Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
iepa / iepa.py
gabrielaltay's picture
upload hubscripts/iepa_hub.py to hub from bigbio repo
c4b832b
raw
history blame
10.6 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The IEPA benchmark PPI corpus is designed for relation extraction. It was
created from 303 PubMed abstracts, each of which contains a specific pair of
co-occurring chemicals.
"""
# Comment from Author
# BigBio schema fixes offsets of entities to an offset where 0 is the start of the document.
# (In source offsets of entities start from 0 for each passage in document)
# Offsets of entities in source remain unchanged.
import xml.dom.minidom as xml
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@ARTICLE{ding2001mining,
title = "Mining {MEDLINE}: abstracts, sentences, or phrases?",
author = "Ding, J and Berleant, D and Nettleton, D and Wurtele, E",
journal = "Pac Symp Biocomput",
pages = "326--337",
year = 2002,
address = "United States",
language = "en"
}
"""
_DATASETNAME = "iepa"
_DISPLAYNAME = "IEPA"
_DESCRIPTION = """\
The IEPA benchmark PPI corpus is designed for relation extraction. It was \
created from 303 PubMed abstracts, each of which contains a specific pair of \
co-occurring chemicals.
"""
_HOMEPAGE = "http://psb.stanford.edu/psb-online/proceedings/psb02/abstracts/p326.html"
_LICENSE = 'License information unavailable'
_URLS = {
_DATASETNAME: {
"train": "https://raw.githubusercontent.com/metalrt/ppi-dataset/master/csv_output/IEPA-train.xml",
"test": "https://raw.githubusercontent.com/metalrt/ppi-dataset/master/csv_output/IEPA-test.xml",
},
}
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class IepaDataset(datasets.GeneratorBasedBuilder):
"""The IEPA benchmark PPI corpus is designed for relation extraction."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="iepa_source",
version=SOURCE_VERSION,
description="IEPA source schema",
schema="source",
subset_id="iepa",
),
BigBioConfig(
name="iepa_bigbio_kb",
version=BIGBIO_VERSION,
description="IEPA BigBio schema",
schema="bigbio_kb",
subset_id="iepa",
),
]
DEFAULT_CONFIG_NAME = "iepa_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"PMID": datasets.Value("string"),
"origID": datasets.Value("string"),
"sentences": [
{
"id": datasets.Value("string"),
"origID": datasets.Value("string"),
"offsets": [datasets.Value("int32")],
"text": datasets.Value("string"),
"entities": [
{
"id": datasets.Value("string"),
"origID": datasets.Value("string"),
"text": datasets.Value("string"),
"offsets": [datasets.Value("int32")],
}
],
"interactions": [
{
"id": datasets.Value("string"),
"e1": datasets.Value("string"),
"e2": datasets.Value("string"),
"type": datasets.Value("string"),
}
],
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir["train"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir["test"],
},
),
]
def _generate_examples(self, filepath) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
collection = xml.parse(filepath).documentElement
if self.config.schema == "source":
for id, document in self._parse_documents(collection):
yield id, document
elif self.config.schema == "bigbio_kb":
for id, document in self._parse_documents(collection):
yield id, self._source_to_bigbio(document)
def _parse_documents(self, collection):
for document in collection.getElementsByTagName("document"):
pmid_doc = self._strict_get_attribute(document, "PMID")
id_doc = self._strict_get_attribute(document, "id")
origID_doc = self._strict_get_attribute(document, "origID")
sentences = []
for sentence in document.getElementsByTagName("sentence"):
offsets_sent = self._strict_get_attribute(sentence, "charOffset").split(
"-"
)
id_sent = self._strict_get_attribute(sentence, "id")
origID_sent = self._strict_get_attribute(sentence, "origID")
text_sent = self._strict_get_attribute(sentence, "text")
entities = []
for entity in sentence.getElementsByTagName("entity"):
id_ent = self._strict_get_attribute(entity, "id")
origID_ent = self._strict_get_attribute(entity, "origID")
text_ent = self._strict_get_attribute(entity, "text")
offsets_ent = self._strict_get_attribute(
entity, "charOffset"
).split("-")
entities.append(
{
"id": id_ent,
"origID": origID_ent,
"text": text_ent,
"offsets": offsets_ent,
}
)
interactions = []
for interaction in sentence.getElementsByTagName("interaction"):
id_int = self._strict_get_attribute(interaction, "id")
e1_int = self._strict_get_attribute(interaction, "e1")
e2_int = self._strict_get_attribute(interaction, "e2")
type_int = self._strict_get_attribute(interaction, "type")
interactions.append(
{"id": id_int, "e1": e1_int, "e2": e2_int, "type": type_int}
)
sentences.append(
{
"id": id_sent,
"origID": origID_sent,
"offsets": offsets_sent,
"text": text_sent,
"entities": entities,
"interactions": interactions,
}
)
yield id_doc, {
"id": id_doc,
"PMID": pmid_doc,
"origID": origID_doc,
"sentences": sentences,
}
def _strict_get_attribute(self, element, key):
if element.hasAttribute(key):
return element.getAttribute(key)
else:
raise ValueError(f"No such key exists in element: {element.tagName} {key}")
def _source_to_bigbio(self, document_):
document = {}
document["id"] = document_["id"]
document["document_id"] = document_["PMID"]
passages = []
entities = []
relations = []
for sentence_ in document_["sentences"]:
for entity_ in sentence_["entities"]:
entity_["type"] = ""
entity_["normalized"] = []
entity_.pop("origID")
entity_["text"] = [entity_["text"]]
entity_["offsets"] = [
[
int(sentence_["offsets"][0]) + int(entity_["offsets"][0]),
int(sentence_["offsets"][0]) + int(entity_["offsets"][1]),
]
]
entities.append(entity_)
for relation_ in sentence_["interactions"]:
relation_["arg1_id"] = relation_.pop("e1")
relation_["arg2_id"] = relation_.pop("e2")
relation_["normalized"] = []
relations.append(relation_)
sentence_.pop("entities")
sentence_.pop("interactions")
sentence_.pop("origID")
sentence_["type"] = ""
sentence_["text"] = [sentence_["text"]]
sentence_["offsets"] = [sentence_["offsets"]]
passages.append(sentence_)
document["passages"] = passages
document["entities"] = entities
document["relations"] = relations
document["events"] = []
document["coreferences"] = []
return document