File size: 12,278 Bytes
d6637c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
PubTator Central (PTC, https://www.ncbi.nlm.nih.gov/research/pubtator/) [1] is a web service for
exploring and retrieving bioconcept annotations in full text biomedical articles. PTC provides
automated annotations from state-of-the-art text mining systems for genes/proteins, genetic
variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC
annotates PubMed (30 million abstracts), the PMC Open Access Subset and the Author Manuscript
Collection (3 million full text articles). Updated entity identification methods and a
disambiguation module [2] based on cutting-edge deep learning techniques provide increased accuracy.
This FTP repository aggregated all the bio-entity annotations in PTC in tab-separated text format.
The files are expected to be updated monthly.
REFERENCE:
---------------------------------------------------------------------------
[1] Wei C-H, Allot A, Leaman R and Lu Z (2019) "PubTator Central: Automated Concept Annotation for
Biomedical Full Text Articles", Nucleic Acids Res.
[2] wei C-H, et al., (2019) "Biomedical Mention Disambiguation Using a Deep Learning Approach",
ACM-BCB 2019, September 7-10, 2019, Niagara Falls, NY, USA.
[3] Wei C-H, Kao H-Y, Lu Z (2015) "GNormPlus: An Integrative Approach for Tagging Gene, Gene Family
and Protein Domain", 2015, Article ID 918710
[4] Leaman R and Lu Z (2013) "TaggerOne: joint named entity recognition and normalization with
semi-Markov Models", Bioinformatics, 32(18): 839-2846
[5] Wei C-H, Kao H-Y, Lu Z (2012) "SR4GN: a species recognition software tool for gene normalization",
PLoS ONE,7(6):e38460
[6] Wei C-H, et al., (2017) "Integrating genomic variant information from literature with dbSNP and
ClinVar for precision medicine", Bioinformatics,34(1): 80-87
"""
from typing import Dict, Iterator, List, Tuple
import datasets
from bioc import pubtator
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{10.1093/nar/gkz389,
title = {{PubTator central: automated concept annotation for biomedical full text articles}},
author = {Wei, Chih-Hsuan and Allot, Alexis and Leaman, Robert and Lu, Zhiyong},
year = 2019,
month = {05},
journal = {Nucleic Acids Research},
volume = 47,
number = {W1},
pages = {W587-W593},
doi = {10.1093/nar/gkz389},
issn = {0305-1048},
url = {https://doi.org/10.1093/nar/gkz389},
eprint = {https://academic.oup.com/nar/article-pdf/47/W1/W587/28880193/gkz389.pdf}
}
"""
_DATASETNAME = "pubtator_central"
_DISPLAYNAME = "PubTator Central"
_DESCRIPTION = """\
PubTator Central (PTC, https://www.ncbi.nlm.nih.gov/research/pubtator/) is a web service for
exploring and retrieving bioconcept annotations in full text biomedical articles. PTC provides
automated annotations from state-of-the-art text mining systems for genes/proteins, genetic
variants, diseases, chemicals, species and cell lines, all available for immediate download. PTC
annotates PubMed (30 million abstracts), the PMC Open Access Subset and the Author Manuscript
Collection (3 million full text articles). Updated entity identification methods and a
disambiguation module based on cutting-edge deep learning techniques provide increased accuracy.
"""
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/research/pubtator/"
_LICENSE = 'National Center fr Biotechnology Information PUBLIC DOMAIN NOTICE'
_URLS = {
"sample": "https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/bioconcepts2pubtatorcentral.offset.sample",
"full": "https://ftp.ncbi.nlm.nih.gov/pub/lu/PubTatorCentral/bioconcepts2pubtatorcentral.offset.gz",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "2022.01.08"
_BIGBIO_VERSION = "1.0.0"
# Maps the entity types in PubTator to the name of the database they are grounded to
_TYPE_TO_DB_NAME = {
"Gene": "ncbi_gene",
"Disease": "mesh",
"Species": "ncbi_taxon",
"Chemical": "mesh",
"CellLine": "cellosaurus",
}
_DB_NAME_TO_URL = {
"ncbi_gene": "https://www.ncbi.nlm.nih.gov/gene/",
"mesh": "https://www.nlm.nih.gov/mesh/meshhome.html",
"ncbi_taxon": "https://www.ncbi.nlm.nih.gov/taxonomy/",
"cellosaurus": "https://web.expasy.org/cellosaurus/",
"ncbi_dbsnp": "https://www.ncbi.nlm.nih.gov/snp/",
"tmvar": "https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/tmvar/",
}
class PubtatorCentralDataset(datasets.GeneratorBasedBuilder):
"""PubTator Central"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
# sample source
BigBioConfig(
name="pubtator_central_sample_source",
version=SOURCE_VERSION,
description="PubTator Central sample source schema",
schema="source",
subset_id="pubtator_central_sample",
),
# sample big bio
BigBioConfig(
name="pubtator_central_sample_bigbio_kb",
version=BIGBIO_VERSION,
description="PubTator Central sample BigBio schema",
schema="bigbio_kb",
subset_id="pubtator_central_sample",
),
# full dataset source
BigBioConfig(
name="pubtator_central_source",
version=SOURCE_VERSION,
description="PubTator Central source schema",
schema="source",
subset_id="pubtator_central",
),
# full dataset bigbio
BigBioConfig(
name="pubtator_central_bigbio_kb",
version=BIGBIO_VERSION,
description="PubTator Central BigBio schema",
schema="bigbio_kb",
subset_id="pubtator_central",
),
]
DEFAULT_CONFIG_NAME = "pubtator_central_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"pmid": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value("string"),
"mentions": [
{
"concept_id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Value("string"),
"offsets": datasets.Sequence(datasets.Value("int32")),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = (
_URLS["sample"]
if self.config.subset_id.endswith("sample")
else _URLS["full"]
)
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
),
]
def _generate_examples(
self, filepath: str, split: str
) -> Iterator[Tuple[str, Dict]]:
if self.config.schema == "source":
for source_example in self._pubtator_to_source(filepath):
yield source_example["pmid"], source_example
elif self.config.schema == "bigbio_kb":
for kb_example in self._pubtator_to_bigbio_kb(filepath):
yield kb_example["id"], kb_example
@staticmethod
def _pubtator_to_source(filepath: Dict) -> Iterator[Dict]:
with open(filepath, "r") as f:
for doc in pubtator.iterparse(f):
source_example = {
"pmid": doc.pmid,
"title": doc.title,
"abstract": doc.abstract,
"mentions": [
{
"concept_id": mention.id,
"type": mention.type,
"text": mention.text,
"offsets": [mention.start, mention.end],
}
for mention in doc.annotations
],
}
yield source_example
def _pubtator_to_bigbio_kb(self, filepath: Dict) -> Iterator[Dict]:
with open(filepath, "r") as f:
unified_example = {}
for doc in pubtator.iterparse(f):
unified_example["id"] = doc.pmid
unified_example["document_id"] = doc.pmid
unified_example["passages"] = [
{
"id": doc.pmid + "_title",
"type": "title",
"text": [doc.title],
"offsets": [[0, len(doc.title)]],
},
{
"id": doc.pmid + "_abstract",
"type": "abstract",
"text": [doc.abstract],
"offsets": [
[
# +1 assumes the title and abstract will be joined by a space.
len(doc.title) + 1,
len(doc.title) + 1 + len(doc.abstract),
]
],
},
]
unified_entities = []
for i, entity in enumerate(doc.annotations):
# We need a unique identifier for this entity, so build it from the document id and entity id
unified_entity_id = "_".join([doc.pmid, entity.id, str(i)])
# Determining db_name is tricky so use a helper to determine this from the entity annotation
db_name = self._get_db_name(entity)
unified_entities.append(
{
"id": unified_entity_id,
"type": entity.type,
"text": [entity.text],
"offsets": [[entity.start, entity.end]],
"normalized": [{"db_name": db_name, "db_id": entity.id}],
}
)
unified_example["entities"] = unified_entities
unified_example["relations"] = []
unified_example["events"] = []
unified_example["coreferences"] = []
yield unified_example
@staticmethod
def _get_db_name(entity: pubtator.PubTatorAnn) -> str:
if entity.type in _TYPE_TO_DB_NAME:
db_name = _TYPE_TO_DB_NAME[entity.type]
elif entity.type in ["Mutation", "ProteinMutation", "DNAMutation"]:
# Mutation anntotations are grounded to either tmVar or dbSNP
if entity.id.startswith("tmVar"):
db_name = "tmVar"
else:
db_name = "ncbi_dbsnp"
else:
db_name = "unknown"
return db_name
|