markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
ERROR: type should be string, got " https://pbpython.com/bullet-graph.html"
import matplotlib.pyplot as plt import seaborn as sns from matplotlib.ticker import FuncFormatter %matplotlib inline # display a palette of 5 shades of green sns.palplot(sns.light_palette("green", 5)) # 8 different shades of purple in reverse order sns.palplot(sns.light_palette("purple", 8, reverse=True)) # define the values we want to plot limits = [80, 100, 150] # 3 ranges: 0-80, 81-100, 101-150 data_to_plot = ("Example 1", 105, 120) #β€œExample” line with a value of 105 and target line of 120 # blues color palette palette = sns.color_palette("Blues_r", len(limits)) # build the stacked bar chart of the ranges fig, ax = plt.subplots() ax.set_aspect('equal') ax.set_yticks([1]) ax.set_yticklabels([data_to_plot[0]]) ax.axvline(data_to_plot[2], color="gray", ymin=0.10, ymax=0.9) prev_limit = 0 for idx, lim in enumerate(limits): ax.barh([1], lim-prev_limit, left=prev_limit, height=15, color=palette[idx]) prev_limit = lim # Draw the value we're measuring ax.barh([1], data_to_plot[1], color='black', height=5) ax.axvline(data_to_plot[2], color="gray", ymin=0.10, ymax=0.9)
_____no_output_____
MIT
styling/bullet_graph.ipynb
TillMeineke/machine_learning
Was Air Quality Affected in Countries or Regions Where COVID-19 was Most Prevalent?**By: Arpit Jain, Maria Stella Vardanega, Tingting Cao, Christopher Chang, Mona Ma, Fusu Luo** --- Outline I. Problem Definition & Data Source Description 1. Project Objectives 2. Data Source 3. Dataset Preview II. What are the most prevalent pollutants? III. What were the pollutant levels in 2019 and 2020 globally, and their averages? 1. Selecting Data from 2019 and 2020 with air pollutant information 2. Monthly Air Pollutant Data from 2019 3. Monthly Air Pollutant Data from 2020 IV: What cities had the highest changes in pollutant air quality index during COVID-19? 1. 10 cities with most air quality index reduction for each pollutant 2. Cities with more than 50 percent AQI decrease and 50 AQI decrease for each air pollutants V: Regression analysis on COVID-19 cases and pollutant Air Quality Index Globally VI: When were lockdowns implemented for each country? VII: How did Air Quality change in countries with low COVID-19 cases (NZ, AUS, TW) and high COVID-19 cases (US, IT,CN)? 1. Countries with high COVID cases 2. Countries with low COVID cases VIII: Conclusion IX: Public Tableau Dashboards --- I. Problem Definition & Data Source Description 1. Project Objectives Air pollution, as one of the most serious environmental problems confronting our civilization, is the presence of toxic gases and particles in the air at levels that pose adverse effects on global climate and lead to public health risk and disease. Exposure to elevated levels of air pollutants has been implicated in a diverse set of medical conditions including cardiovascular and respiratory mortality, lung cancer and autism. Air pollutants come from natural sources such as wildfires and volcanoes, as well as are highly related to human activities from mobile sources (such as cars, buses and planes) or stationary sources (such as industrial factories, power plants and wood burning fireplaces). However, in the past year, the COVID-19 pandemic has caused unprecedented changes to the our work, study and daily activities, subsequently led to major reductions in air pollutant emissions. And our team would like take this opportunity to examine the air quality in the past two years and look on how the air quality was impacted in countries and cities where the corona-virus was prevalent. 2. Data Source **Data Source Description:** In this project, we downloaded worldwide air quality data for Year 2019 and 2020 from the Air Quality Open Data Platform (https://aqicn.org/data-platform/covid19/), which provides historical air quality index and meteorological data for more than 380 major cities across the world. We used air quality index data in 2019 as baseline to find the air quality changes during COVID in 2020. In addition we joined the data with geographic location information from https://aqicn.org/data-platform/covid19/airquality-covid19-cities.json to get air quality index for each pollutant at city-level. According to the data source provider, the data for each major cities is based on the average (median) of several stations. The data set provides min, max, median and standard deviation for each of the air pollutant species in the form of Air Quality Index (AQI) that are converted from raw concentration based on the US Environmental Protection Agency (EPA) standard. The United States EPA list the following as the criteria at this website (https://www.epa.gov/criteria-air-pollutants/naaqs-table): Carbon Monoxide (CO), Nitrogen Dioxide (NO2), Ozone (O3), Particle Pollution (PM2.5) + (PM10), and finally Sulfur Dioxide (SO2). For the particle pollution the numbers stand for the size of the particles. PM2.5 means particles that are 2.5 micrometers and smaller, while PM10 means particles that are 10 micrometers and smaller. https://www.epa.gov/pm-pollution/particulate-matter-pm-basics. Particle Pollution typically includes Dust, Dirt, and Smoke. Our dataset covers most of the criteria pollutants (PM2.5, PM10, Ozone, SO2, NO2 and CO), and meteorological parameters such as temperature, wind speed, dew point, relative humidity. Air quality index basics are shown in the figure below. (source: https://www.airnow.gov/aqi/aqi-basics/) 3. Preview of the Dataset
%%bigquery SELECT * FROM `ba775-team2-b2.AQICN.air_quality_data` LIMIT 10
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 485.85query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 10/10 [00:01<00:00, 6.05rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
--- II. What are the most prevalent pollutants?This question focuses on the prevalence of the pollutants. From the dataset, the prevalence can be defined geographically from the cities and countries that had recorded the parameters detected times. To find the prevalence, our team selected the parameters from situations in how many distinct cities and countries detected the parameter appeared.
%%bigquery SELECT Parameter,COUNT(distinct(City)) AS number_of_city, COUNT(distinct(Country)) AS number_of_country,string_agg(distinct(Country)) AS list_country FROM `ba775-team2-b2.AQICN.air_quality_data` GROUP BY Parameter ORDER BY number_of_city DESC
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 918.39query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 20/20 [00:01<00:00, 13.28rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
From the result, top 6 parameters are meteorological parameters. And the first air pollutants (which can be harmful to the public health and environment) is PM2.5, followed by NO2 and PM10.PM2.5 has been detected in 548 cities and 92 countries. NO2 has been detected in 528 cities and 64 countries. PM10 has been detected in 527 cities and 71 countries.We conclude PM2.5, NO2 and PM10 are the most prevalent criteria pollutants from the dataset. All of them are considered criteria pollutants set by EPA. --- III. What were the pollutant levels in 2019 and 2020 globally, and their averages? The purpose of this question is to determine the air pollutant levels in 2019 and 2020. The air pollutant levels in 2019 serve as a baseline for the air pollutant levels in 2020. In the previous question we observe the distinct parameters that are within the Air Quality Database. Since the meteorological parameters are not needed for the project, we can exclude them, and only focus on the air pollutants. The first step is create a table where the parameters are only air pollutants and from the years 2019 and 2020. The next step was to select all the rows from each year, that had a certain parameter, and to union them all. This process was done for all six parameters for both years. 1. Selecting Data from 2019 and 2020 with air pollutant information
%%bigquery SELECT Date, Country, City, lat as Latitude, lon as Longitude, pop as Population, Parameter as Pollutant, median as Pollutant_level FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE (extract(year from date) = 2019 OR extract(year from date) = 2020) AND parameter IN ('co', 'o3','no2','so2','pm10', 'pm25') ORDER BY Country, Date;
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2/2 [00:00<00:00, 1175.70query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1968194/1968194 [00:02<00:00, 804214.66rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
As we can see after filtering the tables for only the air pollutants we have 1.9 million rows. From here we split the data into 2019 data and 2020 data. 2. Monthly Air Pollutant Data from 2019
%%bigquery SELECT extract(month from date) Month, Parameter as Pollutant,Round(avg(median),2) as Avg_Pollutant_Level_2019 FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2019 AND parameter IN ('co') GROUP BY Month, Parameter UNION ALL SELECT extract(month from date) Month, Parameter ,Round(avg(median),2) FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2019 AND parameter IN ('o3') GROUP BY Month, Parameter UNION ALL SELECT extract(month from date) Month, Parameter ,Round(avg(median),2) FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2019 AND parameter IN ('no2') GROUP BY Month, Parameter UNION ALL SELECT extract(month from date) Month, Parameter ,Round(avg(median),2) FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2019 AND parameter IN ('so2') GROUP BY Month, Parameter UNION ALL SELECT extract(month from date) Month, Parameter ,Round(avg(median),2) FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2019 AND parameter IN ('pm10') GROUP BY Month, Parameter UNION ALL SELECT extract(month from date) Month, Parameter ,Round(avg(median),2) FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2019 AND parameter IN ('pm25') GROUP BY Month, Parameter ORDER BY Month;
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 8/8 [00:00<00:00, 4930.85query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 72/72 [00:01<00:00, 64.20rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
This query represents the average pollutant level for each air pollutant globally for each month. We do this again for the 2020 data. 3. Monthly Air Pollutant Data from 2020
%%bigquery SELECT extract(month from date) Month, Parameter as Pollutant,Round(avg(median),2) as Avg_Pollutant_Level_2020 FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2020 AND parameter IN ('co') GROUP BY Month, Parameter UNION ALL SELECT extract(month from date) Month, Parameter ,Round(avg(median),2) FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2020 AND parameter IN ('o3') GROUP BY Month, Parameter UNION ALL SELECT extract(month from date) Month, Parameter ,Round(avg(median),2) FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2020 AND parameter IN ('no2') GROUP BY Month, Parameter UNION ALL SELECT extract(month from date) Month, Parameter ,Round(avg(median),2) FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2020 AND parameter IN ('so2') GROUP BY Month, Parameter UNION ALL SELECT extract(month from date) Month, Parameter ,Round(avg(median),2) FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2020 AND parameter IN ('pm10') GROUP BY Month, Parameter UNION ALL SELECT extract(month from date) Month, Parameter ,Round(avg(median),2) FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE extract(year from date) = 2020 AND parameter IN ('pm25') GROUP BY Month, Parameter ORDER BY Month;
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 8/8 [00:00<00:00, 4959.27query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 72/72 [00:01<00:00, 51.38rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
When comparing the data there isn't a noticeable difference in global pollutant levels from 2019 to 2020, which leads to the hypothesis of pollutant levels being regional rather than global. This might also mean that whatever effects might be occurring from COVID-19 cases, and lockdowns are short-term enough that the average monthly air pollutant is not capturing small intricacies in the data. We can further narrow down the data by analyzing data from when lockdowns were occurring in different countries, regions, and even cities. --- IV: What cities had the highest changes in pollutant air quality index during COVID-19? In this question, we are trying to find cities with most air quality improvement during COVID, and cities with longest time of certain level AQI reduction. 1. 10 cities with most air quality index reduction for each pollutantMaking queries and creating tables to find monthly average air quality index (AQI) for all pollutants at city level We are using data in 2019 as a baseline and computing AQI differences and percent differences. Negative difference values indicates air quality index decrease, corresponding to an air quality improvement, and positive difference values indicate air quality index increases, corresponding to an air quality deterioration.
%%bigquery CREATE OR REPLACE TABLE AQICN.pollutant_diff_daily_aqi_less_than_500 AS ( SELECT A.Date AS Date_2020,B.Date AS Date_2019,A.Country,A.City,A.lat,A.lon,A.Parameter,A.pop,A.median AS aqi_2020,B.median AS aqi_2019,(A.median-B.median) AS aqi_diff, ROUND((A.median-B.median)/B.median*100,2) AS aqi_percent_diff FROM (SELECT * FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE Parameter in ('pm25','pm10','o3','no2','co','so2') AND EXTRACT(Year FROM Date) = 2020 AND median > 0 AND median < 500) AS A INNER JOIN (SELECT * FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE Parameter in ('pm25','pm10','o3','no2','co','so2') AND EXTRACT(Year FROM Date) = 2019 AND median > 0 AND median < 500) AS B ON A.City = B.City WHERE EXTRACT(MONTH FROM A.Date) = EXTRACT(MONTH FROM B.Date) AND EXTRACT(DAY FROM A.Date) = EXTRACT(DAY FROM B.Date) AND A.Parameter = B.Parameter ORDER BY City,Date_2020 ) %%bigquery CREATE OR REPLACE TABLE AQICN.pollutant_diff_monthly_aqi AS SELECT EXTRACT(month FROM Date_2020) AS month_2020,EXTRACT(month FROM Date_2019) AS month_2019, Country,City,lat,lon,Parameter,ROUND(AVG(aqi_2020),1) AS monthly_avg_aqi_2020, ROUND(AVG(aqi_2019),1) AS monthly_avg_aqi_2019,(ROUND(AVG(aqi_2020),1)-ROUND(AVG(aqi_2019),1)) AS aqi_diff_monthly, ROUND((AVG(aqi_2020)-AVG(aqi_2019))/AVG(aqi_2019)*100,2) AS aqi_percent_diff_monthly FROM AQICN.pollutant_diff_daily_aqi_less_than_500 GROUP BY month_2020,month_2019,Country,City,lat,lon,Parameter %%bigquery SELECT * FROM AQICN.pollutant_diff_monthly_aqi ORDER BY Parameter,month_2020,Country LIMIT 10
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 368.89query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 10/10 [00:01<00:00, 6.39rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
Order by monthly average AQI difference to find cities having top 10 air quality index reduction for each pollutant
%%bigquery CREATE OR REPLACE TABLE AQICN.top_10_cites_most_pollutant_percent_diff_monthly AS (SELECT * FROM AQICN.pollutant_diff_monthly_aqi WHERE Parameter = 'co' ORDER BY aqi_percent_diff_monthly LIMIT 10) UNION ALL (SELECT * FROM AQICN.pollutant_diff_monthly_aqi WHERE Parameter = 'o3' ORDER BY aqi_percent_diff_monthly LIMIT 10) UNION ALL (SELECT * FROM AQICN.pollutant_diff_monthly_aqi WHERE Parameter = 'no2' ORDER BY aqi_percent_diff_monthly LIMIT 10) UNION ALL (SELECT * FROM AQICN.pollutant_diff_monthly_aqi WHERE Parameter = 'pm25' ORDER BY aqi_percent_diff_monthly LIMIT 10) UNION ALL (SELECT * FROM AQICN.pollutant_diff_monthly_aqi WHERE Parameter = 'pm10' ORDER BY aqi_percent_diff_monthly LIMIT 10) %%bigquery SELECT * FROM AQICN.top_10_cites_most_pollutant_percent_diff_monthly ORDER BY Parameter,aqi_percent_diff_monthly LIMIT 10
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 494.55query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 10/10 [00:01<00:00, 5.25rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
Order by monthly average percent AQI difference to find cities having top 10 most air quality index reduction for each pollutant
%%bigquery CREATE OR REPLACE TABLE AQICN.top_10_cites_most_pollutant_diff_monthly AS (SELECT * FROM AQICN.pollutant_diff_monthly_aqi WHERE Parameter = 'pm25' ORDER BY aqi_diff_monthly LIMIT 10) UNION ALL (SELECT * FROM AQICN.pollutant_diff_monthly_aqi WHERE Parameter = 'o3' ORDER BY aqi_diff_monthly LIMIT 10) UNION ALL (SELECT * FROM AQICN.pollutant_diff_monthly_aqi WHERE Parameter = 'pm10' ORDER BY aqi_diff_monthly LIMIT 10) UNION ALL (SELECT * FROM AQICN.pollutant_diff_monthly_aqi WHERE Parameter = 'no2' ORDER BY aqi_diff_monthly LIMIT 10) UNION ALL (SELECT * FROM AQICN.pollutant_diff_monthly_aqi WHERE Parameter = 'so2' ORDER BY aqi_diff_monthly LIMIT 10) UNION ALL (SELECT * FROM AQICN.pollutant_diff_monthly_aqi WHERE Parameter = 'co' ORDER BY aqi_diff_monthly LIMIT 10) %%bigquery SELECT * FROM AQICN.top_10_cites_most_pollutant_diff_monthly ORDER BY Parameter,aqi_diff_monthly LIMIT 10
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 446.25query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 10/10 [00:01<00:00, 6.48rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
2. Cities with more than 50 percent AQI decrease and 50 AQI decrease for each air pollutants Reason: the higher the AQI, the unhealthier the air will be, especially for sensitive groups such as people with heart and lung disease, elders and children. A major reduction or percent reduction in AQI for long period of time implies a high air quality impact from the COIVD pandemic.
%%bigquery SELECT City,Country,Parameter,COUNT(*) AS num_month_mt_50_per_decrease FROM AQICN.pollutant_diff_monthly_aqi WHERE aqi_percent_diff_monthly < -50 AND aqi_diff_monthly < -50 GROUP BY City,Country,Parameter ORDER BY Parameter,COUNT(*) DESC LIMIT 10
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 881.71query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 10/10 [00:01<00:00, 6.79rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
--- ResultsDuring the pandemic, cities getting most air qualities improvements in terms of percent AQI differences for each pollutant are:CO: United States Portland, Chile Talca and Mexico Aguascalientes;NO2: Iran Qom, South Africa Middelburg and Philippines Butuan;SO2: Greece Athens, Mexico MΓ©rida and Mexico San Luis PotosΓ­;Ozone: Mexico Aguascalientes, United States Queens and United States The Bronx;PM 10: India Gandhinagar, China Hohhot and Israel Tel Aviv;PM 2.5: Mexico MΓ©rida, Tajikistan Dushanbe, Bosnia and Herzegovina Sarajevo, Turkey Erzurum, China Qiqihar and India Gandhinagar;Cities getting at least 50% and 50 AQI reduction with longest time:CO: United States Portland, 3 out of 12 months;NO2: Iran Qom, 5 out of 12 months;O3: Mexico Aguascalientes, 5 out of 12 months;PM25: several cities including Iran Kermanshah, Singapore Singapore, AU Sydney and Canberra, 1 out of 12 months;PM10: India Gandhinagar and Bhopal, 2 out of 12 months;SO2: Mexico MΓ©rida 5 out of 12 months. --- V: Regression analysis on COVID-19 cases and pollutant Air Quality Index Globally The purpose of this part is to find the differences in AQI between 2019 and 2020, also the percentage changes for four parameters which include (NO,NO2,PM2.5 and O3), then join with the COVID confirmed table to find the regression between the AQI and the new confirmed case for each air pollutant.
%%bigquery select A.month,A.month_n, A.country,A.parameter,round((B.avg_median_month- A.avg_median_month),2) as diff_avg, (B.avg_median_month - A.avg_median_month)/A.avg_median_month as diff_perc from (SELECT FORMAT_DATETIME("%B", date) month,EXTRACT(year FROM date) year, EXTRACT(month FROM date) month_n, country,parameter,round(avg(median),2) as avg_median_month FROM `AQICN.Arpit_Cleaned_Data2` WHERE Parameter IN ('co','no2','o3','pm25') AND EXTRACT(year FROM date) = 2019 GROUP by 1,2,3,4,5 ORDER BY country, parameter) A left join (SELECT FORMAT_DATETIME("%B", date) month,EXTRACT(year FROM date) year, EXTRACT(month FROM date) month_n, country,parameter,round(avg(median),2) as avg_median_month FROM `AQICN.Arpit_Cleaned_Data2` WHERE Parameter IN ('co','no2','o3','pm25') AND EXTRACT(year FROM date) = 2020 GROUP by 1,2,3,4,5 ORDER BY country, parameter) B using (month,country,parameter,month_n) where A.avg_median_month >0 %%bigquery select A.*,confirmed,B.country as country_name from `all_para_20_19.all_para_20_19_diff` as A inner join `covid_population.covid _pop` as B on A.country = B.country_code2 and A.month = B.month and A.month_n = B.month_n where B.year = 2020 order by A.country,A.month_n
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:00<00:00, 1451.15query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 2789/2789 [00:01<00:00, 1960.44rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
Using Bigquery ML to find liner regression between diff_avg for each parameter and confirmed cases(Example showing below is that parameter = co; x = confirmed; y=diff_avg --AQI changes)
%%bigquery CREATE OR REPLACE MODEL `all_para_20_19.all_para_20_19_diff_covid_model` # Specify options OPTIONS (model_type='linear_reg', input_label_cols=['diff_avg']) AS # Provide training data SELECT confirmed, diff_avg FROM `all_para_20_19.all_para_20_19_diff_covid` WHERE parameter = 'co' and diff_avg is not null
_____no_output_____
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
Evaluating the model to find out r2_score for each monthly average air pollutant AQI changes vs monthly confirmed new cases linear regression model.Example showing below is Evaluation for country level monthly average CO AQI vs monthly new confirmed COVID cases model:
%%bigquery SELECT * FROM ML.EVALUATE( MODEL `all_para_20_19.all_para_20_19_diff_covid_model`, # Model name # Table to evaluate against (SELECT confirmed, diff_avg FROM `all_para_20_19.all_para_20_19_diff_covid` WHERE parameter = 'co' and diff_avg is not null ) )
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:00<00:00, 1508.20query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:01<00:00, 1.86s/rows]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
Evaluation for country level monthly average PM2.5 AQI changes vs monthly new confirmed COVID cases model: Evaluation for country level monthly average NO2 AQI changes vs monthly new confirmed COVID cases model: Evaluation for country level monthly average O3 AQI changes vs monthly new confirmed COVID cases model: We have also conducted log transformation of x-variables for linear regression, the most correlated data is PM 2.5 AQI changes vs LOG(confirmed case). Visualization is shown below. We can see an overall AQI changes from 2019 to 2020. However, after running regression for four air pollutants, model R-squares are less than 0.02, indicating a weak linear relationship between the air quality index changes and the numbers of new confirmed COVID cases. The result makes sense because there are complicated physical and chemical process involved in formation and transportation of air pollution, thus factors such as the weather, energy source, and terrain could also impact the AQI changes. Also, the dramatic increase of new COVID cases might not affect people's response in a way reducing outdoor activities, especially when "stay at home order" is partially lifted.In this case, we decide to specifically study some countries during their lockdown period and examine the AQI changes. --- VI: When were lockdowns implemented for each country? Lockdown Dates per CountryChina: Jan 23 - April 8, 2020 (Wuhan 76 day lockdown)USA: March 19 - April 7, 2020 Italy: March 9 - May 18, 2020Taiwan: No lockdowns in 2020. Lockdown started in July 2021. Australia: March 18 - May/June 2020New Zealand: March 25 - May/June 2020 From the previous regression model we can see that the there was very little correlation between AQI and confirmed cases, and one of the main reasons is that confirmed cases could not accurately capture human activity. To compensate for this, we narrowed down the dates of our pollutant data in order to compare the pollutant levels only during lockdown periods in 2019 and 2020 for the countries where COVID-19 was most prevalent: China, USA, Italy, and those that COVID-19 wasn't as prevalent: Taiwan, Australia, and New Zealand. We came to a conclusion that most lockdown periods started from mid March to April, May, or June, except for China, which started their lockdown late January until April of 2020. To generalize the lockdown dates for countries other than China, the SQL query included dates from the beginning of March to the end of June. As for China, the query included specific dates from January 23 to April 8th of 2020, which is the Wuhan 76 day lockdown.
%%bigquery SELECT country, date, parameter, AVG(count) AS air_quality FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE date BETWEEN '2020-03-01' AND '2020-06-30' AND country in ('US','IT','AU','NZ','TW') GROUP BY country, parameter, date ORDER BY date %%bigquery SELECT country, date, parameter, AVG(count) AS air_quality FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE date BETWEEN '2020-01-23' AND '2020-04-08' AND country = 'CN' GROUP BY country, parameter, date ORDER BY date
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 1015.32query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 900/900 [00:01<00:00, 558.11rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
--- VII: How did Air Quality change in countries with low COVID-19 cases (NZ, AUS, TW) and high COVID-19 cases (US, IT,CN)?This question was answered by creating separate tables that encompassed the equivalent lockdown periods per country for 2019. Then, the two tables were joined using the parameter and grouped according to country and parameter to create a subsequent table illustrating the percentage change in average pollution from 2019 to 2020 (during the respective lockdown periods). 1. Countries with high COVID cases
%%bigquery CREATE OR REPLACE TABLE AQICN.air_quality2019_Italy AS SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE date BETWEEN '2019-03-09' AND '2019-05-18' AND country = 'IT' %%bigquery SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019, (AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020 LEFT JOIN AQICN.air_quality2019_Italy AS a2019 USING(parameter) WHERE a2020.date BETWEEN '2020-03-09' AND '2020-05-18' AND a2020.country = 'IT' AND Parameter in ('pm25','pm10','o3','no2','co','so2') GROUP BY a2020.country, a2020.parameter ORDER BY percentage_change
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:00<00:00, 2174.90query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:01<00:00, 3.91rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
Here we can see that the only pollutant that decreased during the 2020 lockdown in Italy, compared to the respective time period in 2019, was NO2, which decreased by 35.74%.
%%bigquery CREATE OR REPLACE TABLE AQICN.air_quality2019_US AS SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE date BETWEEN '2019-03-19' AND '2019-04-07' AND country = 'US' %%bigquery SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019, (AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020 LEFT JOIN AQICN.air_quality2019_US AS a2019 USING(parameter) WHERE a2020.date BETWEEN '2020-03-19' AND '2020-04-07' AND a2020.country = 'US' AND Parameter in ('pm25','pm10','o3','no2','co','so2') GROUP BY a2020.country, a2020.parameter ORDER BY percentage_change
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:00<00:00, 2138.31query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:01<00:00, 3.36rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
In the United States, all the pollutants decreased in 2020 compared to 2019. The largest changes occurred in O3, NO2 and SO2, which decreased by 36.69%, 30.22%, and 27.10% respectively. This indicates that the lockdowns during the COVID-19 pandemic may have positively affected the emission of pollutants in the United States.
%%bigquery CREATE OR REPLACE TABLE AQICN.air_quality2019_China AS SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE date BETWEEN '2019-01-23' AND '2019-04-08' AND country = 'CN' %%bigquery SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019, (AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020 LEFT JOIN AQICN.air_quality2019_China AS a2019 USING(parameter) WHERE a2020.date BETWEEN '2020-01-23' AND '2020-04-08' AND a2020.country = 'CN' AND Parameter in ('pm25','pm10','o3','no2','co','so2') GROUP BY a2020.country, a2020.parameter ORDER BY percentage_change
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:00<00:00, 1981.72query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:01<00:00, 4.01rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
In China, most pollutants decreased in 2020 compared to the same period in 2019. The largest change was in NO2 which decreased by 30.88% compared to the previous year. 2. Countries with low COVID cases
%%bigquery CREATE OR REPLACE TABLE AQICN.air_quality2019_Taiwan AS SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE EXTRACT(month FROM date) = 07 AND EXTRACT(year FROM date) = 2019 AND country = 'TW' %%bigquery SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019, (AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020 LEFT JOIN AQICN.air_quality2019_Taiwan AS a2019 USING(parameter) WHERE EXTRACT(month FROM a2020.date) = 07 AND EXTRACT(year FROM a2020.date) = 2020 AND a2020.country = 'TW' AND Parameter in ('pm25','pm10','o3','no2','co','so2') GROUP BY a2020.country, a2020.parameter ORDER BY percentage_change
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:00<00:00, 1830.37query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:01<00:00, 4.02rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
Taiwan, which did not experience lockdowns due to COVID-19, also shows a decrease in all pollutant levels. This contradicts our initially hypothesis that countries who experienced more COVID-19 and therefore more lockdowns would have better air quality.
%%bigquery CREATE OR REPLACE TABLE AQICN.air_quality2019_AUS AS SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE date BETWEEN '2019-03-25' AND '2019-05-31' AND country = 'NZ' %%bigquery SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019, (AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020 LEFT JOIN AQICN.air_quality2019_NZ AS a2019 USING(parameter) WHERE a2020.date BETWEEN '2020-03-25' AND '2020-05-31' AND Parameter in ('pm25','pm10','o3','no2','co','so2') AND a2020.country = 'NZ' GROUP BY a2020.country, a2020.parameter ORDER BY percentage_change
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:00<00:00, 2199.14query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5/5 [00:01<00:00, 3.27rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
New Zealand also shows a decrease in all pollutant levels. Nevertheless, New Zealand did go into lockdown for a period and these numbers may reflect the lessened activity due to COVID-19 during that time compared to the equivalent in 2019.
%%bigquery CREATE OR REPLACE TABLE AQICN.air_quality2019_AUS AS SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data` WHERE date BETWEEN '2019-03-18' AND '2019-05-31' AND country = 'AU' %%bigquery SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019, (AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020 LEFT JOIN AQICN.air_quality2019_AUS AS a2019 USING(parameter) WHERE a2020.date BETWEEN '2020-03-18' AND '2020-05-31' AND Parameter in ('pm25','pm10','o3','no2','co','so2') AND a2020.country = 'AU' GROUP BY a2020.country, a2020.parameter ORDER BY percentage_change
Query complete after 0.00s: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4/4 [00:00<00:00, 2131.79query/s] Downloading: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:01<00:00, 4.52rows/s]
MIT
docs/team-projects/Summer-2021/B2-Team2-Analyzing-Air-Quality-During-COVID19-Pandemic.ipynb
JQmiracle/Business-Analytics-Toolbox
Basics- All values of a categorical valiable are either in `categories` or `np.nan`.- Order is defined by the order of `categories`, not the lexical order of the values.- Internally, the data structure consists of a `categories` array and an integer arrays of `codes`, which point to the values in the `categories` array.- The memory usage of a categorical variable is proportional to the number of categories plus the length of the data, while that for an object dtype is a constant times the length of the data. As the number of categories approaches the length of the data, memory usage approaches that of object type.- Categories can be useful in the following scenarios: - To save memory (if number of categories small relative to number of rows) - If logical order differs from lexical order (e.g. 'small', 'medium', 'large') - To signal to libraries that column should be treated as a category (e.g. for plotting) General best practicesBased on [this](https://towardsdatascience.com/staying-sane-while-adopting-pandas-categorical-datatypes-78dbd19dcd8a) useful article.- Operate on category values rather than column elements. E.g. to rename categories use `df.catvar.cat.rename_rategories(*args, **kwargs)`, if there is no `cat` method available,consider operating on categories directly with `df.catvar.cat.categories`.- Merging on categories: the two key things to remember are that 1) Pandas treats categorical variables with different categories as different data types, and 2) category merge keys will only be categories in the merged dataframe if they are of the same data types (i.e. have the same categories), otherwise they will be converted back to objects.- Grouping on categories: remember that by default we group on all categories, not just those present in the data. More often than not, you'll want to use `df.groupby(catvar, observed=True)` to only use categories observed in the data.
titanic = sns.load_dataset("titanic") titanic.head(2)
_____no_output_____
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
Operations I frequently use Renaming categories
titanic["class"].cat.rename_categories(str.upper)[:2]
_____no_output_____
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
Appending new categories
titanic["class"].cat.add_categories(["Fourth"]).cat.categories
_____no_output_____
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
Removing categories
titanic["class"].cat.remove_categories(["Third"]).cat.categories
_____no_output_____
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
Remove unused categories
titanic_small = titanic.iloc[:2] titanic_small titanic_small["class"].cat.remove_unused_categories().cat.categories
_____no_output_____
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
Remove and add categories simultaneously
titanic["class"].value_counts(dropna=False) titanic["class"].cat.set_categories(["First", "Third", "Fourth"]).value_counts( dropna=False )
_____no_output_____
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
Using string and datetime accessorsThis works as expected, and if the number of distinct categories is small relative to the number of rows, then operating on the categories is faster (because under the hood, pandas applies the change to `categories` and constructs a new series (see [here](https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.htmlstring-and-datetime-accessors)) so no need to do this manually as I was inclined to).
cat_class = titanic["class"] %timeit cat_class.str.contains('d') str_class = titanic["class"].astype("object") %timeit str_class.str.contains('d')
149 Β΅s Β± 7.84 Β΅s per loop (mean Β± std. dev. of 7 runs, 10000 loops each) 398 Β΅s Β± 16.3 Β΅s per loop (mean Β± std. dev. of 7 runs, 1000 loops each)
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
Object creation Convert *sex* and *class* to the same categorical type, with categories being the union of all unique values of both columns.
cols = ["sex", "who"] unique_values = np.unique(titanic[cols].to_numpy().ravel()) categories = pd.CategoricalDtype(categories=unique_values) titanic[cols] = titanic[cols].astype(categories) print(titanic.sex.cat.categories) print(titanic.who.cat.categories) # restore sex and who to object types titanic[cols] = titanic[cols].astype("object")
_____no_output_____
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
Custom order
df = pd.DataFrame({"quality": ["good", "excellent", "very good"]}) df.sort_values("quality") ordered_quality = pd.CategoricalDtype(["good", "very good", "excellent"], ordered=True) df.quality = df.quality.astype(ordered_quality) df.sort_values("quality")
_____no_output_____
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
Unique values
small_titanic = titanic.iloc[:2] small_titanic
_____no_output_____
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
`Series.unique` returns values in order appearance, and only returns values that are present in the data.
small_titanic["class"].unique()
_____no_output_____
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
`Series.cat.categories` returns all category values.
small_titanic["class"].cat.categories
_____no_output_____
MIT
content/post/pandas-categories/pandas-categories.ipynb
fabiangunzinger/wowchemy
Machine Learning 1 Some Concepts
Mean Absolute Error (MAE) is the mean of the absolute value of the errors Mean Squared Error (MSE) is the mean of the squared errors: Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors Comparing these metrics: MAE is the easiest to understand because it’s the average error. MSE is more popular than MAE because MSE β€œpunishes” larger errors, which tends to be useful in the real world. RMSE is even more popular than MSE because RMSE is interpretable in the β€œy” units. # to get the metrics from sklearn import metrics print('MAE:', metrics.mean_absolute_error(y_test, y_pred)) print('MSE:', metrics.mean_squared_error(y_test, y_pred)) print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) # Different way, just for illustration y_pred = linreg.predict(X_test) from sklearn.metrics import mean_squared_error MSE = mean_squared_error(y_test, y_pred) print(MSE)
_____no_output_____
BSD-2-Clause
Learning Notes/Learning Notes ML - 1 Basics.ipynb
k21k/Python-Notes
Predictions
# Lets say that the model inputs are X = df[['Weight', 'Volume']] y = df['CO2'] regr = linear_model.LinearRegression() regr.fit(X, y) # Simply do that for predicting the CO2 emission of a car where the weight is 2300kg, and the volume is 1300ccm: predictedCO2 = regr.predict([[2300, 1300]]) print(predictedCO2)
_____no_output_____
BSD-2-Clause
Learning Notes/Learning Notes ML - 1 Basics.ipynb
k21k/Python-Notes
OLS Regression
https://docs.w3cub.com/statsmodels/generated/statsmodels.regression.linear_model.ols.fit_regularized/ est=sm.OLS(y, X) est = est.fit() est.summary()
_____no_output_____
BSD-2-Clause
Learning Notes/Learning Notes ML - 1 Basics.ipynb
k21k/Python-Notes
Plotting Errors
# provided that y_test and y_pred have been called (example below) # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) # y_pred = linreg.predict(X_test) sns.distplot((y_test-y_pred),bins=50)
_____no_output_____
BSD-2-Clause
Learning Notes/Learning Notes ML - 1 Basics.ipynb
k21k/Python-Notes
Interpretation of Outputs Multiple Linear Regression
Almost all the real-world problems that you are going to encounter will have more than two variables. Linear regression involving multiple variables is called β€œmultiple linear regression” or multivariate linear regression. The steps to perform multiple linear regression are almost similar to that of simple linear regression. The difference lies in the evaluation. You can use it to find out which factor has the highest impact on the predicted output and how different variables relate to each other.
_____no_output_____
BSD-2-Clause
Learning Notes/Learning Notes ML - 1 Basics.ipynb
k21k/Python-Notes
Tensorflow Timeline Analysis on Model Zoo Benchmark between Intel optimized and stock TensorflowThis jupyter notebook will help you evaluate performance benefits from Intel-optimized Tensorflow on the level of Tensorflow operations via several pre-trained models from Intel Model Zoo. The notebook will show users a bar chart like the picture below for the Tensorflow operation level performance comparison. The red horizontal line represents the performance of Tensorflow operations from Stock Tensorflow, and the blue bars represent the speedup of Intel Tensorflow operations. The operations marked as "mkl-True" are accelerated by MKL-DNN a.k.a oneDNN, and users should be able to see a good speedup for those operations accelerated by MKL-DNN. > NOTE : Users need to get Tensorflow timeline json files from other Jupyter notebooks like benchmark_perf_comparison first to proceed this Jupyter notebook. The notebook will also show users two pie charts like the picture below for elapsed time percentage among different Tensorflow operations. Users can easily find the Tensorflow operation hotspots in these pie charts among Stock and Intel Tensorflow. Get Platform Information
from profiling.profile_utils import PlatformUtils plat_utils = PlatformUtils() plat_utils.dump_platform_info()
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Section 1: TensorFlow Timeline Analysis Prerequisites
!pip install cxxfilt %matplotlib inline import matplotlib.pyplot as plt import tensorflow as tf import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) pd.set_option('display.width', 1500)
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
List out the Timeline folders First, list out all Timeline folders from previous runs.
import os filenames= os.listdir (".") result = [] keyword = "Timeline" for filename in filenames: if os.path.isdir(os.path.join(os.path.abspath("."), filename)): if filename.find(keyword) != -1: result.append(filename) result.sort() index =0 for folder in result: print(" %d : %s " %(index, folder)) index+=1
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Select a Timeline folder from previous runs ACTION: Please select one Timeline folder and change FdIndex accordingly
FdIndex = 3
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
List out all Timeline json files inside Timeline folder.
import os TimelineFd = result[FdIndex] print(TimelineFd) datafiles = [TimelineFd +os.sep+ x for x in os.listdir(TimelineFd) if '.json' == x[-5:]] print(datafiles) if len(datafiles) is 0: print("ERROR! No json file in the selected folder. Please select other folder.") elif len(datafiles) is 1: print("WARNING! There is only 1 json file in the selected folder. Please select other folder to proceed Section 1.2.")
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
> **Users can bypass below Section 1.1 and analyze performance among Stock and Intel TF by clicking the link : [Section 1_2](section_1_2).** Section 1.1: Performance Analysis for one TF Timeline result Step 1: Pick one of the Timeline files List out all the Timeline files first
index = 0 for file in datafiles: print(" %d : %s " %(index, file)) index+=1
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
ACTION: Please select one timeline json file and change file_index accordingly
## USER INPUT file_index=0 fn = datafiles[file_index] tfile_prefix = fn.split('_')[0] tfile_postfix = fn.strip(tfile_prefix)[1:] fn
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Step 2: Parse timeline into pandas format
from profiling.profile_utils import TFTimelinePresenter tfp = TFTimelinePresenter(True) timeline_pd = tfp.postprocess_timeline(tfp.read_timeline(fn)) timeline_pd = timeline_pd[timeline_pd['ph'] == 'X']
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Step 3: Sum up the elapsed time of each TF operation
tfp.get_tf_ops_time(timeline_pd,fn,tfile_prefix)
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Step 4: Draw a bar chart for elapsed time of TF ops
filename= tfile_prefix +'_tf_op_duration_bar.png' title_=tfile_prefix +'TF : op duration bar chart' ax=tfp.summarize_barh(timeline_pd, 'arg_op', title=title_, topk=50, logx=True, figsize=(10,10)) tfp.show(ax,'bar')
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Step 5: Draw a pie chart for total time percentage of TF ops
filename= tfile_prefix +'_tf_op_duration_pie.png' title_=tfile_prefix +'TF : op duration pie chart' timeline_pd_known = timeline_pd[ ~timeline_pd['arg_op'].str.contains('unknown') ] ax=tfp.summarize_pie(timeline_pd_known, 'arg_op', title=title_, topk=50, logx=True, figsize=(10,10)) tfp.show(ax,'pie') ax.figure.savefig(filename,bbox_inches='tight')
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Section 1.2: Analyze TF Timeline results between Stock and Intel Tensorflow Speedup from MKL-DNN among different TF operations Step 1: Select one Intel and one Stock TF timeline files for analysis List out all timeline files in the selected folder
if len(datafiles) is 1: print("ERROR! There is only 1 json file in the selected folder.") print("Please select other Timeline folder from beginnning to proceed Section 1.2.") for i in range(len(datafiles)): print(" %d : %s " %(i, datafiles[i]))
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
ACTION: Please select one timeline file as a perfomance baseline and the other as a comparison targetput the related index for your selected timeline file.In general, please put stock_timeline_xxxxx as the baseline.
# perfomance baseline Baseline_Index=1 # comparison target Comparison_Index=0
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
List out two selected timeline files
selected_datafiles = [] selected_datafiles.append(datafiles[Baseline_Index]) selected_datafiles.append(datafiles[Comparison_Index]) print(selected_datafiles)
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Step 2: Parsing timeline results into CSV files
%matplotlib agg from profiling.profile_utils import TFTimelinePresenter csvfiles=[] tfp = TFTimelinePresenter(True) for fn in selected_datafiles: if fn.find('/'): fn_nofd=fn.split('/')[1] else: fn_nofd=fn tfile_name= fn_nofd.split('.')[0] tfile_prefix = fn_nofd.split('_')[0] tfile_postfix = fn_nofd.strip(tfile_prefix)[1:] csvpath = TimelineFd +os.sep+tfile_name+'.csv' print(csvpath) csvfiles.append(csvpath) timeline_pd = tfp.postprocess_timeline(tfp.read_timeline(fn)) timeline_pd = timeline_pd[timeline_pd['ph'] == 'X'] tfp.get_tf_ops_time(timeline_pd,fn,tfile_prefix)
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Step 3: Pre-processing for the two CSV files
import os import pandas as pd csvarray=[] for csvf in csvfiles: print("read into pandas :",csvf) a = pd.read_csv(csvf) csvarray.append(a) a = csvarray[0] b = csvarray[1]
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Step 4: Merge two CSV files and caculate the speedup accordingly
import os import pandas as pd fdir='merged' if not os.path.exists(fdir): os.mkdir(fdir) fpath=fdir+os.sep+'merged.csv' merged=tfp.merge_two_csv_files(fpath,a,b) merged
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Step 5: Draw a bar chart for elapsed time of TF ops among stock TF and Intel TF
%matplotlib inline print(fpath) tfp.plot_compare_bar_charts(fpath) tfp.plot_compare_ratio_bar_charts(fpath, tags=['','oneDNN ops'])
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
Step 6: Draw pie charts for elapsed time of TF ops among stock TF and Intel TF
tfp.plot_compare_pie_charts(fpath)
_____no_output_____
Apache-2.0
docs/notebooks/perf_analysis/benchmark_perf_timeline_analysis.ipynb
yinghu5/models
diagrams.generic.network.Firewalldiagrams.generic.network.Routerdiagrams.generic.network.Subnetdiagrams.generic.network.Switchdiagrams.generic.network.VPNdiagrams.generic.virtualization.Virtualboxdiagrams.generic.os.Windows
from diagrams import Cluster, Diagram from diagrams.generic.network import Firewall from diagrams.generic.network import Router from diagrams.generic.network import Subnet from diagrams.generic.network import Switch from diagrams.generic.virtualization import Virtualbox from diagrams.generic.os import Windows graph_attr = { "fontsize": "28", "bgcolor": "grey" } with Diagram("My Network Automation with Python Lab", filename="MyLab", outformat="jpg", graph_attr=graph_attr, show=True): my_computer = Windows("My Computer") my_home_subnet = Subnet("My Home Subnet") with Cluster("Virtualbox"): lab_devs = [Switch("sw01"), Switch("sw02"), Switch("sw03 optional")] my_computer >> my_home_subnet >> lab_devs ls rm my_lab.png ls
MyLab.jpg Untitled.ipynb
MIT
sec04-1_LabIntro/My_Lab_Diagram.ipynb
codered-by-ec-council/Network-Automation-in-Python
The data is from a number of patients. The 12 first columns (age, an, ..., time) are features that should be used to predict the outcome in the last column (DEATH_EVENT).
# Loading some functionality you might find useful. You might want other than this... import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV from pandas.plotting import scatter_matrix from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC from sklearn.decomposition import PCA from sklearn.cluster import KMeans # Downloading data url = 'https://raw.githubusercontent.com/BoBernhardsson/frtn65_exam2022/main/data.csv' data = pd.read_csv(url) data.head() # Picking out features and labels X = data.iloc[:,:-1].values y = data.iloc[:,-1].values (X.shape,y.shape) # select which features to use X = data.drop(columns=['DEATH_EVENT']) y = data.loc[:,'DEATH_EVENT'].values # Creating some initial KNN models and evaluating accuracy Ndata = data.shape[0] for nr in range(1,10): knnmodel = KNeighborsClassifier(n_neighbors = nr) knnmodel.fit(X=X,y=y) predictions = knnmodel.predict(X=X) print('neighbors = {0}: accuracy = {1:.3f}'.format(nr,1-sum(abs(predictions-y))/Ndata)) features = ['age', 'cr', 'ej', 'pl', 'se1', 'se2', 'time'] features_categ = ['an','di', 'hi', 'sex', 'sm'] #scale the dataset from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer numerical_preprocessor = StandardScaler() #do one-hot encoding for categorical features categorical_preprocessor = OneHotEncoder(handle_unknown="ignore") preprocessor = ColumnTransformer([ ('one-hot-encoder', categorical_preprocessor, features_categ), ('standard-scaler', numerical_preprocessor, features)]) from sklearn.pipeline import Pipeline #try Random Forest clf = Pipeline(steps = [('preprocessor', preprocessor), ('classifier', RandomForestClassifier(n_estimators=100,max_depth=3))]) #split the dataset into trainig and testing x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) clf.fit(x_train, np.ravel(y_train)) print(clf.score(x_train,np.ravel(y_train))) print('model score: %.3f' % clf.score(x_test,np.ravel(y_test))) #evaluate the model using cross-validation score = cross_val_score(clf, X, np.ravel(y), cv=25) print("%0.2f accuracy with a standard deviation of %0.2f" % (score.mean()*100, score.std())) score_test = clf.score(x_test, np.ravel(y_test)) print('Test score: ', '{0:.4f}'.format(score_test*100)) clf = RandomForestClassifier() #find the best model using GridSearch param_grid = { 'n_estimators': [100, 1000], 'max_depth': [3, 4, 5], } search = GridSearchCV(clf, param_grid, cv=4, verbose=1,n_jobs=-1) search.fit(x_train, np.ravel(y_train)) score = search.score(x_test, np.ravel(y_test)) print("Best CV score: {} using {}".format(search.best_score_, search.best_params_)) print("Test accuracy: {}".format(score)) randomForestModel = RandomForestClassifier(n_estimators=100,max_depth=5) #evaluate using cross-validation score=cross_val_score(randomForestModel, X, y, cv=20) randomForestModel.fit(x_train,np.ravel(y_train)) print('Training score: ', randomForestModel.score(x_train,np.ravel(y_train))) print('Test score: ', randomForestModel.score(x_test,np.ravel(y_test))) #make a prediction and evaluate the performance y_pred = randomForestModel.predict(x_test) score_new = randomForestModel.score(x_test, y_test) print('Test score: ', score_new) import seaborn as sns from sklearn import metrics #confusion matrix cm = metrics.confusion_matrix(y_test, y_pred) plt.figure(figsize=(10,10)) sns.heatmap(cm, annot=True, fmt=".0f", linewidths=1, square = True); plt.ylabel('Actual label'); plt.xlabel('Predicted label'); plt.title('Accuracy Score: {0}'.format(score.mean()), size = 15); from sklearn import metrics #AUC metrics.plot_roc_curve(randomForestModel, x_test, y_test) from sklearn.metrics import classification_report print(classification_report(y_test, randomForestModel.predict(x_test))) from pandas import DataFrame feature_df = DataFrame(data.columns.delete(0)) feature_df.columns = ['Features'] feature_df["Feature Importance"] = pd.Series(randomForestModel.feature_importances_) #view feature importance according to Random Forest model feature_df #KNN model clf = Pipeline(steps = [('preprocessor', preprocessor), ('classifier', KNeighborsClassifier(n_neighbors=3))]) clf.fit(x_train,np.ravel(y_train)) #evaluate the model using cross-validation score = cross_val_score(clf, X, np.ravel(y), cv=25) print("%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean()*100, scores.std())) score_test = clf.score(x_test, np.ravel(y_test)) print('Test score: ', '{0:.4f}'.format(score_test*100)) #make a prediction and evaluate the performance y_pred = clf.predict(x_test) score_new = clf.score(x_test, y_test) print('Test score: ', score_new) import seaborn as sns from sklearn import metrics #confusion matrix cm = metrics.confusion_matrix(y_test, y_pred) plt.figure(figsize=(10,10)) sns.heatmap(cm, annot=True, fmt=".0f", linewidths=1, square = True); plt.ylabel('Actual label'); plt.xlabel('Predicted label'); plt.title('Accuracy Score: {0}'.format(score.mean()), size = 15); from sklearn import metrics #AUC metrics.plot_roc_curve(clf, x_test, y_test) from sklearn.metrics import classification_report print(classification_report(y_test, clf.predict(x_test))) #Boosting model from sklearn.ensemble import GradientBoostingClassifier #find the best learning rate learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1] for learning_rate in learning_rates: gb = Pipeline(steps = [('preprocessor', preprocessor), ('Classifier', GradientBoostingClassifier(n_estimators=30, learning_rate = learning_rate, max_features=13, max_depth = 3, random_state = 0))]) gb.fit(x_train, y_train) print("Learning rate: ", learning_rate) print("Accuracy score (training): {0:.3f}".format(gb.score(x_train, y_train))) print("Accuracy score (validation): {0:.3f}".format(gb.score(x_test, y_test))) clf = Pipeline(steps = [('preprocessor', preprocessor), ('Classifier', GradientBoostingClassifier(n_estimators= 30, learning_rate = 0.25, max_features=13, max_depth = 3, random_state = 0))]) clf.fit(x_train,np.ravel(y_train)) #evaluate the models using cross-validation from sklearn.model_selection import cross_val_score scores = cross_val_score(clf, X, np.ravel(y), cv=25) print("%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean()*100, scores.std())) score = clf.score(x_test, np.ravel(y_test)) print('Test score (Validation): ', '{0:.4f}'.format(score*100)) #make a prediction and evaluate the performance y_pred = clf.predict(x_test) score_test = clf.score(x_test, y_test) print('Test score: ', score_test ) import seaborn as sns from sklearn import metrics #confusion matrix cm = metrics.confusion_matrix(y_test, y_pred) plt.figure(figsize=(10,10)) sns.heatmap(cm, annot=True, fmt=".0f", linewidths=1, square = True); plt.ylabel('Actual label'); plt.xlabel('Predicted label'); plt.title('Accuracy Score: {0}'.format(score.mean()), size = 15); from sklearn import metrics #AUC metrics.plot_roc_curve(clf, X, y) from sklearn.metrics import classification_report print(classification_report(y_test, clf.predict(x_test)))
precision recall f1-score support 0 0.77 0.94 0.85 35 1 0.88 0.60 0.71 25 accuracy 0.80 60 macro avg 0.82 0.77 0.78 60 weighted avg 0.82 0.80 0.79 60
MIT
SupervisedLearning/Problem2_SupervisedLearning_Gaiceanu.ipynb
TheodoraG/FRTN65
Death vs timeThe boxplot below illustrates the relationship between death and how long time it was between the measurements were taken and the followup event, when the patient health was checked (female=blue, male=orange).It is noted that short followup time is highly related to high probability of death, for both sexes. An explanation could be that severly unhealthy patients were followed up earlier, based on medical expert decisions.
fig, ax = plt.subplots(figsize = (8, 8)) survive = data.loc[(data.DEATH_EVENT == 0)].time death = data.loc[(data.DEATH_EVENT == 1)].time print('time_survived = {:.1f}'.format(survive.mean())) print('time_dead = {:.1f}'.format(death.mean())) sns.boxplot(data = data, x = 'DEATH_EVENT', y = 'time', hue = 'sex', width = 0.4, ax = ax, fliersize = 3, palette=sns.color_palette("pastel")) sns.stripplot(data = data, x = 'DEATH_EVENT', y = 'time', hue = 'sex', size = 3, palette=sns.color_palette()) ax.set(xlabel = 'DEATH', ylabel = "time [days] ", title = 'The relationship between death and time') plt.show() # If we want to drop time as feature, we can use Xnew = data.iloc[:,:-2].values # select which features to use Xnew = data.drop(columns=['DEATH_EVENT', 'time', 'sm', 'ej','age','cr','pl','se1','an','di','sex']) y = data.loc[:,'DEATH_EVENT'].values features = ['se2','hi'] #features_categ = ['an','di', 'hi', 'sex'] #scale the dataset from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import OneHotEncoder from sklearn.compose import ColumnTransformer numerical_preprocessor = StandardScaler() #do one-hot encoding for categorical features categorical_preprocessor = OneHotEncoder(handle_unknown="ignore") preprocessor = ColumnTransformer([ #('one-hot-encoder', categorical_preprocessor, features_categ), ('standard-scaler', numerical_preprocessor, features)]) from sklearn.pipeline import Pipeline #try Random Forest clf = Pipeline(steps = [('preprocessor', preprocessor), ('classifier', RandomForestClassifier(n_estimators=1000,max_depth=3))]) #split the dataset into trainig and testing x_train_new, x_test_new, y_train_new, y_test_new = train_test_split(Xnew, y, test_size=0.2, random_state=42) clf.fit(x_train_new, np.ravel(y_train_new)) print(clf.score(x_train_new,np.ravel(y_train_new))) print('model score: %.3f' % clf.score(x_test_new,np.ravel(y_test_new))) clf = RandomForestClassifier() param_grid = { 'n_estimators': [100, 1000], 'max_depth': [3, 4, 5], } search = GridSearchCV(clf, param_grid, cv=4, verbose=1,n_jobs=-1) search.fit(x_train_new, np.ravel(y_train_new)) score = search.score(x_test_new, np.ravel(y_test_new)) print("Best CV score: {} using {}".format(search.best_score_, search.best_params_)) print("Test accuracy: {}".format(score)) randomForestModel = RandomForestClassifier(n_estimators=100,max_depth=4) #cross-val score score=cross_val_score(randomForestModel, Xnew, y, cv=20) randomForestModel.fit(x_train_new,np.ravel(y_train_new)) print('Training score: ', randomForestModel.score(x_train_new,np.ravel(y_train_new))) print('Test score: ', randomForestModel.score(x_test_new,np.ravel(y_test_new)))
Training score: 0.7364016736401674 Test score: 0.6166666666666667
MIT
SupervisedLearning/Problem2_SupervisedLearning_Gaiceanu.ipynb
TheodoraG/FRTN65
Load Data
print(df.shape) df.head() df.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 1083 entries, 0 to 1082 Data columns (total 18 columns): label 1083 non-null int64 artist 1083 non-null object album 1083 non-null object genre 1083 non-null object single_count 1083 non-null int64 freq_billboard 1083 non-null int64 freq_genius 1083 non-null int64 freq_theSource 1083 non-null int64 freq_xxl 1083 non-null int64 rating_AOTY 61 non-null float64 rating_meta 324 non-null float64 rating_pitch 220 non-null float64 twitter 1083 non-null int64 instagram 1083 non-null int64 facebook 1083 non-null int64 spotify 1083 non-null int64 soundcloud 1083 non-null int64 youtube 1083 non-null int64 dtypes: float64(3), int64(12), object(3) memory usage: 152.4+ KB
MIT
modeling/modeling-1-KNN-SGD.ipynb
lucaseo/content-worth-debut-artist-classification-project
**Note**- 온라인맀체 κΈ°μ‚¬μ˜ μ–‘, 평둠가 평점은 Null Valueκ°€ 있기 λ•Œλ¬Έμ—, λ‹Ήμž₯ Decision Treeλ₯Ό 톡해 ν•™μŠ΅μ„ μ‹œν‚¬ 수 μ—†μ–΄, Featureμ—μ„œ μ œμ™Έλ₯Ό ν•œλ‹€. Data Preparation for Modeling μž₯λ₯΄ `hiphop`, `R&B`, `Soul`, `Funk`, `Pop`
df = pd.get_dummies(df, columns=['genre']) df.columns
_____no_output_____
MIT
modeling/modeling-1-KNN-SGD.ipynb
lucaseo/content-worth-debut-artist-classification-project
Split train & test data
feature_names = ['single_count', 'freq_billboard', 'freq_genius', 'freq_theSource', 'freq_xxl', 'twitter', 'instagram', 'facebook', 'spotify', 'soundcloud', 'youtube', 'genre_funk', 'genre_hiphop', 'genre_pop', 'genre_rnb', 'genre_soul'] dfX = df[feature_names].copy() dfy = df['label'].copy() dfX.tail() dfy.tail() from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(dfX, dfy, test_size=0.25, random_state=0)
_____no_output_____
MIT
modeling/modeling-1-KNN-SGD.ipynb
lucaseo/content-worth-debut-artist-classification-project
KNN
from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier(n_neighbors=10).fit(X_train, y_train) from sklearn.metrics import confusion_matrix confusion_matrix(y_test, model.predict(X_test)) from sklearn.metrics import classification_report print(classification_report(y_test, model.predict(X_test))) from sklearn.metrics import roc_curve import matplotlib.pyplot as plt fpr, tpr, thresholds = roc_curve(y_test, model.predict_proba(X_test)[:, 1]) plt.plot(fpr, tpr, label="KNN") plt.legend() plt.plot([0, 1], [0, 1], 'k--', label="random guess") plt.xlabel('False Positive Rate (Fall-Out)') plt.ylabel('True Positive Rate (Recall)') plt.title('Receiver operating characteristic example') plt.show() from sklearn.metrics import auc auc(fpr, tpr)
_____no_output_____
MIT
modeling/modeling-1-KNN-SGD.ipynb
lucaseo/content-worth-debut-artist-classification-project
SGD
from sklearn.linear_model import SGDClassifier model_SGD = SGDClassifier(random_state=0).fit(X_train, y_train) confusion_matrix(y_train, model_SGD.predict(X_train)) confusion_matrix(y_test, model_SGD.predict(X_test)) print(classification_report(y_test, model_SGD.predict(X_test))) fpr, tpr, thresholds = roc_curve(y_test, model_SGD.predict(X_test)) plt.figure(figsize=(10, 10)) plt.plot(fpr, tpr, label="roc curve") plt.legend() plt.plot([0, 1], [0, 1], 'k--', label="random guess") plt.xlabel('False Positive Rate (Fall-Out)') plt.ylabel('True Positive Rate (Recall)') plt.title('Receiver operating characteristic example') plt.show() auc(fpr, tpr)
_____no_output_____
MIT
modeling/modeling-1-KNN-SGD.ipynb
lucaseo/content-worth-debut-artist-classification-project
AmsterdamUMCdb - Freely Accessible ICU Databaseversion 1.0.2 March 2020 Copyright &copy; 2003-2020 Amsterdam UMC - Amsterdam Medical Data Science Vasopressors and inotropesShows medication for artificially increasing blood pressure (vasopressors) or stimulating heart function (inotropes), if any, a patient received. Imports
%matplotlib inline import amsterdamumcdb import psycopg2 import pandas as pd import numpy as np import re import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import matplotlib as mpl import io from IPython.display import display, HTML, Markdown
_____no_output_____
MIT
concepts/lifesupport/vasopressors_inotropes.ipynb
AKI-Group-ukmuenster/AmsterdamUMCdb
Display settings
#matplotlib settings for image size #needs to be in a different cell from %matplotlib inline plt.style.use('seaborn-darkgrid') plt.rcParams["figure.dpi"] = 288 plt.rcParams["figure.figsize"] = [16, 12] plt.rcParams["font.size"] = 12 pd.options.display.max_columns = None pd.options.display.max_rows = None pd.options.display.max_colwidth = 1000
_____no_output_____
MIT
concepts/lifesupport/vasopressors_inotropes.ipynb
AKI-Group-ukmuenster/AmsterdamUMCdb
Connection settings
#Modify config.ini in the root folder of the repository to change the settings to connect to your postgreSQL database import configparser import os config = configparser.ConfigParser() if os.path.isfile('../../config.ini'): config.read('../../config.ini') else: config.read('../../config.SAMPLE.ini') #Open a connection to the postgres database: con = psycopg2.connect(database=config['psycopg2']['database'], user=config['psycopg2']['username'], password=config['psycopg2']['password'], host=config['psycopg2']['host'], port=config['psycopg2']['port']) con.set_client_encoding('WIN1252') #Uses code page for Dutch accented characters. con.set_session(autocommit=True) cursor = con.cursor() cursor.execute('SET SCHEMA \'amsterdamumcdb\''); #set search_path to amsterdamumcdb schema
_____no_output_____
MIT
concepts/lifesupport/vasopressors_inotropes.ipynb
AKI-Group-ukmuenster/AmsterdamUMCdb
Vasopressors and inotropesfrom drugitems
sql_vaso_ino = """ WITH vasopressor_inotropes AS ( SELECT admissionid, CASE WHEN COUNT(*) > 0 THEN TRUE ELSE FALSE END AS vasopressors_inotropes_bool, STRING_AGG(DISTINCT item, '; ') AS vasopressors_inotropes_given FROM drugitems WHERE ordercategoryid = 65 -- continuous i.v. perfusor AND itemid IN ( 6818, -- Adrenaline (Epinefrine) 7135, -- Isoprenaline (Isuprel) 7178, -- Dobutamine (Dobutrex) 7179, -- Dopamine (Inotropin) 7196, -- Enoximon (Perfan) 7229, -- Noradrenaline (Norepinefrine) 12467, -- Terlipressine (Glypressin) 13490, -- Methyleenblauw IV (Methylthionide cloride) 19929 -- Fenylefrine ) AND rate > 0.1 GROUP BY admissionid ) SELECT a.admissionid, location, CASE WHEN vi.vasopressors_inotropes_bool Then TRUE ELSE FALSE END AS vasopressors_inotropes_bool, vasopressors_inotropes_given FROM admissions a LEFT JOIN vasopressor_inotropes vi ON a.admissionid = vi.admissionid """ vaso_ino = pd.read_sql(sql_vaso_ino,con) vaso_ino.tail()
_____no_output_____
MIT
concepts/lifesupport/vasopressors_inotropes.ipynb
AKI-Group-ukmuenster/AmsterdamUMCdb
#@title Calculation of mass transfer and hydrate inhibition of a wet gas by injection of methanol #@markdown Demonstration of mass transfer calculation using the NeqSim software in Python #@markdown <br><br>This document is part of the module ["Introduction to Gas Processing using NeqSim in Colab"](https://colab.research.google.com/github/EvenSol/NeqSim-Colab/blob/master/notebooks/examples_of_NeqSim_in_Colab.ipynb#scrollTo=_eRtkQnHpL70). %%capture !pip install neqsim import neqsim from neqsim.thermo.thermoTools import * import matplotlib import numpy as np import matplotlib.pyplot as plt from neqsim.thermo import fluid, fluid_df import pandas as pd from neqsim.process import gasscrubber, clearProcess, run,nequnit, phasemixer, splitter, clearProcess, stream, valve, separator, compressor, runProcess, viewProcess, heater,saturator, mixer plt.style.use('classic') %matplotlib inline
_____no_output_____
Apache-2.0
notebooks/process/masstransferMeOH.ipynb
EvenSol/NeqSim-Colab
Mass transfer calculationsModel for mass transfer calculation in NeqSim based on Solbraa (2002):https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/231326 In the following calculations we assume a water saturated gas the is mixed with pure liquid methanol. These phases are not in equiibrium when they enter the pipeline. When the gas and methanol liquid comes in contact in the pipeline, methanol will vaporize into the gas, and water (and other comonents from the gas) will be absorbed into the liquid methanol. The focus of the following calculations will be to evaluate the mass transfer as function of contanct length with gas and methanol. It also evaluates the hydrate temperature of the gas leaving the pipe section. Figure 1 Illustration of mass transfer process![masstransfer.GIF]() **The parameters for the model are:**Temperature and pressure of the pipe (mass transfer calculated at constant temperature and pressure).Length and diameter of pipe where gas and liquid will be in contact and mass transfer can occur.Flow rate of the gas in MSm3/day, flow rate of methanol (kg/hr). Calculation of compostion of aqueous phase and gas leaving pipe sectionIn the following script we will simulate the composition of the gas leaving pipe section at a given pipe lengt.
# Input parameters pressure = 52.21 # bara temperature = 15.2 #C gasFlow = 1.23 #MSm3/day methanolFlow = 6000.23 # kg/day pipelength = 10.0 #meter pipeInnerDiameter = 0.5 #meter # Create a gas-condensate fluid feedgas = {'ComponentName': ["nitrogen","CO2","methane", "ethane" , "propane", "i-butane", "n-butane", "water", "methanol"], 'MolarComposition[-]': [0.01, 0.01, 0.8, 0.06, 0.01,0.005,0.005, 0.0, 0.0] } naturalgasFluid = fluid_df(pd.DataFrame(feedgas)).setModel("CPAs-SRK-EOS-statoil") naturalgasFluid.setTotalFlowRate(gasFlow, "MSm3/day") naturalgasFluid.setTemperature(temperature, "C") naturalgasFluid.setPressure(pressure, "bara") # Create a liquid methanol fluid feedMeOH = {'ComponentName': ["nitrogen","CO2","methane", "ethane" , "propane", "i-butane", "n-butane", "water", "methanol"], 'MolarComposition[-]': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,1.0] } meOHFluid = fluid_df(pd.DataFrame(feedMeOH) ).setModel("CPAs-SRK-EOS-statoil") meOHFluid.setTotalFlowRate(methanolFlow, "kg/hr"); meOHFluid.setTemperature(temperature, "C"); meOHFluid.setPressure(pressure, "bara"); clearProcess() dryinjectiongas = stream(naturalgasFluid) MeOHFeed = stream(meOHFluid) watersaturator = saturator(dryinjectiongas) waterSaturatedFeedGas = stream(watersaturator.getOutStream()) mainMixer = phasemixer("gas MeOH mixer") mainMixer.addStream(waterSaturatedFeedGas) mainMixer.addStream(MeOHFeed) pipeline = nequnit(mainMixer.getOutStream(), equipment="pipeline", flowpattern="stratified") #alternative flow patterns are: stratified, annular and droplet pipeline.setLength(pipelength) pipeline.setID(pipeInnerDiameter) scrubber = gasscrubber(pipeline.getOutStream()) gasFromScrubber = stream(scrubber.getGasOutStream()) aqueousFromScrubber = stream(scrubber.getLiquidOutStream()) run() print('Composition of gas leaving pipe section after ', pipelength, ' meter') printFrame(gasFromScrubber.getFluid()) print('Composition of aqueous phase leaving pipe section after ', pipelength, ' meter') printFrame(aqueousFromScrubber.getFluid()) print('Interface contact area ', pipeline.getInterfacialArea(), ' m^2') print('Volume fraction aqueous phase ', pipeline.getOutStream().getFluid().getVolumeFraction(1), ' -')
Composition of gas leaving pipe section after 10.0 meter total gas nitrogen 1.11418E-2 1.11418E-2 [mole fraction] CO2 1.08558E-2 1.08558E-2 [mole fraction] methane 8.89321E-1 8.89321E-1 [mole fraction] ethane 6.59386E-2 6.59386E-2 [mole fraction] propane 1.10391E-2 1.10391E-2 [mole fraction] i-butane 5.4792E-3 5.4792E-3 [mole fraction] n-butane 5.48529E-3 5.48529E-3 [mole fraction] water 3.42883E-4 3.42883E-4 [mole fraction] methanol 3.96384E-4 3.96384E-4 [mole fraction] Density 4.51425E1 [kg/m^3] PhaseFraction 1E0 [mole fraction] MolarMass 1.8183E1 1.8183E1 [kg/kmol] Z factor 8.7716E-1 [-] Heat Capacity (Cp) 2.54484E0 [kJ/kg*K] Heat Capacity (Cv) 1.65968E0 [kJ/kg*K] Speed of Sound 3.96268E2 [m/sec] Enthalpy -3.29472E1 -3.29472E1 [kJ/kg] Entropy -1.62974E0 -1.62974E0 [kJ/kg*K] JT coefficient 5.03748E-1 [K/bar] Viscosity 1.22106E-5 [kg/m*sec] Conductivity 3.74742E-2 [W/m*K] SurfaceTension [N/m] Pressure 52.21 [bar] Temperature 288.34999999999997 [K] Model CPAs-SRK-EOS-statoil - Mixing Rule classic-CPA_T - Stream - Composition of aqueous phase leaving pipe section after 10.0 meter total aqueous nitrogen 1.53381E-4 1.53381E-4 [mole fraction] CO2 3.28961E-3 3.28961E-3 [mole fraction] methane 3.44647E-2 3.44647E-2 [mole fraction] ethane 1.09255E-2 1.09255E-2 [mole fraction] propane 1.28029E-3 1.28029E-3 [mole fraction] i-butane 1.08241E-3 1.08241E-3 [mole fraction] n-butane 1.01559E-3 1.01559E-3 [mole fraction] water 8.18682E-4 8.18682E-4 [mole fraction] methanol 9.4697E-1 9.4697E-1 [mole fraction] Density 7.82709E2 [kg/m^3] PhaseFraction 1E0 [mole fraction] MolarMass 3.15665E1 3.15665E1 [kg/kmol] Z factor 8.7826E-2 [-] Heat Capacity (Cp) 2.26412E0 [kJ/kg*K] Heat Capacity (Cv) 1.885E0 [kJ/kg*K] Speed of Sound 1.07486E3 [m/sec] Enthalpy -1.14087E3 -1.14087E3 [kJ/kg] Entropy -3.37618E0 -3.37618E0 [kJ/kg*K] JT coefficient -3.74052E-2 [K/bar] Viscosity 5.85317E-4 [kg/m*sec] Conductivity 5.89686E-1 [W/m*K] SurfaceTension [N/m] Pressure 52.21 [bar] Temperature 288.34999999999997 [K] Model CPAs-SRK-EOS-statoil - Mixing Rule classic-CPA_T - Stream - Interface contact area 2.641129854675618 m^2 Volume fraction aqueous phase 0.011201474850165916 -
Apache-2.0
notebooks/process/masstransferMeOH.ipynb
EvenSol/NeqSim-Colab
Calculation of hydrate equilibrium temperature of gas leaving pipe sectionIn the following script we will simulate the composition of the gas leaving pipe section as well as hydrate equilibrium temperature of this gas as function of pipe length.
maxpipelength = 10.0 def hydtemps(length): pipeline.setLength(length) run(); return gasFromScrubber.getHydrateEquilibriumTemperature()-273.15 length = np.arange(0.01, maxpipelength, (maxpipelength)/10.0) hydtem = [hydtemps(length2) for length2 in length] plt.figure() plt.plot(length, hydtem) plt.xlabel('Length available for mass transfer [m]') plt.ylabel('Hydrate eq.temperature [C]') plt.title('Hydrate eq.temperature of gas leaving pipe section')
_____no_output_____
Apache-2.0
notebooks/process/masstransferMeOH.ipynb
EvenSol/NeqSim-Colab
Amazon Forecast: predicting time-series at scaleForecasting is used in a variety of applications and business use cases: For example, retailers need to forecast the sales of their products to decide how much stock they need by location, Manufacturers need to estimate the number of parts required at their factories to optimize their supply chain, Businesses need to estimate their flexible workforce needs, Utilities need to forecast electricity consumption needs in order to attain an efficient energy network, and enterprises need to estimate their cloud infrastructure needs. Table of Contents* Step 0: [Setting up](setup)* Step 1: [Preparing the Datasets](prepare)* Step 2: [Importing the Data](import) * Step 2a: [Creating a Dataset Group](create) * Step 2b: [Creating a Target Dataset](target) * Step 2c: [Creating a Related Dataset](related) * Step 2d: [Update the Dataset Group](update) * Step 2e: [Creating a Target Time Series Dataset Import Job](targetImport) * Step 2f: [Creating a Related Time Series Dataset Import Job](relatedImport)* Step 3: [Choosing an Algorithm and Evaluating its Performance](algo) * Step 3a: [Choosing DeepAR+](DeepAR) * Step 3b: [Choosing Prophet](prophet)* Step 4: [Computing Error Metrics from Backtesting](error)* Step 5: [Creating a Forecast](forecast)* Step 6: [Querying the Forecasts](query)* Step 7: [Exporting the Forecasts](export)* Step 8: [Clearning up your Resources](cleanup) First let us setup Amazon ForecastThis section sets up the permissions and relevant endpoints.
%load_ext autoreload %autoreload 2 from util.fcst_utils import * import warnings import boto3 import s3fs plt.rcParams['figure.figsize'] = (15.0, 5.0) warnings.filterwarnings('ignore')
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Although, we have set the region to us-west-2 below, you can choose any of the 6 regions that the service is available in.
region = 'us-west-2' bucket = 'bike-demo' version = 'prod' session = boto3.Session(region_name=region) forecast = session.client(service_name='forecast') forecast_query = session.client(service_name='forecastquery') role_arn = get_or_create_role_arn()
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
OverviewThe above figure summarizes the key workflow of using Forecast. Step 1: Preparing the Datasets
bike_df = pd.read_csv("../data/train.csv", dtype = object) bike_df.head() bike_df['count'] = bike_df['count'].astype('float') bike_df['workingday'] = bike_df['workingday'].astype('float')
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
We take about two and a half week's of hourly data for demonstration, just for the purpose that there's no missing data in the whole range.
bike_df_small = bike_df[-2*7*24-24*3:] bike_df_small['item_id'] = "bike_12"
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Let us plot the time series first.
bike_df_small.plot(x='datetime', y='count', figsize=(15, 8))
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
We can see that the target time series seem to have a drop over weekends. Next let's plot both the target time series and the related time series that indicates whether today is a `workday` or not. More precisely, $r_t = 1$ if $t$ is a work day and 0 if not.
plt.figure(figsize=(15, 8)) ax = plt.gca() bike_df_small.plot(x='datetime', y='count', ax=ax); ax2 = ax.twinx() bike_df_small.plot(x='datetime', y='workingday', color='red', ax=ax2);
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Notice that to use the related time series, we need to ensure that the related time series covers the whole target time series, as well as the future values as specified by the forecast horizon. More precisely, we need to make sure:```len(related time series) >= len(target time series) + forecast horizon```Basically, all items need to have data start at or before the item start date, and have data until the forecast horizon (i.e. the latest end date across all items + forecast horizon). Additionally, there should be no missing values in the related time series. The following picture illustrates the desired logic. For more details regarding how to prepare your Related Time Series dataset, please refer to the public documentation here. Suppose in this particular example, we wish to forecast for the next 24 hours, and thus we generate the following dataset.
target_df = bike_df_small[['item_id', 'datetime', 'count']][:-24] rts_df = bike_df_small[['item_id', 'datetime', 'workingday']] target_df.head(5)
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
As we can see, the length of the related time series is equal to the length of the target time series plus the forecast horizon.
print(len(target_df), len(rts_df)) assert len(target_df) + 24 == len(rts_df), "length doesn't match"
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Next we check whether there are "holes" in the related time series.
assert len(rts_df) == len(pd.date_range( start=list(rts_df['datetime'])[0], end=list(rts_df['datetime'])[-1], freq='H' )), "missing entries in the related time series"
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Everything looks fine, and we plot both time series again. As it can be seen, the related time series (indicator of whether the current day is a workday or not) is longer than the target time series. The binary working day indicator feature is a good example of a related time series, since it is known at all future time points. Other examples of related time series include holiday and promotion features.
plt.figure(figsize=(15, 10)) ax = plt.gca() target_df.plot(x='datetime', y='count', ax=ax); ax2 = ax.twinx() rts_df.plot(x='datetime', y='workingday', color='red', ax=ax2); target_df.to_csv("../data/bike_small.csv", index= False, header = False) rts_df.to_csv("../data/bike_small_rts.csv", index= False, header = False) s3 = session.client('s3') account_id = boto3.client('sts').get_caller_identity().get('Account')
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
If you don't have this bucket `amazon-forecast-data-{account_id}`, create it first on S3.
bucket_name = f"amazon-forecast-data-{account_id}" key = "bike_small" s3.upload_file(Filename="../data/bike_small.csv", Bucket = bucket_name, Key = f"{key}/bike.csv") s3.upload_file(Filename="../data/bike_small_rts.csv", Bucket = bucket_name, Key = f"{key}/bike_rts.csv")
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 2. Importing the DataNow we are ready to import the datasets into the Forecast service. Starting from the raw data, Amazon Forecast automatically extracts the dataset that is suitable for forecasting. As an example, a retailer normally records the transaction record such as
project = "bike_rts_demo" idx = 4 s3_data_path = f"s3://{bucket_name}/{key}"
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Below, we specify key input data and forecast parameters
freq = "H" forecast_horizon = 24 timestamp_format = "yyyy-MM-dd HH:mm:ss" delimiter = ','
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 2a. Creating a Dataset GroupFirst let's create a dataset group and then update it later to add our datasets.
dataset_group = f"{project}_gp_{idx}" dataset_arns = [] create_dataset_group_response = forecast.create_dataset_group(Domain="RETAIL", DatasetGroupName=dataset_group, DatasetArns=dataset_arns) logging.info(f'Creating dataset group {dataset_group}') dataset_group_arn = create_dataset_group_response['DatasetGroupArn'] forecast.describe_dataset_group(DatasetGroupArn=dataset_group_arn)
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 2b. Creating a Target DatasetIn this example, we will define a target time series. This is a required dataset to use the service. Below we specify the target time series name af_demo_ts_4.
ts_dataset_name = f"{project}_ts_{idx}" print(ts_dataset_name)
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Next, we specify the schema of our dataset below. Make sure the order of the attributes (columns) matches the raw data in the files. We follow the same three attribute format as the above example.
ts_schema_val = [{"AttributeName": "item_id", "AttributeType": "string"}, {"AttributeName": "timestamp", "AttributeType": "timestamp"}, {"AttributeName": "demand", "AttributeType": "float"}] ts_schema = {"Attributes": ts_schema_val} logging.info(f'Creating target dataset {ts_dataset_name}') response = forecast.create_dataset(Domain="RETAIL", DatasetType='TARGET_TIME_SERIES', DatasetName=ts_dataset_name, DataFrequency=freq, Schema=ts_schema ) ts_dataset_arn = response['DatasetArn'] forecast.describe_dataset(DatasetArn=ts_dataset_arn)
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 2c. Creating a Related DatasetIn this example, we will define a related time series. Specify the related time series name af_demo_rts_4.
rts_dataset_name = f"{project}_rts_{idx}" print(rts_dataset_name)
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Specify the schema of your dataset here. Make sure the order of columns matches the raw data files. We follow the same three column format as the above example.
rts_schema_val = [{"AttributeName": "item_id", "AttributeType": "string"}, {"AttributeName": "timestamp", "AttributeType": "timestamp"}, {"AttributeName": "price", "AttributeType": "float"}] rts_schema = {"Attributes": rts_schema_val} logging.info(f'Creating related dataset {rts_dataset_name}') response = forecast.create_dataset(Domain="RETAIL", DatasetType='RELATED_TIME_SERIES', DatasetName=rts_dataset_name, DataFrequency=freq, Schema=rts_schema ) rts_dataset_arn = response['DatasetArn'] forecast.describe_dataset(DatasetArn=rts_dataset_arn)
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 2d. Updating the dataset group with the datasets we createdYou can have multiple datasets under the same dataset group. Update it with the datasets we created before.
dataset_arns = [] dataset_arns.append(ts_dataset_arn) dataset_arns.append(rts_dataset_arn) forecast.update_dataset_group(DatasetGroupArn=dataset_group_arn, DatasetArns=dataset_arns) forecast.describe_dataset_group(DatasetGroupArn=dataset_group_arn)
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 2e. Creating a Target Time Series Dataset Import Job
ts_s3_data_path = f"{s3_data_path}/bike.csv" ts_dataset_import_job_response = forecast.create_dataset_import_job(DatasetImportJobName=dataset_group, DatasetArn=ts_dataset_arn, DataSource= { "S3Config" : { "Path": ts_s3_data_path, "RoleArn": role_arn } }, TimestampFormat=timestamp_format) ts_dataset_import_job_arn=ts_dataset_import_job_response['DatasetImportJobArn'] status = wait(lambda: forecast.describe_dataset_import_job(DatasetImportJobArn=ts_dataset_import_job_arn)) assert status
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 2f. Creating a Related Time Series Dataset Import Job
rts_s3_data_path = f"{s3_data_path}/bike_rts.csv" rts_dataset_import_job_response = forecast.create_dataset_import_job(DatasetImportJobName=dataset_group, DatasetArn=rts_dataset_arn, DataSource= { "S3Config" : { "Path": rts_s3_data_path, "RoleArn": role_arn } }, TimestampFormat=timestamp_format) rts_dataset_import_job_arn=rts_dataset_import_job_response['DatasetImportJobArn'] status = wait(lambda: forecast.describe_dataset_import_job(DatasetImportJobArn=rts_dataset_import_job_arn)) assert status
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 3. Choosing an algorithm and evaluating its performanceOnce the datasets are specified with the corresponding schema, Amazon Forecast will automatically aggregate all the relevant pieces of information for each item, such as sales, price, promotions, as well as categorical attributes, and generate the desired dataset. Next, one can choose an algorithm (forecasting model) and evaluate how well this particular algorithm works on this dataset. The following graph gives a high-level overview of the forecasting models.Amazon Forecast provides several state-of-the-art forecasting algorithms including classic forecasting methods such as ETS, ARIMA, Prophet and deep learning approaches such as DeepAR+. Classical forecasting methods, such as Autoregressive Integrated Moving Average (ARIMA) or Exponential Smoothing (ETS), fit a single model to each individual time series, and then use that model to extrapolate the time series into the future. Amazon's Non-Parametric Time Series (NPTS) forecaster also fits a single model to each individual time series. Unlike the naive or seasonal naive forecasters that use a fixed time index (the previous index $T-1$ or the past season $T - \tau$) as the prediction for time step $T$, NPTS randomly samples a time index $t \in \{0, \dots T-1\}$ in the past to generate a sample for the current time step $T$.In many applications, you may encounter many similar time series across a set of cross-sectional units. Examples of such time series groupings are demand for different products, server loads, and requests for web pages. In this case, it can be beneficial to train a single model jointly over all of these time series. DeepAR+ takes this approach, outperforming the standard ARIMA and ETS methods when your dataset contains hundreds of related time series. The trained model can also be used for generating forecasts for new time series that are similar to the ones it has been trained on. While deep learning approaches can outperform standard methods, this is only possible when there is sufficient data available for training. It is not true for example when one trains a neural network with a time-series contains only a few dozens of observations. Amazon Forecast provides the best of two worlds allowing users to either choose a specific algorithm or let Amazon Forecast automatically perform model selection. How to evaluate a forecasting model?Before moving forward, let's first introduce the notion of *backtest* when evaluating forecasting models. The key difference between evaluating forecasting algorithms and standard ML applications is that we need to make sure there is no future information gets used in the past. In other words, the procedure needs to be causal. In this notebook, let's compare the neural network based method, DeepAR+ with Facebook's open-source Bayesian method Prophet.
algorithm_arn = 'arn:aws:forecast:::algorithm/'
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 3a. Choosing DeepAR+
algorithm = 'Deep_AR_Plus' algorithm_arn_deep_ar_plus = algorithm_arn + algorithm predictor_name_deep_ar = f'{project}_{algorithm.lower()}_{idx}' logging.info(f'[{predictor_name_deep_ar}] Creating predictor {predictor_name_deep_ar} ...') create_predictor_response = forecast.create_predictor(PredictorName=predictor_name_deep_ar, AlgorithmArn=algorithm_arn_deep_ar_plus, ForecastHorizon=forecast_horizon, PerformAutoML=False, PerformHPO=False, InputDataConfig= {"DatasetGroupArn": dataset_group_arn}, FeaturizationConfig= {"ForecastFrequency": freq} ) predictor_arn_deep_ar = create_predictor_response['PredictorArn'] status = wait(lambda: forecast.describe_predictor(PredictorArn=predictor_arn_deep_ar)) assert status forecast.describe_predictor(PredictorArn=predictor_arn_deep_ar)
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 3b. Choosing Prophet
algorithm = 'Prophet' algorithm_arn_prophet = algorithm_arn + algorithm predictor_name_prophet = f'{project}_{algorithm.lower()}_{idx}' algorithm_arn_prophet logging.info(f'[{predictor_name_prophet}] Creating predictor %s ...' % predictor_name_prophet) create_predictor_response = forecast.create_predictor(PredictorName=predictor_name_prophet, AlgorithmArn=algorithm_arn_prophet, ForecastHorizon=forecast_horizon, PerformAutoML=False, PerformHPO=False, InputDataConfig= {"DatasetGroupArn": dataset_group_arn}, FeaturizationConfig= {"ForecastFrequency": freq} ) predictor_arn_prophet = create_predictor_response['PredictorArn'] status = wait(lambda: forecast.describe_predictor(PredictorArn=predictor_arn_prophet)) assert status forecast.describe_predictor(PredictorArn=predictor_arn_prophet)
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 4. Computing Error Metrics from Backtesting After creating the predictors, we can query the forecast accuracy given by the backtest scenario and have a quantitative understanding of the performance of the algorithm. Such a process is iterative in nature during model development. When an algorithm with satisfying performance is found, the customer can deploy the predictor into a production environment, and query the forecasts for a particular item to make business decisions. The figure below shows a sample plot of different quantile forecasts of a predictor.
logging.info('Done creating predictor. Getting accuracy numbers for DeepAR+ ...') error_metrics_deep_ar_plus = forecast.get_accuracy_metrics(PredictorArn=predictor_arn_deep_ar) error_metrics_deep_ar_plus logging.info('Done creating predictor. Getting accuracy numbers for Prophet ...') error_metrics_prophet = forecast.get_accuracy_metrics(PredictorArn=predictor_arn_prophet) error_metrics_prophet def extract_summary_metrics(metric_response, predictor_name): df = pd.DataFrame(metric_response['PredictorEvaluationResults'] [0]['TestWindows'][0]['Metrics']['WeightedQuantileLosses']) df['Predictor'] = predictor_name return df deep_ar_metrics = extract_summary_metrics(error_metrics_deep_ar_plus, "DeepAR") prophet_metrics = extract_summary_metrics(error_metrics_prophet, "Prophet") pd.concat([deep_ar_metrics, prophet_metrics]) \ .pivot(index='Quantile', columns='Predictor', values='LossValue').plot.bar();
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
As we mentioned before, if you only have a handful of time series (in this case, only 1) with a small number of examples, the neural network models (DeepAR+) are not the best choice. Here, we clearly see that DeepAR+ behaves worse than Prophet in the case of a single time series. Step 5. Creating a ForecastNext we re-train with the full dataset, and create the forecast.
logging.info(f"Done fetching accuracy numbers. Creating forecaster for DeepAR+ ...") forecast_name_deep_ar = f'{project}_deep_ar_plus_{idx}' create_forecast_response_deep_ar = forecast.create_forecast(ForecastName=forecast_name_deep_ar, PredictorArn=predictor_arn_deep_ar) forecast_arn_deep_ar = create_forecast_response_deep_ar['ForecastArn'] status = wait(lambda: forecast.describe_forecast(ForecastArn=forecast_arn_deep_ar)) assert status forecast.describe_forecast(ForecastArn=forecast_arn_deep_ar) logging.info(f"Done fetching accuracy numbers. Creating forecaster for Prophet ...") forecast_name_prophet = f'{project}_prophet_{idx}' create_forecast_response_prophet = forecast.create_forecast(ForecastName=forecast_name_prophet, PredictorArn=predictor_arn_prophet) forecast_arn_prophet = create_forecast_response_prophet['ForecastArn'] status = wait(lambda: forecast.describe_forecast(ForecastArn=forecast_arn_prophet)) assert status forecast.describe_forecast(ForecastArn=forecast_arn_prophet)
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 6. Querying the Forecasts
item_id = 'bike_12' forecast_response_deep = forecast_query.query_forecast( ForecastArn=forecast_arn_deep_ar, Filters={"item_id": item_id}) forecast_response_prophet = forecast_query.query_forecast(ForecastArn=forecast_arn_prophet, Filters={"item_id":item_id}) fname = f'../data/bike_small.csv' exact = load_exact_sol(fname, item_id) plot_forecasts(forecast_response_deep, exact) plt.title("DeepAR Forecast"); plot_forecasts(forecast_response_prophet,exact) plt.title("Prophet Forecast");
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 7. Exporting your Forecasts
forecast_export_name_deep_ar = f'{project}_forecast_export_deep_ar_plus_{idx}' forecast_export_name_deep_ar_path = f"{s3_data_path}/{forecast_export_name_deep_ar}" create_forecast_export_response_deep_ar = forecast.create_forecast_export_job(ForecastExportJobName=forecast_export_name_deep_ar, ForecastArn=forecast_arn_deep_ar, Destination={ "S3Config" : { "Path": forecast_export_name_deep_ar_path, "RoleArn": role_arn } }) forecast_export_arn_deep_ar = create_forecast_export_response_deep_ar['ForecastExportJobArn'] status = wait(lambda: forecast.describe_forecast_export_job(ForecastExportJobArn = forecast_export_arn_deep_ar)) assert status forecast_export_name_prophet = f'{project}_forecast_export_prophet_{idx}' forecast_export_name_prophet_path = f"{s3_data_path}/{forecast_export_name_prophet}" create_forecast_export_response_prophet = forecast.create_forecast_export_job(ForecastExportJobName=forecast_export_name_prophet, ForecastArn=forecast_arn_prophet, Destination={ "S3Config" : { "Path": forecast_export_name_prophet_path, "RoleArn": role_arn } }) forecast_export_arn_prophet = create_forecast_export_response_prophet['ForecastExportJobArn'] status = wait(lambda: forecast.describe_forecast_export_job(ForecastExportJobArn = forecast_export_arn_prophet)) assert status
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples
Step 8. Cleaning up your Resources Once we have completed the above steps, we can start to cleanup the resources we created. All delete jobs, except for `delete_dataset_group` are asynchronous, so we have added the helpful `wait_till_delete` function. Resource Limits documented here.
# Delete forecast export for both algorithms wait_till_delete(lambda: forecast.delete_forecast_export_job(ForecastExportJobArn = forecast_export_arn_deep_ar)) wait_till_delete(lambda: forecast.delete_forecast_export_job(ForecastExportJobArn = forecast_export_arn_prophet)) # Delete forecast for both algorithms wait_till_delete(lambda: forecast.delete_forecast(ForecastArn = forecast_arn_deep_ar)) wait_till_delete(lambda: forecast.delete_forecast(ForecastArn = forecast_arn_prophet)) # Delete predictor for both algorithms wait_till_delete(lambda: forecast.delete_predictor(PredictorArn = predictor_arn_deep_ar)) wait_till_delete(lambda: forecast.delete_predictor(PredictorArn = predictor_arn_prophet)) # Delete the target time series and related time series dataset import jobs wait_till_delete(lambda: forecast.delete_dataset_import_job(DatasetImportJobArn=ts_dataset_import_job_arn)) wait_till_delete(lambda: forecast.delete_dataset_import_job(DatasetImportJobArn=rts_dataset_import_job_arn)) # Delete the target time series and related time series datasets wait_till_delete(lambda: forecast.delete_dataset(DatasetArn=ts_dataset_arn)) wait_till_delete(lambda: forecast.delete_dataset(DatasetArn=rts_dataset_arn)) # Delete dataset group forecast.delete_dataset_group(DatasetGroupArn=dataset_group_arn)
_____no_output_____
MIT-0
notebooks/6.Incorporating_Related_Time_Series_dataset_to_your_Predictor.ipynb
ardilacarlosh/amazon-forecast-samples