Datasets:

License:
Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Dataset Card for NTCIR-13 MedWeb

NTCIR-13 MedWeb (Medical Natural Language Processing for Web Document) task requires to perform a multi-label classification that labels for eight diseases/symptoms must be assigned to each tweet. Given pseudo-tweets, the output are Positive:p or Negative:n labels for eight diseases/symptoms. The achievements of this task can almost be directly applied to a fundamental engine for actual applications.

This task provides pseudo-Twitter messages in a cross-language and multi-label corpus, covering three languages (Japanese, English, and Chinese), and annotated with eight labels such as influenza, diarrhea/stomachache, hay fever, cough/sore throat, headache, fever, runny nose, and cold.

For more information, see: http://research.nii.ac.jp/ntcir/permission/ntcir-13/perm-en-MedWeb.html

As this dataset also provides a parallel corpus of pseudo-tweets for english, japanese and chinese it can also be used to train translation models between these three languages.

Citation Information

@article{wakamiya2017overview,
  author    = {Shoko Wakamiya, Mizuki Morita, Yoshinobu Kano, Tomoko Ohkuma and Eiji Aramaki},
  title     = {Overview of the NTCIR-13 MedWeb Task},
  journal   = {Proceedings of the 13th NTCIR Conference on Evaluation of Information Access Technologies (NTCIR-13)},
  year      = {2017},
  url       = {
    http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings13/pdf/ntcir/01-NTCIR13-OV-MEDWEB-WakamiyaS.pdf
  },
}
Downloads last month
39