markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
node features seem very sensitive perturb topology | # keep backup
backup = data.edge_index.clone()
backup
perturb_data_list = []
for i in range(1000):
# clone original data
pData = data.clone()
# noise parameters
noEdgeSwap = 3
# create edges
edges = pData.edge_index.T.tolist()
edges = np.array(edges)
edges = [(x[0][0], x[0][1], {"feat": str(x[1])}) for x in list(zip(edges.tolist(), pData.edge_attr.tolist()))]
nodes = [(x[0], {"feat": str(x[1])}) for x in enumerate(pData.x.tolist())]
G = nx.Graph()
G.add_nodes_from(nodes)
G.add_edges_from(edges)
# swap edges
G = nx.double_edge_swap(G, noEdgeSwap)
# both directions
newEdges = list(G.edges()) + [(x[1], x[0]) for x in G.edges()]
newEdges = torch.tensor(newEdges).T
# set value
pData.edge_index = newEdges
perturb_data_list.append(pData)
# visualise some graphs
if i % 50 == 0:
plt.figure(figsize=(2, 2))
nx.draw(G)
plt.show()
len(perturb_data_list)
valid_loader = DataLoader(perturb_data_list, batch_size=args.batch_size, shuffle=False, num_workers = args.num_workers)
# get data
batch = list(valid_loader)[0]
batch = batch.to(device)
with torch.no_grad():
pred = model(batch) #.view(-1,)
pred.shape
plt.title("Perturb topology. Label: {:.2f}".format(y_true))
plt.hist(pred.view(-1).tolist())
plt.axvline(y_pred, c="r")
plt.show() | _____no_output_____ | MIT | examples/lsc/pcqm4m/.ipynb_checkpoints/triplet-loss-checkpoint.ipynb | edwardelson/ogb |
Copyright Netherlands eScience Center and Centrum Wiskunde & Informatica ** Function : Emotion recognition and forecast with BBConvLSTM** ** Author : Yang Liu** ** Contributor : Tianyi Zhang (Centrum Wiskunde & Informatica)** Last Update : 2021.02.08 ** ** Last Update : 2021.02.12 ** ** Library : Pytorth, Numpy, os, DLACs, matplotlib **Description : This notebook serves to test the prediction skill of deep neural networks in emotion recognition and forecast. The Bayesian convolutional Long Short Time Memory neural network with Bernoulli approximate variational inference is used to deal with this spatial-temporal sequence problem. We use Pytorch as the deep learning framework. ** Many to one prediction.** Return Values : Time series and figures **This project is a joint venture between NLeSC and CWI** The method comes from the study by Shi et. al. (2015) Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. | %matplotlib inline
import sys
import numbers
import pickle
# for data loading
import os
# for pre-processing and machine learning
import numpy as np
import csv
#import sklearn
from scipy.signal import resample
# for visualization
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.pyplot import cm | _____no_output_____ | Apache-2.0 | tests/data_preview.ipynb | geek-yang/NEmo |
The testing device is Dell Inspirion 5680 with Intel Core i7-8700 x64 CPU and Nvidia GTX 1060 6GB GPU.Here is a benchmark about cpu v.s. gtx 1060 https://www.analyticsindiamag.com/deep-learning-tensorflow-benchmark-intel-i5-4210u-vs-geforce-nvidia-1060-6gb/ | #################################################################################
######### datapath ########
#################################################################################
# please specify data path
datapath = 'H:\\Creator_Zone\\Script_craft\\NEmo\\Data_CASE'
output_path = 'H:\\Creator_Zone\\Script_craft\\NEmo\\results'
model_path = 'H:\\Creator_Zone\\Script_craft\\NEmo\\models'
# please specify the constants for input data
window_size = 2000 # down-sampling constant
seq = 20
v_a = 0 # valance = 0, arousal = 1
# leave-one-out training and testing
num_s = 2
f = open(os.path.join(datapath, 'data_{}s'.format(int(window_size/100))),'rb')
data = pickle.load(f)
f.close()
samples = data["Samples"]
labels = data["label_s"]
subject_id = data["Subject_id"]
print(subject_id)
x_train = samples[np.where(subject_id!=num_s)[0],:,0:4]
x_test = samples[np.where(subject_id==num_s)[0],:,0:4]
y_train = np.zeros([0,int(window_size/seq),1])
y_test = np.zeros([0,int(window_size/seq),1])
for i in range(len(labels)):
sig = resample(labels[i][:,v_a],int(window_size/seq)).reshape([1,-1,1])/9
if subject_id[i] == num_s:
y_test = np.concatenate([y_test,sig],axis = 0)
else:
y_train = np.concatenate([y_train,sig],axis = 0) | _____no_output_____ | Apache-2.0 | tests/data_preview.ipynb | geek-yang/NEmo |
Recurrent PPO landing using raw altimeter readings | import numpy as np
import os,sys
sys.path.append('../../../RL_lib/Agents/PPO')
sys.path.append('../../../RL_lib/Utils')
sys.path.append('../../../Mars3dof_env')
sys.path.append('../../../Mars_DTM')
%load_ext autoreload
%load_ext autoreload
%autoreload 2
%matplotlib nbagg
import os
print(os.getcwd())
%%html
<style>
.output_wrapper, .output {
height:auto !important;
max-height:1000px; /* your desired max-height here */
}
.output_scroll {
box-shadow:none !important;
webkit-box-shadow:none !important;
}
</style> | _____no_output_____ | MIT | Experiments/Mars3DOF/Mars_landing_DTM/altimeter_v_mm3-120step.ipynb | CHEN-yongquan/RL-Meta-Learning-ACTA |
Optimize Policy | from env import Env
import env_utils as envu
from dynamics_model import Dynamics_model
from lander_model import Lander_model
from ic_gen2 import Landing_icgen
import rl_utils
from arch_policy_vf import Arch
from model import Model
from policy import Policy
from value_function import Value_function
import pcm_model_nets as model_nets
import policy_nets as policy_nets
import valfunc_nets as valfunc_nets
from agent import Agent
import torch.nn as nn
from flat_constraint import Flat_constraint
from glideslope_constraint import Glideslope_constraint
from reward_terminal_mdr import Reward
from dtm_measurement_model3 import DTM_measurement_model
from altimeter_v import Altimeter
dtm = np.load('../../../Mars_DTM/synth_elevations.npy')
print(dtm.shape, np.min(dtm), np.max(dtm))
target_position = np.asarray([4000,4000,400])
mm = DTM_measurement_model(dtm,check_vertical_errors=False)
altimeter = Altimeter(mm,target_position,theta=np.pi/8)
arch = Arch()
logger = rl_utils.Logger()
dynamics_model = Dynamics_model()
lander_model = Lander_model(altimeter=altimeter, apf_tau1=20,apf_tau2=100,apf_vf1=-2,apf_vf2=-1,apf_v0=70,apf_atarg=15.)
lander_model.get_state_agent = lander_model.get_state_agent_dtm
obs_dim = 8
act_dim = 3
recurrent_steps = 120
reward_object = Reward()
glideslope_constraint = Glideslope_constraint(gs_limit=0.5)
shape_constraint = Flat_constraint()
env = Env(lander_model,dynamics_model,logger,
reward_object=reward_object,
glideslope_constraint=glideslope_constraint,
shape_constraint=shape_constraint,
tf_limit=100.0,print_every=10,scale_agent_action=True)
env.ic_gen = Landing_icgen(mass_uncertainty=0.10,
g_uncertainty=(0.05,0.05),
adjust_apf_v0=True,
downrange = (0,2000 , -70, -30),
crossrange = (-1000,1000 , -30,30),
altitude = (2300,2400,-90,-70))
env.ic_gen.show()
arch = Arch()
policy = Policy(policy_nets.GRU(obs_dim, act_dim, recurrent_steps=recurrent_steps), shuffle=False,
kl_targ=0.001,epochs=20, beta=0.1, servo_kl=True, max_grad_norm=30,
init_func=rl_utils.xn_init)
value_function = Value_function(valfunc_nets.GRU(obs_dim, recurrent_steps=recurrent_steps),
shuffle=False, batch_size=9999999, max_grad_norm=30)
agent = Agent(arch, policy, value_function, None, env, logger,
policy_episodes=30, policy_steps=3000, gamma1=0.95, gamma2=0.995, lam=0.98,
recurrent_steps=recurrent_steps, monitor=env.rl_stats)
load_params=True
fname = "altimeter_v_mm3-120step"
if load_params:
policy.load_params(fname)
value_function.load_params(fname)
else:
agent.train(30000)
fname = "altimeter_v_mm3-120step"
policy.save_params(fname)
value_function.save_params(fname)
np.save(fname + "_history",env.rl_stats.history) | _____no_output_____ | MIT | Experiments/Mars3DOF/Mars_landing_DTM/altimeter_v_mm3-120step.ipynb | CHEN-yongquan/RL-Meta-Learning-ACTA |
Test Policy with Realistic Noise | policy.test_mode=True
env.test_policy_batch(agent,1000,print_every=100)
len(lander_model.trajectory_list)
traj_list = lander_model.trajectory_list[0:100]
len(traj_list)
np.save(fname + '_100traj',traj_list)
envu.plot_rf_vf(env.rl_stats.history) | _____no_output_____ | MIT | Experiments/Mars3DOF/Mars_landing_DTM/altimeter_v_mm3-120step.ipynb | CHEN-yongquan/RL-Meta-Learning-ACTA |
Flowers classifier using Transfer Learning and tf.dataAccuracy : 0.9090909090909091Classification Report precision recall f1-score support 0 0.96429 0.90000 0.93103 60 1 0.88750 0.98611 0.93421 72 2 0.81538 0.89831 0.85484 59 3 0.98462 0.86486 0.92086 74 4 0.90698 0.89655 0.90173 87 | #"""
# Google Collab specific stuff....
from google.colab import drive
drive.mount('/content/drive')
import os
!ls "/content/drive/My Drive"
USING_COLLAB = True
%tensorflow_version 2.x
#"""
# Setup sys.path to find MachineLearning lib directory
try: USING_COLLAB
except NameError: USING_COLLAB = False
%load_ext autoreload
%autoreload 2
import sys
if "MachineLearning" in sys.path[0]:
pass
else:
print(sys.path)
if USING_COLLAB:
sys.path.insert(0, '/content/drive/My Drive/GitHub/MachineLearning/lib') ###### CHANGE FOR SPECIFIC ENVIRONMENT
else:
sys.path.insert(0, '/Users/john/Documents/GitHub/MachineLearning/lib') ###### CHANGE FOR SPECIFIC ENVIRONMENT
print(sys.path)
from __future__ import absolute_import, division, print_function, unicode_literals
import os, sys, random, warnings, time, copy, csv, gc
import numpy as np
import IPython.display as display
from PIL import Image
import matplotlib.pyplot as plt
%matplotlib inline
import cv2
from tqdm import tqdm_notebook, tnrange, tqdm
import pandas as pd
import tensorflow as tf
print(tf.__version__)
AUTOTUNE = tf.data.experimental.AUTOTUNE
print("AUTOTUNE: ", AUTOTUNE)
from TrainingUtils import *
#warnings.filterwarnings("ignore", category=DeprecationWarning)
#warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", "(Possibly )?corrupt EXIF data", UserWarning) | _____no_output_____ | MIT | 1-Flowers/FlowersTransfer-TF-Data-V1.ipynb | bo9zbo9z/MachineLearning |
Examine and understand data | # GLOBALS/CONFIG ITEMS
# Set root directory path to data
if USING_COLLAB:
ROOT_PATH = "/content/drive/My Drive/ImageData/Flowers" ###### CHANGE FOR SPECIFIC ENVIRONMENT
else:
ROOT_PATH = "/Users/john/Documents/ImageData/Flowers" ###### CHANGE FOR SPECIFIC ENVIRONMENT
# Establish global dictionary
parms = GlobalParms(ROOT_PATH=ROOT_PATH,
TRAIN_DIR="train",
SMALL_RUN=False,
NUM_CLASSES=5,
IMAGE_ROWS=224,
IMAGE_COLS=224,
IMAGE_CHANNELS=3,
BATCH_SIZE=32,
EPOCS=10,
IMAGE_EXT=".jpg",
FINAL_ACTIVATION='sigmoid',
LOSS='binary_crossentropy',
METRICS=['accuracy'])
parms.print_contents()
#"""
# If not loaded, uncomment one of these to load the database as needed
# This loads the files into a temporary directory
load_dir = tf.keras.utils.get_file(origin='https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz',
fname='flower_photos', untar=True)
# This loads the files into a actual directory, WILL TAKE LONGER TO UNZIP AND TRAIN. But stored on Drive
#load_dir = tf.keras.utils.get_file(origin='https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz',
# fname='flower_photos', untar=True, cache_subdir=parms.TRAIN_PATH)
# set new value for TRAIN_PATH
parms.set_train_path(load_dir) # If we downloaded the images, then overide TRAIN_PATH
print(load_dir, parms.TRAIN_PATH)
#"""
if parms.SMALL_RUN:
max_subdir_files = 10
else:
max_subdir_files = 1000000
images_list, sub_directories = load_file_names_labeled_subdir_Util(parms.TRAIN_PATH,
parms.IMAGE_EXT,
max_dir_files=max_subdir_files)
images_list_len = len(images_list)
print("Number of images: ", images_list_len)
random.shuffle(images_list) # randomize the list
# Set the class names.
parms.set_class_names(sub_directories)
print("Classes: ", parms.NUM_CLASSES,
" Labels: ", len(parms.CLASS_NAMES),
" ", parms.CLASS_NAMES)
# Show a few images
for image_path in images_list[:3]:
print(image_path)
display.display(Image.open(str(image_path)))
# Create Dataset from list of images
full_dataset = tf.data.Dataset.from_tensor_slices(np.array(images_list))
full_dataset = full_dataset.shuffle(images_list_len)
# Verify image paths were loaded and save one path for later in "some_image"
for f in full_dataset.take(5):
some_image = f.numpy().decode("utf-8")
print(f.numpy())
print("Some Image: ", some_image) | _____no_output_____ | MIT | 1-Flowers/FlowersTransfer-TF-Data-V1.ipynb | bo9zbo9z/MachineLearning |
Build an input pipeline |
def get_label(file_path):
# convert the path to a list of path components
parts = tf.strings.split(file_path, os.path.sep)
# The second to last is the class-directory
return parts[-2] == parms.CLASS_NAMES
def decode_image(image):
# convert the compressed string to a 3D uint8 tensor
image = tf.image.decode_jpeg(image, channels=parms.IMAGE_CHANNELS)
# Use `convert_image_dtype` to convert to floats in the [0,1] range.
image = tf.image.convert_image_dtype(image, parms.IMAGE_DTYPE)
# resize the image to the desired size.
return tf.image.resize(image, [parms.IMAGE_ROWS, parms.IMAGE_COLS])
def image_aug(image):
# do any augmentations
if tf.random.uniform(()) > 0.25:
k = tf.random.uniform(shape=[], minval=1, maxval=4, dtype=tf.int32)
image = tf.image.rot90(image, k) #0-4, 0/270, 90/180/270
image = tf.clip_by_value(image, 0, 1) # always clip back to 0, 1 before returning
return image
def process_path_train(file_path):
label = get_label(file_path)
# load the raw data from the file as a string
image = tf.io.read_file(file_path)
image = decode_image(image)
# add any augmentations
image = image_aug(image)
return image, label
def process_path_val(file_path):
label = get_label(file_path)
# load the raw data from the file as a string
image = tf.io.read_file(file_path)
image = decode_image(image)
return image, label
def prepare_for_training(ds, cache=True, shuffle_buffer_size=1000):
# This is a small dataset, only load it once, and keep it in memory.
# use `.cache(filename)` to cache preprocessing work for datasets that don't
# fit in memory.
if cache:
if isinstance(cache, str):
ds = ds.cache(cache)
else:
ds = ds.cache()
ds = ds.shuffle(buffer_size=shuffle_buffer_size)
# Repeat forever
ds = ds.repeat()
ds = ds.batch(parms.BATCH_SIZE)
# `prefetch` lets the dataset fetch batches in the background while the model
# is training.
ds = ds.prefetch(buffer_size=AUTOTUNE)
return ds
# display images....
def show_batch(image_batch, label_batch, number_to_show=25):
plt.figure(figsize=(10,10))
show_number = number_to_show
if parms.BATCH_SIZE < number_to_show:
show_number = parms.BATCH_SIZE
for n in range(show_number):
ax = plt.subplot(5,5,n+1)
plt.imshow(tf.keras.preprocessing.image.array_to_img(image_batch[n]))
plt.title(parms.CLASS_NAMES[np.argmax(label_batch[n])].title())
plt.axis('off')
# split into training and validation sets of images
train_len = int(0.9 * images_list_len)
val_len = images_list_len - train_len
# Create datasets with new sizes
train_dataset = full_dataset.take(train_len) # Creates dataset with new size
val_dataset = full_dataset.skip(train_len) # Creates dataset after skipping over the size
print("Total number: ", images_list_len, " Train number: ", train_len, " Val number: ", val_len)
# map training images to processing, includes any augmentation
train_dataset = train_dataset.map(process_path_train, num_parallel_calls=AUTOTUNE)
# Verify the mapping worked
for image, label in train_dataset.take(1):
print("Image shape: ", image.numpy().shape)
print("Label: ", label.numpy())
# Ready to be used for training
train_dataset = prepare_for_training(train_dataset)
# map validation images to processing
val_dataset = val_dataset.map(process_path_val, num_parallel_calls=AUTOTUNE)
# Verify the mapping worked
for image, label in val_dataset.take(1):
print("Image shape: ", image.numpy().shape)
print("Label: ", label.numpy())
# Ready to be used for training
val_dataset = prepare_for_training(val_dataset)
# Test Training
image_batch, label_batch = next(iter(train_dataset))
show_batch(image_batch.numpy(), label_batch.numpy())
# Test Validation
image_batch, label_batch = next(iter(val_dataset))
show_batch(image_batch.numpy(), label_batch.numpy()) | _____no_output_____ | MIT | 1-Flowers/FlowersTransfer-TF-Data-V1.ipynb | bo9zbo9z/MachineLearning |
Build model- add and validate pretrained model as a baseline | # Create any call backs for training...These are the most common.
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, CSVLogger
reduce_lr = ReduceLROnPlateau(monitor='loss', patience=2, verbose=1, min_lr=1e-6)
earlystopper = EarlyStopping(patience=8, verbose=1)
checkpointer = ModelCheckpoint(parms.MODEL_PATH, monitor='val_loss', verbose=1, mode="auto", save_best_only=True)
#csv_logger = CSVLogger(self.cvslogfile, append=True, separator=';')
#from keras.callbacks import TensorBoard
#tensorboard = TensorBoard(log_dir="logs/{}".format(time()))
# Create model and compile it
from tensorflow.keras.models import Sequential, load_model, Model
from tensorflow.keras.layers import Dense, Dropout, Flatten, Input, Conv2D, MaxPooling2D, BatchNormalization, UpSampling2D, Conv2DTranspose, Concatenate, Activation
from tensorflow.keras.losses import binary_crossentropy, categorical_crossentropy
from tensorflow.keras.optimizers import Adadelta, Adam, Nadam, SGD
########
#new with transfer learning
from tensorflow.keras.applications import MobileNet, imagenet_utils
from tensorflow.keras.layers import Dense,GlobalAveragePooling2D
actual_MobileNet = tf.keras.applications.mobilenet.MobileNet()
def set_train_layers(model, train_layers=20): #since 224x224x3, set the first 20 layers of the network to be non-trainable
if train_layers == 0: #set all non-trainable
for layer in model.layers:
layer.trainable=False
else:
for layer in model.layers[:train_layers]:
layer.trainable=False
for layer in model.layers[train_layers:]:
layer.trainable=True
return model
def predict_image(image):
image = np.expand_dims(image, axis=0)
image = tf.keras.applications.mobilenet.preprocess_input(image)
predictions = actual_MobileNet.predict(image)
results = imagenet_utils.decode_predictions(predictions)
return results #list of decoded imagenet results
def build_model(CFG):
base_model=MobileNet(weights='imagenet',include_top=False, input_shape=parms.IMAGE_DIM) #imports the mobilenet model and discards the last 1000 neuron layer.
x=base_model.output
x=GlobalAveragePooling2D()(x)
x=Dense(1024,activation='relu')(x) #we add dense layers so that the model can learn more complex functions and classify for better results.
x=Dense(1024,activation='relu')(x) #dense layer 2
x=Dense(512,activation='relu')(x) #dense layer 3
preds=Dense(parms.NUM_CLASSES, activation=parms.FINAL_ACTIVATION)(x) #final layer
model=Model(inputs=base_model.input,outputs=preds)
return model
def compile_model(CFG, model):
model.compile(loss=parms.LOSS,
#optimizer=SGD(lr=0.001, momentum=0.9),
optimizer=Adam(),
metrics=parms.METRICS)
return model
#test an image just using MobileNet
from tensorflow.keras.preprocessing import image
img = image.load_img(some_image, target_size=(224, 224))
img_array = image.img_to_array(img)
result = predict_image(img_array)
result
#str(parms.CLASS_NAMES[0])+'/*'))
#show the image...
from IPython.display import Image
Image(filename=some_image)
# Show the activation layers, can be trained or initial model (BETA)
#model_raw = build_model(CFG)
#img_path = os.path.join(parms.TRAIN_PATH, "Cat/2.jpg")
#image_show_seq_model_layers_BETA(img_path, model_raw, parms.IMAGE_DIM,
# activation_layer_num=0, activation_channel_num=11)
| _____no_output_____ | MIT | 1-Flowers/FlowersTransfer-TF-Data-V1.ipynb | bo9zbo9z/MachineLearning |
Train model | # Train model
steps_per_epoch = np.ceil(train_len // parms.BATCH_SIZE) # set step sizes based on train & batch
validation_steps = np.ceil(val_len // parms.BATCH_SIZE) # set step sizes based on val & batch
model = build_model(parms)
model = compile_model(parms, model)
history = model.fit(train_dataset,
validation_data=val_dataset,
epochs=parms.EPOCS,
steps_per_epoch=steps_per_epoch,
validation_steps=validation_steps,
callbacks=[reduce_lr, earlystopper, checkpointer] # include any callbacks...
)
# Plot the training history
history_df = pd.DataFrame(history.history)
plt.figure()
history_df[['loss', 'val_loss']].plot(title="Loss")
plt.xlabel('Epocs')
plt.ylabel('Loss')
history_df[['accuracy', 'val_accuracy']].plot(title="Accuracy")
plt.xlabel('Epocs')
plt.ylabel('Accuracy')
plt.show() | _____no_output_____ | MIT | 1-Flowers/FlowersTransfer-TF-Data-V1.ipynb | bo9zbo9z/MachineLearning |
Validate model's predictions- Create actual_lables and predict_labels- Calculate Confusion Matrix & Accuracy- Display results | #Load saved model
from tensorflow.keras.models import load_model
def load_saved_model(model_path):
model = load_model(model_path)
print("loaded: ", model_path)
return model
model = load_saved_model(parms.MODEL_PATH)
# Use model to generate predicted labels and probabilities
#labels, predict_labels, predict_probabilities, bad_results = predictions_using_dataset(model, val_dataset, 1, parms.BATCH_SIZE, create_bad_results_list=False)
labels, predict_labels, predict_probabilities, bad_results = predictions_using_dataset(model, val_dataset, validation_steps, parms.BATCH_SIZE, create_bad_results_list=False)
show_confusion_matrix(labels, predict_labels, parms.CLASS_NAMES)
# Graph the results
display_prediction_results(labels, predict_labels, predict_probabilities, parms.NUM_CLASSES, parms.CLASS_NAMES)
#Create a df from the bad results list, can save as csv or use for further analysis
bad_results_df = pd.DataFrame(bad_results, columns =['actual', 'predict', 'prob', 'image'])
bad_results_df.head()
# default is to not return bad_results, change to include them, create_bad_results_list=True
#bad_act, bad_pred, bad_prob, bad_images = zip(*bad_results)
# display bad images....
def show_bad_batch(image_batch, bad_act, bad_pred, number_to_show=25):
plt.figure(figsize=(10,10))
show_number = number_to_show
if len(image_batch) < number_to_show:
show_number = len(image_batch)
for n in range(show_number):
ax = plt.subplot(5,5,n+1)
plt.imshow(tf.keras.preprocessing.image.array_to_img(image_batch[n][0]))
#s = parms.CLASS_NAMES[bad_pred[n][0]]
s = "Act: "+ str(bad_act[n][0]) + " Pred: " + str(bad_pred[n][0])
plt.title(s)
plt.axis('off')
print(" 0)", parms.CLASS_NAMES[0],
" 1)", parms.CLASS_NAMES[1],
" 2)", parms.CLASS_NAMES[2],
" 3)", parms.CLASS_NAMES[3],
" 4)", parms.CLASS_NAMES[4])
#show_bad_batch(bad_images, bad_act, bad_pred) | _____no_output_____ | MIT | 1-Flowers/FlowersTransfer-TF-Data-V1.ipynb | bo9zbo9z/MachineLearning |
Copyright 2021 The TensorFlow Authors. | #@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Human Pose Classification with MoveNet and TensorFlow LiteThis notebook teaches you how to train a pose classification model using MoveNet and TensorFlow Lite. The result is a new TensorFlow Lite model that accepts the output from the MoveNet model as its input, and outputs a pose classification, such as the name of a yoga pose.The procedure in this notebook consists of 3 parts:* Part 1: Preprocess the pose classification training data into a CSV file that specifies the landmarks (body keypoints) detected by the MoveNet model, along with the ground truth pose labels.* Part 2: Build and train a pose classification model that takes the landmark coordinates from the CSV file as input, and outputs the predicted labels.* Part 3: Convert the pose classification model to TFLite.By default, this notebook uses an image dataset with labeled yoga poses, but we've also included a section in Part 1 where you can upload your own image dataset of poses. View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook See TF Hub model Preparation In this section, you'll import the necessary libraries and define several functions to preprocess the training images into a CSV file that contains the landmark coordinates and ground truth labels.Nothing observable happens here, but you can expand the hidden code cells to see the implementation for some of the functions we'll be calling later on.**If you only want to create the CSV file without knowing all the details, just run this section and proceed to Part 1.** | !pip install -q opencv-python
import csv
import cv2
import itertools
import numpy as np
import pandas as pd
import os
import sys
import tempfile
import tqdm
from matplotlib import pyplot as plt
from matplotlib.collections import LineCollection
import tensorflow as tf
import tensorflow_hub as hub
from tensorflow import keras
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Code to run pose estimation using MoveNet | #@title Functions to run pose estimation with MoveNet
#@markdown You'll download the MoveNet Thunder model from [TensorFlow Hub](https://www.google.com/url?sa=D&q=https%3A%2F%2Ftfhub.dev%2Fs%3Fq%3Dmovenet), and reuse some inference and visualization logic from the [MoveNet Raspberry Pi (Python)](https://github.com/tensorflow/examples/tree/master/lite/examples/pose_estimation/raspberry_pi) sample app to detect landmarks (ear, nose, wrist etc.) from the input images.
#@markdown *Note: You should use the most accurate pose estimation model (i.e. MoveNet Thunder) to detect the keypoints and use them to train the pose classification model to achieve the best accuracy. When running inference, you can use a pose estimation model of your choice (e.g. either MoveNet Lightning or Thunder).*
# Download model from TF Hub and check out inference code from GitHub
!wget -q -O movenet_thunder.tflite https://tfhub.dev/google/lite-model/movenet/singlepose/thunder/tflite/float16/4?lite-format=tflite
!git clone https://github.com/tensorflow/examples.git
pose_sample_rpi_path = os.path.join(os.getcwd(), 'examples/lite/examples/pose_estimation/raspberry_pi')
sys.path.append(pose_sample_rpi_path)
# Load MoveNet Thunder model
import utils
from data import BodyPart
from ml import Movenet
movenet = Movenet('movenet_thunder')
# Define function to run pose estimation using MoveNet Thunder.
# You'll apply MoveNet's cropping algorithm and run inference multiple times on
# the input image to improve pose estimation accuracy.
def detect(input_tensor, inference_count=3):
"""Runs detection on an input image.
Args:
input_tensor: A [height, width, 3] Tensor of type tf.float32.
Note that height and width can be anything since the image will be
immediately resized according to the needs of the model within this
function.
inference_count: Number of times the model should run repeatly on the
same input image to improve detection accuracy.
Returns:
A Person entity detected by the MoveNet.SinglePose.
"""
image_height, image_width, channel = input_tensor.shape
# Detect pose using the full input image
movenet.detect(input_tensor.numpy(), reset_crop_region=True)
# Repeatedly using previous detection result to identify the region of
# interest and only croping that region to improve detection accuracy
for _ in range(inference_count - 1):
person = movenet.detect(input_tensor.numpy(),
reset_crop_region=False)
return person
#@title Functions to visualize the pose estimation results.
def draw_prediction_on_image(
image, person, crop_region=None, close_figure=True,
keep_input_size=False):
"""Draws the keypoint predictions on image.
Args:
image: An numpy array with shape [height, width, channel] representing the
pixel values of the input image.
person: A person entity returned from the MoveNet.SinglePose model.
close_figure: Whether to close the plt figure after the function returns.
keep_input_size: Whether to keep the size of the input image.
Returns:
An numpy array with shape [out_height, out_width, channel] representing the
image overlaid with keypoint predictions.
"""
# Draw the detection result on top of the image.
image_np = utils.visualize(image, [person])
# Plot the image with detection results.
height, width, channel = image.shape
aspect_ratio = float(width) / height
fig, ax = plt.subplots(figsize=(12 * aspect_ratio, 12))
im = ax.imshow(image_np)
if close_figure:
plt.close(fig)
if not keep_input_size:
image_np = utils.keep_aspect_ratio_resizer(image_np, (512, 512))
return image_np
#@title Code to load the images, detect pose landmarks and save them into a CSV file
class MoveNetPreprocessor(object):
"""Helper class to preprocess pose sample images for classification."""
def __init__(self,
images_in_folder,
images_out_folder,
csvs_out_path):
"""Creates a preprocessor to detection pose from images and save as CSV.
Args:
images_in_folder: Path to the folder with the input images. It should
follow this structure:
yoga_poses
|__ downdog
|______ 00000128.jpg
|______ 00000181.bmp
|______ ...
|__ goddess
|______ 00000243.jpg
|______ 00000306.jpg
|______ ...
...
images_out_folder: Path to write the images overlay with detected
landmarks. These images are useful when you need to debug accuracy
issues.
csvs_out_path: Path to write the CSV containing the detected landmark
coordinates and label of each image that can be used to train a pose
classification model.
"""
self._images_in_folder = images_in_folder
self._images_out_folder = images_out_folder
self._csvs_out_path = csvs_out_path
self._messages = []
# Create a temp dir to store the pose CSVs per class
self._csvs_out_folder_per_class = tempfile.mkdtemp()
# Get list of pose classes and print image statistics
self._pose_class_names = sorted(
[n for n in os.listdir(self._images_in_folder) if not n.startswith('.')]
)
def process(self, per_pose_class_limit=None, detection_threshold=0.1):
"""Preprocesses images in the given folder.
Args:
per_pose_class_limit: Number of images to load. As preprocessing usually
takes time, this parameter can be specified to make the reduce of the
dataset for testing.
detection_threshold: Only keep images with all landmark confidence score
above this threshold.
"""
# Loop through the classes and preprocess its images
for pose_class_name in self._pose_class_names:
print('Preprocessing', pose_class_name, file=sys.stderr)
# Paths for the pose class.
images_in_folder = os.path.join(self._images_in_folder, pose_class_name)
images_out_folder = os.path.join(self._images_out_folder, pose_class_name)
csv_out_path = os.path.join(self._csvs_out_folder_per_class,
pose_class_name + '.csv')
if not os.path.exists(images_out_folder):
os.makedirs(images_out_folder)
# Detect landmarks in each image and write it to a CSV file
with open(csv_out_path, 'w') as csv_out_file:
csv_out_writer = csv.writer(csv_out_file,
delimiter=',',
quoting=csv.QUOTE_MINIMAL)
# Get list of images
image_names = sorted(
[n for n in os.listdir(images_in_folder) if not n.startswith('.')])
if per_pose_class_limit is not None:
image_names = image_names[:per_pose_class_limit]
valid_image_count = 0
# Detect pose landmarks from each image
for image_name in tqdm.tqdm(image_names):
image_path = os.path.join(images_in_folder, image_name)
try:
image = tf.io.read_file(image_path)
image = tf.io.decode_jpeg(image)
except:
self._messages.append('Skipped ' + image_path + '. Invalid image.')
continue
else:
image = tf.io.read_file(image_path)
image = tf.io.decode_jpeg(image)
image_height, image_width, channel = image.shape
# Skip images that isn't RGB because Movenet requires RGB images
if channel != 3:
self._messages.append('Skipped ' + image_path +
'. Image isn\'t in RGB format.')
continue
person = detect(image)
# Save landmarks if all landmarks were detected
min_landmark_score = min(
[keypoint.score for keypoint in person.keypoints])
should_keep_image = min_landmark_score >= detection_threshold
if not should_keep_image:
self._messages.append('Skipped ' + image_path +
'. No pose was confidentlly detected.')
continue
valid_image_count += 1
# Draw the prediction result on top of the image for debugging later
output_overlay = draw_prediction_on_image(
image.numpy().astype(np.uint8), person,
close_figure=True, keep_input_size=True)
# Write detection result into an image file
output_frame = cv2.cvtColor(output_overlay, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(images_out_folder, image_name), output_frame)
# Get landmarks and scale it to the same size as the input image
pose_landmarks = np.array(
[[keypoint.coordinate.x, keypoint.coordinate.y, keypoint.score]
for keypoint in person.keypoints],
dtype=np.float32)
# Write the landmark coordinates to its per-class CSV file
coordinates = pose_landmarks.flatten().astype(np.str).tolist()
csv_out_writer.writerow([image_name] + coordinates)
if not valid_image_count:
raise RuntimeError(
'No valid images found for the "{}" class.'
.format(pose_class_name))
# Print the error message collected during preprocessing.
print('\n'.join(self._messages))
# Combine all per-class CSVs into a single output file
all_landmarks_df = self._all_landmarks_as_dataframe()
all_landmarks_df.to_csv(self._csvs_out_path, index=False)
def class_names(self):
"""List of classes found in the training dataset."""
return self._pose_class_names
def _all_landmarks_as_dataframe(self):
"""Merge all per-class CSVs into a single dataframe."""
total_df = None
for class_index, class_name in enumerate(self._pose_class_names):
csv_out_path = os.path.join(self._csvs_out_folder_per_class,
class_name + '.csv')
per_class_df = pd.read_csv(csv_out_path, header=None)
# Add the labels
per_class_df['class_no'] = [class_index]*len(per_class_df)
per_class_df['class_name'] = [class_name]*len(per_class_df)
# Append the folder name to the filename column (first column)
per_class_df[per_class_df.columns[0]] = (os.path.join(class_name, '')
+ per_class_df[per_class_df.columns[0]].astype(str))
if total_df is None:
# For the first class, assign its data to the total dataframe
total_df = per_class_df
else:
# Concatenate each class's data into the total dataframe
total_df = pd.concat([total_df, per_class_df], axis=0)
list_name = [[bodypart.name + '_x', bodypart.name + '_y',
bodypart.name + '_score'] for bodypart in BodyPart]
header_name = []
for columns_name in list_name:
header_name += columns_name
header_name = ['file_name'] + header_name
header_map = {total_df.columns[i]: header_name[i]
for i in range(len(header_name))}
total_df.rename(header_map, axis=1, inplace=True)
return total_df
#@title (Optional) Code snippet to try out the Movenet pose estimation logic
#@markdown You can download an image from the internet, run the pose estimation logic on it and plot the detected landmarks on top of the input image.
#@markdown *Note: This code snippet is also useful for debugging when you encounter an image with bad pose classification accuracy. You can run pose estimation on the image and see if the detected landmarks look correct or not before investigating the pose classification logic.*
test_image_url = "https://cdn.pixabay.com/photo/2017/03/03/17/30/yoga-2114512_960_720.jpg" #@param {type:"string"}
!wget -O /tmp/image.jpeg {test_image_url}
if len(test_image_url):
image = tf.io.read_file('/tmp/image.jpeg')
image = tf.io.decode_jpeg(image)
person = detect(image)
_ = draw_prediction_on_image(image.numpy(), person, crop_region=None,
close_figure=False, keep_input_size=True) | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Part 1: Preprocess the input imagesBecause the input for our pose classifier is the *output* landmarks from the MoveNet model, we need to generate our training dataset by running labeled images through MoveNet and then capturing all the landmark data and ground truth labels into a CSV file.The dataset we've provided for this tutorial is a CG-generated yoga pose dataset. It contains images of multiple CG-generated models doing 5 different yoga poses. The directory is already split into a `train` dataset and a `test` dataset.So in this section, we'll download the yoga dataset and run it through MoveNet so we can capture all the landmarks into a CSV file... **However, it takes about 15 minutes to feed our yoga dataset to MoveNet and generate this CSV file**. So as an alternative, you can download a pre-existing CSV file for the yoga dataset by setting `is_skip_step_1` parameter below to **True**. That way, you'll skip this step and instead download the same CSV file that will be created in this preprocessing step.On the other hand, if you want to train the pose classifier with your own image dataset, you need to upload your images and run this preprocessing step (leave `is_skip_step_1` **False**)—follow the instructions below to upload your own pose dataset. | is_skip_step_1 = False #@param ["False", "True"] {type:"raw"} | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
(Optional) Upload your own pose dataset | use_custom_dataset = False #@param ["False", "True"] {type:"raw"}
dataset_is_split = False #@param ["False", "True"] {type:"raw"} | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
If you want to train the pose classifier with your own labeled poses (they can be any poses, not just yoga poses), follow these steps:1. Set the above `use_custom_dataset` option to **True**.2. Prepare an archive file (ZIP, TAR, or other) that includes a folder with your images dataset. The folder must include sorted images of your poses as follows. If you've already split your dataset into train and test sets, then set `dataset_is_split` to **True**. That is, your images folder must include "train" and "test" directories like this: ``` yoga_poses/ |__ train/ |__ downdog/ |______ 00000128.jpg |______ ... |__ test/ |__ downdog/ |______ 00000181.jpg |______ ... ``` Or, if your dataset is NOT split yet, then set `dataset_is_split` to **False** and we'll split it up based on a specified split fraction. That is, your uploaded images folder should look like this: ``` yoga_poses/ |__ downdog/ |______ 00000128.jpg |______ 00000181.jpg |______ ... |__ goddess/ |______ 00000243.jpg |______ 00000306.jpg |______ ... ```3. Click the **Files** tab on the left (folder icon) and then click **Upload to session storage** (file icon).4. Select your archive file and wait until it finishes uploading before you proceed.5. Edit the following code block to specify the name of your archive file and images directory. (By default, we expect a ZIP file, so you'll need to also modify that part if your archive is another format.)6. Now run the rest of the notebook. | #@markdown Be sure you run this cell. It's hiding the `split_into_train_test()` function that's called in the next code block.
import os
import random
import shutil
def split_into_train_test(images_origin, images_dest, test_split):
"""Splits a directory of sorted images into training and test sets.
Args:
images_origin: Path to the directory with your images. This directory
must include subdirectories for each of your labeled classes. For example:
yoga_poses/
|__ downdog/
|______ 00000128.jpg
|______ 00000181.jpg
|______ ...
|__ goddess/
|______ 00000243.jpg
|______ 00000306.jpg
|______ ...
...
images_dest: Path to a directory where you want the split dataset to be
saved. The results looks like this:
split_yoga_poses/
|__ train/
|__ downdog/
|______ 00000128.jpg
|______ ...
|__ test/
|__ downdog/
|______ 00000181.jpg
|______ ...
test_split: Fraction of data to reserve for test (float between 0 and 1).
"""
_, dirs, _ = next(os.walk(images_origin))
TRAIN_DIR = os.path.join(images_dest, 'train')
TEST_DIR = os.path.join(images_dest, 'test')
os.makedirs(TRAIN_DIR, exist_ok=True)
os.makedirs(TEST_DIR, exist_ok=True)
for dir in dirs:
# Get all filenames for this dir, filtered by filetype
filenames = os.listdir(os.path.join(images_origin, dir))
filenames = [os.path.join(images_origin, dir, f) for f in filenames if (
f.endswith('.png') or f.endswith('.jpg') or f.endswith('.jpeg') or f.endswith('.bmp'))]
# Shuffle the files, deterministically
filenames.sort()
random.seed(42)
random.shuffle(filenames)
# Divide them into train/test dirs
os.makedirs(os.path.join(TEST_DIR, dir), exist_ok=True)
os.makedirs(os.path.join(TRAIN_DIR, dir), exist_ok=True)
test_count = int(len(filenames) * test_split)
for i, file in enumerate(filenames):
if i < test_count:
destination = os.path.join(TEST_DIR, dir, os.path.split(file)[1])
else:
destination = os.path.join(TRAIN_DIR, dir, os.path.split(file)[1])
shutil.copyfile(file, destination)
print(f'Moved {test_count} of {len(filenames)} from class "{dir}" into test.')
print(f'Your split dataset is in "{images_dest}"')
if use_custom_dataset:
# ATTENTION:
# You must edit these two lines to match your archive and images folder name:
# !tar -xf YOUR_DATASET_ARCHIVE_NAME.tar
!unzip -q YOUR_DATASET_ARCHIVE_NAME.zip
dataset_in = 'YOUR_DATASET_DIR_NAME'
# You can leave the rest alone:
if not os.path.isdir(dataset_in):
raise Exception("dataset_in is not a valid directory")
if dataset_is_split:
IMAGES_ROOT = dataset_in
else:
dataset_out = 'split_' + dataset_in
split_into_train_test(dataset_in, dataset_out, test_split=0.2)
IMAGES_ROOT = dataset_out | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
**Note:** If you're using `split_into_train_test()` to split the dataset, it expects all images to be PNG, JPEG, or BMP—it ignores other file types. Download the yoga dataset | if not is_skip_step_1 and not use_custom_dataset:
!wget -O yoga_poses.zip http://download.tensorflow.org/data/pose_classification/yoga_poses.zip
!unzip -q yoga_poses.zip -d yoga_cg
IMAGES_ROOT = "yoga_cg" | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Preprocess the `TRAIN` dataset | if not is_skip_step_1:
images_in_train_folder = os.path.join(IMAGES_ROOT, 'train')
images_out_train_folder = 'poses_images_out_train'
csvs_out_train_path = 'train_data.csv'
preprocessor = MoveNetPreprocessor(
images_in_folder=images_in_train_folder,
images_out_folder=images_out_train_folder,
csvs_out_path=csvs_out_train_path,
)
preprocessor.process(per_pose_class_limit=None) | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Preprocess the `TEST` dataset | if not is_skip_step_1:
images_in_test_folder = os.path.join(IMAGES_ROOT, 'test')
images_out_test_folder = 'poses_images_out_test'
csvs_out_test_path = 'test_data.csv'
preprocessor = MoveNetPreprocessor(
images_in_folder=images_in_test_folder,
images_out_folder=images_out_test_folder,
csvs_out_path=csvs_out_test_path,
)
preprocessor.process(per_pose_class_limit=None) | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Part 2: Train a pose classification model that takes the landmark coordinates as input, and output the predicted labels.You'll build a TensorFlow model that takes the landmark coordinates and predicts the pose class that the person in the input image performs. The model consists of two submodels:* Submodel 1 calculates a pose embedding (a.k.a feature vector) from the detected landmark coordinates.* Submodel 2 feeds pose embedding through several `Dense` layer to predict the pose class.You'll then train the model based on the dataset that were preprocessed in part 1. (Optional) Download the preprocessed dataset if you didn't run part 1 | # Download the preprocessed CSV files which are the same as the output of step 1
if is_skip_step_1:
!wget -O train_data.csv http://download.tensorflow.org/data/pose_classification/yoga_train_data.csv
!wget -O test_data.csv http://download.tensorflow.org/data/pose_classification/yoga_test_data.csv
csvs_out_train_path = 'train_data.csv'
csvs_out_test_path = 'test_data.csv'
is_skipped_step_1 = True | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Load the preprocessed CSVs into `TRAIN` and `TEST` datasets. | def load_pose_landmarks(csv_path):
"""Loads a CSV created by MoveNetPreprocessor.
Returns:
X: Detected landmark coordinates and scores of shape (N, 17 * 3)
y: Ground truth labels of shape (N, label_count)
classes: The list of all class names found in the dataset
dataframe: The CSV loaded as a Pandas dataframe features (X) and ground
truth labels (y) to use later to train a pose classification model.
"""
# Load the CSV file
dataframe = pd.read_csv(csv_path)
df_to_process = dataframe.copy()
# Drop the file_name columns as you don't need it during training.
df_to_process.drop(columns=['file_name'], inplace=True)
# Extract the list of class names
classes = df_to_process.pop('class_name').unique()
# Extract the labels
y = df_to_process.pop('class_no')
# Convert the input features and labels into the correct format for training.
X = df_to_process.astype('float64')
y = keras.utils.to_categorical(y)
return X, y, classes, dataframe | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Load and split the original `TRAIN` dataset into `TRAIN` (85% of the data) and `VALIDATE` (the remaining 15%). | # Load the train data
X, y, class_names, _ = load_pose_landmarks(csvs_out_train_path)
# Split training data (X, y) into (X_train, y_train) and (X_val, y_val)
X_train, X_val, y_train, y_val = train_test_split(X, y,
test_size=0.15)
# Load the test data
X_test, y_test, _, df_test = load_pose_landmarks(csvs_out_test_path) | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Define functions to convert the pose landmarks to a pose embedding (a.k.a. feature vector) for pose classificationNext, convert the landmark coordinates to a feature vector by:1. Moving the pose center to the origin.2. Scaling the pose so that the pose size becomes 13. Flattening these coordinates into a feature vectorThen use this feature vector to train a neural-network based pose classifier. | def get_center_point(landmarks, left_bodypart, right_bodypart):
"""Calculates the center point of the two given landmarks."""
left = tf.gather(landmarks, left_bodypart.value, axis=1)
right = tf.gather(landmarks, right_bodypart.value, axis=1)
center = left * 0.5 + right * 0.5
return center
def get_pose_size(landmarks, torso_size_multiplier=2.5):
"""Calculates pose size.
It is the maximum of two values:
* Torso size multiplied by `torso_size_multiplier`
* Maximum distance from pose center to any pose landmark
"""
# Hips center
hips_center = get_center_point(landmarks, BodyPart.LEFT_HIP,
BodyPart.RIGHT_HIP)
# Shoulders center
shoulders_center = get_center_point(landmarks, BodyPart.LEFT_SHOULDER,
BodyPart.RIGHT_SHOULDER)
# Torso size as the minimum body size
torso_size = tf.linalg.norm(shoulders_center - hips_center)
# Pose center
pose_center_new = get_center_point(landmarks, BodyPart.LEFT_HIP,
BodyPart.RIGHT_HIP)
pose_center_new = tf.expand_dims(pose_center_new, axis=1)
# Broadcast the pose center to the same size as the landmark vector to
# perform substraction
pose_center_new = tf.broadcast_to(pose_center_new,
[tf.size(landmarks) // (17*2), 17, 2])
# Dist to pose center
d = tf.gather(landmarks - pose_center_new, 0, axis=0,
name="dist_to_pose_center")
# Max dist to pose center
max_dist = tf.reduce_max(tf.linalg.norm(d, axis=0))
# Normalize scale
pose_size = tf.maximum(torso_size * torso_size_multiplier, max_dist)
return pose_size
def normalize_pose_landmarks(landmarks):
"""Normalizes the landmarks translation by moving the pose center to (0,0) and
scaling it to a constant pose size.
"""
# Move landmarks so that the pose center becomes (0,0)
pose_center = get_center_point(landmarks, BodyPart.LEFT_HIP,
BodyPart.RIGHT_HIP)
pose_center = tf.expand_dims(pose_center, axis=1)
# Broadcast the pose center to the same size as the landmark vector to perform
# substraction
pose_center = tf.broadcast_to(pose_center,
[tf.size(landmarks) // (17*2), 17, 2])
landmarks = landmarks - pose_center
# Scale the landmarks to a constant pose size
pose_size = get_pose_size(landmarks)
landmarks /= pose_size
return landmarks
def landmarks_to_embedding(landmarks_and_scores):
"""Converts the input landmarks into a pose embedding."""
# Reshape the flat input into a matrix with shape=(17, 3)
reshaped_inputs = keras.layers.Reshape((17, 3))(landmarks_and_scores)
# Normalize landmarks 2D
landmarks = normalize_pose_landmarks(reshaped_inputs[:, :, :2])
# Flatten the normalized landmark coordinates into a vector
embedding = keras.layers.Flatten()(landmarks)
return embedding | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Define a Keras model for pose classificationOur Keras model takes the detected pose landmarks, then calculates the pose embedding and predicts the pose class. | # Define the model
inputs = tf.keras.Input(shape=(51))
embedding = landmarks_to_embedding(inputs)
layer = keras.layers.Dense(128, activation=tf.nn.relu6)(embedding)
layer = keras.layers.Dropout(0.5)(layer)
layer = keras.layers.Dense(64, activation=tf.nn.relu6)(layer)
layer = keras.layers.Dropout(0.5)(layer)
outputs = keras.layers.Dense(5, activation="softmax")(layer)
model = keras.Model(inputs, outputs)
model.summary()
model.compile(
optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
# Add a checkpoint callback to store the checkpoint that has the highest
# validation accuracy.
checkpoint_path = "weights.best.hdf5"
checkpoint = keras.callbacks.ModelCheckpoint(checkpoint_path,
monitor='val_accuracy',
verbose=1,
save_best_only=True,
mode='max')
earlystopping = keras.callbacks.EarlyStopping(monitor='val_accuracy',
patience=20)
# Start training
history = model.fit(X_train, y_train,
epochs=200,
batch_size=16,
validation_data=(X_val, y_val),
callbacks=[checkpoint, earlystopping])
# Visualize the training history to see whether you're overfitting.
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['TRAIN', 'VAL'], loc='lower right')
plt.show()
# Evaluate the model using the TEST dataset
loss, accuracy = model.evaluate(X_test, y_test) | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Draw the confusion matrix to better understand the model performance | def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""Plots the confusion matrix."""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=55)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.tight_layout()
# Classify pose in the TEST dataset using the trained model
y_pred = model.predict(X_test)
# Convert the prediction result to class name
y_pred_label = [class_names[i] for i in np.argmax(y_pred, axis=1)]
y_true_label = [class_names[i] for i in np.argmax(y_test, axis=1)]
# Plot the confusion matrix
cm = confusion_matrix(np.argmax(y_test, axis=1), np.argmax(y_pred, axis=1))
plot_confusion_matrix(cm,
class_names,
title ='Confusion Matrix of Pose Classification Model')
# Print the classification report
print('\nClassification Report:\n', classification_report(y_true_label,
y_pred_label)) | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
(Optional) Investigate incorrect predictionsYou can look at the poses from the `TEST` dataset that were incorrectly predicted to see whether the model accuracy can be improved.Note: This only works if you have run step 1 because you need the pose image files on your local machine to display them. | if is_skip_step_1:
raise RuntimeError('You must have run step 1 to run this cell.')
# If step 1 was skipped, skip this step.
IMAGE_PER_ROW = 3
MAX_NO_OF_IMAGE_TO_PLOT = 30
# Extract the list of incorrectly predicted poses
false_predict = [id_in_df for id_in_df in range(len(y_test)) \
if y_pred_label[id_in_df] != y_true_label[id_in_df]]
if len(false_predict) > MAX_NO_OF_IMAGE_TO_PLOT:
false_predict = false_predict[:MAX_NO_OF_IMAGE_TO_PLOT]
# Plot the incorrectly predicted images
row_count = len(false_predict) // IMAGE_PER_ROW + 1
fig = plt.figure(figsize=(10 * IMAGE_PER_ROW, 10 * row_count))
for i, id_in_df in enumerate(false_predict):
ax = fig.add_subplot(row_count, IMAGE_PER_ROW, i + 1)
image_path = os.path.join(images_out_test_folder,
df_test.iloc[id_in_df]['file_name'])
image = cv2.imread(image_path)
plt.title("Predict: %s; Actual: %s"
% (y_pred_label[id_in_df], y_true_label[id_in_df]))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.show() | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Part 3: Convert the pose classification model to TensorFlow LiteYou'll convert the Keras pose classification model to the TensorFlow Lite format so that you can deploy it to mobile apps, web browsers and IoT devices. When converting the model, you'll apply [dynamic range quantization](https://www.tensorflow.org/lite/performance/post_training_quant) to reduce the pose classification TensorFlow Lite model size by about 4 times with insignificant accuracy loss.Note: TensorFlow Lite supports multiple quantization schemes. See the [documentation](https://www.tensorflow.org/lite/performance/model_optimization) if you are interested to learn more. | converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()
print('Model size: %dKB' % (len(tflite_model) / 1024))
with open('pose_classifier.tflite', 'wb') as f:
f.write(tflite_model) | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Then you'll write the label file which contains mapping from the class indexes to the human readable class names. | with open('pose_labels.txt', 'w') as f:
f.write('\n'.join(class_names)) | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
As you've applied quantization to reduce the model size, let's evaluate the quantized TFLite model to check whether the accuracy drop is acceptable. | def evaluate_model(interpreter, X, y_true):
"""Evaluates the given TFLite model and return its accuracy."""
input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]
# Run predictions on all given poses.
y_pred = []
for i in range(len(y_true)):
# Pre-processing: add batch dimension and convert to float32 to match with
# the model's input data format.
test_image = X[i: i + 1].astype('float32')
interpreter.set_tensor(input_index, test_image)
# Run inference.
interpreter.invoke()
# Post-processing: remove batch dimension and find the class with highest
# probability.
output = interpreter.tensor(output_index)
predicted_label = np.argmax(output()[0])
y_pred.append(predicted_label)
# Compare prediction results with ground truth labels to calculate accuracy.
y_pred = keras.utils.to_categorical(y_pred)
return accuracy_score(y_true, y_pred)
# Evaluate the accuracy of the converted TFLite model
classifier_interpreter = tf.lite.Interpreter(model_content=tflite_model)
classifier_interpreter.allocate_tensors()
print('Accuracy of TFLite model: %s' %
evaluate_model(classifier_interpreter, X_test, y_test)) | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
Now you can download the TFLite model (`pose_classifier.tflite`) and the label file (`pose_labels.txt`) to classify custom poses. See the [Android](https://github.com/tensorflow/examples/tree/master/lite/examples/pose_estimation/android) and [Python/Raspberry Pi](https://github.com/tensorflow/examples/tree/master/lite/examples/pose_estimation/raspberry_pi) sample app for an end-to-end example of how to use the TFLite pose classification model. | !zip pose_classifier.zip pose_labels.txt pose_classifier.tflite
# Download the zip archive if running on Colab.
try:
from google.colab import files
files.download('pose_classifier.zip')
except:
pass | _____no_output_____ | Apache-2.0 | site/en-snapshot/lite/tutorials/pose_classification.ipynb | Icecoffee2500/docs-l10n |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
train = pd.read_csv('/content/sample_data/california_housing_test.csv')
test = pd.read_csv('/content/sample_data/california_housing_train.csv')
train.head()
test.head()
train.describe()
train.hist(figsize=(15,13), grid=False, bins=50)
plt.show()
correlation = train.corr()
plt.figure(figsize=(10,10))
sns.heatmap(correlation , annot=True)
plt.show() | _____no_output_____ | MIT | california_housing.ipynb | crazrycoin/Open-source |
|
In this tutorial, we will learn how to plot a variable "Boundary layer height" for a particular output of WRF model.Referrence: https://wrf-python.readthedocs.io/en/latest/index.html 1. Import libraries | # Loading necessary libraries
import numpy as np
from netCDF4 import Dataset
import matplotlib.pyplot as plt
from matplotlib.cm import get_cmap
import cartopy.crs as crs
from cartopy.feature import NaturalEarthFeature
from wrf import (to_np, getvar, smooth2d, get_cartopy, cartopy_xlim,
cartopy_ylim, latlon_coords, interplevel) | _____no_output_____ | MIT | notebook/06 WRF Python - Boundary layer height plot.ipynb | sonnymetvn/Basic-Python-for-Meteorology |
2. Download data | # specify where is the location of the data
path_in = "data/"
path_out = "./"
# Open the NetCDF file
ncfile = Dataset(path_in + 'wrfout_d01_2016-05-09_00^%00^%00') | _____no_output_____ | MIT | notebook/06 WRF Python - Boundary layer height plot.ipynb | sonnymetvn/Basic-Python-for-Meteorology |
3. Take out the variables | # Get the boundary layer height
PBLH = getvar(ncfile, "PBLH")
print(PBLH.dims) | ('south_north', 'west_east')
| MIT | notebook/06 WRF Python - Boundary layer height plot.ipynb | sonnymetvn/Basic-Python-for-Meteorology |
4. Plotting | PBLH.plot() | _____no_output_____ | MIT | notebook/06 WRF Python - Boundary layer height plot.ipynb | sonnymetvn/Basic-Python-for-Meteorology |
This notebook shows you how to create and query a table or DataFrame loaded from data stored in Azure Blob storage. | from pyspark.sql.functions import lit
from pyspark.sql.types import BinaryType,StringType
from pyspark.sql import SparkSession | _____no_output_____ | Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
Step 1: Set the data location and typeThere are two ways to access Azure Blob storage: account keys and shared access signatures (SAS).To get started, we need to set the location and type of the file. | file_location = "256_sampledata/" | _____no_output_____ | Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
Step 2: Read the dataNow that we have specified our file metadata, we can create a DataFrame. Notice that we use an *option* to specify that we want to infer the schema from the file. We can also explicitly set this to a particular schema if we have one already.First, let's create a DataFrame in Python. | ! ls -l "256_sampledata"
# start Spark session:
spark = SparkSession \
.builder \
.appName("Marhselling Image data") \
.config("spark.memory.offHeap.enabled",True) \
.config("spark.memory.offHeap.size","30g")\
.getOrCreate()
spark.sql("set spark.sql.files.ignoreCorruptFiles=true")
df = spark.read.format("binaryFile") \
.option("pathGlobFilter", "*.jpg") \
.option("recursiveFileLookup", "true") \
.load(file_location)
df.printSchema()
# Try image file type to learn about the schema:
# we are NOT using this DF.
image_df = spark.read.format("image") \
.option("pathGlobFilter", "*.jpg") \
.option("recursiveFileLookup", "true") \
.load(file_location)
image_df.printSchema()
image_df = None
df.show(5)
df.count() | _____no_output_____ | Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
preprocess 1. Extract labels 2. Extract size 3. transform labels to index Regex expressionNotice that every path file can be different, you will need to tweak the actual regex experssion to fit your file path. for that, take a look at an example of the file path and experiement with a [regex calculator](https://regexr.com/). | df.select("path").show(5, truncate=False)
import io
import numpy as np
import pandas as pd
import uuid
from pyspark.sql.functions import col, pandas_udf, regexp_extract
from PIL import Image
def extract_label(path_col):
"""Extract label category number from file path using built-in sql function"""
#([^/]+)
return regexp_extract(path_col,"256_sampledata/([^/]+)",1)
def extract_size(content):
"""Extract images size from its raw content"""
image = Image.open(io.BytesIO(content))
return image.size
@pandas_udf("width: int, height: int")
def extract_size_udf(content_series):
sizes = content_series.apply(extract_size)
return pd.DataFrame(list(sizes))
images_w_label_size = df.select(
col("path"),
extract_label(col("path")).alias("label"),
extract_size_udf(col("content")).alias("size"),
col("content"))
images_w_label_size.show(5)
| +--------------------+-------------+------------+--------------------+
| path| label| size| content|
+--------------------+-------------+------------+--------------------+
|file:/home/jovyan...| 249.yo-yo|{1500, 1500}|[FF D8 FF E0 00 1...|
|file:/home/jovyan...|196.spaghetti| {630, 537}|[FF D8 FF E0 00 1...|
|file:/home/jovyan...| 249.yo-yo|{1792, 1200}|[FF D8 FF E0 00 1...|
|file:/home/jovyan...| 249.yo-yo|{2048, 1536}|[FF D8 FF E0 00 1...|
|file:/home/jovyan...|196.spaghetti| {696, 806}|[FF D8 FF E0 00 1...|
+--------------------+-------------+------------+--------------------+
only showing top 5 rows
| Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
Transform label to index 1st way - the python way | labels = images_w_label_size.select(col("label")).distinct().collect()
label_to_idx = {label: index for index,(label,) in enumerate(sorted(labels))}
num_classes = len(label_to_idx)
@pandas_udf("long")
def get_label_idx(labels):
return labels.map(lambda label: label_to_idx[label])
labels_idx = images_w_label_size.select(
col("label"),
get_label_idx(col("label")).alias("label_index"),
col("content"),
col("path"),
col("size"))
labels_idx.show(5) | +-------------+-----------+--------------------+--------------------+------------+
| label|label_index| content| path| size|
+-------------+-----------+--------------------+--------------------+------------+
| 249.yo-yo| 3|[FF D8 FF E0 00 1...|file:/home/jovyan...|{1500, 1500}|
|196.spaghetti| 0|[FF D8 FF E0 00 1...|file:/home/jovyan...| {630, 537}|
| 249.yo-yo| 3|[FF D8 FF E0 00 1...|file:/home/jovyan...|{1792, 1200}|
| 249.yo-yo| 3|[FF D8 FF E0 00 1...|file:/home/jovyan...|{2048, 1536}|
|196.spaghetti| 0|[FF D8 FF E0 00 1...|file:/home/jovyan...| {696, 806}|
+-------------+-----------+--------------------+--------------------+------------+
only showing top 5 rows
| Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
2nd way - the mllib way | from pyspark.ml.feature import StringIndexer
indexer = StringIndexer(inputCol="label", outputCol="label_index")
indexed = indexer.fit(images_w_label_size).transform(images_w_label_size)
indexed.show(10)
indexed.select("label_index").distinct().collect() | _____no_output_____ | Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
3rd way - from the label itself | def extract_index_from_label(label):
"""Extract index from label"""
return regexp_extract(label,"^([^.]+)",1)
labels_idx = images_w_label_size.select(
col("label"),
extract_index_from_label(col("label")).alias("label_index"),
col("content"),
col("path"),
col("size"))
labels_idx.show(5,truncate=False)
images_w_label_size = None
df = indexed
labels_idx = None | _____no_output_____ | Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
Step 3: Feature EngineeringExtracting greyscale images.Greyscale is used as an example of feature we might want to extract. | df.printSchema() | root
|-- path: string (nullable = true)
|-- label: string (nullable = true)
|-- size: struct (nullable = true)
| |-- width: integer (nullable = true)
| |-- height: integer (nullable = true)
|-- content: binary (nullable = true)
|-- label_index: double (nullable = false)
| Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
calculate average image size for each category1. flat the column into two columns2. calculate average size for category3. resize according to average. | # 1st step - flatten the struact
flattened = df.withColumn('width', col('size')['width'])
flattened = flattened.withColumn('height', col('size')['height'])
flattened.select('width','height').show(3, truncate = False)
# 2 - calculate average size for category
import pandas as pd
from pyspark.sql.functions import pandas_udf
from pyspark.sql import Window
@pandas_udf("int")
def pandas_mean(size: pd.Series) -> (int):
return size.sum()
flattened.select(pandas_mean(flattened['width'])).show()
flattened.groupby("label").agg(pandas_mean(flattened['width'])).show()
flattened.select(pandas_mean(flattened['width']).over(Window.partitionBy('label'))).show()
flattened.select(pandas_mean(flattened['height'])).show()
flattened.groupby("label").agg(pandas_mean(flattened['height'])).show()
flattened.select(pandas_mean(flattened['height']).over(Window.partitionBy('label'))).show()
| +------------------+
|pandas_mean(width)|
+------------------+
| 165992|
+------------------+
+-------------+------------------+
| label|pandas_mean(width)|
+-------------+------------------+
|196.spaghetti| 39019|
| 249.yo-yo| 40944|
| 234.tweezer| 34513|
| 212.teapot| 51516|
+-------------+------------------+
+----------------------------------------------------------------+
|pandas_mean(width) OVER (PARTITION BY label unspecifiedframe$())|
+----------------------------------------------------------------+
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
| 39019|
+----------------------------------------------------------------+
only showing top 20 rows
+-------------------+
|pandas_mean(height)|
+-------------------+
| 143843|
+-------------------+
+-------------+-------------------+
| label|pandas_mean(height)|
+-------------+-------------------+
|196.spaghetti| 33160|
| 249.yo-yo| 37326|
| 234.tweezer| 27628|
| 212.teapot| 45729|
+-------------+-------------------+
+-----------------------------------------------------------------+
|pandas_mean(height) OVER (PARTITION BY label unspecifiedframe$())|
+-----------------------------------------------------------------+
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
| 33160|
+-----------------------------------------------------------------+
only showing top 20 rows
| Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
Extract greyscale | # Sample python native function that can do additional processing - expects pandas df as input and returns pandas df as output.
def add_grayscale_img(input_df):
# Set up return frame. In this case I'll have a row per passed in row. You could be aggregating down to a single image, slicing
# out columns,or just about anything, here. For this case, I am simply going to return the input_df with some extra columns.
input_df['grayscale_image'] = input_df.content.apply(lambda image: get_image_bytes(Image.open(io.BytesIO(image)).convert('L')))
input_df['grayscale_format'] = "png" # Since this is a pandas df, this will assigne png to all rows
return input_df
def get_image_bytes(image):
img_bytes = io.BytesIO()
image.save(img_bytes,format="png")
return img_bytes.getvalue()
# Setup the return schema. Add blank columns to match the schema expected after applying the transformation function. Makes the schema definition easy in the function invocation.
rtn_schema = (df.select('content','label','path')
.withColumn('grayscale_image', lit(None).cast(BinaryType()))
.withColumn('grayscale_format', lit(None).cast(StringType()))
)
# Reduce df down to data used in the function, the groupBy, and the re-join key respectively. This could include other features as used by your pandas function
limited_df = df.select('label','content','path')
# Returns spark dataframe with transformations applied in parallel for each 'group'
augmented_df = limited_df.groupBy('label').applyInPandas(add_grayscale_img, schema=rtn_schema.schema)
# re-join to the full dataset using leftouter in case the image transform needed to skip some rows
output_df = df.join(augmented_df.select('path','grayscale_image'),['path'],"leftouter") | _____no_output_____ | Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
Test on small data | pd_df = limited_df.limit(5).toPandas()
print(pd_df.columns)
limited_df = None | _____no_output_____ | Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
Make sure function works correctly |
# Some testing code
test_df = pd_df.copy()
add_grayscale_img(test_df)
print(test_df['grayscale_image'])
from PIL import ImageFilter
# Sample python native function that can do additional processing - expects pandas df as input and returns pandas df as output.
def add_laplas(input_df):
# Set up return frame. In this case I'll have a row per passed in row. You could be aggregating down to a single image, slicing
# out columns,or just about anything, here. For this case, I am simply going to return the input_df with some extra columns.
input_df['edges_image'] = input_df.grayscale_image.apply(lambda image: get_image_bytes(Image.open(io.BytesIO(image)).filter(ImageFilter.FIND_EDGES)
))
return input_df
# Some testing code
add_laplas(test_df)
print(test_df['edges_image'])
print(test_df['path'][4])
test_df
print(test_df.columns)
# display one image
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
color_image = mpimg.imread(io.BytesIO(test_df.loc[1,'content']), format='jpg')
image = mpimg.imread(io.BytesIO(test_df.loc[1,'grayscale_image']), format='png')
edges_image = mpimg.imread(io.BytesIO(test_df.loc[1,'edges_image']), format='png')
print('color dimensions = {}'.format(color_image.shape))
print('grayscale dimensions = {}'.format(image.shape))
row_count = test_df.count()[0]
plt.figure(figsize=(8,20))
for label_index,row in test_df.iterrows():
(_,content,_,grayscale,_,_) = row
color_image = mpimg.imread(io.BytesIO(content), format='jpg')
image = mpimg.imread(io.BytesIO(grayscale), format='png')
plt.subplot(row_count,2,label_index*2+1)
plt.imshow(color_image)
plt.subplot(row_count,2,label_index*2+2)
plt.imshow(image,cmap='gray')
#laplas kernel convolution
plt.figure(figsize=(8,20))
for label_index,row in test_df.iterrows():
(_,content,_,grayscale,_,edges_image) = row
edges_image = image = mpimg.imread(io.BytesIO(edges_image), format='png')
plt.subplot(row_count,1,label_index*1+1)
plt.imshow(edges_image,cmap='gray') | _____no_output_____ | Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
Full Dataset | output_df.show(2, truncate=True)
output_df.printSchema() | root
|-- path: string (nullable = true)
|-- label: string (nullable = true)
|-- size: struct (nullable = true)
| |-- width: integer (nullable = true)
| |-- height: integer (nullable = true)
|-- content: binary (nullable = true)
|-- label_index: double (nullable = false)
|-- grayscale_image: binary (nullable = true)
| Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
Step 5: scale the imageFrom the size column, we notice that caltech_256 image size highly varay. To proced with the process, we need to scale the images to have a unannimous size. For tha we will use Spark UDFs with PIL.This is a must do part of normalizing and preprocessing image data. | from pyspark.sql.types import BinaryType, IntegerType
from pyspark.sql.functions import udf
img_size = 224
def scale_image(image_bytes):
try:
image = Image.open(io.BytesIO(image_bytes)).resize([img_size, img_size])
return image.tobytes()
except:
return None
array = output_df.select("content").take(1)
tmp_scale=scale_image(array[0].content)
len(tmp_scale)
from pyspark.sql.functions import udf
scale_image_udf = udf(scale_image, BinaryType())
#image_df = output_df.select("label_index", scale_image_udf("content").alias("content"))
image_df = output_df.select("label_index", scale_image_udf(col("content")).alias("image"))
image_df.printSchema()
image_df = image_df.select("label_index","image",col("image").alias("content"))
image_df.printSchema()
image_df =image_df.drop("image")
image_df.printSchema() | root
|-- label_index: double (nullable = false)
|-- content: binary (nullable = true)
| Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
Step 4: Save and Avoid small files problemSave the image data into a file format where you can query and process at scaleSaving the dataset with the greyscale. Repartition and save to **parquet** | # incase you are running on a distributed environment, with a large dataset, it's a good idea to partition t
# save the data:
save_path_augmented = "images_data/silver/augmented"
# Images data is already compressed so we turn off parquet compression
compression = spark.conf.get("spark.sql.parquet.compression.codec")
spark.conf.set("spark.sql.parquet.compression.codec", "uncompressed")
output_df.write.mode("overwrite").parquet(save_path_augmented)
save_path_filtered = "images_data/silver/filtered"
# parquet.block.size is for Petastorm, later
image_df.repartition(2).write.mode("overwrite").option("parquet.block.size", 1024 * 1024).parquet(save_path_filtered)
spark.conf.set("spark.sql.parquet.compression.codec", compression) | _____no_output_____ | Apache-2.0 | notebooks/ch04-05_Caltech256 - Loading and process Images Data.ipynb | adipolak/ml-with-apache-spark |
Histogram* Create a histogram to visualize the most common salary ranges for employees. | # x_axis = sal_title_group_clean['salary']
# y_axis =
plt.hist(emp_title_merged['salary'], color="red" )
plt.title('Salary Ranges for Employees')
plt.xlabel('Salary Range ($)')
plt.ylabel('Employee Count')
plt.grid(alpha=0.5)
plt.show()
plt.tight_layout() | _____no_output_____ | ADSL | EmployeeSQL/Working files/SQL BONUS.ipynb | key12pat34/SQL-challenge-hw7 |
Bar Chart* Create a bar chart of average salary by title. | x_axis = sal_title_group_clean['title']
y_axis = sal_title_group_clean['salary']
plt.bar(x_axis, y_axis, align = 'center', alpha=0.75, color = ['red','green','blue', 'black', 'orange', 'grey', 'purple'])
plt.xticks(rotation = 'vertical')
plt.title("Average Salary by Title")
plt.xlabel("Employee Titles")
plt.ylabel("Salaries ($)")
plt.grid(alpha=0.25)
plt.show()
plt.tight_layout()
plt.savefig() | _____no_output_____ | ADSL | EmployeeSQL/Working files/SQL BONUS.ipynb | key12pat34/SQL-challenge-hw7 |
Exercícios | data = [[1,2,3],[4,5,6],[7,8,9]]
list('CBA')
list('ZYX')
df = pd.DataFrame(data, list('zyx'), list('cba'))
df
df.sort_index()
df.sort_index(axis = 1)
df | _____no_output_____ | MIT | Pandas/Dados/extras/extras/Organizando DataFrames (Sort).ipynb | lingsv/alura_ds |
JWST Pipeline Validation Testing Notebook: Calwebb_detector1, reset step for MIRI **Instruments Affected**: MIRI Table of Contents [Imports](imports_ID) [Introduction](intro_ID) [Get Documentaion String for Markdown Blocks](markdown_from_docs) [Loading Data](data_ID) [Run JWST Pipeline](pipeline_ID) [Create Figure or Print Output](residual_ID) [About This Notebook](about_ID) ImportsList the library imports and why they are relevant to this notebook.* get_bigdata to retrieve data from artifactory* jwst.datamodels for building model for JWST Pipeline* jwst.module.PipelineStep is the pipeline step being tested* matplotlib.pyplot.plt to generate plot* numpy* inspect to get the docstring of our objects.* IPython.display for printing markdown output[Top of Page](title_ID) | from ci_watson.artifactory_helpers import get_bigdata
import inspect
from IPython.display import Markdown
from jwst.dq_init import DQInitStep
from jwst.reset import ResetStep
from jwst.datamodels import RampModel
import matplotlib.pyplot as plt
import numpy as np | _____no_output_____ | BSD-3-Clause | jwst_validation_notebooks/reset/jwst_reset_miri_test/jwst_reset_miri_testing.ipynb | jbhagan/jwst_validation_notebooks |
IntroductionFor this test we are using the reset step in the calwebb_detector1 pipeline. For MIRI exposures, the initial groups in each integration suffer from two effects related to the resetting of the detectors. The first effect is that the first few groups after a reset do not fall on the expected linear accumulation of signal. The most significant deviations ocurr in groups 1 and 2. This behavior is relatively uniform detector-wide. The second effect, on the other hand, is the appearance of significant extra spatial structure in these initial groups, before fading out in later groups. For more information on the pipeline step visit the links below. Step description: https://jwst-pipeline.readthedocs.io/en/latest/jwst/reset/description.htmlPipeline code: https://github.com/spacetelescope/jwst/tree/master/jwst/reset Calibration WG Requested Algorithm: A short description and link to the page: https://outerspace.stsci.edu/pages/viewpage.action?spaceKey=JWSTCC&title=Vanilla+MIR+Reset+Anomaly+Correction Defining TermHere is where you will define terms or acronymns that may not be known a general audience (ie a new employee to the institute or an external user). For exampleJWST: James Webb Space TelescopeMIRI: Mid Infrared Instrument[Top of Page](title_ID) Get Documentaion String for Markdown Blocks | # Get raw python docstring
raw = inspect.getdoc(ResetStep)
# To convert to markdown, you need convert line breaks from \n to <br />
markdown_text = "<br />".join(raw.split("\n"))
# Here you can format markdown as an output using the Markdown method.
Markdown("""
# ResetStep
---
{}
""".format(markdown_text)) | _____no_output_____ | BSD-3-Clause | jwst_validation_notebooks/reset/jwst_reset_miri_test/jwst_reset_miri_testing.ipynb | jbhagan/jwst_validation_notebooks |
Loading DataThe data used to test this step is a dark data file taken as part of pre-launch ground testing. The original file name is MIRV00330001001P0000000002101_1_493_SE_2017-09-07T15h14m25.fits that was renamed to jw02201001001_01101_00001_MIRIMAGE_uncal.fits with a script that updates the file to put it in pipeline ready formatting.This is a dark data file with 40 frames and 4 integrations.[Top of Page](title_ID) | filename = get_bigdata('jwst_validation_notebooks',
'validation_data',
'reset',
'reset_miri_test',
'jw02201001001_01101_00001_MIRIMAGE_uncal.fits') | _____no_output_____ | BSD-3-Clause | jwst_validation_notebooks/reset/jwst_reset_miri_test/jwst_reset_miri_testing.ipynb | jbhagan/jwst_validation_notebooks |
Run JWST PipelineTake the initial input file and run it through both dq_init and reset to get the before and after correction versions of the data to run.[Top of Page](title_ID) | preim = DQInitStep.call(filename)
postim = ResetStep.call(preim) | _____no_output_____ | BSD-3-Clause | jwst_validation_notebooks/reset/jwst_reset_miri_test/jwst_reset_miri_testing.ipynb | jbhagan/jwst_validation_notebooks |
Show plots and take statistics before and after correctionFor a specific pixel in the dark data:1. Plot the ramps before and after the correction to see if the initial frame values are more in line with the rest of the ramp.2. Fit a line to the ramps and calculate the slope and residuals. The slope should be closer to 0 and the residuals should be much smaller after the correction.3. Plot the residuals of a single integration before and after the correction to see if they are smaller.[Top of Page](title_ID) | # set input variables
print('Shape of data cube: integrations, groups, ysize, xsize ',preim.shape)
xval = 650
yval = 550
framenum = 20 # number of frames to plot (reset only corrects first few frames in cube)
intsnum = 3 # number of integrations to plot (3 should show reset and not crowd)
# put data into proper data models
# read in images
with RampModel(preim) as impre:
# raises exception if file is not the correct model
pass
# read in image
with RampModel(postim) as impost:
# raises exception if file is not the correct model
pass
| _____no_output_____ | BSD-3-Clause | jwst_validation_notebooks/reset/jwst_reset_miri_test/jwst_reset_miri_testing.ipynb | jbhagan/jwst_validation_notebooks |
First plot should show that after the correction, the drop at the early part of the ramp has evened out to resemble the data in the rest of the ramp. | # Plot frames vs. counts for a dark pixel before and after correction
# loop through integrations
for i in range(0, intsnum):
# get locations of flagged pixels within the ramps
ramp1 = impre.data[i, 0:framenum, yval, xval]
ramp2 = impost.data[i, 0:framenum, yval, xval]
# plot ramps of selected pixels
plt.title('Frame values (DN) for a dark pixel')
plt.xlabel('Frames')
plt.ylabel('Counts (DN)')
plt.plot(ramp1+i*10, label='int ' + str(i))
plt.plot(ramp2+i*10, label='int ' + str(i) + ' after reset')
plt.legend(loc=4)
plt.show()
| _____no_output_____ | BSD-3-Clause | jwst_validation_notebooks/reset/jwst_reset_miri_test/jwst_reset_miri_testing.ipynb | jbhagan/jwst_validation_notebooks |
Take a single pixel in the file, before and after the correction, and fit a line to them. After the correction, for a dark, the slope should be closer to zero and the residuals should be much lower. | # get array of frame numbers and choose ramps for selected pixel
frames = np.arange(0, framenum)
preramp = impre.data[0, 0:framenum, yval, xval]
postramp = impost.data[0, 0:framenum, yval, xval]
# get slopes of selected pixel before and after correction and see if it is more linear
fit = np.polyfit(frames, preramp, 1, full=True)
slopepre = fit[0][0]
interceptpre = fit[0][1]
residualspre = fit[1][0]
fitpost = np.polyfit(frames, postramp, 1, full=True)
slopepost = fitpost[0][0]
interceptpost = fitpost[0][1]
residualspost = fitpost[1][0]
# look at slopes and variances
print('The slope of the pixel before correction is: ', slopepre)
print('The slope of the pixel after correction is: ', slopepost)
print('The residuals of the pixel before correction are: ', residualspre)
print('The residuals of the pixel after correction are: ', residualspost)
| _____no_output_____ | BSD-3-Clause | jwst_validation_notebooks/reset/jwst_reset_miri_test/jwst_reset_miri_testing.ipynb | jbhagan/jwst_validation_notebooks |
Plot the residuals for the linear fit before and after correction for the specified pixel to see if the plotted ramp is flatter after the correction. | # show line plus residual for 1st int
yfit = np.polyval(fit[0], frames)
yfitcorr = np.polyval(fitpost[0], frames)
plt.title('Residuals for ramp (single pixel) before and after reset')
plt.xlabel('Frames')
plt.ylabel('Residual: linear fit - data')
plt.plot(frames, yfit - preramp, label='raw variance')
plt.plot(frames, yfitcorr - postramp, label='corrected variance')
plt.legend()
plt.show()
| _____no_output_____ | BSD-3-Clause | jwst_validation_notebooks/reset/jwst_reset_miri_test/jwst_reset_miri_testing.ipynb | jbhagan/jwst_validation_notebooks |
Basic Optimization | def f(x):
return (x-3)**2
sp.optimize.minimize(f,2)
sp.optimize.minimize(f,2).x
sp.optimize.minimize(f,2).fun
sp.optimize.minimize? | _____no_output_____ | MIT | python/matplotlib/vector/basic/scipy.ipynb | karng87/nasm_game |
$$ f(x,y) = (x-1)^2 + (y-2.5)^2 $$$$ x - 2y + 2 \geq 0 \\ -x - 2y + 6 \geq 0 \\ -x + 2y + 2 \geq 0 \\ x \geq 0 \\ y \geq 0$$ | def f(x,y):
return (x-1)**2 + (y-2.5)**2
def g(x,y):
return x - 2*y + 2
def h(x,y):
return -x - 2*y + 6
def k(x,y):
return -x + 2*y +2
x = np.linspace(0,5,100)
x,y = np.meshgrid(x,x)
z = f(x,y)
g = g(x,y)
h = h(x,y)
k = k(x,y)
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
ax.plot_surface(x,y,z,cmap='coolwarm',alpha=0.7)
ax.plot_surface(x,y,g,alpha=0.2)
ax.plot_surface(x,y,h,alpha=0.2)
ax.plot_surface(x,y,k,alpha=0.2)
#ax.scatter3D(x,y,z, c=z,cmap='coolwarm')
#############################
#### optimize.minimize ######
#############################
# constraints
# ineq = inequlity
# bounds
l = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2
cons = ({'type':'ineq','fun':lambda x: x[0] - 2*x[1] + 2},
{'type':'ineq','fun':lambda x: -x[0] - 2*x[1] + 6},
{'type':'ineq','fun':lambda x: -x[0] + 2*x[1] + 2})
bnds = ((0,None),(0,None))
res = sp.optimize.minimize(l,(2,0), bounds=bnds, constraints=cons)
z3 = f(res.x[0], res.x[1])
###############################
ax.scatter3D([res.x[0]],[res.x[1]],[f(res.x[0],res.x[1])])
| _____no_output_____ | MIT | python/matplotlib/vector/basic/scipy.ipynb | karng87/nasm_game |
interpolate | x = np.linspace(0,10,10)
y = x**2 * np.sin(x)
fig = plt.figure()
ax = fig.add_subplot()
plt.scatter(x,y)
f = sp.interpolate.interp1d(x,y,kind='linear')
f = sp.interpolate.interp1d(x,y,kind='cubic')
x_dense = np.linspace(0,10,100)
y_dense = f(x_dense)
ax.plot(x_dense,y_dense)
def f(x):
return x**2 +5
sp.integrate.quad(f,0,1)
round(quad(f,0,1)[0], 2)
quad(lambda x: x**2 + 5, 0,1)
quad(lambda x:np.exp(-x**2)*np.cos(2*np.pi*x), -np.inf, np.inf)
n = 1
quad(lambda x, n: np.exp(-n*x**2),0,np.inf,args=n)
quad(lambda x, n: np.exp(-n*x**2),0,np.inf,args=n)[0]
integrals = [quad(lambda x, n: np.exp(-n*x**2),0,np.inf,args=n)[0] for n in range(1,10)]
integrals | _____no_output_____ | MIT | python/matplotlib/vector/basic/scipy.ipynb | karng87/nasm_game |
{glue:text}`nteract_github_org`**Activity from {glue:}`nteract_start` to {glue:}`nteract_stop`** | from datetime import date
from dateutil.relativedelta import relativedelta
from myst_nb import glue
import seaborn as sns
import pandas as pd
import numpy as np
import altair as alt
from markdown import markdown
from IPython.display import Markdown
from ipywidgets.widgets import HTML, Tab
from ipywidgets import widgets
from datetime import timedelta
from matplotlib import pyplot as plt
import os.path as op
from warnings import simplefilter
simplefilter('ignore')
# Altair config
def author_url(author):
return f"https://github.com/{author}"
def alt_theme():
return {
'config': {
'axisLeft': {
'labelFontSize': 15,
},
'axisBottom': {
'labelFontSize': 15,
},
}
}
alt.themes.register('my_theme', alt_theme)
alt.themes.enable("my_theme")
# Define colors we'll use for GitHub membership
author_types = ['MEMBER', 'CONTRIBUTOR', 'COLLABORATOR', "NONE"]
author_palette = np.array(sns.palettes.blend_palette(["lightgrey", "lightgreen", "darkgreen"], 4)) * 256
author_colors = ["rgb({}, {}, {})".format(*color) for color in author_palette]
author_color_dict = {key: val for key, val in zip(author_types, author_palette)}
github_org = "jupyterhub"
top_n_repos = 15
n_days = 10
# Parameters
github_org = "nteract"
n_days = 90
############################################################
# Variables
stop = date.today()
start = date.today() - relativedelta(days=n_days)
# Strings for use in queries
start_date = f"{start:%Y-%m-%d}"
stop_date = f"{stop:%Y-%m-%d}"
# Glue variables for use in markdown
glue(f"{github_org}_github_org", github_org, display=False)
glue(f"{github_org}_start", start_date, display=False)
glue(f"{github_org}_stop", stop_date, display=False) | _____no_output_____ | BSD-3-Clause | monthly_update/generated/book/nteract.ipynb | choldgraf/jupyter-activity-snapshot |
Load dataLoad and clean up the data | from pathlib import Path
path_data = Path("../data")
comments = pd.read_csv(path_data.joinpath('comments.csv'), index_col=None).drop_duplicates()
issues = pd.read_csv(path_data.joinpath('issues.csv'), index_col=None).drop_duplicates()
prs = pd.read_csv(path_data.joinpath('prs.csv'), index_col=None).drop_duplicates()
for idata in [comments, issues, prs]:
idata.query("org == @github_org", inplace=True)
# What are the top N repos, we will only plot these in the full data plots
top_commented_repos = comments.groupby("repo").count().sort_values("createdAt", ascending=False)['createdAt']
use_repos = top_commented_repos.head(top_n_repos).index.tolist() | _____no_output_____ | BSD-3-Clause | monthly_update/generated/book/nteract.ipynb | choldgraf/jupyter-activity-snapshot |
Merged Pull requestsHere's an analysis of **merged pull requests** across each of the repositories in the Jupyterecosystem. | merged = prs.query('state == "MERGED" and closedAt > @start_date and closedAt < @stop_date')
prs_by_repo = merged.groupby(['org', 'repo']).count()['author'].reset_index().sort_values(['org', 'author'], ascending=False)
alt.Chart(data=prs_by_repo, title=f"Merged PRs in the last {n_days} days").mark_bar().encode(
x=alt.X('repo', sort=prs_by_repo['repo'].values.tolist()),
y='author',
color='org'
) | _____no_output_____ | BSD-3-Clause | monthly_update/generated/book/nteract.ipynb | choldgraf/jupyter-activity-snapshot |
Authoring and merging stats by repositoryLet's see who has been doing most of the PR authoring and merging. The PR author is generally theperson that implemented a change in the repository (code, documentation, etc). The PR merger isthe person that "pressed the green button" and got the change into the main codebase. | # Prep our merging DF
merged_by_repo = merged.groupby(['repo', 'author'], as_index=False).agg({'id': 'count', 'authorAssociation': 'first'}).rename(columns={'id': "authored", 'author': 'username'})
closed_by_repo = merged.groupby(['repo', 'mergedBy']).count()['id'].reset_index().rename(columns={'id': "closed", "mergedBy": "username"})
charts = []
title = f"PR authors for {github_org} in the last {n_days} days"
this_data = merged_by_repo.replace(np.nan, 0).groupby('username', as_index=False).agg({'authored': 'sum', 'authorAssociation': 'first'})
this_data = this_data.sort_values('authored', ascending=False)
ch = alt.Chart(data=this_data, title=title).mark_bar().encode(
x='username',
y='authored',
color=alt.Color('authorAssociation', scale=alt.Scale(domain=author_types, range=author_colors))
)
ch
charts = []
title = f"Merges for {github_org} in the last {n_days} days"
ch = alt.Chart(data=closed_by_repo.replace(np.nan, 0), title=title).mark_bar().encode(
x='username',
y='closed',
)
ch | _____no_output_____ | BSD-3-Clause | monthly_update/generated/book/nteract.ipynb | choldgraf/jupyter-activity-snapshot |
IssuesIssues are **conversations** that happen on our GitHub repositories. Here's ananalysis of issues across the Jupyter organizations. | created = issues.query('state == "OPEN" and createdAt > @start_date and createdAt < @stop_date')
closed = issues.query('state == "CLOSED" and closedAt > @start_date and closedAt < @stop_date')
created_counts = created.groupby(['org', 'repo']).count()['number'].reset_index()
created_counts['org/repo'] = created_counts.apply(lambda a: a['org'] + '/' + a['repo'], axis=1)
sorted_vals = created_counts.sort_values(['org', 'number'], ascending=False)['repo'].values
alt.Chart(data=created_counts, title=f"Issues created in the last {n_days} days").mark_bar().encode(
x=alt.X('repo', sort=alt.Sort(sorted_vals.tolist())),
y='number',
)
closed_counts = closed.groupby(['org', 'repo']).count()['number'].reset_index()
closed_counts['org/repo'] = closed_counts.apply(lambda a: a['org'] + '/' + a['repo'], axis=1)
sorted_vals = closed_counts.sort_values(['number'], ascending=False)['repo'].values
alt.Chart(data=closed_counts, title=f"Issues closed in the last {n_days} days").mark_bar().encode(
x=alt.X('repo', sort=alt.Sort(sorted_vals.tolist())),
y='number',
)
created_closed = pd.merge(created_counts.rename(columns={'number': 'created'}).drop(columns='org/repo'),
closed_counts.rename(columns={'number': 'closed'}).drop(columns='org/repo'),
on=['org', 'repo'], how='outer')
created_closed = pd.melt(created_closed, id_vars=['org', 'repo'], var_name="kind", value_name="count").replace(np.nan, 0)
charts = []
# Pick the top 10 repositories
top_repos = created_closed.groupby(['repo']).sum().sort_values(by='count', ascending=False).head(10).index
ch = alt.Chart(created_closed.query('repo in @top_repos'), width=120).mark_bar().encode(
x=alt.X("kind", axis=alt.Axis(labelFontSize=15, title="")),
y=alt.Y('count', axis=alt.Axis(titleFontSize=15, labelFontSize=12)),
color='kind',
column=alt.Column("repo", header=alt.Header(title=f"Issue activity, last {n_days} days for {github_org}", titleFontSize=15, labelFontSize=12))
)
ch
# Set to datetime
for kind in ['createdAt', 'closedAt']:
closed.loc[:, kind] = pd.to_datetime(closed[kind])
closed.loc[:, 'time_open'] = closed['closedAt'] - closed['createdAt']
closed.loc[:, 'time_open'] = closed['time_open'].dt.total_seconds()
time_open = closed.groupby(['org', 'repo']).agg({'time_open': 'median'}).reset_index()
time_open['time_open'] = time_open['time_open'] / (60 * 60 * 24)
time_open['org/repo'] = time_open.apply(lambda a: a['org'] + '/' + a['repo'], axis=1)
sorted_vals = time_open.sort_values(['org', 'time_open'], ascending=False)['repo'].values
alt.Chart(data=time_open, title=f"Time to close for issues closed in the last {n_days} days").mark_bar().encode(
x=alt.X('repo', sort=alt.Sort(sorted_vals.tolist())),
y=alt.Y('time_open', title="Median Days Open"),
) | _____no_output_____ | BSD-3-Clause | monthly_update/generated/book/nteract.ipynb | choldgraf/jupyter-activity-snapshot |
Most-upvoted issues | thumbsup = issues.sort_values("thumbsup", ascending=False).head(25)
thumbsup = thumbsup[["title", "url", "number", "thumbsup", "repo"]]
text = []
for ii, irow in thumbsup.iterrows():
itext = f"- ({irow['thumbsup']}) {irow['title']} - {irow['repo']} - [#{irow['number']}]({irow['url']})"
text.append(itext)
text = '\n'.join(text)
HTML(markdown(text)) | _____no_output_____ | BSD-3-Clause | monthly_update/generated/book/nteract.ipynb | choldgraf/jupyter-activity-snapshot |
Commenters across repositoriesThese are commenters across all issues and pull requests in the last several days.These are colored by the commenter's association with the organization. For informationabout what these associations mean, [see this StackOverflow post](https://stackoverflow.com/a/28866914/1927102). | commentors = (
comments
.query("createdAt > @start_date and createdAt < @stop_date")
.groupby(['org', 'repo', 'author', 'authorAssociation'])
.count().rename(columns={'id': 'count'})['count']
.reset_index()
.sort_values(['org', 'count'], ascending=False)
)
n_plot = 50
charts = []
for ii, (iorg, idata) in enumerate(commentors.groupby(['org'])):
title = f"Top {n_plot} commentors for {iorg} in the last {n_days} days"
idata = idata.groupby('author', as_index=False).agg({'count': 'sum', 'authorAssociation': 'first'})
idata = idata.sort_values('count', ascending=False).head(n_plot)
ch = alt.Chart(data=idata.head(n_plot), title=title).mark_bar().encode(
x='author',
y='count',
color=alt.Color('authorAssociation', scale=alt.Scale(domain=author_types, range=author_colors))
)
charts.append(ch)
alt.hconcat(*charts) | _____no_output_____ | BSD-3-Clause | monthly_update/generated/book/nteract.ipynb | choldgraf/jupyter-activity-snapshot |
First respondersFirst responders are the first people to respond to a new issue in one of the repositories.The following plots show first responders for recently-created issues. | first_comments = []
for (org, repo, issue_id), i_comments in comments.groupby(['org', 'repo', 'id']):
ix_min = pd.to_datetime(i_comments['createdAt']).idxmin()
first_comment = i_comments.loc[ix_min]
if isinstance(first_comment, pd.DataFrame):
first_comment = first_comment.iloc[0]
first_comments.append(first_comment)
first_comments = pd.concat(first_comments, axis=1).T
# Make up counts for viz
first_responder_counts = first_comments.groupby(['org', 'author', 'authorAssociation'], as_index=False).\
count().rename(columns={'id': 'n_first_responses'}).sort_values(['org', 'n_first_responses'], ascending=False)
n_plot = 50
title = f"Top {n_plot} first responders for {github_org} in the last {n_days} days"
idata = first_responder_counts.groupby('author', as_index=False).agg({'n_first_responses': 'sum', 'authorAssociation': 'first'})
idata = idata.sort_values('n_first_responses', ascending=False).head(n_plot)
ch = alt.Chart(data=idata.head(n_plot), title=title).mark_bar().encode(
x='author',
y='n_first_responses',
color=alt.Color('authorAssociation', scale=alt.Scale(domain=author_types, range=author_colors))
)
ch | _____no_output_____ | BSD-3-Clause | monthly_update/generated/book/nteract.ipynb | choldgraf/jupyter-activity-snapshot |
Recent activity A list of merged PRs by projectBelow is a tabbed readout of recently-merged PRs. Check out the title to get an idea for what theyimplemented, and be sure to thank the PR author for their hard work! | tabs = widgets.Tab(children=[])
for ii, ((org, repo), imerged) in enumerate(merged.query("repo in @use_repos").groupby(['org', 'repo'])):
merged_by = {}
pr_by = {}
issue_md = []
issue_md.append(f"#### Closed PRs for repo: [{org}/{repo}](https://github.com/{github_org}/{repo})")
issue_md.append("")
issue_md.append(f"##### ")
for _, ipr in imerged.iterrows():
user_name = ipr['author']
user_url = author_url(user_name)
pr_number = ipr['number']
pr_html = ipr['url']
pr_title = ipr['title']
pr_closedby = ipr['mergedBy']
pr_closedby_url = f"https://github.com/{pr_closedby}"
if user_name not in pr_by:
pr_by[user_name] = 1
else:
pr_by[user_name] += 1
if pr_closedby not in merged_by:
merged_by[pr_closedby] = 1
else:
merged_by[pr_closedby] += 1
text = f"* [(#{pr_number})]({pr_html}): _{pr_title}_ by **[@{user_name}]({user_url})** merged by **[@{pr_closedby}]({pr_closedby_url})**"
issue_md.append(text)
issue_md.append('')
markdown_html = markdown('\n'.join(issue_md))
children = list(tabs.children)
children.append(HTML(markdown_html))
tabs.children = tuple(children)
tabs.set_title(ii, repo)
tabs | _____no_output_____ | BSD-3-Clause | monthly_update/generated/book/nteract.ipynb | choldgraf/jupyter-activity-snapshot |
A list of recent issuesBelow is a list of issues with recent activity in each repository. If they seem of interestto you, click on their links and jump in to participate! | # Add comment count data to issues and PRs
comment_counts = (
comments
.query("createdAt > @start_date and createdAt < @stop_date")
.groupby(['org', 'repo', 'id'])
.count().iloc[:, 0].to_frame()
)
comment_counts.columns = ['n_comments']
comment_counts = comment_counts.reset_index()
n_plot = 5
tabs = widgets.Tab(children=[])
for ii, (repo, i_issues) in enumerate(comment_counts.query("repo in @use_repos").groupby('repo')):
issue_md = []
issue_md.append("")
issue_md.append(f"##### [{github_org}/{repo}](https://github.com/{github_org}/{repo})")
top_issues = i_issues.sort_values('n_comments', ascending=False).head(n_plot)
top_issue_list = pd.merge(issues, top_issues, left_on=['org', 'repo', 'id'], right_on=['org', 'repo', 'id'])
for _, issue in top_issue_list.sort_values('n_comments', ascending=False).head(n_plot).iterrows():
user_name = issue['author']
user_url = author_url(user_name)
issue_number = issue['number']
issue_html = issue['url']
issue_title = issue['title']
text = f"* [(#{issue_number})]({issue_html}): _{issue_title}_ by **[@{user_name}]({user_url})**"
issue_md.append(text)
issue_md.append('')
md_html = HTML(markdown('\n'.join(issue_md)))
children = list(tabs.children)
children.append(HTML(markdown('\n'.join(issue_md))))
tabs.children = tuple(children)
tabs.set_title(ii, repo)
display(Markdown(f"Here are the top {n_plot} active issues in each repository in the last {n_days} days"))
display(tabs) | _____no_output_____ | BSD-3-Clause | monthly_update/generated/book/nteract.ipynb | choldgraf/jupyter-activity-snapshot |
Title HeatMap Element Dependencies Matplotlib Backends Matplotlib Bokeh | import numpy as np
import holoviews as hv
hv.extension('matplotlib') | _____no_output_____ | BSD-3-Clause | examples/reference/elements/matplotlib/HeatMap.ipynb | stuarteberg/holoviews |
``HeatMap`` visualises tabular data indexed by two key dimensions as a grid of colored values. This allows spotting correlations in multivariate data and provides a high-level overview of how the two variables are plotted.The data for a ``HeatMap`` may be supplied as 2D tabular data with one or more associated value dimensions. The first value dimension will be colormapped, but further value dimensions may be revealed using the hover tool. | data = [(chr(65+i), chr(97+j), i*j) for i in range(5) for j in range(5) if i!=j]
hv.HeatMap(data).sort() | _____no_output_____ | BSD-3-Clause | examples/reference/elements/matplotlib/HeatMap.ipynb | stuarteberg/holoviews |
It is important to note that the data should be aggregated before plotting as the ``HeatMap`` cannot display multiple values for one coordinate and will simply use the first value it finds for each combination of x- and y-coordinates. | heatmap = hv.HeatMap([(0, 0, 1), (0, 0, 10), (1, 0, 2), (1, 1, 3)])
heatmap + heatmap.aggregate(function=np.max) | _____no_output_____ | BSD-3-Clause | examples/reference/elements/matplotlib/HeatMap.ipynb | stuarteberg/holoviews |
As the above example shows before aggregating the second value for the (0, 0) is ignored unless we aggregate the data first.To reveal the values of a ``HeatMap`` we can enable a ``colorbar`` and if you wish to have interactive hover information, you can use the hover tool in the [Bokeh backend](../bokeh/HeatMap.ipynb): | heatmap = hv.HeatMap((np.random.randint(0, 10, 100), np.random.randint(0, 10, 100),
np.random.randn(100), np.random.randn(100)), vdims=['z', 'z2']).redim.range(z=(-2, 2))
heatmap.opts(colorbar=True, fig_size=250) | _____no_output_____ | BSD-3-Clause | examples/reference/elements/matplotlib/HeatMap.ipynb | stuarteberg/holoviews |
決策樹學習 - 分類樹 (以RR Lyrae變星資料集為例)* [程式碼來源](http://www.astroml.org/book_figures/chapter9/fig_rrlyrae_decisiontree.htmlbook-fig-chapter9-fig-rrlyrae-decisiontree) | import numpy as np
from matplotlib import pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from astroML.datasets import fetch_rrlyrae_combined
from astroML.utils import split_samples
from astroML.utils import completeness_contamination
#fetch_rrlyrae_combined?
X, y = fetch_rrlyrae_combined() # 合併RR Lyrae變星和標準星的colors資訊
print('Features (u-g, g-r, r-i, i-z colors): ')
print(X)
print('Labels (標準星-0; RR Lyrae變星-1): ')
print(y)
X = X[:, [1, 0, 2, 3]] # rearrange columns for better 1-color results
(X_train, X_test), (y_train, y_test) = split_samples(X, y, [0.75, 0.25],
random_state=0)
N_tot = len(y)
N_st = np.sum(y == 0)
N_rr = N_tot - N_st
N_train = len(y_train)
N_test = len(y_test)
N_plot = 5000 + N_rr
%matplotlib notebook
# plot the results
fig = plt.figure(figsize=(5, 2.5))
fig.subplots_adjust(bottom=0.15, top=0.95, hspace=0.0,
left=0.1, right=0.95, wspace=0.2)
# left plot: data and decision boundary
ax = fig.add_subplot(121)
im = ax.scatter(X[-N_plot:, 1], X[-N_plot:, 0], c=y[-N_plot:],
s=4, lw=0, cmap=plt.cm.binary, zorder=2)
im.set_clim(-0.5, 1)
#ax.contour(xx, yy, Z, [0.5], colors='k')
# ax.set_xlim(xlim)
# ax.set_ylim(ylim)
ax.set_xlabel('$u-g$')
ax.set_ylabel('$g-r$')
plt.show()
# ax.text(0.02, 0.02, "depth = %i" % depths[1],
# transform=ax.transAxes) | _____no_output_____ | MIT | notebooks/notebooks4ML/DecisionTreeClassifier_RRLyraeExample.ipynb | Astrohackers-TW/IANCUPythonMeetup |
Generating benchmark data with 2 covariates p=30 | import pandas as pd
import toytree as tt
import numpy as np
import anndata as ad
import os
import toyplot as tp
import toyplot.svg
import seaborn as sns
import benchmarks.scripts.tree_data_generation as tgen
# tree depth
d = 5
effect_sizes = [0.3, 0.5, 0.7, 0.9]
# number of effects
num_effects = 3
# baseline parameter scale
a_abs = 2
# sampling depth
N = 10000
# dispersion
theta = 499
# samples per group
num_samples = [10]
reps = 10
# counter through all datasets
id = 0
dataset_path = os.path.abspath("../../../tascCODA_data/benchmarks/2_covariates/datasets/")
print(dataset_path)
# Want everything to be reproducible - set a seed at every block
np.random.seed(96)
p = 30
id = 0
newick = tgen.generate_tree_levels(p, d)
tree = tt.tree(newick)
tree.draw(tip_labels_align=True, node_sizes=10, node_labels='idx')
np.random.seed(76)
effect_nodes, effect_leaves = tgen.get_effect_nodes(
newick,
num_effects=num_effects,
num_leaves=p
)
print(f"nodes: {effect_nodes}")
print(f"leaves: {effect_leaves}")
tlc = ["red" if int(i) in effect_leaves else "blue" if int(i)==p-1 else "black" for i in tree.get_node_values("idx", 1, 1)[-p:]]
tlc.reverse()
ref_nodes = [p.idx for p in tree.idx_dict[p-1].get_ancestors()][:-1]
ref_nodes.append(p-1)
canvas = tp.Canvas(width=800, height=1600)
ax0 = canvas.cartesian(bounds=(0, 700, 0, 1600), padding=0)
tree.draw(
# tip_labels=False,
node_sizes=[20 for i in tree.get_node_values("name", 1, 1)],
node_labels=[x for x in tree.get_node_values("idx", 1, 1)],
node_colors=["lightcoral" if i in effect_nodes else "lightblue" if i in ref_nodes else "lightgrey" for i in tree.get_node_values("idx", 1, 1)],
node_labels_style={"font-size": 10},
width=700,
height=1600,
node_style={"stroke": "black"},
axes=ax0,
tip_labels="name",
tip_labels_colors=tlc,
)
# tp.svg.render(canvas, "./plots/benchmark_tree_30.svg")
id = 0
x1_nodes = [39]
x1_leaves = np.arange(13, 24, 1)
beta_1 = np.zeros(p)
beta_1[x1_leaves] = 3
np.random.seed(1234)
for e in effect_sizes:
for n in num_samples:
for r in range(reps):
mu_0, mu_1 = tgen.generate_mu(
a_abs=a_abs,
num_leaves=p,
effect_nodes=effect_nodes,
effect_leaves=effect_leaves,
effect_size=e,
newick=newick
)
X = pd.DataFrame({"x_0": np.repeat([0,1], n), "x_1": np.random.uniform(0, 1, 2*n)})
Y = np.zeros((n*2, p))
for i in range(n):
#Y[i, :] = np.sum(mu_0) * (mu_0 + beta_1*X.loc[i+n, "x_1"])/np.sum(mu_0 + beta_1*X.loc[i+n, "x_1"])
#Y[i+n, :] = np.sum(mu_1) * (mu_1 + beta_1*X.loc[i+n, "x_1"])/np.sum(mu_1 + beta_1*X.loc[i+n, "x_1"])
Y[i, :] = np.exp(np.log(mu_0) + beta_1*X.loc[i, "x_1"])
Y[i+n, :] = np.exp(np.log(mu_1) + beta_1*X.loc[i+n, "x_1"])
X = X.astype(np.float64)
Y = Y.astype(np.float64)
test_data = ad.AnnData(
X=Y,
obs=X,
uns={
"tree_newick": newick,
"effect_nodes": effect_nodes,
"effect_leaves": effect_leaves,
"effect_size": e,
"num_samples": n,
}
)
# test_data.write_h5ad(dataset_path + f"/data_{id}")
id += 1
| /Users/johannes.ostner/opt/anaconda3/envs/scCODA_3/lib/python3.8/site-packages/anndata/_core/anndata.py:120: ImplicitModificationWarning: Transforming to str index.
warnings.warn("Transforming to str index.", ImplicitModificationWarning)
| BSD-3-Clause | benchmarks/2_covariates/generate_data_2_covariates.ipynb | bio-datascience/tascCODA_reproducibility |
GANs | %matplotlib inline
from fastai.gen_doc.nbdoc import *
from fastai import *
from fastai.vision import *
from fastai.vision.gan import * | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
GAN stands for [Generative Adversarial Nets](https://arxiv.org/pdf/1406.2661.pdf) and were invented by Ian Goodfellow. The concept is that we will train two models at the same time: a generator and a critic. The generator will try to make new images similar to the ones in our dataset, and the critic's job will try to classify real images from the fake ones the generator does. The generator returns images, the discriminator a feature map (it can be a single number depending on the input size). Usually the discriminator will be trained to retun 0. everywhere for fake images and 1. everywhere for real ones.This module contains all the necessary function to create a GAN. We train them against each other in the sense that at each step (more or less), we:1. Freeze the generator and train the discriminator for one step by: - getting one batch of true images (let's call that `real`) - generating one batch of fake images (let's call that `fake`) - have the discriminator evaluate each batch and compute a loss function from that; the important part is that it rewards positively the detection of real images and penalizes the fake ones - update the weights of the discriminator with the gradients of this loss 2. Freeze the discriminator and train the generator for one step by: - generating one batch of fake images - evaluate the discriminator on it - return a loss that rewards posisitivly the discriminator thinking those are real images; the important part is that it rewards positively the detection of real images and penalizes the fake ones - update the weights of the generator with the gradients of this loss | show_doc(GANLearner) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
This is the general constructor to create a GAN, you might want to use one of the factory methods that are easier to use. Create a GAN from [`data`](/vision.data.htmlvision.data), a `generator` and a `critic`. The [`data`](/vision.data.htmlvision.data) should have the inputs the `generator` will expect and the images wanted as targets.`gen_loss_func` is the loss function that will be applied to the `generator`. It takes three argument `fake_pred`, `target`, `output` and should return a rank 0 tensor. `output` is the result of the `generator` applied to the input (the xs of the batch), `target` is the ys of the batch and `fake_pred` is the result of the `discriminator` being given `output`. `output`and `target` can be used to add a specific loss to the GAN loss (pixel loss, feature loss) and for a good training of the gan, the loss should encourage `fake_pred` to be as close to 1 as possible (the `generator` is trained to fool the `critic`).`crit_loss_func` is the loss function that will be applied to the `critic`. It takes two arguments `real_pred` and `fake_pred`. `real_pred` is the result of the `critic` on the target images (the ys of the batch) and `fake_pred` is the result of the `critic` applied on a batch of fake, generated byt the `generator` from the xs of the batch.`switcher` is a [`Callback`](/callback.htmlCallback) that should tell the GAN when to switch from critic to generator and vice versa. By default it does 5 iterations of the critic for 1 iteration of the generator. The model begins the training with the `generator` if `gen_first=True`. If `switch_eval=True`, the model that isn't trained is switched on eval mode (left in training mode otherwise, which means some statistics like the running mean in batchnorm layers are updated, or the dropouts are applied).`clip` should be set to a certain value if one wants to clip the weights (see the [Wassertein GAN](https://arxiv.org/pdf/1701.07875.pdf) for instance).If `show_img=True`, one image generated by the GAN is shown at the end of each epoch. Factory methods | show_doc(GANLearner.from_learners) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
Directly creates a [`GANLearner`](/vision.gan.htmlGANLearner) from two [`Learner`](/basic_train.htmlLearner): one for the `generator` and one for the `critic`. The `switcher` and all `kwargs` will be passed to the initialization of [`GANLearner`](/vision.gan.htmlGANLearner) along with the following loss functions:- `loss_func_crit` is the mean of `learn_crit.loss_func` applied to `real_pred` and a target of ones with `learn_crit.loss_func` applied to `fake_pred` and a target of zeros- `loss_func_gen` is the mean of `learn_crit.loss_func` applied to `fake_pred` and a target of ones (to full the discriminator) with `learn_gen.loss_func` applied to `output` and `target`. The weights of each of those contributions can be passed in `weights_gen` (default is 1. and 1.) | show_doc(GANLearner.wgan) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
The Wasserstein GAN is detailed in [this article]. `switcher` and the `kwargs` will be passed to the [`GANLearner`](/vision.gan.htmlGANLearner) init, `clip`is the weight clipping. Switchers In any GAN training, you will need to tell the [`Learner`](/basic_train.htmlLearner) when to switch from generator to critic and vice versa. The two following [`Callback`](/callback.htmlCallback) are examples to help you with that.As usual, don't call the `on_something` methods directly, the fastai library will do it for you during training. | show_doc(FixedGANSwitcher, title_level=3)
show_doc(FixedGANSwitcher.on_train_begin)
show_doc(FixedGANSwitcher.on_batch_end)
show_doc(AdaptiveGANSwitcher, title_level=3)
show_doc(AdaptiveGANSwitcher.on_batch_end) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
Discriminative LR If you want to train your critic at a different learning rate than the generator, this will let you do it automatically (even if you have a learning rate schedule). | show_doc(GANDiscriminativeLR, title_level=3)
show_doc(GANDiscriminativeLR.on_batch_begin)
show_doc(GANDiscriminativeLR.on_step_end) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
Specific models | show_doc(basic_critic) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
This model contains a first 4 by 4 convolutional layer of stride 2 from `n_channels` to `n_features` followed by `n_extra_layers` 3 by 3 convolutional layer of stride 1. Then we put as many 4 by 4 convolutional layer of stride 2 with a number of features multiplied by 2 at each stage so that the `in_size` becomes 1. `kwargs` can be used to customize the convolutional layers and are passed to [`conv_layer`](/layers.htmlconv_layer). | show_doc(basic_generator) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
This model contains a first 4 by 4 transposed convolutional layer of stride 1 from `noise_size` to the last numbers of features of the corresponding critic. Then we put as many 4 by 4 transposed convolutional layer of stride 2 with a number of features divided by 2 at each stage so that the image ends up being of height and widht `in_size//2`. At the end, we add`n_extra_layers` 3 by 3 convolutional layer of stride 1. The last layer is a transpose convolution of size 4 by 4 and stride 2 followed by `tanh`. `kwargs` can be used to customize the convolutional layers and are passed to [`conv_layer`](/layers.htmlconv_layer). | show_doc(gan_critic)
show_doc(GANTrainer) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
[`LearnerCallback`](/basic_train.htmlLearnerCallback) that will be responsible to handle the two different optimizers (one for the generator and one for the critic), and do all the work behind the scenes so that the generator (or the critic) are in training mode with parameters requirement gradients each time we switch.`switch_eval=True` means that the [`GANTrainer`](/vision.gan.htmlGANTrainer) will put the model that isn't training into eval mode (if it's `False` its running statistics like in batchnorm layers will be updated and dropout will be applied). `clip` is the clipping applied to the weights (if not `None`). `beta` is the coefficient for the moving averages as the [`GANTrainer`](/vision.gan.htmlGANTrainer)tracks separately the generator loss and the critic loss. `gen_first=True` means the training begins with the generator (with the critic if it's `False`). If `show_img=True` we show a generated image at the end of each epoch. | show_doc(GANTrainer.switch) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
If `gen_mode` is left as `None`, just put the model in the other mode (critic if it was in generator mode and vice versa). | show_doc(GANTrainer.on_train_begin)
show_doc(GANTrainer.on_epoch_begin)
show_doc(GANTrainer.on_batch_begin)
show_doc(GANTrainer.on_backward_begin)
show_doc(GANTrainer.on_epoch_end)
show_doc(GANTrainer.on_train_end) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
Specific modules | show_doc(GANModule, title_level=3) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
If `gen_mode` is left as `None`, just put the model in the other mode (critic if it was in generator mode and vice versa). | show_doc(GANModule.switch)
show_doc(GANLoss, title_level=3)
show_doc(AdaptiveLoss, title_level=3)
show_doc(accuracy_thresh_expand) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
Data Block API | show_doc(NoisyItem, title_level=3)
show_doc(GANItemList, title_level=3) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
Inputs will be [`NoisyItem`](/vision.gan.htmlNoisyItem) of `noise_sz` while the default class for target is [`ImageItemList`](/vision.data.htmlImageItemList). | show_doc(GANItemList.show_xys)
show_doc(GANItemList.show_xyzs) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
Undocumented Methods - Methods moved below this line will intentionally be hidden | show_doc(GANLoss.critic)
show_doc(GANModule.forward)
show_doc(GANLoss.generator)
show_doc(NoisyItem.apply_tfms)
show_doc(AdaptiveLoss.forward)
show_doc(GANItemList.get)
show_doc(GANItemList.reconstruct)
show_doc(AdaptiveLoss.forward) | _____no_output_____ | Apache-2.0 | docs_src/vision.gan.ipynb | navjotts/fastai |
解析庫 | BeautifulSoup(markup, "html.parser")
BeautifulSoup(markup, "lxml")
BeautifulSoup(markup, "xml")
BeautifulSoup(markup, "html5lib") | _____no_output_____ | MIT | BeautifulSoup.ipynb | Pytoddler/Web-scraping |
基本使用 | #引入requests好爬取html檔案給bs4使用
import requests
response = requests.get('http://ntumail.cc.ntu.edu.tw')
response.encoding = 'UTF-8' #加入encoding的方法避免中文亂碼
html = response.text
from bs4 import BeautifulSoup
soup = BeautifulSoup(html,'html.parser')
print(soup.prettify()) #會把html漂亮輸出
print(soup.title.string) |
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta content="text/html; charset=utf-8" http-equiv="Content-Type"/>
<title>
NTU Mail-臺灣大學電子郵件系統
</title>
<link href="images/style.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<div id="top">
|
<a href="http://www.ntu.edu.tw/">
臺大首頁 NTU Home
</a>
|
<a href="http://www.cc.ntu.edu.tw/">
計中首頁
</a>
|
</div>
<div id="wrapper">
<div id="banner">
</div>
<div id="mail">
<div id="imgcss">
<img src="images/mail20.png"/>
</div>
<div id="content">
<h1>
<a href="https://mail.ntu.edu.tw/">
NTU Mail 2.0
</a>
</h1>
<ul>
<li>
<img align="absmiddle" src="images/face01-01.gif"/>
服務對象
<ol>
<li>
教職員帳號 \ Faculty Account
</li>
<li>
公務、計畫、及短期帳號 \ Project and Short Term Account
</li>
<li>
所有在學學生帳號 \ Internal Student Account
</li>
</ol>
</li>
<li>
<img align="absmiddle" src="images/m02-05-2.gif"/>
立即前往 Go to
<a href="https://mail.ntu.edu.tw/">
Mail 2.0
</a>
</li>
<li>
<img align="absmiddle" src="images/ic04-04.gif"/>
<a href="http://www.cc.ntu.edu.tw/mail2.0/">
Mail 2.0 FAQ
</a>
</li>
</ul>
</div>
<!--content end-->
</div>
<!--mail end-->
<div id="webmail">
<div id="imgcss">
<img src="images/webmail.png"/>
</div>
<div id="content">
<h1>
<a href="http://webmail.ntu.edu.tw/">
NTU Mail 1.0 (Webmail 1.0)
</a>
</h1>
<ul>
<li>
<img align="absmiddle" src="images/face01-01.gif"/>
服務對象
<ol>
<li>
校友帳號 \ Alumni Account
</li>
<li>
醫院員工帳號 \ Hospital Staff Account
</li>
</ol>
</li>
<li>
<img align="absmiddle" src="images/m02-05-2.gif"/>
立即前往 Go to
<a href="http://webmail.ntu.edu.tw/">
Webmail 1.0
</a>
</li>
<li>
<img align="absmiddle" src="images/ic04-04.gif"/>
<a href="http://jsc.cc.ntu.edu.tw/ntucc/email/">
Webmail FAQ
</a>
</li>
</ul>
</div>
<!--content end-->
</div>
<!--webmail end-->
</div>
<!--wrapper end-->
<div id="footer">
Copyright 臺灣大學 National Taiwan University
<br/>
諮詢服務電話:(02)3366-5022或3366-5023
<br/>
諮詢服務信箱:[email protected]
</div>
</body>
</html>
NTU Mail-臺灣大學電子郵件系統
| MIT | BeautifulSoup.ipynb | Pytoddler/Web-scraping |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.