gabrielaltay
commited on
Commit
·
970237b
1
Parent(s):
bcb9c1b
upload hub_repos/cpi/cpi.py to hub from bigbio repo
Browse files
cpi.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing
|
17 |
+
annotations of proteins, small molecules, and their relationships. For further information see:
|
18 |
+
https://pubmed.ncbi.nlm.nih.gov/32126064/ and https://github.com/KerstenDoering/CPI-Pipeline
|
19 |
+
"""
|
20 |
+
import xml.etree.ElementTree as ET
|
21 |
+
from pathlib import Path
|
22 |
+
from typing import Dict, Iterator, Tuple
|
23 |
+
|
24 |
+
import datasets
|
25 |
+
|
26 |
+
from .bigbiohub import kb_features
|
27 |
+
from .bigbiohub import BigBioConfig
|
28 |
+
from .bigbiohub import Tasks
|
29 |
+
|
30 |
+
_LANGUAGES = ['English']
|
31 |
+
_PUBMED = True
|
32 |
+
_LOCAL = False
|
33 |
+
_CITATION = """\
|
34 |
+
@article{doring2020automated,
|
35 |
+
title={Automated recognition of functional compound-protein relationships in literature},
|
36 |
+
author={D{\"o}ring, Kersten and Qaseem, Ammar and Becer, Michael and Li, Jianyu and Mishra, Pankaj and Gao, Mingjie and Kirchner, Pascal and Sauter, Florian and Telukunta, Kiran K and Moumbock, Aur{\'e}lien FA and others},
|
37 |
+
journal={Plos one},
|
38 |
+
volume={15},
|
39 |
+
number={3},
|
40 |
+
pages={e0220925},
|
41 |
+
year={2020},
|
42 |
+
publisher={Public Library of Science San Francisco, CA USA}
|
43 |
+
}
|
44 |
+
"""
|
45 |
+
|
46 |
+
_DATASETNAME = "cpi"
|
47 |
+
_DISPLAYNAME = "CPI"
|
48 |
+
|
49 |
+
_DESCRIPTION = """\
|
50 |
+
The compound-protein relationship (CPI) dataset consists of 2,613 sentences from abstracts containing \
|
51 |
+
annotations of proteins, small molecules, and their relationships
|
52 |
+
"""
|
53 |
+
|
54 |
+
_HOMEPAGE = "https://github.com/KerstenDoering/CPI-Pipeline"
|
55 |
+
|
56 |
+
_LICENSE = 'ISC License'
|
57 |
+
|
58 |
+
_URLS = {
|
59 |
+
"CPI": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS.xml",
|
60 |
+
"CPI_IV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml",
|
61 |
+
"CPI_NIV": "https://github.com/KerstenDoering/CPI-Pipeline/raw/master/data_sets/xml/CPI-DS_IV.xml",
|
62 |
+
}
|
63 |
+
|
64 |
+
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION, Tasks.RELATION_EXTRACTION]
|
65 |
+
|
66 |
+
_SOURCE_VERSION = "1.0.2"
|
67 |
+
_BIGBIO_VERSION = "1.0.0"
|
68 |
+
|
69 |
+
|
70 |
+
class CpiDataset(datasets.GeneratorBasedBuilder):
|
71 |
+
"""The compound-protein relationship (CPI) dataset"""
|
72 |
+
|
73 |
+
ENTITY_TYPE_TO_DB_NAME = {"compound": "PubChem", "protein": "UniProt"}
|
74 |
+
|
75 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
76 |
+
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
|
77 |
+
|
78 |
+
BUILDER_CONFIGS = [
|
79 |
+
BigBioConfig(
|
80 |
+
name="cpi_source",
|
81 |
+
version=SOURCE_VERSION,
|
82 |
+
description="CPI source schema",
|
83 |
+
schema="source",
|
84 |
+
subset_id="cpi",
|
85 |
+
),
|
86 |
+
BigBioConfig(
|
87 |
+
name="cpi_iv_source",
|
88 |
+
version=SOURCE_VERSION,
|
89 |
+
description="CPI source schema - subset with interaction verbs",
|
90 |
+
schema="source",
|
91 |
+
subset_id="cpi_iv",
|
92 |
+
),
|
93 |
+
BigBioConfig(
|
94 |
+
name="cpi_niv_source",
|
95 |
+
version=SOURCE_VERSION,
|
96 |
+
description="CPI source schema - subset without interaction verbs",
|
97 |
+
schema="source",
|
98 |
+
subset_id="cpi_niv",
|
99 |
+
),
|
100 |
+
BigBioConfig(
|
101 |
+
name="cpi_bigbio_kb",
|
102 |
+
version=BIGBIO_VERSION,
|
103 |
+
description="CPI BigBio schema",
|
104 |
+
schema="bigbio_kb",
|
105 |
+
subset_id="cpi",
|
106 |
+
),
|
107 |
+
]
|
108 |
+
|
109 |
+
DEFAULT_CONFIG_NAME = "cpi_source"
|
110 |
+
|
111 |
+
def _info(self):
|
112 |
+
if self.config.schema == "source":
|
113 |
+
features = datasets.Features(
|
114 |
+
{
|
115 |
+
"document_id": datasets.Value("string"),
|
116 |
+
"document_orig_id": datasets.Value("string"),
|
117 |
+
"sentences": [
|
118 |
+
{
|
119 |
+
"sentence_id": datasets.Value("string"),
|
120 |
+
"sentence_orig_id": datasets.Value("string"),
|
121 |
+
"text": datasets.Value("string"),
|
122 |
+
"entities": [
|
123 |
+
{
|
124 |
+
"entity_id": datasets.Value("string"),
|
125 |
+
"entity_orig_id": datasets.Sequence(datasets.Value("string")),
|
126 |
+
"type": datasets.Value("string"),
|
127 |
+
"offset": datasets.Sequence(datasets.Value("int32")),
|
128 |
+
"text": datasets.Value("string"),
|
129 |
+
}
|
130 |
+
],
|
131 |
+
"pairs": [
|
132 |
+
{
|
133 |
+
"pair_id": datasets.Value("string"),
|
134 |
+
"e1": datasets.Value("string"),
|
135 |
+
"e2": datasets.Value("string"),
|
136 |
+
"interaction": datasets.Value("bool"),
|
137 |
+
}
|
138 |
+
],
|
139 |
+
}
|
140 |
+
],
|
141 |
+
}
|
142 |
+
)
|
143 |
+
|
144 |
+
elif self.config.schema == "bigbio_kb":
|
145 |
+
features = kb_features
|
146 |
+
|
147 |
+
return datasets.DatasetInfo(
|
148 |
+
description=_DESCRIPTION,
|
149 |
+
features=features,
|
150 |
+
homepage=_HOMEPAGE,
|
151 |
+
license=str(_LICENSE),
|
152 |
+
citation=_CITATION,
|
153 |
+
)
|
154 |
+
|
155 |
+
def _split_generators(self, dl_manager):
|
156 |
+
# Distinguish based on the subset id (cpi, cpi_iv, cpi_niv) which file to load
|
157 |
+
subset_url = _URLS[self.config.subset_id.upper()]
|
158 |
+
subset_file = dl_manager.download_and_extract(subset_url)
|
159 |
+
|
160 |
+
return [
|
161 |
+
datasets.SplitGenerator(
|
162 |
+
name=datasets.Split.TRAIN,
|
163 |
+
gen_kwargs={"subset_file": subset_file},
|
164 |
+
)
|
165 |
+
]
|
166 |
+
|
167 |
+
def _generate_examples(self, subset_file: Path) -> Iterator[Tuple[str, Dict]]:
|
168 |
+
if self.config.schema == "source":
|
169 |
+
for doc_id, document in self._read_source_examples(subset_file):
|
170 |
+
yield doc_id, document
|
171 |
+
|
172 |
+
elif self.config.name == "cpi_bigbio_kb":
|
173 |
+
# Note: The sentences in a CPI document does not (necessarily) occur consecutive in
|
174 |
+
# the original publication. Nevertheless, in this implementation we capture all sentences
|
175 |
+
# of a document in one kb-schema document to explicitly model documents.
|
176 |
+
|
177 |
+
# Transform each source-schema document to kb-schema document
|
178 |
+
for doc_id, source_document in self._read_source_examples(subset_file):
|
179 |
+
sentence_offset = 0
|
180 |
+
passages = []
|
181 |
+
entities = []
|
182 |
+
relations = []
|
183 |
+
|
184 |
+
# Transform all sentences to kb-schema sentences
|
185 |
+
for source_sentence in source_document["sentences"]:
|
186 |
+
text = source_sentence["text"]
|
187 |
+
passages.append(
|
188 |
+
{
|
189 |
+
"id": source_sentence["sentence_id"],
|
190 |
+
"text": [text],
|
191 |
+
"offsets": [[sentence_offset + 0, sentence_offset + len(text)]],
|
192 |
+
"type": "",
|
193 |
+
}
|
194 |
+
)
|
195 |
+
|
196 |
+
# Transform source-schema entities to kb-schema entities
|
197 |
+
for source_entity in source_sentence["entities"]:
|
198 |
+
db_name = self.ENTITY_TYPE_TO_DB_NAME[source_entity["type"]]
|
199 |
+
|
200 |
+
entity_offset = source_entity["offset"]
|
201 |
+
entity_offset = [sentence_offset + entity_offset[0], sentence_offset + entity_offset[1]]
|
202 |
+
|
203 |
+
entities.append(
|
204 |
+
{
|
205 |
+
"id": source_entity["entity_id"],
|
206 |
+
"type": source_entity["type"],
|
207 |
+
"text": [source_entity["text"]],
|
208 |
+
"offsets": [entity_offset],
|
209 |
+
"normalized": [
|
210 |
+
{"db_name": db_name, "db_id": db_id} for db_id in source_entity["entity_orig_id"]
|
211 |
+
],
|
212 |
+
}
|
213 |
+
)
|
214 |
+
|
215 |
+
# Transform source-schema pairs to kb-schema relations
|
216 |
+
for source_pair in source_sentence["pairs"]:
|
217 |
+
# Ignore pairs that are annotated to be not in a relationship!
|
218 |
+
if not source_pair["interaction"]:
|
219 |
+
continue
|
220 |
+
|
221 |
+
relations.append(
|
222 |
+
{
|
223 |
+
"id": source_pair["pair_id"],
|
224 |
+
"type": "compound-protein-interaction",
|
225 |
+
"arg1_id": source_pair["e1"],
|
226 |
+
"arg2_id": source_pair["e2"],
|
227 |
+
"normalized": [],
|
228 |
+
}
|
229 |
+
)
|
230 |
+
|
231 |
+
sentence_offset += len(text) + 1
|
232 |
+
|
233 |
+
kb_document = {
|
234 |
+
"id": source_document["document_id"],
|
235 |
+
"document_id": source_document["document_orig_id"],
|
236 |
+
"passages": passages,
|
237 |
+
"entities": entities,
|
238 |
+
"relations": relations,
|
239 |
+
"events": [],
|
240 |
+
"coreferences": [],
|
241 |
+
}
|
242 |
+
|
243 |
+
yield source_document["document_id"], kb_document
|
244 |
+
|
245 |
+
def _read_source_examples(self, input_file: Path) -> Iterator[Tuple[str, Dict]]:
|
246 |
+
"""
|
247 |
+
Reads all instances of the given input file and parses them into the source format.
|
248 |
+
"""
|
249 |
+
root = ET.parse(input_file)
|
250 |
+
for document in root.iter("document"):
|
251 |
+
sentences = []
|
252 |
+
for sentence in document.iter("sentence"):
|
253 |
+
entities = []
|
254 |
+
for entity in sentence.iter("entity"):
|
255 |
+
char_offsets = entity.attrib["charOffset"].split("-")
|
256 |
+
start, end = int(char_offsets[0]), int(char_offsets[1])
|
257 |
+
|
258 |
+
entities.append(
|
259 |
+
{
|
260 |
+
"entity_id": entity.attrib["id"],
|
261 |
+
"entity_orig_id": entity.attrib["origId"].split(","),
|
262 |
+
"type": entity.attrib["type"],
|
263 |
+
"text": entity.attrib["text"],
|
264 |
+
"offset": [start, end],
|
265 |
+
}
|
266 |
+
)
|
267 |
+
|
268 |
+
pairs = []
|
269 |
+
for pair in sentence.iter("pair"):
|
270 |
+
pairs.append(
|
271 |
+
{
|
272 |
+
"pair_id": pair.attrib["id"],
|
273 |
+
"e1": pair.attrib["e1"],
|
274 |
+
"e2": pair.attrib["e2"],
|
275 |
+
"interaction": pair.attrib["interaction"].lower() == "true",
|
276 |
+
}
|
277 |
+
)
|
278 |
+
|
279 |
+
sentences.append(
|
280 |
+
{
|
281 |
+
"sentence_id": sentence.attrib["id"],
|
282 |
+
"sentence_orig_id": sentence.attrib["origId"],
|
283 |
+
"text": sentence.attrib["text"],
|
284 |
+
"entities": entities,
|
285 |
+
"pairs": pairs,
|
286 |
+
}
|
287 |
+
)
|
288 |
+
|
289 |
+
document_dict = {
|
290 |
+
"document_id": document.attrib["id"],
|
291 |
+
"document_orig_id": document.attrib["origId"],
|
292 |
+
"sentences": sentences,
|
293 |
+
}
|
294 |
+
|
295 |
+
yield document.attrib["id"], document_dict
|