markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Render queries from CARTO
from cartoframes import QueryLayer lines = QueryLayer( ''' WITH capitals as ( select * from populated_places where featurecla like 'Admin-0 capital' ) select pp.cartodb_id, pp.pop_max, ST_MakeLine(c.the_geom,pp.the_geom) as the_geom, ST_MakeLine(c.the_geom_webmercator,pp.the_geom_webmercator) as the_geom_webmercator from populated_places pp join capitals c on pp.adm0_a3 = c.adm0_a3 where c.adm0_a3 = 'ESP' ''', color = {'column':'pop_max','scheme':styling.sunset(bins=3)}, size ={'column': 'pop_max','bin_method':'quantiles','bins' : 4, 'min': 3, 'max':10} ) cc.map(layers=lines, interactive=True,zoom=4, lat=36.19, lng=-6.79) points = QueryLayer( ''' select * from populated_places where adm0_a3 = 'ESP' ''', color = {'column':'pop_max','scheme':styling.sunset(bins=3)}, size = {'column':'pop_max','bin_method':'quantiles','bins' : 4, 'min': 3, 'max':7} ) cc.map(layers=[lines,points], interactive=True,zoom=4, lat=36.19, lng=-6.79)
_____no_output_____
CC-BY-4.0
06-sdks/exercises/python_SDK/CARTO_Frames.ipynb
oss-spanish-geoserver/carto-workshop
Crazy queriesYou can render fancy queries, more details [here](https://gist.github.com/jsanz/8aeb48a274e3b787ca57)
query = ''' with -- first data data as ( SELECT * FROM jsanz.ne_10m_populated_places_simple_7 WHERE (megacity >= 0.5 AND megacity <= 1) AND featurecla IN ('Admin-0 capital','Admin-1 region capital','Admin-0 region capital','Admin-0 capital alt') ), -- from dubai origin as ( select * from jsanz.ne_10m_populated_places_simple_7 where cartodb_id = 7263 ), -- cities closer to 14000 Km dests as ( select d.*, ST_Distance( o.the_geom::geography, d.the_geom::geography )::int distance from data d, origin o where ST_DWithin( o.the_geom::geography, d.the_geom::geography, 14000000 ) ), geoms as ( select dests.cartodb_id, dests.name, dests.adm0name, dests.distance, st_transform( st_segmentize( st_makeline( origin.the_geom, dests.the_geom )::geography, 10000 )::geometry, 3857) the_geom_webmercator from origin,dests ) select *, st_transform(the_geom_webmercator,4326) as the_geom from geoms ''' cc.map(QueryLayer(query), interactive=False, zoom=2, lat=19.9, lng=29.5)
_____no_output_____
CC-BY-4.0
06-sdks/exercises/python_SDK/CARTO_Frames.ipynb
oss-spanish-geoserver/carto-workshop
Create a new table on CARTO
df_spain = df[(df['adm0_a3'] == 'ESP')] df_spain['name'].head() cc.write(df_spain, 'places_spain', overwrite=True) cc.query('SELECT DISTINCT adm0_a3 FROM places_spain')
_____no_output_____
CC-BY-4.0
06-sdks/exercises/python_SDK/CARTO_Frames.ipynb
oss-spanish-geoserver/carto-workshop
Modify schema and data Drop a column
df_spain = df[(df['adm0_a3'] == 'ESP')] df_spain = df_spain.drop('adm0_a3', 1) cc.write(df_spain, 'places_spain', overwrite=True) try: cc.query('SELECT DISTINCT adm0_a3 FROM places_spain') except Exception as e: print(e)
['column "adm0_a3" does not exist']
CC-BY-4.0
06-sdks/exercises/python_SDK/CARTO_Frames.ipynb
oss-spanish-geoserver/carto-workshop
Add `València` as an alternate name for the city of `Valencia`
vlc_id = df_spain[df.apply(lambda x: x['name'] == 'Valencia', axis=1)].index.values[0] df_spain = df_spain.set_value(vlc_id,'cityalt','València') # THE FUTURE # cc.sync(df_spain,'places_spain') # THE PRESENT cc.write(df_spain, 'places_spain', overwrite=True) cc.query('''SELECT name,cityalt from places_spain WHERE cartodb_id = {}'''.format(vlc_id))
_____no_output_____
CC-BY-4.0
06-sdks/exercises/python_SDK/CARTO_Frames.ipynb
oss-spanish-geoserver/carto-workshop
Delete the table
cc.delete('places_spain')
_____no_output_____
CC-BY-4.0
06-sdks/exercises/python_SDK/CARTO_Frames.ipynb
oss-spanish-geoserver/carto-workshop
import pandas as pd import os import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.model_selection import GridSearchCV from sklearn.svm import SVR os.listdir('sample_data') data = pd.read_csv('sample_data/Salary_Data.csv') X = data['YearsExperience'] y = data['Salary'] X = X[:,np.newaxis] model = SVR() parameters = { 'kernel' : ['rbf'], 'C' : [1000,10000,100000], 'gamma' : [0.5,0.05,0.005] } grid_search = GridSearchCV(model,parameters) grid_search.fit(X,y) print(grid_search.best_params_) model_baru = SVR(C=100000, gamma=0.005, kernel='rbf') model_baru.fit(X,y) plt.scatter(X,y) plt.plot(X, model_baru.predict(X))
_____no_output_____
MIT
TrainGridSearch.ipynb
ibnuhajar/TrainingMachineLearning
Predict tags on StackOverflow with linear models In this assignment you will learn how to predict tags for posts from [StackOverflow](https://stackoverflow.com). To solve this task you will use multilabel classification approach. LibrariesIn this task you will need the following libraries:- [Numpy](http://www.numpy.org) — a package for scientific computing.- [Pandas](https://pandas.pydata.org) — a library providing high-performance, easy-to-use data structures and data analysis tools for the Python- [scikit-learn](http://scikit-learn.org/stable/index.html) — a tool for data mining and data analysis.- [NLTK](http://www.nltk.org) — a platform to work with natural language. DataThe following cell will download all data required for this assignment into the folder `week1/data`.
! wget https://raw.githubusercontent.com/hse-aml/natural-language-processing/master/setup_google_colab.py -O setup_google_colab.py import setup_google_colab setup_google_colab.setup_week1() import sys sys.path.append("..") from common.download_utils import download_week1_resources download_week1_resources()
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
GradingWe will create a grader instance below and use it to collect your answers. Note that these outputs will be stored locally inside grader and will be uploaded to platform only after running submitting function in the last part of this assignment. If you want to make partial submission, you can run that cell any time you want.
from grader import Grader grader = Grader()
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Text preprocessing For this and most of the following assignments you will need to use a list of stop words. It can be downloaded from *nltk*:
import nltk nltk.download('stopwords') from nltk.corpus import stopwords
[nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Unzipping corpora/stopwords.zip.
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
In this task you will deal with a dataset of post titles from StackOverflow. You are provided a split to 3 sets: *train*, *validation* and *test*. All corpora (except for *test*) contain titles of the posts and corresponding tags (100 tags are available). The *test* set is provided for Coursera's grading and doesn't contain answers. Upload the corpora using *pandas* and look at the data:
from ast import literal_eval import pandas as pd import numpy as np def read_data(filename): data = pd.read_csv(filename, sep='\t') data['tags'] = data['tags'].apply(literal_eval) return data train = read_data('data/train.tsv') validation = read_data('data/validation.tsv') test = pd.read_csv('data/test.tsv', sep='\t') train.head()
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
As you can see, *title* column contains titles of the posts and *tags* column contains the tags. It could be noticed that a number of tags for a post is not fixed and could be as many as necessary. For a more comfortable usage, initialize *X_train*, *X_val*, *X_test*, *y_train*, *y_val*.
X_train, y_train = train['title'].values, train['tags'].values X_val, y_val = validation['title'].values, validation['tags'].values X_test = test['title'].values
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
One of the most known difficulties when working with natural data is that it's unstructured. For example, if you use it "as is" and extract tokens just by splitting the titles by whitespaces, you will see that there are many "weird" tokens like *3.5?*, *"Flip*, etc. To prevent the problems, it's usually useful to prepare the data somehow. In this task you'll write a function, which will be also used in the other assignments. **Task 1 (TextPrepare).** Implement the function *text_prepare* following the instructions. After that, run the function *test_test_prepare* to test it on tiny cases and submit it to Coursera.
import re REPLACE_BY_SPACE_RE = re.compile('[/(){}\[\]\|@,;]') BAD_SYMBOLS_RE = re.compile('[^0-9a-z #+_]') STOPWORDS = set(stopwords.words('english')) def text_prepare(text): """ text: a string return: modified initial string """ text = text.lower() # lowercase text text = re.sub(REPLACE_BY_SPACE_RE, " ", text)# replace REPLACE_BY_SPACE_RE symbols by space in text text = re.sub(BAD_SYMBOLS_RE, "", text)# delete symbols which are in BAD_SYMBOLS_RE from text # print(text) text = ' '.join([word for word in text.split() if word not in STOPWORDS]) # Remove stopwords # print(text) text = text.strip() #text = re.sub(' +', ' ', text) # print(text) return text def test_text_prepare(): examples = ["SQL Server - any equivalent of Excel's CHOOSE function?", "How to free c++ memory vector<int> * arr?"] answers = ["sql server equivalent excels choose function", "free c++ memory vectorint arr"] for ex, ans in zip(examples, answers): if text_prepare(ex) != ans: return "Wrong answer for the case: '%s'" % ex return 'Basic tests are passed.' print(test_text_prepare())
Basic tests are passed.
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Run your implementation for questions from file *text_prepare_tests.tsv* to earn the points.
prepared_questions = [] for line in open('data/text_prepare_tests.tsv', encoding='utf-8'): line = text_prepare(line.strip()) prepared_questions.append(line) text_prepare_results = '\n'.join(prepared_questions) grader.submit_tag('TextPrepare', text_prepare_results)
Current answer for task TextPrepare is: sqlite php readonly creating multiple textboxes dynamically self one prefer javascript save php date...
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Now we can preprocess the titles using function *text_prepare* and making sure that the headers don't have bad symbols:
X_train = [text_prepare(x) for x in X_train] X_val = [text_prepare(x) for x in X_val] X_test = [text_prepare(x) for x in X_test] X_train[:3]
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
For each tag and for each word calculate how many times they occur in the train corpus. **Task 2 (WordsTagsCount).** Find 3 most popular tags and 3 most popular words in the train data and submit the results to earn the points.
from collections import Counter # Dictionary of all tags from train corpus with their counts. tags_counts = Counter() #{} # Dictionary of all words from train corpus with their counts. words_counts = Counter() #{} ###################################### ######### YOUR CODE HERE ############# ###################################### # print(X_train[:3], y_train[:3]) for sentence in X_train: for word in sentence.split(): # print(word) words_counts[word] += 1 for l in y_train: for tag in l: tags_counts[tag] += 1
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
We are assuming that *tags_counts* and *words_counts* are dictionaries like `{'some_word_or_tag': frequency}`. After applying the sorting procedure, results will be look like this: `[('most_popular_word_or_tag', frequency), ('less_popular_word_or_tag', frequency), ...]`. The grader gets the results in the following format (two comma-separated strings with line break): tag1,tag2,tag3 word1,word2,word3Pay attention that in this assignment you should not submit frequencies or some additional information.
most_common_tags = sorted(tags_counts.items(), key=lambda x: x[1], reverse=True)[:3] most_common_words = sorted(words_counts.items(), key=lambda x: x[1], reverse=True)[:3] grader.submit_tag('WordsTagsCount', '%s\n%s' % (','.join(tag for tag, _ in most_common_tags), ','.join(word for word, _ in most_common_words)))
Current answer for task WordsTagsCount is: javascript,c#,java using,php,java...
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Transforming text to a vectorMachine Learning algorithms work with numeric data and we cannot use the provided text data "as is". There are many ways to transform text data to numeric vectors. In this task you will try to use two of them. Bag of wordsOne of the well-known approaches is a *bag-of-words* representation. To create this transformation, follow the steps:1. Find *N* most popular words in train corpus and numerate them. Now we have a dictionary of the most popular words.2. For each title in the corpora create a zero vector with the dimension equals to *N*.3. For each text in the corpora iterate over words which are in the dictionary and increase by 1 the corresponding coordinate.Let's try to do it for a toy example. Imagine that we have *N* = 4 and the list of the most popular words is ['hi', 'you', 'me', 'are']Then we need to numerate them, for example, like this: {'hi': 0, 'you': 1, 'me': 2, 'are': 3}And we have the text, which we want to transform to the vector: 'hi how are you'For this text we create a corresponding zero vector [0, 0, 0, 0] And iterate over all words, and if the word is in the dictionary, we increase the value of the corresponding position in the vector: 'hi': [1, 0, 0, 0] 'how': [1, 0, 0, 0] word 'how' is not in our dictionary 'are': [1, 0, 0, 1] 'you': [1, 1, 0, 1]The resulting vector will be [1, 1, 0, 1] Implement the described encoding in the function *my_bag_of_words* with the size of the dictionary equals to 5000. To find the most common words use train data. You can test your code using the function *test_my_bag_of_words*.
most_common_words = sorted(words_counts.items(), key=lambda x: x[1], reverse=True)[:5002] WORDS_TO_INDEX = {p[0]:i for i,p in enumerate(most_common_words[:5])} print(WORDS_TO_INDEX) DICT_SIZE = 5000 WORDS_TO_INDEX = {p[0]:i for i,p in enumerate(most_common_words[:DICT_SIZE])} INDEX_TO_WORDS = {WORDS_TO_INDEX[k]:k for k in WORDS_TO_INDEX} ALL_WORDS = WORDS_TO_INDEX.keys() def my_bag_of_words(text, words_to_index, dict_size): """ text: a string dict_size: size of the dictionary return a vector which is a bag-of-words representation of 'text' """ result_vector = np.zeros(dict_size) ###################################### ######### YOUR CODE HERE ############# ###################################### for word in text.split(): if word in words_to_index : result_vector[words_to_index[word]] +=1 return result_vector def test_my_bag_of_words(): words_to_index = {'hi': 0, 'you': 1, 'me': 2, 'are': 3} examples = ['hi how are you'] answers = [[1, 1, 0, 1]] for ex, ans in zip(examples, answers): if (my_bag_of_words(ex, words_to_index, 4) != ans).any(): return "Wrong answer for the case: '%s'" % ex return 'Basic tests are passed.' print(test_my_bag_of_words())
Basic tests are passed.
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Now apply the implemented function to all samples (this might take up to a minute):
from scipy import sparse as sp_sparse X_train_mybag = sp_sparse.vstack([sp_sparse.csr_matrix(my_bag_of_words(text, WORDS_TO_INDEX, DICT_SIZE)) for text in X_train]) X_val_mybag = sp_sparse.vstack([sp_sparse.csr_matrix(my_bag_of_words(text, WORDS_TO_INDEX, DICT_SIZE)) for text in X_val]) X_test_mybag = sp_sparse.vstack([sp_sparse.csr_matrix(my_bag_of_words(text, WORDS_TO_INDEX, DICT_SIZE)) for text in X_test]) print('X_train shape ', X_train_mybag.shape) print('X_val shape ', X_val_mybag.shape) print('X_test shape ', X_test_mybag.shape)
X_train shape (100000, 5000) X_val shape (30000, 5000) X_test shape (20000, 5000)
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
As you might notice, we transform the data to sparse representation, to store the useful information efficiently. There are many [types](https://docs.scipy.org/doc/scipy/reference/sparse.html) of such representations, however sklearn algorithms can work only with [csr](https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.htmlscipy.sparse.csr_matrix) matrix, so we will use this one. **Task 3 (BagOfWords).** For the 11th row in *X_train_mybag* find how many non-zero elements it has. In this task the answer (variable *non_zero_elements_count*) should be a number, e.g. 20.
row = X_train_mybag[10].toarray()[0] non_zero_elements_count = np.count_nonzero(row) grader.submit_tag('BagOfWords', str(non_zero_elements_count)) len(row)
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
TF-IDFThe second approach extends the bag-of-words framework by taking into account total frequencies of words in the corpora. It helps to penalize too frequent words and provide better features space. Implement function *tfidf_features* using class [TfidfVectorizer](http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html) from *scikit-learn*. Use *train* corpus to train a vectorizer. Don't forget to take a look into the arguments that you can pass to it. We suggest that you filter out too rare words (occur less than in 5 titles) and too frequent words (occur more than in 90% of the titles). Also, use bigrams along with unigrams in your vocabulary.
from sklearn.feature_extraction.text import TfidfVectorizer def tfidf_features(X_train, X_val, X_test): """ X_train, X_val, X_test — samples return TF-IDF vectorized representation of each sample and vocabulary """ # Create TF-IDF vectorizer with a proper parameters choice # Fit the vectorizer on the train set # Transform the train, test, and val sets and return the result tfidf_vectorizer = TfidfVectorizer(token_pattern='(\S+)', min_df=5, max_df=0.9, ngram_range=(1,2)) ###################################### ######### YOUR CODE HERE ############# ###################################### tfidf_vectorizer.fit(X_train) X_train = tfidf_vectorizer.transform(X_train) X_val = tfidf_vectorizer.transform(X_val) X_test = tfidf_vectorizer.transform(X_test) return X_train, X_val, X_test, tfidf_vectorizer.vocabulary_
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Once you have done text preprocessing, always have a look at the results. Be very careful at this step, because the performance of future models will drastically depend on it. In this case, check whether you have c++ or c in your vocabulary, as they are obviously important tokens in our tags prediction task:
X_train_tfidf, X_val_tfidf, X_test_tfidf, tfidf_vocab = tfidf_features(X_train, X_val, X_test) tfidf_reversed_vocab = {i:word for word,i in tfidf_vocab.items()} print('c++' in tfidf_vocab) print('c#' in tfidf_vocab)
True True
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
If you can't find it, we need to understand how did it happen that we lost them? It happened during the built-in tokenization of TfidfVectorizer. Luckily, we can influence on this process. Get back to the function above and use '(\S+)' regexp as a *token_pattern* in the constructor of the vectorizer. Now, use this transormation for the data and check again.
######### YOUR CODE HERE ############# print('c++' in tfidf_vocab) print('c#' in tfidf_vocab)
True True
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
MultiLabel classifierAs we have noticed before, in this task each example can have multiple tags. To deal with such kind of prediction, we need to transform labels in a binary form and the prediction will be a mask of 0s and 1s. For this purpose it is convenient to use [MultiLabelBinarizer](http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MultiLabelBinarizer.html) from *sklearn*.
from sklearn.preprocessing import MultiLabelBinarizer mlb = MultiLabelBinarizer(classes=sorted(tags_counts.keys())) y_train = mlb.fit_transform(y_train) y_val = mlb.fit_transform(y_val) y_train[0]
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Implement the function *train_classifier* for training a classifier. In this task we suggest to use One-vs-Rest approach, which is implemented in [OneVsRestClassifier](http://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html) class. In this approach *k* classifiers (= number of tags) are trained. As a basic classifier, use [LogisticRegression](http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html). It is one of the simplest methods, but often it performs good enough in text classification tasks. It might take some time, because a number of classifiers to train is large.
from sklearn.multiclass import OneVsRestClassifier from sklearn.linear_model import LogisticRegression, RidgeClassifier def train_classifier(X_train, y_train, C = 1.0, penalty = 'l2'): """ X_train, y_train — training data return: trained classifier """ # Create and fit LogisticRegression wraped into OneVsRestClassifier. ###################################### ######### YOUR CODE HERE ############# ###################################### lr = LogisticRegression(C=C, penalty=penalty) oneVsRest = OneVsRestClassifier(lr) oneVsRest.fit(X_train, y_train) return oneVsRest
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Train the classifiers for different data transformations: *bag-of-words* and *tf-idf*.
classifier_mybag = train_classifier(X_train_mybag, y_train) classifier_tfidf = train_classifier(X_train_tfidf, y_train)
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Now you can create predictions for the data. You will need two types of predictions: labels and scores.
y_val_predicted_labels_mybag = classifier_mybag.predict(X_val_mybag) y_val_predicted_scores_mybag = classifier_mybag.decision_function(X_val_mybag) y_val_predicted_labels_tfidf = classifier_tfidf.predict(X_val_tfidf) y_val_predicted_scores_tfidf = classifier_tfidf.decision_function(X_val_tfidf)
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Now take a look at how classifier, which uses TF-IDF, works for a few examples:
y_val_pred_inversed = mlb.inverse_transform(y_val_predicted_labels_tfidf) y_val_inversed = mlb.inverse_transform(y_val) for i in range(3): print('Title:\t{}\nTrue labels:\t{}\nPredicted labels:\t{}\n\n'.format( X_val[i], ','.join(y_val_inversed[i]), ','.join(y_val_pred_inversed[i]) ))
Title: odbc_exec always fail True labels: php,sql Predicted labels: Title: access base classes variable within child class True labels: javascript Predicted labels: Title: contenttype application json required rails True labels: ruby,ruby-on-rails Predicted labels: json,ruby-on-rails
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Now, we would need to compare the results of different predictions, e.g. to see whether TF-IDF transformation helps or to try different regularization techniques in logistic regression. For all these experiments, we need to setup evaluation procedure. EvaluationTo evaluate the results we will use several classification metrics: - [Accuracy](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html) - [F1-score](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html) - [Area under ROC-curve](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html) - [Area under precision-recall curve](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.htmlsklearn.metrics.average_precision_score) Make sure you are familiar with all of them. How would you expect the things work for the multi-label scenario? Read about micro/macro/weighted averaging following the sklearn links provided above.
from sklearn.metrics import accuracy_score from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score from sklearn.metrics import average_precision_score from sklearn.metrics import recall_score
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Implement the function *print_evaluation_scores* which calculates and prints to stdout: - *accuracy* - *F1-score macro/micro/weighted* - *Precision macro/micro/weighted*
def print_evaluation_scores(y_val, predicted): ###################################### ######### YOUR CODE HERE ############# ###################################### #print('accuracy') print(f1_score(y_val, predicted, average = 'weighted')) """ #print('f1_score_macro') print(f1_score(y_val,predicted, average = 'macro') #print('f1_score_micro') print(f1_score(y_val,predicted, average = 'micro') #print('f1_score_weighted') print(f1_score(y_val,predicted, average = 'weighted') """ print('Bag-of-words') print_evaluation_scores(y_val, y_val_predicted_labels_mybag) print('Tfidf') print_evaluation_scores(y_val, y_val_predicted_labels_tfidf)
Bag-of-words 0.6486956090682869 Tfidf 0.6143558163126149
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
You might also want to plot some generalization of the [ROC curve](http://scikit-learn.org/stable/modules/model_evaluation.htmlreceiver-operating-characteristic-roc) for the case of multi-label classification. Provided function *roc_auc* can make it for you. The input parameters of this function are: - true labels - decision functions scores - number of classes
from metrics import roc_auc %matplotlib inline n_classes = len(tags_counts) roc_auc(y_val, y_val_predicted_scores_mybag, n_classes) n_classes = len(tags_counts) roc_auc(y_val, y_val_predicted_scores_tfidf, n_classes)
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
**Task 4 (MultilabelClassification).** Once we have the evaluation set up, we suggest that you experiment a bit with training your classifiers. We will use *F1-score weighted* as an evaluation metric. Our recommendation:- compare the quality of the bag-of-words and TF-IDF approaches and chose one of them.- for the chosen one, try *L1* and *L2*-regularization techniques in Logistic Regression with different coefficients (e.g. C equal to 0.1, 1, 10, 100).You also could try other improvements of the preprocessing / model, if you want.
def EvaluateDifferentModel(C, penalty) : classifier_mybag = train_classifier(X_train_mybag, y_train, C, penalty) classifier_tfidf = train_classifier(X_train_tfidf, y_train, C, penalty) y_val_predicted_labels_mybag = classifier_mybag.predict(X_val_mybag) y_val_predicted_scores_mybag = classifier_mybag.decision_function(X_val_mybag) y_val_predicted_labels_tfidf = classifier_tfidf.predict(X_val_tfidf) y_val_predicted_scores_tfidf = classifier_tfidf.decision_function(X_val_tfidf) print('Bag-of-words') print_evaluation_scores(y_val, y_val_predicted_labels_mybag) print('Tfidf') print_evaluation_scores(y_val, y_val_predicted_labels_tfidf) EvaluateDifferentModel(0.1,'l1') EvaluateDifferentModel(0.1,'l2') EvaluateDifferentModel(1,'l1') EvaluateDifferentModel(1,'l2') EvaluateDifferentModel(10,'l1') EvaluateDifferentModel(10,'l2') EvaluateDifferentModel(100,'l1') EvaluateDifferentModel(100,'l2') ###################################### ######### YOUR CODE HERE ############# ###################################### classifier_tfidf = train_classifier(X_train_tfidf, y_train, C=1.0, penalty='l1') y_test_predicted_labels_tfidf = classifier_tfidf.predict(X_test_tfidf)
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
When you are happy with the quality, create predictions for *test* set, which you will submit to Coursera.
test_predictions = y_test_predicted_labels_tfidf ######### YOUR CODE HERE ############# test_pred_inversed = mlb.inverse_transform(test_predictions) test_predictions_for_submission = '\n'.join('%i\t%s' % (i, ','.join(row)) for i, row in enumerate(test_pred_inversed)) grader.submit_tag('MultilabelClassification', test_predictions_for_submission)
Current answer for task MultilabelClassification is: 0 mysql,php 1 javascript 2 3 javascript,jquery 4 android,java 5 php,xml 6 json 7 java,swing 8 pytho...
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Analysis of the most important features Finally, it is usually a good idea to look at the features (words or n-grams) that are used with the largest weigths in your logistic regression model. Implement the function *print_words_for_tag* to find them. Get back to sklearn documentation on [OneVsRestClassifier](http://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html) and [LogisticRegression](http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) if needed.
def print_words_for_tag(classifier, tag, tags_classes, index_to_words, all_words): """ classifier: trained classifier tag: particular tag tags_classes: a list of classes names from MultiLabelBinarizer index_to_words: index_to_words transformation all_words: all words in the dictionary return nothing, just print top 5 positive and top 5 negative words for current tag """ print('Tag:\t{}'.format(tag)) # Extract an estimator from the classifier for the given tag. # Extract feature coefficients from the estimator. ###################################### ######### YOUR CODE HERE ############# ###################################### idx = tags_classes.index(tag) coef=classifier_tfidf.coef_[idx] cd = {i:coef[i] for i in range(len(coef))} scd=sorted(cd.items(), key=lambda x: x[1], reverse=True) top_positive_words = [index_to_words[k[0]] for k in scd[:5]] # top-5 words sorted by the coefficiens. top_negative_words = [index_to_words[k[0]] for k in scd[-5:]] # bottom-5 words sorted by the coefficients. print('Top positive words:\t{}'.format(', '.join(top_positive_words))) print('Top negative words:\t{}\n'.format(', '.join(top_negative_words))) print_words_for_tag(classifier_tfidf, 'c', mlb.classes, tfidf_reversed_vocab, ALL_WORDS) print_words_for_tag(classifier_tfidf, 'c++', mlb.classes, tfidf_reversed_vocab, ALL_WORDS) print_words_for_tag(classifier_tfidf, 'linux', mlb.classes, tfidf_reversed_vocab, ALL_WORDS)
Tag: c Top positive words: c, malloc, scanf, printf, gcc Top negative words: c#, javascript, python, php, java Tag: c++ Top positive words: c++, qt, boost, mfc, opencv Top negative words: c#, javascript, python, php, java Tag: linux Top positive words: linux, ubuntu, c, address, signal Top negative words: method, array, jquery, c#, javascript
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Authorization & SubmissionTo submit assignment parts to Cousera platform, please, enter your e-mail and token into variables below. You can generate token on this programming assignment page. Note: Token expires 30 minutes after generation.
grader.status() STUDENT_EMAIL = "[email protected]"# EMAIL STUDENT_TOKEN = "X6mGG4lxlszGyk9H"# TOKEN grader.status()
You want to submit these parts: Task TextPrepare: sqlite php readonly creating multiple textboxes dynamically self one prefer javascript save php date... Task WordsTagsCount: javascript,c#,java using,php,java... Task BagOfWords: 7... Task MultilabelClassification: 0 mysql,php 1 javascript 2 3 javascript,jquery 4 android,java 5 php,xml 6 json 7 java,swing 8 pytho...
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
If you want to submit these answers, run cell below
grader.submit(STUDENT_EMAIL, STUDENT_TOKEN)
_____no_output_____
MIT
week1/week1_MultilabelClassification.ipynb
Gurupradeep/Natural-Language-Processing
Medical Image Classification Tutorial with the MedNIST Dataset IntroductionIn this tutorial, we introduce an end-to-end training and evaluation example based on the MedNIST dataset. We'll go through the following steps: Create a dataset for training and testing Use MONAI transforms to pre-process data Use the DenseNet from MONAI for classification Train the model with a PyTorch program Evaluate on test dataset Get the datasetThe MedNIST dataset was gathered from several sets from [TCIA](https://wiki.cancerimagingarchive.net/display/Public/Data+Usage+Policies+and+Restrictions), [the RSNA Bone Age Challenge](http://rsnachallenges.cloudapp.net/competitions/4), and [the NIH Chest X-ray dataset](https://cloud.google.com/healthcare/docs/resources/public-datasets/nih-chest).The dataset is kindly made available by [Dr. Bradley J. Erickson M.D., Ph.D.](https://www.mayo.edu/research/labs/radiology-informatics/overview) (Department of Radiology, Mayo Clinic)under the Creative Commons [CC BY-SA 4.0 license](https://creativecommons.org/licenses/by-sa/4.0/).If you use the MedNIST dataset, please acknowledge the source, e.g.https://github.com/Project-MONAI/MONAI/blob/master/examples/notebooks/mednist_tutorial.ipynb.The following commands download and unzip the dataset (~60MB).
!wget https://www.dropbox.com/s/5wwskxctvcxiuea/MedNIST.tar.gz # unzip the '.tar.gz' file to the current directory import tarfile datafile = tarfile.open('MedNIST.tar.gz') datafile.extractall() datafile.close() import os import numpy as np %matplotlib inline import matplotlib.pyplot as plt from PIL import Image import torch import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from monai.transforms import \ Compose, LoadPNG, AddChannel, ScaleIntensity, ToTensor, RandRotate, RandFlip, RandZoom from monai.networks.nets import densenet121 from monai.metrics import compute_roc_auc np.random.seed(0)
_____no_output_____
Apache-2.0
examples/notebooks/mednist_tutorial.ipynb
erexhepa/MONAI
Read image filenames from the dataset foldersFirst of all, check the dataset files and show some statistics. There are 6 folders in the dataset: Hand, AbdomenCT, CXR, ChestCT, BreastMRI, HeadCT, which should be used as the labels to train our classification model.
data_dir = './MedNIST/' class_names = sorted([x for x in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, x))]) num_class = len(class_names) image_files = [[os.path.join(data_dir, class_names[i], x) for x in os.listdir(os.path.join(data_dir, class_names[i]))] for i in range(num_class)] num_each = [len(image_files[i]) for i in range(num_class)] image_files_list = [] image_class = [] for i in range(num_class): image_files_list.extend(image_files[i]) image_class.extend([i] * num_each[i]) num_total = len(image_class) image_width, image_height = Image.open(image_files_list[0]).size print(f"Total image count: {num_total}") print(f"Image dimensions: {image_width} x {image_height}") print(f"Label names: {class_names}") print(f"Label counts: {num_each}")
Total image count: 58954 Image dimensions: 64 x 64 Label names: ['AbdomenCT', 'BreastMRI', 'CXR', 'ChestCT', 'Hand', 'HeadCT'] Label counts: [10000, 8954, 10000, 10000, 10000, 10000]
Apache-2.0
examples/notebooks/mednist_tutorial.ipynb
erexhepa/MONAI
Randomly pick images from the dataset to visualize and check
plt.subplots(3, 3, figsize=(8, 8)) for i,k in enumerate(np.random.randint(num_total, size=9)): im = Image.open(image_files_list[k]) arr = np.array(im) plt.subplot(3, 3, i + 1) plt.xlabel(class_names[image_class[k]]) plt.imshow(arr, cmap='gray', vmin=0, vmax=255) plt.tight_layout() plt.show()
_____no_output_____
Apache-2.0
examples/notebooks/mednist_tutorial.ipynb
erexhepa/MONAI
Prepare training, validation and test data listsRandomly select 10% of the dataset as validation and 10% as test.
val_frac = 0.1 test_frac = 0.1 train_x = list() train_y = list() val_x = list() val_y = list() test_x = list() test_y = list() for i in range(num_total): rann = np.random.random() if rann < val_frac: val_x.append(image_files_list[i]) val_y.append(image_class[i]) elif rann < test_frac + val_frac: test_x.append(image_files_list[i]) test_y.append(image_class[i]) else: train_x.append(image_files_list[i]) train_y.append(image_class[i]) print(f"Training count: {len(train_x)}, Validation count: {len(val_x)}, Test count: {len(test_x)}")
Training count: 47156, Validation count: 5913, Test count: 5885
Apache-2.0
examples/notebooks/mednist_tutorial.ipynb
erexhepa/MONAI
Define MONAI transforms, Dataset and Dataloader to pre-process data
train_transforms = Compose([ LoadPNG(image_only=True), AddChannel(), ScaleIntensity(), RandRotate(range_x=15, prob=0.5, keep_size=True), RandFlip(spatial_axis=0, prob=0.5), RandZoom(min_zoom=0.9, max_zoom=1.1, prob=0.5), ToTensor() ]) val_transforms = Compose([ LoadPNG(image_only=True), AddChannel(), ScaleIntensity(), ToTensor() ]) class MedNISTDataset(Dataset): def __init__(self, image_files, labels, transforms): self.image_files = image_files self.labels = labels self.transforms = transforms def __len__(self): return len(self.image_files) def __getitem__(self, index): return self.transforms(self.image_files[index]), self.labels[index] train_ds = MedNISTDataset(train_x, train_y, train_transforms) train_loader = DataLoader(train_ds, batch_size=300, shuffle=True, num_workers=10) val_ds = MedNISTDataset(val_x, val_y, val_transforms) val_loader = DataLoader(val_ds, batch_size=300, num_workers=10) test_ds = MedNISTDataset(test_x, test_y, val_transforms) test_loader = DataLoader(test_ds, batch_size=300, num_workers=10)
_____no_output_____
Apache-2.0
examples/notebooks/mednist_tutorial.ipynb
erexhepa/MONAI
Define network and optimizer1. Set learning rate for how much the model is updated per batch.2. Set total epoch number, as we have shuffle and random transforms, so the training data of every epoch is different. And as this is just a get start tutorial, let's just train 4 epochs. If train 10 epochs, the model can achieve 100% accuracy on test dataset.3. Use DenseNet from MONAI and move to GPU devide, this DenseNet can support both 2D and 3D classification tasks.4. Use Adam optimizer.
device = torch.device('cuda:0') model = densenet121( spatial_dims=2, in_channels=1, out_channels=num_class ).to(device) loss_function = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), 1e-5) epoch_num = 4 val_interval = 1
_____no_output_____
Apache-2.0
examples/notebooks/mednist_tutorial.ipynb
erexhepa/MONAI
Model trainingExecute a typical PyTorch training that run epoch loop and step loop, and do validation after every epoch. Will save the model weights to file if got best validation accuracy.
best_metric = -1 best_metric_epoch = -1 epoch_loss_values = list() metric_values = list() for epoch in range(epoch_num): print('-' * 10) print(f"epoch {epoch + 1}/{epoch_num}") model.train() epoch_loss = 0 step = 0 for batch_data in train_loader: step += 1 inputs, labels = batch_data[0].to(device), batch_data[1].to(device) optimizer.zero_grad() outputs = model(inputs) loss = loss_function(outputs, labels) loss.backward() optimizer.step() epoch_loss += loss.item() print(f"{step}/{len(train_ds) // train_loader.batch_size}, train_loss: {loss.item():.4f}") epoch_len = len(train_ds) // train_loader.batch_size epoch_loss /= step epoch_loss_values.append(epoch_loss) print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}") if (epoch + 1) % val_interval == 0: model.eval() with torch.no_grad(): y_pred = torch.tensor([], dtype=torch.float32, device=device) y = torch.tensor([], dtype=torch.long, device=device) for val_data in val_loader: val_images, val_labels = val_data[0].to(device), val_data[1].to(device) y_pred = torch.cat([y_pred, model(val_images)], dim=0) y = torch.cat([y, val_labels], dim=0) auc_metric = compute_roc_auc(y_pred, y, to_onehot_y=True, softmax=True) metric_values.append(auc_metric) acc_value = torch.eq(y_pred.argmax(dim=1), y) acc_metric = acc_value.sum().item() / len(acc_value) if auc_metric > best_metric: best_metric = auc_metric best_metric_epoch = epoch + 1 torch.save(model.state_dict(), 'best_metric_model.pth') print('saved new best metric model') print(f"current epoch: {epoch + 1} current AUC: {auc_metric:.4f}" f" current accuracy: {acc_metric:.4f} best AUC: {best_metric:.4f}" f" at epoch: {best_metric_epoch}") print(f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}")
_____no_output_____
Apache-2.0
examples/notebooks/mednist_tutorial.ipynb
erexhepa/MONAI
Plot the loss and metric
plt.figure('train', (12, 6)) plt.subplot(1, 2, 1) plt.title('Epoch Average Loss') x = [i + 1 for i in range(len(epoch_loss_values))] y = epoch_loss_values plt.xlabel('epoch') plt.plot(x, y) plt.subplot(1, 2, 2) plt.title('Val AUC') x = [val_interval * (i + 1) for i in range(len(metric_values))] y = metric_values plt.xlabel('epoch') plt.plot(x, y) plt.show()
_____no_output_____
Apache-2.0
examples/notebooks/mednist_tutorial.ipynb
erexhepa/MONAI
Evaluate the model on test datasetAfter training and validation, we already got the best model on validation test. We need to evaluate the model on test dataset to check whether it's robust and not over-fitting. We'll use these predictions to generate a classification report.
model.load_state_dict(torch.load('best_metric_model.pth')) model.eval() y_true = list() y_pred = list() with torch.no_grad(): for test_data in test_loader: test_images, test_labels = test_data[0].to(device), test_data[1].to(device) pred = model(test_images).argmax(dim=1) for i in range(len(pred)): y_true.append(test_labels[i].item()) y_pred.append(pred[i].item()) ! pip install -U sklearn from sklearn.metrics import classification_report print(classification_report(y_true, y_pred, target_names=class_names, digits=4))
precision recall f1-score support Hand 0.9969 0.9928 0.9948 969 AbdomenCT 0.9839 0.9924 0.9881 1046 CXR 0.9948 0.9969 0.9958 961 ChestCT 0.9969 1.0000 0.9985 980 BreastMRI 1.0000 0.9905 0.9952 944 HeadCT 0.9929 0.9919 0.9924 985 accuracy 0.9941 5885 macro avg 0.9942 0.9941 0.9941 5885 weighted avg 0.9941 0.9941 0.9941 5885
Apache-2.0
examples/notebooks/mednist_tutorial.ipynb
erexhepa/MONAI
TensorFlow Neural Network Lab In this lab, you'll use all the tools you learned from *Introduction to TensorFlow* to label images of English letters! The data you are using, notMNIST, consists of images of a letter from A to J in differents font.The above images are a few examples of the data you'll be training on. After training the network, you will compare your prediction model against test data. Your goal, by the end of this lab, is to make predictions against that test set with at least an 80% accuracy. Let's jump in! To start this lab, you first need to import all the necessary modules. Run the code below. If it runs successfully, it will print "`All modules imported`".
import hashlib import os import pickle from urllib.request import urlretrieve import numpy as np from PIL import Image from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from sklearn.utils import resample from tqdm import tqdm from zipfile import ZipFile print('All modules imported.')
All modules imported.
MIT
lab.ipynb
bhaveshwadhwani/CarND-TensorFlow-Lab
The notMNIST dataset is too large for many computers to handle. It contains 500,000 images for just training. You'll be using a subset of this data, 15,000 images for each label (A-J).
def download(url, file): """ Download file from <url> :param url: URL to file :param file: Local file path """ if not os.path.isfile(file): print('Downloading ' + file + '...') urlretrieve(url, file) print('Download Finished') # Download the training and test dataset. download('https://s3.amazonaws.com/udacity-sdc/notMNIST_train.zip', 'notMNIST_train.zip') download('https://s3.amazonaws.com/udacity-sdc/notMNIST_test.zip', 'notMNIST_test.zip') # Make sure the files aren't corrupted assert hashlib.md5(open('notMNIST_train.zip', 'rb').read()).hexdigest() == 'c8673b3f28f489e9cdf3a3d74e2ac8fa',\ 'notMNIST_train.zip file is corrupted. Remove the file and try again.' assert hashlib.md5(open('notMNIST_test.zip', 'rb').read()).hexdigest() == '5d3c7e653e63471c88df796156a9dfa9',\ 'notMNIST_test.zip file is corrupted. Remove the file and try again.' # Wait until you see that all files have been downloaded. print('All files downloaded.') def uncompress_features_labels(file): """ Uncompress features and labels from a zip file :param file: The zip file to extract the data from """ features = [] labels = [] with ZipFile(file) as zipf: # Progress Bar filenames_pbar = tqdm(zipf.namelist(), unit='files') # Get features and labels from all files for filename in filenames_pbar: # Check if the file is a directory if not filename.endswith('/'): with zipf.open(filename) as image_file: image = Image.open(image_file) image.load() # Load image data as 1 dimensional array # We're using float32 to save on memory space feature = np.array(image, dtype=np.float32).flatten() # Get the the letter from the filename. This is the letter of the image. label = os.path.split(filename)[1][0] features.append(feature) labels.append(label) return np.array(features), np.array(labels) # Get the features and labels from the zip files train_features, train_labels = uncompress_features_labels('notMNIST_train.zip') test_features, test_labels = uncompress_features_labels('notMNIST_test.zip') # Limit the amount of data to work with a docker container docker_size_limit = 150000 train_features, train_labels = resample(train_features, train_labels, n_samples=docker_size_limit) # Set flags for feature engineering. This will prevent you from skipping an important step. is_features_normal = False is_labels_encod = False # Wait until you see that all features and labels have been uncompressed. print('All features and labels uncompressed.')
100%|██████████| 210001/210001 [00:49<00:00, 4284.12files/s] 100%|██████████| 10001/10001 [00:02<00:00, 4503.60files/s]
MIT
lab.ipynb
bhaveshwadhwani/CarND-TensorFlow-Lab
Problem 1The first problem involves normalizing the features for your training and test data.Implement Min-Max scaling in the `normalize()` function to a range of `a=0.1` and `b=0.9`. After scaling, the values of the pixels in the input data should range from 0.1 to 0.9.Since the raw notMNIST image data is in [grayscale](https://en.wikipedia.org/wiki/Grayscale), the current values range from a min of 0 to a max of 255.Min-Max Scaling:$X'=a+{\frac {\left(X-X_{\min }\right)\left(b-a\right)}{X_{\max }-X_{\min }}}$*If you're having trouble solving problem 1, you can view the solution [here](https://github.com/udacity/CarND-TensorFlow-Lab/blob/master/solutions.ipynb).*
from sklearn.preprocessing import MinMaxScaler # Problem 1 - Implement Min-Max scaling for grayscale image data def normalize_grayscale(image_data): """ Normalize the image data with Min-Max scaling to a range of [0.1, 0.9] :param image_data: The image data to be normalized :return: Normalized image data """ # TODO: Implement Min-Max scaling for grayscale image data a = 0.1 b = 0.9 grayscale_min = 0 grayscale_max = 255 return a + ( ( (image_data - grayscale_min)*(b - a) )/( grayscale_max - grayscale_min ) ) ### DON'T MODIFY ANYTHING BELOW ### # Test Cases np.testing.assert_array_almost_equal( normalize_grayscale(np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 255])), [0.1, 0.103137254902, 0.106274509804, 0.109411764706, 0.112549019608, 0.11568627451, 0.118823529412, 0.121960784314, 0.125098039216, 0.128235294118, 0.13137254902, 0.9], decimal=3) np.testing.assert_array_almost_equal( normalize_grayscale(np.array([0, 1, 10, 20, 30, 40, 233, 244, 254,255])), [0.1, 0.103137254902, 0.13137254902, 0.162745098039, 0.194117647059, 0.225490196078, 0.830980392157, 0.865490196078, 0.896862745098, 0.9]) if not is_features_normal: train_features = normalize_grayscale(train_features) test_features = normalize_grayscale(test_features) is_features_normal = True print('Tests Passed!') if not is_labels_encod: # Turn labels into numbers and apply One-Hot Encoding encoder = LabelBinarizer() encoder.fit(train_labels) train_labels = encoder.transform(train_labels) test_labels = encoder.transform(test_labels) # Change to float32, so it can be multiplied against the features in TensorFlow, which are float32 train_labels = train_labels.astype(np.float32) test_labels = test_labels.astype(np.float32) is_labels_encod = True print('Labels One-Hot Encoded') assert is_features_normal, 'You skipped the step to normalize the features' assert is_labels_encod, 'You skipped the step to One-Hot Encode the labels' # Get randomized datasets for training and validation train_features, valid_features, train_labels, valid_labels = train_test_split( train_features, train_labels, test_size=0.05, random_state=832289) print('Training features and labels randomized and split.') # Save the data for easy access pickle_file = 'notMNIST.pickle' if not os.path.isfile(pickle_file): print('Saving data to pickle file...') try: with open('notMNIST.pickle', 'wb') as pfile: pickle.dump( { 'train_dataset': train_features, 'train_labels': train_labels, 'valid_dataset': valid_features, 'valid_labels': valid_labels, 'test_dataset': test_features, 'test_labels': test_labels, }, pfile, pickle.HIGHEST_PROTOCOL) except Exception as e: print('Unable to save data to', pickle_file, ':', e) raise print('Data cached in pickle file.')
Data cached in pickle file.
MIT
lab.ipynb
bhaveshwadhwani/CarND-TensorFlow-Lab
CheckpointAll your progress is now saved to the pickle file. If you need to leave and comeback to this lab, you no longer have to start from the beginning. Just run the code block below and it will load all the data and modules required to proceed.
%matplotlib inline # Load the modules import pickle import math import numpy as np import tensorflow as tf from tqdm import tqdm import matplotlib.pyplot as plt # Reload the data pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: pickle_data = pickle.load(f) train_features = pickle_data['train_dataset'] train_labels = pickle_data['train_labels'] valid_features = pickle_data['valid_dataset'] valid_labels = pickle_data['valid_labels'] test_features = pickle_data['test_dataset'] test_labels = pickle_data['test_labels'] del pickle_data # Free up memory print('Data and modules loaded.')
_____no_output_____
MIT
lab.ipynb
bhaveshwadhwani/CarND-TensorFlow-Lab
Problem 2For the neural network to train on your data, you need the following float32 tensors: - `features` - Placeholder tensor for feature data (`train_features`/`valid_features`/`test_features`) - `labels` - Placeholder tensor for label data (`train_labels`/`valid_labels`/`test_labels`) - `weights` - Variable Tensor with random numbers from a truncated normal distribution. - See `tf.truncated_normal()` documentation for help. - `biases` - Variable Tensor with all zeros. - See `tf.zeros()` documentation for help.*If you're having trouble solving problem 2, review "TensorFlow Linear Function" section of the class. If that doesn't help, the solution for this problem is available [here](https://github.com/udacity/CarND-TensorFlow-Lab/blob/master/solutions.ipynb).*
features_count = 784 labels_count = 10 # TODO: Set the features and labels tensors features = tf.placeholder(tf.float32) labels = tf.placeholder(tf.float32) # TODO: Set the weights and biases tensors weights = tf.Variable(tf.truncated_normal((features_count,labels_count))) biases = tf.Variable(tf.zeros(labels_count)) ### DON'T MODIFY ANYTHING BELOW ### #Test Cases from tensorflow.python.ops.variables import Variable assert features._op.name.startswith('Placeholder'), 'features must be a placeholder' assert labels._op.name.startswith('Placeholder'), 'labels must be a placeholder' assert isinstance(weights, Variable), 'weights must be a TensorFlow variable' assert isinstance(biases, Variable), 'biases must be a TensorFlow variable' assert features._shape == None or (\ features._shape.dims[0].value is None and\ features._shape.dims[1].value in [None, 784]), 'The shape of features is incorrect' assert labels._shape == None or (\ labels._shape.dims[0].value is None and\ labels._shape.dims[1].value in [None, 10]), 'The shape of labels is incorrect' assert weights._variable._shape == (784, 10), 'The shape of weights is incorrect' assert biases._variable._shape == (10), 'The shape of biases is incorrect' assert features._dtype == tf.float32, 'features must be type float32' assert labels._dtype == tf.float32, 'labels must be type float32' # Feed dicts for training, validation, and test session train_feed_dict = {features: train_features, labels: train_labels} valid_feed_dict = {features: valid_features, labels: valid_labels} test_feed_dict = {features: test_features, labels: test_labels} # Linear Function WX + b logits = tf.matmul(features, weights) + biases prediction = tf.nn.softmax(logits) # Cross entropy cross_entropy = -tf.reduce_sum(labels * tf.log(prediction), axis=1) # some students have encountered challenges using this function, and have resolved issues # using https://www.tensorflow.org/api_docs/python/tf/nn/softmax_cross_entropy_with_logits # please see this thread for more detail https://discussions.udacity.com/t/accuracy-0-10-in-the-intro-to-tensorflow-lab/272469/9 # Training loss loss = tf.reduce_mean(cross_entropy) # Create an operation that initializes all variables init = tf.global_variables_initializer() # Test Cases with tf.Session() as session: session.run(init) session.run(loss, feed_dict=train_feed_dict) session.run(loss, feed_dict=valid_feed_dict) session.run(loss, feed_dict=test_feed_dict) biases_data = session.run(biases) assert not np.count_nonzero(biases_data), 'biases must be zeros' print('Tests Passed!') # Determine if the predictions are correct is_correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(labels, 1)) # Calculate the accuracy of the predictions accuracy = tf.reduce_mean(tf.cast(is_correct_prediction, tf.float32)) print('Accuracy function created.')
Accuracy function created.
MIT
lab.ipynb
bhaveshwadhwani/CarND-TensorFlow-Lab
Problem 3Below are 3 parameter configurations for training the neural network. In each configuration, one of the parameters has multiple options. For each configuration, choose the option that gives the best acccuracy.Parameter configurations:Configuration 1* **Epochs:** 1* **Batch Size:** * 2000 * 1000 * 500 * 300 * 50* **Learning Rate:** 0.01Configuration 2* **Epochs:** 1* **Batch Size:** 100* **Learning Rate:** * 0.8 * 0.5 * 0.1 * 0.05 * 0.01Configuration 3* **Epochs:** * 1 * 2 * 3 * 4 * 5* **Batch Size:** 100* **Learning Rate:** 0.2The code will print out a Loss and Accuracy graph, so you can see how well the neural network performed.*If you're having trouble solving problem 3, you can view the solution [here](https://github.com/udacity/CarND-TensorFlow-Lab/blob/master/solutions.ipynb).*
# TODO: Find the best parameters for each configuration epochs = 30 batch_size = 100 learning_rate = 0.2 ### DON'T MODIFY ANYTHING BELOW ### # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) # The accuracy measured against the validation set validation_accuracy = 0.0 # Measurements use for graphing loss and accuracy log_batch_step = 50 batches = [] loss_batch = [] train_acc_batch = [] valid_acc_batch = [] with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(train_features)/batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i*batch_size batch_features = train_features[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer and get loss _, l = session.run( [optimizer, loss], feed_dict={features: batch_features, labels: batch_labels}) # Log every 50 batches if not batch_i % log_batch_step: # Calculate Training and Validation accuracy training_accuracy = session.run(accuracy, feed_dict=train_feed_dict) validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) # Log batches previous_batch = batches[-1] if batches else 0 batches.append(log_batch_step + previous_batch) loss_batch.append(l) train_acc_batch.append(training_accuracy) valid_acc_batch.append(validation_accuracy) # Check accuracy against Validation data validation_accuracy = session.run(accuracy, feed_dict=valid_feed_dict) loss_plot = plt.subplot(211) loss_plot.set_title('Loss') loss_plot.plot(batches, loss_batch, 'g') loss_plot.set_xlim([batches[0], batches[-1]]) acc_plot = plt.subplot(212) acc_plot.set_title('Accuracy') acc_plot.plot(batches, train_acc_batch, 'r', label='Training Accuracy') acc_plot.plot(batches, valid_acc_batch, 'x', label='Validation Accuracy') acc_plot.set_ylim([0, 1.0]) acc_plot.set_xlim([batches[0], batches[-1]]) acc_plot.legend(loc=4) plt.tight_layout() plt.show() print('Validation accuracy at {}'.format(validation_accuracy))
Epoch 1/30: 100%|██████████| 1425/1425 [00:05<00:00, 241.03batches/s] Epoch 2/30: 100%|██████████| 1425/1425 [00:05<00:00, 241.15batches/s] Epoch 3/30: 100%|██████████| 1425/1425 [00:05<00:00, 241.68batches/s] Epoch 4/30: 100%|██████████| 1425/1425 [00:06<00:00, 237.31batches/s] Epoch 5/30: 100%|██████████| 1425/1425 [00:05<00:00, 239.41batches/s] Epoch 6/30: 100%|██████████| 1425/1425 [00:06<00:00, 233.95batches/s] Epoch 7/30: 100%|██████████| 1425/1425 [00:05<00:00, 248.55batches/s] Epoch 8/30: 100%|██████████| 1425/1425 [00:05<00:00, 249.13batches/s] Epoch 9/30: 100%|██████████| 1425/1425 [00:05<00:00, 246.91batches/s] Epoch 10/30: 100%|██████████| 1425/1425 [00:05<00:00, 246.33batches/s] Epoch 11/30: 100%|██████████| 1425/1425 [00:06<00:00, 222.22batches/s] Epoch 12/30: 100%|██████████| 1425/1425 [00:05<00:00, 238.46batches/s] Epoch 13/30: 100%|██████████| 1425/1425 [00:05<00:00, 247.66batches/s] Epoch 14/30: 100%|██████████| 1425/1425 [00:05<00:00, 247.59batches/s] Epoch 15/30: 100%|██████████| 1425/1425 [00:05<00:00, 265.48batches/s] Epoch 16/30: 100%|██████████| 1425/1425 [00:05<00:00, 243.82batches/s] Epoch 17/30: 100%|██████████| 1425/1425 [00:06<00:00, 236.59batches/s] Epoch 18/30: 100%|██████████| 1425/1425 [00:05<00:00, 240.60batches/s] Epoch 19/30: 100%|██████████| 1425/1425 [00:05<00:00, 248.57batches/s] Epoch 20/30: 100%|██████████| 1425/1425 [00:05<00:00, 244.13batches/s] Epoch 21/30: 100%|██████████| 1425/1425 [00:05<00:00, 244.86batches/s] Epoch 22/30: 100%|██████████| 1425/1425 [00:05<00:00, 217.50batches/s] Epoch 23/30: 100%|██████████| 1425/1425 [00:05<00:00, 245.30batches/s] Epoch 24/30: 100%|██████████| 1425/1425 [00:05<00:00, 241.40batches/s] Epoch 25/30: 100%|██████████| 1425/1425 [00:05<00:00, 251.86batches/s] Epoch 26/30: 100%|██████████| 1425/1425 [00:05<00:00, 256.47batches/s] Epoch 27/30: 100%|██████████| 1425/1425 [00:06<00:00, 224.38batches/s] Epoch 28/30: 100%|██████████| 1425/1425 [00:05<00:00, 249.99batches/s] Epoch 29/30: 100%|██████████| 1425/1425 [00:05<00:00, 246.27batches/s] Epoch 30/30: 100%|██████████| 1425/1425 [00:05<00:00, 252.18batches/s]
MIT
lab.ipynb
bhaveshwadhwani/CarND-TensorFlow-Lab
TestSet the epochs, batch_size, and learning_rate with the best learning parameters you discovered in problem 3. You're going to test your model against your hold out dataset/testing data. This will give you a good indicator of how well the model will do in the real world. You should have a test accuracy of at least 80%.
# TODO: Set the epochs, batch_size, and learning_rate with the best parameters from problem 3 epochs = 30 batch_size = 100 learning_rate = 0.2 ### DON'T MODIFY ANYTHING BELOW ### # The accuracy measured against the test set test_accuracy = 0.0 with tf.Session() as session: session.run(init) batch_count = int(math.ceil(len(train_features)/batch_size)) for epoch_i in range(epochs): # Progress bar batches_pbar = tqdm(range(batch_count), desc='Epoch {:>2}/{}'.format(epoch_i+1, epochs), unit='batches') # The training cycle for batch_i in batches_pbar: # Get a batch of training features and labels batch_start = batch_i*batch_size batch_features = train_features[batch_start:batch_start + batch_size] batch_labels = train_labels[batch_start:batch_start + batch_size] # Run optimizer _ = session.run(optimizer, feed_dict={features: batch_features, labels: batch_labels}) # Check accuracy against Test data test_accuracy = session.run(accuracy, feed_dict=test_feed_dict) assert test_accuracy >= 0.80, 'Test accuracy at {}, should be equal to or greater than 0.80'.format(test_accuracy) print('Nice Job! Test Accuracy is {}'.format(test_accuracy))
Epoch 1/25: 100%|██████████| 1425/1425 [00:02<00:00, 505.22batches/s] Epoch 2/25: 100%|██████████| 1425/1425 [00:02<00:00, 540.31batches/s] Epoch 3/25: 100%|██████████| 1425/1425 [00:02<00:00, 536.68batches/s] Epoch 4/25: 100%|██████████| 1425/1425 [00:02<00:00, 538.19batches/s] Epoch 5/25: 100%|██████████| 1425/1425 [00:02<00:00, 539.59batches/s] Epoch 6/25: 100%|██████████| 1425/1425 [00:02<00:00, 540.76batches/s] Epoch 7/25: 100%|██████████| 1425/1425 [00:02<00:00, 541.74batches/s] Epoch 8/25: 100%|██████████| 1425/1425 [00:02<00:00, 545.16batches/s] Epoch 9/25: 100%|██████████| 1425/1425 [00:02<00:00, 505.92batches/s] Epoch 10/25: 32%|███▏ | 452/1425 [00:00<00:01, 491.61batches/s]
MIT
lab.ipynb
bhaveshwadhwani/CarND-TensorFlow-Lab
Tutorial 6: Dealing with imbalanced dataset using TensorFilterWhen your dataset is imbalanced, training data needs to maintain a certain distribution to make sure minority classes are not ommitted during the training. In FastEstimator, `TensorFilter` is designed for that purpose.`TensorFilter` is a Tensor Operator that is used in `Pipeline` along with other tensor operators such as `MinMax` and `Resize`.There are only two differences between `TensorFilter` and `TensorOp`: 1. `TensorFilter` does not have outputs.2. The forward function of `TensorFilter` produces a boolean value which indicates whether to keep the data or not. Step 0 - Data preparation *(same as tutorial 1)*
# Import libraries import numpy as np import tensorflow as tf import fastestimator as fe from fastestimator.op.tensorop import Minmax # Load data and create dictionaries (x_train, y_train), (x_eval, y_eval) = tf.keras.datasets.mnist.load_data() train_data = {"x": np.expand_dims(x_train, -1), "y": y_train} eval_data = {"x": np.expand_dims(x_eval, -1), "y": y_eval} data = {"train": train_data, "eval": eval_data}
_____no_output_____
Apache-2.0
tutorial/t06_TensorFilter_imbalanced_training.ipynb
fastestimator-util/test_nightly
Step 1 - Customize your own Filter...In this example, we will get rid of all images that have a label smaller than 5.
from fastestimator.op.tensorop import TensorFilter # We create our filter in forward function, it's just our condition. class MyFilter(TensorFilter): def forward(self, data, state): pass_filter = data >= 5 return pass_filter # We specify the filter in Pipeline ops list. pipeline = fe.Pipeline(batch_size=32, data=data, ops=[MyFilter(inputs="y"), Minmax(inputs="x", outputs="x")]) # Let's check our pipeline ops results with show_results results = pipeline.show_results() print("filtering out all data with label less than 5, the labels of current batch are:") print(results[0]["y"])
filtering out all data with label less than 5, the labels of current batch are: tf.Tensor([5 9 6 9 8 8 9 6 5 8 9 6 8 9 5 9 6 7 5 8 7 5 7 5 6 6 9 8 6 5 6 5], shape=(32,), dtype=uint8)
Apache-2.0
tutorial/t06_TensorFilter_imbalanced_training.ipynb
fastestimator-util/test_nightly
... or use a pre-built ScalarFilterIn FastEstimator, if user needs to filter out scalar values with a certain probability, one can use pre-built filter `ScalarFilter`. Let's filter out even numbers labels with 50% probability:
from fastestimator.op.tensorop import ScalarFilter # We specify the list of scalars to filter out and the probability to keep these scalars pipeline = fe.Pipeline(batch_size=32, data=data, ops=[ScalarFilter(inputs="y", filter_value=[0, 2, 4, 6, 8], keep_prob=[0.5, 0.5, 0.5, 0.5, 0.5]), Minmax(inputs="x", outputs="x")]) # Let's check our pipeline ops results with show_results results = pipeline.show_results(num_steps=10) for idx in range(10): batch_label = results[idx]["y"].numpy() even_count = 0 odd_count = 0 for elem in batch_label: if elem % 2 == 0: even_count += 1 else: odd_count += 1 print("in batch number {}, there are {} odd labels and {} even labels".format(idx, odd_count, even_count))
in batch number 0, there are 20 odd labels and 12 even labels in batch number 1, there are 21 odd labels and 11 even labels in batch number 2, there are 20 odd labels and 12 even labels in batch number 3, there are 22 odd labels and 10 even labels in batch number 4, there are 22 odd labels and 10 even labels in batch number 5, there are 22 odd labels and 10 even labels in batch number 6, there are 21 odd labels and 11 even labels in batch number 7, there are 20 odd labels and 12 even labels in batch number 8, there are 22 odd labels and 10 even labels in batch number 9, there are 25 odd labels and 7 even labels
Apache-2.0
tutorial/t06_TensorFilter_imbalanced_training.ipynb
fastestimator-util/test_nightly
Dataset 1
X1, y1 = importar_dados('datasets/dataset1.txt') exibir_amostras(X=X1, y=y1)
_____no_output_____
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
**Classificador mais adequado**: para este caso, o LDA já é suficiente para atuar bem, mas nada impede que seja escolhido o QDA.
# Bootstrap n_repeticoes = 10 SK_LDA_desempenho = [] ME_LDA_desempenho = [] SK_QDA_desempenho = [] ME_QDA_desempenho = [] for execucao in range(n_repeticoes): # Holdout X_treino, y_treino, X_teste, y_teste = holdout(X=X1, y=y1, teste_parcela=0.30, aleatorio=True, semente=None) # LDA - Scikit-Learn SK_LDA = LinearDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_LDA_y_predito = SK_LDA.predict(X=X_teste) SK_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_LDA_y_predito)) # LDA - Próprio ME_LDA = AnaliseDiscriminante(tipo='LDA') ME_LDA.treinar(X=X_treino, y=y_treino) ME_LDA_y_predito = ME_LDA.classificar(X=X_teste) ME_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_LDA_y_predito)) # QDA - Scikit-Learn SK_QDA = QuadraticDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_QDA_y_predito = SK_QDA.predict(X=X_teste) SK_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_QDA_y_predito)) # QDA - Próprio ME_QDA = AnaliseDiscriminante(tipo='QDA') ME_QDA.treinar(X=X_treino, y=y_treino) ME_QDA_y_predito = ME_QDA.classificar(X=X_teste) ME_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_QDA_y_predito)) SK_LDA_desempenho = np.array(SK_LDA_desempenho) SK_LDA_desempenho_media = np.mean(SK_LDA_desempenho) SK_LDA_desempenho_std = np.std(SK_LDA_desempenho) ME_LDA_desempenho = np.array(ME_LDA_desempenho) ME_LDA_desempenho_media = np.mean(ME_LDA_desempenho) ME_LDA_desempenho_std = np.std(ME_LDA_desempenho) SK_QDA_desempenho = np.array(SK_QDA_desempenho) SK_QDA_desempenho_media = np.mean(SK_QDA_desempenho) SK_QDA_desempenho_std = np.std(SK_QDA_desempenho) ME_QDA_desempenho = np.array(ME_QDA_desempenho) ME_QDA_desempenho_media = np.mean(ME_QDA_desempenho) ME_QDA_desempenho_std = np.std(ME_QDA_desempenho) print('DATASET 1') print('------ Acurácias -----') print('LDA - Scikit: \t{0:3.4f}'.format(SK_LDA_desempenho_media)) print('LDA - Próprio: \t{0:3.4f}'.format(ME_LDA_desempenho_media)) print('----------------------') print('QDA - Scikit: \t{0:3.4f}'.format(SK_QDA_desempenho_media)) print('QDA - Próprio: \t{0:3.4f}'.format(ME_QDA_desempenho_media))
DATASET 1 ------ Acurácias ----- LDA - Scikit: 1.0000 LDA - Próprio: 1.0000 ---------------------- QDA - Scikit: 1.0000 QDA - Próprio: 1.0000
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
Dataset 2
X2, y2 = importar_dados('datasets/dataset2.txt') exibir_amostras(X=X2, y=y2)
_____no_output_____
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
**Classificador mais adequado**: aqui não parece ser possível zerar a taxa de erros, mas é possível observar que o LDA satisfaz a classificação com uma taxa de erros relativamebte baixa.
# Bootstrap n_repeticoes = 10 SK_LDA_desempenho = [] ME_LDA_desempenho = [] SK_QDA_desempenho = [] ME_QDA_desempenho = [] for execucao in range(n_repeticoes): # Holdout X_treino, y_treino, X_teste, y_teste = holdout(X=X2, y=y2, teste_parcela=0.30, aleatorio=True, semente=None) # LDA - Scikit-Learn SK_LDA = LinearDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_LDA_y_predito = SK_LDA.predict(X=X_teste) SK_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_LDA_y_predito)) # LDA - Próprio ME_LDA = AnaliseDiscriminante(tipo='LDA') ME_LDA.treinar(X=X_treino, y=y_treino) ME_LDA_y_predito = ME_LDA.classificar(X=X_teste) ME_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_LDA_y_predito)) # QDA - Scikit-Learn SK_QDA = QuadraticDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_QDA_y_predito = SK_QDA.predict(X=X_teste) SK_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_QDA_y_predito)) # QDA - Próprio ME_QDA = AnaliseDiscriminante(tipo='QDA') ME_QDA.treinar(X=X_treino, y=y_treino) ME_QDA_y_predito = ME_QDA.classificar(X=X_teste) ME_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_QDA_y_predito)) SK_LDA_desempenho = np.array(SK_LDA_desempenho) SK_LDA_desempenho_media = np.mean(SK_LDA_desempenho) SK_LDA_desempenho_std = np.std(SK_LDA_desempenho) ME_LDA_desempenho = np.array(ME_LDA_desempenho) ME_LDA_desempenho_media = np.mean(ME_LDA_desempenho) ME_LDA_desempenho_std = np.std(ME_LDA_desempenho) SK_QDA_desempenho = np.array(SK_QDA_desempenho) SK_QDA_desempenho_media = np.mean(SK_QDA_desempenho) SK_QDA_desempenho_std = np.std(SK_QDA_desempenho) ME_QDA_desempenho = np.array(ME_QDA_desempenho) ME_QDA_desempenho_media = np.mean(ME_QDA_desempenho) ME_QDA_desempenho_std = np.std(ME_QDA_desempenho) print('DATASET 2') print('------ Acurácias -----') print('LDA - Scikit: \t{0:3.4f}'.format(SK_LDA_desempenho_media)) print('LDA - Próprio: \t{0:3.4f}'.format(ME_LDA_desempenho_media)) print('----------------------') print('QDA - Scikit: \t{0:3.4f}'.format(SK_QDA_desempenho_media)) print('QDA - Próprio: \t{0:3.4f}'.format(ME_QDA_desempenho_media))
DATASET 2 ------ Acurácias ----- LDA - Scikit: 0.7714 LDA - Próprio: 0.7429 ---------------------- QDA - Scikit: 0.7571 QDA - Próprio: 0.7571
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
Dataset 3
X3, y3 = importar_dados('datasets/dataset3.txt') exibir_amostras(X=X3, y=y3)
_____no_output_____
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
**Classificador mais adequado**: neste dataset é bastante evidente que há uma intensa sobreposição entre os dados, e o QDA é bem mais conveniente.
# Bootstrap n_repeticoes = 10 SK_LDA_desempenho = [] ME_LDA_desempenho = [] SK_QDA_desempenho = [] ME_QDA_desempenho = [] for execucao in range(n_repeticoes): # Holdout X_treino, y_treino, X_teste, y_teste = holdout(X=X3, y=y3, teste_parcela=0.30, aleatorio=True, semente=None) # LDA - Scikit-Learn SK_LDA = LinearDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_LDA_y_predito = SK_LDA.predict(X=X_teste) SK_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_LDA_y_predito)) # LDA - Próprio ME_LDA = AnaliseDiscriminante(tipo='LDA') ME_LDA.treinar(X=X_treino, y=y_treino) ME_LDA_y_predito = ME_LDA.classificar(X=X_teste) ME_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_LDA_y_predito)) # QDA - Scikit-Learn SK_QDA = QuadraticDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_QDA_y_predito = SK_QDA.predict(X=X_teste) SK_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_QDA_y_predito)) # QDA - Próprio ME_QDA = AnaliseDiscriminante(tipo='QDA') ME_QDA.treinar(X=X_treino, y=y_treino) ME_QDA_y_predito = ME_QDA.classificar(X=X_teste) ME_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_QDA_y_predito)) SK_LDA_desempenho = np.array(SK_LDA_desempenho) SK_LDA_desempenho_media = np.mean(SK_LDA_desempenho) SK_LDA_desempenho_std = np.std(SK_LDA_desempenho) ME_LDA_desempenho = np.array(ME_LDA_desempenho) ME_LDA_desempenho_media = np.mean(ME_LDA_desempenho) ME_LDA_desempenho_std = np.std(ME_LDA_desempenho) SK_QDA_desempenho = np.array(SK_QDA_desempenho) SK_QDA_desempenho_media = np.mean(SK_QDA_desempenho) SK_QDA_desempenho_std = np.std(SK_QDA_desempenho) ME_QDA_desempenho = np.array(ME_QDA_desempenho) ME_QDA_desempenho_media = np.mean(ME_QDA_desempenho) ME_QDA_desempenho_std = np.std(ME_QDA_desempenho) print('DATASET 3') print('------ Acurácias -----') print('LDA - Scikit: \t{0:3.4f}'.format(SK_LDA_desempenho_media)) print('LDA - Próprio: \t{0:3.4f}'.format(ME_LDA_desempenho_media)) print('----------------------') print('QDA - Scikit: \t{0:3.4f}'.format(SK_QDA_desempenho_media)) print('QDA - Próprio: \t{0:3.4f}'.format(ME_QDA_desempenho_media))
DATASET 3 ------ Acurácias ----- LDA - Scikit: 0.4450 LDA - Próprio: 0.4450 ---------------------- QDA - Scikit: 0.8033 QDA - Próprio: 0.8033
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
Dataset 4
X4, y4 = importar_dados('datasets/dataset4.txt') exibir_amostras(X=X4, y=y4)
_____no_output_____
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
**Classificador mais adequado**: aqui também á uma considerável sobreposição das amostras, mas é menos agressiva do que o observado no dataset anterior. Embora não aparente, LDA e QDA exibirão resultados bastante próximos.
# Bootstrap n_repeticoes = 10 SK_LDA_desempenho = [] ME_LDA_desempenho = [] SK_QDA_desempenho = [] ME_QDA_desempenho = [] for execucao in range(n_repeticoes): # Holdout X_treino, y_treino, X_teste, y_teste = holdout(X=X4, y=y4, teste_parcela=0.30, aleatorio=True, semente=None) # LDA - Scikit-Learn SK_LDA = LinearDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_LDA_y_predito = SK_LDA.predict(X=X_teste) SK_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_LDA_y_predito)) # LDA - Próprio ME_LDA = AnaliseDiscriminante(tipo='LDA') ME_LDA.treinar(X=X_treino, y=y_treino) ME_LDA_y_predito = ME_LDA.classificar(X=X_teste) ME_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_LDA_y_predito)) # QDA - Scikit-Learn SK_QDA = QuadraticDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_QDA_y_predito = SK_QDA.predict(X=X_teste) SK_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_QDA_y_predito)) # QDA - Próprio ME_QDA = AnaliseDiscriminante(tipo='QDA') ME_QDA.treinar(X=X_treino, y=y_treino) ME_QDA_y_predito = ME_QDA.classificar(X=X_teste) ME_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_QDA_y_predito)) SK_LDA_desempenho = np.array(SK_LDA_desempenho) SK_LDA_desempenho_media = np.mean(SK_LDA_desempenho) SK_LDA_desempenho_std = np.std(SK_LDA_desempenho) ME_LDA_desempenho = np.array(ME_LDA_desempenho) ME_LDA_desempenho_media = np.mean(ME_LDA_desempenho) ME_LDA_desempenho_std = np.std(ME_LDA_desempenho) SK_QDA_desempenho = np.array(SK_QDA_desempenho) SK_QDA_desempenho_media = np.mean(SK_QDA_desempenho) SK_QDA_desempenho_std = np.std(SK_QDA_desempenho) ME_QDA_desempenho = np.array(ME_QDA_desempenho) ME_QDA_desempenho_media = np.mean(ME_QDA_desempenho) ME_QDA_desempenho_std = np.std(ME_QDA_desempenho) print('DATASET 4') print('------ Acurácias -----') print('LDA - Scikit: \t{0:3.4f}'.format(SK_LDA_desempenho_media)) print('LDA - Próprio: \t{0:3.4f}'.format(ME_LDA_desempenho_media)) print('----------------------') print('QDA - Scikit: \t{0:3.4f}'.format(SK_QDA_desempenho_media)) print('QDA - Próprio: \t{0:3.4f}'.format(ME_QDA_desempenho_media))
DATASET 4 ------ Acurácias ----- LDA - Scikit: 0.7872 LDA - Próprio: 0.7872 ---------------------- QDA - Scikit: 0.7564 QDA - Próprio: 0.7564
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
Dataset 5
X5, y5 = importar_dados('datasets/dataset5.txt') exibir_amostras(X=X5, y=y5)
_____no_output_____
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
**Classificador mais adequado**: este é um caso em que não há qualquer sobreposição. Embora não seja fácil, é possível realizar uma classificação perfeita, com zero erros, utilizando um classificador linear, portanto, o LDA já é suficiente para satisfazer o problema, mas nada impede que o QDA seja utilizado.
# Bootstrap n_repeticoes = 10 SK_LDA_desempenho = [] ME_LDA_desempenho = [] SK_QDA_desempenho = [] ME_QDA_desempenho = [] for execucao in range(n_repeticoes): # Holdout X_treino, y_treino, X_teste, y_teste = holdout(X=X5, y=y5, teste_parcela=0.30, aleatorio=True, semente=None) # LDA - Scikit-Learn SK_LDA = LinearDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_LDA_y_predito = SK_LDA.predict(X=X_teste) SK_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_LDA_y_predito)) # LDA - Próprio ME_LDA = AnaliseDiscriminante(tipo='LDA') ME_LDA.treinar(X=X_treino, y=y_treino) ME_LDA_y_predito = ME_LDA.classificar(X=X_teste) ME_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_LDA_y_predito)) # QDA - Scikit-Learn SK_QDA = QuadraticDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_QDA_y_predito = SK_QDA.predict(X=X_teste) SK_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_QDA_y_predito)) # QDA - Próprio ME_QDA = AnaliseDiscriminante(tipo='QDA') ME_QDA.treinar(X=X_treino, y=y_treino) ME_QDA_y_predito = ME_QDA.classificar(X=X_teste) ME_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_QDA_y_predito)) SK_LDA_desempenho = np.array(SK_LDA_desempenho) SK_LDA_desempenho_media = np.mean(SK_LDA_desempenho) SK_LDA_desempenho_std = np.std(SK_LDA_desempenho) ME_LDA_desempenho = np.array(ME_LDA_desempenho) ME_LDA_desempenho_media = np.mean(ME_LDA_desempenho) ME_LDA_desempenho_std = np.std(ME_LDA_desempenho) SK_QDA_desempenho = np.array(SK_QDA_desempenho) SK_QDA_desempenho_media = np.mean(SK_QDA_desempenho) SK_QDA_desempenho_std = np.std(SK_QDA_desempenho) ME_QDA_desempenho = np.array(ME_QDA_desempenho) ME_QDA_desempenho_media = np.mean(ME_QDA_desempenho) ME_QDA_desempenho_std = np.std(ME_QDA_desempenho) print('DATASET 5') print('------ Acurácias -----') print('LDA - Scikit: \t{0:3.4f}'.format(SK_LDA_desempenho_media)) print('LDA - Próprio: \t{0:3.4f}'.format(ME_LDA_desempenho_media)) print('----------------------') print('QDA - Scikit: \t{0:3.4f}'.format(SK_QDA_desempenho_media)) print('QDA - Próprio: \t{0:3.4f}'.format(ME_QDA_desempenho_media))
DATASET 5 ------ Acurácias ----- LDA - Scikit: 0.9889 LDA - Próprio: 0.9800 ---------------------- QDA - Scikit: 0.9844 QDA - Próprio: 0.9844
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
Dataset 6
X6, y6 = importar_dados('datasets/dataset6.txt') exibir_amostras(X=X6, y=y6)
_____no_output_____
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
**Classificador mais adequado**: neste caso já há sobreposição, o que não permite uma classificação completamente isenta de erros, mas um bom desempenho pode ser alcançado por ambos os classificadores, sem que haja grandes diferenças entre eles.
# Bootstrap n_repeticoes = 10 SK_LDA_desempenho = [] ME_LDA_desempenho = [] SK_QDA_desempenho = [] ME_QDA_desempenho = [] for execucao in range(n_repeticoes): # Holdout X_treino, y_treino, X_teste, y_teste = holdout(X=X6, y=y6, teste_parcela=0.30, aleatorio=True, semente=None) # LDA - Scikit-Learn SK_LDA = LinearDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_LDA_y_predito = SK_LDA.predict(X=X_teste) SK_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_LDA_y_predito)) # LDA - Próprio ME_LDA = AnaliseDiscriminante(tipo='LDA') ME_LDA.treinar(X=X_treino, y=y_treino) ME_LDA_y_predito = ME_LDA.classificar(X=X_teste) ME_LDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_LDA_y_predito)) # QDA - Scikit-Learn SK_QDA = QuadraticDiscriminantAnalysis().fit(X=X_treino, y=y_treino) SK_QDA_y_predito = SK_QDA.predict(X=X_teste) SK_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=SK_QDA_y_predito)) # QDA - Próprio ME_QDA = AnaliseDiscriminante(tipo='QDA') ME_QDA.treinar(X=X_treino, y=y_treino) ME_QDA_y_predito = ME_QDA.classificar(X=X_teste) ME_QDA_desempenho.append(avaliar_desempenho(y_verdadeiro=y_teste, y_obtido=ME_QDA_y_predito)) SK_LDA_desempenho = np.array(SK_LDA_desempenho) SK_LDA_desempenho_media = np.mean(SK_LDA_desempenho) SK_LDA_desempenho_std = np.std(SK_LDA_desempenho) ME_LDA_desempenho = np.array(ME_LDA_desempenho) ME_LDA_desempenho_media = np.mean(ME_LDA_desempenho) ME_LDA_desempenho_std = np.std(ME_LDA_desempenho) SK_QDA_desempenho = np.array(SK_QDA_desempenho) SK_QDA_desempenho_media = np.mean(SK_QDA_desempenho) SK_QDA_desempenho_std = np.std(SK_QDA_desempenho) ME_QDA_desempenho = np.array(ME_QDA_desempenho) ME_QDA_desempenho_media = np.mean(ME_QDA_desempenho) ME_QDA_desempenho_std = np.std(ME_QDA_desempenho) print('DATASET 6') print('------ Acurácias -----') print('LDA - Scikit: \t{0:3.4f}'.format(SK_LDA_desempenho_media)) print('LDA - Próprio: \t{0:3.4f}'.format(ME_LDA_desempenho_media)) print('----------------------') print('QDA - Scikit: \t{0:3.4f}'.format(SK_QDA_desempenho_media)) print('QDA - Próprio: \t{0:3.4f}'.format(ME_QDA_desempenho_media))
DATASET 6 ------ Acurácias ----- LDA - Scikit: 0.8222 LDA - Próprio: 0.8089 ---------------------- QDA - Scikit: 0.8156 QDA - Próprio: 0.8156
MIT
ml_prova_7.ipynb
titocaco/disciplina_ml
Búsqueda linealDada un conjunto de datos no ordenados, la búsqueda lineal consiste en recorrer el conjunto de datos desde el inicio al final, moviéndose uno en uno hasta encontrar el elemento o llegar al final del conjunto.datos = [ 4,18,47,2,34,14,78,12,48,21,31,19,1,3,5 ] Búsqueda binariafunciona sobre un conjunto de datos lineal ordenado.Consiste en dividir el conjunto en mitades y buscar en esa mitad. Si el elemento buscado no está en la mitad, preguntas si el elemento está a la derecha o a la izquierda. Haces la lista igual a la mitad correspondiente y repites el proceso.Pseudocódigo:L = [ 4,18,47,2,34,14,78,12,48,21,31,19,1,3,5]DER = longitud(L) - 1IZQ = 0MID: apuntará a la mitad del segmento de búsqueda buscado: es el valos a buscar1. Hacer DER = longitud(L) - 12. Hacer IZQ = 03. Si IZQ > DER, significa que hay un error en los datos 4. Calcular MID = int((IZQ + DER) / 2)5. Mientras L[MID] != buscado, hacer6. - preguntar si L[MID] > buscado - hacer DER = MID - de lo contrario - hacer IZQ = MID - preguntar si (DER - IZQ) % 2 == 0 - MID = (IZQ + ((DER - IZQ) / 2)) + 1 - de lo contrario - MID = IZQ + ((DER - IZQ) / 2)7. return MID
''' Busqueda lineal regresa la posición del elemento 'buscado' si se encuentra dentro de la lista. regresa -1 si el elemento buscado no existe dentro de la lista. ''' def busq_lineal(L, buscado): indice = -1 contador = 0 for idx in range(len(L)): contador += 1 if L[idx] == buscado: indice = idx break print(f"número de comparaciones realizadas = {contador}") return indice ''' Búsqueda binaria ''' def busqueda_binaria(L, buscado): IZQ = 0 DER = len(L) - 1 MID = int((IZQ + DER) / 2) if len(L) % 2 == 0: MID = (DER // 2) + 1 else: MID = DER // 2 while (L[MID] != buscado): if L[MID] > buscado: DER = MID else: IZQ = MID if (DER - IZQ) % 2 == 0: MID = (IZQ + ((DER - IZQ) // 2)) + 1 else: MID = IZQ + ((DER - IZQ) // 2) return MID def main(): datos = [ 4,18,47,2,34,14,78,12,48,21,31,19,1,3,5] dato = int(input("Que valor quieres buscar: ")) resultado = busq_lineal(datos, dato) print("Resultado: ", resultado) print("Búsqueda lineal en una lista ordenada") datos.sort() # Con esto se ordenan los datos print(datos) resultado = busq_lineal(datos, dato) print("Resultado: ", resultado) print("Búsqueda binaria") posicion = busqueda_binaria(datos, dato) print(f"El elemento dato está en la posición {posicion} de la lista") main()
Que valor quieres buscar: 47 número de comparaciones realizadas = 3 Resultado: 2 Búsqueda lineal en una lista ordenada [1, 2, 3, 4, 5, 12, 14, 18, 19, 21, 31, 34, 47, 48, 78] número de comparaciones realizadas = 13 Resultado: 12 Búsqueda binaria
MIT
7Octubre_daa.ipynb
ibzan79/daa_2021_1
Algèbre linéaire
M = np.random.randint(0,9, [4,3]) print(M) print('\n') N =np.random.randint(0,9, [3,4]) print(N) M.dot(N) N.dot(M) M.T G = np.random.randint(0,9,[3,3]) np.linalg.det(G) np.linalg.inv(G) np.linalg.pinv(G) np.linalg.pinv(M) np.linalg.eig(G)
_____no_output_____
Apache-2.0
numpy_fonctions.ipynb
Michel-Nassalang/python
TP Standardisation (important)
M M.mean(axis=0) P= M - M.mean(axis=0) P S = P/M.std(axis=0) S # standardisation
_____no_output_____
Apache-2.0
numpy_fonctions.ipynb
Michel-Nassalang/python
High Pass Filter Using the Spectral Reversal TechniqueWe can create a high pass filter by using as reference a low pass filter and a technique called **Spectral Reversal**. For this notebook we will use the *Windowed-Sinc Filters* Notebook results, which are pickled in an serialized object called `save_data.pickle`.
import sys sys.path.insert(0, '../') from Common import common_plots from Common import fourier_transform cplots = common_plots.Plot() import pickle import numpy as np import matplotlib.pyplot as plt def get_fourier(x): """ Function that performs the Fourier calculation of a signal x and returns its magnitude and frequency range. Parameters: x (numpy array): Signal to be transformed into Fourier domain. Returns: mag (numpy array): Magnitude of the signal's Fourier transform. freq (numpy array): Frequency domain of the signal's Fourier transform. """ signal = x.reshape(-1,1) fourier = fourier_transform.FourierTransform(signal) mag = fourier.dft_magnitude() freq = fourier.frequency_domain() return mag, freq
_____no_output_____
MIT
12. FIR Filter -Windowed-Sinc Filters/.ipynb_checkpoints/FIR Filter - 2.Spectral Reversal_Solution-checkpoint.ipynb
mriosrivas/DSP_Student_2021
We load the low pass data from the *Windowed-Sinc Filters* Notebook
with open('save_data.pickle', 'rb') as f: data = pickle.load(f) ecg = np.array(data['ecg']) low_pass = np.array(data['low_pass']) low_pass = low_pass/np.sum(low_pass) fft_low_pass = np.array(data['fft_low_pass'])
_____no_output_____
MIT
12. FIR Filter -Windowed-Sinc Filters/.ipynb_checkpoints/FIR Filter - 2.Spectral Reversal_Solution-checkpoint.ipynb
mriosrivas/DSP_Student_2021
To generate the high pass filter, we use the Sprectral Reversal methond, which consist of multiplying the low pass filter response $h_{lp}[n]$ with $(-1)^{-n}$. Therefore the high pass filter response is given by:$$h_{hp}[n] = h_{lp}[n](-1)^{-n}$$
N = low_pass.shape[0] high_pass = low_pass * ((-1) ** np.arange(N)) dft_low_pass_magnitude, dft_low_pass_freq = get_fourier(low_pass) dft_high_pass_magnitude, dft_high_pass_freq = get_fourier(high_pass) plt.rcParams["figure.figsize"] = (15,10) plt.subplot(2,2,1) plt.stem(low_pass, markerfmt='.', use_line_collection=True) plt.title('Low Pass Filter') plt.grid('on') plt.subplot(2,2,2) plt.stem(high_pass, markerfmt='.', use_line_collection=True) plt.title('High Pass Filter') plt.grid('on') plt.subplot(2,2,3) cplots.plot_frequency_response(dft_low_pass_magnitude, dft_low_pass_freq, title='Low Pass Filter Response') plt.subplot(2,2,4) cplots.plot_frequency_response(dft_high_pass_magnitude, dft_high_pass_freq, title='High Pass Filter Response');
_____no_output_____
MIT
12. FIR Filter -Windowed-Sinc Filters/.ipynb_checkpoints/FIR Filter - 2.Spectral Reversal_Solution-checkpoint.ipynb
mriosrivas/DSP_Student_2021
**This frequency response is a “left-right flipped” version of the frequency response of the low-pass filter.**
low_pass_ecg = np.convolve(ecg,low_pass) high_pass_ecg = np.convolve(ecg,high_pass) plt.rcParams["figure.figsize"] = (15,10) plt.subplot(2,2,1) plt.plot(low_pass_ecg) plt.title('Low Pass ECG') plt.grid('on') plt.xlabel('Samples') plt.ylabel('Amplitude') plt.subplot(2,2,2) plt.plot(high_pass_ecg) plt.title('High Pass ECG') plt.grid('on') plt.xlabel('Samples') plt.ylabel('Amplitude') plt.subplot(2,1,2) plt.plot(ecg) plt.title('ECG Signal') plt.grid('on') plt.xlabel('Samples') plt.ylabel('Amplitude');
_____no_output_____
MIT
12. FIR Filter -Windowed-Sinc Filters/.ipynb_checkpoints/FIR Filter - 2.Spectral Reversal_Solution-checkpoint.ipynb
mriosrivas/DSP_Student_2021
import pandas as pd
_____no_output_____
MIT
First_try.ipynb
kpflugshaupt/colab
Bubble dissolution : Realtime Acquisition + Preprocessing + Saving Data / SnapshotsBrice : [email protected] Step 1 : Definitions / Initialisations / Automatic thresholding Subroutines : * `analyse_bubble` : checks one bubble (any bubble) for shape and threshold detection * `padding` : pads an image with values from the edge (useful to avoid issues with bubbles close to the border) * `proj_fourier` : fits the bubble shape with Fourier series (produces coefficients) * `build_fourier` : rebuilds the Fourier fit based on projection coefficients* `write_csvheader` : helps me build a nice header for the data file based on * `write_logheader`: helps doing the same with the log file (saving lots of acquisition-related parameters)* `format_logstr` : bunches together some numbers to track your experiment (in log file & in stdout)* `init_figure` : initialises the (somewhat live) figure of the bubble and its interface* `init_camera` : (re)starts the camera with the proper acquisition parameters Note : If the camera is not accessible, try before re-running the cells : * camera.Close() * closing vscode and restarting it* Closing Pylon :-)
from pypylon import pylon from bokeh.plotting import show, row, figure, column from bokeh.models import ColumnDataSource, LinearColorMapper from jupyter_bokeh.widgets import BokehModel from bokeh.io import output_notebook import numpy as np import pandas as pd import time import codecs import os from PIL import Image import skimage.transform as sktr import skimage.measure as skms import skimage.filters as skfi import skimage.morphology as skmph ##### YOUR PARAMETERS HERE ############# zoom = 3 # Check on the lens ## ZOOM VALUES z = {'zoom': [0.7, 1, 1.5, 2, 3, 4, 4.5], 'one_mm_in_px': [62, 91, 137, 184, 281, 361, 405]} ## Leads to 90.4 mm/px for a zoom of 1 exposure = 100 # in ms imagesize = [512,512] # width x height filter_size = 1 # To smooth images folder_location = 'C:\\Users\\saint-michel\\Documents\\Acquisitions\\Bubbles_20211216' pixel_format = "Mono12" # Image values are then from 0 to 4095 (and not 255). NOTE : SOME THINGS WILL BREAK IF YOU CHANGE THIS (including image saving) threshold = None # From 0 to 4096, leave to 'None' if you want auto threshold ... chunk_size = 100 # We save snapshots every chunk_size frames ### FUNCTIONS THAT YOU MAY CALL TO DO THINGS ################################################################## def analyse_frame(img, myinfo, time=0): # Finds a nice threshold, etc. # Myinfo : dict with at least 'pixel_format' and 'threshold' (which can be None) # Time : timestamp given by camera.grabFrame # Subroutines ... def img_padding(img, pad=16): img_pad = np.zeros((np.shape(img)[0] + 2*pad, np.shape(img)[1] + 2*pad)) img_pad[pad:-pad, pad:-pad] = img img_pad[:pad, pad:-pad] = img[0,:] img_pad[-pad:, pad:-pad] = img[-1,:] img_pad[:, :pad] = img_pad[:,pad, np.newaxis] img_pad[:, -pad:] = img_pad[:, -pad-1, np.newaxis] return img_pad, pad def proj_fourier(signal, thetas): nmodes = 10 proj_cos, proj_sin = np.zeros(nmodes), np.zeros(nmodes) for mno in range(nmodes): proj_cos[mno] = np.trapz(signal*np.cos(mno*thetas), x=thetas)*1/np.pi proj_sin[mno] = np.trapz(signal*np.sin(mno*thetas), x=thetas)*1/np.pi proj_amp = np.sqrt(proj_cos**2 + proj_sin**2) proj_phs = np.arctan2(-proj_sin, proj_cos) # It works with a (-) ... so be it. return proj_amp, proj_phs def build_fourier(proj_amp, proj_phs, thetas): nmodes = 10 rebuild = np.zeros(np.shape(thetas)) for mno in range(nmodes): rebuild = rebuild + proj_amp[mno]*np.cos(mno*thetas + proj_phs[mno]) return rebuild def local_minimum(signal, size=150): x = np.linspace(-3,3,size+1) kernel = np.diff(np.exp(-x**2))/np.sum(np.exp(-x**2)) signal_dfilt = np.convolve(signal, kernel, mode='same') slope_left, slope_right = signal_dfilt[:-1], signal_dfilt[1:] the_maxima = np.where(np.logical_and(slope_left > 0, slope_right < 0))[0] if the_maxima.size == 2: the_minimum = np.round(0.5*np.sum(the_maxima)).astype(int) print('> local_minimum : Found two maxima at : ' + str(the_maxima) + ' / minimum around : ' + str(the_minimum)) return the_minimum else: print("> Cannot locate a minimum between : " + str(np.size(the_maxima)) + ' maxima :(' ) return 0 # fill holes & filter image img_seed = np.copy(img) img_seed[1:-1,1:-1] = img.min() img_filled = skmph.reconstruction(img_seed, img, method='dilation') img_pad, padsize = img_padding(img_filled, pad=16) img_filt = skfi.gaussian(img_pad, sigma=myinfo['smoothing'], preserve_range=True) myinfo['padsize'] = padsize # Find threshold from histogram, then threshold image and analyse it [hist, bins] = np.histogram(img_filt.ravel(), bins=np.linspace(-0.5,myinfo['max_lum']+0.5, 361)) # NOTE: bin number must mach length of theta (for bokeh CDS to be happy) if myinfo['threshold'] is None: myinfo['threshold'] = bins[local_minimum(hist)] img_th = img_pad < myinfo['threshold'] labelled_img = skms.label(img_th) props = skms.regionprops_table(labelled_img, properties=('label', 'centroid', 'area', 'eccentricity', 'coords')) big = props['area'] > 100 # Fill in small objects, clean up a bit x_toclean, y_toclean = np.array([], dtype=int), np.array([], dtype=int) for elno, xy in enumerate(props['coords']): if not big[elno]: x_toclean, y_toclean = np.append(x_toclean, xy[:,1]), np.append(y_toclean, xy[:,0]) img_th[y_toclean, x_toclean] = 0 props = pd.DataFrame.from_dict(props).drop(columns='coords') props = props[big].sort_values(by='area', ascending=False, ignore_index=True) props['label'] = np.arange(1,props.shape[0]+1) # If no objects, we can't analyse interface (== project on polar coordinates + do fourier modes) th_rebuild = np.linspace(-np.pi, np.pi, 360) nbubbles = np.size(props['area']) adapter = np.atleast_1d(np.ones(np.shape(props['area']))) # matching shape of rad, ecc, ... with scalar frameno & time local_time = (time - myinfo['reftime'])*1e-9 if nbubbles > 0: # These will be saved later xctr, yctr = np.atleast_1d(props['centroid-1']), np.atleast_1d(props['centroid-0']) rad, ecc, label = np.atleast_1d(np.sqrt(props['area']/np.pi)), np.atleast_1d(props['eccentricity']), np.atleast_1d(props['label']) frameno, time = adapter*idx, adapter*local_time # This is not saved later, just used to check interface of the largest bubble (and verify threshold) bub0 = np.argmax(rad) img_pad_warp = sktr.warp_polar(img_pad, (yctr[bub0], xctr[bub0]), radius=1.4*rad[bub0]).T img_th_warp = sktr.warp_polar(img_th, (yctr[bub0], xctr[bub0]), radius=1.4*rad[bub0]).T coords = skms.find_contours(img_th) longest_contour = np.argmax([elem.shape[0] for elem in coords]) coords = np.array(coords[longest_contour]) # I expect the longest contour to match the largest object ... coords = (coords - [yctr[bub0], xctr[bub0]])/rad[bub0] # Normally : only one contour th, r = np.arctan2(coords[:,0], coords[:,1]), np.sqrt(coords[:,0]**2 + coords[:,1]**2) - 1 reorder = np.argsort(th) th, r = th[reorder], r[reorder] r_amps, r_phs = proj_fourier(r, th) img_pad_diff = skfi.gaussian(np.diff(img_pad_warp, axis=0), sigma=1) r_fit = 1 + build_fourier(r_amps, r_phs, th_rebuild) r_maxgrad = (np.argmax(img_pad_diff, axis=0) + 0.5)*1.4/np.shape(img_pad_warp)[0] else: img_pad_warp, img_th_warp = np.zeros((200, 360)), np.zeros((200, 360)) r_fit, r_maxgrad = np.zeros(360), np.zeros(360) xctr, yctr, rad, ecc, = np.array([np.nan]), np.array([np.nan]), np.array([np.nan]), np.array([np.nan]) label, time, frameno = np.array([0]), np.array([local_time]), np.array([idx]) # Putting everything in two dicts because there is a bug in Bokeh if singleton and 1d objects are mixed img_data = {'img': [img_pad], 'img_th': [img_th], 'img_polar': [img_pad_warp], 'img_th_polar': [img_th_warp], 'frame': frameno, 'time': time, 'label': label, 'x_px':xctr, 'y_px':yctr, 'rad':rad, 'ecc':ecc, 'padsize':[padsize]} line_data = {'theta': th_rebuild, 'r_fourier': r_fit, 'r_gradient': r_maxgrad, 'lum_hist': hist, 'lum_bins': bins[1:]} return img_data, line_data ### WRITE HEADER OF FILES OR DATA ################################################# def write_csvheader(myfile, mylist): mystr = '' for elem in mylist: mystr += elem + ',' myfile.write(mystr[:-1] + '\n') return 0 def write_logheader(myfile, mydict): for k, v in zip(mydict.keys(), mydict.values()): info_str = str(k) + ':' + str(v) + '\n' myfile.write(info_str) print(info_str,end='') return 0 def format_data(data_dict, myinfo): # Data_dict is essentially img_data (or CDS_img.data) nrows, ncols = np.shape(data_dict['x_px'])[0], 8 is_spurious = np.any(np.sum(data_dict['img'], axis=1) == 0) # Spurious == strange horizontal black lines data = np.zeros((nrows, ncols)) if nrows > 0: data[:,0] = data_dict['frame'] data[:,1] = data_dict['time'] data[:,2] = data_dict['label'] data[:,3] = data_dict['x_px']*myinfo['pixsize'] data[:,4] = data_dict['y_px']*myinfo['pixsize'] data[:,5] = data_dict['rad']*myinfo['pixsize'] data[:,6] = data_dict['ecc'] data[:,7] = is_spurious return data def format_logstr(data_dict): is_spurious = np.any(np.sum(data_dict['img'], axis=1) == 0) # Spurious == strange horizontal black lines nstr = 'Frame=' + '{:06.0f}'.format(data_dict['frame'][0]) + ',' tstr = 't=' + '{:.2f}'.format(data_dict['time'][0]) + ',' labstr = 'n=' + '{:.0f}'.format(data_dict['label'][-1]) + ',' xstr = 'x0=' + '{:.2f}'.format(data_dict['x_px'][0]) + ',' ystr = 'y0=' + '{:.2f}'.format(data_dict['y_px'][0]) + ',' rstr = 'r=' + '{:.2f}'.format(data_dict['rad'][0]) + ',' spstr = 'spu=' + '{:d}'.format(is_spurious) return nstr + tstr + labstr + xstr + ystr + rstr + spstr def save_snapshot(folder_location, img, pix_fmt="Mono12", idx=0): rescaling = 1 + (pix_fmt=="Mono12")*(4095/255-1) img = (img[0].astype(np.int32)/rescaling).astype(np.uint8) # The [0] is some compatibility thing with Bokeh pilimg = Image.fromarray(img) pilimg.save(folder_location + '\\frame_' + '{:06d}'.format(idx) + '.png') def init_figure(): # Essentially needs the CDS_img and CDS_line objects (from analyse_frame) # And myinfo object. Returns Bokeh figure objects mapper_bw = LinearColorMapper(palette="Greys256") mapper_th = LinearColorMapper(palette=['rgba(0,0,0,0)', 'lime'], high=1, low=0) plotint = figure(title="Threshold : orange and pink closer is better", height=300, width=800, tools="") plotint.image("img_polar", x=-np.pi, y=0, dw=2*np.pi, dh=1.4, color_mapper=mapper_bw, global_alpha=1, source=CDS_img) plotint.image("img_th_polar", x=-np.pi, y=0, dw=2*np.pi, dh=1.4, color_mapper=mapper_th, global_alpha=0.15, source=CDS_img) plotint.line(x='theta', y='r_fourier', line_color='hotpink', line_width=2, line_dash='dashed', source=CDS_line) plotint.line(x='theta', y='r_gradient', line_color='orange', line_width=2, line_dash='dotted', source=CDS_line) plotint.y_range.start, plotint.y_range.end = 0.85, 1.15 plotint.x_range.start, plotint.x_range.end = -np.pi, np.pi plotint.xaxis.axis_label, plotint.yaxis.axis_label = 'θ', 'r/R' f_height, f_width = np.shape(CDS_img.data['img'][0]) # Affected by img_padding (used in analyse_frame) hist_max = np.max(CDS_line.data['lum_hist']) plotimg = figure(height=400, width=400, title='Raw Reference Frame', tools="", match_aspect=True) plotpdf = figure(height=400, width=400, title='Histogram', tools="") plotimg.image("img", dw=f_width, dh=f_height, x=0, y=0, color_mapper=mapper_bw, source=CDS_img) # plotimg.image("img_th", dw=f_width, dh=f_height, x=0, y=0, color_mapper=mapper_th, global_alpha=0.25, source=CDS_img) plotimg.cross(x="x_px", y="y_px", size=10, line_color='lime', source=CDS_img) plotpdf.line([myinfo['threshold'],myinfo['threshold']], [0, hist_max], line_dash='dashed') plotpdf.line(x="lum_bins", y='lum_hist', source=CDS_line) return plotint, plotimg, plotpdf ##### SAY HI TO THE CAMERA and set some parameters def init_camera(myinfo): camera = pylon.InstantCamera(pylon.TlFactory.GetInstance().CreateFirstDevice()) camera.Close() camera.Open() myinfo['cameraname'] = camera.GetDeviceInfo().GetModelName() camera.AcquisitionFrameRateEnable.SetValue(True), camera.AcquisitionFrameRateAbs.SetValue(5) # Setting fps to 5 camera.BinningModeVertical.SetValue('Averaging'), camera.BinningModeHorizontal.SetValue('Averaging') # Activating binning in x & y camera.BinningHorizontal.SetValue(2), camera.BinningVertical.SetValue(2) # Using 2^1 (3 would be 2^2 I guess) binning camera.Width.SetValue(imagesize[0]), camera.Height.SetValue(imagesize[1]) camera.CenterX.SetValue(True), camera.CenterY.SetValue(True) camera.ExposureTimeAbs.SetValue(myinfo['exposure']) camera.PixelFormat.SetValue(myinfo['pixel_format']) camera.GevTimestampControlReset() return camera # # Emulate with a PNG file # img = Image.open('C:\\Users\\saint-michel\\Documents\\Python\\Bubbles_20211109\\frame_00000.png') # img = np.array(img) # time_ref = 0 # pixel_format='Mono8' # cameraname = 'None' # Preparing acquisition information for later global_time_ref = time.gmtime() gt_str = time.strftime('%Y/%m/%d %H:%M:%S', global_time_ref) pixsize = 1000/zoom/90.4 # in UM per PX myinfo = {'time_ref': gt_str, 'zoom': zoom, 'pixsize': pixsize, 'pixel_format': pixel_format, 'threshold': threshold, 'width':imagesize[1], 'height':imagesize[0], 'smoothing':filter_size, 'exposure':exposure, 'pixel_fmt': pixel_format} if myinfo["pixel_format"] == 'Mono12': myinfo['max_lum'] = 4095 else: myinfo['max_lum'] = 255 mycolumns = ['frame', 'time', 'label', 'x', 'y', 'radius', 'eccentricity', 'spurious'] myunits = ['1', 's', '1', 'um', 'um', 'um', '1', '1'] myfmt = '%05d,%07.1f,%1d,%03.2f,%03.2f,%03.2f,%1.2f,%1d' idx = 0 # Analysing image camera = init_camera(myinfo) rawframe = camera.GrabOne(5000) camera.Close() myinfo['reftime'] = rawframe.TimeStamp ref_imgdata, ref_linedata = analyse_frame(rawframe.Array, myinfo, time=rawframe.TimeStamp) data_array = format_data(ref_imgdata, myinfo) log_str = format_logstr(ref_imgdata) CDS_img, CDS_line = ColumnDataSource(data=ref_imgdata), ColumnDataSource(data=ref_linedata) #### DISPLAYING / LOGGING INFO os.makedirs(folder_location, exist_ok=True) log_file = codecs.open(folder_location + "\\log.txt", mode='w', encoding="utf-8") data_file = codecs.open(folder_location + "\\data.csv", mode='w', encoding="utf-8") write_logheader(log_file, myinfo) write_csvheader(data_file, myunits) write_csvheader(data_file, mycolumns) np.savetxt(data_file, data_array, fmt=myfmt, delimiter=',') log_file.write(log_str + '\n') save_snapshot(folder_location, ref_imgdata['img']) log_file.close() data_file.close() #### PLOTTING RESULTS ######### output_notebook() plotint, plotimg, plotpdf = init_figure() BokehModel(column(row(plotimg, plotpdf), plotint))
> local_minimum : Found two maxima at : [101 327] / minimum around : 214 time_ref:2021/12/16 11:42:58 zoom:3 pixsize:3.6873156342182885 pixel_format:Mono12 threshold:2434.3444444444444 width:512 height:512 smoothing:10 exposure:100 pixel_fmt:Mono12 max_lum:4095 cameraname:acA1300-60gm reftime:228432030 padsize:16
CC0-1.0
Bubble_Dissolution_Acquisition.ipynb
bsaintmichel/bubbledynamics
Step 2 : FRAME GRABBING LOOP Some bits have been initialised in Step 1, so please run it at least once* Spurious image detection with `spurious` or `spu`* Provide time stamps for each image* Can be restarted if stopped* Handles events (bubble disappearing, appearing, moving, ...)* Try an extra `camera.Close()` if you interrupted the program
import traceback from IPython.display import clear_output ############# (Bad) event management routine #########################"" def bubble_event(now_data, ref_data): event_str = '' nbubble_change = np.size(now_data['label']) != np.size(ref_data['label']) chunk_timeout = now_data['frame'][0] - ref_data['frame'][0] > chunk_size xy_change, r_change = False, False if not nbubble_change: r_change = np.abs(now_data['rad'] - ref_data['rad']) x_change = np.abs(now_data['x_px'] - ref_data['x_px']) y_change = np.abs(now_data['y_px'] - ref_data['y_px']) r_change = any(r_change > 1) xy_change = any(x_change > 3) or any(y_change > 3) if r_change: event_str = ' | Event ! One (or more) bubbles have changed radius ... Refreshing & Saving' if xy_change: event_str = ' | Event ! One (or more) bubbles have changed location ... Refreshing & Saving' if chunk_timeout: event_str = ' | Event ! There has been : ' + str(chunk_size) + ' frames with no event ... Refreshing & Saving' if nbubble_change: event_str = ' | Event ! One (or several) bubbles have appeared or disappeared ... Refreshing & Saving' any_change = xy_change or r_change or nbubble_change or chunk_timeout return any_change, event_str ########################## MAIN SEQUENCE ##################################### camera.Open() if not camera.IsGrabbing(): camera.StartGrabbing(pylon.GrabStrategy_LatestImageOnly) try: while True: data_file = open(folder_location + '\\data.csv', 'a', encoding='utf-8') log_file = open(folder_location + '\\log.txt', 'a', encoding='utf-8') grab = camera.RetrieveResult(5000, pylon.TimeoutHandling_ThrowException) # I don't really mind if image comes late, I just want to know when it arrives if grab.GrabSucceeded(): # We could fail for any other reason idx += 1 now_imgdata, now_linedata = analyse_frame(grab.Array, myinfo, grab.TimeStamp) data_array = np.append(data_array, format_data(now_imgdata, myinfo), axis=0) grab.Release() is_event, event_str = bubble_event(now_imgdata, ref_imgdata) log_str = format_logstr(now_imgdata) print(log_str + event_str) if is_event: np.savetxt(data_file, data_array, fmt=myfmt, delimiter=',') data_file.flush() save_snapshot(folder_location, now_imgdata['img'], pix_fmt="Mono12", idx=idx) data_array = np.zeros((0,8)) ref_imgdata = now_imgdata CDS_img.data = now_imgdata CDS_line.data = now_linedata log_file.write(log_str + event_str + '\n') # Clear display from time to time if np.mod(idx,10) == 0: clear_output() time.sleep(1) ################################################################################################ ## HANDLING ERRORS SECTION HERE ... ############################################################# ################################################################################################# except pylon.TimeoutException: timeout_str = ' /!\\ Timeout ... ! ' log_file.write(log_str + timeout_str + '\n') print(timeout_str) pass except SystemError as e: ## I KNOW IT IS SUPER UGLY, HATE ME ALL YOU WANT if "KeyboardInterrupt" in traceback.format_exc(): interrupt_str = ' /!\\ Keyboard Interrupted ... ! ' log_file.write(log_str + interrupt_str + '\n') print(interrupt_str) grab.Release() camera.StopGrabbing() camera.Close() data_file.close() log_file.close() else: err_str = 'N°' + str(idx) + e log_file.write(err_str) print(err_str) pass except KeyboardInterrupt: interrupt_str = ' /!\\ Keyboard Interrupted ... ! ' log_file.write(log_str + interrupt_str + '\n') print(interrupt_str) grab.Release() camera.StopGrabbing() camera.Close() data_file.close() log_file.close() import skimage.filters as skfi from skimage.data import astronaut from bokeh.plotting import figure, show, row from bokeh.models import LinearColorMapper from bokeh.palettes import Greys256 import numpy as np ast = astronaut()[:,:,0]/255 height, width = np.shape(ast) astf = skfi.gaussian(ast, sigma=1) cmapper = LinearColorMapper(palette=Greys256, low=0, high=1) f1 = figure(width=300, height=300, match_aspect=True) f2 = figure(width=300, height=300, match_aspect=True) f1.image([ast], x=0, y=0, dw=height, dh=width, color_mapper=cmapper) f2.image([astf], x=0, y=0, dw=height, dh=width, color_mapper=cmapper) show(row(f1,f2)) ast
_____no_output_____
CC0-1.0
Bubble_Dissolution_Acquisition.ipynb
bsaintmichel/bubbledynamics
Temporal-Difference MethodsIn this notebook, you will write your own implementations of many Temporal-Difference (TD) methods.While we have provided some starter code, you are welcome to erase these hints and write your code from scratch.--- Part 0: Explore CliffWalkingEnvWe begin by importing the necessary packages.
import sys import gym import random import numpy as np from collections import defaultdict, deque import matplotlib.pyplot as plt %matplotlib inline import check_test from plot_utils import plot_values
_____no_output_____
MIT
rl-basics/temporal-difference/Temporal_Difference.ipynb
AmrMKayid/udacity-drl
Use the code cell below to create an instance of the [CliffWalking](https://github.com/openai/gym/blob/master/gym/envs/toy_text/cliffwalking.py) environment.
env = gym.make('CliffWalking-v0')
_____no_output_____
MIT
rl-basics/temporal-difference/Temporal_Difference.ipynb
AmrMKayid/udacity-drl
The agent moves through a $4\times 12$ gridworld, with states numbered as follows:```[[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]]```At the start of any episode, state `36` is the initial state. State `47` is the only terminal state, and the cliff corresponds to states `37` through `46`.The agent has 4 potential actions:```UP = 0RIGHT = 1DOWN = 2LEFT = 3```Thus, $\mathcal{S}^+=\{0, 1, \ldots, 47\}$, and $\mathcal{A} =\{0, 1, 2, 3\}$. Verify this by running the code cell below.
print(env.action_space) print(env.observation_space)
Discrete(4) Discrete(48)
MIT
rl-basics/temporal-difference/Temporal_Difference.ipynb
AmrMKayid/udacity-drl
In this mini-project, we will build towards finding the optimal policy for the CliffWalking environment. The optimal state-value function is visualized below. Please take the time now to make sure that you understand _why_ this is the optimal state-value function._**Note**: You can safely ignore the values of the cliff "states" as these are not true states from which the agent can make decisions. For the cliff "states", the state-value function is not well-defined._
# define the optimal state-value function V_opt = np.zeros((4,12)) V_opt[0:13][0] = -np.arange(3, 15)[::-1] V_opt[0:13][1] = -np.arange(3, 15)[::-1] + 1 V_opt[0:13][2] = -np.arange(3, 15)[::-1] + 2 V_opt[3][0] = -13 plot_values(V_opt)
/Users/amrmkayid/anaconda3/envs/kayddrl/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:424: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead. warn_deprecated("2.2", "Passing one of 'on', 'true', 'off', 'false' as a " /Users/amrmkayid/anaconda3/envs/kayddrl/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:424: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead. warn_deprecated("2.2", "Passing one of 'on', 'true', 'off', 'false' as a " /Users/amrmkayid/anaconda3/envs/kayddrl/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:424: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead. warn_deprecated("2.2", "Passing one of 'on', 'true', 'off', 'false' as a " /Users/amrmkayid/anaconda3/envs/kayddrl/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:424: MatplotlibDeprecationWarning: Passing one of 'on', 'true', 'off', 'false' as a boolean is deprecated; use an actual boolean (True/False) instead. warn_deprecated("2.2", "Passing one of 'on', 'true', 'off', 'false' as a "
MIT
rl-basics/temporal-difference/Temporal_Difference.ipynb
AmrMKayid/udacity-drl
Part 1: TD Control: SarsaIn this section, you will write your own implementation of the Sarsa control algorithm.Your algorithm has four arguments:- `env`: This is an instance of an OpenAI Gym environment.- `num_episodes`: This is the number of episodes that are generated through agent-environment interaction.- `alpha`: This is the step-size parameter for the update step.- `gamma`: This is the discount rate. It must be a value between 0 and 1, inclusive (default value: `1`).The algorithm returns as output:- `Q`: This is a dictionary (of one-dimensional arrays) where `Q[s][a]` is the estimated action value corresponding to state `s` and action `a`.Please complete the function in the code cell below.(_Feel free to define additional functions to help you to organize your code._)
def update_Q_sarsa(alpha, gamma, Q, state, action, reward, next_state=None, next_action=None): current = Q[state][action] Qsa_next = Q[next_state][next_action] if next_state is not None else 0 target = reward + (gamma * Qsa_next) new_value = current + (alpha * (target - current)) return new_value def epsilon_greedy(Q, state, nA, eps): if random.random() > eps: return np.argmax(Q[state]) else: return random.choice(np.arange(env.action_space.n)) def sarsa(env, num_episodes, alpha, gamma=1.0, plot_every=100): nA = env.action_space.n Q = defaultdict(lambda: np.zeros(env.nA)) # initialize performance monitor tmp_scores = deque(maxlen=plot_every) # deque for keeping track of scores avg_scores = deque(maxlen=num_episodes) # average scores over every plot_every episodes # loop over episodes for i_episode in range(1, num_episodes+1): # monitor progress if i_episode % 100 == 0: print("\rEpisode {}/{}".format(i_episode, num_episodes), end="") sys.stdout.flush() ## TODO: complete the function score = 0 state = env.reset() eps = 1.0 / i_episode action = epsilon_greedy(Q, state, nA, eps) while True: next_state, reward, done, info = env.step(action) score += reward if not done: next_action = epsilon_greedy(Q, next_state, nA, eps) Q[state][action] = update_Q_sarsa(alpha, gamma, Q, \ state, action, reward, next_state, next_action) state = next_state action = next_action if done: Q[state][action] = update_Q_sarsa(alpha, gamma, Q, \ state, action, reward) tmp_scores.append(score) break if (i_episode % plot_every == 0): avg_scores.append(np.mean(tmp_scores)) plt.plot(np.linspace(0,num_episodes,len(avg_scores),endpoint=False), np.asarray(avg_scores)) plt.xlabel('Episode Number') plt.ylabel('Average Reward (Over Next %d Episodes)' % plot_every) plt.show() # print best 100-episode performance print(('Best Average Reward over %d Episodes: ' % plot_every), np.max(avg_scores)) return Q
_____no_output_____
MIT
rl-basics/temporal-difference/Temporal_Difference.ipynb
AmrMKayid/udacity-drl
Use the next code cell to visualize the **_estimated_** optimal policy and the corresponding state-value function. If the code cell returns **PASSED**, then you have implemented the function correctly! Feel free to change the `num_episodes` and `alpha` parameters that are supplied to the function. However, if you'd like to ensure the accuracy of the unit test, please do not change the value of `gamma` from the default.
# obtain the estimated optimal policy and corresponding action-value function Q_sarsa = sarsa(env, 5000, .01) # print the estimated optimal policy policy_sarsa = np.array([np.argmax(Q_sarsa[key]) if key in Q_sarsa else -1 for key in np.arange(48)]).reshape(4,12) check_test.run_check('td_control_check', policy_sarsa) print("\nEstimated Optimal Policy (UP = 0, RIGHT = 1, DOWN = 2, LEFT = 3, N/A = -1):") print(policy_sarsa) # plot the estimated optimal state-value function V_sarsa = ([np.max(Q_sarsa[key]) if key in Q_sarsa else 0 for key in np.arange(48)]) plot_values(V_sarsa)
Episode 5000/5000
MIT
rl-basics/temporal-difference/Temporal_Difference.ipynb
AmrMKayid/udacity-drl
Part 2: TD Control: Q-learningIn this section, you will write your own implementation of the Q-learning control algorithm.Your algorithm has four arguments:- `env`: This is an instance of an OpenAI Gym environment.- `num_episodes`: This is the number of episodes that are generated through agent-environment interaction.- `alpha`: This is the step-size parameter for the update step.- `gamma`: This is the discount rate. It must be a value between 0 and 1, inclusive (default value: `1`).The algorithm returns as output:- `Q`: This is a dictionary (of one-dimensional arrays) where `Q[s][a]` is the estimated action value corresponding to state `s` and action `a`.Please complete the function in the code cell below.(_Feel free to define additional functions to help you to organize your code._)
def update_Q_learning(alpha, gamma, Q, state, action, reward, next_state=None): current = Q[state][action] Qsa_next = np.max(Q[next_state]) if next_state is not None else 0 target = reward + (gamma * Qsa_next) new_value = current + (alpha * (target - current)) return new_value def q_learning(env, num_episodes, alpha, gamma=1.0, plot_every=100): nA = env.action_space.n Q = defaultdict(lambda: np.zeros(env.nA)) # initialize performance monitor tmp_scores = deque(maxlen=plot_every) avg_scores = deque(maxlen=num_episodes) # loop over episodes for i_episode in range(1, num_episodes+1): # monitor progress if i_episode % 100 == 0: print("\rEpisode {}/{}".format(i_episode, num_episodes), end="") sys.stdout.flush() ## TODO: complete the function score = 0 state = env.reset() eps = 1.0 / i_episode action = epsilon_greedy(Q, state, nA, eps) while True: next_state, reward, done, info = env.step(action) score += reward if not done: next_action = epsilon_greedy(Q, next_state, nA, eps) Q[state][action] = update_Q_learning(alpha, gamma, Q, \ state, action, reward, next_state) state = next_state if done: tmp_scores.append(score) break if (i_episode % plot_every == 0): avg_scores.append(np.mean(tmp_scores)) plt.plot(np.linspace(0,num_episodes,len(avg_scores),endpoint=False), np.asarray(avg_scores)) plt.xlabel('Episode Number') plt.ylabel('Average Reward (Over Next %d Episodes)' % plot_every) plt.show() # print best 100-episode performance print(('Best Average Reward over %d Episodes: ' % plot_every), np.max(avg_scores)) return Q
_____no_output_____
MIT
rl-basics/temporal-difference/Temporal_Difference.ipynb
AmrMKayid/udacity-drl
Use the next code cell to visualize the **_estimated_** optimal policy and the corresponding state-value function. If the code cell returns **PASSED**, then you have implemented the function correctly! Feel free to change the `num_episodes` and `alpha` parameters that are supplied to the function. However, if you'd like to ensure the accuracy of the unit test, please do not change the value of `gamma` from the default.
# obtain the estimated optimal policy and corresponding action-value function Q_sarsamax = q_learning(env, 5000, .01) # print the estimated optimal policy policy_sarsamax = np.array([np.argmax(Q_sarsamax[key]) if key in Q_sarsamax else -1 for key in np.arange(48)]).reshape((4,12)) check_test.run_check('td_control_check', policy_sarsamax) print("\nEstimated Optimal Policy (UP = 0, RIGHT = 1, DOWN = 2, LEFT = 3, N/A = -1):") print(policy_sarsamax) # plot the estimated optimal state-value function plot_values([np.max(Q_sarsamax[key]) if key in Q_sarsamax else 0 for key in np.arange(48)])
Episode 5000/5000
MIT
rl-basics/temporal-difference/Temporal_Difference.ipynb
AmrMKayid/udacity-drl
Part 3: TD Control: Expected SarsaIn this section, you will write your own implementation of the Expected Sarsa control algorithm.Your algorithm has four arguments:- `env`: This is an instance of an OpenAI Gym environment.- `num_episodes`: This is the number of episodes that are generated through agent-environment interaction.- `alpha`: This is the step-size parameter for the update step.- `gamma`: This is the discount rate. It must be a value between 0 and 1, inclusive (default value: `1`).The algorithm returns as output:- `Q`: This is a dictionary (of one-dimensional arrays) where `Q[s][a]` is the estimated action value corresponding to state `s` and action `a`.Please complete the function in the code cell below.(_Feel free to define additional functions to help you to organize your code._)
def update_Q_expected_sarsa(alpha, gamma, nA, eps, Q, state, action, reward, next_state=None): current = Q[state][action] policy_s = np.ones(nA) * eps / nA policy_s[np.argmax(Q[next_state])] = 1 - eps + (eps / nA) Qsa_next = np.dot(Q[next_state], policy_s) target = reward + (gamma * Qsa_next) new_value = current + (alpha * (target - current)) return new_value def expected_sarsa(env, num_episodes, alpha, gamma=1.0, plot_every=100): nA = env.action_space.n Q = defaultdict(lambda: np.zeros(env.nA)) # initialize performance monitor tmp_scores = deque(maxlen=plot_every) avg_scores = deque(maxlen=num_episodes) # loop over episodes for i_episode in range(1, num_episodes+1): # monitor progress if i_episode % 100 == 0: print("\rEpisode {}/{}".format(i_episode, num_episodes), end="") sys.stdout.flush() ## TODO: complete the function score = 0 state = env.reset() eps = 0.005 while True: action = epsilon_greedy(Q, state, nA, eps) next_state, reward, done, info = env.step(action) score += reward Q[state][action] = update_Q_expected_sarsa(alpha, gamma, nA, eps, Q, \ state, action, reward, next_state) state = next_state if done: tmp_scores.append(score) break if (i_episode % plot_every == 0): avg_scores.append(np.mean(tmp_scores)) plt.plot(np.linspace(0,num_episodes,len(avg_scores),endpoint=False), np.asarray(avg_scores)) plt.xlabel('Episode Number') plt.ylabel('Average Reward (Over Next %d Episodes)' % plot_every) plt.show() # print best 100-episode performance print(('Best Average Reward over %d Episodes: ' % plot_every), np.max(avg_scores)) return Q
_____no_output_____
MIT
rl-basics/temporal-difference/Temporal_Difference.ipynb
AmrMKayid/udacity-drl
Use the next code cell to visualize the **_estimated_** optimal policy and the corresponding state-value function. If the code cell returns **PASSED**, then you have implemented the function correctly! Feel free to change the `num_episodes` and `alpha` parameters that are supplied to the function. However, if you'd like to ensure the accuracy of the unit test, please do not change the value of `gamma` from the default.
# obtain the estimated optimal policy and corresponding action-value function Q_expsarsa = expected_sarsa(env, 10000, 1) # print the estimated optimal policy policy_expsarsa = np.array([np.argmax(Q_expsarsa[key]) if key in Q_expsarsa else -1 for key in np.arange(48)]).reshape(4,12) check_test.run_check('td_control_check', policy_expsarsa) print("\nEstimated Optimal Policy (UP = 0, RIGHT = 1, DOWN = 2, LEFT = 3, N/A = -1):") print(policy_expsarsa) # plot the estimated optimal state-value function plot_values([np.max(Q_expsarsa[key]) if key in Q_expsarsa else 0 for key in np.arange(48)])
Episode 10000/10000
MIT
rl-basics/temporal-difference/Temporal_Difference.ipynb
AmrMKayid/udacity-drl
Hw 18_11_2021
# Проверка целостности матрицы, т.е. количество элементов в строках # должны совпадать, тип матрицы должен быть список def CheckMatrixCompletness(matrix): # проверяем тип всей матрицы if type(matrix) is not list: return False if type(matrix[0]) is not list: return False # определим количество столбцов column_num = len(matrix[0]) # проверяем целостность всех строк for row in matrix: if type(row) is not list: return False if len(row) != column_num: return False # Проверка, что все элементы матрицы - числа for element in row: if type(element) is not int and type(element) is not float: return False return True def AddVectors(vector_a, vector_b): if len(vector_a) != len(vector_b): return "Vector lengths aren't equal!" sum_vector = [] for i in range(len(vector_a)): sum_vector.append(vector_a[i] + vector_b[i]) return sum_vector def MultiplyToScalar(vector, scalar): res_vector = [] for elem in vector: res_vector.append(scalar * elem) return res_vector def GetColumn(matrix, column): result = [] for i in range(0, len(matrix)): result += [matrix[i][column]] return result def TranspouseMatrix(matrix): if not CheckMatrixCompletness(matrix): return "Matrix is incorrect" result = [] for i in range(len(matrix[0])): result += [[]] for j in range(len(matrix)): result[i] += [matrix[j][i]] return result ''' [1 2] [1 2 3] = [9 12 15] [3 4] [4 5 6] = [19 26 33] 1 * [1 3]' + 4 * [2 4]' = [1 3]' + [8 16]' = [9 19]' 2 * [1 3]' + 5 * [2 4]' = [2 6]' + [10 20]' = [12 26]' 3 * [1 3]' + 6 * [2 4]' = [3 9]' + [12 24]' = [15 33]' ''' def MatrixMultiplation(matrix_a, matrix_b): # Проверка соответствия на размеров матриц на произведение matrix_a_shape = CalculateMatrixShape(matrix_a) matrix_b_shape = CalculateMatrixShape(matrix_b) if type(matrix_a_shape) is str: return "Matrix_a is incorrect" if type(matrix_b_shape) is str: return "Matrix_b is incorrect" if matrix_a_shape[1] != matrix_b_shape[0]: return "Matrices shapes are not insufficient." # -------------------------------------------------------- #return "Ok" result = [] for matrix_b_column_id in range(0, len(matrix_b[0])): #print(GetColumn(matrix_b, matrix_b_column_id)) matrix_b_column = GetColumn(matrix_b, matrix_b_column_id) vec_res = [0] * len(matrix_a) for matrix_a_column_id in range(0, len(matrix_a[0])): vec = MultiplyToScalar(GetColumn(matrix_a, matrix_a_column_id), matrix_b_column[matrix_a_column_id]) vec_res = AddVectors(vec_res, vec) #print("--", GetColumn(matrix_a, matrix_a_column_id), "--", matrix_b_column[matrix_a_column_id], "--", vec) #print ("!!!", vec_res) result += [vec_res] return TranspouseMatrix(result) # Вычисление размеров матрицы def CalculateMatrixShape(matrix): if not CheckMatrixCompletness(matrix): return "Matrix is incorrect" # Количетсво строк row_num = len(matrix) # Количетсво столбцов col_num = len(matrix[0]) return (row_num, col_num) def MatrixMultiplyToScalar(matrix_a, scalar): # Проверка matrix_a_shape = CalculateMatrixShape(matrix_a) if type(matrix_a_shape) is str: return "Matrix_a is incorrect" # -------------------------------------------------------- matrix_a = [] + matrix_a for i in range(matrix_a_shape[0]): for j in range(matrix_a_shape[1]): matrix_a[i][j] *= scalar return matrix_a from copy import deepcopy def det(arr): size_arr = len(arr) if size_arr == 1: return arr[0][0] result = 0 for index_x in range(size_arr): arr_deepcopy = deepcopy(arr) del (arr_deepcopy[0]) for i in range(len(arr_deepcopy)): del (arr_deepcopy[i][index_x]) result += arr[0][index_x] * (-1 if index_x & 1 else 1 ) * det(arr_deepcopy) return result from copy import deepcopy #Дополнительный Минор def AdditionalMinor(matrix, row, col): if not CheckMatrixCompletness(matrix): return "Matrix is incorrect" row_num, _ = CalculateMatrixShape(matrix) matrix = deepcopy(matrix) del (matrix[row]) for i in range(row_num - 1): del (matrix[i][col]) return det(matrix) #Алгебраическое дополнение def AlgebraiComplement(matrix, row, col): if not CheckMatrixCompletness(matrix): return "Matrix is incorrect" return (-1)**(row + col) * AdditionalMinor(matrix, row, col) def MatrixInverse(matrix): if not CheckMatrixCompletness(matrix): return "Matrix is incorrect" matrixDet = det(matrix) if matrixDet == 0: return "Det = 0" row_num, col_num = CalculateMatrixShape(matrix) result = [] for i in range(row_num): result += [[]] for j in range(col_num): result[i] += [AlgebraiComplement(matrix, j, i)] return MatrixMultiplyToScalar(result, 1 / matrixDet) a = [[-1, 2, -2], [2, -1, 5], [3, -2, 4]] print (MatrixInverse(a))
[[0.6000000000000001, -0.4, 0.8], [0.7000000000000001, 0.2, 0.1], [-0.1, 0.4, -0.30000000000000004]]
MIT
hw 18_11_2021.ipynb
yuraMovsesyan/msu_hw
Transfer LearningMost of the time you won't want to train a whole convolutional network yourself. Modern ConvNets training on huge datasets like ImageNet take weeks on multiple GPUs. Instead, most people use a pretrained network either as a fixed feature extractor, or as an initial network to fine tune. In this notebook, you'll be using [VGGNet](https://arxiv.org/pdf/1409.1556.pdf) trained on the [ImageNet dataset](http://www.image-net.org/) as a feature extractor. Below is a diagram of the VGGNet architecture.VGGNet is great because it's simple and has great performance, coming in second in the ImageNet competition. The idea here is that we keep all the convolutional layers, but replace the final fully connected layers with our own classifier. This way we can use VGGNet as a feature extractor for our images then easily train a simple classifier on top of that. What we'll do is take the first fully connected layer with 4096 units, including thresholding with ReLUs. We can use those values as a code for each image, then build a classifier on top of those codes.You can read more about transfer learning from [the CS231n course notes](http://cs231n.github.io/transfer-learning/tf). Pretrained VGGNetWe'll be using a pretrained network from https://github.com/machrisaa/tensorflow-vgg. This code is already included in 'tensorflow_vgg' directory, sdo you don't have to clone it.This is a really nice implementation of VGGNet, quite easy to work with. The network has already been trained and the parameters are available from this link. **You'll need to clone the repo into the folder containing this notebook.** Then download the parameter file using the next cell.
from urllib.request import urlretrieve from os.path import isfile, isdir from tqdm import tqdm vgg_dir = 'tensorflow_vgg/' # Make sure vgg exists if not isdir(vgg_dir): raise Exception("VGG directory doesn't exist!") class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile(vgg_dir + "vgg16.npy"): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='VGG16 Parameters') as pbar: urlretrieve( 'https://s3.amazonaws.com/content.udacity-data.com/nd101/vgg16.npy', vgg_dir + 'vgg16.npy', pbar.hook) else: print("Parameter file already exists!")
VGG16 Parameters: 553MB [00:31, 17.6MB/s]
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101
Flower powerHere we'll be using VGGNet to classify images of flowers. To get the flower dataset, run the cell below. This dataset comes from the [TensorFlow inception tutorial](https://www.tensorflow.org/tutorials/image_retraining).
import tarfile dataset_folder_path = 'flower_photos' class DLProgress(tqdm): last_block = 0 def hook(self, block_num=1, block_size=1, total_size=None): self.total = total_size self.update((block_num - self.last_block) * block_size) self.last_block = block_num if not isfile('flower_photos.tar.gz'): with DLProgress(unit='B', unit_scale=True, miniters=1, desc='Flowers Dataset') as pbar: urlretrieve( 'http://download.tensorflow.org/example_images/flower_photos.tgz', 'flower_photos.tar.gz', pbar.hook) if not isdir(dataset_folder_path): with tarfile.open('flower_photos.tar.gz') as tar: tar.extractall() tar.close()
Flowers Dataset: 229MB [00:02, 83.5MB/s]
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101
ConvNet CodesBelow, we'll run through all the images in our dataset and get codes for each of them. That is, we'll run the images through the VGGNet convolutional layers and record the values of the first fully connected layer. We can then write these to a file for later when we build our own classifier.Here we're using the `vgg16` module from `tensorflow_vgg`. The network takes images of size $224 \times 224 \times 3$ as input. Then it has 5 sets of convolutional layers. The network implemented here has this structure (copied from [the source code](https://github.com/machrisaa/tensorflow-vgg/blob/master/vgg16.py)):```self.conv1_1 = self.conv_layer(bgr, "conv1_1")self.conv1_2 = self.conv_layer(self.conv1_1, "conv1_2")self.pool1 = self.max_pool(self.conv1_2, 'pool1')self.conv2_1 = self.conv_layer(self.pool1, "conv2_1")self.conv2_2 = self.conv_layer(self.conv2_1, "conv2_2")self.pool2 = self.max_pool(self.conv2_2, 'pool2')self.conv3_1 = self.conv_layer(self.pool2, "conv3_1")self.conv3_2 = self.conv_layer(self.conv3_1, "conv3_2")self.conv3_3 = self.conv_layer(self.conv3_2, "conv3_3")self.pool3 = self.max_pool(self.conv3_3, 'pool3')self.conv4_1 = self.conv_layer(self.pool3, "conv4_1")self.conv4_2 = self.conv_layer(self.conv4_1, "conv4_2")self.conv4_3 = self.conv_layer(self.conv4_2, "conv4_3")self.pool4 = self.max_pool(self.conv4_3, 'pool4')self.conv5_1 = self.conv_layer(self.pool4, "conv5_1")self.conv5_2 = self.conv_layer(self.conv5_1, "conv5_2")self.conv5_3 = self.conv_layer(self.conv5_2, "conv5_3")self.pool5 = self.max_pool(self.conv5_3, 'pool5')self.fc6 = self.fc_layer(self.pool5, "fc6")self.relu6 = tf.nn.relu(self.fc6)```So what we want are the values of the first fully connected layer, after being ReLUd (`self.relu6`). To build the network, we use```with tf.Session() as sess: vgg = vgg16.Vgg16() input_ = tf.placeholder(tf.float32, [None, 224, 224, 3]) with tf.name_scope("content_vgg"): vgg.build(input_)```This creates the `vgg` object, then builds the graph with `vgg.build(input_)`. Then to get the values from the layer,```feed_dict = {input_: images}codes = sess.run(vgg.relu6, feed_dict=feed_dict)```
import os import numpy as np import tensorflow as tf from tensorflow_vgg import vgg16 from tensorflow_vgg import utils data_dir = 'flower_photos/' contents = os.listdir(data_dir) classes = [each for each in contents if os.path.isdir(data_dir + each)]
_____no_output_____
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101
Below I'm running images through the VGG network in batches.> **Exercise:** Below, build the VGG network. Also get the codes from the first fully connected layer (make sure you get the ReLUd values).
# Set the batch size higher if you can fit in in your GPU memory batch_size = 10 codes_list = [] labels = [] batch = [] codes = None with tf.Session() as sess: # TODO: Build the vgg network here vgg = vgg16.Vgg16() input_ = tf.placeholder(tf.float32, [None, 224, 224, 3]) with tf.name_scope("content_vgg"): vgg.build(input_) for each in classes: print("Starting {} images".format(each)) class_path = data_dir + each files = os.listdir(class_path) for ii, file in enumerate(files, 1): # Add images to the current batch # utils.load_image crops the input images for us, from the center img = utils.load_image(os.path.join(class_path, file)) batch.append(img.reshape((1, 224, 224, 3))) labels.append(each) # Running the batch through the network to get the codes if ii % batch_size == 0 or ii == len(files): # Image batch to pass to VGG network images = np.concatenate(batch) # TODO: Get the values from the relu6 layer of the VGG network codes_batch = sess.run(vgg.relu6, feed_dict={input_: images}) # Here I'm building an array of the codes if codes is None: codes = codes_batch else: codes = np.concatenate((codes, codes_batch)) # Reset to start building the next batch batch = [] print('{} images processed'.format(ii)) # write codes to file with open('codes', 'w') as f: codes.tofile(f) # write labels to file import csv with open('labels', 'w') as f: writer = csv.writer(f, delimiter='\n') writer.writerow(labels)
_____no_output_____
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101
Building the ClassifierNow that we have codes for all the images, we can build a simple classifier on top of them. The codes behave just like normal input into a simple neural network. Below I'm going to have you do most of the work.
# read codes and labels from file import csv with open('labels') as f: reader = csv.reader(f, delimiter='\n') labels = np.array([each for each in reader if len(each) > 0]).squeeze() with open('codes') as f: codes = np.fromfile(f, dtype=np.float32) codes = codes.reshape((len(labels), -1))
_____no_output_____
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101
Data prepAs usual, now we need to one-hot encode our labels and create validation/test sets. First up, creating our labels!> **Exercise:** From scikit-learn, use [LabelBinarizer](http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html) to create one-hot encoded vectors from the labels.
from sklearn import preprocessing lb = preprocessing.LabelBinarizer() lb.fit(labels) labels_vecs = lb.transform(labels)
_____no_output_____
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101
Now you'll want to create your training, validation, and test sets. An important thing to note here is that our labels and data aren't randomized yet. We'll want to shuffle our data so the validation and test sets contain data from all classes. Otherwise, you could end up with testing sets that are all one class. Typically, you'll also want to make sure that each smaller set has the same the distribution of classes as it is for the whole data set. The easiest way to accomplish both these goals is to use [`StratifiedShuffleSplit`](http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html) from scikit-learn.You can create the splitter like so:```ss = StratifiedShuffleSplit(n_splits=1, test_size=0.2)```Then split the data with ```splitter = ss.split(x, y)````ss.split` returns a generator of indices. You can pass the indices into the arrays to get the split sets. The fact that it's a generator means you either need to iterate over it, or use `next(splitter)` to get the indices. Be sure to read the [documentation](http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html) and the [user guide](http://scikit-learn.org/stable/modules/cross_validation.htmlrandom-permutations-cross-validation-a-k-a-shuffle-split).> **Exercise:** Use StratifiedShuffleSplit to split the codes and labels into training, validation, and test sets.
from sklearn.model_selection import StratifiedShuffleSplit ss = StratifiedShuffleSplit(n_splits=1, test_size=0.2) train_i, test_i = next(ss.split(codes, labels_vecs)) split_val_i = len(test_i)//2 test_split, val_split = test_i[:split_val_i], test_i[split_val_i:] train_x, train_y = codes[train_i], labels_vecs[train_i] val_x, val_y = codes[val_split], labels_vecs[val_split] test_x, test_y = codes[test_split], labels_vecs[test_split] print("Train shapes (x, y):", train_x.shape, train_y.shape) print("Validation shapes (x, y):", val_x.shape, val_y.shape) print("Test shapes (x, y):", test_x.shape, test_y.shape)
Train shapes (x, y): (2936, 4096) (2936, 5) Validation shapes (x, y): (367, 4096) (367, 5) Test shapes (x, y): (367, 4096) (367, 5)
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101
If you did it right, you should see these sizes for the training sets:```Train shapes (x, y): (2936, 4096) (2936, 5)Validation shapes (x, y): (367, 4096) (367, 5)Test shapes (x, y): (367, 4096) (367, 5)``` Classifier layersOnce you have the convolutional codes, you just need to build a classfier from some fully connected layers. You use the codes as the inputs and the image labels as targets. Otherwise the classifier is a typical neural network.> **Exercise:** With the codes and labels loaded, build the classifier. Consider the codes as your inputs, each of them are 4096D vectors. You'll want to use a hidden layer and an output layer as your classifier. Remember that the output layer needs to have one unit for each class and a softmax activation function. Use the cross entropy to calculate the cost.
inputs_ = tf.placeholder(tf.float32, shape=[None, codes.shape[1]]) labels_ = tf.placeholder(tf.int64, shape=[None, labels_vecs.shape[1]]) # TODO: Classifier layers and operations fc1 = tf.contrib.layers.fully_connected(inputs_, 1024) fc2 = tf.contrib.layers.fully_connected(fc1, 1024) logits = tf.contrib.layers.fully_connected(fc2, labels_vecs.shape[1], activation_fn=None) cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=labels_, logits=logits) cost = tf.reduce_mean(cross_entropy) optimizer = tf.train.AdamOptimizer().minimize(cost) # Operations for validation/test accuracy predicted = tf.nn.softmax(logits) correct_pred = tf.equal(tf.argmax(predicted, 1), tf.argmax(labels_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
_____no_output_____
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101
Batches!Here is just a simple way to do batches. I've written it so that it includes all the data. Sometimes you'll throw out some data at the end to make sure you have full batches. Here I just extend the last batch to include the remaining data.
def get_batches(x, y, n_batches=10): """ Return a generator that yields batches from arrays x and y. """ batch_size = len(x)//n_batches for ii in range(0, n_batches*batch_size, batch_size): # If we're not on the last batch, grab data with size batch_size if ii != (n_batches-1)*batch_size: X, Y = x[ii: ii+batch_size], y[ii: ii+batch_size] # On the last batch, grab the rest of the data else: X, Y = x[ii:], y[ii:] # I love generators yield X, Y
_____no_output_____
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101
TrainingHere, we'll train the network.> **Exercise:** So far we've been providing the training code for you. Here, I'm going to give you a bit more of a challenge and have you write the code to train the network. Of course, you'll be able to see my solution if you need help. Use the `get_batches` function I wrote before to get your batches like `for x, y in get_batches(train_x, train_y)`. Or write your own!
saver = tf.train.Saver() epochs = 10 iteration = 0 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for e in range(epochs): for x, y in get_batches(train_x, train_y): feed = {inputs_: x, labels_: y} loss, _ = sess.run([cost, optimizer], feed) print('Epoch: {}/{}'.format(e+1, epochs), 'Iterations: {}'.format(iteration), "Loss: {}".format(loss)) iteration+=1 if iteration%5 == 0: feed = {inputs_: val_x, labels_: val_y} loss, _ = sess.run([cost, optimizer], feed) print('Epoch: {}/{}'.format(e+1, epochs), 'Iterations: {}'.format(iteration), "Val loss: {}".format(loss)) saver.save(sess, "checkpoints/flowers.ckpt")
Epoch: 1/10 Iterations: 0 Loss: 4.672918796539307 Epoch: 1/10 Iterations: 1 Loss: 29.755029678344727 Epoch: 1/10 Iterations: 2 Loss: 45.8921012878418 Epoch: 1/10 Iterations: 3 Loss: 25.696012496948242 Epoch: 1/10 Iterations: 4 Loss: 28.859224319458008 Epoch: 1/10 Iterations: 5 Val loss: 10.552411079406738 Epoch: 1/10 Iterations: 5 Loss: 3.189404249191284 Epoch: 1/10 Iterations: 6 Loss: 2.639348268508911 Epoch: 1/10 Iterations: 7 Loss: 2.9115426540374756 Epoch: 1/10 Iterations: 8 Loss: 2.798640251159668 Epoch: 1/10 Iterations: 9 Loss: 2.4628725051879883 Epoch: 1/10 Iterations: 10 Val loss: 1.82681405544281 Epoch: 2/10 Iterations: 10 Loss: 1.1171455383300781 Epoch: 2/10 Iterations: 11 Loss: 1.0355298519134521 Epoch: 2/10 Iterations: 12 Loss: 0.47368577122688293 Epoch: 2/10 Iterations: 13 Loss: 0.5847135782241821 Epoch: 2/10 Iterations: 14 Loss: 0.8828096389770508 Epoch: 2/10 Iterations: 15 Val loss: 0.8436155319213867 Epoch: 2/10 Iterations: 15 Loss: 0.6585701704025269 Epoch: 2/10 Iterations: 16 Loss: 0.556399941444397 Epoch: 2/10 Iterations: 17 Loss: 0.487338125705719 Epoch: 2/10 Iterations: 18 Loss: 0.4912504553794861 Epoch: 2/10 Iterations: 19 Loss: 0.4451310634613037 Epoch: 2/10 Iterations: 20 Val loss: 0.4065427780151367 Epoch: 3/10 Iterations: 20 Loss: 0.34170132875442505 Epoch: 3/10 Iterations: 21 Loss: 0.4052823781967163 Epoch: 3/10 Iterations: 22 Loss: 0.2879161238670349 Epoch: 3/10 Iterations: 23 Loss: 0.3895888924598694 Epoch: 3/10 Iterations: 24 Loss: 0.3391869366168976 Epoch: 3/10 Iterations: 25 Val loss: 0.2961403727531433 Epoch: 3/10 Iterations: 25 Loss: 0.30506736040115356 Epoch: 3/10 Iterations: 26 Loss: 0.25008511543273926 Epoch: 3/10 Iterations: 27 Loss: 0.22011327743530273 Epoch: 3/10 Iterations: 28 Loss: 0.24098922312259674 Epoch: 3/10 Iterations: 29 Loss: 0.26284387707710266 Epoch: 3/10 Iterations: 30 Val loss: 0.22571401298046112 Epoch: 4/10 Iterations: 30 Loss: 0.21583987772464752 Epoch: 4/10 Iterations: 31 Loss: 0.22172130644321442 Epoch: 4/10 Iterations: 32 Loss: 0.161707803606987 Epoch: 4/10 Iterations: 33 Loss: 0.1930975317955017 Epoch: 4/10 Iterations: 34 Loss: 0.17036172747612 Epoch: 4/10 Iterations: 35 Val loss: 0.16700726747512817 Epoch: 4/10 Iterations: 35 Loss: 0.17953141033649445 Epoch: 4/10 Iterations: 36 Loss: 0.1555631011724472 Epoch: 4/10 Iterations: 37 Loss: 0.12652190029621124 Epoch: 4/10 Iterations: 38 Loss: 0.12226159125566483 Epoch: 4/10 Iterations: 39 Loss: 0.16163228452205658 Epoch: 4/10 Iterations: 40 Val loss: 0.11334959417581558 Epoch: 5/10 Iterations: 40 Loss: 0.11021738499403 Epoch: 5/10 Iterations: 41 Loss: 0.12303079664707184 Epoch: 5/10 Iterations: 42 Loss: 0.08418866246938705 Epoch: 5/10 Iterations: 43 Loss: 0.11311700195074081 Epoch: 5/10 Iterations: 44 Loss: 0.08980914205312729 Epoch: 5/10 Iterations: 45 Val loss: 0.07618114352226257 Epoch: 5/10 Iterations: 45 Loss: 0.09904886037111282 Epoch: 5/10 Iterations: 46 Loss: 0.0816163569688797 Epoch: 5/10 Iterations: 47 Loss: 0.06527123600244522 Epoch: 5/10 Iterations: 48 Loss: 0.07217283546924591 Epoch: 5/10 Iterations: 49 Loss: 0.0818411335349083 Epoch: 5/10 Iterations: 50 Val loss: 0.050673067569732666 Epoch: 6/10 Iterations: 50 Loss: 0.055724550038576126 Epoch: 6/10 Iterations: 51 Loss: 0.056342266499996185 Epoch: 6/10 Iterations: 52 Loss: 0.04057794064283371 Epoch: 6/10 Iterations: 53 Loss: 0.07455720007419586 Epoch: 6/10 Iterations: 54 Loss: 0.05536913871765137 Epoch: 6/10 Iterations: 55 Val loss: 0.032396264374256134 Epoch: 6/10 Iterations: 55 Loss: 0.05769611522555351 Epoch: 6/10 Iterations: 56 Loss: 0.04174236208200455 Epoch: 6/10 Iterations: 57 Loss: 0.03454503044486046 Epoch: 6/10 Iterations: 58 Loss: 0.03190534561872482 Epoch: 6/10 Iterations: 59 Loss: 0.039301518350839615 Epoch: 6/10 Iterations: 60 Val loss: 0.027403196319937706 Epoch: 7/10 Iterations: 60 Loss: 0.03119419328868389 Epoch: 7/10 Iterations: 61 Loss: 0.03252197429537773 Epoch: 7/10 Iterations: 62 Loss: 0.02040104568004608 Epoch: 7/10 Iterations: 63 Loss: 0.02649182826280594 Epoch: 7/10 Iterations: 64 Loss: 0.02423202432692051 Epoch: 7/10 Iterations: 65 Val loss: 0.01874398998916149 Epoch: 7/10 Iterations: 65 Loss: 0.04282507300376892 Epoch: 7/10 Iterations: 66 Loss: 0.035250939428806305 Epoch: 7/10 Iterations: 67 Loss: 0.020883135497570038 Epoch: 7/10 Iterations: 68 Loss: 0.01988316886126995 Epoch: 7/10 Iterations: 69 Loss: 0.01939186453819275 Epoch: 7/10 Iterations: 70 Val loss: 0.013688798993825912 Epoch: 8/10 Iterations: 70 Loss: 0.02058236673474312 Epoch: 8/10 Iterations: 71 Loss: 0.025333741679787636 Epoch: 8/10 Iterations: 72 Loss: 0.02040153741836548 Epoch: 8/10 Iterations: 73 Loss: 0.03184022754430771 Epoch: 8/10 Iterations: 74 Loss: 0.012570078484714031 Epoch: 8/10 Iterations: 75 Val loss: 0.006841983646154404 Epoch: 8/10 Iterations: 75 Loss: 0.015580104663968086 Epoch: 8/10 Iterations: 76 Loss: 0.014343924820423126 Epoch: 8/10 Iterations: 77 Loss: 0.018154548481106758 Epoch: 8/10 Iterations: 78 Loss: 0.025013182312250137 Epoch: 8/10 Iterations: 79 Loss: 0.028149407356977463 Epoch: 8/10 Iterations: 80 Val loss: 0.006597414147108793 Epoch: 9/10 Iterations: 80 Loss: 0.00860650185495615 Epoch: 9/10 Iterations: 81 Loss: 0.00733830314129591 Epoch: 9/10 Iterations: 82 Loss: 0.00633214833214879 Epoch: 9/10 Iterations: 83 Loss: 0.014129566960036755 Epoch: 9/10 Iterations: 84 Loss: 0.008173373527824879 Epoch: 9/10 Iterations: 85 Val loss: 0.007537458091974258 Epoch: 9/10 Iterations: 85 Loss: 0.01679036393761635 Epoch: 9/10 Iterations: 86 Loss: 0.00960800051689148 Epoch: 9/10 Iterations: 87 Loss: 0.005559608340263367 Epoch: 9/10 Iterations: 88 Loss: 0.005612092092633247 Epoch: 9/10 Iterations: 89 Loss: 0.010039210319519043 Epoch: 9/10 Iterations: 90 Val loss: 0.002736186608672142 Epoch: 10/10 Iterations: 90 Loss: 0.005322793032974005 Epoch: 10/10 Iterations: 91 Loss: 0.0052515072748064995 Epoch: 10/10 Iterations: 92 Loss: 0.013230983167886734 Epoch: 10/10 Iterations: 93 Loss: 0.01197117194533348 Epoch: 10/10 Iterations: 94 Loss: 0.0041971355676651 Epoch: 10/10 Iterations: 95 Val loss: 0.0022358843125402927 Epoch: 10/10 Iterations: 95 Loss: 0.004806811455637217 Epoch: 10/10 Iterations: 96 Loss: 0.0033794238697737455 Epoch: 10/10 Iterations: 97 Loss: 0.0032531919423490763 Epoch: 10/10 Iterations: 98 Loss: 0.0034035572316497564 Epoch: 10/10 Iterations: 99 Loss: 0.009972398169338703 Epoch: 10/10 Iterations: 100 Val loss: 0.0017780129564926028
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101
TestingBelow you see the test accuracy. You can also see the predictions returned for images.
with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('checkpoints')) feed = {inputs_: test_x, labels_: test_y} test_acc = sess.run(accuracy, feed_dict=feed) print("Test accuracy: {:.4f}".format(test_acc)) %matplotlib inline import matplotlib.pyplot as plt from scipy.ndimage import imread
_____no_output_____
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101
Below, feel free to choose images and see how the trained classifier predicts the flowers in them.
test_img_path = 'flower_photos/roses/10894627425_ec76bbc757_n.jpg' test_img = imread(test_img_path) plt.imshow(test_img) # Run this cell if you don't have a vgg graph built if 'vgg' in globals(): print('"vgg" object already exists. Will not create again.') else: #create vgg with tf.Session() as sess: input_ = tf.placeholder(tf.float32, [None, 224, 224, 3]) vgg = vgg16.Vgg16() vgg.build(input_) with tf.Session() as sess: img = utils.load_image(test_img_path) img = img.reshape((1, 224, 224, 3)) feed_dict = {input_: img} code = sess.run(vgg.relu6, feed_dict=feed_dict) saver = tf.train.Saver() with tf.Session() as sess: saver.restore(sess, tf.train.latest_checkpoint('checkpoints')) feed = {inputs_: code} prediction = sess.run(predicted, feed_dict=feed).squeeze() plt.imshow(test_img) plt.barh(np.arange(5), prediction) _ = plt.yticks(np.arange(5), lb.classes_)
_____no_output_____
MIT
transfer-learning/Transfer_Learning.ipynb
sergio-lira/deep-learning101