Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 17,148 Bytes
0fc3dba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef3af6
0fc3dba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef3af6
0fc3dba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
import os
from itertools import chain
from typing import Dict, List, Tuple

import datasets
from datasets import Value
import pandas as pd

from .bigbiohub import pairs_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks

_LANGUAGES = ['English']
_PUBMED = False
_LOCAL = False
_CITATION = """\
@article{wadden2020fact,
  author    = {David Wadden and Shanchuan Lin and Kyle Lo and Lucy Lu Wang and Madeleine van Zuylen and Arman Cohan and Hannaneh Hajishirzi},
  title     = {Fact or Fiction: Verifying Scientific Claims},
  year      = {2020},
  address   = {Online},
  publisher = {Association for Computational Linguistics},
  url       = {https://aclanthology.org/2020.emnlp-main.609},
  doi       = {10.18653/v1/2020.emnlp-main.609},
  pages     = {7534--7550},
  biburl    = {},
  bibsource = {}
}
"""

_DATASETNAME = "scifact"
_DISPLAYNAME = "SciFact"


_DESCRIPTION_BASE = """\
    SciFact is a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts, and annotated with labels and rationales.
    """

_SOURCE_CORPUS_DESCRIPTION = f"""\
    {_DESCRIPTION_BASE} This config has abstracts and document ids.
    """

_SOURCE_CLAIMS_DESCRIPTION = """\
    {_DESCRIPTION_BASE} This config connects the claims to the evidence and doc ids.
    """

_BIGBIO_PAIRS_RATIONALE_DESCRIPTION = """\
    {_DESCRIPTION_BASE} This task is the following: given a claim and a text span composed of one or more sentences from an abstract, predict a label from ("rationale", "not_rationale") indicating if the span is evidence (can be supporting or refuting) for the claim. This roughly corresponds to the second task outlined in Section 5 of the paper."
    """

_BIGBIO_PAIRS_LABELPREDICTION_DESCRIPTION = """\
    {_DESCRIPTION_BASE} This task is the following: given a claim and a text span composed of one or more sentences from an abstract, predict a label from ("SUPPORT", "NOINFO", "CONTRADICT") indicating if the span supports, provides no info, or contradicts the claim. This roughly corresponds to the thrid task outlined in Section 5 of the paper.
    """

_DESCRIPTION = {
    "scifact_corpus_source": _SOURCE_CORPUS_DESCRIPTION,
    "scifact_claims_source": _SOURCE_CLAIMS_DESCRIPTION,
    "scifact_rationale_bigbio_pairs": _BIGBIO_PAIRS_RATIONALE_DESCRIPTION,
    "scifact_labelprediction_bigbio_pairs": _BIGBIO_PAIRS_LABELPREDICTION_DESCRIPTION,
}

_HOMEPAGE = "https://scifact.apps.allenai.org/"


_LICENSE = 'Creative Commons Attribution Non Commercial 2.0 Generic'

_URLS = {
    _DATASETNAME: "https://scifact.s3-us-west-2.amazonaws.com/release/latest/data.tar.gz",
}

_SUPPORTED_TASKS = [Tasks.TEXT_PAIRS_CLASSIFICATION]

_SOURCE_VERSION = "1.0.0"

_BIGBIO_VERSION = "1.0.0"


class SciFact(datasets.GeneratorBasedBuilder):
    """
    SciFact is a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts, and annotated with labels and rationales.
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="scifact_corpus_source",
            version=SOURCE_VERSION,
            description="scifact source schema for the corpus config",
            schema="source",
            subset_id="scifact_corpus_source",
        ),
        BigBioConfig(
            name="scifact_claims_source",
            version=SOURCE_VERSION,
            description="scifact source schema for the claims config",
            schema="source",
            subset_id="scifact_claims_source",
        ),
        BigBioConfig(
            name="scifact_rationale_bigbio_pairs",
            version=BIGBIO_VERSION,
            description="scifact BigBio text pairs classification schema for rationale task",
            schema="bigbio_pairs",
            subset_id="scifact_rationale_pairs",
        ),
        BigBioConfig(
            name="scifact_labelprediction_bigbio_pairs",
            version=BIGBIO_VERSION,
            description="scifact BigBio text pairs classification schema for label prediction task",
            schema="bigbio_pairs",
            subset_id="scifact_labelprediction_pairs",
        ),
    ]

    DEFAULT_CONFIG_NAME = "scifact_claims_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            # modified from
            # https://huggingface.co/datasets/scifact/blob/main/scifact.py#L50

            if self.config.name == "scifact_corpus_source":
                features = datasets.Features(
                    {
                        "doc_id": Value("int32"),      # The document's S2ORC ID.
                        "title": Value("string"),      # The title.
                        "abstract": [Value("string")], # The abstract, written as a list of sentences.
                        "structured": Value("bool"),   # Indicator for whether this is a structured abstract.
                    }
                )

            elif self.config.name == "scifact_claims_source":
                features = datasets.Features(
                    {
                        "id": Value("int32"),  # An integer claim ID.
                        "claim": Value("string"),  # The text of the claim.
                        "evidences": [
                            {
                                "doc_id": Value("int32"),         # source doc_id for evidence
                                "sentence_ids": [Value("int32")], # sentence ids from doc_id
                                "label": Value("string"),         # SUPPORT or CONTRADICT
                            },
                        ],
                        "cited_doc_ids": [Value("int32")],   # The claim's "cited documents".
                    }
                )

            else:
                raise NotImplementedError(
                    f"{self.config.name} config not implemented"
                )

        elif self.config.schema == "bigbio_pairs":
            features = pairs_features

        else:
            raise NotImplementedError(f"{self.config.schema} schema not implemented")

        return datasets.DatasetInfo(
            description=_DESCRIPTION[self.config.name],
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        urls = _URLS[_DATASETNAME]
        self.config.data_dir = dl_manager.download_and_extract(urls)

        if self.config.name == "scifact_corpus_source":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": os.path.join(
                            self.config.data_dir, "data", "corpus.jsonl"
                        ),
                        "split": "train",
                    },
                ),
            ]

        # the test split is only returned in source schema
        # this is b/c it only has claims with no cited docs or evidence
        # the bigbio implementation of this dataset requires
        # cited docs or evidence to construct samples
        elif self.config.name == "scifact_claims_source":
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": os.path.join(
                            self.config.data_dir, "data", "claims_train.jsonl"
                        ),
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": os.path.join(
                            self.config.data_dir, "data", "claims_dev.jsonl"
                        ),
                        "split": "dev",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": os.path.join(
                            self.config.data_dir, "data", "claims_test.jsonl"
                        ),
                        "split": "test",
                    },
                ),
            ]

        elif self.config.name in [
            "scifact_rationale_bigbio_pairs",
            "scifact_labelprediction_bigbio_pairs",
        ]:
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": os.path.join(
                            self.config.data_dir, "data", "claims_train.jsonl"
                        ),
                        "split": "train",
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": os.path.join(
                            self.config.data_dir, "data", "claims_dev.jsonl"
                        ),
                        "split": "dev",
                    },
                ),
            ]


    def _source_generate_examples(self, filepath, split) -> Tuple[str, Dict[str, str]]:

        # here we just read corpus.jsonl and return the abstracts
        if self.config.name == "scifact_corpus_source":
            with open(filepath) as fp:
                for id_, row in enumerate(fp.readlines()):
                    data = json.loads(row)
                    yield id_, {
                        "doc_id": int(data["doc_id"]),
                        "title": data["title"],
                        "abstract": data["abstract"],
                        "structured": data["structured"],
                    }

        # here we are reading one of claims_(train|dev|test).jsonl
        elif self.config.name == "scifact_claims_source":

            # claims_test.jsonl only has "id" and "claim" keys
            # claims_train.jsonl and claims_dev.jsonl sometimes have evidence
            with open(filepath) as fp:
                for id_, row in enumerate(fp.readlines()):
                    data = json.loads(row)
                    evidences_dict = data.get("evidence", {})
                    evidences_list = []
                    for doc_id, sent_lbl_list in evidences_dict.items():
                        for sent_lbl_dict in sent_lbl_list:
                            evidence = {
                                "doc_id": doc_id,
                                "sentence_ids": sent_lbl_dict["sentences"],
                                "label": sent_lbl_dict["label"],
                            }
                            evidences_list.append(evidence)

                    yield id_, {
                        "id": data["id"],
                        "claim": data["claim"],
                        "evidences": evidences_list,
                        "cited_doc_ids": data.get("cited_doc_ids", []),
                    }


    def _bigbio_generate_examples(self, filepath, split) -> Tuple[str, Dict[str, str]]:
        """
        Here we always create one sample per sentence group.
        Any sentence group in an evidence attribute will have
        a label in {"rationale"} for the rationale task or
        in {"SUPPORT", "CONTRADICT"} for the labelprediction task.
        All other sentences will have either a "not_rationale"
        label or a "NOINFO" label depending on the task.
        """

        # read corpus (one row per abstract)
        corpus_file_path = os.path.join(self.config.data_dir, "data", "corpus.jsonl")
        df_corpus = pd.read_json(corpus_file_path, lines=True)

        # create one row per sentence and create sentence index
        df_sents = df_corpus.explode('abstract')
        df_sents = df_sents.rename(columns={"abstract": "sentence"})
        df_sents['sent_num'] = df_sents.groupby('doc_id').transform('cumcount')
        df_sents['doc_sent_id'] = df_sents.apply(lambda x: f"{x['doc_id']}-{x['sent_num']}", axis=1)

        # read claims
        df_claims = pd.read_json(filepath, lines=True)


        # join claims to corpus
        for _, claim_row in df_claims.iterrows():

            evidence = claim_row['evidence']
            cited_doc_ids = set(claim_row['cited_doc_ids'])
            evidence_doc_ids = set([int(doc_id) for doc_id in evidence.keys()])

            # assert all evidence doc IDs are in cited_doc_ids
            assert len(evidence_doc_ids - cited_doc_ids) == 0

            # this will have all abstract sentences from cited docs
            df_claim_sents = df_sents[df_sents['doc_id'].isin(cited_doc_ids)]

            # create all sentence samples as NOINFO then fix
            noinfo_samples = {}
            for _, row in df_claim_sents.iterrows():
                sample = {
                    "claim": claim_row["claim"],
                    "claim_id": claim_row["id"],
                    "doc_id": row['doc_id'],
                    "sentence_ids": (row['sent_num'],),
                    "doc_sent_ids": (row['doc_sent_id'],),
                    "span": row['sentence'].strip(),
                    "label": "NOINFO",
                }
                noinfo_samples[sample["doc_sent_ids"]] = sample

            # create evidence samples and remove from noinfo samples as we go
            evidence_samples = []
            for doc_id_str, sent_lbl_list in evidence.items():
                doc_id = int(doc_id_str)

                for sent_lbl_dict in sent_lbl_list:
                    sent_ids = sent_lbl_dict['sentences']
                    doc_sent_ids = [f"{doc_id}-{sent_id}" for sent_id in sent_ids]
                    df_evi = df_claim_sents[df_claim_sents['doc_sent_id'].isin(doc_sent_ids)]

                    sample = {
                        "claim": claim_row["claim"],
                        "claim_id": claim_row["id"],
                        "doc_id": doc_id,
                        "sentence_ids": tuple(sent_ids),
                        "doc_sent_ids": tuple(doc_sent_ids),
                        "span": " ".join([el.strip() for el in df_evi["sentence"].values]),
                        "label": sent_lbl_dict["label"],
                    }
                    evidence_samples.append(sample)
                    for doc_sent_id in doc_sent_ids:
                        del noinfo_samples[(doc_sent_id,)]

            # combine all sample and put back in sentence order
            all_samples = evidence_samples + list(noinfo_samples.values())
            all_samples = sorted(all_samples, key=lambda x: (x['doc_id'], x['sentence_ids'][0]))

            # add a unique ID
            for _id, sample in enumerate(all_samples):
                sample["id"] = f"{_id}-{sample['claim_id']}-{sample['doc_id']}-{sample['sentence_ids'][0]}"

            RATIONALE_LABEL_MAP = {
                "SUPPORT": "rationale",
                "CONTRADICT": "rationale",
                "NOINFO": "not_rationale",
            }

            if self.config.name == "scifact_rationale_bigbio_pairs":
                for sample in all_samples:
                    yield sample['id'], {
                        "id": sample["id"],
                        "document_id": sample["doc_id"],
                        "text_1": sample["claim"],
                        "text_2": sample["span"],
                        "label": RATIONALE_LABEL_MAP[sample['label']],
                    }

            elif self.config.name == "scifact_labelprediction_bigbio_pairs":
                for sample in all_samples:
                    yield sample['id'], {
                        "id": sample["id"],
                        "document_id": sample["doc_id"],
                        "text_1": sample["claim"],
                        "text_2": sample["span"],
                        "label": sample['label'],
                    }

    def _generate_examples(self, filepath, split) -> Tuple[int, dict]:

        if "source" in self.config.name:
            for sample in self._source_generate_examples(filepath, split):
                yield sample

        elif "bigbio" in self.config.name:
            for sample in self._bigbio_generate_examples(filepath, split):
                yield sample