|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Medical Question Pairs dataset by McCreery et al (2020) contains pairs of medical questions and paraphrased versions of |
|
the question prepared by medical professional. |
|
""" |
|
|
|
import csv |
|
import os |
|
from typing import Dict, Tuple |
|
|
|
import datasets |
|
from datasets import load_dataset |
|
|
|
from .bigbiohub import pairs_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{DBLP:journals/biodb/LiSJSWLDMWL16, |
|
author = {Krallinger, M., Rabal, O., Lourenço, A.}, |
|
title = {Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs}, |
|
journal = {KDD '20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining}, |
|
volume = {3458–3465}, |
|
year = {2020}, |
|
url = {https://github.com/curai/medical-question-pair-dataset}, |
|
doi = {}, |
|
biburl = {}, |
|
bibsource = {} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "mqp" |
|
_DISPLAYNAME = "MQP" |
|
|
|
_DESCRIPTION = """\ |
|
Medical Question Pairs dataset by McCreery et al (2020) contains pairs of medical questions and paraphrased versions of |
|
the question prepared by medical professional. Paraphrased versions were labelled as similar (syntactically dissimilar |
|
but contextually similar ) or dissimilar (syntactically may look similar but contextually dissimilar). Labels 1: similar, 0: dissimilar |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/curai/medical-question-pair-dataset" |
|
|
|
_LICENSE = 'License information unavailable' |
|
_URLs = { |
|
_DATASETNAME: "https://raw.githubusercontent.com/curai/medical-question-pair-dataset/master/mqp.csv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SEMANTIC_SIMILARITY] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class MQPDataset(datasets.GeneratorBasedBuilder): |
|
"""Medical Question Pairing dataset""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="mqp_source", |
|
version=SOURCE_VERSION, |
|
description="MQP source schema", |
|
schema="source", |
|
subset_id="mqp", |
|
), |
|
BigBioConfig( |
|
name="mqp_bigbio_pairs", |
|
version=BIGBIO_VERSION, |
|
description="MQP BigBio schema", |
|
schema="bigbio_pairs", |
|
subset_id="mqp", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "mqp_source" |
|
|
|
def _info(self): |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"text_1": datasets.Value("string"), |
|
"text_2": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
features = pairs_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
my_urls = _URLs[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if split == "train": |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, |
|
quotechar='"', |
|
delimiter=",", |
|
quoting=csv.QUOTE_ALL, |
|
skipinitialspace=True, |
|
) |
|
|
|
if self.config.schema == "source": |
|
for id_, row in enumerate(csv_reader): |
|
document_id, text_1, text_2, label = row |
|
yield id_, { |
|
"document_id": document_id, |
|
"text_1": text_1, |
|
"text_2": text_2, |
|
"label": label, |
|
} |
|
|
|
elif self.config.schema == "bigbio_pairs": |
|
|
|
uid = 0 |
|
for id_, row in enumerate(csv_reader): |
|
uid += 1 |
|
document_id, text_1, text_2, label = row |
|
yield id_, { |
|
"id": uid, |
|
"document_id": document_id, |
|
"text_1": text_1, |
|
"text_2": text_2, |
|
"label": label, |
|
} |
|
else: |
|
print("There's no test/val split available for the given dataset") |
|
return |
|
|