|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The IEPA benchmark PPI corpus is designed for relation extraction. It was |
|
created from 303 PubMed abstracts, each of which contains a specific pair of |
|
co-occurring chemicals. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
import xml.dom.minidom as xml |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@ARTICLE{ding2001mining, |
|
title = "Mining {MEDLINE}: abstracts, sentences, or phrases?", |
|
author = "Ding, J and Berleant, D and Nettleton, D and Wurtele, E", |
|
journal = "Pac Symp Biocomput", |
|
pages = "326--337", |
|
year = 2002, |
|
address = "United States", |
|
language = "en" |
|
} |
|
""" |
|
|
|
_DATASETNAME = "iepa" |
|
_DISPLAYNAME = "IEPA" |
|
|
|
_DESCRIPTION = """\ |
|
The IEPA benchmark PPI corpus is designed for relation extraction. It was \ |
|
created from 303 PubMed abstracts, each of which contains a specific pair of \ |
|
co-occurring chemicals. |
|
""" |
|
|
|
_HOMEPAGE = "http://psb.stanford.edu/psb-online/proceedings/psb02/abstracts/p326.html" |
|
|
|
_LICENSE = 'License information unavailable' |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://raw.githubusercontent.com/metalrt/ppi-dataset/master/csv_output/IEPA-train.xml", |
|
"test": "https://raw.githubusercontent.com/metalrt/ppi-dataset/master/csv_output/IEPA-test.xml", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class IepaDataset(datasets.GeneratorBasedBuilder): |
|
"""The IEPA benchmark PPI corpus is designed for relation extraction.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="iepa_source", |
|
version=SOURCE_VERSION, |
|
description="IEPA source schema", |
|
schema="source", |
|
subset_id="iepa", |
|
), |
|
BigBioConfig( |
|
name="iepa_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="IEPA BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="iepa", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "iepa_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"PMID": datasets.Value("string"), |
|
"origID": datasets.Value("string"), |
|
"sentences": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"origID": datasets.Value("string"), |
|
"offsets": [datasets.Value("int32")], |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"origID": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"offsets": [datasets.Value("int32")], |
|
} |
|
], |
|
"interactions": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"e1": datasets.Value("string"), |
|
"e2": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
collection = xml.parse(filepath).documentElement |
|
|
|
if self.config.schema == "source": |
|
for id, document in self._parse_documents(collection): |
|
yield id, document |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for id, document in self._parse_documents(collection): |
|
yield id, self._source_to_bigbio(document) |
|
|
|
def _parse_documents(self, collection): |
|
for document in collection.getElementsByTagName("document"): |
|
pmid_doc = self._strict_get_attribute(document, "PMID") |
|
id_doc = self._strict_get_attribute(document, "id") |
|
origID_doc = self._strict_get_attribute(document, "origID") |
|
sentences = [] |
|
for sentence in document.getElementsByTagName("sentence"): |
|
offsets_sent = self._strict_get_attribute(sentence, "charOffset").split( |
|
"-" |
|
) |
|
id_sent = self._strict_get_attribute(sentence, "id") |
|
origID_sent = self._strict_get_attribute(sentence, "origID") |
|
text_sent = self._strict_get_attribute(sentence, "text") |
|
|
|
entities = [] |
|
for entity in sentence.getElementsByTagName("entity"): |
|
id_ent = self._strict_get_attribute(entity, "id") |
|
origID_ent = self._strict_get_attribute(entity, "origID") |
|
text_ent = self._strict_get_attribute(entity, "text") |
|
offsets_ent = self._strict_get_attribute( |
|
entity, "charOffset" |
|
).split("-") |
|
entities.append( |
|
{ |
|
"id": id_ent, |
|
"origID": origID_ent, |
|
"text": text_ent, |
|
"offsets": offsets_ent, |
|
} |
|
) |
|
|
|
interactions = [] |
|
for interaction in sentence.getElementsByTagName("interaction"): |
|
id_int = self._strict_get_attribute(interaction, "id") |
|
e1_int = self._strict_get_attribute(interaction, "e1") |
|
e2_int = self._strict_get_attribute(interaction, "e2") |
|
type_int = self._strict_get_attribute(interaction, "type") |
|
interactions.append( |
|
{"id": id_int, "e1": e1_int, "e2": e2_int, "type": type_int} |
|
) |
|
|
|
sentences.append( |
|
{ |
|
"id": id_sent, |
|
"origID": origID_sent, |
|
"offsets": offsets_sent, |
|
"text": text_sent, |
|
"entities": entities, |
|
"interactions": interactions, |
|
} |
|
) |
|
yield id_doc, { |
|
"id": id_doc, |
|
"PMID": pmid_doc, |
|
"origID": origID_doc, |
|
"sentences": sentences, |
|
} |
|
|
|
def _strict_get_attribute(self, element, key): |
|
if element.hasAttribute(key): |
|
return element.getAttribute(key) |
|
else: |
|
raise ValueError(f"No such key exists in element: {element.tagName} {key}") |
|
|
|
def _source_to_bigbio(self, document_): |
|
document = {} |
|
document["id"] = document_["id"] |
|
document["document_id"] = document_["PMID"] |
|
|
|
passages = [] |
|
entities = [] |
|
relations = [] |
|
for sentence_ in document_["sentences"]: |
|
for entity_ in sentence_["entities"]: |
|
entity_["type"] = "" |
|
entity_["normalized"] = [] |
|
entity_.pop("origID") |
|
entity_["text"] = [entity_["text"]] |
|
entity_["offsets"] = [ |
|
[ |
|
int(sentence_["offsets"][0]) + int(entity_["offsets"][0]), |
|
int(sentence_["offsets"][0]) + int(entity_["offsets"][1]), |
|
] |
|
] |
|
entities.append(entity_) |
|
for relation_ in sentence_["interactions"]: |
|
relation_["arg1_id"] = relation_.pop("e1") |
|
relation_["arg2_id"] = relation_.pop("e2") |
|
relation_["normalized"] = [] |
|
relations.append(relation_) |
|
|
|
sentence_.pop("entities") |
|
sentence_.pop("interactions") |
|
sentence_.pop("origID") |
|
sentence_["type"] = "" |
|
sentence_["text"] = [sentence_["text"]] |
|
sentence_["offsets"] = [sentence_["offsets"]] |
|
passages.append(sentence_) |
|
|
|
document["passages"] = passages |
|
document["entities"] = entities |
|
document["relations"] = relations |
|
document["events"] = [] |
|
document["coreferences"] = [] |
|
return document |
|
|