Datasets:

Languages:
English
License:
File size: 8,150 Bytes
4afeae3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A corpus for plant and chemical entities and for the relationships between them.
The corpus contains 2218 plant and chemical entities and 600 plant-chemical
relationships which are drawn from 1109 sentences in 245 PubMed abstracts.
"""
from pathlib import Path
from typing import Dict, Iterator, Tuple

import datasets

from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{choi2016corpus,
  title        = {A corpus for plant-chemical relationships in the biomedical domain},
  author       = {
    Choi, Wonjun and Kim, Baeksoo and Cho, Hyejin and Lee, Doheon and Lee,
    Hyunju
  },
  year         = 2016,
  journal      = {BMC bioinformatics},
  publisher    = {Springer},
  volume       = 17,
  number       = 1,
  pages        = {1--15}
}
"""

_DATASETNAME = "pcr"
_DISPLAYNAME = "PCR"

_DESCRIPTION = """
A corpus for plant / herb and chemical entities and for the relationships \
between them. The corpus contains 2218 plant and chemical entities and 600 \
plant-chemical relationships which are drawn from 1109 sentences in 245 PubMed \
abstracts.
"""

_HOMEPAGE = "http://210.107.182.73/plantchemcorpus.htm"
_LICENSE = 'License information unavailable'

_URLS = {_DATASETNAME: "http://210.107.182.73/1109_corpus_units_STformat.tar"}

_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.EVENT_EXTRACTION]

_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"


class PCRDataset(datasets.GeneratorBasedBuilder):
    """
    The corpus of plant-chemical relation consists of plants / herbs and
    chemicals and relations between them.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="pcr_source",
            version=SOURCE_VERSION,
            description="PCR source schema",
            schema="source",
            subset_id="pcr",
        ),
        BigBioConfig(
            name="pcr_fixed_source",
            version=SOURCE_VERSION,
            description="PCR (with fixed offsets) source schema",
            schema="source",
            subset_id="pcr_fixed",
        ),
        BigBioConfig(
            name="pcr_bigbio_kb",
            version=BIGBIO_VERSION,
            description="PCR BigBio schema",
            schema="bigbio_kb",
            subset_id="pcr",
        ),
    ]

    DEFAULT_CONFIG_NAME = "pcr_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "document_id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "entities": [
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            "offsets": datasets.Sequence([datasets.Value("int32")]),
                            "text": datasets.Sequence(datasets.Value("string")),
                            "normalized": [
                                {
                                    "db_name": datasets.Value("string"),
                                    "db_id": datasets.Value("string"),
                                }
                            ],
                        }
                    ],
                    "events": [
                        {
                            "id": datasets.Value("string"),
                            "type": datasets.Value("string"),
                            # refers to the text_bound_annotation of the trigger
                            "trigger": {
                                "text": datasets.Sequence(datasets.Value("string")),
                                "offsets": datasets.Sequence([datasets.Value("int32")]),
                            },
                            "arguments": [
                                {
                                    "role": datasets.Value("string"),
                                    "ref_id": datasets.Value("string"),
                                }
                            ],
                        }
                    ],
                },
            )

        elif self.config.schema == "bigbio_kb":
            features = kb_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        urls = _URLS[_DATASETNAME]
        data_dir = Path(dl_manager.download_and_extract(urls))
        data_dir = data_dir / "1109 corpus units"

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data_dir": data_dir},
            )
        ]

    def _generate_examples(self, data_dir: Path) -> Iterator[Tuple[str, Dict]]:
        if self.config.schema == "source":
            for file in data_dir.iterdir():
                if not str(file).endswith(".txt"):
                    continue

                example = parsing.parse_brat_file(file)
                example = parsing.brat_parse_to_bigbio_kb(example)
                example = self._to_source_example(example)

                # Three documents have incorrect offsets - fix them for fixed_source scheme
                if self.config.subset_id == "pcr_fixed" and example["document_id"] in [
                    "463",
                    "509",
                    "566",
                ]:
                    example = self._fix_example(example)

                yield example["document_id"], example

        elif self.config.schema == "bigbio_kb":
            for file in data_dir.iterdir():
                if not str(file).endswith(".txt"):
                    continue

                example = parsing.parse_brat_file(file)
                example = parsing.brat_parse_to_bigbio_kb(example)

                document_id = example["document_id"]
                example["id"] = document_id

                # Three documents have incorrect offsets - fix them for BigBio scheme
                if document_id in ["463", "509", "566"]:
                    example = self._fix_example(example)

                yield example["id"], example

    def _to_source_example(self, bigbio_example: Dict) -> Dict:
        """
        Converts an example in BigBio-KB scheme to an example according to the source scheme
        """
        source_example = bigbio_example.copy()
        source_example["text"] = bigbio_example["passages"][0]["text"][0]

        source_example.pop("passages", None)
        source_example.pop("relations", None)
        source_example.pop("coreferences", None)

        return source_example

    def _fix_example(self, example: Dict) -> Dict:
        """
        Fixes by the example by adapting the offsets of the trigger word of the first
        event. In the official annotation data the end offset is incorrect (for 3 examples).
        """
        first_event = example["events"][0]
        trigger_text = first_event["trigger"]["text"][0]
        offsets = first_event["trigger"]["offsets"][0]

        real_offsets = [offsets[0], offsets[0] + len(trigger_text)]
        example["events"][0]["trigger"]["offsets"] = [real_offsets]

        return example