|
# Dataframes |
|
|
|
::: warning |
|
To use the dataframe support you need a fully-featured build with `cargo build --features dataframe`. Starting with version 0.72, dataframes are *not* included with binary releases of Nushell. [See the installation instructions](/book/installation.md) for further details. |
|
::: |
|
|
|
As we have seen so far, Nushell makes working with data its main priority. |
|
`Lists` and `Tables` are there to help you cycle through values in order to |
|
perform multiple operations or find data in a breeze. However, there are |
|
certain operations where a row-based data layout is not the most efficient way |
|
to process data, especially when working with extremely large files. Operations |
|
like group-by or join using large datasets can be costly memory-wise, and may |
|
lead to large computation times if they are not done using the appropriate |
|
data format. |
|
|
|
For this reason, the `DataFrame` structure was introduced to Nushell. A |
|
`DataFrame` stores its data in a columnar format using as its base the [Apache |
|
Arrow](https://arrow.apache.org/) specification, and uses |
|
[Polars](https://github.com/pola-rs/polars) as the motor for performing |
|
extremely [fast columnar operations](https://h2oai.github.io/db-benchmark/). |
|
|
|
You may be wondering now how fast this combo could be, and how could it make |
|
working with data easier and more reliable. For this reason, let's start this |
|
page by presenting benchmarks on common operations that are done when |
|
processing data. |
|
|
|
## Benchmark comparisons |
|
|
|
For this little benchmark exercise we will be comparing native Nushell |
|
commands, dataframe Nushell commands and [Python |
|
Pandas](https://pandas.pydata.org/) commands. For the time being don't pay too |
|
much attention to the [`Dataframe` commands](/commands/categories/dataframe.md). They will be explained in later |
|
sections of this page. |
|
|
|
> System Details: The benchmarks presented in this section were run using a |
|
> machine with a processor Intel(R) Core(TM) i7-10710U (CPU @1.10GHz 1.61 GHz) |
|
> and 16 gb of RAM. |
|
> |
|
> All examples were run on Nushell version 0.33.1. |
|
> (Command names are updated to Nushell 0.78) |
|
|
|
### File information |
|
|
|
The file that we will be using for the benchmarks is the |
|
[New Zealand business demography](https://www.stats.govt.nz/assets/Uploads/New-Zealand-business-demography-statistics/New-Zealand-business-demography-statistics-At-February-2020/Download-data/Geographic-units-by-industry-and-statistical-area-2000-2020-descending-order-CSV.zip) dataset. |
|
Feel free to download it if you want to follow these tests. |
|
|
|
The dataset has 5 columns and 5,429,252 rows. We can check that by using the |
|
`dfr ls` command: |
|
|
|
```nu |
|
โฏ let df = (dfr open .\Data7602DescendingYearOrder.csv) |
|
โฏ dfr ls |
|
|
|
โญโโโโฌโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฎ |
|
โ # โ name โ columns โ rows โ |
|
โโโโโผโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโค |
|
โ 0 โ $df โ 5 โ 5429252 โ |
|
โฐโโโโดโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโฏ |
|
``` |
|
|
|
We can have a look at the first lines of the file using [`first`](/commands/docs/first.md): |
|
|
|
```nu |
|
โฏ $df | dfr first |
|
โญโโโโฌโโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโฌโโโโโโโโโโโโฌโโโโโโโโโโโฎ |
|
โ # โ anzsic06 โ Area โ year โ geo_count โ ec_count โ |
|
โโโโโผโโโโโโโโโโโผโโโโโโโโโโผโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโโค |
|
โ 0 โ A โ A100100 โ 2000 โ 96 โ 130 โ |
|
โฐโโโโดโโโโโโโโโโโดโโโโโโโโโโดโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโฏ |
|
``` |
|
|
|
...and finally, we can get an idea of the inferred data types: |
|
|
|
```nu |
|
โฏ $df | dfr dtypes |
|
โญโโโโฌโโโโโโโโโโโโฌโโโโโโโโฎ |
|
โ # โ column โ dtype โ |
|
โโโโโผโโโโโโโโโโโโผโโโโโโโโค |
|
โ 0 โ anzsic06 โ str โ |
|
โ 1 โ Area โ str โ |
|
โ 2 โ year โ i64 โ |
|
โ 3 โ geo_count โ i64 โ |
|
โ 4 โ ec_count โ i64 โ |
|
โฐโโโโดโโโโโโโโโโโโดโโโโโโโโฏ |
|
``` |
|
|
|
### Loading the file |
|
|
|
Let's start by comparing loading times between the various methods. First, we |
|
will load the data using Nushell's [`open`](/commands/docs/open.md) command: |
|
|
|
```nu |
|
โฏ timeit {open .\Data7602DescendingYearOrder.csv} |
|
30sec 479ms 614us 400ns |
|
``` |
|
|
|
Loading the file using native Nushell functionality took 30 seconds. Not bad for |
|
loading five million records! But we can do a bit better than that. |
|
|
|
Let's now use Pandas. We are going to use the next script to load the file: |
|
|
|
```python |
|
import pandas as pd |
|
|
|
df = pd.read_csv("Data7602DescendingYearOrder.csv") |
|
``` |
|
|
|
And the benchmark for it is: |
|
|
|
```nu |
|
โฏ timeit {python load.py} |
|
2sec 91ms 872us 900ns |
|
``` |
|
|
|
That is a great improvement, from 30 seconds to 2 seconds. Nicely done, Pandas! |
|
|
|
Probably we can load the data a bit faster. This time we will use Nushell's |
|
`dfr open` command: |
|
|
|
```nu |
|
โฏ timeit {dfr open .\Data7602DescendingYearOrder.csv} |
|
601ms 700us 700ns |
|
``` |
|
|
|
This time it took us 0.6 seconds. Not bad at all. |
|
|
|
### Group-by comparison |
|
|
|
Let's do a slightly more complex operation this time. We are going to group the |
|
data by year, and add groups using the column `geo_count`. |
|
|
|
Again, we are going to start with a Nushell native command. |
|
|
|
::: tip |
|
If you want to run this example, be aware that the next command will |
|
use a large amount of memory. This may affect the performance of your system |
|
while this is being executed. |
|
::: |
|
|
|
```nu |
|
โฏ timeit { |
|
open .\Data7602DescendingYearOrder.csv |
|
| group-by year |
|
| transpose header rows |
|
| upsert rows { get rows | math sum } |
|
| flatten |
|
} |
|
|
|
6min 30sec 622ms 312us |
|
``` |
|
|
|
So, six minutes to perform this aggregated operation. |
|
|
|
Let's try the same operation in pandas: |
|
|
|
```python |
|
import pandas as pd |
|
|
|
df = pd.read_csv("Data7602DescendingYearOrder.csv") |
|
res = df.groupby("year")["geo_count"].sum() |
|
print(res) |
|
``` |
|
|
|
And the result from the benchmark is: |
|
|
|
```nu |
|
โฏ timeit {python .\load.py} |
|
|
|
1sec 966ms 954us 800ns |
|
``` |
|
|
|
Not bad at all. Again, pandas managed to get it done in a fraction of the time. |
|
|
|
To finish the comparison, let's try Nushell dataframes. We are going to put |
|
all the operations in one `nu` file, to make sure we are doing similar |
|
operations: |
|
|
|
```nu |
|
let df = (dfr open Data7602DescendingYearOrder.csv) |
|
let res = ($df | dfr group-by year | dfr agg (dfr col geo_count | dfr sum)) |
|
$res |
|
``` |
|
|
|
and the benchmark with dataframes is: |
|
|
|
```nu |
|
โฏ timeit {source load.nu} |
|
|
|
557ms 658us 500ns |
|
``` |
|
|
|
Luckily Nushell dataframes managed to halve the time again. Isn't that great? |
|
|
|
As you can see, Nushell's [`Dataframe` commands](/commands/categories/dataframe.md) |
|
are as fast as the most common tools that exist today to do data analysis. The commands |
|
that are included in this release have the potential to become your go-to tool for |
|
doing data analysis. By composing complex Nushell pipelines, you can extract information |
|
from data in a reliable way. |
|
|
|
## Working with Dataframes |
|
|
|
After seeing a glimpse of the things that can be done with [`Dataframe` commands](/commands/categories/dataframe.md), |
|
now it is time to start testing them. To begin let's create a sample |
|
CSV file that will become our sample dataframe that we will be using along with |
|
the examples. In your favorite file editor paste the next lines to create out |
|
sample csv file. |
|
|
|
``` |
|
int_1,int_2,float_1,float_2,first,second,third,word |
|
1,11,0.1,1.0,a,b,c,first |
|
2,12,0.2,1.0,a,b,c,second |
|
3,13,0.3,2.0,a,b,c,third |
|
4,14,0.4,3.0,b,a,c,second |
|
0,15,0.5,4.0,b,a,a,third |
|
6,16,0.6,5.0,b,a,a,second |
|
7,17,0.7,6.0,b,c,a,third |
|
8,18,0.8,7.0,c,c,b,eight |
|
9,19,0.9,8.0,c,c,b,ninth |
|
0,10,0.0,9.0,c,c,b,ninth |
|
``` |
|
|
|
Save the file and name it however you want to, for the sake of these examples |
|
the file will be called `test_small.csv`. |
|
|
|
Now, to read that file as a dataframe use the `dfr open` command like |
|
this: |
|
|
|
```nu |
|
โฏ let df = (dfr open test_small.csv) |
|
``` |
|
|
|
This should create the value `$df` in memory which holds the data we just |
|
created. |
|
|
|
::: tip |
|
The command `dfr open` can read either **csv** or **parquet** |
|
files. |
|
::: |
|
|
|
To see all the dataframes that are stored in memory you can use |
|
|
|
```nu |
|
โฏ dfr ls |
|
โญโโโโฌโโโโโโโฌโโโโโโโโโโฌโโโโโโโฎ |
|
โ # โ name โ columns โ rows โ |
|
โโโโโผโโโโโโโผโโโโโโโโโโผโโโโโโโค |
|
โ 0 โ $df โ 8 โ 10 โ |
|
โฐโโโโดโโโโโโโดโโโโโโโโโโดโโโโโโโฏ |
|
``` |
|
|
|
As you can see, the command shows the created dataframes together with basic |
|
information about them. |
|
|
|
And if you want to see a preview of the loaded dataframe you can send the |
|
dataframe variable to the stream |
|
|
|
```nu |
|
โฏ $df |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ |
|
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค |
|
โ 0 โ 1 โ 11 โ 0.10 โ 1.00 โ a โ b โ c โ first โ |
|
โ 1 โ 2 โ 12 โ 0.20 โ 1.00 โ a โ b โ c โ second โ |
|
โ 2 โ 3 โ 13 โ 0.30 โ 2.00 โ a โ b โ c โ third โ |
|
โ 3 โ 4 โ 14 โ 0.40 โ 3.00 โ b โ a โ c โ second โ |
|
โ 4 โ 0 โ 15 โ 0.50 โ 4.00 โ b โ a โ a โ third โ |
|
โ 5 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ |
|
โ 6 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ |
|
โ 7 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ |
|
โ 8 โ 9 โ 19 โ 0.90 โ 8.00 โ c โ c โ b โ ninth โ |
|
โ 9 โ 0 โ 10 โ 0.00 โ 9.00 โ c โ c โ b โ ninth โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
With the dataframe in memory we can start doing column operations with the |
|
`DataFrame` |
|
|
|
::: tip |
|
If you want to see all the dataframe commands that are available you |
|
can use `scope commands | where category =~ dataframe` |
|
::: |
|
|
|
## Basic aggregations |
|
|
|
Let's start with basic aggregations on the dataframe. Let's sum all the columns |
|
that exist in `df` by using the `aggregate` command |
|
|
|
```nu |
|
โฏ $df | dfr sum |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโฎ |
|
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโค |
|
โ 0 โ 40 โ 145 โ 4.50 โ 46.00 โ โ โ โ โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโฏ |
|
``` |
|
|
|
As you can see, the aggregate function computes the sum for those columns where |
|
a sum makes sense. If you want to filter out the text column, you can select |
|
the columns you want by using the [`dfr select`](/commands/docs/dfr_select.md) command |
|
|
|
```nu |
|
โฏ $df | dfr sum | dfr select int_1 int_2 float_1 float_2 |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฎ |
|
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโค |
|
โ 0 โ 40 โ 145 โ 4.50 โ 46.00 โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโฏ |
|
``` |
|
|
|
You can even store the result from this aggregation as you would store any |
|
other Nushell variable |
|
|
|
```nu |
|
โฏ let res = ($df | dfr sum | dfr select int_1 int_2 float_1 float_2) |
|
``` |
|
|
|
::: tip |
|
Type `let res = ( !! )` and press enter. This will auto complete the previously |
|
executed command. Note the space between ( and !!. |
|
::: |
|
|
|
And now we have two dataframes stored in memory |
|
|
|
```nu |
|
โฏ dfr ls |
|
โญโโโโฌโโโโโโโฌโโโโโโโโโโฌโโโโโโโฎ |
|
โ # โ name โ columns โ rows โ |
|
โโโโโผโโโโโโโผโโโโโโโโโโผโโโโโโโค |
|
โ 0 โ $res โ 4 โ 1 โ |
|
โ 1 โ $df โ 8 โ 10 โ |
|
โฐโโโโดโโโโโโโดโโโโโโโโโโดโโโโโโโฏ |
|
``` |
|
|
|
Pretty neat, isn't it? |
|
|
|
You can perform several aggregations on the dataframe in order to extract basic |
|
information from the dataframe and do basic data analysis on your brand new |
|
dataframe. |
|
|
|
## Joining a DataFrame |
|
|
|
It is also possible to join two dataframes using a column as reference. We are |
|
going to join our mini dataframe with another mini dataframe. Copy these lines |
|
in another file and create the corresponding dataframe (for these examples we |
|
are going to call it `test_small_a.csv`) |
|
|
|
``` |
|
int_1,int_2,float_1,float_2,first |
|
9,14,0.4,3.0,a |
|
8,13,0.3,2.0,a |
|
7,12,0.2,1.0,a |
|
6,11,0.1,0.0,b |
|
``` |
|
|
|
We use the `dfr open` command to create the new variable |
|
|
|
```nu |
|
โฏ let df_a = (dfr open test_small_a.csv) |
|
``` |
|
|
|
Now, with the second dataframe loaded in memory we can join them using the |
|
column called `int_1` from the left dataframe and the column `int_1` from the |
|
right dataframe |
|
|
|
```nu |
|
โฏ $df | dfr join $df_a int_1 int_1 |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโโโฌโโโโโโโโโโโโฌโโโโโโโโโโฎ |
|
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ int_2_x โ float_1_x โ float_2_x โ first_x โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโค |
|
โ 0 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ 11 โ 0.10 โ 0.00 โ b โ |
|
โ 1 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ 12 โ 0.20 โ 1.00 โ a โ |
|
โ 2 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ 13 โ 0.30 โ 2.00 โ a โ |
|
โ 3 โ 9 โ 19 โ 0.90 โ 8.00 โ c โ c โ b โ ninth โ 14 โ 0.40 โ 3.00 โ a โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโฏ |
|
``` |
|
|
|
::: tip |
|
In `Nu` when a command has multiple arguments that are expecting |
|
multiple values we use brackets `[]` to enclose those values. In the case of |
|
[`dfr join`](/commands/docs/dfr_join.md) we can join on multiple columns |
|
as long as they have the same type. |
|
::: |
|
|
|
For example: |
|
|
|
```nu |
|
โฏ $df | dfr join $df_a [int_1 first] [int_1 first] |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโโโฌโโโโโโโโโโโโฎ |
|
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ int_2_x โ float_1_x โ float_2_x โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโโโผโโโโโโโโโโโโค |
|
โ 0 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ 11 โ 0.10 โ 0.00 โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโโโดโโโโโโโโโโโโฏ |
|
``` |
|
|
|
By default, the join command does an inner join, meaning that it will keep the |
|
rows where both dataframes share the same value. You can select a left join to |
|
keep the missing rows from the left dataframe. You can also save this result |
|
in order to use it for further operations. |
|
|
|
## DataFrame group-by |
|
|
|
One of the most powerful operations that can be performed with a DataFrame is |
|
the [`dfr group-by`](/commands/docs/dfr_group-by.md). This command will allow you to perform aggregation operations |
|
based on a grouping criteria. In Nushell, a `GroupBy` is a type of object that |
|
can be stored and reused for multiple aggregations. This is quite handy, since |
|
the creation of the grouped pairs is the most expensive operation while doing |
|
group-by and there is no need to repeat it if you are planning to do multiple |
|
operations with the same group condition. |
|
|
|
To create a `GroupBy` object you only need to use the [`dfr_group-by`](/commands/docs/dfr_group-by.md) command |
|
|
|
```nu |
|
โฏ let group = ($df | dfr group-by first) |
|
โฏ $group |
|
โญโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ |
|
โ LazyGroupBy โ apply aggregation to complete execution plan โ |
|
โฐโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ |
|
``` |
|
|
|
When printing the `GroupBy` object we can see that it is in the background a |
|
lazy operation waiting to be completed by adding an aggregation. Using the |
|
`GroupBy` we can create aggregations on a column |
|
|
|
```nu |
|
โฏ $group | dfr agg (dfr col int_1 | dfr sum) |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฎ |
|
โ # โ first โ int_1 โ |
|
โโโโโผโโโโโโโโผโโโโโโโโค |
|
โ 0 โ b โ 17 โ |
|
โ 1 โ a โ 6 โ |
|
โ 2 โ c โ 17 โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโฏ |
|
``` |
|
|
|
or we can define multiple aggregations on the same or different columns |
|
|
|
```nu |
|
โฏ $group | dfr agg [ |
|
โ (dfr col int_1 | dfr n-unique) |
|
โ (dfr col int_2 | dfr min) |
|
โ (dfr col float_1 | dfr sum) |
|
โ (dfr col float_2 | dfr count) |
|
โ ] | dfr sort-by first |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฎ |
|
โ # โ first โ int_1 โ int_2 โ float_1 โ float_2 โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโค |
|
โ 0 โ a โ 3 โ 11 โ 0.60 โ 3 โ |
|
โ 1 โ b โ 4 โ 14 โ 2.20 โ 4 โ |
|
โ 2 โ c โ 3 โ 10 โ 1.70 โ 3 โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโฏ |
|
``` |
|
|
|
As you can see, the `GroupBy` object is a very powerful variable and it is |
|
worth keeping in memory while you explore your dataset. |
|
|
|
## Creating Dataframes |
|
|
|
It is also possible to construct dataframes from basic Nushell primitives, such |
|
as integers, decimals, or strings. Let's create a small dataframe using the |
|
command `dfr into-df`. |
|
|
|
```nu |
|
โฏ let a = ([[a b]; [1 2] [3 4] [5 6]] | dfr into-df) |
|
โฏ $a |
|
``` |
|
|
|
::: tip |
|
For the time being, not all of Nushell primitives can be converted into |
|
a dataframe. This will change in the future, as the dataframe feature matures |
|
::: |
|
|
|
We can append columns to a dataframe in order to create a new variable. As an |
|
example, let's append two columns to our mini dataframe `$a` |
|
|
|
```nu |
|
โฏ let a2 = ($a | dfr with-column $a.a --name a2 | dfr with-column $a.a --name a3) |
|
โฏ $a2 |
|
โญโโโโฌโโโโฌโโโโฌโโโโโฌโโโโโฎ |
|
โ # โ a โ b โ a2 โ a3 โ |
|
โโโโโผโโโโผโโโโผโโโโโผโโโโโค |
|
โ 0 โ 1 โ 2 โ 1 โ 1 โ |
|
โ 1 โ 3 โ 4 โ 3 โ 3 โ |
|
โ 2 โ 5 โ 6 โ 5 โ 5 โ |
|
โฐโโโโดโโโโดโโโโดโโโโโดโโโโโฏ |
|
``` |
|
|
|
Nushell's powerful piping syntax allows us to create new dataframes by |
|
taking data from other dataframes and appending it to them. Now, if you list your |
|
dataframes you will see in total four dataframes |
|
|
|
```nu |
|
โฏ dfr ls |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโฎ |
|
โ # โ name โ columns โ rows โ |
|
โโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโค |
|
โ 0 โ $a2 โ 4 โ 3 โ |
|
โ 1 โ $df_a โ 5 โ 4 โ |
|
โ 2 โ $df โ 8 โ 10 โ |
|
โ 3 โ $a โ 2 โ 3 โ |
|
โ 4 โ $res โ 4 โ 1 โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโฏ |
|
``` |
|
|
|
One thing that is important to mention is how the memory is being optimized |
|
while working with dataframes, and this is thanks to **Apache Arrow** and |
|
**Polars**. In a very simple representation, each column in a DataFrame is an |
|
Arrow Array, which is using several memory specifications in order to maintain |
|
the data as packed as possible (check [Arrow columnar |
|
format](https://arrow.apache.org/docs/format/Columnar.html)). The other |
|
optimization trick is the fact that whenever possible, the columns from the |
|
dataframes are shared between dataframes, avoiding memory duplication for the |
|
same data. This means that dataframes `$a` and `$a2` are sharing the same two |
|
columns we created using the `dfr into-df` command. For this reason, it isn't |
|
possible to change the value of a column in a dataframe. However, you can |
|
create new columns based on data from other columns or dataframes. |
|
|
|
## Working with Series |
|
|
|
A `Series` is the building block of a `DataFrame`. Each Series represents a |
|
column with the same data type, and we can create multiple Series of different |
|
types, such as float, int or string. |
|
|
|
Let's start our exploration with Series by creating one using the `dfr into-df` |
|
command: |
|
|
|
```nu |
|
โฏ let new = ([9 8 4] | dfr into-df) |
|
โฏ $new |
|
โญโโโโฌโโโโฎ |
|
โ # โ 0 โ |
|
โโโโโผโโโโค |
|
โ 0 โ 9 โ |
|
โ 1 โ 8 โ |
|
โ 2 โ 4 โ |
|
โฐโโโโดโโโโฏ |
|
``` |
|
|
|
We have created a new series from a list of integers (we could have done the |
|
same using floats or strings) |
|
|
|
Series have their own basic operations defined, and they can be used to create |
|
other Series. Let's create a new Series by doing some arithmetic on the |
|
previously created column. |
|
|
|
```nu |
|
โฏ let new_2 = ($new * 3 + 10) |
|
โฏ $new_2 |
|
โญโโโโฌโโโโโฎ |
|
โ # โ 0 โ |
|
โโโโโผโโโโโค |
|
โ 0 โ 37 โ |
|
โ 1 โ 34 โ |
|
โ 2 โ 22 โ |
|
โฐโโโโดโโโโโฏ |
|
``` |
|
|
|
Now we have a new Series that was constructed by doing basic operations on the |
|
previous variable. |
|
|
|
::: tip |
|
If you want to see how many variables you have stored in memory you can |
|
use `scope variables` |
|
::: |
|
|
|
Let's rename our previous Series so it has a memorable name |
|
|
|
```nu |
|
โฏ let new_2 = ($new_2 | dfr rename "0" memorable) |
|
โฏ $new_2 |
|
โญโโโโฌโโโโโโโโโโโโฎ |
|
โ # โ memorable โ |
|
โโโโโผโโโโโโโโโโโโค |
|
โ 0 โ 37 โ |
|
โ 1 โ 34 โ |
|
โ 2 โ 22 โ |
|
โฐโโโโดโโโโโโโโโโโโฏ |
|
``` |
|
|
|
We can also do basic operations with two Series as long as they have the same |
|
data type |
|
|
|
```nu |
|
โฏ $new - $new_2 |
|
โญโโโโฌโโโโโโโโโโโโโโโโโโฎ |
|
โ # โ sub_0_memorable โ |
|
โโโโโผโโโโโโโโโโโโโโโโโโค |
|
โ 0 โ -28 โ |
|
โ 1 โ -26 โ |
|
โ 2 โ -18 โ |
|
โฐโโโโดโโโโโโโโโโโโโโโโโโฏ |
|
``` |
|
|
|
And we can add them to previously defined dataframes |
|
|
|
```nu |
|
โฏ let new_df = ($a | dfr with-column $new --name new_col) |
|
โฏ $new_df |
|
โญโโโโฌโโโโฌโโโโฌโโโโโโโโโโฎ |
|
โ # โ a โ b โ new_col โ |
|
โโโโโผโโโโผโโโโผโโโโโโโโโโค |
|
โ 0 โ 1 โ 2 โ 9 โ |
|
โ 1 โ 3 โ 4 โ 8 โ |
|
โ 2 โ 5 โ 6 โ 4 โ |
|
โฐโโโโดโโโโดโโโโดโโโโโโโโโโฏ |
|
``` |
|
|
|
The Series stored in a Dataframe can also be used directly, for example, |
|
we can multiply columns `a` and `b` to create a new Series |
|
|
|
```nu |
|
โฏ $new_df.a * $new_df.b |
|
โญโโโโฌโโโโโโโโโโฎ |
|
โ # โ mul_a_b โ |
|
โโโโโผโโโโโโโโโโค |
|
โ 0 โ 2 โ |
|
โ 1 โ 12 โ |
|
โ 2 โ 30 โ |
|
โฐโโโโดโโโโโโโโโโฏ |
|
``` |
|
|
|
and we can start piping things in order to create new columns and dataframes |
|
|
|
```nu |
|
โฏ let $new_df = ($new_df | dfr with-column ($new_df.a * $new_df.b / $new_df.new_col) --name my_sum) |
|
โฏ $new_df |
|
โญโโโโฌโโโโฌโโโโฌโโโโโโโโโโฌโโโโโโโโโฎ |
|
โ # โ a โ b โ new_col โ my_sum โ |
|
โโโโโผโโโโผโโโโผโโโโโโโโโโผโโโโโโโโโค |
|
โ 0 โ 1 โ 2 โ 9 โ 0 โ |
|
โ 1 โ 3 โ 4 โ 8 โ 1 โ |
|
โ 2 โ 5 โ 6 โ 4 โ 7 โ |
|
โฐโโโโดโโโโดโโโโดโโโโโโโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
Nushell's piping system can help you create very interesting workflows. |
|
|
|
## Series and masks |
|
|
|
Series have another key use in when working with `DataFrames`, and it is the fact |
|
that we can build boolean masks out of them. Let's start by creating a simple |
|
mask using the equality operator |
|
|
|
```nu |
|
โฏ let mask = ($new == 8) |
|
โฏ $mask |
|
โญโโโโฌโโโโโโโโฎ |
|
โ # โ 0 โ |
|
โโโโโผโโโโโโโโค |
|
โ 0 โ false โ |
|
โ 1 โ true โ |
|
โ 2 โ false โ |
|
โฐโโโโดโโโโโโโโฏ |
|
``` |
|
|
|
and with this mask we can now filter a dataframe, like this |
|
|
|
```nu |
|
โฏ $new_df | dfr filter-with $mask |
|
โญโโโโฌโโโโฌโโโโฌโโโโโโโโโโฌโโโโโโโโโฎ |
|
โ # โ a โ b โ new_col โ my_sum โ |
|
โโโโโผโโโโผโโโโผโโโโโโโโโโผโโโโโโโโโค |
|
โ 0 โ 3 โ 4 โ 8 โ 1 โ |
|
โฐโโโโดโโโโดโโโโดโโโโโโโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
Now we have a new dataframe with only the values where the mask was true. |
|
|
|
The masks can also be created from Nushell lists, for example: |
|
|
|
```nu |
|
โฏ let mask1 = ([true true false] | dfr into-df) |
|
โฏ $new_df | dfr filter-with $mask1 |
|
โญโโโโฌโโโโฌโโโโฌโโโโโโโโโโฌโโโโโโโโโฎ |
|
โ # โ a โ b โ new_col โ my_sum โ |
|
โโโโโผโโโโผโโโโผโโโโโโโโโโผโโโโโโโโโค |
|
โ 0 โ 1 โ 2 โ 9 โ 0 โ |
|
โ 1 โ 3 โ 4 โ 8 โ 1 โ |
|
โฐโโโโดโโโโดโโโโดโโโโโโโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
To create complex masks, we have the `AND` |
|
|
|
```nu |
|
โฏ $mask and $mask1 |
|
โญโโโโฌโโโโโโโโโโฎ |
|
โ # โ and_0_0 โ |
|
โโโโโผโโโโโโโโโโค |
|
โ 0 โ false โ |
|
โ 1 โ true โ |
|
โ 2 โ false โ |
|
โฐโโโโดโโโโโโโโโโฏ |
|
``` |
|
|
|
and `OR` operations |
|
|
|
```nu |
|
โฏ $mask or $mask1 |
|
โญโโโโฌโโโโโโโโโฎ |
|
โ # โ or_0_0 โ |
|
โโโโโผโโโโโโโโโค |
|
โ 0 โ true โ |
|
โ 1 โ true โ |
|
โ 2 โ false โ |
|
โฐโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
We can also create a mask by checking if some values exist in other Series. |
|
Using the first dataframe that we created we can do something like this |
|
|
|
```nu |
|
โฏ let mask3 = ($df | dfr col first | dfr is-in [b c]) |
|
โฏ $mask3 |
|
โญโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ |
|
โ โ โญโโโโฌโโโโโโโโโโฌโโโโโโโโโโโโโโโฎ โ |
|
โ input โ โ # โ expr โ value โ โ |
|
โ โ โโโโโผโโโโโโโโโโผโโโโโโโโโโโโโโโค โ |
|
โ โ โ 0 โ column โ first โ โ |
|
โ โ โ 1 โ literal โ Series[list] โ โ |
|
โ โ โฐโโโโดโโโโโโโโโโดโโโโโโโโโโโโโโโฏ โ |
|
โ function โ IsIn โ |
|
โ options โ FunctionOptions { collect_groups: ApplyFlat, input_wildcard_expansion: false, auto_explode: tru โ |
|
โ โ e, fmt_str: "", cast_to_supertypes: true, allow_rename: false, pass_name_to_apply: false } โ |
|
โฐโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ |
|
``` |
|
|
|
and this new mask can be used to filter the dataframe |
|
|
|
```nu |
|
โฏ $df | dfr filter-with $mask3 |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ |
|
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค |
|
โ 0 โ 4 โ 14 โ 0.40 โ 3.00 โ b โ a โ c โ second โ |
|
โ 1 โ 0 โ 15 โ 0.50 โ 4.00 โ b โ a โ a โ third โ |
|
โ 2 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ |
|
โ 3 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ |
|
โ 4 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ |
|
โ 5 โ 9 โ 19 โ 0.90 โ 8.00 โ c โ c โ b โ ninth โ |
|
โ 6 โ 0 โ 10 โ 0.00 โ 9.00 โ c โ c โ b โ ninth โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
Another operation that can be done with masks is setting or replacing a value |
|
from a series. For example, we can change the value in the column `first` where |
|
the value is equal to `a` |
|
|
|
::: warning |
|
This is example is not updated to recent Nushell versions. |
|
::: |
|
|
|
```nu |
|
โฏ $df | dfr get first | dfr set new --mask ($df.first =~ a) |
|
โญโโโโฌโโโโโโโโโฎ |
|
โ # โ string โ |
|
โโโโโผโโโโโโโโโค |
|
โ 0 โ new โ |
|
โ 1 โ new โ |
|
โ 2 โ new โ |
|
โ 3 โ b โ |
|
โ 4 โ b โ |
|
โ 5 โ b โ |
|
โ 6 โ b โ |
|
โ 7 โ c โ |
|
โ 8 โ c โ |
|
โ 9 โ c โ |
|
โฐโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
## Series as indices |
|
|
|
Series can be also used as a way of filtering a dataframe by using them as a |
|
list of indices. For example, let's say that we want to get rows 1, 4, and 6 |
|
from our original dataframe. With that in mind, we can use the next command to |
|
extract that information |
|
|
|
```nu |
|
โฏ let indices = ([1 4 6] | dfr into-df) |
|
โฏ $df | dfr take $indices |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ |
|
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค |
|
โ 0 โ 2 โ 12 โ 0.20 โ 1.00 โ a โ b โ c โ second โ |
|
โ 1 โ 0 โ 15 โ 0.50 โ 4.00 โ b โ a โ a โ third โ |
|
โ 2 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
The command [`dfr take`](/commands/docs/dfr_take.md) is very handy, especially if we mix it with other commands. |
|
Let's say that we want to extract all rows for the first duplicated element for |
|
column `first`. In order to do that, we can use the command `dfr arg-unique` as |
|
shown in the next example |
|
|
|
```nu |
|
โฏ let indices = ($df | dfr get first | dfr arg-unique) |
|
โฏ $df | dfr take $indices |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ |
|
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค |
|
โ 0 โ 1 โ 11 โ 0.10 โ 1.00 โ a โ b โ c โ first โ |
|
โ 1 โ 4 โ 14 โ 0.40 โ 3.00 โ b โ a โ c โ second โ |
|
โ 2 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
Or what if we want to create a new sorted dataframe using a column in specific. |
|
We can use the `arg-sort` to accomplish that. In the next example we |
|
can sort the dataframe by the column `word` |
|
|
|
::: tip |
|
The same result could be accomplished using the command [`sort`](/commands/docs/sort.md) |
|
::: |
|
|
|
```nu |
|
โฏ let indices = ($df | dfr get word | dfr arg-sort) |
|
โฏ $df | dfr take $indices |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ |
|
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค |
|
โ 0 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ |
|
โ 1 โ 1 โ 11 โ 0.10 โ 1.00 โ a โ b โ c โ first โ |
|
โ 2 โ 9 โ 19 โ 0.90 โ 8.00 โ c โ c โ b โ ninth โ |
|
โ 3 โ 0 โ 10 โ 0.00 โ 9.00 โ c โ c โ b โ ninth โ |
|
โ 4 โ 2 โ 12 โ 0.20 โ 1.00 โ a โ b โ c โ second โ |
|
โ 5 โ 4 โ 14 โ 0.40 โ 3.00 โ b โ a โ c โ second โ |
|
โ 6 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ |
|
โ 7 โ 3 โ 13 โ 0.30 โ 2.00 โ a โ b โ c โ third โ |
|
โ 8 โ 0 โ 15 โ 0.50 โ 4.00 โ b โ a โ a โ third โ |
|
โ 9 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
And finally, we can create new Series by setting a new value in the marked |
|
indices. Have a look at the next command |
|
|
|
```nu |
|
โฏ let indices = ([0 2] | dfr into-df); |
|
โฏ $df | dfr get int_1 | dfr set-with-idx 123 --indices $indices |
|
โญโโโโฌโโโโโโโโฎ |
|
โ # โ int_1 โ |
|
โโโโโผโโโโโโโโค |
|
โ 0 โ 123 โ |
|
โ 1 โ 2 โ |
|
โ 2 โ 123 โ |
|
โ 3 โ 4 โ |
|
โ 4 โ 0 โ |
|
โ 5 โ 6 โ |
|
โ 6 โ 7 โ |
|
โ 7 โ 8 โ |
|
โ 8 โ 9 โ |
|
โ 9 โ 0 โ |
|
โฐโโโโดโโโโโโโโฏ |
|
``` |
|
|
|
## Unique values |
|
|
|
Another operation that can be done with `Series` is to search for unique values |
|
in a list or column. Lets use again the first dataframe we created to test |
|
these operations. |
|
|
|
The first and most common operation that we have is `value_counts`. This |
|
command calculates a count of the unique values that exist in a Series. For |
|
example, we can use it to count how many occurrences we have in the column |
|
`first` |
|
|
|
```nu |
|
โฏ $df | dfr get first | dfr value-counts |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโโฎ |
|
โ # โ first โ counts โ |
|
โโโโโผโโโโโโโโผโโโโโโโโโค |
|
โ 0 โ b โ 4 โ |
|
โ 1 โ a โ 3 โ |
|
โ 2 โ c โ 3 โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
As expected, the command returns a new dataframe that can be used to do more |
|
queries. |
|
|
|
Continuing with our exploration of `Series`, the next thing that we can do is |
|
to only get the unique unique values from a series, like this |
|
|
|
```nu |
|
โฏ $df | dfr get first | dfr unique |
|
โญโโโโฌโโโโโโโโฎ |
|
โ # โ first โ |
|
โโโโโผโโโโโโโโค |
|
โ 0 โ c โ |
|
โ 1 โ b โ |
|
โ 2 โ a โ |
|
โฐโโโโดโโโโโโโโฏ |
|
``` |
|
|
|
Or we can get a mask that we can use to filter out the rows where data is |
|
unique or duplicated. For example, we can select the rows for unique values |
|
in column `word` |
|
|
|
```nu |
|
โฏ $df | dfr filter-with ($df | dfr get word | dfr is-unique) |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโฎ |
|
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโค |
|
โ 0 โ 1 โ 11 โ 0.10 โ 1.00 โ a โ b โ c โ first โ |
|
โ 1 โ 8 โ 18 โ 0.80 โ 7.00 โ c โ c โ b โ eight โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโฏ |
|
``` |
|
|
|
Or all the duplicated ones |
|
|
|
```nu |
|
โฏ $df | dfr filter-with ($df | dfr get word | dfr is-duplicated) |
|
โญโโโโฌโโโโโโโโฌโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฌโโโโโโโโฌโโโโโโโโโฎ |
|
โ # โ int_1 โ int_2 โ float_1 โ float_2 โ first โ second โ third โ word โ |
|
โโโโโผโโโโโโโโผโโโโโโโโผโโโโโโโโโโผโโโโโโโโโโผโโโโโโโโผโโโโโโโโโผโโโโโโโโผโโโโโโโโโค |
|
โ 0 โ 2 โ 12 โ 0.20 โ 1.00 โ a โ b โ c โ second โ |
|
โ 1 โ 3 โ 13 โ 0.30 โ 2.00 โ a โ b โ c โ third โ |
|
โ 2 โ 4 โ 14 โ 0.40 โ 3.00 โ b โ a โ c โ second โ |
|
โ 3 โ 0 โ 15 โ 0.50 โ 4.00 โ b โ a โ a โ third โ |
|
โ 4 โ 6 โ 16 โ 0.60 โ 5.00 โ b โ a โ a โ second โ |
|
โ 5 โ 7 โ 17 โ 0.70 โ 6.00 โ b โ c โ a โ third โ |
|
โ 6 โ 9 โ 19 โ 0.90 โ 8.00 โ c โ c โ b โ ninth โ |
|
โ 7 โ 0 โ 10 โ 0.00 โ 9.00 โ c โ c โ b โ ninth โ |
|
โฐโโโโดโโโโโโโโดโโโโโโโโดโโโโโโโโโโดโโโโโโโโโโดโโโโโโโโดโโโโโโโโโดโโโโโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
## Lazy Dataframes |
|
|
|
Lazy dataframes are a way to query data by creating a logical plan. The |
|
advantage of this approach is that the plan never gets evaluated until you need |
|
to extract data. This way you could chain together aggregations, joins and |
|
selections and collect the data once you are happy with the selected |
|
operations. |
|
|
|
Let's create a small example of a lazy dataframe |
|
|
|
```nu |
|
โฏ let a = ([[a b]; [1 a] [2 b] [3 c] [4 d]] | dfr into-lazy) |
|
โฏ $a |
|
โญโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฎ |
|
โ plan โ DF ["a", "b"]; PROJECT */2 COLUMNS; SELECTION: "None" โ |
|
โ โ โ |
|
โ optimized_plan โ DF ["a", "b"]; PROJECT */2 COLUMNS; SELECTION: "None" โ |
|
โ โ โ |
|
โฐโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฏ |
|
``` |
|
|
|
As you can see, the resulting dataframe is not yet evaluated, it stays as a |
|
set of instructions that can be done on the data. If you were to collect that |
|
dataframe you would get the next result |
|
|
|
```nu |
|
โฏ $a | dfr collect |
|
โญโโโโฌโโโโฌโโโโฎ |
|
โ # โ a โ b โ |
|
โโโโโผโโโโผโโโโค |
|
โ 0 โ 1 โ a โ |
|
โ 1 โ 2 โ b โ |
|
โ 2 โ 3 โ c โ |
|
โ 3 โ 4 โ d โ |
|
โฐโโโโดโโโโดโโโโฏ |
|
``` |
|
|
|
as you can see, the collect command executes the plan and creates a nushell |
|
table for you. |
|
|
|
All dataframes operations should work with eager or lazy dataframes. They are |
|
converted in the background for compatibility. However, to take advantage of |
|
lazy operations if is recommended to only use lazy operations with lazy |
|
dataframes. |
|
|
|
To find all lazy dataframe operations you can use |
|
|
|
```nu |
|
$nu.scope.commands | where category =~ lazyframe |
|
``` |
|
|
|
With your lazy frame defined we can start chaining operations on it. For |
|
example this |
|
|
|
```nu |
|
โฏ $a | |
|
โ dfr reverse | |
|
โ dfr with-column [ |
|
โ ((dfr col a) * 2 | dfr as double_a) |
|
โ ((dfr col a) / 2 | dfr as half_a) |
|
โ ] | dfr collect |
|
โญโโโโฌโโโโฌโโโโฌโโโโโโโโโโโฌโโโโโโโโโฎ |
|
โ # โ a โ b โ double_a โ half_a โ |
|
โโโโโผโโโโผโโโโผโโโโโโโโโโโผโโโโโโโโโค |
|
โ 0 โ 4 โ d โ 8 โ 2 โ |
|
โ 1 โ 3 โ c โ 6 โ 1 โ |
|
โ 2 โ 2 โ b โ 4 โ 1 โ |
|
โ 3 โ 1 โ a โ 2 โ 0 โ |
|
โฐโโโโดโโโโดโโโโดโโโโโโโโโโโดโโโโโโโโโฏ |
|
``` |
|
|
|
:::tip |
|
You can use the line buffer editor to format your queries (`ctr + o`) easily |
|
::: |
|
|
|
This query uses the lazy reverse command to invert the dataframe and the |
|
`dfr with-column` command to create new two columns using `expressions`. |
|
An `expression` is used to define an operation that is executed on the lazy |
|
frame. When put together they create the whole set of instructions used by the |
|
lazy commands to query the data. To list all the commands that generate an |
|
expression you can use |
|
|
|
```nu |
|
scope commands | where category =~ expression |
|
``` |
|
|
|
In our previous example, we use the `dfr col` command to indicate that column `a` |
|
will be multiplied by 2 and then it will be aliased to the name `double_a`. |
|
In some cases the use of the `dfr col` command can be inferred. For example, |
|
using the `dfr select` command we can use only a string |
|
|
|
```nu |
|
> $a | dfr select a | dfr collect |
|
``` |
|
|
|
or the `dfr col` command |
|
|
|
```nu |
|
> $a | dfr select (dfr col a) | dfr collect |
|
``` |
|
|
|
Let's try something more complicated and create aggregations from a lazy |
|
dataframe |
|
|
|
```nu |
|
โฏ let a = ( [[name value]; [one 1] [two 2] [one 1] [two 3]] | dfr into-lazy ) |
|
โฏ $a | |
|
โ dfr group-by name | |
|
โ dfr agg [ |
|
โ (dfr col value | dfr sum | dfr as sum) |
|
โ (dfr col value | dfr mean | dfr as mean) |
|
โ ] | dfr collect |
|
โญโโโโฌโโโโโโโฌโโโโโโฌโโโโโโโฎ |
|
โ # โ name โ sum โ mean โ |
|
โโโโโผโโโโโโโผโโโโโโผโโโโโโโค |
|
โ 0 โ two โ 5 โ 2.50 โ |
|
โ 1 โ one โ 2 โ 1.00 โ |
|
โฐโโโโดโโโโโโโดโโโโโโดโโโโโโโฏ |
|
``` |
|
|
|
And we could join on a lazy dataframe that hasn't being collected. Let's join |
|
the resulting group by to the original lazy frame |
|
|
|
```nu |
|
โฏ let a = ( [[name value]; [one 1] [two 2] [one 1] [two 3]] | dfr into-lazy ) |
|
โฏ let group = ($a |
|
โ | dfr group-by name |
|
โ | dfr agg [ |
|
โ (dfr col value | dfr sum | dfr as sum) |
|
โ (dfr col value | dfr mean | dfr as mean) |
|
โ ]) |
|
โฏ $a | dfr join $group name name | dfr collect |
|
โญโโโโฌโโโโโโโฌโโโโโโโโฌโโโโโโฌโโโโโโโฎ |
|
โ # โ name โ value โ sum โ mean โ |
|
โโโโโผโโโโโโโผโโโโโโโโผโโโโโโผโโโโโโโค |
|
โ 0 โ one โ 1 โ 2 โ 1.00 โ |
|
โ 1 โ two โ 2 โ 5 โ 2.50 โ |
|
โ 2 โ one โ 1 โ 2 โ 1.00 โ |
|
โ 3 โ two โ 3 โ 5 โ 2.50 โ |
|
โฐโโโโดโโโโโโโดโโโโโโโโดโโโโโโดโโโโโโโฏ |
|
``` |
|
|
|
As you can see lazy frames are a powerful construct that will let you query |
|
data using a flexible syntax, resulting in blazing fast results. |
|
|
|
## Dataframe commands |
|
|
|
So far we have seen quite a few operations that can be done using `DataFrame`s |
|
commands. However, the commands we have used so far are not all the commands |
|
available to work with data and be assured that there will be more as the |
|
feature becomes more stable. |
|
|
|
The next list shows the available dataframe commands with their descriptions, and |
|
whenever possible, their analogous Nushell command. |
|
|
|
::: warning |
|
This list may be outdated. To get the up-to-date command list, see |
|
[Dataframe](/commands/categories/dataframe.md) |
|
[Lazyframe](/commands/categories/lazyframe.md) and |
|
[Dataframe Or Lazyframe](/commands/categories/dataframe_or_lazyframe.md) |
|
command categories. |
|
::: |
|
|
|
|
|
| Command Name | Applies To | Description | Nushell Equivalent | |
|
| --------------- | --------------------------- | -------------------------------------------------------------------------- | ----------------------------- | |
|
| aggregate | DataFrame, GroupBy, Series | Performs an aggregation operation on a dataframe, groupby or series object | math | |
|
| all-false | Series | Returns true if all values are false | | |
|
| all-true | Series | Returns true if all values are true | all | |
|
| arg-max | Series | Return index for max value in series | | |
|
| arg-min | Series | Return index for min value in series | | |
|
| arg-sort | Series | Returns indexes for a sorted series | | |
|
| arg-true | Series | Returns indexes where values are true | | |
|
| arg-unique | Series | Returns indexes for unique values | | |
|
| count-null | Series | Counts null values | | |
|
| count-unique | Series | Counts unique value | | |
|
| drop | DataFrame | Creates a new dataframe by dropping the selected columns | drop | |
|
| drop-duplicates | DataFrame | Drops duplicate values in dataframe | | |
|
| drop-nulls | DataFrame, Series | Drops null values in dataframe | | |
|
| dtypes | DataFrame | Show dataframe data types | | |
|
| filter-with | DataFrame | Filters dataframe using a mask as reference | | |
|
| first | DataFrame | Creates new dataframe with first rows | first | |
|
| get | DataFrame | Creates dataframe with the selected columns | get | |
|
| group-by | DataFrame | Creates a groupby object that can be used for other aggregations | group-by | |
|
| is-duplicated | Series | Creates mask indicating duplicated values | | |
|
| is-in | Series | Checks if elements from a series are contained in right series | in | |
|
| is-not-null | Series | Creates mask where value is not null | | |
|
| is-null | Series | Creates mask where value is null | `<column_name> == null` | |
|
| is-unique | Series | Creates mask indicating unique values | | |
|
| join | DataFrame | Joins a dataframe using columns as reference | | |
|
| last | DataFrame | Creates new dataframe with last rows | last | |
|
| ls-df | | Lists stored dataframes | | |
|
| melt | DataFrame | Unpivot a DataFrame from wide to long format | | |
|
| not | Series Inverts boolean mask | | |
|
| open | | Loads dataframe form csv file | open | |
|
| pivot | GroupBy | Performs a pivot operation on a groupby object | pivot | |
|
| rename | Dataframe, Series | Renames a series | rename | |
|
| sample | DataFrame | Create sample dataframe | | |
|
| select | DataFrame | Creates a new dataframe with the selected columns | select | |
|
| set | Series | Sets value where given mask is true | | |
|
| set-with-idx | Series | Sets value in the given index | | |
|
| shift | Series | Shifts the values by a given period | | |
|
| show | DataFrame | Converts a section of the dataframe to a Table or List value | | |
|
| slice | DataFrame | Creates new dataframe from a slice of rows | | |
|
| sort-by | DataFrame, Series | Creates new sorted dataframe or series | sort | |
|
| take | DataFrame, Series | Creates new dataframe using the given indices | | |
|
| to csv | DataFrame | Saves dataframe to csv file | to csv | |
|
| into df | | Converts a pipelined Table or List into Dataframe | | |
|
| dummies | DataFrame | Creates a new dataframe with dummy variables | | |
|
| to parquet | DataFrame | Saves dataframe to parquet file | | |
|
| unique | Series | Returns unique values from a series | uniq | |
|
| value-counts | Series | Returns a dataframe with the counts for unique values in series | | |
|
| where | DataFrame | Filter dataframe to match the condition | where | |
|
| with-column | DataFrame | Adds a series to the dataframe | `insert <column_name> <value> \| upsert <column_name> { <new_value> }` | |
|
|
|
## Future of Dataframes |
|
|
|
We hope that by the end of this page you have a solid grasp of how to use the |
|
dataframe commands. As you can see they offer powerful operations that can |
|
help you process data faster and natively. |
|
|
|
However, the future of these dataframes is still very experimental. New |
|
commands and tools that take advantage of these commands will be added as they |
|
mature. |
|
|
|
Keep visiting this book in order to check the new things happening to |
|
dataframes and how they can help you process data faster and efficiently. |
|
|