Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 7,123 Bytes
1b0f43f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from typing import List

import datasets

from .bigbiohub import text2text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@misc{https://doi.org/10.48550/arxiv.2010.14235,
  doi = {10.48550/ARXIV.2010.14235},
  
  url = {https://arxiv.org/abs/2010.14235},
  
  author = {Lu, Yao and Dong, Yue and Charlin, Laurent},
  
  keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
  
  title = {Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles},
  
  publisher = {arXiv},
  
  year = {2020},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}
"""

_DATASETNAME = "multi_xscience"
_DISPLAYNAME = "Multi-XScience"

_DESCRIPTION = """\
Multi-document summarization is a challenging task for which there exists little large-scale datasets. 
We propose Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. 
Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section 
of a paper based on its abstract and the articles it references. Our work is inspired by extreme summarization, 
a dataset construction protocol that favours abstractive modeling approaches. Descriptive statistics and 
empirical results---using several state-of-the-art models trained on the Multi-XScience dataset---reveal t
hat Multi-XScience is well suited for abstractive models.
"""

_HOMEPAGE = "https://github.com/yaolu/Multi-XScience"

_LICENSE = 'MIT License'

_URLS = {
    _DATASETNAME: [
        "https://github.com/yaolu/Multi-XScience/blob/master/data/train.json.gz?raw=true",
        "https://github.com/yaolu/Multi-XScience/blob/master/data/test.json.gz?raw=true",
        "https://github.com/yaolu/Multi-XScience/blob/master/data/val.json.gz?raw=true",
    ],
}

_SUPPORTED_TASKS = [Tasks.PARAPHRASING, Tasks.SUMMARIZATION]

_SOURCE_VERSION = "1.0.0"

_BIGBIO_VERSION = "1.0.0"


class MultiXScience(datasets.GeneratorBasedBuilder):
    """
    Dataset for the EMNLP 2020 paper, Multi-XScience:
    A Large-scale Dataset for Extreme Multi-document Summarization
    of Scientific Articles.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="multi_xscience_source",
            version=SOURCE_VERSION,
            description="multi_xscience source schema",
            schema="source",
            subset_id="multi_xscience",
        ),
        BigBioConfig(
            name="multi_xscience_bigbio_t2t",
            version=BIGBIO_VERSION,
            description="multi_xscienceBigBio schema",
            schema="bigbio_t2t",
            subset_id="multi_xscience",
        ),
    ]

    DEFAULT_CONFIG_NAME = "multi_xscience_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "aid": datasets.Value("string"),
                    "mid": datasets.Value("string"),
                    "abstract": datasets.Value("string"),
                    "ref_abstract": datasets.Sequence(
                        {
                            "mid": datasets.Value("string"),
                            "abstract": datasets.Value("string"),
                        }
                    ),
                }
            )
        elif self.config.schema == "bigbio_t2t":
            features = text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:

        urls = _URLS[_DATASETNAME]
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # Whatever you put in gen_kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir[0]).replace("\\", "/"),
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": os.path.join(data_dir[1]).replace("\\", "/"),
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": os.path.join(data_dir[2]).replace("\\", "/"),
                    "split": "val",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`

    def _generate_examples(self, filepath, split):
        j_file = open(filepath, "r")
        j_file.seek(0)
        j_json = json.load(j_file)

        if self.config.schema == "source":
            for key, example in enumerate(j_json):
                yield key, {
                    "aid": example["aid"],
                    "mid": example["mid"],
                    "abstract": example["abstract"],
                    "ref_abstract": [
                        {
                            "mid": example["ref_abstract"][key]["mid"],
                            "abstract": example["ref_abstract"][key]["abstract"],
                        }
                        for key in example["ref_abstract"].keys()
                    ],
                }

        elif self.config.schema == "bigbio_t2t":
            uid = 0

            for key, example in enumerate(j_json):
                uid += 1
                yield key, {
                    "id": str(uid),
                    "document_id": str(key),
                    "text_1": example["abstract"],
                    "text_2": " ".join(
                        [e["abstract"] for e in example["ref_abstract"].values()]
                    ),
                    "text_1_name": "Abstract of query paper",
                    "text_2_name": "Cite abstracts",
                }

        j_file.close()