|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The identification of linguistic expressions referring to entities of interest in molecular biology such as proteins, |
|
genes and cells is a fundamental task in biomolecular text mining. The GENIA technical term annotation covers the |
|
identification of physical biological entities as well as other important terms. The corpus annotation covers the full |
|
1,999 abstracts of the primary GENIA corpus. |
|
""" |
|
|
|
import xml.etree.ElementTree as ET |
|
from itertools import count |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@inproceedings{10.5555/1289189.1289260, |
|
author = {Ohta, Tomoko and Tateisi, Yuka and Kim, Jin-Dong}, |
|
title = {The GENIA Corpus: An Annotated Research Abstract Corpus in Molecular Biology Domain}, |
|
year = {2002}, |
|
publisher = {Morgan Kaufmann Publishers Inc.}, |
|
address = {San Francisco, CA, USA}, |
|
booktitle = {Proceedings of the Second International Conference on Human Language Technology Research}, |
|
pages = {82–86}, |
|
numpages = {5}, |
|
location = {San Diego, California}, |
|
series = {HLT '02} |
|
} |
|
|
|
@article{Kim2003GENIAC, |
|
title={GENIA corpus - a semantically annotated corpus for bio-textmining}, |
|
author={Jin-Dong Kim and Tomoko Ohta and Yuka Tateisi and Junichi Tsujii}, |
|
journal={Bioinformatics}, |
|
year={2003}, |
|
volume={19 Suppl 1}, |
|
pages={ |
|
i180-2 |
|
} |
|
} |
|
|
|
@inproceedings{10.5555/1567594.1567610, |
|
author = {Kim, Jin-Dong and Ohta, Tomoko and Tsuruoka, Yoshimasa and Tateisi, Yuka and Collier, Nigel}, |
|
title = {Introduction to the Bio-Entity Recognition Task at JNLPBA}, |
|
year = {2004}, |
|
publisher = {Association for Computational Linguistics}, |
|
address = {USA}, |
|
booktitle = {Proceedings of the International Joint Workshop on Natural Language Processing in Biomedicine and Its |
|
Applications}, |
|
pages = {70–75}, |
|
numpages = {6}, |
|
location = {Geneva, Switzerland}, |
|
series = {JNLPBA '04} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "genia_term_corpus" |
|
_DISPLAYNAME = "GENIA Term Corpus" |
|
|
|
_DESCRIPTION = """\ |
|
The identification of linguistic expressions referring to entities of interest in molecular biology such as proteins, |
|
genes and cells is a fundamental task in biomolecular text mining. The GENIA technical term annotation covers the |
|
identification of physical biological entities as well as other important terms. The corpus annotation covers the full |
|
1,999 abstracts of the primary GENIA corpus. |
|
""" |
|
|
|
_HOMEPAGE = "http://www.geniaproject.org/genia-corpus/term-corpus" |
|
|
|
_LICENSE = 'GENIA Project License for Annotated Corpora' |
|
|
|
_URLS = { |
|
_DATASETNAME: "http://www.nactem.ac.uk/GENIA/current/GENIA-corpus/Term/GENIAcorpus3.02.tgz", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "3.0.2" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class GeniaTermCorpusDataset(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="genia_term_corpus_source", |
|
version=SOURCE_VERSION, |
|
description="genia_term_corpus source schema", |
|
schema="source", |
|
subset_id="genia_term_corpus", |
|
), |
|
BigBioConfig( |
|
name="genia_term_corpus_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="genia_term_corpus BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="genia_term_corpus", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "genia_term_corpus_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"title": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"lex": datasets.Value("string"), |
|
"sem": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
"abstract": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"lex": datasets.Value("string"), |
|
"sem": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download(urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"archive": dl_manager.iter_archive(data_dir), |
|
"data_path": "GENIA_term_3.02/GENIAcorpus3.02.xml", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, archive, data_path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
uid = count(0) |
|
for path, file in archive: |
|
if path == data_path: |
|
for key, example in enumerate(iterparse_genia(file)): |
|
if self.config.schema == "source": |
|
yield key, example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
yield key, parse_genia_to_bigbio(example, uid) |
|
|
|
|
|
def iterparse_genia(file): |
|
|
|
for _, element in ET.iterparse(file): |
|
|
|
|
|
if element.tag == "article": |
|
bibliomisc = element.find("articleinfo/bibliomisc").text |
|
document_id = parse_genia_bibliomisc(bibliomisc) |
|
title = element.find("title") |
|
title_sentences = parse_genia_sentences(title) |
|
abstract = element.find("abstract") |
|
abstract_sentences = parse_genia_sentences(abstract) |
|
yield { |
|
"document_id": document_id, |
|
"title": title_sentences, |
|
"abstract": abstract_sentences, |
|
} |
|
|
|
|
|
def parse_genia_sentences(passage): |
|
sentences = [] |
|
for sentence in passage.iter(tag="sentence"): |
|
text = "".join(sentence.itertext()) |
|
entities = [] |
|
for entity in sentence.iter(tag="cons"): |
|
entity_lex = entity.get("lex", "") |
|
entity_sem = parse_genia_sem(entity.get("sem", "")) |
|
entity_text = "".join(entity.itertext()) |
|
entities.append({"text": entity_text, "lex": entity_lex, "sem": entity_sem}) |
|
sentences.append( |
|
{ |
|
"text": text, |
|
"entities": entities, |
|
} |
|
) |
|
return sentences |
|
|
|
|
|
def parse_genia_bibliomisc(bibliomisc): |
|
"""Remove 'MEDLINE:' from 'MEDLINE:96055286'.""" |
|
return bibliomisc.replace("MEDLINE:", "") if ":" in bibliomisc else bibliomisc |
|
|
|
|
|
def parse_genia_sem(sem): |
|
return sem.replace("G#", "") if "G#" in sem else sem |
|
|
|
|
|
def parse_genia_to_bigbio(example, uid): |
|
document = { |
|
"id": next(uid), |
|
"document_id": example["document_id"], |
|
"passages": list(generate_bigbio_passages(example, uid)), |
|
"entities": list(generate_bigbio_entities(example, uid)), |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [], |
|
} |
|
return document |
|
|
|
|
|
def parse_genia_to_bigbio_passage(passage, uid, type="", offset=0): |
|
text = " ".join(sentence["text"] for sentence in passage) |
|
new_offset = offset + len(text) |
|
return { |
|
"id": next(uid), |
|
"type": type, |
|
"text": [text], |
|
"offsets": [[offset, new_offset]], |
|
}, new_offset + 1 |
|
|
|
|
|
def generate_bigbio_passages(example, uid): |
|
offset = 0 |
|
for type in ["title", "abstract"]: |
|
passage, offset = parse_genia_to_bigbio_passage( |
|
example[type], uid, type=type, offset=offset |
|
) |
|
yield passage |
|
|
|
|
|
def parse_genia_to_bigbio_entity(entity, uid, text="", relative_offset=0, offset=0): |
|
try: |
|
relative_offset = text.index(entity["text"], relative_offset) |
|
except ValueError: |
|
|
|
|
|
return None, None |
|
new_relative_offset = relative_offset + len(entity["text"]) |
|
return { |
|
"id": next(uid), |
|
"offsets": [[offset + relative_offset, offset + new_relative_offset]], |
|
"text": [entity["text"]], |
|
"type": entity["sem"], |
|
"normalized": [], |
|
}, new_relative_offset |
|
|
|
|
|
def generate_bigbio_entities(example, uid): |
|
sentence_offset = 0 |
|
for type in ["title", "abstract"]: |
|
for sentence in example[type]: |
|
relative_offsets = {} |
|
for entity in sentence["entities"]: |
|
bigbio_entity, new_relative_offset = parse_genia_to_bigbio_entity( |
|
entity, |
|
uid, |
|
text=sentence["text"], |
|
relative_offset=relative_offsets.get( |
|
(entity["text"], entity["lex"], entity["sem"]), 0 |
|
), |
|
offset=sentence_offset, |
|
) |
|
if bigbio_entity: |
|
relative_offsets[ |
|
(entity["text"], entity["lex"], entity["sem"]) |
|
] = new_relative_offset |
|
yield bigbio_entity |
|
sentence_offset += len(sentence["text"]) + 1 |
|
|