_ptr<column> decode(
dictionary_column_view const& dictionary_column,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace dictionary
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/dictionary_column_view.hpp
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
/**
* @file
* @brief Class definition for cudf::dictionary_column_view
*/
namespace cudf {
/**
* @addtogroup dictionary_classes
* @{
*/
/**
* @brief A wrapper class for operations on a dictionary column.
*
* A dictionary column contains a set of keys and a column of indices.
* The keys are a sorted set of unique values for the column.
* The indices represent the corresponding positions of each element's
* value in the keys.
*/
class dictionary_column_view : private column_view {
public:
/**
* @brief Construct a new dictionary column view object from a column view.
*
* @param dictionary_column The column view to wrap
*/
dictionary_column_view(column_view const& dictionary_column);
dictionary_column_view(dictionary_column_view&&) = default; ///< Move constructor
dictionary_column_view(dictionary_column_view const&) = default; ///< Copy constructor
~dictionary_column_view() = default;
/**
* @brief Move assignment operator
*
* @return The reference to this dictionary column
*/
dictionary_column_view& operator=(dictionary_column_view const&) = default;
/**
* @brief Copy assignment operator
*
* @return The reference to this dictionary column
*/
dictionary_column_view& operator=(dictionary_column_view&&) = default;
/// Index of the indices column of the dictionary column
static constexpr size_type indices_column_index{0};
/// Index of the keys column of the dictionary column
static constexpr size_type keys_column_index{1};
using column_view::has_nulls;
using column_view::is_empty;
using column_view::null_count;
using column_view::null_mask;
using column_view::offset;
using column_view::size;
/**
* @brief Returns the parent column.
*
* @return The parent column
*/
[[nodiscard]] column_view parent() const noexcept;
/**
* @brief Returns the column of indices
*
* @return The indices column
*/
[[nodiscard]] column_view indices() const noexcept;
/**
* @brief Returns a column_view combining the indices data
* with offset, size, and nulls from the parent.
*
* @return A sliced indices column view with nulls from the parent
*/
[[nodiscard]] column_view get_indices_annotated() const noexcept;
/**
* @brief Returns the column of keys
*
* @return The keys column
*/
[[nodiscard]] column_view keys() const noexcept;
/**
* @brief Returns the cudf::data_type of the keys child column.
*
* @return The cudf::data_type of the keys child column
*/
[[nodiscard]] data_type keys_type() const noexcept;
/**
* @brief Returns the number of rows in the keys column.
*
* @return The number of rows in the keys column
*/
[[nodiscard]] size_type keys_size() const noexcept;
};
/** @} */ // end of group
//! Dictionary column APIs.
namespace dictionary { // defined here for doxygen output
}
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/detail/iterator.cuh
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column_device_view.cuh>
#include <cudf/detail/iterator.cuh>
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <thrust/pair.h>
namespace cudf {
namespace dictionary {
namespace detail {
/**
* @brief Accessor functor for returning a dictionary key element in a dictionary iterator.
*
* @tparam KeyType The type of the dictionary's key element.
*/
template <typename KeyType>
struct dictionary_access_fn {
dictionary_access_fn(column_device_view const& d_dictionary) : d_dictionary{d_dictionary} {}
__device__ KeyType operator()(size_type idx) const
{
if (d_dictionary.is_null(idx)) return KeyType{};
auto keys = d_dictionary.child(dictionary_column_view::keys_column_index);
return keys.element<KeyType>(static_cast<size_type>(d_dictionary.element<dictionary32>(idx)));
};
private:
column_device_view const d_dictionary;
};
/**
* @brief Create dictionary iterator that produces key elements.
*
* The iterator returns `keys[indices[i]]` where the `keys` are the dictionary's key
* elements and the `indices` are the dictionary's index elements.
*
* @throw cudf::logic_error if `dictionary_column` is not a dictionary column.
*
* @tparam KeyType The type of the dictionary's key element.
* @param dictionary_column The dictionary device view to iterate.
* @return Iterator
*/
template <typename KeyType>
auto make_dictionary_iterator(column_device_view const& dictionary_column)
{
CUDF_EXPECTS(is_dictionary(dictionary_column.type()),
"Dictionary iterator is only for dictionary columns");
return cudf::detail::make_counting_transform_iterator(
size_type{0}, dictionary_access_fn<KeyType>{dictionary_column});
}
/**
* @brief Accessor functor for returning a dictionary pair iterator.
*
* @tparam KeyType The type of the dictionary's key element.
*
* @throw cudf::logic_error if `has_nulls==true` and `d_dictionary` is not nullable.
*/
template <typename KeyType>
struct dictionary_access_pair_fn {
dictionary_access_pair_fn(column_device_view const& d_dictionary, bool has_nulls = true)
: d_dictionary{d_dictionary}, has_nulls{has_nulls}
{
if (has_nulls) { CUDF_EXPECTS(d_dictionary.nullable(), "unexpected non-nullable column"); }
}
__device__ thrust::pair<KeyType, bool> operator()(size_type idx) const
{
if (has_nulls && d_dictionary.is_null(idx)) return {KeyType{}, false};
auto keys = d_dictionary.child(dictionary_column_view::keys_column_index);
return {keys.element<KeyType>(static_cast<size_type>(d_dictionary.element<dictionary32>(idx))),
true};
};
private:
column_device_view const d_dictionary;
bool has_nulls;
};
/**
* @brief Create dictionary iterator that produces key and valid element pair.
*
* The iterator returns a pair where the `first` value is
* `dictionary_column.keys[dictionary_column.indices[i]]`
* The `second` pair member is a `bool` which is set to
* `dictionary_column.is_valid(i)`.
*
* @throw cudf::logic_error if `dictionary_column` is not a dictionary column.
*
* @tparam KeyType The type of the dictionary's key element.
*
* @param dictionary_column The dictionary device view to iterate.
* @param has_nulls Set to `true` if the `dictionary_column` has nulls.
* @return Pair iterator with `{value,valid}`
*/
template <typename KeyType>
auto make_dictionary_pair_iterator(column_device_view const& dictionary_column,
bool has_nulls = true)
{
CUDF_EXPECTS(is_dictionary(dictionary_column.type()),
"Dictionary iterator is only for dictionary columns");
return cudf::detail::make_counting_transform_iterator(
0, dictionary_access_pair_fn<KeyType>{dictionary_column, has_nulls});
}
} // namespace detail
} // namespace dictionary
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/detail/update_keys.hpp
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/span.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace dictionary {
namespace detail {
/**
* @copydoc cudf::dictionary::add_keys(dictionary_column_view const&,column_view
* const&,mm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> add_keys(dictionary_column_view const& dictionary_column,
column_view const& new_keys,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::dictionary::remove_keys(dictionary_column_view const&,column_view
* const&,mm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> remove_keys(dictionary_column_view const& dictionary_column,
column_view const& keys_to_remove,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::dictionary::remove_unused_keys(dictionary_column_view
* const&,mm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> remove_unused_keys(dictionary_column_view const& dictionary_column,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::dictionary::set_keys(dictionary_column_view
* const&,mm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> set_keys(dictionary_column_view const& dictionary_column,
column_view const& keys,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc
* cudf::dictionary::match_dictionaries(std::vector<cudf::dictionary_column_view>,mm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::vector<std::unique_ptr<column>> match_dictionaries(
cudf::host_span<dictionary_column_view const> input,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @brief Create new dictionaries that have keys merged from dictionary columns
* found in the provided tables.
*
* The result includes a vector of new dictionary columns along with a
* vector of table_views with corresponding updated column_views.
* And any column_views in the input tables that are not dictionary type
* are simply copied.
*
* Merging the dictionary keys also adjusts the indices appropriately in the
* output dictionary columns.
*
* Any null rows are left unchanged.
*
* @param input Vector of cudf::table_views that include dictionary columns to be matched.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New dictionary columns and updated cudf::table_views.
*/
std::pair<std::vector<std::unique_ptr<column>>, std::vector<table_view>> match_dictionaries(
std::vector<table_view> tables,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace dictionary
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/detail/search.hpp
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace dictionary {
namespace detail {
/**
* @copydoc cudf::dictionary::get_index(dictionary_column_view const&,scalar
* const&,rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<scalar> get_index(dictionary_column_view const& dictionary,
scalar const& key,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @brief Get the index for a key if it were added to the given dictionary.
*
* The actual index is returned if the `key` is already part of the dictionary's key set.
*
* @code{.pseudo}
* d1 = {["a","c","d"],[2,0,1,0]}
* idx = get_insert_index(d1,"b")
* idx is 1
* @endcode{.pseudo}
*
* @throw cudf::logic_error if `key.type() != dictionary.keys().type()`
*
* @param dictionary The dictionary to search for the key.
* @param key The value to search for in the dictionary keyset.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return Numeric scalar index value of the key within the dictionary
*/
std::unique_ptr<scalar> get_insert_index(dictionary_column_view const& dictionary,
scalar const& key,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace dictionary
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/detail/merge.hpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/detail/merge.hpp>
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace dictionary {
namespace detail {
/**
* @brief Merges two dictionary columns.
*
* The keys of both dictionary columns are expected to be already matched.
* Otherwise, the result is undefined behavior.
*
* Caller must set the validity mask in the output column.
*
* @param lcol First column.
* @param rcol Second column.
* @param row_order Indexes for each column.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New dictionary column.
*/
std::unique_ptr<column> merge(dictionary_column_view const& lcol,
dictionary_column_view const& rcol,
cudf::detail::index_vector const& row_order,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace dictionary
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/detail/encode.hpp
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace dictionary {
namespace detail {
/**
* @brief Construct a dictionary column by dictionary encoding an existing column.
*
* The output column is a DICTIONARY type with a keys column of non-null, unique values
* that are in a strict, total order. Meaning, `keys[i]` is ordered before
* `keys[i+1]` for all `i in [0,n-1)` where `n` is the number of keys.
* The output column has a child indices column that is of integer type and with
* the same size as the input column.
*
* The null_mask and null count are copied from the input column to the output column.
*
* @throw cudf::logic_error if indices_type is not INT32
*
* ```
* c = [429,111,213,111,213,429,213]
* d = make_dictionary_column(c)
* d now has keys [111,213,429] and indices [2,0,1,0,1,2,1]
* ```
*
* @param column The column to dictionary encode.
* @param indices_type The integer type to use for the indices.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return Returns a dictionary column.
*/
std::unique_ptr<column> encode(column_view const& column,
data_type indices_type,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @brief Create a column by gathering the keys from the provided
* dictionary_column into a new column using the indices from that column.
*
* ```
* d1 = {["a","c","d"],[2,0,1,0]}
* s = decode(d1)
* s is now ["d","a","c","a"]
* ```
*
* @param dictionary_column Existing dictionary column.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New column with type matching the dictionary_column's keys.
*/
std::unique_ptr<column> decode(dictionary_column_view const& dictionary_column,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @brief Return minimal integer type for the given number of elements.
*
* @param keys_size Number of elements in the keys
* @return Minimal type that can hold `keys_size` values
*/
data_type get_indices_type_for_size(size_type keys_size);
} // namespace detail
} // namespace dictionary
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/detail/concatenate.hpp
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/span.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace dictionary {
namespace detail {
/**
* @brief Returns a single column by vertically concatenating the given vector of
* dictionary columns.
*
* @throw cudf::logic_error if `columns.size()==0`
* @throw cudf::logic_error if dictionary column keys are not all the same type.
*
* @param columns Vector of dictionary columns to concatenate.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New column with concatenated results.
*/
std::unique_ptr<column> concatenate(host_span<column_view const> columns,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace dictionary
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary
|
rapidsai_public_repos/cudf/cpp/include/cudf/dictionary/detail/replace.hpp
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/dictionary/dictionary_column_view.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace dictionary {
namespace detail {
/**
* @brief Create a new dictionary column by replacing nulls with values
* from a second dictionary.
*
* @throw cudf::logic_error if the keys type of both dictionaries do not match.
* @throw cudf::logic_error if the column sizes do not match.
*
* @param input Column with nulls to replace.
* @param replacement Column with values to use for replacing.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New dictionary column with null rows replaced.
*/
std::unique_ptr<column> replace_nulls(dictionary_column_view const& input,
dictionary_column_view const& replacement,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @brief Create a new dictionary column by replacing nulls with a
* specified scalar.
*
* @throw cudf::logic_error if the keys type does not match the replacement type.
*
* @param input Column with nulls to replace.
* @param replacement Value to use for replacing.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New dictionary column with null rows replaced.
*/
std::unique_ptr<column> replace_nulls(dictionary_column_view const& input,
scalar const& replacement,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace dictionary
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/hashing
|
rapidsai_public_repos/cudf/cpp/include/cudf/hashing/detail/hashing.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/hashing.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <cstddef>
#include <functional>
namespace cudf {
namespace hashing {
namespace detail {
std::unique_ptr<column> murmurhash3_x86_32(table_view const& input,
uint32_t seed,
rmm::cuda_stream_view,
rmm::mr::device_memory_resource* mr);
std::unique_ptr<table> murmurhash3_x64_128(table_view const& input,
uint64_t seed,
rmm::cuda_stream_view,
rmm::mr::device_memory_resource* mr);
std::unique_ptr<column> spark_murmurhash3_x86_32(table_view const& input,
uint32_t seed,
rmm::cuda_stream_view,
rmm::mr::device_memory_resource* mr);
std::unique_ptr<column> md5(table_view const& input,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
std::unique_ptr<column> xxhash_64(table_view const& input,
uint64_t seed,
rmm::cuda_stream_view,
rmm::mr::device_memory_resource* mr);
/* Copyright 2005-2014 Daniel James.
*
* Use, modification and distribution is subject to the Boost Software
* License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
/**
* @brief Combines two hash values into a single hash value.
*
* Taken from the Boost hash_combine function.
* https://www.boost.org/doc/libs/1_35_0/doc/html/boost/hash_combine_id241013.html
*
* @param lhs The first hash value
* @param rhs The second hash value
* @return Combined hash value
*/
constexpr uint32_t hash_combine(uint32_t lhs, uint32_t rhs)
{
return lhs ^ (rhs + 0x9e37'79b9 + (lhs << 6) + (lhs >> 2));
}
/* Copyright 2005-2014 Daniel James.
*
* Use, modification and distribution is subject to the Boost Software
* License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
/**
* @brief Combines two hash values into a single hash value.
*
* Adapted from Boost hash_combine function and modified for 64-bit.
* https://www.boost.org/doc/libs/1_35_0/doc/html/boost/hash_combine_id241013.html
*
* @param lhs The first hash value
* @param rhs The second hash value
* @return Combined hash value
*/
constexpr std::size_t hash_combine(std::size_t lhs, std::size_t rhs)
{
return lhs ^ (rhs + 0x9e37'79b9'7f4a'7c15 + (lhs << 6) + (lhs >> 2));
}
} // namespace detail
} // namespace hashing
} // namespace cudf
// specialization of std::hash for cudf::data_type
namespace std {
template <>
struct hash<cudf::data_type> {
std::size_t operator()(cudf::data_type const& type) const noexcept
{
return cudf::hashing::detail::hash_combine(
std::hash<int32_t>{}(static_cast<int32_t>(type.id())), std::hash<int32_t>{}(type.scale()));
}
};
} // namespace std
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/hashing
|
rapidsai_public_repos/cudf/cpp/include/cudf/hashing/detail/hash_functions.cuh
|
/*
* Copyright (c) 2017-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/utilities/traits.hpp>
#include <limits>
namespace cudf::hashing::detail {
/**
* Normalization of floating point NaNs, passthrough for all other values.
*/
template <typename T>
T __device__ inline normalize_nans(T const& key)
{
if constexpr (cudf::is_floating_point<T>()) {
if (std::isnan(key)) { return std::numeric_limits<T>::quiet_NaN(); }
}
return key;
}
/**
* Normalization of floating point NaNs and zeros, passthrough for all other values.
*/
template <typename T>
T __device__ inline normalize_nans_and_zeros(T const& key)
{
if constexpr (cudf::is_floating_point<T>()) {
if (key == T{0.0}) { return T{0.0}; }
}
return normalize_nans(key);
}
__device__ inline uint32_t rotate_bits_left(uint32_t x, uint32_t r)
{
// This function is equivalent to (x << r) | (x >> (32 - r))
return __funnelshift_l(x, x, r);
}
__device__ inline uint64_t rotate_bits_left(uint64_t x, uint32_t r)
{
return (x << r) | (x >> (64 - r));
}
__device__ inline uint32_t rotate_bits_right(uint32_t x, uint32_t r)
{
// This function is equivalent to (x >> r) | (x << (32 - r))
return __funnelshift_r(x, x, r);
}
__device__ inline uint64_t rotate_bits_right(uint64_t x, uint32_t r)
{
return (x >> r) | (x << (64 - r));
}
} // namespace cudf::hashing::detail
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/hashing
|
rapidsai_public_repos/cudf/cpp/include/cudf/hashing/detail/murmurhash3_x86_32.cuh
|
/*
* Copyright (c) 2017-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/fixed_point/fixed_point.hpp>
#include <cudf/hashing.hpp>
#include <cudf/hashing/detail/hash_functions.cuh>
#include <cudf/lists/list_view.hpp>
#include <cudf/strings/string_view.cuh>
#include <cudf/structs/struct_view.hpp>
#include <cudf/types.hpp>
#include <cstddef>
namespace cudf::hashing::detail {
// MurmurHash3_x86_32 implementation from
// https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
//-----------------------------------------------------------------------------
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
// Note - The x86 and x64 versions do _not_ produce the same results, as the
// algorithms are optimized for their respective platforms. You can still
// compile and run any of them on any platform, but your performance with the
// non-native version will be less than optimal.
template <typename Key>
struct MurmurHash3_x86_32 {
using result_type = hash_value_type;
constexpr MurmurHash3_x86_32() = default;
constexpr MurmurHash3_x86_32(uint32_t seed) : m_seed(seed) {}
[[nodiscard]] __device__ inline uint32_t fmix32(uint32_t h) const
{
h ^= h >> 16;
h *= 0x85ebca6b;
h ^= h >> 13;
h *= 0xc2b2ae35;
h ^= h >> 16;
return h;
}
[[nodiscard]] __device__ inline uint32_t getblock32(std::byte const* data,
cudf::size_type offset) const
{
// Read a 4-byte value from the data pointer as individual bytes for safe
// unaligned access (very likely for string types).
auto const block = reinterpret_cast<uint8_t const*>(data + offset);
return block[0] | (block[1] << 8) | (block[2] << 16) | (block[3] << 24);
}
[[nodiscard]] result_type __device__ inline operator()(Key const& key) const
{
return compute(normalize_nans_and_zeros(key));
}
template <typename T>
result_type __device__ inline compute(T const& key) const
{
return compute_bytes(reinterpret_cast<std::byte const*>(&key), sizeof(T));
}
result_type __device__ inline compute_remaining_bytes(std::byte const* data,
cudf::size_type len,
cudf::size_type tail_offset,
result_type h) const
{
// Process remaining bytes that do not fill a four-byte chunk.
uint32_t k1 = 0;
switch (len % 4) {
case 3: k1 ^= std::to_integer<uint8_t>(data[tail_offset + 2]) << 16; [[fallthrough]];
case 2: k1 ^= std::to_integer<uint8_t>(data[tail_offset + 1]) << 8; [[fallthrough]];
case 1:
k1 ^= std::to_integer<uint8_t>(data[tail_offset]);
k1 *= c1;
k1 = rotate_bits_left(k1, rot_c1);
k1 *= c2;
h ^= k1;
};
return h;
}
result_type __device__ compute_bytes(std::byte const* data, cudf::size_type const len) const
{
constexpr cudf::size_type BLOCK_SIZE = 4;
cudf::size_type const nblocks = len / BLOCK_SIZE;
cudf::size_type const tail_offset = nblocks * BLOCK_SIZE;
result_type h = m_seed;
// Process all four-byte chunks.
for (cudf::size_type i = 0; i < nblocks; i++) {
uint32_t k1 = getblock32(data, i * BLOCK_SIZE);
k1 *= c1;
k1 = rotate_bits_left(k1, rot_c1);
k1 *= c2;
h ^= k1;
h = rotate_bits_left(h, rot_c2);
h = h * 5 + c3;
}
h = compute_remaining_bytes(data, len, tail_offset, h);
// Finalize hash.
h ^= len;
h = fmix32(h);
return h;
}
private:
uint32_t m_seed{cudf::DEFAULT_HASH_SEED};
static constexpr uint32_t c1 = 0xcc9e2d51;
static constexpr uint32_t c2 = 0x1b873593;
static constexpr uint32_t c3 = 0xe6546b64;
static constexpr uint32_t rot_c1 = 15;
static constexpr uint32_t rot_c2 = 13;
};
template <>
hash_value_type __device__ inline MurmurHash3_x86_32<bool>::operator()(bool const& key) const
{
return compute(static_cast<uint8_t>(key));
}
template <>
hash_value_type __device__ inline MurmurHash3_x86_32<float>::operator()(float const& key) const
{
return compute(normalize_nans_and_zeros(key));
}
template <>
hash_value_type __device__ inline MurmurHash3_x86_32<double>::operator()(double const& key) const
{
return compute(normalize_nans_and_zeros(key));
}
template <>
hash_value_type __device__ inline MurmurHash3_x86_32<cudf::string_view>::operator()(
cudf::string_view const& key) const
{
auto const data = reinterpret_cast<std::byte const*>(key.data());
auto const len = key.size_bytes();
return compute_bytes(data, len);
}
template <>
hash_value_type __device__ inline MurmurHash3_x86_32<numeric::decimal32>::operator()(
numeric::decimal32 const& key) const
{
return compute(key.value());
}
template <>
hash_value_type __device__ inline MurmurHash3_x86_32<numeric::decimal64>::operator()(
numeric::decimal64 const& key) const
{
return compute(key.value());
}
template <>
hash_value_type __device__ inline MurmurHash3_x86_32<numeric::decimal128>::operator()(
numeric::decimal128 const& key) const
{
return compute(key.value());
}
template <>
hash_value_type __device__ inline MurmurHash3_x86_32<cudf::list_view>::operator()(
cudf::list_view const& key) const
{
CUDF_UNREACHABLE("List column hashing is not supported");
}
template <>
hash_value_type __device__ inline MurmurHash3_x86_32<cudf::struct_view>::operator()(
cudf::struct_view const& key) const
{
CUDF_UNREACHABLE("Direct hashing of struct_view is not supported");
}
} // namespace cudf::hashing::detail
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/hashing
|
rapidsai_public_repos/cudf/cpp/include/cudf/hashing/detail/murmurhash3_x64_128.cuh
|
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <cudf/hashing/detail/hash_functions.cuh>
#include <cudf/strings/string_view.cuh>
#include <thrust/pair.h>
namespace cudf::hashing::detail {
// MurmurHash3_x64_128 implementation from
// https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
//-----------------------------------------------------------------------------
// MurmurHash3 was written by Austin Appleby, and is placed in the public
// domain. The author hereby disclaims copyright to this source code.
// Note - The x86 and x64 versions do _not_ produce the same results, as the
// algorithms are optimized for their respective platforms. You can still
// compile and run any of them on any platform, but your performance with the
// non-native version will be less than optimal.
template <typename Key>
struct MurmurHash3_x64_128 {
using result_type = thrust::pair<uint64_t, uint64_t>;
constexpr MurmurHash3_x64_128() = default;
constexpr MurmurHash3_x64_128(uint64_t seed) : m_seed(seed) {}
__device__ inline uint32_t getblock32(std::byte const* data, cudf::size_type offset) const
{
// Read a 4-byte value from the data pointer as individual bytes for safe
// unaligned access (very likely for string types).
auto block = reinterpret_cast<uint8_t const*>(data + offset);
return block[0] | (block[1] << 8) | (block[2] << 16) | (block[3] << 24);
}
__device__ inline uint64_t getblock64(std::byte const* data, cudf::size_type offset) const
{
uint64_t result = getblock32(data, offset + 4);
result = result << 32;
return result | getblock32(data, offset);
}
__device__ inline uint64_t fmix64(uint64_t k) const
{
k ^= k >> 33;
k *= 0xff51afd7ed558ccdUL;
k ^= k >> 33;
k *= 0xc4ceb9fe1a85ec53UL;
k ^= k >> 33;
return k;
}
result_type __device__ inline operator()(Key const& key) const { return compute(key); }
template <typename T>
result_type __device__ inline compute(T const& key) const
{
return compute_bytes(reinterpret_cast<std::byte const*>(&key), sizeof(T));
}
result_type __device__ inline compute_remaining_bytes(std::byte const* data,
cudf::size_type len,
cudf::size_type tail_offset,
result_type h) const
{
// Process remaining bytes that do not fill a 8-byte chunk.
uint64_t k1 = 0;
uint64_t k2 = 0;
auto const tail = reinterpret_cast<uint8_t const*>(data) + tail_offset;
switch (len & (BLOCK_SIZE - 1)) {
case 15: k2 ^= static_cast<uint64_t>(tail[14]) << 48;
case 14: k2 ^= static_cast<uint64_t>(tail[13]) << 40;
case 13: k2 ^= static_cast<uint64_t>(tail[12]) << 32;
case 12: k2 ^= static_cast<uint64_t>(tail[11]) << 24;
case 11: k2 ^= static_cast<uint64_t>(tail[10]) << 16;
case 10: k2 ^= static_cast<uint64_t>(tail[9]) << 8;
case 9:
k2 ^= static_cast<uint64_t>(tail[8]) << 0;
k2 *= c2;
k2 = rotate_bits_left(k2, 33);
k2 *= c1;
h.second ^= k2;
case 8: k1 ^= static_cast<uint64_t>(tail[7]) << 56;
case 7: k1 ^= static_cast<uint64_t>(tail[6]) << 48;
case 6: k1 ^= static_cast<uint64_t>(tail[5]) << 40;
case 5: k1 ^= static_cast<uint64_t>(tail[4]) << 32;
case 4: k1 ^= static_cast<uint64_t>(tail[3]) << 24;
case 3: k1 ^= static_cast<uint64_t>(tail[2]) << 16;
case 2: k1 ^= static_cast<uint64_t>(tail[1]) << 8;
case 1:
k1 ^= static_cast<uint64_t>(tail[0]) << 0;
k1 *= c1;
k1 = rotate_bits_left(k1, 31);
k1 *= c2;
h.first ^= k1;
};
return h;
}
result_type __device__ compute_bytes(std::byte const* data, cudf::size_type const len) const
{
auto const nblocks = len / BLOCK_SIZE;
uint64_t h1 = m_seed;
uint64_t h2 = m_seed;
// Process all four-byte chunks.
for (cudf::size_type i = 0; i < nblocks; i++) {
uint64_t k1 = getblock64(data, (i * BLOCK_SIZE)); // 1st 8 bytes
uint64_t k2 = getblock64(data, (i * BLOCK_SIZE) + (BLOCK_SIZE / 2)); // 2nd 8 bytes
k1 *= c1;
k1 = rotate_bits_left(k1, 31);
k1 *= c2;
h1 ^= k1;
h1 = rotate_bits_left(h1, 27);
h1 += h2;
h1 = h1 * 5 + 0x52dce729;
k2 *= c2;
k2 = rotate_bits_left(k2, 33);
k2 *= c1;
h2 ^= k2;
h2 = rotate_bits_left(h2, 31);
h2 += h1;
h2 = h2 * 5 + 0x38495ab5;
}
thrust::tie(h1, h2) = compute_remaining_bytes(data, len, nblocks * BLOCK_SIZE, {h1, h2});
// Finalize hash.
h1 ^= len;
h2 ^= len;
h1 += h2;
h2 += h1;
h1 = fmix64(h1);
h2 = fmix64(h2);
h1 += h2;
h2 += h1;
return {h1, h2};
}
private:
uint64_t m_seed{};
static constexpr uint32_t BLOCK_SIZE = 16; // 2 x 64-bit = 16 bytes
static constexpr uint64_t c1 = 0x87c37b91114253d5UL;
static constexpr uint64_t c2 = 0x4cf5ad432745937fUL;
};
template <>
MurmurHash3_x64_128<bool>::result_type __device__ inline MurmurHash3_x64_128<bool>::operator()(
bool const& key) const
{
return compute<uint8_t>(key);
}
template <>
MurmurHash3_x64_128<float>::result_type __device__ inline MurmurHash3_x64_128<float>::operator()(
float const& key) const
{
return compute(normalize_nans(key));
}
template <>
MurmurHash3_x64_128<double>::result_type __device__ inline MurmurHash3_x64_128<double>::operator()(
double const& key) const
{
return compute(normalize_nans(key));
}
template <>
MurmurHash3_x64_128<cudf::string_view>::result_type
__device__ inline MurmurHash3_x64_128<cudf::string_view>::operator()(
cudf::string_view const& key) const
{
auto const data = reinterpret_cast<std::byte const*>(key.data());
auto const len = key.size_bytes();
return compute_bytes(data, len);
}
template <>
MurmurHash3_x64_128<numeric::decimal32>::result_type
__device__ inline MurmurHash3_x64_128<numeric::decimal32>::operator()(
numeric::decimal32 const& key) const
{
return compute(key.value());
}
template <>
MurmurHash3_x64_128<numeric::decimal64>::result_type
__device__ inline MurmurHash3_x64_128<numeric::decimal64>::operator()(
numeric::decimal64 const& key) const
{
return compute(key.value());
}
template <>
MurmurHash3_x64_128<numeric::decimal128>::result_type
__device__ inline MurmurHash3_x64_128<numeric::decimal128>::operator()(
numeric::decimal128 const& key) const
{
return compute(key.value());
}
} // namespace cudf::hashing::detail
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/hashing
|
rapidsai_public_repos/cudf/cpp/include/cudf/hashing/detail/hash_allocator.cuh
|
/*
* Copyright (c) 2017-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <new>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/mr/device/device_memory_resource.hpp>
#include <rmm/mr/device/managed_memory_resource.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
template <class T>
struct default_allocator {
using value_type = T;
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource();
default_allocator() = default;
template <class U>
constexpr default_allocator(default_allocator<U> const&) noexcept
{
}
T* allocate(std::size_t n, rmm::cuda_stream_view stream = cudf::get_default_stream()) const
{
return static_cast<T*>(mr->allocate(n * sizeof(T), stream));
}
void deallocate(T* p,
std::size_t n,
rmm::cuda_stream_view stream = cudf::get_default_stream()) const
{
mr->deallocate(p, n * sizeof(T), stream);
}
};
template <class T, class U>
bool operator==(default_allocator<T> const&, default_allocator<U> const&)
{
return true;
}
template <class T, class U>
bool operator!=(default_allocator<T> const&, default_allocator<U> const&)
{
return false;
}
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/hashing
|
rapidsai_public_repos/cudf/cpp/include/cudf/hashing/detail/default_hash.cuh
|
/*
* Copyright (c) 2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/hashing/detail/murmurhash3_x86_32.cuh>
namespace cudf::hashing::detail {
/**
* @brief The default hash algorithm for use within libcudf internal functions
*
* This is declared here so it may be changed to another algorithm without modifying
* all those places that use it. Internal function implementations are encourage to
* use the `cudf::hashing::detail::default_hash` where possible.
*
* @tparam Key The key type for use by the hash class
*/
template <typename Key>
using default_hash = MurmurHash3_x86_32<Key>;
} // namespace cudf::hashing::detail
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/hashing
|
rapidsai_public_repos/cudf/cpp/include/cudf/hashing/detail/helper_functions.cuh
|
/*
* Copyright (c) 2017-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/types.hpp>
#include <thrust/pair.h>
constexpr int64_t DEFAULT_HASH_TABLE_OCCUPANCY = 50;
/**
* @brief Compute requisite size of hash table.
*
* Computes the number of entries required in a hash table to satisfy
* inserting a specified number of keys to achieve the specified hash table
* occupancy.
*
* @param num_keys_to_insert The number of keys that will be inserted
* @param desired_occupancy The desired occupancy percentage, e.g., 50 implies a
* 50% occupancy
* @return size_t The size of the hash table that will satisfy the desired
* occupancy for the specified number of insertions
*/
inline size_t compute_hash_table_size(cudf::size_type num_keys_to_insert,
uint32_t desired_occupancy = DEFAULT_HASH_TABLE_OCCUPANCY)
{
assert(desired_occupancy != 0);
assert(desired_occupancy <= 100);
double const grow_factor{100.0 / desired_occupancy};
// Calculate size of hash map based on the desired occupancy
size_t hash_table_size{static_cast<size_t>(std::ceil(num_keys_to_insert * grow_factor))};
return hash_table_size;
}
template <typename pair_type>
__forceinline__ __device__ pair_type load_pair_vectorized(pair_type const* __restrict__ const ptr)
{
if (sizeof(uint4) == sizeof(pair_type)) {
union pair_type2vec_type {
uint4 vec_val;
pair_type pair_val;
};
pair_type2vec_type converter = {0, 0, 0, 0};
converter.vec_val = *reinterpret_cast<uint4 const*>(ptr);
return converter.pair_val;
} else if (sizeof(uint2) == sizeof(pair_type)) {
union pair_type2vec_type {
uint2 vec_val;
pair_type pair_val;
};
pair_type2vec_type converter = {0, 0};
converter.vec_val = *reinterpret_cast<uint2 const*>(ptr);
return converter.pair_val;
} else if (sizeof(int) == sizeof(pair_type)) {
union pair_type2vec_type {
int vec_val;
pair_type pair_val;
};
pair_type2vec_type converter = {0};
converter.vec_val = *reinterpret_cast<int const*>(ptr);
return converter.pair_val;
} else if (sizeof(short) == sizeof(pair_type)) {
union pair_type2vec_type {
short vec_val;
pair_type pair_val;
};
pair_type2vec_type converter = {0};
converter.vec_val = *reinterpret_cast<short const*>(ptr);
return converter.pair_val;
} else {
return *ptr;
}
}
template <typename pair_type>
__forceinline__ __device__ void store_pair_vectorized(pair_type* __restrict__ const ptr,
pair_type const val)
{
if (sizeof(uint4) == sizeof(pair_type)) {
union pair_type2vec_type {
uint4 vec_val;
pair_type pair_val;
};
pair_type2vec_type converter = {0, 0, 0, 0};
converter.pair_val = val;
*reinterpret_cast<uint4*>(ptr) = converter.vec_val;
} else if (sizeof(uint2) == sizeof(pair_type)) {
union pair_type2vec_type {
uint2 vec_val;
pair_type pair_val;
};
pair_type2vec_type converter = {0, 0};
converter.pair_val = val;
*reinterpret_cast<uint2*>(ptr) = converter.vec_val;
} else if (sizeof(int) == sizeof(pair_type)) {
union pair_type2vec_type {
int vec_val;
pair_type pair_val;
};
pair_type2vec_type converter = {0};
converter.pair_val = val;
*reinterpret_cast<int*>(ptr) = converter.vec_val;
} else if (sizeof(short) == sizeof(pair_type)) {
union pair_type2vec_type {
short vec_val;
pair_type pair_val;
};
pair_type2vec_type converter = {0};
converter.pair_val = val;
*reinterpret_cast<short*>(ptr) = converter.vec_val;
} else {
*ptr = val;
}
}
template <typename value_type, typename size_type, typename key_type, typename elem_type>
__global__ void init_hashtbl(value_type* __restrict__ const hashtbl_values,
size_type const n,
key_type const key_val,
elem_type const elem_val)
{
size_type const idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < n) {
store_pair_vectorized(hashtbl_values + idx, thrust::make_pair(key_val, elem_val));
}
}
template <typename T>
struct equal_to {
using result_type = bool;
using first_argument_type = T;
using second_argument_type = T;
__forceinline__ __host__ __device__ constexpr bool operator()(
first_argument_type const& lhs, second_argument_type const& rhs) const
{
return lhs == rhs;
}
};
template <typename Iterator>
class cycle_iterator_adapter {
public:
using value_type = typename std::iterator_traits<Iterator>::value_type;
using difference_type = typename std::iterator_traits<Iterator>::difference_type;
using pointer = typename std::iterator_traits<Iterator>::pointer;
using reference = typename std::iterator_traits<Iterator>::reference;
using iterator_type = Iterator;
cycle_iterator_adapter() = delete;
__host__ __device__ explicit cycle_iterator_adapter(iterator_type const& begin,
iterator_type const& end,
iterator_type const& current)
: m_begin(begin), m_end(end), m_current(current)
{
}
__host__ __device__ cycle_iterator_adapter& operator++()
{
if (m_end == (m_current + 1))
m_current = m_begin;
else
++m_current;
return *this;
}
__host__ __device__ cycle_iterator_adapter const& operator++() const
{
if (m_end == (m_current + 1))
m_current = m_begin;
else
++m_current;
return *this;
}
__host__ __device__ cycle_iterator_adapter& operator++(int)
{
cycle_iterator_adapter<iterator_type> old(m_begin, m_end, m_current);
if (m_end == (m_current + 1))
m_current = m_begin;
else
++m_current;
return old;
}
__host__ __device__ cycle_iterator_adapter const& operator++(int) const
{
cycle_iterator_adapter<iterator_type> old(m_begin, m_end, m_current);
if (m_end == (m_current + 1))
m_current = m_begin;
else
++m_current;
return old;
}
__host__ __device__ bool equal(cycle_iterator_adapter<iterator_type> const& other) const
{
return m_current == other.m_current && m_begin == other.m_begin && m_end == other.m_end;
}
__host__ __device__ reference& operator*() { return *m_current; }
__host__ __device__ reference const& operator*() const { return *m_current; }
__host__ __device__ const pointer operator->() const { return m_current.operator->(); }
__host__ __device__ pointer operator->() { return m_current; }
private:
iterator_type m_current;
iterator_type m_begin;
iterator_type m_end;
};
template <class T>
__host__ __device__ bool operator==(cycle_iterator_adapter<T> const& lhs,
cycle_iterator_adapter<T> const& rhs)
{
return lhs.equal(rhs);
}
template <class T>
__host__ __device__ bool operator!=(cycle_iterator_adapter<T> const& lhs,
cycle_iterator_adapter<T> const& rhs)
{
return !lhs.equal(rhs);
}
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/json/json.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/strings/strings_column_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
#include <thrust/optional.h>
namespace cudf {
/**
* @addtogroup json_object
* @{
* @file
*/
/**
* @brief Settings for `get_json_object()`.
*/
class get_json_object_options {
// allow single quotes to represent strings in JSON
bool allow_single_quotes = false;
// individual string values are returned with quotes stripped.
bool strip_quotes_from_single_strings = true;
// Whether to return nulls when an object does not contain the requested field.
bool missing_fields_as_nulls = false;
public:
/**
* @brief Default constructor.
*/
explicit get_json_object_options() = default;
/**
* @brief Returns true/false depending on whether single-quotes for representing strings
* are allowed.
*
* @return true if single-quotes are allowed, false otherwise.
*/
[[nodiscard]] CUDF_HOST_DEVICE inline bool get_allow_single_quotes() const
{
return allow_single_quotes;
}
/**
* @brief Returns true/false depending on whether individually returned string values have
* their quotes stripped.
*
* When set to true, if the return value for a given row is an individual string
* (not an object, or an array of strings), strip the quotes from the string and return only the
* contents of the string itself. Example:
*
* @code{.pseudo}
*
* With strip_quotes_from_single_strings OFF:
* Input = {"a" : "b"}
* Query = $.a
* Output = "b"
*
* With strip_quotes_from_single_strings ON:
* Input = {"a" : "b"}
* Query = $.a
* Output = b
*
* @endcode
*
* @return true if individually returned string values have their quotes stripped.
*/
[[nodiscard]] CUDF_HOST_DEVICE inline bool get_strip_quotes_from_single_strings() const
{
return strip_quotes_from_single_strings;
}
/**
* @brief Whether a field not contained by an object is to be interpreted as null.
*
* When set to true, if an object is queried for a field it does not contain, a null is returned.
*
* @code{.pseudo}
*
* With missing_fields_as_nulls OFF:
* Input = {"a" : [{"x": "1", "y": "2"}, {"x": "3"}]}
* Query = $.a[*].y
* Output = ["2"]
*
* With missing_fields_as_nulls ON:
* Input = {"a" : [{"x": "1", "y": "2"}, {"x": "3"}]}
* Query = $.a[*].y
* Output = ["2", null]
*
* @endcode
*
* @return true if missing fields are interpreted as null.
*/
[[nodiscard]] CUDF_HOST_DEVICE inline bool get_missing_fields_as_nulls() const
{
return missing_fields_as_nulls;
}
/**
* @brief Set whether single-quotes for strings are allowed.
*
* @param _allow_single_quotes bool indicating desired behavior.
*/
void set_allow_single_quotes(bool _allow_single_quotes)
{
allow_single_quotes = _allow_single_quotes;
}
/**
* @brief Set whether individually returned string values have their quotes stripped.
*
* @param _strip_quotes_from_single_strings bool indicating desired behavior.
*/
void set_strip_quotes_from_single_strings(bool _strip_quotes_from_single_strings)
{
strip_quotes_from_single_strings = _strip_quotes_from_single_strings;
}
/**
* @brief Set whether missing fields are interpreted as null.
*
* @param _missing_fields_as_nulls bool indicating desired behavior.
*/
void set_missing_fields_as_nulls(bool _missing_fields_as_nulls)
{
missing_fields_as_nulls = _missing_fields_as_nulls;
}
};
/**
* @brief Apply a JSONPath string to all rows in an input strings column.
*
* Applies a JSONPath string to an incoming strings column where each row in the column
* is a valid json string. The output is returned by row as a strings column.
*
* https://tools.ietf.org/id/draft-goessner-dispatch-jsonpath-00.html
* Implements only the operators: $ . [] *
*
* @throw std::invalid_argument if provided an invalid operator or an empty name
*
* @param col The input strings column. Each row must contain a valid json string
* @param json_path The JSONPath string to be applied to each row
* @param options Options for controlling the behavior of the function
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Resource for allocating device memory
* @return New strings column containing the retrieved json object strings
*/
std::unique_ptr<cudf::column> get_json_object(
cudf::strings_column_view const& col,
cudf::string_scalar const& json_path,
get_json_object_options options = get_json_object_options{},
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/filling.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/types.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
#include <memory>
namespace cudf::lists {
/**
* @addtogroup lists_filling
* @{
* @file
* @brief Column APIs for individual list sequence
*/
/**
* @brief Create a lists column in which each row contains a sequence of values specified by a tuple
* of (`start`, `size`) parameters.
*
* Create a lists column in which each row is a sequence of values starting from a `start` value,
* incrementing by one, and its cardinality is specified by a `size` value. The `start` and `size`
* values used to generate each list is taken from the corresponding row of the input @p starts and
* @p sizes columns.
*
* - @p sizes must be a column of integer types.
* - All the input columns must not have nulls.
* - If any row of the @p sizes column contains negative value, the output is undefined.
*
* @code{.pseudo}
* starts = [0, 1, 2, 3, 4]
* sizes = [0, 2, 2, 1, 3]
*
* output = [ [], [1, 2], [2, 3], [3], [4, 5, 6] ]
* @endcode
*
* @throws cudf::logic_error if @p sizes column is not of integer types.
* @throws cudf::logic_error if any input column has nulls.
* @throws cudf::logic_error if @p starts and @p sizes columns do not have the same size.
* @throws std::overflow_error if the output column would exceed the column size limit.
*
* @param starts First values in the result sequences.
* @param sizes Numbers of values in the result sequences.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return The result column containing generated sequences.
*/
std::unique_ptr<column> sequences(
column_view const& starts,
column_view const& sizes,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a lists column in which each row contains a sequence of values specified by a tuple
* of (`start`, `step`, `size`) parameters.
*
* Create a lists column in which each row is a sequence of values starting from a `start` value,
* incrementing by a `step` value, and its cardinality is specified by a `size` value. The values
* `start`, `step`, and `size` used to generate each list is taken from the corresponding row of the
* input @p starts, @p steps, and @p sizes columns.
*
* - @p sizes must be a column of integer types.
* - @p starts and @p steps columns must have the same type.
* - All the input columns must not have nulls.
* - If any row of the @p sizes column contains negative value, the output is undefined.
*
* @code{.pseudo}
* starts = [0, 1, 2, 3, 4]
* steps = [2, 1, 1, 1, -3]
* sizes = [0, 2, 2, 1, 3]
*
* output = [ [], [1, 2], [2, 3], [3], [4, 1, -2] ]
* @endcode
*
* @throws cudf::logic_error if @p sizes column is not of integer types.
* @throws cudf::logic_error if any input column has nulls.
* @throws cudf::logic_error if @p starts and @p steps columns have different types.
* @throws cudf::logic_error if @p starts, @p steps, and @p sizes columns do not have the same size.
* @throws std::overflow_error if the output column would exceed the column size limit.
*
* @param starts First values in the result sequences.
* @param steps Increment values for the result sequences.
* @param sizes Numbers of values in the result sequences.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return The result column containing generated sequences.
*/
std::unique_ptr<column> sequences(
column_view const& starts,
column_view const& steps,
column_view const& sizes,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace cudf::lists
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/gather.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/copying.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace lists {
/**
* @addtogroup lists_gather
* @{
* @file
*/
/**
* @brief Segmented gather of the elements within a list element in each row of a list column.
*
* `source_column` with any depth and `gather_map_list` with depth 1 are only supported.
*
* @code{.pseudo}
* source_column : [{"a", "b", "c", "d"}, {"1", "2", "3", "4"}, {"x", "y", "z"}]
* gather_map_list : [{0, 1, 3, 2}, {1, 3, 2}, {}]
*
* result : [{"a", "b", "d", "c"}, {"2", "4", "3"}, {}]
* @endcode
*
* @throws cudf::logic_error if `gather_map_list` size is not same as `source_column` size.
* @throws std::invalid_argument if gather_map contains null values.
* @throws cudf::logic_error if gather_map is not list column of an index type.
*
* If indices in `gather_map_list` are outside the range `[-n, n)`, where `n` is the number of
* elements in corresponding row of the source column, the behavior is as follows:
* 1. If `bounds_policy` is set to `DONT_CHECK`, the behavior is undefined.
* 2. If `bounds_policy` is set to `NULLIFY`, the corresponding element in the list row
* is set to null in the output column.
*
* @code{.pseudo}
* source_column : [{"a", "b", "c", "d"}, {"1", "2", "3", "4"}, {"x", "y", "z"}]
* gather_map_list : [{0, -1, 4, -5}, {1, 3, 5}, {}]
*
* result_with_nullify : [{"a", "d", null, null}, {"2", "4", null}, {}]
* @endcode
*
* @param source_column View into the list column to gather from
* @param gather_map_list View into a non-nullable list column of integral indices that maps the
* element in list of each row in the source columns to rows of lists in the destination columns.
* @param bounds_policy Can be `DONT_CHECK` or `NULLIFY`. Selects whether or not to nullify the
* output list row's element, when the gather index falls outside the range `[-n, n)`,
* where `n` is the number of elements in list row corresponding to the gather-map row.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource to allocate any returned objects
* @return column with elements in list of rows gathered based on `gather_map_list`
*
*/
std::unique_ptr<column> segmented_gather(
lists_column_view const& source_column,
lists_column_view const& gather_map_list,
out_of_bounds_policy bounds_policy = out_of_bounds_policy::DONT_CHECK,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/lists_column_device_view.cuh
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cuda_runtime.h>
#include <cudf/column/column_device_view.cuh>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/types.hpp>
namespace cudf {
namespace detail {
/**
* @brief Given a column_device_view, an instance of this class provides a
* wrapper on this compound column for list operations.
* Analogous to list_column_view.
*/
class lists_column_device_view : private column_device_view {
public:
lists_column_device_view() = delete;
~lists_column_device_view() = default;
lists_column_device_view(lists_column_device_view const&) = default; ///< Copy constructor
lists_column_device_view(lists_column_device_view&&) = default; ///< Move constructor
/**
* @brief Copy assignment operator
*
* @return The reference to this lists column device view
*/
lists_column_device_view& operator=(lists_column_device_view const&) = default;
/**
* @brief Move assignment operator
*
* @return The reference to this lists column device view
*/
lists_column_device_view& operator=(lists_column_device_view&&) = default;
/**
* @brief Construct a new lists column device view object from a column device view.
*
* @param underlying_ The column device view to wrap
*/
CUDF_HOST_DEVICE lists_column_device_view(column_device_view const& underlying_)
: column_device_view(underlying_)
{
#ifdef __CUDA_ARCH__
cudf_assert(underlying_.type().id() == type_id::LIST and
"lists_column_device_view only supports lists");
#else
CUDF_EXPECTS(underlying_.type().id() == type_id::LIST,
"lists_column_device_view only supports lists");
#endif
}
using column_device_view::is_null;
using column_device_view::nullable;
using column_device_view::offset;
using column_device_view::size;
/**
* @brief Fetches the offsets column of the underlying list column.
*
* @return The offsets column of the underlying list column
*/
[[nodiscard]] __device__ inline column_device_view offsets() const
{
return column_device_view::child(lists_column_view::offsets_column_index);
}
/**
* @brief Fetches the list offset value at a given row index while taking column offset into
* account.
*
* @param idx The row index to fetch the list offset value at
* @return The list offset value at a given row index while taking column offset into account
*/
[[nodiscard]] __device__ inline size_type offset_at(size_type idx) const
{
return offsets().size() > 0 ? offsets().element<size_type>(offset() + idx) : 0;
}
/**
* @brief Fetches the child column of the underlying list column.
*
* @return The child column of the underlying list column
*/
[[nodiscard]] __device__ inline column_device_view child() const
{
return column_device_view::child(lists_column_view::child_column_index);
}
/**
* @brief Fetches the child column of the underlying list column with offset and size applied
*
* @return The child column sliced relative to the parent's offset and size
*/
[[nodiscard]] __device__ inline column_device_view get_sliced_child() const
{
auto start = offset_at(0);
auto end = offset_at(size());
return child().slice(start, end - start);
}
};
} // namespace detail
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/list_view.hpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
/**
* @file list_view.hpp
* @brief Class definition for cudf::list_view.
*/
namespace cudf {
/**
* @brief A non-owning, immutable view of device data that represents
* a list of elements of arbitrary type (including further nested lists).
*/
class list_view {};
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/stream_compaction.hpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/mr/device/device_memory_resource.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf::lists {
/**
* @addtogroup lists_filtering
* @{
* @file
*/
/**
* @brief Filters elements in each row of `input` LIST column using `boolean_mask`
* LIST of booleans as a mask.
*
* Given an input `LIST` column and a list-of-bools column, the function produces
* a new `LIST` column of the same type as `input`, where each element is copied
* from the input row *only* if the corresponding `boolean_mask` is non-null and `true`.
*
* E.g.
* @code{.pseudo}
* input = { {0,1,2}, {3,4}, {5,6,7}, {8,9} };
* boolean_mask = { {0,1,1}, {1,0}, {1,1,1}, {0,0} };
* results = { {1,2}, {3}, {5,6,7}, {} };
* @endcode
*
* `input` and `boolean_mask` must have the same number of rows.
* The output column has the same number of rows as the input column.
* An element is copied to an output row *only* if the corresponding boolean_mask element is `true`.
* An output row is invalid only if the input row is invalid.
*
* @throws cudf::logic_error if `boolean_mask` is not a "lists of bools" column
* @throws cudf::logic_error if `input` and `boolean_mask` have different number of rows
*
* @param input The input list column view to be filtered
* @param boolean_mask A nullable list of bools column used to filter `input` elements
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned table's device memory
* @return List column of the same type as `input`, containing filtered list rows
*/
std::unique_ptr<column> apply_boolean_mask(
lists_column_view const& input,
lists_column_view const& boolean_mask,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a new list column without duplicate elements in each list.
*
* Given a lists column `input`, distinct elements of each list are copied to the corresponding
* output list. The order of lists is preserved while the order of elements within each list is not
* guaranteed.
*
* Example:
* @code{.pseudo}
* input = { {0, 1, 2, 3, 2}, {3, 1, 2}, null, {4, null, null, 5} }
* result = { {0, 1, 2, 3}, {3, 1, 2}, null, {4, null, 5} }
* @endcode
*
* @param input The input lists column
* @param nulls_equal Flag to specify whether null elements should be considered as equal
* @param nans_equal Flag to specify whether floating-point NaNs should be considered as equal
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned object
* @return The resulting lists column containing lists without duplicates
*/
std::unique_ptr<column> distinct(
lists_column_view const& input,
null_equality nulls_equal = null_equality::EQUAL,
nan_equality nans_equal = nan_equality::ALL_EQUAL,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace cudf::lists
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/reverse.hpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
#include <memory>
namespace cudf::lists {
/**
* @addtogroup lists_modify
* @{
* @file
*/
/**
* @brief Reverse the element order within each list of the input column.
*
* Any null input row will result in a corresponding null row in the output column.
*
* @code{.pseudo}
* Example:
* s = [ [1, 2, 3], [], null, [4, 5, null] ]
* r = reverse(s)
* r is now [ [3, 2, 1], [], null, [null, 5, 4] ]
* @endcode
*
* @param input Lists column for this operation
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New lists column with reversed lists
*/
std::unique_ptr<column> reverse(
lists_column_view const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of doxygen group
} // namespace cudf::lists
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/list_device_view.cuh
|
/*
* Copyright (c) 2020-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cuda_runtime.h>
#include <cudf/detail/iterator.cuh>
#include <cudf/lists/lists_column_device_view.cuh>
#include <cudf/types.hpp>
#include <cudf/utilities/type_dispatcher.hpp>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/pair.h>
namespace cudf {
/**
* @brief A non-owning, immutable view of device data that represents
* a list of elements of arbitrary type (including further nested lists).
*/
class list_device_view {
using lists_column_device_view = cudf::detail::lists_column_device_view;
public:
list_device_view() = default;
/**
* @brief Constructs a list_device_view from a list column and index.
*
* @param lists_column list column device view containing the list to view
* @param row_index index of the list row to view
*/
__device__ inline list_device_view(lists_column_device_view const& lists_column,
size_type const& row_index)
: lists_column(lists_column), _row_index(row_index)
{
column_device_view const& offsets = lists_column.offsets();
cudf_assert(row_index >= 0 && row_index < lists_column.size() && row_index < offsets.size() &&
"row_index out of bounds");
begin_offset = offsets.element<size_type>(row_index + lists_column.offset());
cudf_assert(begin_offset >= 0 && begin_offset <= lists_column.child().size() &&
"begin_offset out of bounds.");
_size = offsets.element<size_type>(row_index + 1 + lists_column.offset()) - begin_offset;
}
~list_device_view() = default;
/**
* @brief Fetches the offset in the list column's child that corresponds to
* the element at the specified list index.
*
* Consider the following lists column:
* [
* [0,1,2],
* [3,4,5],
* [6,7,8]
* ]
*
* The list's internals would look like:
* offsets: [0, 3, 6, 9]
* child : [0, 1, 2, 3, 4, 5, 6, 7, 8]
*
* The second list row (i.e. row_index=1) is [3,4,5].
* The third element (i.e. idx=2) of the second list row is 5.
*
* The offset of this element as stored in the child column (i.e. 5)
* may be fetched using this method.
*
* @param idx The list index of the element to fetch the offset for
* @return The offset of the element at the specified list index
*/
[[nodiscard]] __device__ inline size_type element_offset(size_type idx) const
{
cudf_assert(idx >= 0 && idx < size() && "idx out of bounds");
return begin_offset + idx;
}
/**
* @brief Fetches the element at the specified index within the list row.
*
* @tparam T The type of the list's element.
* @param idx The index into the list row
* @return The element at the specified index of the list row.
*/
template <typename T>
__device__ inline T element(size_type idx) const
{
return lists_column.child().element<T>(element_offset(idx));
}
/**
* @brief Checks whether the element is null at the specified index in the list
*
* @param idx The index into the list row
* @return `true` if the element is null at the specified index in the list row
*/
[[nodiscard]] __device__ inline bool is_null(size_type idx) const
{
cudf_assert(idx >= 0 && idx < size() && "Index out of bounds.");
auto element_offset = begin_offset + idx;
return lists_column.child().is_null(element_offset);
}
/**
* @brief Checks whether this list row is null.
*
* @return `true` if this list is null
*/
[[nodiscard]] __device__ inline bool is_null() const { return lists_column.is_null(_row_index); }
/**
* @brief Fetches the number of elements in this list row.
*
* @return The number of elements in this list row
*/
[[nodiscard]] __device__ inline size_type size() const { return _size; }
/**
* @brief Returns the row index of this list in the original lists column.
*
* @return The row index of this list
*/
[[nodiscard]] __device__ inline size_type row_index() const { return _row_index; }
/**
* @brief Fetches the lists_column_device_view that contains this list.
*
* @return The lists_column_device_view that contains this list
*/
[[nodiscard]] __device__ inline lists_column_device_view const& get_column() const
{
return lists_column;
}
template <typename T>
struct pair_accessor;
template <typename T>
struct pair_rep_accessor;
/// const pair iterator for the list
template <typename T>
using const_pair_iterator =
thrust::transform_iterator<pair_accessor<T>, thrust::counting_iterator<cudf::size_type>>;
/// const pair iterator type for the list
template <typename T>
using const_pair_rep_iterator =
thrust::transform_iterator<pair_rep_accessor<T>, thrust::counting_iterator<cudf::size_type>>;
/**
* @brief Fetcher for a pair iterator to the first element in the list_device_view.
*
* Dereferencing the returned iterator yields a `thrust::pair<T, bool>`.
*
* If the element at index `i` is valid, then for `p = iter[i]`,
* 1. `p.first` is the value of the element at `i`
* 2. `p.second == true`
*
* If the element at index `i` is null,
* 1. `p.first` is undefined
* 2. `p.second == false`
*
* @return A pair iterator to the first element in the list_device_view and whether or not the
* element is valid
*/
template <typename T>
[[nodiscard]] __device__ inline const_pair_iterator<T> pair_begin() const
{
return const_pair_iterator<T>{thrust::counting_iterator<size_type>(0), pair_accessor<T>{*this}};
}
/**
* @brief Fetcher for a pair iterator to one position past the last element in the
* list_device_view.
*
* @return A pair iterator to one past the last element in the list_device_view and whether or not
* that element is valid
*/
template <typename T>
[[nodiscard]] __device__ inline const_pair_iterator<T> pair_end() const
{
return const_pair_iterator<T>{thrust::counting_iterator<size_type>(size()),
pair_accessor<T>{*this}};
}
/**
* @brief Fetcher for a pair iterator to the first element in the list_device_view.
*
* Dereferencing the returned iterator yields a `thrust::pair<rep_type, bool>`,
* where `rep_type` is `device_storage_type_t<T>`, the type used to store the value
* on the device.
*
* If the element at index `i` is valid, then for `p = iter[i]`,
* 1. `p.first` is the value of the element at `i`
* 2. `p.second == true`
*
* If the element at index `i` is null,
* 1. `p.first` is undefined
* 2. `p.second == false`
*
* @return A pair iterator to the first element in the list_device_view and whether or not that
* element is valid
*/
template <typename T>
[[nodiscard]] __device__ inline const_pair_rep_iterator<T> pair_rep_begin() const
{
return const_pair_rep_iterator<T>{thrust::counting_iterator<size_type>(0),
pair_rep_accessor<T>{*this}};
}
/**
* @brief Fetcher for a pair iterator to one position past the last element in the
* list_device_view.
*
* @return A pair iterator one past the last element in the list_device_view and whether or not
* that element is valid
*/
template <typename T>
[[nodiscard]] __device__ inline const_pair_rep_iterator<T> pair_rep_end() const
{
return const_pair_rep_iterator<T>{thrust::counting_iterator<size_type>(size()),
pair_rep_accessor<T>{*this}};
}
private:
lists_column_device_view const& lists_column;
size_type _row_index{}; // Row index in the Lists column vector.
size_type _size{}; // Number of elements in *this* list row.
size_type begin_offset; // Offset in list_column_device_view where this list begins.
/**
* @brief pair accessor for elements in a `list_device_view`
*
* This unary functor returns a pair of:
* 1. data element at a specified index
* 2. boolean validity flag for that element
*
* @tparam T The element-type of the list row
*/
template <typename T>
struct pair_accessor {
list_device_view const& list; ///< The list_device_view to access
/**
* @brief constructor
*
* @param _list The `list_device_view` whose rows are being accessed.
*/
explicit CUDF_HOST_DEVICE inline pair_accessor(list_device_view const& _list) : list{_list} {}
/**
* @brief Accessor for the {data, validity} pair at the specified index
*
* @param i Index into the list_device_view
* @return A pair of data element and its validity flag.
*/
__device__ inline thrust::pair<T, bool> operator()(cudf::size_type i) const
{
return {list.element<T>(i), !list.is_null(i)};
}
};
/**
* @brief pair rep accessor for elements in a `list_device_view`
*
* Returns a `pair<rep_type, bool>`, where `rep_type` = `device_storage_type_t<T>`,
* the type used to store the value on the device.
*
* This unary functor returns a pair of:
* 1. rep element at a specified index
* 2. boolean validity flag for that element
*
* @tparam T The element-type of the list row
*/
template <typename T>
struct pair_rep_accessor {
list_device_view const& list; ///< The list_device_view whose rows are being accessed
using rep_type = device_storage_type_t<T>; ///< The type used to store the value on the device
/**
* @brief constructor
*
* @param _list The `list_device_view` whose rows are being accessed.
*/
explicit CUDF_HOST_DEVICE inline pair_rep_accessor(list_device_view const& _list) : list{_list}
{
}
/**
* @brief Accessor for the {rep_data, validity} pair at the specified index
*
* @param i Index into the list_device_view
* @return A pair of data element and its validity flag.
*/
__device__ inline thrust::pair<rep_type, bool> operator()(cudf::size_type i) const
{
return {get_rep<T>(i), !list.is_null(i)};
}
private:
template <typename R, std::enable_if_t<std::is_same_v<R, rep_type>, void>* = nullptr>
__device__ inline rep_type get_rep(cudf::size_type i) const
{
return list.element<R>(i);
}
template <typename R, std::enable_if_t<not std::is_same_v<R, rep_type>, void>* = nullptr>
__device__ inline rep_type get_rep(cudf::size_type i) const
{
return list.element<R>(i).value();
}
};
};
/**
* @brief Returns the size of the list by row index
*
*/
struct list_size_functor {
detail::lists_column_device_view const d_column; ///< The list column to access
/**
* @brief Constructor
*
* @param d_col The cudf::lists_column_device_view whose rows are being accessed
*/
CUDF_HOST_DEVICE inline list_size_functor(detail::lists_column_device_view const& d_col)
: d_column(d_col)
{
}
/**
* @brief Returns size of the list by row index
*
* @param idx row index
* @return size of the list
*/
__device__ inline size_type operator()(size_type idx)
{
if (d_column.is_null(idx)) return size_type{0};
return d_column.offset_at(idx + 1) - d_column.offset_at(idx);
}
};
/**
* @brief Makes an iterator that returns size of the list by row index
*
* Example:
* For a list_column_device_view with 3 rows, `l = {[1, 2, 3], [4, 5], [6, 7, 8, 9]}`,
* @code{.cpp}
* auto it = make_list_size_iterator(l);
* assert(it[0] == 3);
* assert(it[1] == 2);
* assert(it[2] == 4);
* @endcode
*
* @param c The list_column_device_view to iterate over
* @return An iterator that returns the size of the list by row index
*/
CUDF_HOST_DEVICE auto inline make_list_size_iterator(detail::lists_column_device_view const& c)
{
return detail::make_counting_transform_iterator(0, list_size_functor{c});
}
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/combine.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
//! Lists column APIs
namespace lists {
/**
* @addtogroup lists_combine
* @{
* @file
*/
/**
* @brief Flag to specify whether a null list element will be ignored from concatenation, or the
* entire concatenation result involving null list elements will be a null element.
*/
enum class concatenate_null_policy { IGNORE, NULLIFY_OUTPUT_ROW };
/**
* @brief Row-wise concatenating multiple lists columns into a single lists column.
*
* The output column is generated by concatenating the elements within each row of the input
* table. If any row of the input table contains null elements, the concatenation process will
* either ignore those null elements, or will simply set the entire resulting row to be a null
* element.
*
* @code{.pseudo}
* s1 = [{0, 1}, {2, 3, 4}, {5}, {}, {6, 7}]
* s2 = [{8}, {9}, {}, {10, 11, 12}, {13, 14, 15, 16}]
* r = lists::concatenate_rows(s1, s2)
* r is now [{0, 1, 8}, {2, 3, 4, 9}, {5}, {10, 11, 12}, {6, 7, 13, 14, 15, 16}]
* @endcode
*
* @throws cudf::logic_error if any column of the input table is not a lists column.
* @throws cudf::logic_error if all lists columns do not have the same type.
*
* @param input Table of lists to be concatenated.
* @param null_policy The parameter to specify whether a null list element will be ignored from
* concatenation, or any concatenation involving a null element will result in a null list.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return A new column in which each row is a list resulted from concatenating all list elements in
* the corresponding row of the input table.
*/
std::unique_ptr<column> concatenate_rows(
table_view const& input,
concatenate_null_policy null_policy = concatenate_null_policy::IGNORE,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Concatenating multiple lists on the same row of a lists column into a single list.
*
* Given a lists column where each row in the column is a list of lists of entries, an output lists
* column is generated by concatenating all the list elements at the same row together. If any row
* contains null list elements, the concatenation process will either ignore those null elements, or
* will simply set the entire resulting row to be a null element.
*
* @code{.pseudo}
* l = [ [{1, 2}, {3, 4}, {5}], [{6}, {}, {7, 8, 9}] ]
* r = lists::concatenate_list_elements(l);
* r is [ {1, 2, 3, 4, 5}, {6, 7, 8, 9} ]
* @endcode
*
* @throws std::invalid_argument if the input column is not at least two-level depth lists column
* (i.e., each row must be a list of lists).
*
* @param input The lists column containing lists of list elements to concatenate.
* @param null_policy The parameter to specify whether a null list element will be ignored from
* concatenation, or any concatenation involving a null element will result in a null list.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return A new column in which each row is a list resulted from concatenating all list elements in
* the corresponding row of the input lists column.
*/
std::unique_ptr<column> concatenate_list_elements(
column_view const& input,
concatenate_null_policy null_policy = concatenate_null_policy::IGNORE,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/set_operations.hpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/types.hpp>
#include <rmm/mr/device/device_memory_resource.hpp>
namespace cudf::lists {
/**
* @addtogroup set_operations
* @{
* @file
*/
/**
* @brief Check if lists at each row of the given lists columns overlap.
*
* Given two input lists columns, each list row in one column is checked if it has any common
* elements with the corresponding row of the other column.
*
* A null input row in any of the input lists columns will result in a null output row.
*
* @throw cudf::logic_error if the input lists columns have different sizes.
* @throw cudf::logic_error if children of the input lists columns have different data types.
*
* Example:
* @code{.pseudo}
* lhs = { {0, 1, 2}, {1, 2, 3}, null, {4, null, 5} }
* rhs = { {1, 2, 3}, {4, 5}, {null, 7, 8}, {null, null} }
* result = { true, false, null, true }
* @endcode
*
* @param lhs The input lists column for one side
* @param rhs The input lists column for the other side
* @param nulls_equal Flag to specify whether null elements should be considered as equal, default
* to be `UNEQUAL` which means only non-null elements are checked for overlapping
* @param nans_equal Flag to specify whether floating-point NaNs should be considered as equal
* @param mr Device memory resource used to allocate the returned object
* @param stream CUDA stream used for device memory operations and kernel launches
* @return A column of type BOOL containing the check results
*/
std::unique_ptr<column> have_overlap(
lists_column_view const& lhs,
lists_column_view const& rhs,
null_equality nulls_equal = null_equality::EQUAL,
nan_equality nans_equal = nan_equality::ALL_EQUAL,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a lists column of distinct elements common to two input lists columns.
*
* Given two input lists columns `lhs` and `rhs`, an output lists column is created in a way such
* that each of its row `i` contains a list of distinct elements that can be found in both `lhs[i]`
* and `rhs[i]`.
*
* The order of distinct elements in the output rows is unspecified.
*
* A null input row in any of the input lists columns will result in a null output row.
*
* @throw cudf::logic_error if the input lists columns have different sizes.
* @throw cudf::logic_error if children of the input lists columns have different data types.
*
* Example:
* @code{.pseudo}
* lhs = { {2, 1, 2}, {1, 2, 3}, null, {4, null, 5} }
* rhs = { {1, 2, 3}, {4, 5}, {null, 7, 8}, {null, null} }
* result = { {1, 2}, {}, null, {null} }
* @endcode
*
* @param lhs The input lists column for one side
* @param rhs The input lists column for the other side
* @param nulls_equal Flag to specify whether null elements should be considered as equal
* @param nans_equal Flag to specify whether floating-point NaNs should be considered as equal
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned object
* @return A lists column containing the intersection results
*/
std::unique_ptr<column> intersect_distinct(
lists_column_view const& lhs,
lists_column_view const& rhs,
null_equality nulls_equal = null_equality::EQUAL,
nan_equality nans_equal = nan_equality::ALL_EQUAL,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a lists column of distinct elements found in either of two input lists columns.
*
* Given two input lists columns `lhs` and `rhs`, an output lists column is created in a way such
* that each of its row `i` contains a list of distinct elements that can be found in either
* `lhs[i]` or `rhs[i]`.
*
* The order of distinct elements in the output rows is unspecified.
*
* A null input row in any of the input lists columns will result in a null output row.
*
* @throw cudf::logic_error if the input lists columns have different sizes.
* @throw cudf::logic_error if children of the input lists columns have different data types.
*
* Example:
* @code{.pseudo}
* lhs = { {2, 1, 2}, {1, 2, 3}, null, {4, null, 5} }
* rhs = { {1, 2, 3}, {4, 5}, {null, 7, 8}, {null, null} }
* result = { {1, 2, 3}, {1, 2, 3, 4, 5}, null, {4, null, 5} }
* @endcode
*
* @param lhs The input lists column for one side
* @param rhs The input lists column for the other side
* @param nulls_equal Flag to specify whether null elements should be considered as equal
* @param nans_equal Flag to specify whether floating-point NaNs should be considered as equal
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned object
* @return A lists column containing the union results
*/
std::unique_ptr<column> union_distinct(
lists_column_view const& lhs,
lists_column_view const& rhs,
null_equality nulls_equal = null_equality::EQUAL,
nan_equality nans_equal = nan_equality::ALL_EQUAL,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a lists column of distinct elements found only in the left input column.
*
* Given two input lists columns `lhs` and `rhs`, an output lists column is created in a way such
* that each of its row `i` contains a list of distinct elements that can be found in `lhs[i]` but
* are not found in `rhs[i]`.
*
* The order of distinct elements in the output rows is unspecified.
*
* A null input row in any of the input lists columns will result in a null output row.
*
* @throw cudf::logic_error if the input lists columns have different sizes.
* @throw cudf::logic_error if children of the input lists columns have different data types.
*
* Example:
* @code{.pseudo}
* lhs = { {2, 1, 2}, {1, 2, 3}, null, {4, null, 5} }
* rhs = { {1, 2, 3}, {4, 5}, {null, 7, 8}, {null, null} }
* result = { {}, {1, 2, 3}, null, {4, 5} }
* @endcode
*
* @param lhs The input lists column of elements that may be included
* @param rhs The input lists column of elements to exclude
* @param nulls_equal Flag to specify whether null elements should be considered as equal
* @param nans_equal Flag to specify whether floating-point NaNs should be considered as equal
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned object
* @return A lists column containing the difference results
*/
std::unique_ptr<column> difference_distinct(
lists_column_view const& lhs,
lists_column_view const& rhs,
null_equality nulls_equal = null_equality::EQUAL,
nan_equality nans_equal = nan_equality::ALL_EQUAL,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace cudf::lists
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/lists_column_view.hpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
#include <rmm/cuda_stream_view.hpp>
/**
* @file
* @brief Class definition for cudf::lists_column_view
*/
namespace cudf {
/**
* @addtogroup lists_classes
* @{
*/
/**
* @brief Given a column-view of lists type, an instance of this class
* provides a wrapper on this compound column for list operations.
*/
class lists_column_view : private column_view {
public:
/**
* @brief Construct a new lists column view object from a column view.
*
* @param lists_column The column view to wrap
*/
lists_column_view(column_view const& lists_column);
lists_column_view(lists_column_view&&) = default; ///< Move constructor
lists_column_view(lists_column_view const&) = default; ///< Copy constructor
~lists_column_view() = default;
/**
* @brief Copy assignment operator
*
* @return The reference to this lists column
*/
lists_column_view& operator=(lists_column_view const&) = default;
/**
* @brief Move assignment operator
*
* @return The reference to this lists column
*/
lists_column_view& operator=(lists_column_view&&) = default;
static constexpr size_type offsets_column_index{0}; ///< The index of the offsets column
static constexpr size_type child_column_index{1}; ///< The index of the child column
using column_view::child_begin;
using column_view::child_end;
using column_view::has_nulls;
using column_view::is_empty;
using column_view::null_count;
using column_view::null_mask;
using column_view::offset;
using column_view::size;
using offset_iterator = size_type const*; ///< Iterator type for offsets
/**
* @brief Returns the parent column.
*
* @return The parent column
*/
[[nodiscard]] column_view parent() const;
/**
* @brief Returns the internal column of offsets
*
* @throw cudf::logic error if this is an empty column
* @return The internal column of offsets
*/
[[nodiscard]] column_view offsets() const;
/**
* @brief Returns the internal child column
*
* @throw cudf::logic error if this is an empty column
* @return The internal child column
*/
[[nodiscard]] column_view child() const;
/**
* @brief Returns the internal child column, applying any offset from the root.
*
* Slice/split offset values are only stored at the root level of a list column.
* So when doing computations on them, we need to apply that offset to
* the child columns when recursing. Most functions operating in a recursive manner
* on lists columns should be using `get_sliced_child()` instead of `child()`.
*
* @throw cudf::logic error if this is an empty column
* @param stream CUDA stream used for device memory operations and kernel launches
* @return A sliced child column view
*/
[[nodiscard]] column_view get_sliced_child(rmm::cuda_stream_view stream) const;
/**
* @brief Return first offset (accounting for column offset)
*
* @return Pointer to the first offset
*/
[[nodiscard]] offset_iterator offsets_begin() const noexcept
{
return offsets().begin<size_type>() + offset();
}
/**
* @brief Return pointer to the position that is one past the last offset
*
* This function return the position that is one past the last offset of the lists column.
* Since the current lists column may be a sliced column, this offsets_end() iterator should not
* be computed using the size of the offsets() child column, which is also the offsets of the
* entire original (non-sliced) lists column.
*
* @return Pointer to one past the last offset
*/
[[nodiscard]] offset_iterator offsets_end() const noexcept
{
return offsets_begin() + size() + 1;
}
};
/** @} */ // end of group
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/contains.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace lists {
/**
* @addtogroup lists_contains
* @{
* @file
*/
/**
* @brief Create a column of `bool` values indicating whether the specified scalar
* is an element of each row of a list column.
*
* The output column has as many elements as the input `lists` column.
* Output `column[i]` is set to true if the lists row `lists[i]` contains the value
* specified in `search_key`. Otherwise, it is set to false.
*
* Output `column[i]` is set to null if one or more of the following are true:
* 1. The search key `search_key` is null
* 2. The list row `lists[i]` is null
*
* @param lists Lists column whose `n` rows are to be searched
* @param search_key The scalar key to be looked up in each list row
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory
* @return BOOL8 column of `n` rows with the result of the lookup
*/
std::unique_ptr<column> contains(
cudf::lists_column_view const& lists,
cudf::scalar const& search_key,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a column of `bool` values indicating whether the list rows of the first
* column contain the corresponding values in the second column
*
* The output column has as many elements as the input `lists` column.
* Output `column[i]` is set to true if the lists row `lists[i]` contains the value
* in `search_keys[i]`. Otherwise, it is set to false.
*
* Output `column[i]` is set to null if one or more of the following are true:
* 1. The row `search_keys[i]` is null
* 2. The list row `lists[i]` is null
*
* @param lists Lists column whose `n` rows are to be searched
* @param search_keys Column of elements to be looked up in each list row.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory
* @return BOOL8 column of `n` rows with the result of the lookup
*/
std::unique_ptr<column> contains(
cudf::lists_column_view const& lists,
cudf::column_view const& search_keys,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a column of `bool` values indicating whether each row in the `lists` column
* contains at least one null element.
*
* The output column has as many elements as the input `lists` column.
* Output `column[i]` is set to null if the row `lists[i]` is null.
* Otherwise, `column[i]` is set to a non-null boolean value, depending on whether that list
* contains a null element.
*
* A row with an empty list will always return false.
* Nulls inside non-null nested elements (such as lists or structs) are not considered.
*
* @param lists Lists column whose `n` rows are to be searched.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory
* @return BOOL8 column of `n` rows with the result of the lookup
*/
std::unique_ptr<column> contains_nulls(
cudf::lists_column_view const& lists,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Option to choose whether `index_of()` returns the first or last match
* of a search key in a list row
*/
enum class duplicate_find_option : int32_t {
FIND_FIRST = 0, ///< Finds first instance of a search key in a list row.
FIND_LAST ///< Finds last instance of a search key in a list row.
};
/**
* @brief Create a column of values indicating the position of a search key
* within each list row in the `lists` column
*
* The output column has as many elements as there are rows in the input `lists` column.
* Output `column[i]` contains a 0-based index indicating the position of the search key
* in each list, counting from the beginning of the list.
* Note:
* 1. If the `search_key` is null, all output rows are set to null.
* 2. If the row `lists[i]` is null, `output[i]` is also null.
* 3. If the row `lists[i]` does not contain the `search_key`, `output[i]` is set to `-1`.
* 4. In all other cases, `output[i]` is set to a non-negative `size_type` index.
*
* If the `find_option` is set to `FIND_FIRST`, the position of the first match for
* `search_key` is returned.
* If `find_option == FIND_LAST`, the position of the last match in the list row is
* returned.
*
* @throw cudf::data_type_error If `search_keys` type does not match the element type in `lists`
*
* @param lists Lists column whose `n` rows are to be searched
* @param search_key The scalar key to be looked up in each list row
* @param find_option Whether to return the position of the first match (`FIND_FIRST`) or
* last (`FIND_LAST`)
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return column of `n` rows with the location of the `search_key`
*/
std::unique_ptr<column> index_of(
cudf::lists_column_view const& lists,
cudf::scalar const& search_key,
duplicate_find_option find_option = duplicate_find_option::FIND_FIRST,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a column of values indicating the position of a search key
* row within the corresponding list row in the `lists` column
*
* The output column has as many elements as there are rows in the input `lists` column.
* Output `column[i]` contains a 0-based index indicating the position of each search key
* row in its corresponding list row, counting from the beginning of the list.
* Note:
* 1. If `search_keys[i]` is null, `output[i]` is also null.
* 2. If the row `lists[i]` is null, `output[i]` is also null.
* 3. If the row `lists[i]` does not contain `search_key[i]`, `output[i]` is set to `-1`.
* 4. In all other cases, `output[i]` is set to a non-negative `size_type` index.
*
* If the `find_option` is set to `FIND_FIRST`, the position of the first match for
* `search_key` is returned.
* If `find_option == FIND_LAST`, the position of the last match in the list row is
* returned.
*
* @throw cudf::logic_error If `search_keys` does not match `lists` in its number of rows
* @throw cudf::data_type_error If `search_keys` type does not match the element type in `lists`
*
* @param lists Lists column whose `n` rows are to be searched
* @param search_keys A column of search keys to be looked up in each corresponding row of
* `lists`
* @param find_option Whether to return the position of the first match (`FIND_FIRST`) or
* last (`FIND_LAST`)
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return column of `n` rows with the location of the `search_key`
*/
std::unique_ptr<column> index_of(
cudf::lists_column_view const& lists,
cudf::column_view const& search_keys,
duplicate_find_option find_option = duplicate_find_option::FIND_FIRST,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/count_elements.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace lists {
/**
* @addtogroup lists_elements
* @{
* @file
*/
/**
* @brief Returns a numeric column containing the number of rows in
* each list element in the given lists column.
*
* The output column will have the same number of rows as the
* input lists column. Each `output[i]` will be `input[i].size()`.
*
* @code{.pseudo}
* l = { {1, 2, 3}, {4}, {5, 6} }
* r = count_elements(l)
* r is now {3, 1, 2}
* @endcode
*
* Any null input element will result in a corresponding null entry
* in the output column.
*
* @param input Input lists column
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New column with the number of elements for each row
*/
std::unique_ptr<column> count_elements(
lists_column_view const& input,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of lists_elements group
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/sorting.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace lists {
/**
* @addtogroup lists_sort
* @{
* @file
*/
/**
* @brief Segmented sort of the elements within a list in each row of a list column.
*
* `source_column` with depth 1 is only supported.
*
* * @code{.pseudo}
* source_column : [{4, 2, 3, 1}, {1, 2, NULL, 4}, {-10, 10, 0}]
*
* Ascending, Null After : [{1, 2, 3, 4}, {1, 2, 4, NULL}, {-10, 0, 10}]
* Ascending, Null Before : [{1, 2, 3, 4}, {NULL, 1, 2, 4}, {-10, 0, 10}]
* Descending, Null After : [{4, 3, 2, 1}, {NULL, 4, 2, 1}, {10, 0, -10}]
* Descending, Null Before : [{4, 3, 2, 1}, {4, 2, 1, NULL}, {10, 0, -10}]
* @endcode
*
* @param source_column View of the list column of numeric types to sort
* @param column_order The desired sort order
* @param null_precedence The desired order of null compared to other elements in the list
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource to allocate any returned objects
* @return list column with elements in each list sorted.
*
*/
std::unique_ptr<column> sort_lists(
lists_column_view const& source_column,
order column_order,
null_order null_precedence,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Segmented sort of the elements within a list in each row of a list column using stable
* sort.
*
* @copydoc cudf::lists::sort_lists
*/
std::unique_ptr<column> stable_sort_lists(
lists_column_view const& source_column,
order column_order,
null_order null_precedence,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/extract.hpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace lists {
/**
* @addtogroup lists_extract
* @{
* @file
*/
/**
* @brief Create a column where each row is the element at position `index` from the corresponding
* sublist in the input `lists_column`.
*
* Output `column[i]` is set from element `lists_column[i][index]`.
* If `index` is larger than the size of the sublist at `lists_column[i]`
* then output `column[i] = null`.
*
* @code{.pseudo}
* l = { {1, 2, 3}, {4}, {5, 6} }
* r = extract_list_element(l, 1)
* r is now {2, null, 6}
* @endcode
*
* The `index` may also be negative in which case the row retrieved is offset
* from the end of each sublist.
*
* @code{.pseudo}
* l = { {"a"}, {"b", "c"}, {"d", "e", "f"} }
* r = extract_list_element(l, -1)
* r is now {"a", "c", "f"}
* @endcode
*
* Any input where `lists_column[i] == null` will produce
* output `column[i] = null`. Also, any element where
* `lists_column[i][index] == null` will produce
* output `column[i] = null`.
*
* @param lists_column Column to extract elements from.
* @param index The row within each sublist to retrieve.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return Column of extracted elements.
*/
std::unique_ptr<column> extract_list_element(
lists_column_view const& lists_column,
size_type index,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Create a column where each row is a single element from the corresponding sublist
* in the input `lists_column`, selected using indices from the `indices` column.
*
* Output `column[i]` is set from element `lists_column[i][indices[i]]`.
* If `indices[i]` is larger than the size of the sublist at `lists_column[i]`
* then output `column[i] = null`.
* Similarly, if `indices[i]` is `null`, then `column[i] = null`.
*
* @code{.pseudo}
* l = { {1, 2, 3}, {4}, {5, 6} }
* r = extract_list_element(l, {0, null, 2})
* r is now {1, null, null}
* @endcode
*
* `indices[i]` may also be negative, in which case the row retrieved is offset
* from the end of each sublist.
*
* @code{.pseudo}
* l = { {"a"}, {"b", "c"}, {"d", "e", "f"} }
* r = extract_list_element(l, {-1, -2, -4})
* r is now {"a", "b", null}
* @endcode
*
* Any input where `lists_column[i] == null` produces output `column[i] = null`.
* Any input where `lists_column[i][indices[i]] == null` produces output `column[i] = null`.
*
* @param lists_column Column to extract elements from.
* @param indices The column whose rows indicate the element index to be retrieved from each list
* row.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return Column of extracted elements.
* @throws cudf::logic_error If the sizes of `lists_column` and `indices` do not match.
*/
std::unique_ptr<column> extract_list_element(
lists_column_view const& lists_column,
column_view const& indices,
rmm::cuda_stream_view stream = cudf::get_default_stream(),
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/explode.hpp
|
/*
* Copyright (c) 2021-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/types.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
#include <memory>
namespace cudf {
/**
* @addtogroup column_reshape
* @{
* @file
* @brief Column APIs for explore list columns
*/
/**
* @brief Explodes a list column's elements.
*
* Any list is exploded, which means the elements of the list in each row are expanded into new rows
* in the output. The corresponding rows for other columns in the input are duplicated. Example:
* ```
* [[5,10,15], 100],
* [[20,25], 200],
* [[30], 300],
* returns
* [5, 100],
* [10, 100],
* [15, 100],
* [20, 200],
* [25, 200],
* [30, 300],
* ```
*
* Nulls and empty lists propagate in different ways depending on what is null or empty.
*```
* [[5,null,15], 100],
* [null, 200],
* [[], 300],
* returns
* [5, 100],
* [null, 100],
* [15, 100],
* ```
* Note that null lists are not included in the resulting table, but nulls inside
* lists and empty lists will be represented with a null entry for that column in that row.
*
* @param input_table Table to explode.
* @param explode_column_idx Column index to explode inside the table.
* @param mr Device memory resource used to allocate the returned column's device memory.
*
* @return A new table with explode_col exploded.
*/
std::unique_ptr<table> explode(
table_view const& input_table,
size_type explode_column_idx,
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Explodes a list column's elements and includes a position column.
*
* Any list is exploded, which means the elements of the list in each row are expanded into new rows
* in the output. The corresponding rows for other columns in the input are duplicated. A position
* column is added that has the index inside the original list for each row. Example:
* ```
* [[5,10,15], 100],
* [[20,25], 200],
* [[30], 300],
* returns
* [0, 5, 100],
* [1, 10, 100],
* [2, 15, 100],
* [0, 20, 200],
* [1, 25, 200],
* [0, 30, 300],
* ```
*
* Nulls and empty lists propagate in different ways depending on what is null or empty.
*```
* [[5,null,15], 100],
* [null, 200],
* [[], 300],
* returns
* [0, 5, 100],
* [1, null, 100],
* [2, 15, 100],
* ```
* Note that null lists are not included in the resulting table, but nulls inside
* lists and empty lists will be represented with a null entry for that column in that row.
*
* @param input_table Table to explode.
* @param explode_column_idx Column index to explode inside the table.
* @param mr Device memory resource used to allocate the returned column's device memory.
*
* @return A new table with exploded value and position. The column order of return table is
* [cols before explode_input, explode_position, explode_value, cols after explode_input].
*/
std::unique_ptr<table> explode_position(
table_view const& input_table,
size_type explode_column_idx,
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Explodes a list column's elements retaining any null entries or empty lists inside.
*
* Any list is exploded, which means the elements of the list in each row are expanded into new rows
* in the output. The corresponding rows for other columns in the input are duplicated. Example:
* ```
* [[5,10,15], 100],
* [[20,25], 200],
* [[30], 300],
* returns
* [5, 100],
* [10, 100],
* [15, 100],
* [20, 200],
* [25, 200],
* [30, 300],
* ```
*
* Nulls and empty lists propagate as null entries in the result.
*```
* [[5,null,15], 100],
* [null, 200],
* [[], 300],
* returns
* [5, 100],
* [null, 100],
* [15, 100],
* [null, 200],
* [null, 300],
* ```
*
* @param input_table Table to explode.
* @param explode_column_idx Column index to explode inside the table.
* @param mr Device memory resource used to allocate the returned column's device memory.
*
* @return A new table with explode_col exploded.
*/
std::unique_ptr<table> explode_outer(
table_view const& input_table,
size_type explode_column_idx,
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/**
* @brief Explodes a list column's elements retaining any null entries or empty lists and includes a
*position column.
*
* Any list is exploded, which means the elements of the list in each row are expanded into new rows
* in the output. The corresponding rows for other columns in the input are duplicated. A position
* column is added that has the index inside the original list for each row. Example:
* ```
* [[5,10,15], 100],
* [[20,25], 200],
* [[30], 300],
* returns
* [0, 5, 100],
* [1, 10, 100],
* [2, 15, 100],
* [0, 20, 200],
* [1, 25, 200],
* [0, 30, 300],
* ```
*
* Nulls and empty lists propagate as null entries in the result.
*```
* [[5,null,15], 100],
* [null, 200],
* [[], 300],
* returns
* [0, 5, 100],
* [1, null, 100],
* [2, 15, 100],
* [0, null, 200],
* [0, null, 300],
* ```
*
* @param input_table Table to explode.
* @param explode_column_idx Column index to explode inside the table.
* @param mr Device memory resource used to allocate the returned column's device memory.
*
* @return A new table with explode_col exploded.
*/
std::unique_ptr<table> explode_outer_position(
table_view const& input_table,
size_type explode_column_idx,
rmm::mr::device_memory_resource* mr = rmm::mr::get_current_device_resource());
/** @} */ // end of group
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/gather.cuh
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column_factories.hpp>
#include <cudf/detail/get_value.cuh>
#include <cudf/detail/sizes_to_offsets_iterator.cuh>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/utilities/bit.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/device_uvector.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/functional.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/transform.h>
namespace cudf {
namespace lists {
namespace detail {
/**
* @brief The information needed to create an iterator to gather level N+1
*
* @ref make_gather_data
*/
struct gather_data {
// The offsets column from our parent list (level N)
std::unique_ptr<column> offsets;
// For each offset in the above offsets column, the original offset value
// prior to being gathered.
// Example:
// If the offsets[3] == 6 (representing row 3 of the new column)
// And the original value it was itself gathered from was 15, then
// base_offsets[3] == 15
rmm::device_uvector<int32_t> base_offsets;
// size of the gather map that will be generated from this data
size_type gather_map_size;
};
/**
* @copydoc cudf::make_gather_data(cudf::lists_column_view const& source_column,
* MapItType gather_map,
* size_type gather_map_size,
* rmm::cuda_stream_view stream,
* rmm::mr::device_memory_resource* mr)
*
* @param prev_base_offsets The buffer backing the base offsets used in the gather map. We can
* free this buffer before allocating the new one to keep peak memory
* usage down.
*/
template <bool NullifyOutOfBounds, typename MapItType>
gather_data make_gather_data(cudf::lists_column_view const& source_column,
MapItType gather_map,
size_type gather_map_size,
rmm::device_uvector<int32_t>&& prev_base_offsets,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
// size of the gather map is the # of output rows
size_type output_count = gather_map_size;
// offsets of the source column
int32_t const* src_offsets{source_column.offsets().data<int32_t>() + source_column.offset()};
size_type const src_size = source_column.size();
auto const source_column_nullmask = source_column.null_mask();
auto sizes_itr = cudf::detail::make_counting_transform_iterator(
0,
[source_column_nullmask,
source_column_offset = source_column.offset(),
gather_map,
output_count,
src_offsets,
src_size] __device__(int32_t index) -> int32_t {
int32_t offset_index = index < output_count ? gather_map[index] : 0;
// if this is an invalid index, this will be a NULL list
if (NullifyOutOfBounds && ((offset_index < 0) || (offset_index >= src_size))) { return 0; }
// If the source row is null, the output row size must be 0.
if (source_column_nullmask != nullptr &&
not cudf::bit_is_set(source_column_nullmask, source_column_offset + offset_index)) {
return 0;
}
// the length of this list
return src_offsets[offset_index + 1] - src_offsets[offset_index];
});
auto [dst_offsets_c, map_size] =
cudf::detail::make_offsets_child_column(sizes_itr, sizes_itr + output_count, stream, mr);
// handle sliced columns
size_type const shift =
source_column.offset() > 0
? cudf::detail::get_value<size_type>(source_column.offsets(), source_column.offset(), stream)
: 0;
// generate the base offsets
rmm::device_uvector<int32_t> base_offsets = rmm::device_uvector<int32_t>(output_count, stream);
thrust::transform(
rmm::exec_policy_nosync(stream),
gather_map,
gather_map + output_count,
base_offsets.data(),
[source_column_nullmask,
source_column_offset = source_column.offset(),
src_offsets,
src_size,
shift] __device__(int32_t index) {
// if this is an invalid index, this will be a NULL list
if (NullifyOutOfBounds && ((index < 0) || (index >= src_size))) { return 0; }
// If the source row is null, the output row size must be 0.
if (source_column_nullmask != nullptr &&
not cudf::bit_is_set(source_column_nullmask, source_column_offset + index)) {
return 0;
}
return src_offsets[index] - shift;
});
// Retrieve size of the resulting gather map for level N+1 (the last offset)
auto const child_gather_map_size = static_cast<size_type>(map_size);
return {std::move(dst_offsets_c), std::move(base_offsets), child_gather_map_size};
}
/**
* @brief Generates the data needed to create a `gather_map` for the next level of
* recursion in a hierarchy of list columns.
*
* Gathering from a single level of a list column is similar to gathering from
* a string column. Each row represents a list bounded by offsets.
*
* @code{.pseudo}
* Example:
* Level 0 : List<List<int>>
* Size : 3
* Offsets : [0, 2, 5, 10]
*
* This represents a column with 3 rows.
* Row 0 has 2 elements (bounded by offsets 0,2)
* Row 1 has 3 elements (bounded by offsets 2,5)
* Row 2 has 5 elements (bounded by offsets 5,10)
*
* If we wanted to gather rows 0 and 2 the offsets for our outgoing column
* would be the compacted ranges (0,2) and (5,10). The level 1 column
* then looks like
*
* Level 1 : List<int>
* Size : 2
* Offsets : [0, 2, 7]
*
* However, we need to then gather one level further, because at the bottom we have
* a column of integers. We cannot gather the elements in the ranges (0, 2) and (2, 7).
* Instead, we have to gather elements in the ranges from the Level 0 column (0, 2) and (5, 10).
* So our gather_map iterator will need to know these "base" offsets to index properly.
* Specifically:
*
* Offsets : [0, 2, 7] The offsets for Level 1
* Base Offsets : [0, 5] The corresponding base offsets from Level 0
*
* Using this we can create an iterator that generates the sequence which properly indexes the
* final integer values we want to gather.
*
* [0, 1, 5, 6, 7, 8, 9]
* @endcode
*
* Thinking generally, this means that to produce a gather_map for level N+1, we need to use the
* offsets from level N and the "base" offsets from level N-1. So we are always carrying along
* one extra buffer of these "base" offsets which keeps our memory usage well controlled.
*
* @code{.pseudo}
* Example:
*
* "column of lists of lists of ints"
* {
* {
* {2, 3}, {4, 5}
* },
* {
* {6, 7, 8}, {9, 10, 11}, {12, 13, 14}
* },
* {
* {15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}
* }
* }
*
* List<List<int32_t>>:
* Length : 3
* Offsets : 0, 2, 5, 10
* Children :
* List<int32_t>:
* Length : 10
* Offsets : 0, 2, 4, 7, 10, 13, 15, 17, 19, 21, 23
* Children :
* 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 17, 18, 17, 18, 17, 18
*
* Final column, doing gather([0, 2])
*
* {
* {
* {2, 3}, {4, 5}
* },
* {
* {15, 16}, {17, 18}, {17, 18}, {17, 18}, {17, 18}
* }
* }
*
* List<List<int32_t>>:
* Length : 2
* Offsets : 0, 2, 7
* Children :
* List<int32_t>:
* Length : 7
* Offsets : 0, 2, 4, 6, 8, 10, 12, 14
* Children :
* 2, 3, 4, 5, 15, 16, 17, 18, 17, 18, 17, 18, 17, 18
* @endcode
*
* @tparam MapItType Iterator type to access the incoming column.
* @tparam NullifyOutOfBounds Nullify values in `gather_map` that are out of bounds
* @param source_column View into the column to gather from
* @param gather_map Iterator access to the gather map for `source_column` map
* @param gather_map_size Size of the gather map.
* @param stream CUDA stream on which to execute kernels
* @param mr Memory resource to use for all allocations
*
* @returns The gather_data struct needed to construct the gather map for the
* next level of recursion.
*/
template <bool NullifyOutOfBounds, typename MapItType>
gather_data make_gather_data(cudf::lists_column_view const& source_column,
MapItType gather_map,
size_type gather_map_size,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
return make_gather_data<NullifyOutOfBounds, MapItType>(
source_column,
gather_map,
gather_map_size,
rmm::device_uvector<int32_t>{0, stream, mr},
stream,
mr);
}
/**
* @brief Gather a list column from a hierarchy of list columns.
*
* The recursion continues from here at least 1 level further.
*
* @param list View into the list column to gather from
* @param gd The gather_data needed to construct a gather map iterator for this level
* @param stream CUDA stream on which to execute kernels
* @param mr Memory resource to use for all allocations
*
* @returns column with elements gathered based on `gather_data`
*/
std::unique_ptr<column> gather_list_nested(lists_column_view const& list,
gather_data& gd,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @brief Gather a leaf column from a hierarchy of list columns.
*
* The recursion terminates here.
*
* @param column View into the column to gather from
* @param gd The gather_data needed to construct a gather map iterator for this level
* @param stream CUDA stream on which to execute kernels
* @param mr Memory resource to use for all allocations
*
* @returns column with elements gathered based on `gather_data`
*/
std::unique_ptr<column> gather_list_leaf(column_view const& column,
gather_data const& gd,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::lists::segmented_gather(lists_column_view const& source_column,
* lists_column_view const& gather_map_list,
* out_of_bounds_policy bounds_policy,
* rmm::mr::device_memory_resource* mr)
*
* @param stream CUDA stream on which to execute kernels
*/
std::unique_ptr<column> segmented_gather(lists_column_view const& source_column,
lists_column_view const& gather_map_list,
out_of_bounds_policy bounds_policy,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/copying.hpp
|
/*
* Copyright (c) 2020-2021, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace lists {
namespace detail {
/**
* @brief Returns a new lists column created from a subset of the
* lists column. The subset of lists selected is between start (inclusive)
* and end (exclusive).
*
* @code{.pseudo}
* Example:
* s1 = {{1, 2, 3}, {4, 5}, {6, 7}, {}, {8, 9}}
* s2 = slice( s1, 1, 4)
* s2 is {{4, 5}, {6, 7}, {}}
* @endcode
*
* @param lists Lists instance for this operation.
* @param start Index to first list to select in the column
* @param end One past the index to last list to select in the column
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New lists column of size (end - start)
*/
std::unique_ptr<cudf::column> copy_slice(lists_column_view const& lists,
size_type start,
size_type end,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/scatter_helper.cuh
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/column/column_view.hpp>
#include <cudf/lists/list_device_view.cuh>
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/device_uvector.hpp>
#include <rmm/exec_policy.hpp>
#include <memory>
namespace cudf {
namespace lists {
namespace detail {
/**
* @brief Holder for a list row's positional information, without
* also holding a reference to the list column.
*
* Analogous to the list_view, this class is default constructable,
* and can thus be stored in rmm::device_uvector. It is used to represent
* the results of a `scatter()` operation; a device_uvector may hold
* several instances of unbound_list_view, each with a flag indicating
* whether it came from the scatter source or target. Each instance
* may later be "bound" to the appropriate source/target column, to
* reconstruct the list_view.
*/
struct unbound_list_view {
/**
* @brief Flag type, indicating whether this list row originated from
* the source or target column, in `scatter()`.
*/
enum class label_type : bool { SOURCE, TARGET };
using lists_column_device_view = cudf::detail::lists_column_device_view;
using list_device_view = cudf::list_device_view;
unbound_list_view() = default;
unbound_list_view(unbound_list_view const&) = default;
unbound_list_view(unbound_list_view&&) = default;
unbound_list_view& operator=(unbound_list_view const&) = default;
unbound_list_view& operator=(unbound_list_view&&) = default;
/**
* @brief __device__ Constructor, for use from `scatter()`.
*
* @param scatter_source_label Whether the row came from source or target
* @param lists_column The actual source/target lists column
* @param row_index Index of the row in lists_column that this instance represents
*/
__device__ inline unbound_list_view(label_type scatter_source_label,
cudf::detail::lists_column_device_view const& lists_column,
size_type const& row_index)
: _label{scatter_source_label}, _row_index{row_index}
{
_size = list_device_view{lists_column, row_index}.size();
}
/**
* @brief __device__ Constructor, for use when constructing the child column
* of a scattered list column
*
* @param scatter_source_label Whether the row came from source or target
* @param row_index Index of the row that this instance represents in the source/target column
* @param size The number of elements in this list row
*/
__device__ inline unbound_list_view(label_type scatter_source_label,
size_type const& row_index,
size_type const& size)
: _label{scatter_source_label}, _row_index{row_index}, _size{size}
{
}
/**
* @brief Returns number of elements in this list row.
*/
[[nodiscard]] __device__ inline size_type size() const { return _size; }
/**
* @brief Returns whether this row came from the `scatter()` source or target
*/
[[nodiscard]] __device__ inline label_type label() const { return _label; }
/**
* @brief Returns the index in the source/target column
*/
[[nodiscard]] __device__ inline size_type row_index() const { return _row_index; }
/**
* @brief Binds to source/target column (depending on SOURCE/TARGET labels),
* to produce a bound list_view.
*
* @param scatter_source Source column for the scatter operation
* @param scatter_target Target column for the scatter operation
* @return A (bound) list_view for the row that this object represents
*/
[[nodiscard]] __device__ inline list_device_view bind_to_column(
lists_column_device_view const& scatter_source,
lists_column_device_view const& scatter_target) const
{
return list_device_view(_label == label_type::SOURCE ? scatter_source : scatter_target,
_row_index);
}
private:
// Note: Cannot store reference to list column, because of storage in device_uvector.
// Only keep track of whether this list row came from the source or target of scatter.
label_type _label{
label_type::SOURCE}; // Whether this list row came from the scatter source or target.
size_type _row_index{}; // Row index in the Lists column.
size_type _size{}; // Number of elements in *this* list row.
};
std::unique_ptr<column> build_lists_child_column_recursive(
data_type child_column_type,
rmm::device_uvector<unbound_list_view> const& list_vector,
cudf::column_view const& list_offsets,
cudf::lists_column_view const& source_lists_column_view,
cudf::lists_column_view const& target_lists_column_view,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/dremel.hpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <rmm/device_uvector.hpp>
namespace cudf::detail {
/**
* @brief Device view for `dremel_data`.
*
* @see the `dremel_data` struct for more info.
*/
struct dremel_device_view {
size_type const* offsets;
uint8_t const* rep_levels;
uint8_t const* def_levels;
size_type const leaf_data_size;
uint8_t const max_def_level;
};
/**
* @brief Dremel data that describes one nested type column
*
* @see get_dremel_data() for more info.
*/
struct dremel_data {
rmm::device_uvector<size_type> dremel_offsets;
rmm::device_uvector<uint8_t> rep_level;
rmm::device_uvector<uint8_t> def_level;
size_type const leaf_data_size;
uint8_t const max_def_level;
operator dremel_device_view() const
{
return dremel_device_view{
dremel_offsets.data(), rep_level.data(), def_level.data(), leaf_data_size, max_def_level};
}
};
/**
* @brief Get the dremel offsets and repetition and definition levels for a LIST column
*
* Dremel is a query system created by Google for ad hoc data analysis. The Dremel engine is
* described in depth in the paper "Dremel: Interactive Analysis of Web-Scale
* Datasets" (https://research.google/pubs/pub36632/). One of the key components of Dremel
* is an encoding that converts record-like data into a columnar store for efficient memory
* accesses. The Parquet file format uses Dremel encoding to handle nested data, so libcudf
* requires some facilities for working with this encoding. Furthermore, libcudf leverages
* Dremel encoding as a means for performing lexicographic comparisons of nested columns.
*
* Dremel encoding is built around two concepts, the repetition and definition levels.
* Since describing them thoroughly is out of scope for this docstring, here are a couple of
* blogs that provide useful background:
*
* http://www.goldsborough.me/distributed-systems/2019/05/18/21-09-00-a_look_at_dremel/
* https://akshays-blog.medium.com/wrapping-head-around-repetition-and-definition-levels-in-dremel-powering-bigquery-c1a33c9695da
* https://blog.twitter.com/engineering/en_us/a/2013/dremel-made-simple-with-parquet
*
* The remainder of this documentation assumes familiarity with the Dremel concepts.
*
* Dremel offsets are the per row offsets into the repetition and definition level arrays for a
* column.
* Example:
* ```
* col = {{1, 2, 3}, { }, {5, 6}}
* dremel_offsets = { 0, 3, 4, 6}
* rep_level = { 0, 1, 1, 0, 0, 1}
* def_level = { 1, 1, 1, 0, 1, 1}
* ```
*
* The repetition and definition level values are ideally computed using a recursive call over a
* nested structure but in order to better utilize GPU resources, this function calculates them
* with a bottom up merge method.
*
* Given a LIST column of type `List<List<int>>` like so:
* ```
* col = {
* [],
* [[], [1, 2, 3], [4, 5]],
* [[]]
* }
* ```
* We can represent it in cudf format with two level of offsets like this:
* ```
* Level 0 offsets = {0, 0, 3, 5, 6}
* Level 1 offsets = {0, 0, 3, 5, 5}
* Values = {1, 2, 3, 4, 5}
* ```
* The desired result of this function is the repetition and definition level values that
* correspond to the data values:
* ```
* col = {[], [[], [1, 2, 3], [4, 5]], [[]]}
* def = { 0 1, 2, 2, 2, 2, 2, 1 }
* rep = { 0, 0, 0, 2, 2, 1, 2, 0 }
* ```
*
* Since repetition and definition levels arrays contain a value for each empty list, the size of
* the rep/def level array can be given by
* ```
* rep_level.size() = size of leaf column + number of empty lists in level 0
* + number of empty lists in level 1 ...
* ```
*
* We start with finding the empty lists in the penultimate level and merging it with the indices
* of the leaf level. The values for the merge are the definition and repetition levels
* ```
* empties at level 1 = {0, 5}
* def values at 1 = {1, 1}
* rep values at 1 = {1, 1}
* indices at leaf = {0, 1, 2, 3, 4}
* def values at leaf = {2, 2, 2, 2, 2}
* rep values at leaf = {2, 2, 2, 2, 2}
* ```
*
* merged def values = {1, 2, 2, 2, 2, 2, 1}
* merged rep values = {1, 2, 2, 2, 2, 2, 1}
*
* The size of the rep/def values is now larger than the leaf values and the offsets need to be
* adjusted in order to point to the correct start indices. We do this with an exclusive scan over
* the indices of offsets of empty lists and adding to existing offsets.
* ```
* Level 1 new offsets = {0, 1, 4, 6, 7}
* ```
* Repetition values at the beginning of a list need to be decremented. We use the new offsets to
* scatter the rep value.
* ```
* merged rep values = {1, 2, 2, 2, 2, 2, 1}
* scatter (1, new offsets)
* new offsets = {0, 1, 4, 6, 7}
* new rep values = {1, 1, 2, 2, 1, 2, 1}
* ```
*
* Similarly we merge up all the way till level 0 offsets
*
* STRUCT COLUMNS :
* In case of struct columns, we don't have to merge struct levels with their children because a
* struct is the same size as its children. e.g. for a column `struct<int, float>`, if the row `i`
* is null, then the children columns `int` and `float` are also null at `i`. They also have the
* null entry represented in their respective null masks. So for any case of strictly struct based
* nesting, we can get the definition levels merely by iterating over the nesting for the same row.
*
* In case struct and lists are intermixed, the definition levels of all the contiguous struct
* levels can be constructed using the aforementioned iterative method. Only when we reach a list
* level, we need to do a merge with the subsequent level.
*
* So, for a column like `struct<list<int>>`, we are going to merge between the levels `struct<list`
* and `int`.
* For a column like `list<struct<int>>`, we are going to merge between `list` and `struct<int>`.
*
* In general, one nesting level is the list level and any struct level that precedes it.
*
* A few more examples to visualize the partitioning of column hierarchy into nesting levels:
* (L is list, S is struct, i is integer(leaf data level), angle brackets omitted)
* ```
* 1. LSi = L Si
* - | --
*
* 2. LLSi = L L Si
* - | - | --
*
* 3. SSLi = SSL i
* --- | -
*
* 4. LLSLSSi = L L SL SSi
* - | - | -- | ---
* ```
*
* @param input Column of LIST type
* @param nullability Pre-determined nullability at each list level. Empty means infer from
* `input`
* @param output_as_byte_array if `true`, then any nested list level that has a child of type
* `uint8_t` will be considered as the last level
* @param stream CUDA stream used for device memory operations and kernel launches.
* @return A struct containing dremel data
*/
dremel_data get_dremel_data(column_view input,
std::vector<uint8_t> nullability,
bool output_as_byte_array,
rmm::cuda_stream_view stream);
/**
* @brief Get Dremel offsets, repetition levels, and modified definition levels to be used for
* lexicographical comparators. The modified definition levels are produced by treating
* each nested column in the input as nullable
*
* @param input Column of LIST type
* @param nullability Pre-determined nullability at each list level. Empty means infer from
* `input`
* @param output_as_byte_array if `true`, then any nested list level that has a child of type
* `uint8_t` will be considered as the last level
* @param stream CUDA stream used for device memory operations and kernel launches.
* @return A struct containing dremel data
*/
dremel_data get_comparator_data(column_view input,
std::vector<uint8_t> nullability,
bool output_as_byte_array,
rmm::cuda_stream_view stream);
} // namespace cudf::detail
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/interleave_columns.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/table/table_view.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace lists {
namespace detail {
/**
* @brief Returns a single column by interleaving rows of the given table of list elements.
*
* @code{.pseudo}
* s1 = [{0, 1}, {2, 3, 4}, {5}, {}, {6, 7}]
* s2 = [{8}, {9}, {}, {10, 11, 12}, {13, 14, 15, 16}]
* r = lists::interleave_columns(s1, s2)
* r is now [{0, 1}, {8}, {2, 3, 4}, {9}, {5}, {}, {}, {10, 11, 12}, {6, 7}, {13, 14, 15, 16}]
* @endcode
*
* @throws cudf::logic_error if any column of the input table is not a lists columns.
* @throws cudf::logic_error if any lists column contains nested typed entry.
* @throws cudf::logic_error if all lists columns do not have the same entry type.
*
* @param input Table containing lists columns to interleave.
* @param has_null_mask A boolean flag indicating that the input columns have a null mask.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return The interleaved columns as a single column.
*/
std::unique_ptr<column> interleave_columns(table_view const& input,
bool has_null_mask,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/stream_compaction.hpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/mr/device/device_memory_resource.hpp>
namespace cudf::lists::detail {
/**
* @copydoc cudf::lists::apply_boolean_mask(lists_column_view const&, lists_column_view const&,
* rmm::mr::device_memory_resource*)
*
* @param stream CUDA stream used for device memory operations and kernel launches
*/
std::unique_ptr<column> apply_boolean_mask(lists_column_view const& input,
lists_column_view const& boolean_mask,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::list::distinct
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> distinct(lists_column_view const& input,
null_equality nulls_equal,
nan_equality nans_equal,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace cudf::lists::detail
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/lists_column_factories.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/scalar/scalar.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/mr/device/per_device_resource.hpp>
namespace cudf {
namespace lists {
namespace detail {
/**
* @brief Internal API to construct a lists column from a `list_scalar`, for public
* use, use `cudf::make_column_from_scalar`.
*
* @param[in] value The `list_scalar` to construct from
* @param[in] size The number of rows for the output column.
* @param[in] stream CUDA stream used for device memory operations and kernel launches.
* @param[in] mr Device memory resource used to allocate the returned column's device memory.
*/
std::unique_ptr<cudf::column> make_lists_column_from_scalar(list_scalar const& value,
size_type size,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @brief Create an empty lists column.
*
* A list column requires a child type and so cannot be created with `make_empty_column`.
*
* @param child_type The type used for the empty child column
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
*/
std::unique_ptr<column> make_empty_lists_column(data_type child_type,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @brief Create a lists column with all null rows.
*
* @param size Size of the output lists column
* @param child_type The type used for the empty child column
* @param stream CUDA stream used for device memory operations and kernel launches
* @param mr Device memory resource used to allocate the returned column's device memory
*/
std::unique_ptr<column> make_all_nulls_lists_column(size_type size,
data_type child_type,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/reverse.hpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/lists/reverse.hpp>
namespace cudf::lists::detail {
/**
* @copydoc cudf::lists::reverse
* @param stream CUDA stream used for device memory operations and kernel launches
*/
std::unique_ptr<column> reverse(lists_column_view const& input,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace cudf::lists::detail
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/combine.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/lists/combine.hpp>
#include <cudf/lists/lists_column_view.hpp>
namespace cudf {
namespace lists {
namespace detail {
/**
* @copydoc cudf::lists::concatenate_rows
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> concatenate_rows(table_view const& input,
concatenate_null_policy null_policy,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::lists::concatenate_list_elements
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> concatenate_list_elements(column_view const& input,
concatenate_null_policy null_policy,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/set_operations.hpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/types.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <rmm/mr/device/device_memory_resource.hpp>
namespace cudf::lists::detail {
/**
* @copydoc cudf::list::have_overlap
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> have_overlap(lists_column_view const& lhs,
lists_column_view const& rhs,
null_equality nulls_equal,
nan_equality nans_equal,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::list::intersect_distinct
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> intersect_distinct(lists_column_view const& lhs,
lists_column_view const& rhs,
null_equality nulls_equal,
nan_equality nans_equal,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::list::union_distinct
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> union_distinct(lists_column_view const& lhs,
lists_column_view const& rhs,
null_equality nulls_equal,
nan_equality nans_equal,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::list::difference_distinct
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> difference_distinct(lists_column_view const& lhs,
lists_column_view const& rhs,
null_equality nulls_equal,
nan_equality nans_equal,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/** @} */ // end of group
} // namespace cudf::lists::detail
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/concatenate.hpp
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column.hpp>
#include <cudf/lists/lists_column_view.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/span.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace lists {
namespace detail {
/**
* @brief Returns a single column by concatenating the given vector of
* lists columns.
*
* @code{.pseudo}
* s1 = [{0, 1}, {2, 3, 4, 5, 6}]
* s2 = [{7, 8, 9}, {10, 11}]
* r = concatenate(s1, s2)
* r is now [{0, 1}, {2, 3, 4, 5, 6}, {7, 8, 9}, {10, 11}]
* @endcode
*
* @param columns Vector of lists columns to concatenate.
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory.
* @return New column with concatenated results.
*/
std::unique_ptr<column> concatenate(host_span<column_view const> columns,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/contains.hpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/lists/contains.hpp>
#include <cudf/lists/lists_column_view.hpp>
namespace cudf {
namespace lists {
namespace detail {
/**
* @copydoc cudf::lists::index_of(cudf::lists_column_view const&,
* cudf::scalar const&,
* duplicate_find_option,
* rmm::mr::device_memory_resource*)
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> index_of(cudf::lists_column_view const& lists,
cudf::scalar const& search_key,
cudf::lists::duplicate_find_option find_option,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::lists::index_of(cudf::lists_column_view const&,
* cudf::column_view const&,
* duplicate_find_option,
* rmm::mr::device_memory_resource*)
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> index_of(cudf::lists_column_view const& lists,
cudf::column_view const& search_keys,
cudf::lists::duplicate_find_option find_option,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::lists::contains(cudf::lists_column_view const&,
* cudf::scalar const&,
* rmm::mr::device_memory_resource*)
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> contains(cudf::lists_column_view const& lists,
cudf::scalar const& search_key,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::lists::contains(cudf::lists_column_view const&,
* cudf::column_view const&,
* rmm::mr::device_memory_resource*)
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> contains(cudf::lists_column_view const& lists,
cudf::column_view const& search_keys,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/sorting.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/lists/lists_column_view.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace lists {
namespace detail {
/**
* @copydoc cudf::lists::sort_lists
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> sort_lists(lists_column_view const& input,
order column_order,
null_order null_precedence,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::lists::stable_sort_lists
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> stable_sort_lists(lists_column_view const& input,
order column_order,
null_order null_precedence,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/scatter.cuh
|
/*
* Copyright (c) 2020-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column_device_view.cuh>
#include <cudf/column/column_factories.hpp>
#include <cudf/copying.hpp>
#include <cudf/detail/iterator.cuh>
#include <cudf/detail/null_mask.hpp>
#include <cudf/lists/detail/scatter_helper.cuh>
#include <cudf/lists/list_device_view.cuh>
#include <cudf/strings/detail/strings_children.cuh>
#include <cudf/types.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <cudf/utilities/type_checks.hpp>
#include <rmm/device_uvector.hpp>
#include <rmm/exec_policy.hpp>
#include <thrust/distance.h>
#include <thrust/iterator/constant_iterator.h>
#include <thrust/iterator/counting_iterator.h>
#include <thrust/iterator/transform_iterator.h>
#include <thrust/scatter.h>
#include <thrust/sequence.h>
#include <thrust/transform.h>
#include <cinttypes>
namespace cudf {
namespace lists {
namespace detail {
template <typename IndexIterator>
rmm::device_uvector<unbound_list_view> list_vector_from_column(
unbound_list_view::label_type label,
cudf::detail::lists_column_device_view const& lists_column,
IndexIterator index_begin,
IndexIterator index_end,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
auto n_rows = thrust::distance(index_begin, index_end);
auto vector = rmm::device_uvector<unbound_list_view>(n_rows, stream, mr);
thrust::transform(rmm::exec_policy_nosync(stream),
index_begin,
index_end,
vector.begin(),
[label, lists_column] __device__(size_type row_index) {
return unbound_list_view{label, lists_column, row_index};
});
return vector;
}
/**
* @brief General implementation of scattering into list column
*
* Scattering `source` into `target` according to `scatter_map`.
* The view order of `source` and `target` can be specified by
* `source_vector` and `target_vector` respectively.
*
* @tparam MapIterator must produce index values within the target column.
*
* @param source_vector A vector of `unbound_list_view` into source column
* @param target_vector A vector of `unbound_list_view` into target column
* @param scatter_map_begin Start iterator of scatter map
* @param scatter_map_end End iterator of scatter map
* @param source Source column view
* @param target Target column view
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New lists column.
*/
template <typename MapIterator>
std::unique_ptr<column> scatter_impl(rmm::device_uvector<unbound_list_view> const& source_vector,
rmm::device_uvector<unbound_list_view>& target_vector,
MapIterator scatter_map_begin,
MapIterator scatter_map_end,
column_view const& source,
column_view const& target,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
CUDF_EXPECTS(column_types_equal(source, target), "Mismatched column types.");
auto const child_column_type = lists_column_view(target).child().type();
// Scatter.
thrust::scatter(rmm::exec_policy_nosync(stream),
source_vector.begin(),
source_vector.end(),
scatter_map_begin,
target_vector.begin());
auto const source_lists_column_view =
lists_column_view(source); // Checks that this is a list column.
auto const target_lists_column_view =
lists_column_view(target); // Checks that target is a list column.
auto list_size_begin = thrust::make_transform_iterator(
target_vector.begin(), [] __device__(unbound_list_view l) { return l.size(); });
auto offsets_column = std::get<0>(cudf::detail::make_offsets_child_column(
list_size_begin, list_size_begin + target.size(), stream, mr));
auto child_column = build_lists_child_column_recursive(child_column_type,
target_vector,
offsets_column->view(),
source_lists_column_view,
target_lists_column_view,
stream,
mr);
std::vector<std::unique_ptr<column>> children;
children.emplace_back(std::move(offsets_column));
children.emplace_back(std::move(child_column));
auto null_mask = target.has_nulls() ? cudf::detail::copy_bitmask(target, stream, mr)
: rmm::device_buffer{0, stream, mr};
// The output column from this function only has null masks copied from the target columns.
// That is still not a correct final null mask for the scatter result.
// In addition, that null mask may overshadow the non-null rows (lists) scattered from the source
// column. Thus, avoid using `cudf::make_lists_column` since it calls `purge_nonempty_nulls`.
return std::make_unique<column>(data_type{type_id::LIST},
target.size(),
rmm::device_buffer{},
std::move(null_mask),
target.null_count(),
std::move(children));
}
/**
* @brief Scatters lists into a copy of the target column
* according to a scatter map.
*
* The scatter is performed according to the scatter iterator such that row
* `scatter_map[i]` of the output column is replaced by the source list-row.
* All other rows of the output column equal corresponding rows of the target table.
*
* If the same index appears more than once in the scatter map, the result is
* undefined.
*
* The caller must update the null mask in the output column.
*
* @tparam MapIterator must produce index values within the target column.
*
* @param source Source column view
* @param scatter_map_begin Start iterator of scatter map
* @param scatter_map_end End iterator of scatter map
* @param target Target column view
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New lists column.
*/
template <typename MapIterator>
std::unique_ptr<column> scatter(column_view const& source,
MapIterator scatter_map_begin,
MapIterator scatter_map_end,
column_view const& target,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
auto const num_rows = target.size();
if (num_rows == 0) { return cudf::empty_like(target); }
auto const source_device_view = column_device_view::create(source, stream);
auto const scatter_map_size = thrust::distance(scatter_map_begin, scatter_map_end);
auto const source_vector =
list_vector_from_column(unbound_list_view::label_type::SOURCE,
cudf::detail::lists_column_device_view(*source_device_view),
thrust::make_counting_iterator<size_type>(0),
thrust::make_counting_iterator<size_type>(scatter_map_size),
stream,
mr);
auto const target_device_view = column_device_view::create(target, stream);
auto target_vector =
list_vector_from_column(unbound_list_view::label_type::TARGET,
cudf::detail::lists_column_device_view(*target_device_view),
thrust::make_counting_iterator<size_type>(0),
thrust::make_counting_iterator<size_type>(num_rows),
stream,
mr);
return scatter_impl(
source_vector, target_vector, scatter_map_begin, scatter_map_end, source, target, stream, mr);
}
/**
* @brief Scatters list scalar (a single row) into a copy of the target column
* according to a scatter map.
*
* Returns a copy of the target column where every row specified in the `scatter_map`
* is replaced by the row value.
*
* If the same index appears more than once in the scatter map, the result is
* undefined.
*
* The caller must update the null mask in the output column.
*
* @tparam MapIterator must produce index values within the target column.
*
* @param slr Source scalar, specifying row data
* @param scatter_map_begin Start iterator of scatter map
* @param scatter_map_end End iterator of scatter map
* @param target Target column view
* @param stream CUDA stream used for device memory operations and kernel launches.
* @param mr Device memory resource used to allocate the returned column's device memory
* @return New lists column.
*/
template <typename MapIterator>
std::unique_ptr<column> scatter(scalar const& slr,
MapIterator scatter_map_begin,
MapIterator scatter_map_end,
column_view const& target,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr)
{
auto const num_rows = target.size();
if (num_rows == 0) { return cudf::empty_like(target); }
auto lv = static_cast<list_scalar const*>(&slr);
bool slr_valid = slr.is_valid(stream);
rmm::device_buffer null_mask =
slr_valid ? cudf::detail::create_null_mask(1, mask_state::UNALLOCATED, stream, mr)
: cudf::detail::create_null_mask(1, mask_state::ALL_NULL, stream, mr);
auto offset_column =
make_numeric_column(data_type{type_to_id<size_type>()}, 2, mask_state::UNALLOCATED, stream, mr);
thrust::sequence(rmm::exec_policy_nosync(stream),
offset_column->mutable_view().begin<size_type>(),
offset_column->mutable_view().end<size_type>(),
0,
lv->view().size());
auto wrapped = column_view(data_type{type_id::LIST},
1,
nullptr,
static_cast<bitmask_type const*>(null_mask.data()),
slr_valid ? 0 : 1,
0,
{offset_column->view(), lv->view()});
auto const source_device_view = column_device_view::create(wrapped, stream);
auto const scatter_map_size = thrust::distance(scatter_map_begin, scatter_map_end);
auto const source_vector =
list_vector_from_column(unbound_list_view::label_type::SOURCE,
cudf::detail::lists_column_device_view(*source_device_view),
thrust::make_constant_iterator<size_type>(0),
thrust::make_constant_iterator<size_type>(0) + scatter_map_size,
stream,
mr);
auto const target_device_view = column_device_view::create(target, stream);
auto target_vector =
list_vector_from_column(unbound_list_view::label_type::TARGET,
cudf::detail::lists_column_device_view(*target_device_view),
thrust::make_counting_iterator<size_type>(0),
thrust::make_counting_iterator<size_type>(num_rows),
stream,
mr);
return scatter_impl(
source_vector, target_vector, scatter_map_begin, scatter_map_end, wrapped, target, stream, mr);
}
} // namespace detail
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf/lists
|
rapidsai_public_repos/cudf/cpp/include/cudf/lists/detail/extract.hpp
|
/*
* Copyright (c) 2022-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/lists/extract.hpp>
#include <cudf/lists/lists_column_view.hpp>
namespace cudf {
namespace lists {
namespace detail {
/**
* @copydoc cudf::lists::extract_list_element(lists_column_view, size_type,
* rmm::mr::device_memory_resource*)
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> extract_list_element(lists_column_view lists_column,
size_type const index,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
/**
* @copydoc cudf::lists::extract_list_element(lists_column_view, column_view const&,
* rmm::mr::device_memory_resource*)
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::unique_ptr<column> extract_list_element(lists_column_view lists_column,
column_view const& indices,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace lists
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/tdigest/tdigest_column_view.hpp
|
/*
* Copyright (c) 2021-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/column/column_view.hpp>
#include <cudf/lists/lists_column_view.hpp>
namespace cudf {
namespace tdigest {
/**
* @brief Given a column_view containing tdigest data, an instance of this class
* provides a wrapper on the compound column for tdigest operations.
*
* A tdigest is a "compressed" set of input scalars represented as a sorted
* set of centroids (https://arxiv.org/pdf/1902.04023.pdf).
* This data can be queried for quantile information. Each row in a tdigest
* column represents an entire tdigest.
*
* The column has the following structure:
*
* struct {
* // centroids for the digest
* list {
* struct {
* double // mean
* double // weight
* }
* }
* // these are from the input stream, not the centroids. they are used
* // during the percentile_approx computation near the beginning or
* // end of the quantiles
* double // min
* double // max
* }
*/
class tdigest_column_view : private column_view {
public:
tdigest_column_view(column_view const&); ///< Construct tdigest_column_view from a column_view
tdigest_column_view(tdigest_column_view&&) = default; ///< Move constructor
tdigest_column_view(tdigest_column_view const&) = default; ///< Copy constructor
~tdigest_column_view() = default;
/**
* @brief Copy assignment operator
*
* @return this object after copying the contents of the other object (copy)
*/
tdigest_column_view& operator=(tdigest_column_view const&) = default;
/**
* @brief Move assignment operator
*
* @return this object after moving the contents of the other object (transfer ownership)
*/
tdigest_column_view& operator=(tdigest_column_view&&) = default;
using column_view::size;
using offset_iterator = size_type const*; ///< Iterator over offsets
// mean and weight column indices within tdigest inner struct columns
static constexpr size_type mean_column_index{0}; ///< Mean column index
static constexpr size_type weight_column_index{1}; ///< Weight column index
// min and max column indices within tdigest outer struct columns
static constexpr size_type centroid_column_index{0}; ///< Centroid column index
static constexpr size_type min_column_index{1}; ///< Min column index
static constexpr size_type max_column_index{2}; ///< Max column index
/**
* @brief Returns the parent column.
*
* @return The parent column
*/
[[nodiscard]] column_view parent() const;
/**
* @brief Returns the column of centroids
*
* @return The list column of centroids
*/
[[nodiscard]] lists_column_view centroids() const;
/**
* @brief Returns the internal column of mean values
*
* @return The internal column of mean values
*/
[[nodiscard]] column_view means() const;
/**
* @brief Returns the internal column of weight values
*
* @return The internal column of weight values
*/
[[nodiscard]] column_view weights() const;
/**
* @brief Returns the first min value for the column. Each row corresponds
* to the minimum value for the accompanying digest.
*
* @return const pointer to the first min value for the column
*/
[[nodiscard]] double const* min_begin() const;
/**
* @brief Returns the first max value for the column. Each row corresponds
* to the maximum value for the accompanying digest.
*
* @return const pointer to the first max value for the column
*/
[[nodiscard]] double const* max_begin() const;
};
} // namespace tdigest
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/detail/groupby.hpp
|
/*
* Copyright (c) 2019-2022, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/groupby.hpp>
#include <cudf/types.hpp>
#include <cudf/utilities/span.hpp>
#include <rmm/cuda_stream_view.hpp>
#include <memory>
#include <utility>
namespace cudf {
namespace groupby {
namespace detail {
namespace hash {
/**
* @brief Indicates if a set of aggregation requests can be satisfied with a
* hash-based groupby implementation.
*
* @param requests The set of columns to aggregate and the aggregations to
* perform
* @return true A hash-based groupby can be used
* @return false A hash-based groupby cannot be used
*/
bool can_use_hash_groupby(host_span<aggregation_request const> requests);
// Hash-based groupby
std::pair<std::unique_ptr<table>, std::vector<aggregation_result>> groupby(
table_view const& keys,
host_span<aggregation_request const> requests,
null_policy include_null_keys,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace hash
} // namespace detail
} // namespace groupby
} // namespace cudf
| 0 |
rapidsai_public_repos/cudf/cpp/include/cudf
|
rapidsai_public_repos/cudf/cpp/include/cudf/detail/transpose.hpp
|
/*
* Copyright (c) 2019-2023, NVIDIA CORPORATION.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cudf/table/table.hpp>
#include <cudf/table/table_view.hpp>
#include <cudf/utilities/default_stream.hpp>
#include <rmm/cuda_stream_view.hpp>
namespace cudf {
namespace detail {
/**
* @copydoc cudf::transpose
*
* @param stream CUDA stream used for device memory operations and kernel launches.
*/
std::pair<std::unique_ptr<column>, table_view> transpose(table_view const& input,
rmm::cuda_stream_view stream,
rmm::mr::device_memory_resource* mr);
} // namespace detail
} // namespace cudf
| 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.