|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Bio-SimLex enables intrinsic evaluation of word representations. This evaluation |
|
can serve as a predictor of performance on various downstream tasks in the |
|
biomedical domain. The results on Bio-SimLex using standard word representation |
|
models highlight the importance of developing dedicated evaluation resources for |
|
NLP in biomedicine for particular word classes (e.g. verbs). |
|
""" |
|
|
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import pairs_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{article, |
|
title = { |
|
Bio-SimVerb and Bio-SimLex: Wide-coverage evaluation sets of word |
|
similarity in biomedicine |
|
}, |
|
author = {Chiu, Billy and Pyysalo, Sampo and Vulić, Ivan and Korhonen, Anna}, |
|
year = 2018, |
|
month = {02}, |
|
journal = {BMC Bioinformatics}, |
|
volume = 19, |
|
pages = {}, |
|
doi = {10.1186/s12859-018-2039-z} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "bio_simlex" |
|
_DISPLAYNAME = "Bio-SimLex" |
|
|
|
_DESCRIPTION = """\ |
|
Bio-SimLex enables intrinsic evaluation of word representations. This evaluation \ |
|
can serve as a predictor of performance on various downstream tasks in the \ |
|
biomedical domain. The results on Bio-SimLex using standard word representation \ |
|
models highlight the importance of developing dedicated evaluation resources for \ |
|
NLP in biomedicine for particular word classes (e.g. verbs). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/cambridgeltl/bio-simverb" |
|
|
|
_LICENSE = 'License information unavailable' |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/cambridgeltl/bio-simverb/blob/master/wvlib/word-similarities/\ |
|
bio-simlex/Bio-SimLex.txt?raw=true" |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class BioSimlexDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
Bio-SimLex enables intrinsic evaluation of word representations. Config schema |
|
as source gives score between 0-10 for pairs of words. The source schema casts |
|
labels as `float`, but the bigbio schema casts them as `str`. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="bio_simlex_source", |
|
version=SOURCE_VERSION, |
|
description="bio_simlex source schema", |
|
schema="source", |
|
subset_id="bio_simlex", |
|
), |
|
BigBioConfig( |
|
name="bio_simlex_bigbio_pairs", |
|
version=BIGBIO_VERSION, |
|
description="bio_simlex BigBio schema", |
|
schema="bigbio_pairs", |
|
subset_id="bio_simlex", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "bio_simlex_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"text_1": datasets.Value("string"), |
|
"text_2": datasets.Value("string"), |
|
"score": datasets.Value("float32"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
features = pairs_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
url = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath, "r", encoding="utf-8") as f: |
|
for id_, line in enumerate(f): |
|
word1, word2, score = line.split("\t") |
|
if self.config.schema == "source": |
|
yield id_, { |
|
"text_1": word1, |
|
"text_2": word2, |
|
"score": float(score), |
|
} |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
yield id_, { |
|
"id": str(id_), |
|
"document_id": str(id_), |
|
"text_1": word1, |
|
"text_2": word2, |
|
"label": str(score.strip()), |
|
} |
|
|