markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Create a CTX ExampleIf the context for the operation does not yet exist, it can be created using the following methods.Creating a CTX in a List or Map:* `listIndexCreate`: Create list by base list's index offset.* `mapKeyCreate`: Create map by base map's key.The following are examples of creating a list and map CTX and then writing data to the new CTX. | ArrayList<Value> newWhaleMigration = new ArrayList<Value>();
newWhaleMigration.add(Value.get(1449));
newWhaleMigration.add(Value.get("sei whale"));
newWhaleMigration.add(Value.get("Greenland"));
newWhaleMigration.add(Value.get("Gulf of Maine"));
Integer whaleIndex = 5;
HashMap <Value, Value> mapCoords3 = new HashMap <Value, Value>();
mapCoords3.put(Value.get("lat"), Value.get(95));
mapCoords3.put(Value.get("long"), Value.get(110));
Integer newObsKey = 15678;
Record createCTX = client.operate(client.writePolicyDefault, whaleKey,
ListOperation.insertItems(listWhaleBinName, 0, newWhaleMigration, CTX.listIndexCreate(whaleIndex, ListOrder.UNORDERED, true)),
MapOperation.putItems(mapObsPolicy, mapObsBinName, mapCoords3, CTX.mapKeyCreate(Value.get(newObsKey), MapOrder.KEY_ORDERED))
);
Record postCreate = client.get(null, whaleKey);
System.out.println("Before, the whale migration list was: " + theRecord.getValue(listWhaleBinName) + "\n");
System.out.println("After the addition, it is:" + postCreate.getValue(listWhaleBinName) + "\n\n");
System.out.println("Before, the observation map was: " + theRecord.getValue(mapObsBinName) + "\n");
System.out.println("After the addition, it is: " + postCreate.getValue(mapObsBinName)); | Before, the whale migration list was: [[1420, beluga whale, Beaufort Sea, Bering Sea], [13988, gray whale, Baja California, Chukchi Sea], [1278, north pacific right whale, Japan, Sea of Okhotsk], [5100, humpback whale, Columbia, Antarctic Peninsula], [3100, southern hemisphere blue whale, Corcovado Gulf, The Galapagos]]
After the addition, it is:[[1420, beluga whale, Beaufort Sea, Bering Sea], [13988, gray whale, Baja California, Chukchi Sea], [1278, north pacific right whale, Japan, Sea of Okhotsk], [5100, humpback whale, Columbia, Antarctic Peninsula], [3100, southern hemisphere blue whale, Corcovado Gulf, The Galapagos], [1449, sei whale, Greenland, Gulf of Maine]]
Before, the observation map was: {12345={lat=-85, long=-130}, 13456={lat=-25, long=-50}, 14567={lat=35, long=30}}
After the addition, it is: {12345={lat=-85, long=-130}, 13456={lat=-25, long=-50}, 14567={lat=35, long=30}, 15678={lat=95, long=110}}
| MIT | notebooks/java/java-advanced_collection_data_types.ipynb | markprincely/interactive-notebooks |
Choosing the Return Type Options for CDTsOperations on CDTs can return different types of data, depending on the return type value specified. A return type can be combined with the INVERTED flag to return all data from the CDT that was not selected by the operation. The following are the [Return Types for Lists](https://docs.aerospike.com/apidocs/java/com/aerospike/client/cdt/ListReturnType.html) and [Maps](https://docs.aerospike.com/apidocs/java/com/aerospike/client/cdt/MapReturnType.html). Standard Return Type Options for CDTsAerospike Lists and Maps both provide the following return type options.* `COUNT`: Return count of items selected.* `INDEX`: Return index offset order.* `NONE`: Do not return a result.* `RANK`: Return value order. If the list/map is not ordered, Aerospike will JIT-sort the list/map.* `REVERSE_INDEX`: Return reverse index offset order.* `REVERSE_RANK`: Return value order from a version of the list sorted from maximum to minimum value. If the list is not ordered, Aerospike will JIT-sort the list. * `VALUE`: Return value for single item read and list of values from a range read.All indexes are 0-based, with the last element accessible by index -1. The following is an example demonstrating each possible return type from the same operation. | ArrayList<Value> lowTuple = new ArrayList<Value>();
lowTuple.add(Value.get(1400));
lowTuple.add(Value.NULL);
ArrayList<Value> highTuple = new ArrayList<Value>();
highTuple.add(Value.get(3500));
highTuple.add(Value.NULL);
Record between1400and3500 = client.operate(client.writePolicyDefault, whaleKey,
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.COUNT),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.INDEX),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.NONE),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.RANK),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.REVERSE_INDEX),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.REVERSE_RANK),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.VALUE)
);
List<?> returnWhaleRange = between1400and3500.getList(listWhaleBinName);
System.out.println("The current whale migration list is: " + postCreate.getValue(listWhaleBinName) + "\n");
System.out.println("For the whales who migrate between 1400 and 3500 miles...");
System.out.println("Return COUNT: " + returnWhaleRange.get(0));
System.out.println("Return INDEX: " + returnWhaleRange.get(1));
System.out.println("Return NONE: has no return value.");
System.out.println("Return RANK: " + returnWhaleRange.get(2));
System.out.println("Return REVERSE_INDEX: " + returnWhaleRange.get(3));
System.out.println("Return REVERSE_RANK: " + returnWhaleRange.get(4));
System.out.println("Return Values: " + returnWhaleRange.get(5)); | The current whale migration list is: [[1420, beluga whale, Beaufort Sea, Bering Sea], [13988, gray whale, Baja California, Chukchi Sea], [1278, north pacific right whale, Japan, Sea of Okhotsk], [5100, humpback whale, Columbia, Antarctic Peninsula], [3100, southern hemisphere blue whale, Corcovado Gulf, The Galapagos], [1449, sei whale, Greenland, Gulf of Maine]]
For the whales who migrate between 1400 and 3500 miles...
Return COUNT: 3
Return INDEX: [0, 4, 5]
Return NONE: has no return value.
Return RANK: [1, 2, 3]
Return REVERSE_INDEX: [5, 1, 0]
Return REVERSE_RANK: [2, 3, 4]
Return Values: [[1420, beluga whale, Beaufort Sea, Bering Sea], [3100, southern hemisphere blue whale, Corcovado Gulf, The Galapagos], [1449, sei whale, Greenland, Gulf of Maine]]
| MIT | notebooks/java/java-advanced_collection_data_types.ipynb | markprincely/interactive-notebooks |
Additional Return Type Options for MapsBecause Maps have a replicable key/value structure, Aerospike provides options to return mapkeys or key/value pairs, in addition to value.* `KEY`: Return key for single key read and key list for range read.* `KEY_VALUE`: Return key/value pairs for items.The following is an example demonstrating returning a key or key/value pair. | Integer latestObsRank = -1;
Record latestWhaleObs = client.operate(client.writePolicyDefault, whaleKey,
MapOperation.getByRank(mapObsBinName, latestObsRank, MapReturnType.KEY),
MapOperation.getByRank(mapObsBinName, latestObsRank, MapReturnType.KEY_VALUE)
);
List<?> latestObs = latestWhaleObs.getList(mapObsBinName);
System.out.println("The current whale observations map is: " + postCreate.getValue(mapObsBinName) + "\n");
System.out.println("For the most recent observation...");
System.out.println("Return the key: " + latestObs.get(0));
System.out.println("Return key/value pair: " + latestObs.get(1)); | The current whale observations map is: {12345={lat=-85, long=-130}, 13456={lat=-25, long=-50}, 14567={lat=35, long=30}, 15678={lat=95, long=110}}
For the most recent observation...
Return the key: 15678
Return key/value pair: [15678={lat=95, long=110}]
| MIT | notebooks/java/java-advanced_collection_data_types.ipynb | markprincely/interactive-notebooks |
Invert the Operation Results for CDT Operations Aerospike also provides the `INVERTED` flag for CDT operations. When `INVERTED` is “logical or”-ed to the return type, the flag instructs a list or map operation to return the return type data for list or Map elements that were not selected by the operation. This flag instructs an operation to act as though a logical NOT operator was applied to the entire operation. The following is an example demonstrating inverted return values. | ArrayList<Value> lowTuple = new ArrayList<Value>();
lowTuple.add(Value.get(1400));
lowTuple.add(Value.NULL);
ArrayList<Value> highTuple = new ArrayList<Value>();
highTuple.add(Value.get(3500));
highTuple.add(Value.NULL);
Record between1400and3500 = client.operate(client.writePolicyDefault, whaleKey,
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.COUNT | ListReturnType.INVERTED),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.INDEX | ListReturnType.INVERTED),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.NONE | ListReturnType.INVERTED),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.RANK | ListReturnType.INVERTED),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.REVERSE_INDEX | ListReturnType.INVERTED),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.REVERSE_RANK | ListReturnType.INVERTED),
ListOperation.getByValueRange(listWhaleBinName, Value.get(lowTuple), Value.get(highTuple),
ListReturnType.VALUE | ListReturnType.INVERTED)
);
List<?> returnWhaleRange = between1400and3500.getList(listWhaleBinName);
System.out.println("The current whale migration list is: " + postCreate.getValue(listWhaleBinName) + "\n");
System.out.println("For the whales who migrate between 1400 and 3500 miles...");
System.out.println("Return INVERTED COUNT: " + returnWhaleRange.get(0));
System.out.println("Return INVERTED INDEX: " + returnWhaleRange.get(1));
System.out.println("Return INVERTED NONE: has no return value.");
System.out.println("Return INVERTED RANK: " + returnWhaleRange.get(2));
System.out.println("Return INVERTED REVERSE_INDEX: " + returnWhaleRange.get(3));
System.out.println("Return INVERTED REVERSE_RANK: " + returnWhaleRange.get(4));
System.out.println("Return INVERTED Values: " + returnWhaleRange.get(5)); | The current whale migration list is: [[1420, beluga whale, Beaufort Sea, Bering Sea], [13988, gray whale, Baja California, Chukchi Sea], [1278, north pacific right whale, Japan, Sea of Okhotsk], [5100, humpback whale, Columbia, Antarctic Peninsula], [3100, southern hemisphere blue whale, Corcovado Gulf, The Galapagos], [1449, sei whale, Greenland, Gulf of Maine]]
For the whales who migrate between 1400 and 3500 miles...
Return INVERTED COUNT: 3
Return INVERTED INDEX: [1, 2, 3]
Return INVERTED NONE: has no return value.
Return INVERTED RANK: [0, 4, 5]
Return INVERTED REVERSE_INDEX: [4, 3, 2]
Return INVERTED REVERSE_RANK: [5, 0, 1]
Return INVERTED Values: [[13988, gray whale, Baja California, Chukchi Sea], [1278, north pacific right whale, Japan, Sea of Okhotsk], [5100, humpback whale, Columbia, Antarctic Peninsula]]
| MIT | notebooks/java/java-advanced_collection_data_types.ipynb | markprincely/interactive-notebooks |
Highlighting how policies shape application transactionsEach data type operation has a write policy which can be set per CDT write/put operation to optionally:* Just-in-time sort the data being operated on. * Apply flags that instruct Aerospike’s transaction write behavior.Create and set a MapPolicy or ListPolicy with the proper sort and write flags to change how Aerospike processes a transaction. MapOrder and ListOrder, Just-in-time Sorting for an Operation By default, Maps and Lists are stored unordered. There are explicit techniques to store a list or map in order. The Map data in this notebook is key sorted. Please refer to the code snippet creating the map data (above) for an example of this. There are examples of ordering lists in the notebook [Modeling Using Lists](./java-modeling_using_lists.ipynb). Applying a MapOrder or ListOrder has performance implications on operation performance. This can be a reason to apply a MapOrder or ListOrder when working with data. To understand the relative worst-case time complexity of Aerospike operations go [here for lists](https://docs.aerospike.com/docs/guide/cdt-list-performance.html) and [here for maps](https://docs.aerospike.com/docs/guide/cdt-map-performance.html). Whether to allow duplicates in a list is a function of ListOrder.**Note:** Aerospike finds that worst-case performance can be helpful in determining how to prioritize application use-cases against one another, but do not set realistic performance expectations for Aerospike Database. An example where they help is asking tough questions, like, “the worst case time complexity for operation A is X, is operation A important enough to do daily or just monthly in light of the other workloads that are more time sensitive?” Write FlagsThe following are lists of [write flags for Lists](https://docs.aerospike.com/apidocs/java/com/aerospike/client/cdt/ListWriteFlags.html) and [Maps](https://docs.aerospike.com/apidocs/java/com/aerospike/client/cdt/MapWriteFlags.html). Beneath each are example transactions. A powerful use case for Aerospike is to group operations together into single-record atomic transactions using the `Operate` method. This technique is used above in this notebook. When applying transactions to data, there are common circumstances where:* All possible operations should be executed in a fault tolerant manner * Specific operation failure should cause all operations to failWrite flags can be used in any combination, as appropriate to the application and Aerospike operation being applied. Write Flags for all CDTs* `DEFAULT` * For Lists, allow duplicate values and insertions at any index. * For Maps, allow map create or updates.* `NO_FAIL`: Do not raise an error if a CDT item is denied due to write flag constraints.* `PARTIAL`: Allow other valid CDT items to be committed if a CDT item is denied due to write flag constraints.These flags provide fault tolerance to transactions. Apply some combination of the above three flags–`DEFAULT`, `NO_FAIL`, and `PARTIAL`–to operations by using “logical or” as demonstrated below. All other write flags set conditions for operations. **Note:** Without `NO_FAIL`, operations that fail due to the below policies will throw [either error code 24 or 26](https://docs.aerospike.com/docs/dev_reference/error_codes.html). Default Examples All of the above code snippets use a Default write flag policy. These operations are unrestricted by write policies. No Fail Examples All of the examples in the following sections show both an exception caused by a write flag, and then pair the demonstrated write flag with No Fail to show how the same operation can fail silently. Partial Flag Example Partial is generally used only in a transaction containing operations using the No Fail write flag. Otherwise, the transaction would contain no failures to overlook. The following example are a list and map transaction combining both failing and successful map and list operations. | // create policy to apply and data to trigger operation failure
Integer inBoundsIndex = 0;
Integer outOfBoundsIndex = 20;
HashMap <Value, Value> mapCoords4 = new HashMap <Value, Value>();
mapCoords4.put(Value.get("lat"), Value.get(0));
mapCoords4.put(Value.get("long"), Value.get(0));
Integer existingObsKey = 13456;
Integer listPartialWriteFlags = ListWriteFlags.INSERT_BOUNDED
| ListWriteFlags.NO_FAIL
| ListWriteFlags.PARTIAL;
ListPolicy listPartialWritePolicy = new ListPolicy(ListOrder.UNORDERED, listPartialWriteFlags);
Integer mapPartialWriteFlags = MapWriteFlags.CREATE_ONLY
| MapWriteFlags.NO_FAIL
| MapWriteFlags.PARTIAL;
MapPolicy mapPartialWritePolicy = new MapPolicy(MapOrder.KEY_ORDERED, mapPartialWriteFlags);
// create fresh record
Integer partialFlagKeyName = 6;
Key partialFlagKey = new Key(nestedCDTNamespaceName, nestedCDTSetName, partialFlagKeyName);
Bin bin1 = new Bin(listWhaleBinName, whaleMigration);
Record putDataIn = client.operate(null, partialFlagKey,
Operation.put(bin1),
MapOperation.putItems(mapObsPolicy, mapObsBinName, mapObs)
);
Record partialDataPutIn = client.get(client.writePolicyDefault, partialFlagKey);
// one failed and one successful operation for both list and map
Record partialSuccessOp = client.operate(null, partialFlagKey,
ListOperation.insert(listPartialWritePolicy, listWhaleBinName, outOfBoundsIndex, Value.get(newWhaleMigration)),
ListOperation.set(listPartialWritePolicy, listWhaleBinName, inBoundsIndex, Value.get(newWhaleMigration)),
MapOperation.put(mapPartialWritePolicy, mapObsBinName, Value.get(existingObsKey), Value.get(mapCoords4)),
MapOperation.put(mapPartialWritePolicy, mapObsBinName, Value.get(newObsKey), Value.get(mapCoords3))
);
Record partialSuccessData = client.get(client.writePolicyDefault, partialFlagKey);
System.out.println ("Failed to add a 5th item.\nSucceeded at changing the first item.\n");
System.out.println ("Original List: " + partialDataPutIn.getValue(listWhaleBinName) + "\n");
System.out.println ("Updated List: " + partialSuccessData.getValue(listWhaleBinName) + "\n\n");
System.out.println ("Failed to modify an exiting observation.\nSucceeded at adding a new observation.\n");
System.out.println ("Original Map: " + partialDataPutIn.getValue(mapObsBinName) + "\n");
System.out.println ("Updated Map: " + partialSuccessData.getValue(mapObsBinName) + "\n\nFor more about the failed operations, see the examples below.");
Boolean partialExampleRecordDeleted=client.delete(null, partialFlagKey);
| Failed to add a 5th item.
Succeeded at changing the first item.
Original List: [[1420, beluga whale, Beaufort Sea, Bering Sea], [13988, gray whale, Baja California, Chukchi Sea], [1278, north pacific right whale, Japan, Sea of Okhotsk], [5100, humpback whale, Columbia, Antarctic Peninsula], [3100, southern hemisphere blue whale, Corcovado Gulf, The Galapagos]]
Updated List: [[1449, sei whale, Greenland, Gulf of Maine], [13988, gray whale, Baja California, Chukchi Sea], [1278, north pacific right whale, Japan, Sea of Okhotsk], [5100, humpback whale, Columbia, Antarctic Peninsula], [3100, southern hemisphere blue whale, Corcovado Gulf, The Galapagos]]
Failed to modify an exiting observation.
Succeeded at adding a new observation.
Original Map: {12345={lat=-85, long=-130}, 13456={lat=-25, long=-50}, 14567={lat=35, long=30}}
Updated Map: {12345={lat=-85, long=-130}, 13456={lat=-25, long=-50}, 14567={lat=35, long=30}, 15678={lat=95, long=110}}
For more about the failed operations, see the examples below.
| MIT | notebooks/java/java-advanced_collection_data_types.ipynb | markprincely/interactive-notebooks |
Write Flags for Lists Only:* `INSERT_BOUNDED`: Enforce list boundaries when inserting. Do not allow values to be inserted at index outside current list boundaries.* `ADD_UNIQUE`: Only add unique values. Insert Bounded Example | // create policy to apply and data to break policy
Integer outOfBoundsIndex = 20;
ListPolicy listInsertBoundedPolicy = new ListPolicy(ListOrder.UNORDERED, ListWriteFlags.INSERT_BOUNDED);
ListPolicy listBoundedNoFailPolicy = new ListPolicy(ListOrder.UNORDERED, ListWriteFlags.INSERT_BOUNDED
| ListWriteFlags.NO_FAIL);
// create fresh record
Integer whaleBoundedKeyName = 7;
Bin bin1 = new Bin(listWhaleBinName, whaleMigration);
Key whaleBoundedKey = new Key(nestedCDTNamespaceName, nestedCDTSetName, whaleBoundedKeyName);
client.put(client.writePolicyDefault, whaleBoundedKey, bin1);
Record ibDataPutIn = client.get(null, whaleBoundedKey);
System.out.println("Data in the record: " + ibDataPutIn.getValue(listWhaleBinName) + "\n");
// fail for INSERT_BOUNDED
try {
Record ibFail = client.operate(client.writePolicyDefault, whaleBoundedKey,
ListOperation.insert(listInsertBoundedPolicy, listWhaleBinName, outOfBoundsIndex, Value.get(newWhaleMigration))
);
System.out.println("The code does not get here.");
}
catch(Exception e) {
System.out.println("Out of Bounds Attempt 1: Exception caught.");
Record ibNoFail = client.operate(client.writePolicyDefault, whaleBoundedKey,
ListOperation.insert(listBoundedNoFailPolicy, listWhaleBinName, outOfBoundsIndex, Value.get(newWhaleMigration))
);
Record ibNoFailData = client.get(client.writePolicyDefault, whaleBoundedKey);
if(ibNoFailData.getValue(listWhaleBinName).equals(ibDataPutIn.getValue(listWhaleBinName))) {
System.out.println("Out of Bounds Attempt 2: No operation was executed. Error was suppressed by NO_FAIL.\n");
}
}
Record noIB = client.operate(client.writePolicyDefault, whaleBoundedKey,
ListOperation.insert(listWhaleBinName, outOfBoundsIndex, Value.get(newWhaleMigration))
);
Record noIBData = client.get(null, whaleBoundedKey);
System.out.println("Without Insert Bounded, a series of nulls is inside the Bin: " + noIBData.getValue(listWhaleBinName)); | Data in the record: [[1420, beluga whale, Beaufort Sea, Bering Sea], [13988, gray whale, Baja California, Chukchi Sea], [1278, north pacific right whale, Japan, Sea of Okhotsk], [5100, humpback whale, Columbia, Antarctic Peninsula], [3100, southern hemisphere blue whale, Corcovado Gulf, The Galapagos]]
Out of Bounds Attempt 1: Exception caught.
Out of Bounds Attempt 2: No operation was executed. Error was suppressed by NO_FAIL.
Without Insert Bounded, a series of nulls is insein the Bin: [[1420, beluga whale, Beaufort Sea, Bering Sea], [13988, gray whale, Baja California, Chukchi Sea], [1278, north pacific right whale, Japan, Sea of Okhotsk], [5100, humpback whale, Columbia, Antarctic Peninsula], [3100, southern hemisphere blue whale, Corcovado Gulf, The Galapagos], null, null, null, null, null, null, null, null, null, null, null, null, null, null, null, [1449, sei whale, Greenland, Gulf of Maine]]
| MIT | notebooks/java/java-advanced_collection_data_types.ipynb | markprincely/interactive-notebooks |
Add Unique Example | // create policy to apply
ListPolicy listAddUniquePolicy = new ListPolicy(ListOrder.UNORDERED, ListWriteFlags.ADD_UNIQUE);
ListPolicy listAddUniqueNoFailPolicy = new ListPolicy(ListOrder.UNORDERED, ListWriteFlags.ADD_UNIQUE
| ListWriteFlags.NO_FAIL);
// create fresh record
Integer whaleAddUniqueKeyName = 8;
Bin bin1 = new Bin(listWhaleBinName, whaleMigration);
Key whaleAddUniqueKey = new Key(nestedCDTNamespaceName, nestedCDTSetName, whaleAddUniqueKeyName);
client.put(client.writePolicyDefault, whaleAddUniqueKey, bin1);
Record auDataPutIn = client.get(null, whaleAddUniqueKey);
// successful ADD_UNIQUE operation
Record auSuccess = client.operate(client.writePolicyDefault, whaleAddUniqueKey,
ListOperation.append(listAddUniquePolicy, listWhaleBinName, Value.get(newWhaleMigration))
);
Record auSuccessData = client.get(null, whaleAddUniqueKey);
System.out.println("Data after the unique add of " + newWhaleMigration + ": " + auSuccessData.getValue(listWhaleBinName) + "\n");
// fail for 2nd ADD_UNIQUE
try {
Record auFail = client.operate(client.writePolicyDefault, whaleAddUniqueKey,
ListOperation.append(listAddUniquePolicy, listWhaleBinName, Value.get(newWhaleMigration))
);
System.out.println("The code does not get here.");
}
catch(Exception e) {
System.out.println("Non-Unique Add 1: Exception caught.");
Record auNoFail = client.operate(client.writePolicyDefault, whaleAddUniqueKey,
ListOperation.append(listAddUniqueNoFailPolicy, listWhaleBinName, Value.get(newWhaleMigration))
);
Record auNoFailData = client.get(null, whaleAddUniqueKey);
if(auNoFailData.getValue(listWhaleBinName).equals(auSuccessData.getValue(listWhaleBinName))) {
System.out.println("Non-Unique Add 2: No operation was executed. Error was suppressed by NO_FAIL.\n");
}
}
Record noAU = client.operate(client.writePolicyDefault, whaleAddUniqueKey,
ListOperation.append(listWhaleBinName, Value.get(newWhaleMigration))
);
Record noAUData = client.get(null, whaleAddUniqueKey);
System.out.println("Without Add Unique here, the tuple for a sei whale is there 2x: " + noAUData.getValue(listWhaleBinName)); | Data after the unique add of [1449, sei whale, Greenland, Gulf of Maine]: [[1420, beluga whale, Beaufort Sea, Bering Sea], [13988, gray whale, Baja California, Chukchi Sea], [1278, north pacific right whale, Japan, Sea of Okhotsk], [5100, humpback whale, Columbia, Antarctic Peninsula], [3100, southern hemisphere blue whale, Corcovado Gulf, The Galapagos], [1449, sei whale, Greenland, Gulf of Maine]]
Non-Unique Add 1: Exception caught.
Non-Unique Add 2: No operation was executed. Error was suppressed by NO_FAIL.
Without Add Unique here, the tuple for a sei whale is there 2x: [[1420, beluga whale, Beaufort Sea, Bering Sea], [13988, gray whale, Baja California, Chukchi Sea], [1278, north pacific right whale, Japan, Sea of Okhotsk], [5100, humpback whale, Columbia, Antarctic Peninsula], [3100, southern hemisphere blue whale, Corcovado Gulf, The Galapagos], [1449, sei whale, Greenland, Gulf of Maine], [1449, sei whale, Greenland, Gulf of Maine]]
| MIT | notebooks/java/java-advanced_collection_data_types.ipynb | markprincely/interactive-notebooks |
Write Flags for Maps Only:* `CREATE_ONLY`: If the key already exists, the item will be denied.* `UPDATE_ONLY`: If the key already exists, the item will be overwritten. If the key does not exist, the item will be denied. Create Only Example | // create modify data and policy to apply
HashMap <Value, Value> mapCoords4 = new HashMap <Value, Value>();
mapCoords4.put(Value.get("lat"), Value.get(0));
mapCoords4.put(Value.get("long"), Value.get(0));
MapPolicy mapCreateOnlyPolicy = new MapPolicy(MapOrder.KEY_ORDERED, MapWriteFlags.CREATE_ONLY);
MapPolicy mapCreateOnlyNoFailPolicy = new MapPolicy(MapOrder.KEY_ORDERED, MapWriteFlags.CREATE_ONLY
| MapWriteFlags.NO_FAIL);
// create fresh record
Integer obsCreateOnlyKeyName = 9;
Key obsCreateOnlyKey = new Key(nestedCDTNamespaceName, nestedCDTSetName, obsCreateOnlyKeyName);
Record putDataIn = client.operate(client.writePolicyDefault, obsCreateOnlyKey,
MapOperation.putItems(mapObsPolicy, mapObsBinName, mapObs)
);
Record coDataPutIn = client.get(null, obsCreateOnlyKey);
// success for CREATE_ONLY
Record coSuccess = client.operate(client.writePolicyDefault, obsCreateOnlyKey,
MapOperation.put(mapCreateOnlyPolicy, mapObsBinName, Value.get(newObsKey), Value.get(mapCoords3))
);
Record coSuccessData = client.get(null, obsCreateOnlyKey);
System.out.println("Created record and new key " + newObsKey + ". The data is now: " + coSuccessData.getValue(mapObsBinName) + "\n");
// fail for CREATE_ONLY
try {
Record coFail = client.operate(client.writePolicyDefault, obsCreateOnlyKey,
MapOperation.put(mapCreateOnlyPolicy, mapObsBinName, Value.get(newObsKey), Value.get(mapCoords4))
);
System.out.println("The code does not get here.");
}
catch(Exception e) {
System.out.println("Update attempt 1: Exception caught.");
Record coNoFail = client.operate(client.writePolicyDefault, obsCreateOnlyKey,
MapOperation.put(mapCreateOnlyNoFailPolicy, mapObsBinName, Value.get(newObsKey), Value.get(mapCoords4))
);
Record coNoFailData = client.get(null, obsCreateOnlyKey);
if(coNoFailData.getValue(mapObsBinName).equals(coSuccessData.getValue(mapObsBinName))) {
System.out.println("Update attempt 2: No operation was executed. Error was suppressed by NO_FAIL.\n");
}
}
Record noCO = client.operate(client.writePolicyDefault, obsCreateOnlyKey,
MapOperation.put(mapObsPolicy, mapObsBinName, Value.get(newObsKey), Value.get(mapCoords4))
);
Record noCOData = client.get(null, obsCreateOnlyKey);
System.out.println("Without Create Only, the observation at 15678 is overwritten: " + noCOData.getValue(mapObsBinName));
Boolean createOnlyExampleRecordDeleted=client.delete(null, obsCreateOnlyKey); | Created record and new key 15678. The data is now: {12345={lat=-85, long=-130}, 13456={lat=-25, long=-50}, 14567={lat=35, long=30}, 15678={lat=95, long=110}}
Update attempt 1: Exception caught.
Update attempt 2: No operation was executed. Error was suppressed by NO_FAIL.
Without Create Only, the observation at 15678 is overwritten: {12345={lat=-85, long=-130}, 13456={lat=-25, long=-50}, 14567={lat=35, long=30}, 15678={lat=0, long=0}}
| MIT | notebooks/java/java-advanced_collection_data_types.ipynb | markprincely/interactive-notebooks |
Update Only Example | // create policy to apply
MapPolicy mapUpdateOnlyPolicy = new MapPolicy(MapOrder.KEY_ORDERED, MapWriteFlags.UPDATE_ONLY);
MapPolicy mapUpdateOnlyNoFailPolicy = new MapPolicy(MapOrder.KEY_ORDERED, MapWriteFlags.UPDATE_ONLY
| MapWriteFlags.NO_FAIL);
// create Aerospike data elements for a fresh record
Integer obsUpdateOnlyKeyName = 10;
Key obsUpdateOnlyKey = new Key(nestedCDTNamespaceName, nestedCDTSetName, obsUpdateOnlyKeyName);
Record uoPutDataIn = client.operate(client.writePolicyDefault, obsUpdateOnlyKey,
MapOperation.putItems(mapObsPolicy, mapObsBinName, mapObs)
);
Record uoDataPutIn = client.get(null, obsUpdateOnlyKey);
System.out.println("Created record: " + uoDataPutIn.getValue(mapObsBinName) + "\n");
// fail for UPDATE_ONLY
try {
Record uoFail = client.operate(client.writePolicyDefault, obsUpdateOnlyKey,
MapOperation.put(mapUpdateOnlyPolicy, mapObsBinName, Value.get(newObsKey), Value.get(mapCoords3))
);
System.out.println("The code does not get here.");
}
catch(Exception e) {
System.out.println("Create Attempt 1: Exception caught.");
Record uoNoFail = client.operate(client.writePolicyDefault, obsUpdateOnlyKey,
MapOperation.put(mapUpdateOnlyNoFailPolicy, mapObsBinName, Value.get(newObsKey), Value.get(mapCoords3))
);
Record uoNoFailData = client.get(null, obsUpdateOnlyKey);
if(uoNoFailData.getValue(mapObsBinName).equals(uoDataPutIn.getValue(mapObsBinName))){
System.out.println("Create Attempt 2: No operation was executed. Error was suppressed by NO_FAIL.\n");
}
}
Record noUO = client.operate(client.writePolicyDefault, obsUpdateOnlyKey,
MapOperation.put(mapObsPolicy, mapObsBinName, Value.get(newObsKey), Value.get(mapCoords3))
);
Record noUOData = client.get(null, obsUpdateOnlyKey);
// success for UPDATE_ONLY
Record uoSuccess = client.operate(client.writePolicyDefault, obsUpdateOnlyKey,
MapOperation.put(mapUpdateOnlyPolicy, mapObsBinName, Value.get(existingObsKey), Value.get(mapCoords4))
);
Record uoSuccessData = client.get(null, obsUpdateOnlyKey);
System.out.println("Using update only, the value of an existing key " + existingObsKey + " can be updated: " + uoSuccessData.getValue(mapObsBinName) + "\n");
Boolean uoExampleRecordDeleted=client.delete(null, obsUpdateOnlyKey); | Created record: {12345={lat=-85, long=-130}, 13456={lat=-25, long=-50}, 14567={lat=35, long=30}}
Create Attempt 1: Exception caught.
Create Attempt 2: No operation was executed. Error was suppressed by NO_FAIL.
Using update only, the value of an existing key 13456 can be updated: {12345={lat=-85, long=-130}, 13456={lat=0, long=0}, 14567={lat=35, long=30}, 15678={lat=95, long=110}}
| MIT | notebooks/java/java-advanced_collection_data_types.ipynb | markprincely/interactive-notebooks |
Notebook Cleanup Truncate the SetTruncate the set from the Aerospike Database. | import com.aerospike.client.policy.InfoPolicy;
InfoPolicy infoPolicy = new InfoPolicy();
client.truncate(infoPolicy, nestedCDTNamespaceName, nestedCDTSetName, null);
System.out.println("Set Truncated."); | Set Truncated.
| MIT | notebooks/java/java-advanced_collection_data_types.ipynb | markprincely/interactive-notebooks |
Close the Client connections to Aerospike | client.close();
System.out.println("Server connection(s) closed."); | Server connection(s) closed.
| MIT | notebooks/java/java-advanced_collection_data_types.ipynb | markprincely/interactive-notebooks |
Merfish 10x comparison | import anndata
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
import matplotlib.patches as mpatches
import scanpy as scanp
from scipy.stats import ks_2samp, ttest_ind
from scipy.sparse import csr_matrix
from scipy import stats
from sklearn.decomposition import TruncatedSVD
from sklearn.manifold import TSNE
from umap import UMAP
from sklearn.cluster import KMeans
from sklearn.metrics import adjusted_rand_score
from sklearn.preprocessing import LabelEncoder
from sklearn.neighbors import NeighborhoodComponentsAnalysis
from matplotlib import cm
from scipy.spatial import ConvexHull
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import normalize
import warnings
warnings.filterwarnings('ignore')
import sys
sys.path.append('/home/sina/projects/mop/BYVSTZP_2020/trackfig')
from trackfig.utils import get_notebook_name
from trackfig.trackfig import trackfig
TRACKFIG = "/home/sina/projects/mop/BYVSTZP_2020/trackfig.txt"
NB = get_notebook_name()
fsize=20
plt.rcParams.update({'font.size': fsize})
%config InlineBackend.figure_format = 'retina'
unique_map = {'Astrocytes': "Astro",
'Endothelial':"Endo",
'SMC':"SMC",
'L23_IT':"L2/3 IT",
'VLMC': "VLMC",
'L6_CT': "L6 CT",
'L45_IT': "L4/5 IT",
'L5_PT': "L5 PT",
'L5_IT': "L5 IT",
'Sst': "Sst",
'L6_IT': "L6 IT",
'Sncg': "Sncg",
'L6_IT_Car3': "L6 IT Car3",
'Vip': "Vip",
'L56_NP': "L5/6 NP",
'Pvalb': "Pvalb",
'L6b': "L6b",
'Lamp5': "Lamp5"}
inv_map = {v: k for k, v in unique_map.items()}
cluster_cmap = {
"Astro": (0.38823529411764707, 0.4745098039215686, 0.2235294117647059 ), # 637939,
"Endo" : (0.5490196078431373, 0.6352941176470588, 0.3215686274509804 ), # 8ca252,
"SMC" : (0.7098039215686275, 0.8117647058823529, 0.4196078431372549 ), # b5cf6b,
"VLMC" : (0.807843137254902, 0.8588235294117647, 0.611764705882353 ), # cedb9c,
"Low Quality" : (0,0,0),
"L2/3 IT" : (0.9921568627450981, 0.6823529411764706, 0.4196078431372549 ), # fdae6b
"L5 PT" : (0.9921568627450981, 0.8156862745098039, 0.6352941176470588 ), # fdd0a2
"L5 IT" : (0.5176470588235295, 0.23529411764705882, 0.2235294117647059 ), # 843c39
"L5/6 NP": "#D43F3A",
"L6 CT" : (0.8392156862745098, 0.3803921568627451, 0.4196078431372549 ), # d6616b
"L6 IT" : (0.9058823529411765, 0.5882352941176471, 0.611764705882353 ), # e7969c
"L6b" : (1.0, 0.4980392156862745, 0.054901960784313725), # ff7f0e
"L6 IT Car3" : (1.0, 0.7333333333333333, 0.47058823529411764 ), # ffbb78
"Lamp5" : (0.19215686274509805, 0.5098039215686274, 0.7411764705882353 ), # 3182bd # blues
"Sncg" : (0.4196078431372549, 0.6823529411764706, 0.8392156862745098 ), # 6baed6
"Vip" : (0.6196078431372549, 0.792156862745098, 0.8823529411764706 ), # 9ecae1
"Sst" : (0.7764705882352941, 0.8588235294117647, 0.9372549019607843 ), # c6dbef
"Pvalb":(0.7372549019607844, 0.7411764705882353, 0.8627450980392157 ), # bcbddc
}
def trim_axs(axs, N):
"""little helper to massage the axs list to have correct length..."""
axs = axs.flat
for ax in axs[N:]:
ax.remove()
return axs[:N]
def split_by_target(mat, targets, target, axis=0):
"""
Split the rows of mat by the proper assignment
mat = ndarray
targets, length is equal to number of components (axis=0) or features (axis=1)
target is a singular element from unique(assignments/features)
"""
if axis==0 and len(targets) != mat.shape[axis]: return -1
if axis==1 and len(targets) != mat.shape[axis]: return -1
mask = targets == target
if axis==0:
t_mat = mat[mask] # target matrix
c_mat = mat[~mask] # complement matrix
elif axis==1:
t_mat = mat[:, mask] # target matrix
c_mat = mat[:, ~mask] # complement matrix
return (t_mat, c_mat)
def group_mtx_by_cluster(mtx, components, features, s2t, source_id="cell_id", target_id="subclass_label", by="components"):
"""
mtx: ndarray components by features
components: labels for rows of mtx
features: labels for columns of mtx
s2t: pandas dataframe mapping source (features or components) to a
targets features(components) to group by
target_id: column name in s2t to group by
"""
if target_id not in s2t.columns: return -1
ncomp = components.shape[0]
nfeat = features.shape[0]
ntarget = s2t[target_id].nunique()
if by =="features":
source = features
elif by =="components":
source = components
# Map the source to an index
source2idx = dict(zip(source, range(len(source))))
# Map the target to a list of source indices
target2idx = (s2t.groupby(target_id)[source_id].apply(lambda x: [source2idx[i] for i in x])).to_dict()
# array of unique targets
unique = s2t[target_id].unique().astype(str)
nuniq = unique.shape[0]
X = np.zeros((nuniq, mtx.shape[1]))
for tidx, t in enumerate(unique):
# Grab the matrix indices corresponding to columns and source columns to group by
source_indices = target2idx[t]
#print(source_indices)
# breaks generality
sub_mtx = mtx[source_indices,:].mean(axis=0) # Sum on source indicies
X[tidx,:] = sub_mtx # place summed vector in new matrix
# Return matrix that is grouped by
return (X, components, unique)
def nd(arr):
return np.asarray(arr).reshape(-1)
mfish = anndata.read_h5ad("../../data/notebook/revision/merfish-updated.h5ad")
mfish.obs["tenx_subclass"] = mfish.obs["subclass"].apply(lambda x: unique_map.get(x, "None"))
mfish = mfish[mfish.obs.tenx_subclass != "None"]
md = pd.read_csv("../../reference/10xv3_cluster_labels/sample_metadata.csv", index_col = 0)
md["sex"] = md["Gender"].apply(lambda x: {"Male": "M", "Female":"F"}.get(x, "X"))
tenx = anndata.read_h5ad("../../data/notebook/revision/10xv3_gene.h5ad")
tenx.obs["date"] = tenx.obs.index.map(md["Amp_Date"])
tenx.obs["sex"] = tenx.obs.index.map(md["sex"])
tenx = tenx[:,tenx.var.gene_short_name.isin(mfish.var.index)]
tenx.var.index = tenx.var.gene_short_name.values
#tenx = tenx[tenx.obs.eval("date == '11/29/2018'").values] # males
#tenx = tenx[tenx.obs.eval("date == '12/7/2018'").values] # females
tenx = tenx[tenx.obs.eval("date == '4/26/2019'").values] # females and males
#tenx = tenx[tenx.obs.subclass_label!="Low Quality"]
md.groupby("Amp_Date")["sex"].value_counts()
print(tenx)
print(mfish)
tenx.obs.subclass_label.value_counts()
mfish.obs.subclass.value_counts() | _____no_output_____ | BSD-2-Clause | analysis_archive/notebooks/final-cmp_merfish_v_10x.ipynb | nmarkari/BYVSTZP_2020 |
Process | from sklearn.preprocessing import normalize
tenx.layers["X"] = tenx.X
tenx.layers["norm"] = normalize(tenx.X, norm='l1', axis=1)*1000000
tenx.layers["log1p"] = csr_matrix(np.log1p(tenx.layers["norm"]))
from sklearn.preprocessing import scale
%%time
mat = tenx.layers["log1p"].todense()
mtx = scale(mat, axis=0, with_mean=True, with_std=True, copy=True)
tenx.X = mtx
del mat | _____no_output_____ | BSD-2-Clause | analysis_archive/notebooks/final-cmp_merfish_v_10x.ipynb | nmarkari/BYVSTZP_2020 |
Cluster comparisons | tenx = tenx[:,tenx.var.sort_index().index]
mfish = mfish[:,mfish.var.sort_index().index]
tenx.var.head()
mfish.var.head()
mfish_mat = mfish.X
mfish_ass = mfish.obs.tenx_subclass.values
tenx_mat = tenx.X
tenx_ass = tenx.obs.subclass_label.values
features = mfish.var.index.values
unique = np.intersect1d(np.unique(mfish_ass), np.unique(tenx_ass))
%%time
rvals = []
tenx_x = []
mfish_x = []
for uidx, u in enumerate(unique):
mfish_t_mat, _ = split_by_target(mfish_mat, mfish_ass, u)
tenx_t_mat, _ = split_by_target(tenx_mat, tenx_ass, u)
mf = np.asarray(mfish_t_mat.mean(axis=0)).reshape(-1)
t = np.asarray(tenx_t_mat.mean(axis=0)).reshape(-1)
tenx_x.append(t)
mfish_x.append(mf)
r, p = stats.pearsonr(mf, t)
rvals.append(r)
print("[{} of {}] {:,.2f}: {}".format(uidx+1, unique.shape[0],r, u) )
tenx_size = tenx.obs["subclass_label"].value_counts()[unique]
fig, ax = plt.subplots(figsize=(10,7))
x = tenx_size
y = rvals
for i, txt in enumerate(unique):
ax.annotate(i, (x[i], y[i]))
ax.scatter(x[i], y[i], label="{}: {}".format(i, txt), color=cluster_cmap[txt])
ax.set_ylim((0, 1))
ax.set_xscale("log")
ax.set_xlabel("Number of 10xv3 cells")
ax.set_ylabel("Pearson correlation")
ax.legend(fontsize=15,loc='center left', bbox_to_anchor=(1, 0.5), markerscale=3)
ax.set_title("MERFISH v. 10xv3 gene subclass correlation")
plt.savefig(trackfig("../../figures/merfish-updated_10x_gene_subclass_size.png", TRACKFIG, NB), bbox_inches='tight', dpi=300)
plt.show()
# males
males = pd.DataFrame({"subclass": unique.tolist(),
"rvals": rvals,
"size": tenx.obs.subclass_label.value_counts()[unique]})
males
fig, ax = plt.subplots(figsize=(15,15), ncols=4, nrows=5)
fig.subplots_adjust(hspace=0, wspace=0)
axs = trim_axs(ax, len(unique))
fig.suptitle('MERFISH v. 10xv3 gene subclass correlation', y=0.9)
#fig.subplots_adjust(top=1)
for cidx, (ax, c) in enumerate(zip(axs, unique)):
x = tenx_x[cidx]
y = mfish_x[cidx]
ax.scatter(x, y, label="{}: {:,}".format(c, tenx_size[cidx]), color="k", alpha=0.1)
slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
minx = min(x)
maxx = max(x)
x = np.linspace(minx, maxx, 10)
y = slope*x+intercept
ax.plot(x, y, label="corr : {:,.2f}".format(r_value**2), color="red", linewidth=3)
ax.legend(fontsize=15)
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
ax.set_axis_off()
fig.text(0.5, 0.1, '10xv3 scaled $log(TPM+1)$', ha='center', va='center', fontsize=30)
fig.text(0.1, 0.5, 'MERFISH scaled $log(CPM+1)$', ha='center', va='center', rotation='vertical', fontsize=30)
plt.savefig(trackfig("../../figures/merfish-updated_10x_gene_subclass_correlation_scatter.png", TRACKFIG, NB), bbox_inches='tight',dpi=300)
plt.show()
tenx[tenx.obs.subclass_label=="L5 IT"].obs.cluster_label.value_counts()
mfish[mfish.obs.subclass=="L5_IT"].obs.label.value_counts()
rvals
unique.tolist() | _____no_output_____ | BSD-2-Clause | analysis_archive/notebooks/final-cmp_merfish_v_10x.ipynb | nmarkari/BYVSTZP_2020 |
Random sampling of parameters (c) 2019 Manuel Razo. This work is licensed under a [Creative Commons Attribution License CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/). All code contained herein is licensed under an [MIT license](https://opensource.org/licenses/MIT). --- | import os
import itertools
import pickle
import cloudpickle
import re
import glob
import git
# Our numerical workhorses
import numpy as np
import pandas as pd
import scipy as sp
# Import library to perform maximum entropy fits
from maxentropy.skmaxent import FeatureTransformer, MinDivergenceModel
# Import libraries to parallelize processes
from joblib import Parallel, delayed
# Import matplotlib stuff for plotting
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib as mpl
# Seaborn, useful for graphics
import seaborn as sns
# Increase DPI of displayed figures
%config InlineBackend.figure_format = 'retina'
# Import the project utils
import ccutils
# Find home directory for repo
repo = git.Repo("./", search_parent_directories=True)
homedir = repo.working_dir
# Define directories for data and figure
figdir = f'{homedir}/fig/MaxEnt_approx_joint/'
datadir = f'{homedir}/data/csv_maxEnt_dist'
# Set PBoC plotting format
ccutils.viz.set_plotting_style()
# Increase dpi
mpl.rcParams['figure.dpi'] = 110 | _____no_output_____ | MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
$\LaTeX$ macros$\newcommand{kpon}{k^p_{\text{on}}}$$\newcommand{kpoff}{k^p_{\text{off}}}$$\newcommand{kron}{k^r_{\text{on}}}$$\newcommand{kroff}{k^r_{\text{off}}}$$\newcommand{rm}{r _m}$$\newcommand{rp}{r _p}$$\newcommand{gm}{\gamma _m}$$\newcommand{gp}{\gamma _p}$$\newcommand{mm}{\left\langle m \right\rangle}$$\newcommand{foldchange}{\text{fold-change}}$$\newcommand{ee}[1]{\left\langle 1 \right\rangle}$$\newcommand{var}[1]{\text{Var}\left( 1 \right)}$$\newcommand{bb}[1]{\mathbf{1}}$$\newcommand{th}[1]{\text{th}}$ Variability in the kinetic parameters An idea that could explain the systematic variation between our theoretical predictions and the data is the stochasticity that could be associated with random variation of the kinetic parameters. For example, if cells happen to stochastically have different number of ribosomes, how much would that affect the final distribution. Another good example is the variability in repressor copy number, which would affect the $\kron$ rate.To simplify things what we will do is sample random variations to some of the kinetic parameters, run the dynamics with such parameters, and then reconstruct the corresponding MaxEnt distribution. Then we will combine all of these distributions to see how different this is compared to the one with single parameter values. Unregulated promoter parameter variation Let's begin with the unregulated promoter. The parameters here are $\kpon, \kpoff, r_m, \gm, r_p$, and $\gp$. The simplest scenario would be to sample variations out of a Gaussian distribution. We will set these distributions to be centered at the current value of the parameter we are using, and allow a variation of some defined percentage.Let's define a function that given an array of parameters, it samples random variations. | def param_normal_sample(param, n_samples, std=0.2):
'''
Function that samples variations to the parameter values out of a normal
distribution.
Parameters
----------
param : array-like.
List of parameters from which the samples will be generated.
n_samples : int.
Number or random samples to draw from the distribution
std : float or array-like.
Fractional standard deviations for each of the samples to be taken.
If a single value is given, then all of the distributions will have
the same standard deviation proportional to the mean.
Returns
-------
samples : array-like. Shape = len(param) x n_samples
Random samples of the parameters.
'''
# Initialize array to save output
samples = np.zeros([n_samples, len(param)])
# Loop through parameters
for i, par in enumerate(param):
if len(std) == len(param):
samples[:, i] = np.random.normal(par, par * std[i], n_samples)
elif len(std) == 1:
samples[:, i] = np.random.normal(par, par * std[0], n_samples)
return samples | _____no_output_____ | MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
Let's now load the parameters and generate random samples. | # Load parameter values
par = ccutils.model.load_constants()
# Define parametesr for unregulated promoter
par_names = ['kp_on', 'kp_off', 'rm', 'gm', 'rp']
param = [par[x] for x in par_names]
# Generate samples of all parameters with a 10% variability
n_samples = 999
std = [0.15]
param_sample = param_normal_sample(param, n_samples, std)
# Add reference parameters to list
param_sample = np.append(np.array([[*param]]), param_sample, axis=0) | _____no_output_____ | MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
Having sampled the parameters let's go ahead and run the dynamics for each of these parameter sets. First we need to load the matrix to compute the moments of the distribution after the cell division as a function of the moments before the cell division. | # Read matrix into memory
with open(f'{homedir}/src/theory/pkl_files/binom_coeff_matrix.pkl',
'rb') as file:
unpickler = pickle.Unpickler(file)
Z_mat = unpickler.load()
expo_binom = unpickler.load() | _____no_output_____ | MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
Now let's load the matrix to compute the dynamics of the unregualted two-state promoter | with open('../pkl_files/two_state_protein_dynamics_matrix.pkl',
'rb') as file:
A_mat_unreg_lam = cloudpickle.load(file)
expo_unreg = cloudpickle.load(file) | _____no_output_____ | MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
Next let's define all of the parameters that we will need for the integration. | # Define doubling time
doubling_time = 100
# Define fraction of cell cycle spent with one copy
t_single_frac = 0.6
# Define time for single-promoter state
t_single = 60 * t_single_frac * doubling_time # sec
t_double = 60 * (1 - t_single_frac) * doubling_time # sec
n_cycles = 6
# Define names for dataframe columns
names = par_names + ['m' + str(m[0]) + 'p' + str(m[1]) for m in expo_unreg]
# Initialize DataFrame to save constraints
df_moments = pd.DataFrame([], columns=names) | _____no_output_____ | MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
Now we are ready to run the dynamics in parallel, let's define the function so that we can perform this numerical integration in parallel | compute_dynamics = False
if compute_dynamics:
# Define function for parallel computation
def constraints_parallel(par):
kp_on = par[0]
kp_off = par[1]
rm = par[2]
gm = par[3]
rp = par[4]
# Single promoter
gp_init = 1 / (60 * 60)
rp_init = 500 * gp_init
# Generate matrices for dynamics
# Single promoter
par_unreg_s = [kp_on, kp_off, rm, gm, rp, 0]
# Two promoters
par_unreg_d = [kp_on, kp_off, 2 * rm, gm, rp, 0]
# Initial conditions
A_unreg_s_init = A_mat_unreg_lam(
kp_on, kp_off, rm, gm, rp_init, gp_init
)
# Define initial conditions
mom_init = np.zeros(len(expo_unreg) * 2)
# Set initial condition for zero moment
# Since this needs to add up to 1
mom_init[0] = 1
# Define time on which to perform integration
t = np.linspace(0, 4000 * 60, 10000)
# Numerically integrate equations
m_init = sp.integrate.odeint(
ccutils.model.rhs_dmomdt, mom_init, t, args=(A_unreg_s_init,)
)
# Keep last time point as initial condition
m_init = m_init[-1, :]
# Integrate moment equations
df = ccutils.model.dmomdt_cycles(
m_init,
t_single,
t_double,
A_mat_unreg_lam,
par_unreg_s,
par_unreg_d,
expo_unreg,
n_cycles,
Z_mat,
states=["A", "I"],
n_steps=3000,
)
# Keep only last cycle
df = df[df["cycle"] == df["cycle"].max()]
# Extract time of last cell cycle
time = np.sort(df["time"].unique())
# Compute the time differences
time_diff = np.diff(time)
# Compute the cumulative time difference
time_cumsum = np.cumsum(time_diff)
time_cumsum = time_cumsum / time_cumsum[-1]
# Define array for spacing of cell cycle
a_array = np.zeros(len(time))
a_array[1:] = time_cumsum
# Compute probability based on this array
p_a_array = np.log(2) * 2 ** (1 - a_array)
# Initialize list to append moments
moms = list()
# Loop through moments computing the average moment
for i, mom in enumerate(expo_unreg):
# Generate string that finds the moment
mom_name = "m" + str(mom[0]) + "p" + str(mom[1])
# List rows with moment
mom_bool = [x for x in df.columns if mom_name in x]
# Extract data for this particular moment
df_mom = df.loc[:, mom_bool].sum(axis=1)
# Average moment and append it to list
moms.append(sp.integrate.simps(df_mom * p_a_array, a_array))
# Save results into series in order to append it to data frame
series = pd.Series(list(par) + moms, index=names)
return series
# Run function in parallel
constraint_series = Parallel(n_jobs=6)(
delayed(constraints_parallel)(par) for par in param_sample
)
# Initialize data frame to save list of pareters
df_moments = pd.DataFrame([], columns=names)
for s in constraint_series:
df_moments = df_moments.append(s, ignore_index=True)
df_moments.to_csv(
f"{homedir}/data/csv_maxEnt_dist/" + "MaxEnt_unreg_random.csv",
index=False,
)
df_moments = pd.read_csv(
f"{homedir}/data/csv_maxEnt_dist/" + "MaxEnt_unreg_random.csv"
)
df_moments.head() | _____no_output_____ | MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
Let's look at the distribution of means and standard deviations in mRNA count for these variations in parameters. | # Compute mRNA standard deviations
mRNA_std = np.sqrt(df_moments.m2p0 - df_moments.m1p0**2)
# Initialize figure
fig, ax = plt.subplots(1, 2, figsize=(7, 3))
# Generate ECDF for mean
x, y = ccutils.stats.ecdf(df_moments.m1p0)
ax[0].plot(x, y, lw=0, marker='.')
# add reference line
ax[0].axvline(df_moments.m1p0[0], color='black',
linestyle='--')
# label axis
ax[0].set_xlabel(r'$\left\langle \right.$mRNA/cell$\left. \right\rangle$')
ax[0].set_ylabel('ECDF')
# Generate ECDF for standard deviation
x, y = ccutils.stats.ecdf(mRNA_std)
ax[1].plot(x, y, lw=0, marker='.')
# add reference line
ax[1].axvline(mRNA_std[0], color='black', linestyle='--')
# label axis
ax[1].set_xlabel('STD(mRNA/cell)')
ax[1].set_ylabel('ECDF'); | _____no_output_____ | MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
There is quite a lot of variability compared to the reference value. Let's repeat these plots, but this time for the protein values | # Compute protein standard deviations
protein_std = np.sqrt(df_moments.m0p2 - df_moments.m0p1 ** 2)
# Initialize figure
fig, ax = plt.subplots(1, 2, figsize=(7, 3))
# Generate ECDF for mean
x, y = ccutils.stats.ecdf(df_moments.m0p1)
ax[0].plot(x, y, lw=0, marker=".")
# add reference line
ax[0].axvline(df_moments.m0p1[0], color="black", linestyle="--")
# label axis
ax[0].set_xlabel(r"$\left\langle \right.$protein/cell$\left. \right\rangle$")
ax[0].set_ylabel("ECDF")
# Generate ECDF for standard deviation
x, y = ccutils.stats.ecdf(protein_std)
ax[1].plot(x, y, lw=0, marker=".")
# add reference line
ax[1].axvline(protein_std[0], color="black", linestyle="--")
# label axis
ax[1].set_xlabel("STD(protein/cell)")
ax[1].set_ylabel("ECDF") | _____no_output_____ | MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
Moments of the conditional distribution Let's now compare the mean, variance and skewness of the resulting distribution. For this all we have to use is the so-called [law of total expectation](https://en.wikipedia.org/wiki/Law_of_total_expectation) that states that$$\ee{f(p)} = \ee{\ee{f(p) \mid \theta}_p}_\theta,$$i.e. to compute the expected value of the function $f(p)$ (could be something like $f(p) p^2$) we first compute the average of the function for a parameter set $\theta$, then we average the expected value of the function over all values of $\theta$. Let's for example first compare the resulting mean protein copy numbers for the original value and the one that includes the variability | mean_delta = df_moments.m0p1[0]
mean_sample = df_moments.m0p1.mean()
print(f'mean delta: {np.round(mean_delta, 0)}')
print(f'mean sample: {np.round(mean_sample, 0)}')
print(f'fractional change: {(mean_sample - mean_delta) / mean_delta}') | mean delta: 7733.0
mean sample: 8075.0
fractional change: 0.04428981949722924
| MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
There is an increment of roughly a 4%, so that is pretty small. Let's now look at the variance | var_delta = df_moments.m0p2[0] - df_moments.m0p1[0]**2
var_sample = df_moments.m0p2.mean() - df_moments.m0p1.mean()**2
print(f'variance delta: {np.round(var_delta, 0)}')
print(f'variance sample: {np.round(var_sample, 0)}')
print(f'fractional change: {(var_sample - var_delta) / var_delta}') | variance delta: 2607605.0
variance sample: 10714739.0
fractional change: 3.1090341346727075
| MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
The change in the variance is quite large! Let's see how this reflects to the change in the noise (std/mean). | noise_delta = np.sqrt(var_delta) / mean_delta
noise_sample = np.sqrt(var_sample) / mean_sample
print(f'noise delta: {np.round(noise_delta, 2)}')
print(f'noise sample: {np.round(noise_sample, 2)}') | noise delta: 0.21
noise sample: 0.41
| MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
There is a factor of two of difference when computing the noise. That is quite interesting since that is exactly what we saw the systematic deviation in the data was like. Let's see what the change in the skewness is then. | skew_delta = (
df_moments.m0p3[0] - 3 * mean_delta * var_delta - mean_delta ** 3
) / var_delta ** (3 / 2)
skew_sample = (
df_moments.m0p3.mean() - 3 * mean_sample * var_sample - mean_sample ** 3
) / var_sample ** (3 / 2)
print(f"skewness delta: {np.round(skew_delta, 2)}")
print(f"skewness sample: {np.round(skew_sample, 2)}") | skewness delta: 0.71
skewness sample: 1.26
| MIT | src/theory/sandbox/random_parameter_sampling.ipynb | RPGroup-PBoC/chann_cap |
https://spinningup.openai.com/en/latest/algorithms/ppo.html | %pylab inline
import random
import time
import numpy as np
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.models import Model, clone_model
from tensorflow.keras.optimizers import Adam, SGD
from tensorflow.keras.layers import Input, Dense, Activation, Lambda
import gym
#env = gym.make("CartPole-v1")
env = gym.make("Lander")
env.observation_space, env.action_space, type(env.action_space) | _____no_output_____ | MIT | .ipynb_checkpoints/Lunarlander-checkpoint.ipynb | ezztherose/notebooks |
Time Series Cross Validation: Holt-Winters Exponential Smoothing with additive errors and seasonality. | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('ggplot')
#forecast error metrics
from forecast_tools.metrics import (mean_absolute_scaled_error,
root_mean_squared_error,
symmetric_mean_absolute_percentage_error)
import statsmodels as sm
from statsmodels.tsa.statespace.exponential_smoothing import ExponentialSmoothing
import warnings
warnings.filterwarnings('ignore')
print(sm.__version__)
#ensemble learning
from amb_forecast.ensemble import (Ensemble, UnweightedVote) | _____no_output_____ | MIT | analysis/model_selection/stage1/01_hw-tscv.ipynb | TomMonks/swast-benchmarking |
Data InputThe constants `TOP_LEVEL`, `STAGE`, `REGION`,`TRUST` and `METHOD` are used to control data selection and the directory for outputting results. > Output file is `f'{TOP_LEVEL}/{STAGE}/{REGION}-{METHOD}_{metric}.csv'.csv`. where metric will be smape, rmse, mase, coverage_80 and coverage_95. Note: `REGION`: is also used to select the correct data from the input dataframe. | TOP_LEVEL = '../../../results/model_selection'
STAGE = 'stage1'
REGION = 'Trust'
METHOD = 'hw'
FILE_NAME = 'Daily_Responses_5_Years_2019_full.csv'
#split training and test data.
TEST_SPLIT_DATE = '2019-01-01'
#second subdivide: train and val
VAL_SPLIT_DATE = '2017-07-01'
#discard data after 2020 due to coronavirus
#this is the subject of a seperate study.
DISCARD_DATE = '2020-01-01'
#read in path
path = f'../../../data/{FILE_NAME}'
def pre_process_daily_data(path, index_col, by_col,
values, dayfirst=False):
'''
Daily data is stored in long format. Read in
and pivot to wide format so that there is a single
colmumn for each regions time series.
'''
df = pd.read_csv(path, index_col=index_col, parse_dates=True,
dayfirst=dayfirst)
df.columns = map(str.lower, df.columns)
df.index.rename(str(df.index.name).lower(), inplace=True)
clean_table = pd.pivot_table(df, values=values.lower(),
index=[index_col.lower()],
columns=[by_col.lower()], aggfunc=np.sum)
clean_table.index.freq = 'D'
return clean_table
clean = pre_process_daily_data(path, 'Actual_dt', 'ORA', 'Actual_Value',
dayfirst=False)
clean.head() | _____no_output_____ | MIT | analysis/model_selection/stage1/01_hw-tscv.ipynb | TomMonks/swast-benchmarking |
Train Test Split | def ts_train_test_split(data, split_date):
'''
Split time series into training and test data
Parameters:
-------
data - pd.DataFrame - time series data. Index expected as datatimeindex
split_date - the date on which to split the time series
Returns:
--------
tuple (len=2)
0. pandas.DataFrame - training dataset
1. pandas.DataFrame - test dataset
'''
train = data.loc[data.index < split_date]
test = data.loc[data.index >= split_date]
return train, test
train, test = ts_train_test_split(clean, split_date=TEST_SPLIT_DATE)
#exclude data after 2020 due to coronavirus.
test, discard = ts_train_test_split(test, split_date=DISCARD_DATE)
#train split into train and validation
train, val = ts_train_test_split(train, split_date=VAL_SPLIT_DATE)
train.shape
val.shape | _____no_output_____ | MIT | analysis/model_selection/stage1/01_hw-tscv.ipynb | TomMonks/swast-benchmarking |
Test fitting and predicting with model.The class below is a 'wrapper' class that provides the same interfacew for all methods and works in the time series cross valiation code. | class ExponentialSmoothingWrapper:
'''
Facade for statsmodels exponential smoothing models. This wrapper
provides a common interface for all models and allow interop with
the custom time series cross validation code.
'''
def __init__(self, trend=False, damped_trend=False, seasonal=None):
self._trend = trend
self._seasonal= seasonal
self._damped_trend = damped_trend
def _get_resids(self):
return self._fitted.resid
def _get_preds(self):
return self._fitted.fittedvalues
def fit(self, train):
'''
Fit the model
Parameters:
train: array-like
time series to fit.
'''
self._model = ExponentialSmoothing(endog=train,
trend=self._trend,
damped_trend=self._damped_trend,
seasonal=self._seasonal)
self._fitted = self._model.fit()
self._t = len(train)
def predict(self, horizon, return_conf_int=False, alpha=0.2):
'''
Forecast the time series from the final point in the fitted series.
Parameters:
----------
horizon: int
steps ahead to forecast
return_conf_int: bool, optional (default=False)
Return prediction interval?
alpha: float
Used if return_conf_int=True. 100(1-alpha) interval.
'''
forecast = self._fitted.get_forecast(horizon)
mean_forecast = forecast.summary_frame()['mean'].to_numpy()
if return_conf_int:
df = forecast.summary_frame(alpha=alpha)
pi = df[['mean_ci_lower', 'mean_ci_upper']].to_numpy()
return mean_forecast, pi
else:
return mean_forecast
fittedvalues = property(_get_preds)
resid = property(_get_resids) | _____no_output_____ | MIT | analysis/model_selection/stage1/01_hw-tscv.ipynb | TomMonks/swast-benchmarking |
Example fitting and prediction with comb | model_1 = ExponentialSmoothingWrapper(trend=True, damped_trend=True,
seasonal=7)
estimators = {'shw': model_1}
ens = Ensemble(estimators, UnweightedVote())
ens.fit(train[REGION])
H = 5
ens_preds = ens.predict(horizon=H)
ens_preds, pi = ens.predict(horizon=H, return_conf_int=True)
ens_preds
pi | _____no_output_____ | MIT | analysis/model_selection/stage1/01_hw-tscv.ipynb | TomMonks/swast-benchmarking |
Time Series Cross Validation`time_series_cv` implements rolling forecast origin cross validation for time series. It does not calculate forecast error, but instead returns the predictions, pred intervals and actuals in an array that can be passed to any forecast error function. (this is for efficiency and allows additional metrics to be calculated if needed). | def time_series_cv(model, train, val, horizons, alpha=0.2, step=1):
'''
Time series cross validation across multiple horizons for a single model.
Incrementally adds additional training data to the model and tests
across a provided list of forecast horizons. Note that function tests a
model only against complete validation sets. E.g. if horizon = 15 and
len(val) = 12 then no testing is done. In the case of multiple horizons
e.g. [7, 14, 28] then the function will use the maximum forecast horizon
to calculate the number of iterations i.e if len(val) = 365 and step = 1
then no. iterations = len(val) - max(horizon) = 365 - 28 = 337.
Parameters:
--------
model - forecasting model
error_func - function to measure forecast error
train - np.array - vector of training data
val - np.array - vector of validation data
horizon - list of ints, forecast horizon e.g. [7, 14, 28] days
step -- step taken in cross validation
e.g. 1 in next cross validation training data includes next point
from the validation set.
e.g. 7 in the next cross validation training data includes next 7 points
(default=1)
Returns:
-------
np.array - vector of forecast errors from the CVs.
'''
cv_preds = [] #mean forecast
cv_actuals = [] # actuals
cv_pis = [] #prediction intervals
split = 0
print('split => ', end="")
for i in range(0, len(val) - max(horizons) + 1, step):
split += 1
print(f'{split}, ', end="")
train_cv = np.concatenate([train, val[:i]], axis=0)
model.fit(train_cv)
#predict the maximum horizon
preds, pis = model.predict(horizon=len(val[i:i+max(horizons)]),
return_conf_int=True,
alpha=alpha)
cv_h_preds = []
cv_test = []
cv_h_pis = []
for h in horizons:
#store the h-step prediction
cv_h_preds.append(preds[:h])
#store the h-step actual value
cv_test.append(val.iloc[i:i+h])
cv_h_pis.append(pis[:h])
cv_preds.append(cv_h_preds)
cv_actuals.append(cv_test)
cv_pis.append(cv_h_pis)
print('done.\n')
return cv_preds, cv_actuals, cv_pis | _____no_output_____ | MIT | analysis/model_selection/stage1/01_hw-tscv.ipynb | TomMonks/swast-benchmarking |
Custom functions for calculating CV scores for point predictions and coverage.These functions have been written to work with the output of `time_series_cv` | def split_cv_error(cv_preds, cv_test, error_func):
'''
Forecast error in the current split
Params:
-----
cv_preds, np.array
Split predictions
cv_test: np.array
acutal ground truth observations
error_func: object
function with signature (y_true, y_preds)
Returns:
-------
np.ndarray
cross validation errors for split
'''
n_splits = len(cv_preds)
cv_errors = []
for split in range(n_splits):
pred_error = error_func(cv_test[split], cv_preds[split])
cv_errors.append(pred_error)
return np.array(cv_errors)
def forecast_errors_cv(cv_preds, cv_test, error_func):
'''
Forecast errors by forecast horizon
Params:
------
cv_preds: np.ndarray
Array of arrays. Each array is of size h representing
the forecast horizon specified.
cv_test: np.ndarray
Array of arrays. Each array is of size h representing
the forecast horizon specified.
error_func: object
function with signature (y_true, y_preds)
Returns:
-------
np.ndarray
'''
cv_test = np.array(cv_test)
cv_preds = np.array(cv_preds)
n_horizons = len(cv_test)
horizon_errors = []
for h in range(n_horizons):
split_errors = split_cv_error(cv_preds[h], cv_test[h], error_func)
horizon_errors.append(split_errors)
return np.array(horizon_errors)
def split_coverage(cv_test, cv_intervals):
n_splits = len(cv_test)
cv_errors = []
for split in range(n_splits):
val = np.asarray(cv_test[split])
lower = cv_intervals[split].T[0]
upper = cv_intervals[split].T[1]
coverage = len(np.where((val > lower) & (val < upper))[0])
coverage = coverage / len(val)
cv_errors.append(coverage)
return np.array(cv_errors)
def prediction_int_coverage_cv(cv_test, cv_intervals):
cv_test = np.array(cv_test)
cv_intervals = np.array(cv_intervals)
n_horizons = len(cv_test)
horizon_coverage = []
for h in range(n_horizons):
split_coverages = split_coverage(cv_test[h], cv_intervals[h])
horizon_coverage.append(split_coverages)
return np.array(horizon_coverage)
def split_cv_error_scaled(cv_preds, cv_test, y_train):
n_splits = len(cv_preds)
cv_errors = []
for split in range(n_splits):
pred_error = mean_absolute_scaled_error(cv_test[split], cv_preds[split],
y_train, period=7)
cv_errors.append(pred_error)
return np.array(cv_errors)
def forecast_errors_cv_scaled(cv_preds, cv_test, y_train):
cv_test = np.array(cv_test)
cv_preds = np.array(cv_preds)
n_horizons = len(cv_test)
horizon_errors = []
for h in range(n_horizons):
split_errors = split_cv_error_scaled(cv_preds[h], cv_test[h], y_train)
horizon_errors.append(split_errors)
return np.array(horizon_errors) | _____no_output_____ | MIT | analysis/model_selection/stage1/01_hw-tscv.ipynb | TomMonks/swast-benchmarking |
Get model and conduct tscv. | def get_model():
'''
Create ensemble model
'''
model_1 = ExponentialSmoothingWrapper(trend=True, damped_trend=True,
seasonal=7)
estimators = {'hw': model_1}
return Ensemble(estimators, UnweightedVote())
horizons = [7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 365]
model = get_model()
results = time_series_cv(model, train[REGION], val[REGION], horizons,
alpha=0.2, step=7)
cv_preds, cv_test, cv_intervals = results
#CV point predictions smape
cv_errors = forecast_errors_cv(cv_preds, cv_test,
symmetric_mean_absolute_percentage_error)
df = pd.DataFrame(cv_errors)
df.columns = horizons
df.describe()
#output sMAPE results to file
metric = 'smape'
print(f'{TOP_LEVEL}/{STAGE}/{REGION}-{METHOD}_{metric}.csv')
df.to_csv(f'{TOP_LEVEL}/{STAGE}/{REGION}-{METHOD}_{metric}.csv')
#CV point predictions rmse
cv_errors = forecast_errors_cv(cv_preds, cv_test, root_mean_squared_error)
df = pd.DataFrame(cv_errors)
df.columns = horizons
df.describe()
#output rmse
metric = 'rmse'
print(f'{TOP_LEVEL}/{STAGE}/{REGION}-{METHOD}_{metric}.csv')
df.to_csv(f'{TOP_LEVEL}/{STAGE}/{REGION}-{METHOD}_{metric}.csv')
#mase
cv_errors = forecast_errors_cv_scaled(cv_preds, cv_test, train[REGION])
df = pd.DataFrame(cv_errors)
df.columns = horizons
df.describe()
#output rmse
metric = 'mase'
print(f'{TOP_LEVEL}/{STAGE}/{REGION}-{METHOD}_{metric}.csv')
df.to_csv(f'{TOP_LEVEL}/{STAGE}/{REGION}-{METHOD}_{metric}.csv')
#80% PIs
cv_coverage = prediction_int_coverage_cv(cv_test, cv_intervals)
df = pd.DataFrame(cv_coverage)
df.columns = horizons
df.describe()
#output 80% PI coverage
metric = 'coverage_80'
print(f'{TOP_LEVEL}/{STAGE}/{REGION}-{METHOD}_{metric}.csv')
df.to_csv(f'{TOP_LEVEL}/{STAGE}/{REGION}-{METHOD}_{metric}.csv') | ../../../results/model_selection/stage1/Trust-hw_coverage_80.csv
| MIT | analysis/model_selection/stage1/01_hw-tscv.ipynb | TomMonks/swast-benchmarking |
Rerun for 95% PI coverage | horizons = [7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 365]
model = get_model()
results = time_series_cv(model, train[REGION], val[REGION], horizons,
alpha=0.05, step=7)
#95% PIs
cv_preds, cv_test, cv_intervals = results
cv_coverage = prediction_int_coverage_cv(cv_test, cv_intervals)
df = pd.DataFrame(cv_coverage)
df.columns = horizons
df.describe()
#output 95% PI coverage
metric = 'coverage_95'
print(f'{TOP_LEVEL}/{STAGE}/{REGION}-{METHOD}_{metric}.csv')
df.to_csv(f'{TOP_LEVEL}/{STAGE}/{REGION}-{METHOD}_{metric}.csv') | ../../../results/model_selection/stage1/Trust-hw_coverage_95.csv
| MIT | analysis/model_selection/stage1/01_hw-tscv.ipynb | TomMonks/swast-benchmarking |
**Preparing data** | train = pd.read_csv('../input/human-activity-recognition-with-smartphones/train.csv')
train.head()
train.shape
train.isnull().values.any()
test = pd.read_csv('../input/human-activity-recognition-with-smartphones/test.csv')
test.head()
print(test.shape)
test.isnull().values.any()
X_train = train.iloc[:,:-2]
Y_train = train.iloc[:,-1]
print(X_train.shape)
print(Y_train.shape)
X_test = test.iloc[:,:-2]
Y_test = test.iloc[:,-1]
print(X_test.shape)
print(Y_test.shape)
Category_counts = np.array(Y_train.value_counts())
Category_counts | _____no_output_____ | MIT | human-activity-recognition.ipynb | varunsh20/Human-activity-recognition- |
**There are five different activities i.e 'Standing','Sitting','Laying','Walking','Walking_downstairs','Walking_upstairs'.** **Plotting a count plot of each activity in the training data.** | import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(10,8))
sns.countplot(train.Activity)
plt.xticks(rotation=45)
| _____no_output_____ | MIT | human-activity-recognition.ipynb | varunsh20/Human-activity-recognition- |
**Creating a scatter plot using t-SNE** Using t-SNE data can be visualized from a extremely high dimensional space to a low dimensional space and still it retains lots of actual information. Given training data has 562 unqiue features, using t-SNE let's visualize it to a 2D space. | from sklearn.manifold import TSNE
tsne = TSNE(random_state = 42, n_components=2, verbose=1, perplexity=50, n_iter=1000).fit_transform(X_train)
plt.figure(figsize=(12,8))
sns.scatterplot(x =tsne[:, 0], y = tsne[:, 1],data = train,hue = train["Activity"])
train['tBodyAcc-mean()-X'].hist()
train['tBodyAcc-mean()-Y'].hist()
train['tBodyAcc-mean()-Z'].hist()
#Y_train = Y_train.reshape((-1,1))
#Y_test = Y_test.reshape((-1,1))
#print(Y_train.shape)
#print(Y_test.shape) | _____no_output_____ | MIT | human-activity-recognition.ipynb | varunsh20/Human-activity-recognition- |
**Scaling the data** **Creating labels for different classes** | from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
Y_train = le.fit_transform(Y_train)
Y_test = le.transform(Y_test)
le.classes_ | _____no_output_____ | MIT | human-activity-recognition.ipynb | varunsh20/Human-activity-recognition- |
**It is necessary to create a one-hot vector for classes to fit the data in the model.** | Y_train = pd.get_dummies(Y_train).values
Y_test = pd.get_dummies(Y_test).values
Y_train
Y_train.shape
| _____no_output_____ | MIT | human-activity-recognition.ipynb | varunsh20/Human-activity-recognition- |
**Creating our model** | from tensorflow.keras import models
from tensorflow.keras.layers import Dense,Dropout
model = models.Sequential()
model.add(Dense(64,activation='relu',input_dim=X_train.shape[1]))
model.add(Dropout(0.25))
model.add(Dense(128,activation='relu'))
model.add(Dense(64,activation='relu'))
model.add(Dense(32,activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(10,activation='relu'))
model.add(Dense(6,activation='softmax'))
model.summary()
| Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 64) 35968
_________________________________________________________________
dropout (Dropout) (None, 64) 0
_________________________________________________________________
dense_1 (Dense) (None, 128) 8320
_________________________________________________________________
dense_2 (Dense) (None, 64) 8256
_________________________________________________________________
dense_3 (Dense) (None, 32) 2080
_________________________________________________________________
dropout_1 (Dropout) (None, 32) 0
_________________________________________________________________
dense_4 (Dense) (None, 10) 330
_________________________________________________________________
dense_5 (Dense) (None, 6) 66
=================================================================
Total params: 55,020
Trainable params: 55,020
Non-trainable params: 0
_________________________________________________________________
| MIT | human-activity-recognition.ipynb | varunsh20/Human-activity-recognition- |
**Compiling and training the model.** | model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy'])
hist = model.fit(X_train,Y_train,epochs=30,batch_size = 128,validation_split=0.3) | Epoch 1/30
41/41 [==============================] - 0s 9ms/step - loss: 1.3677 - accuracy: 0.4131 - val_loss: 0.8933 - val_accuracy: 0.6668
Epoch 2/30
41/41 [==============================] - 0s 4ms/step - loss: 0.7899 - accuracy: 0.6731 - val_loss: 0.5051 - val_accuracy: 0.8314
Epoch 3/30
41/41 [==============================] - 0s 4ms/step - loss: 0.5186 - accuracy: 0.7928 - val_loss: 0.3797 - val_accuracy: 0.8613
Epoch 4/30
41/41 [==============================] - 0s 4ms/step - loss: 0.3697 - accuracy: 0.8581 - val_loss: 0.3890 - val_accuracy: 0.8708
Epoch 5/30
41/41 [==============================] - 0s 4ms/step - loss: 0.2890 - accuracy: 0.8877 - val_loss: 0.2865 - val_accuracy: 0.9130
Epoch 6/30
41/41 [==============================] - 0s 4ms/step - loss: 0.2318 - accuracy: 0.9162 - val_loss: 0.2936 - val_accuracy: 0.8867
Epoch 7/30
41/41 [==============================] - 0s 4ms/step - loss: 0.2054 - accuracy: 0.9217 - val_loss: 0.2423 - val_accuracy: 0.9229
Epoch 8/30
41/41 [==============================] - 0s 4ms/step - loss: 0.1832 - accuracy: 0.9339 - val_loss: 0.2686 - val_accuracy: 0.9180
Epoch 9/30
41/41 [==============================] - 0s 4ms/step - loss: 0.1609 - accuracy: 0.9403 - val_loss: 0.2350 - val_accuracy: 0.9234
Epoch 10/30
41/41 [==============================] - 0s 4ms/step - loss: 0.1368 - accuracy: 0.9491 - val_loss: 0.2061 - val_accuracy: 0.9302
Epoch 11/30
41/41 [==============================] - 0s 4ms/step - loss: 0.1432 - accuracy: 0.9493 - val_loss: 0.2020 - val_accuracy: 0.9311
Epoch 12/30
41/41 [==============================] - 0s 4ms/step - loss: 0.1283 - accuracy: 0.9532 - val_loss: 0.1948 - val_accuracy: 0.9284
Epoch 13/30
41/41 [==============================] - 0s 4ms/step - loss: 0.1163 - accuracy: 0.9571 - val_loss: 0.2416 - val_accuracy: 0.9374
Epoch 14/30
41/41 [==============================] - 0s 4ms/step - loss: 0.1073 - accuracy: 0.9594 - val_loss: 0.2372 - val_accuracy: 0.9329
Epoch 15/30
41/41 [==============================] - 0s 4ms/step - loss: 0.1043 - accuracy: 0.9637 - val_loss: 0.1879 - val_accuracy: 0.9306
Epoch 16/30
41/41 [==============================] - 0s 4ms/step - loss: 0.1036 - accuracy: 0.9619 - val_loss: 0.3256 - val_accuracy: 0.9093
Epoch 17/30
41/41 [==============================] - 0s 4ms/step - loss: 0.1034 - accuracy: 0.9633 - val_loss: 0.2749 - val_accuracy: 0.9248
Epoch 18/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0881 - accuracy: 0.9689 - val_loss: 0.2850 - val_accuracy: 0.9352
Epoch 19/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0807 - accuracy: 0.9695 - val_loss: 0.2876 - val_accuracy: 0.9266
Epoch 20/30
41/41 [==============================] - 0s 4ms/step - loss: 0.1229 - accuracy: 0.9536 - val_loss: 0.2350 - val_accuracy: 0.9361
Epoch 21/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0986 - accuracy: 0.9660 - val_loss: 0.2541 - val_accuracy: 0.9306
Epoch 22/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0909 - accuracy: 0.9666 - val_loss: 0.2134 - val_accuracy: 0.9343
Epoch 23/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0816 - accuracy: 0.9699 - val_loss: 0.2951 - val_accuracy: 0.9275
Epoch 24/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0827 - accuracy: 0.9709 - val_loss: 0.1860 - val_accuracy: 0.9406
Epoch 25/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0900 - accuracy: 0.9648 - val_loss: 0.2276 - val_accuracy: 0.9388
Epoch 26/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0711 - accuracy: 0.9738 - val_loss: 0.2106 - val_accuracy: 0.9393
Epoch 27/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0739 - accuracy: 0.9749 - val_loss: 0.2445 - val_accuracy: 0.9329
Epoch 28/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0848 - accuracy: 0.9675 - val_loss: 0.2974 - val_accuracy: 0.9288
Epoch 29/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0686 - accuracy: 0.9755 - val_loss: 0.1919 - val_accuracy: 0.9415
Epoch 30/30
41/41 [==============================] - 0s 4ms/step - loss: 0.0589 - accuracy: 0.9788 - val_loss: 0.2649 - val_accuracy: 0.9356
| MIT | human-activity-recognition.ipynb | varunsh20/Human-activity-recognition- |
**Visualising loss and accuracy curve of the model.** | plt.plot(hist.history['loss'],label='train_loss')
plt.plot(hist.history['val_loss'],label='val_loss')
plt.xlabel('Epochs',fontsize=18)
plt.ylabel('Loss',fontsize=18)
plt.legend()
plt.title('Loss Curve',fontsize=22)
plt.show()
plt.plot(hist.history['accuracy'],label='train_accuracy')
plt.plot(hist.history['val_accuracy'],label='val_accuracy')
plt.xlabel('Epochs',fontsize=18)
plt.ylabel('Accuracy',fontsize=18)
plt.legend()
plt.title('Accuracy Curve',fontsize=22)
plt.show()
model.save('my_model.h5') | _____no_output_____ | MIT | human-activity-recognition.ipynb | varunsh20/Human-activity-recognition- |
**Making predictions on test data** | predict = model.predict(X_test)
predictions = np.argmax(predict,axis=1)
predictions
Y_test = np.argmax(Y_test,axis=1) | _____no_output_____ | MIT | human-activity-recognition.ipynb | varunsh20/Human-activity-recognition- |
**Calculating accuracy** | from sklearn.metrics import accuracy_score,precision_score,recall_score,confusion_matrix
from mlxtend.plotting import plot_confusion_matrix
conf_matrix = confusion_matrix(Y_test,predictions)
plot_confusion_matrix(conf_matrix)
precision = precision_score(Y_test,predictions,average='weighted')
recall = recall_score(Y_test, predictions,average='weighted')
accuracy = accuracy_score(Y_test,predictions)
print("Accuracy = "+str(accuracy))
print("Precision = "+str(precision))
print("Recall = "+str(recall)) | Accuracy = 0.9216152019002375
Precision = 0.9282570445597496
Recall = 0.9216152019002375
| MIT | human-activity-recognition.ipynb | varunsh20/Human-activity-recognition- |
**Chapter 16 – Natural Language Processing with RNNs and Attention** _This notebook contains all the sample code in chapter 16._ Run in Google Colab Setup First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0. | # Python ≥3.5 is required
import sys
assert sys.version_info >= (3, 5)
# Scikit-Learn ≥0.20 is required
import sklearn
assert sklearn.__version__ >= "0.20"
try:
# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x
!pip install -q -U tensorflow-addons
IS_COLAB = True
except Exception:
IS_COLAB = False
# TensorFlow ≥2.0 is required
import tensorflow as tf
from tensorflow import keras
assert tf.__version__ >= "2.0"
if not tf.config.list_physical_devices('GPU'):
print("No GPU was detected. LSTMs and CNNs can be very slow without a GPU.")
if IS_COLAB:
print("Go to Runtime > Change runtime and select a GPU hardware accelerator.")
# Common imports
import numpy as np
import os
# to make this notebook's output stable across runs
np.random.seed(42)
tf.random.set_seed(42)
# To plot pretty figures
%matplotlib inline
import matplotlib as mpl
import matplotlib.pyplot as plt
mpl.rc('axes', labelsize=14)
mpl.rc('xtick', labelsize=12)
mpl.rc('ytick', labelsize=12)
# Where to save the figures
PROJECT_ROOT_DIR = "."
CHAPTER_ID = "nlp"
IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID)
os.makedirs(IMAGES_PATH, exist_ok=True)
def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300):
path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension)
print("Saving figure", fig_id)
if tight_layout:
plt.tight_layout()
plt.savefig(path, format=fig_extension, dpi=resolution) | No GPU was detected. LSTMs and CNNs can be very slow without a GPU.
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Char-RNN Splitting a sequence into batches of shuffled windows For example, let's split the sequence 0 to 14 into windows of length 5, each shifted by 2 (e.g.,`[0, 1, 2, 3, 4]`, `[2, 3, 4, 5, 6]`, etc.), then shuffle them, and split them into inputs (the first 4 steps) and targets (the last 4 steps) (e.g., `[2, 3, 4, 5, 6]` would be split into `[[2, 3, 4, 5], [3, 4, 5, 6]]`), then create batches of 3 such input/target pairs: | np.random.seed(42)
tf.random.set_seed(42)
n_steps = 5
dataset = tf.data.Dataset.from_tensor_slices(tf.range(15))
dataset = dataset.window(n_steps, shift=2, drop_remainder=True)
dataset = dataset.flat_map(lambda window: window.batch(n_steps))
dataset = dataset.shuffle(10).map(lambda window: (window[:-1], window[1:]))
dataset = dataset.batch(3).prefetch(1)
for index, (X_batch, Y_batch) in enumerate(dataset):
print("_" * 20, "Batch", index, "\nX_batch")
print(X_batch.numpy())
print("=" * 5, "\nY_batch")
print(Y_batch.numpy()) | ____________________ Batch 0
X_batch
[[6 7 8 9]
[2 3 4 5]
[4 5 6 7]]
=====
Y_batch
[[ 7 8 9 10]
[ 3 4 5 6]
[ 5 6 7 8]]
____________________ Batch 1
X_batch
[[ 0 1 2 3]
[ 8 9 10 11]
[10 11 12 13]]
=====
Y_batch
[[ 1 2 3 4]
[ 9 10 11 12]
[11 12 13 14]]
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Loading the Data and Preparing the Dataset | shakespeare_url = "https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt"
filepath = keras.utils.get_file("shakespeare.txt", shakespeare_url)
with open(filepath) as f:
shakespeare_text = f.read()
print(shakespeare_text[:148])
"".join(sorted(set(shakespeare_text.lower())))
tokenizer = keras.preprocessing.text.Tokenizer(char_level=True)
tokenizer.fit_on_texts(shakespeare_text)
tokenizer.texts_to_sequences(["First"])
tokenizer.sequences_to_texts([[20, 6, 9, 8, 3]])
max_id = len(tokenizer.word_index) # number of distinct characters
dataset_size = tokenizer.document_count # total number of characters
[encoded] = np.array(tokenizer.texts_to_sequences([shakespeare_text])) - 1
train_size = dataset_size * 90 // 100
dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size])
n_steps = 100
window_length = n_steps + 1 # target = input shifted 1 character ahead
dataset = dataset.repeat().window(window_length, shift=1, drop_remainder=True)
dataset = dataset.flat_map(lambda window: window.batch(window_length))
np.random.seed(42)
tf.random.set_seed(42)
batch_size = 32
dataset = dataset.shuffle(10000).batch(batch_size)
dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))
dataset = dataset.map(
lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))
dataset = dataset.prefetch(1)
for X_batch, Y_batch in dataset.take(1):
print(X_batch.shape, Y_batch.shape) | (32, 100, 39) (32, 100)
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Creating and Training the Model | model = keras.models.Sequential([
keras.layers.GRU(128, return_sequences=True, input_shape=[None, max_id],
dropout=0.2, recurrent_dropout=0.2),
keras.layers.GRU(128, return_sequences=True,
dropout=0.2, recurrent_dropout=0.2),
keras.layers.TimeDistributed(keras.layers.Dense(max_id,
activation="softmax"))
])
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam")
history = model.fit(dataset, steps_per_epoch=train_size // batch_size,
epochs=10) | Train for 31370 steps
Epoch 1/10
31370/31370 [==============================] - 7150s 228ms/step - loss: 1.4671
Epoch 2/10
31370/31370 [==============================] - 7094s 226ms/step - loss: 1.3614
Epoch 3/10
31370/31370 [==============================] - 7063s 225ms/step - loss: 1.3404
Epoch 4/10
31370/31370 [==============================] - 7039s 224ms/step - loss: 1.3311
Epoch 5/10
31370/31370 [==============================] - 7056s 225ms/step - loss: 1.3256
Epoch 6/10
31370/31370 [==============================] - 7049s 225ms/step - loss: 1.3209
Epoch 7/10
31370/31370 [==============================] - 7068s 225ms/step - loss: 1.3166
Epoch 8/10
31370/31370 [==============================] - 7030s 224ms/step - loss: 1.3138
Epoch 9/10
31370/31370 [==============================] - 7061s 225ms/step - loss: 1.3120
Epoch 10/10
31370/31370 [==============================] - 7177s 229ms/step - loss: 1.3105
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Using the Model to Generate Text | def preprocess(texts):
X = np.array(tokenizer.texts_to_sequences(texts)) - 1
return tf.one_hot(X, max_id)
X_new = preprocess(["How are yo"])
Y_pred = model.predict_classes(X_new)
tokenizer.sequences_to_texts(Y_pred + 1)[0][-1] # 1st sentence, last char
tf.random.set_seed(42)
tf.random.categorical([[np.log(0.5), np.log(0.4), np.log(0.1)]], num_samples=40).numpy()
def next_char(text, temperature=1):
X_new = preprocess([text])
y_proba = model.predict(X_new)[0, -1:, :]
rescaled_logits = tf.math.log(y_proba) / temperature
char_id = tf.random.categorical(rescaled_logits, num_samples=1) + 1
return tokenizer.sequences_to_texts(char_id.numpy())[0]
tf.random.set_seed(42)
next_char("How are yo", temperature=1)
def complete_text(text, n_chars=50, temperature=1):
for _ in range(n_chars):
text += next_char(text, temperature)
return text
tf.random.set_seed(42)
print(complete_text("t", temperature=0.2))
print(complete_text("t", temperature=1))
print(complete_text("t", temperature=2)) | th no cyty
use ffor was firive this toighingaber; b
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Stateful RNN | tf.random.set_seed(42)
dataset = tf.data.Dataset.from_tensor_slices(encoded[:train_size])
dataset = dataset.window(window_length, shift=n_steps, drop_remainder=True)
dataset = dataset.flat_map(lambda window: window.batch(window_length))
dataset = dataset.repeat().batch(1)
dataset = dataset.map(lambda windows: (windows[:, :-1], windows[:, 1:]))
dataset = dataset.map(
lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))
dataset = dataset.prefetch(1)
batch_size = 32
encoded_parts = np.array_split(encoded[:train_size], batch_size)
datasets = []
for encoded_part in encoded_parts:
dataset = tf.data.Dataset.from_tensor_slices(encoded_part)
dataset = dataset.window(window_length, shift=n_steps, drop_remainder=True)
dataset = dataset.flat_map(lambda window: window.batch(window_length))
datasets.append(dataset)
dataset = tf.data.Dataset.zip(tuple(datasets)).map(lambda *windows: tf.stack(windows))
dataset = dataset.repeat().map(lambda windows: (windows[:, :-1], windows[:, 1:]))
dataset = dataset.map(
lambda X_batch, Y_batch: (tf.one_hot(X_batch, depth=max_id), Y_batch))
dataset = dataset.prefetch(1)
model = keras.models.Sequential([
keras.layers.GRU(128, return_sequences=True, stateful=True,
dropout=0.2, recurrent_dropout=0.2,
batch_input_shape=[batch_size, None, max_id]),
keras.layers.GRU(128, return_sequences=True, stateful=True,
dropout=0.2, recurrent_dropout=0.2),
keras.layers.TimeDistributed(keras.layers.Dense(max_id,
activation="softmax"))
])
class ResetStatesCallback(keras.callbacks.Callback):
def on_epoch_begin(self, epoch, logs):
self.model.reset_states()
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam")
steps_per_epoch = train_size // batch_size // n_steps
history = model.fit(dataset, steps_per_epoch=steps_per_epoch, epochs=50,
callbacks=[ResetStatesCallback()]) | Train for 313 steps
Epoch 1/50
313/313 [==============================] - 62s 198ms/step - loss: 2.6189
Epoch 2/50
313/313 [==============================] - 58s 187ms/step - loss: 2.2091
Epoch 3/50
313/313 [==============================] - 56s 178ms/step - loss: 2.0775
Epoch 4/50
313/313 [==============================] - 56s 179ms/step - loss: 2.4689
Epoch 5/50
313/313 [==============================] - 56s 179ms/step - loss: 2.3274
Epoch 6/50
313/313 [==============================] - 57s 183ms/step - loss: 2.1412
Epoch 7/50
313/313 [==============================] - 57s 183ms/step - loss: 2.0748
Epoch 8/50
313/313 [==============================] - 56s 179ms/step - loss: 1.9850
Epoch 9/50
313/313 [==============================] - 56s 179ms/step - loss: 1.9465
Epoch 10/50
313/313 [==============================] - 56s 179ms/step - loss: 1.8995
Epoch 11/50
313/313 [==============================] - 57s 182ms/step - loss: 1.8576
Epoch 12/50
313/313 [==============================] - 56s 179ms/step - loss: 1.8510
Epoch 13/50
313/313 [==============================] - 57s 184ms/step - loss: 1.8038
Epoch 14/50
313/313 [==============================] - 56s 178ms/step - loss: 1.7867
Epoch 15/50
313/313 [==============================] - 56s 180ms/step - loss: 1.7635
Epoch 16/50
313/313 [==============================] - 56s 179ms/step - loss: 1.7270
Epoch 17/50
313/313 [==============================] - 58s 184ms/step - loss: 1.7097
<<31 more lines>>
313/313 [==============================] - 58s 185ms/step - loss: 1.5998
Epoch 34/50
313/313 [==============================] - 58s 184ms/step - loss: 1.5954
Epoch 35/50
313/313 [==============================] - 58s 185ms/step - loss: 1.5944
Epoch 36/50
313/313 [==============================] - 57s 183ms/step - loss: 1.5902
Epoch 37/50
313/313 [==============================] - 57s 183ms/step - loss: 1.5893
Epoch 38/50
313/313 [==============================] - 59s 187ms/step - loss: 1.5845
Epoch 39/50
313/313 [==============================] - 57s 183ms/step - loss: 1.5821
Epoch 40/50
313/313 [==============================] - 59s 187ms/step - loss: 1.5798
Epoch 41/50
313/313 [==============================] - 57s 181ms/step - loss: 1.5794
Epoch 42/50
313/313 [==============================] - 57s 182ms/step - loss: 1.5774
Epoch 43/50
313/313 [==============================] - 57s 182ms/step - loss: 1.5755
Epoch 44/50
313/313 [==============================] - 58s 186ms/step - loss: 1.5735
Epoch 45/50
313/313 [==============================] - 58s 186ms/step - loss: 1.5714
Epoch 46/50
313/313 [==============================] - 57s 181ms/step - loss: 1.5686
Epoch 47/50
313/313 [==============================] - 57s 181ms/step - loss: 1.5675
Epoch 48/50
313/313 [==============================] - 56s 180ms/step - loss: 1.5657
Epoch 49/50
313/313 [==============================] - 58s 185ms/step - loss: 1.5654
Epoch 50/50
313/313 [==============================] - 57s 182ms/step - loss: 1.5620
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
To use the model with different batch sizes, we need to create a stateless copy. We can get rid of dropout since it is only used during training: | stateless_model = keras.models.Sequential([
keras.layers.GRU(128, return_sequences=True, input_shape=[None, max_id]),
keras.layers.GRU(128, return_sequences=True),
keras.layers.TimeDistributed(keras.layers.Dense(max_id,
activation="softmax"))
]) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
To set the weights, we first need to build the model (so the weights get created): | stateless_model.build(tf.TensorShape([None, None, max_id]))
stateless_model.set_weights(model.get_weights())
model = stateless_model
tf.random.set_seed(42)
print(complete_text("t")) | WARNING:tensorflow:5 out of the last 5 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:6 out of the last 6 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:7 out of the last 7 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:8 out of the last 8 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:9 out of the last 9 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:10 out of the last 10 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:11 out of the last 11 calls to <function _make_execution_function.<locals>.distributed_function at 0x7f8d44bc53b0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings is likely due to passing python objects instead of tensors. Also, tf.function has experimental_relax_shapes=True option that relaxes argument shapes that can avoid unnecessary retracing. Please refer to https://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args and https://www.tensorflow.org/api_docs/python/tf/function for more details.
tor:
in the negver up how it thou like him;
when it
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Sentiment Analysis | tf.random.set_seed(42) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
You can load the IMDB dataset easily: | (X_train, y_test), (X_valid, y_test) = keras.datasets.imdb.load_data()
X_train[0][:10]
word_index = keras.datasets.imdb.get_word_index()
id_to_word = {id_ + 3: word for word, id_ in word_index.items()}
for id_, token in enumerate(("<pad>", "<sos>", "<unk>")):
id_to_word[id_] = token
" ".join([id_to_word[id_] for id_ in X_train[0][:10]])
import tensorflow_datasets as tfds
datasets, info = tfds.load("imdb_reviews", as_supervised=True, with_info=True)
datasets.keys()
train_size = info.splits["train"].num_examples
test_size = info.splits["test"].num_examples
train_size, test_size
for X_batch, y_batch in datasets["train"].batch(2).take(1):
for review, label in zip(X_batch.numpy(), y_batch.numpy()):
print("Review:", review.decode("utf-8")[:200], "...")
print("Label:", label, "= Positive" if label else "= Negative")
print()
def preprocess(X_batch, y_batch):
X_batch = tf.strings.substr(X_batch, 0, 300)
X_batch = tf.strings.regex_replace(X_batch, rb"<br\s*/?>", b" ")
X_batch = tf.strings.regex_replace(X_batch, b"[^a-zA-Z']", b" ")
X_batch = tf.strings.split(X_batch)
return X_batch.to_tensor(default_value=b"<pad>"), y_batch
preprocess(X_batch, y_batch)
from collections import Counter
vocabulary = Counter()
for X_batch, y_batch in datasets["train"].batch(32).map(preprocess):
for review in X_batch:
vocabulary.update(list(review.numpy()))
vocabulary.most_common()[:3]
len(vocabulary)
vocab_size = 10000
truncated_vocabulary = [
word for word, count in vocabulary.most_common()[:vocab_size]]
word_to_id = {word: index for index, word in enumerate(truncated_vocabulary)}
for word in b"This movie was faaaaaantastic".split():
print(word_to_id.get(word) or vocab_size)
words = tf.constant(truncated_vocabulary)
word_ids = tf.range(len(truncated_vocabulary), dtype=tf.int64)
vocab_init = tf.lookup.KeyValueTensorInitializer(words, word_ids)
num_oov_buckets = 1000
table = tf.lookup.StaticVocabularyTable(vocab_init, num_oov_buckets)
table.lookup(tf.constant([b"This movie was faaaaaantastic".split()]))
def encode_words(X_batch, y_batch):
return table.lookup(X_batch), y_batch
train_set = datasets["train"].repeat().batch(32).map(preprocess)
train_set = train_set.map(encode_words).prefetch(1)
for X_batch, y_batch in train_set.take(1):
print(X_batch)
print(y_batch)
embed_size = 128
model = keras.models.Sequential([
keras.layers.Embedding(vocab_size + num_oov_buckets, embed_size,
mask_zero=True, # not shown in the book
input_shape=[None]),
keras.layers.GRU(128, return_sequences=True),
keras.layers.GRU(128),
keras.layers.Dense(1, activation="sigmoid")
])
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
history = model.fit(train_set, steps_per_epoch=train_size // 32, epochs=5) | Train for 781 steps
Epoch 1/5
781/781 [==============================] - 118s 152ms/step - loss: 0.5305 - accuracy: 0.7282
Epoch 2/5
781/781 [==============================] - 113s 145ms/step - loss: 0.3459 - accuracy: 0.8554
Epoch 3/5
781/781 [==============================] - 113s 145ms/step - loss: 0.1913 - accuracy: 0.9319
Epoch 4/5
781/781 [==============================] - 114s 146ms/step - loss: 0.1341 - accuracy: 0.9535
Epoch 5/5
781/781 [==============================] - 116s 148ms/step - loss: 0.1011 - accuracy: 0.9624
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Or using manual masking: | K = keras.backend
embed_size = 128
inputs = keras.layers.Input(shape=[None])
mask = keras.layers.Lambda(lambda inputs: K.not_equal(inputs, 0))(inputs)
z = keras.layers.Embedding(vocab_size + num_oov_buckets, embed_size)(inputs)
z = keras.layers.GRU(128, return_sequences=True)(z, mask=mask)
z = keras.layers.GRU(128)(z, mask=mask)
outputs = keras.layers.Dense(1, activation="sigmoid")(z)
model = keras.models.Model(inputs=[inputs], outputs=[outputs])
model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"])
history = model.fit(train_set, steps_per_epoch=train_size // 32, epochs=5) | Train for 781 steps
Epoch 1/5
781/781 [==============================] - 118s 152ms/step - loss: 0.5425 - accuracy: 0.7155
Epoch 2/5
781/781 [==============================] - 112s 143ms/step - loss: 0.3479 - accuracy: 0.8558
Epoch 3/5
781/781 [==============================] - 112s 144ms/step - loss: 0.1761 - accuracy: 0.9388
Epoch 4/5
781/781 [==============================] - 115s 147ms/step - loss: 0.1281 - accuracy: 0.9531
Epoch 5/5
781/781 [==============================] - 116s 148ms/step - loss: 0.1088 - accuracy: 0.9603
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Reusing Pretrained Embeddings | tf.random.set_seed(42)
TFHUB_CACHE_DIR = os.path.join(os.curdir, "my_tfhub_cache")
os.environ["TFHUB_CACHE_DIR"] = TFHUB_CACHE_DIR
import tensorflow_hub as hub
model = keras.Sequential([
hub.KerasLayer("https://tfhub.dev/google/tf2-preview/nnlm-en-dim50/1",
dtype=tf.string, input_shape=[], output_shape=[50]),
keras.layers.Dense(128, activation="relu"),
keras.layers.Dense(1, activation="sigmoid")
])
model.compile(loss="binary_crossentropy", optimizer="adam",
metrics=["accuracy"])
for dirpath, dirnames, filenames in os.walk(TFHUB_CACHE_DIR):
for filename in filenames:
print(os.path.join(dirpath, filename))
import tensorflow_datasets as tfds
datasets, info = tfds.load("imdb_reviews", as_supervised=True, with_info=True)
train_size = info.splits["train"].num_examples
batch_size = 32
train_set = datasets["train"].repeat().batch(batch_size).prefetch(1)
history = model.fit(train_set, steps_per_epoch=train_size // batch_size, epochs=5) | Train for 781 steps
Epoch 1/5
781/781 [==============================] - 128s 164ms/step - loss: 0.5460 - accuracy: 0.7267
Epoch 2/5
781/781 [==============================] - 128s 164ms/step - loss: 0.5129 - accuracy: 0.7495
Epoch 3/5
781/781 [==============================] - 129s 165ms/step - loss: 0.5082 - accuracy: 0.7530
Epoch 4/5
781/781 [==============================] - 128s 164ms/step - loss: 0.5047 - accuracy: 0.7533
Epoch 5/5
781/781 [==============================] - 128s 164ms/step - loss: 0.5015 - accuracy: 0.7560
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Automatic Translation | tf.random.set_seed(42)
vocab_size = 100
embed_size = 10
import tensorflow_addons as tfa
encoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
decoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
sequence_lengths = keras.layers.Input(shape=[], dtype=np.int32)
embeddings = keras.layers.Embedding(vocab_size, embed_size)
encoder_embeddings = embeddings(encoder_inputs)
decoder_embeddings = embeddings(decoder_inputs)
encoder = keras.layers.LSTM(512, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_embeddings)
encoder_state = [state_h, state_c]
sampler = tfa.seq2seq.sampler.TrainingSampler()
decoder_cell = keras.layers.LSTMCell(512)
output_layer = keras.layers.Dense(vocab_size)
decoder = tfa.seq2seq.basic_decoder.BasicDecoder(decoder_cell, sampler,
output_layer=output_layer)
final_outputs, final_state, final_sequence_lengths = decoder(
decoder_embeddings, initial_state=encoder_state,
sequence_length=sequence_lengths)
Y_proba = tf.nn.softmax(final_outputs.rnn_output)
model = keras.models.Model(
inputs=[encoder_inputs, decoder_inputs, sequence_lengths],
outputs=[Y_proba])
model.compile(loss="sparse_categorical_crossentropy", optimizer="adam")
X = np.random.randint(100, size=10*1000).reshape(1000, 10)
Y = np.random.randint(100, size=15*1000).reshape(1000, 15)
X_decoder = np.c_[np.zeros((1000, 1)), Y[:, :-1]]
seq_lengths = np.full([1000], 15)
history = model.fit([X, X_decoder, seq_lengths], Y, epochs=2) | Train on 1000 samples
Epoch 1/2
1000/1000 [==============================] - 6s 6ms/sample - loss: 4.6053
Epoch 2/2
1000/1000 [==============================] - 3s 3ms/sample - loss: 4.6031
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Bidirectional Recurrent Layers | model = keras.models.Sequential([
keras.layers.GRU(10, return_sequences=True, input_shape=[None, 10]),
keras.layers.Bidirectional(keras.layers.GRU(10, return_sequences=True))
])
model.summary() | Model: "sequential_5"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
gru_10 (GRU) (None, None, 10) 660
_________________________________________________________________
bidirectional (Bidirectional (None, None, 20) 1320
=================================================================
Total params: 1,980
Trainable params: 1,980
Non-trainable params: 0
_________________________________________________________________
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Positional Encoding | class PositionalEncoding(keras.layers.Layer):
def __init__(self, max_steps, max_dims, dtype=tf.float32, **kwargs):
super().__init__(dtype=dtype, **kwargs)
if max_dims % 2 == 1: max_dims += 1 # max_dims must be even
p, i = np.meshgrid(np.arange(max_steps), np.arange(max_dims // 2))
pos_emb = np.empty((1, max_steps, max_dims))
pos_emb[0, :, ::2] = np.sin(p / 10000**(2 * i / max_dims)).T
pos_emb[0, :, 1::2] = np.cos(p / 10000**(2 * i / max_dims)).T
self.positional_embedding = tf.constant(pos_emb.astype(self.dtype))
def call(self, inputs):
shape = tf.shape(inputs)
return inputs + self.positional_embedding[:, :shape[-2], :shape[-1]]
max_steps = 201
max_dims = 512
pos_emb = PositionalEncoding(max_steps, max_dims)
PE = pos_emb(np.zeros((1, max_steps, max_dims), np.float32))[0].numpy()
i1, i2, crop_i = 100, 101, 150
p1, p2, p3 = 22, 60, 35
fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(9, 5))
ax1.plot([p1, p1], [-1, 1], "k--", label="$p = {}$".format(p1))
ax1.plot([p2, p2], [-1, 1], "k--", label="$p = {}$".format(p2), alpha=0.5)
ax1.plot(p3, PE[p3, i1], "bx", label="$p = {}$".format(p3))
ax1.plot(PE[:,i1], "b-", label="$i = {}$".format(i1))
ax1.plot(PE[:,i2], "r-", label="$i = {}$".format(i2))
ax1.plot([p1, p2], [PE[p1, i1], PE[p2, i1]], "bo")
ax1.plot([p1, p2], [PE[p1, i2], PE[p2, i2]], "ro")
ax1.legend(loc="center right", fontsize=14, framealpha=0.95)
ax1.set_ylabel("$P_{(p,i)}$", rotation=0, fontsize=16)
ax1.grid(True, alpha=0.3)
ax1.hlines(0, 0, max_steps - 1, color="k", linewidth=1, alpha=0.3)
ax1.axis([0, max_steps - 1, -1, 1])
ax2.imshow(PE.T[:crop_i], cmap="gray", interpolation="bilinear", aspect="auto")
ax2.hlines(i1, 0, max_steps - 1, color="b")
cheat = 2 # need to raise the red line a bit, or else it hides the blue one
ax2.hlines(i2+cheat, 0, max_steps - 1, color="r")
ax2.plot([p1, p1], [0, crop_i], "k--")
ax2.plot([p2, p2], [0, crop_i], "k--", alpha=0.5)
ax2.plot([p1, p2], [i2+cheat, i2+cheat], "ro")
ax2.plot([p1, p2], [i1, i1], "bo")
ax2.axis([0, max_steps - 1, 0, crop_i])
ax2.set_xlabel("$p$", fontsize=16)
ax2.set_ylabel("$i$", rotation=0, fontsize=16)
plt.savefig("positional_embedding_plot")
plt.show()
embed_size = 512; max_steps = 500; vocab_size = 10000
encoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
decoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
embeddings = keras.layers.Embedding(vocab_size, embed_size)
encoder_embeddings = embeddings(encoder_inputs)
decoder_embeddings = embeddings(decoder_inputs)
positional_encoding = PositionalEncoding(max_steps, max_dims=embed_size)
encoder_in = positional_encoding(encoder_embeddings)
decoder_in = positional_encoding(decoder_embeddings) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Here is a (very) simplified Transformer (the actual architecture has skip connections, layer norm, dense nets, and most importantly it uses Multi-Head Attention instead of regular Attention): | Z = encoder_in
for N in range(6):
Z = keras.layers.Attention(use_scale=True)([Z, Z])
encoder_outputs = Z
Z = decoder_in
for N in range(6):
Z = keras.layers.Attention(use_scale=True, causal=True)([Z, Z])
Z = keras.layers.Attention(use_scale=True)([Z, encoder_outputs])
outputs = keras.layers.TimeDistributed(
keras.layers.Dense(vocab_size, activation="softmax"))(Z) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Here's a basic implementation of the `MultiHeadAttention` layer. One will likely be added to `keras.layers` in the near future. Note that `Conv1D` layers with `kernel_size=1` (and the default `padding="valid"` and `strides=1`) is equivalent to a `TimeDistributed(Dense(...))` layer. | K = keras.backend
class MultiHeadAttention(keras.layers.Layer):
def __init__(self, n_heads, causal=False, use_scale=False, **kwargs):
self.n_heads = n_heads
self.causal = causal
self.use_scale = use_scale
super().__init__(**kwargs)
def build(self, batch_input_shape):
self.dims = batch_input_shape[0][-1]
self.q_dims, self.v_dims, self.k_dims = [self.dims // self.n_heads] * 3 # could be hyperparameters instead
self.q_linear = keras.layers.Conv1D(self.n_heads * self.q_dims, kernel_size=1, use_bias=False)
self.v_linear = keras.layers.Conv1D(self.n_heads * self.v_dims, kernel_size=1, use_bias=False)
self.k_linear = keras.layers.Conv1D(self.n_heads * self.k_dims, kernel_size=1, use_bias=False)
self.attention = keras.layers.Attention(causal=self.causal, use_scale=self.use_scale)
self.out_linear = keras.layers.Conv1D(self.dims, kernel_size=1, use_bias=False)
super().build(batch_input_shape)
def _multi_head_linear(self, inputs, linear):
shape = K.concatenate([K.shape(inputs)[:-1], [self.n_heads, -1]])
projected = K.reshape(linear(inputs), shape)
perm = K.permute_dimensions(projected, [0, 2, 1, 3])
return K.reshape(perm, [shape[0] * self.n_heads, shape[1], -1])
def call(self, inputs):
q = inputs[0]
v = inputs[1]
k = inputs[2] if len(inputs) > 2 else v
shape = K.shape(q)
q_proj = self._multi_head_linear(q, self.q_linear)
v_proj = self._multi_head_linear(v, self.v_linear)
k_proj = self._multi_head_linear(k, self.k_linear)
multi_attended = self.attention([q_proj, v_proj, k_proj])
shape_attended = K.shape(multi_attended)
reshaped_attended = K.reshape(multi_attended, [shape[0], self.n_heads, shape_attended[1], shape_attended[2]])
perm = K.permute_dimensions(reshaped_attended, [0, 2, 1, 3])
concat = K.reshape(perm, [shape[0], shape_attended[1], -1])
return self.out_linear(concat)
Q = np.random.rand(2, 50, 512)
V = np.random.rand(2, 80, 512)
multi_attn = MultiHeadAttention(8)
multi_attn([Q, V]).shape | WARNING:tensorflow:Layer multi_head_attention is casting an input tensor from dtype float64 to the layer's dtype of float32, which is new behavior in TensorFlow 2. The layer has dtype float32 because it's dtype defaults to floatx.
If you intended to run this layer in float32, you can safely ignore this warning. If in doubt, this warning is likely only an issue if you are porting a TensorFlow 1.X model to TensorFlow 2.
To change all layers to have dtype float64 by default, call `tf.keras.backend.set_floatx('float64')`. To change just this layer, pass dtype='float64' to the layer constructor. If you are the author of this layer, you can disable autocasting by passing autocast=False to the base Layer constructor.
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Exercise solutions 1. to 7. See Appendix A. 8._Exercise:_ Embedded Reber grammars _were used by Hochreiter and Schmidhuber in [their paper](https://homl.info/93) about LSTMs. They are artificial grammars that produce strings such as "BPBTSXXVPSEPE." Check out Jenny Orr's [nice introduction](https://homl.info/108) to this topic. Choose a particular embedded Reber grammar (such as the one represented on Jenny Orr's page), then train an RNN to identify whether a string respects that grammar or not. You will first need to write a function capable of generating a training batch containing about 50% strings that respect the grammar, and 50% that don't._ First we need to build a function that generates strings based on a grammar. The grammar will be represented as a list of possible transitions for each state. A transition specifies the string to output (or a grammar to generate it) and the next state. | default_reber_grammar = [
[("B", 1)], # (state 0) =B=>(state 1)
[("T", 2), ("P", 3)], # (state 1) =T=>(state 2) or =P=>(state 3)
[("S", 2), ("X", 4)], # (state 2) =S=>(state 2) or =X=>(state 4)
[("T", 3), ("V", 5)], # and so on...
[("X", 3), ("S", 6)],
[("P", 4), ("V", 6)],
[("E", None)]] # (state 6) =E=>(terminal state)
embedded_reber_grammar = [
[("B", 1)],
[("T", 2), ("P", 3)],
[(default_reber_grammar, 4)],
[(default_reber_grammar, 5)],
[("T", 6)],
[("P", 6)],
[("E", None)]]
def generate_string(grammar):
state = 0
output = []
while state is not None:
index = np.random.randint(len(grammar[state]))
production, state = grammar[state][index]
if isinstance(production, list):
production = generate_string(grammar=production)
output.append(production)
return "".join(output) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Let's generate a few strings based on the default Reber grammar: | np.random.seed(42)
for _ in range(25):
print(generate_string(default_reber_grammar), end=" ") | BTXXTTVPXTVPXTTVPSE BPVPSE BTXSE BPVVE BPVVE BTSXSE BPTVPXTTTVVE BPVVE BTXSE BTXXVPSE BPTTTTTTTTVVE BTXSE BPVPSE BTXSE BPTVPSE BTXXTVPSE BPVVE BPVVE BPVVE BPTTVVE BPVVE BPVVE BTXXVVE BTXXVVE BTXXVPXVVE | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Looks good. Now let's generate a few strings based on the embedded Reber grammar: | np.random.seed(42)
for _ in range(25):
print(generate_string(embedded_reber_grammar), end=" ") | BTBPTTTVPXTVPXTTVPSETE BPBPTVPSEPE BPBPVVEPE BPBPVPXVVEPE BPBTXXTTTTVVEPE BPBPVPSEPE BPBTXXVPSEPE BPBTSSSSSSSXSEPE BTBPVVETE BPBTXXVVEPE BPBTXXVPSEPE BTBTXXVVETE BPBPVVEPE BPBPVVEPE BPBTSXSEPE BPBPVVEPE BPBPTVPSEPE BPBTXXVVEPE BTBPTVPXVVETE BTBPVVETE BTBTSSSSSSSXXVVETE BPBTSSSXXTTTTVPSEPE BTBPTTVVETE BPBTXXTVVEPE BTBTXSETE | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Okay, now we need a function to generate strings that do not respect the grammar. We could generate a random string, but the task would be a bit too easy, so instead we will generate a string that respects the grammar, and we will corrupt it by changing just one character: | POSSIBLE_CHARS = "BEPSTVX"
def generate_corrupted_string(grammar, chars=POSSIBLE_CHARS):
good_string = generate_string(grammar)
index = np.random.randint(len(good_string))
good_char = good_string[index]
bad_char = np.random.choice(sorted(set(chars) - set(good_char)))
return good_string[:index] + bad_char + good_string[index + 1:] | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Let's look at a few corrupted strings: | np.random.seed(42)
for _ in range(25):
print(generate_corrupted_string(embedded_reber_grammar), end=" ") | BTBPTTTPPXTVPXTTVPSETE BPBTXEEPE BPBPTVVVEPE BPBTSSSSXSETE BPTTXSEPE BTBPVPXTTTTTTEVETE BPBTXXSVEPE BSBPTTVPSETE BPBXVVEPE BEBTXSETE BPBPVPSXPE BTBPVVVETE BPBTSXSETE BPBPTTTPTTTTTVPSEPE BTBTXXTTSTVPSETE BBBTXSETE BPBTPXSEPE BPBPVPXTTTTVPXTVPXVPXTTTVVEVE BTBXXXTVPSETE BEBTSSSSSXXVPXTVVETE BTBXTTVVETE BPBTXSTPE BTBTXXTTTVPSBTE BTBTXSETX BTBTSXSSTE | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
We cannot feed strings directly to an RNN, so we need to encode them somehow. One option would be to one-hot encode each character. Another option is to use embeddings. Let's go for the second option (but since there are just a handful of characters, one-hot encoding would probably be a good option as well). For embeddings to work, we need to convert each string into a sequence of character IDs. Let's write a function for that, using each character's index in the string of possible characters "BEPSTVX": | def string_to_ids(s, chars=POSSIBLE_CHARS):
return [POSSIBLE_CHARS.index(c) for c in s]
string_to_ids("BTTTXXVVETE") | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
We can now generate the dataset, with 50% good strings, and 50% bad strings: | def generate_dataset(size):
good_strings = [string_to_ids(generate_string(embedded_reber_grammar))
for _ in range(size // 2)]
bad_strings = [string_to_ids(generate_corrupted_string(embedded_reber_grammar))
for _ in range(size - size // 2)]
all_strings = good_strings + bad_strings
X = tf.ragged.constant(all_strings, ragged_rank=1)
y = np.array([[1.] for _ in range(len(good_strings))] +
[[0.] for _ in range(len(bad_strings))])
return X, y
np.random.seed(42)
X_train, y_train = generate_dataset(10000)
X_valid, y_valid = generate_dataset(2000) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Let's take a look at the first training sequence: | X_train[0] | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
What classes does it belong to? | y_train[0] | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Perfect! We are ready to create the RNN to identify good strings. We build a simple sequence binary classifier: | np.random.seed(42)
tf.random.set_seed(42)
embedding_size = 5
model = keras.models.Sequential([
keras.layers.InputLayer(input_shape=[None], dtype=tf.int32, ragged=True),
keras.layers.Embedding(input_dim=len(POSSIBLE_CHARS), output_dim=embedding_size),
keras.layers.GRU(30),
keras.layers.Dense(1, activation="sigmoid")
])
optimizer = keras.optimizers.SGD(lr=0.02, momentum = 0.95, nesterov=True)
model.compile(loss="binary_crossentropy", optimizer=optimizer, metrics=["accuracy"])
history = model.fit(X_train, y_train, epochs=20, validation_data=(X_valid, y_valid)) | Train on 10000 samples, validate on 2000 samples
Epoch 1/20
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Now let's test our RNN on two tricky strings: the first one is bad while the second one is good. They only differ by the second to last character. If the RNN gets this right, it shows that it managed to notice the pattern that the second letter should always be equal to the second to last letter. That requires a fairly long short-term memory (which is the reason why we used a GRU cell). | test_strings = ["BPBTSSSSSSSXXTTVPXVPXTTTTTVVETE",
"BPBTSSSSSSSXXTTVPXVPXTTTTTVVEPE"]
X_test = tf.ragged.constant([string_to_ids(s) for s in test_strings], ragged_rank=1)
y_proba = model.predict(X_test)
print()
print("Estimated probability that these are Reber strings:")
for index, string in enumerate(test_strings):
print("{}: {:.2f}%".format(string, 100 * y_proba[index][0])) |
Estimated probability that these are Reber strings:
BPBTSSSSSSSXXTTVPXVPXTTTTTVVETE: 0.40%
BPBTSSSSSSSXXTTVPXVPXTTTTTVVEPE: 99.96%
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Ta-da! It worked fine. The RNN found the correct answers with very high confidence. :) 9._Exercise: Train an Encoder–Decoder model that can convert a date string from one format to another (e.g., from "April 22, 2019" to "2019-04-22")._ Let's start by creating the dataset. We will use random days between 1000-01-01 and 9999-12-31: | from datetime import date
# cannot use strftime()'s %B format since it depends on the locale
MONTHS = ["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"]
def random_dates(n_dates):
min_date = date(1000, 1, 1).toordinal()
max_date = date(9999, 12, 31).toordinal()
ordinals = np.random.randint(max_date - min_date, size=n_dates) + min_date
dates = [date.fromordinal(ordinal) for ordinal in ordinals]
x = [MONTHS[dt.month - 1] + " " + dt.strftime("%d, %Y") for dt in dates]
y = [dt.isoformat() for dt in dates]
return x, y | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Here are a few random dates, displayed in both the input format and the target format: | np.random.seed(42)
n_dates = 3
x_example, y_example = random_dates(n_dates)
print("{:25s}{:25s}".format("Input", "Target"))
print("-" * 50)
for idx in range(n_dates):
print("{:25s}{:25s}".format(x_example[idx], y_example[idx])) | Input Target
--------------------------------------------------
September 20, 7075 7075-09-20
May 15, 8579 8579-05-15
January 11, 7103 7103-01-11
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Let's get the list of all possible characters in the inputs: | INPUT_CHARS = "".join(sorted(set("".join(MONTHS)))) + "01234567890, "
INPUT_CHARS | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
And here's the list of possible characters in the outputs: | OUTPUT_CHARS = "0123456789-" | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Let's write a function to convert a string to a list of character IDs, as we did in the previous exercise: | def date_str_to_ids(date_str, chars=INPUT_CHARS):
return [chars.index(c) for c in date_str]
date_str_to_ids(x_example[0], INPUT_CHARS)
date_str_to_ids(y_example[0], OUTPUT_CHARS)
def prepare_date_strs(date_strs, chars=INPUT_CHARS):
X_ids = [date_str_to_ids(dt, chars) for dt in date_strs]
X = tf.ragged.constant(X_ids, ragged_rank=1)
return (X + 1).to_tensor() # using 0 as the padding token ID
def create_dataset(n_dates):
x, y = random_dates(n_dates)
return prepare_date_strs(x, INPUT_CHARS), prepare_date_strs(y, OUTPUT_CHARS)
np.random.seed(42)
X_train, Y_train = create_dataset(10000)
X_valid, Y_valid = create_dataset(2000)
X_test, Y_test = create_dataset(2000)
Y_train[0] | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
First version: a very basic seq2seq model Let's first try the simplest possible model: we feed in the input sequence, which first goes through the encoder (an embedding layer followed by a single LSTM layer), which outputs a vector, then it goes through a decoder (a single LSTM layer, followed by a dense output layer), which outputs a sequence of vectors, each representing the estimated probabilities for all possible output character.Since the decoder expects a sequence as input, we repeat the vector (which is output by the decoder) as many times as the longest possible output sequence. | embedding_size = 32
max_output_length = Y_train.shape[1]
np.random.seed(42)
tf.random.set_seed(42)
encoder = keras.models.Sequential([
keras.layers.Embedding(input_dim=len(INPUT_CHARS) + 1,
output_dim=embedding_size,
input_shape=[None]),
keras.layers.LSTM(128)
])
decoder = keras.models.Sequential([
keras.layers.LSTM(128, return_sequences=True),
keras.layers.Dense(len(OUTPUT_CHARS) + 1, activation="softmax")
])
model = keras.models.Sequential([
encoder,
keras.layers.RepeatVector(max_output_length),
decoder
])
optimizer = keras.optimizers.Nadam()
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer,
metrics=["accuracy"])
history = model.fit(X_train, Y_train, epochs=20,
validation_data=(X_valid, Y_valid)) | Epoch 1/20
313/313 [==============================] - 6s 18ms/step - loss: 1.8111 - accuracy: 0.3533 - val_loss: 1.3581 - val_accuracy: 0.4965
Epoch 2/20
313/313 [==============================] - 5s 15ms/step - loss: 1.3518 - accuracy: 0.5103 - val_loss: 1.1915 - val_accuracy: 0.5694
Epoch 3/20
313/313 [==============================] - 5s 15ms/step - loss: 1.1706 - accuracy: 0.5908 - val_loss: 0.9983 - val_accuracy: 0.6398
Epoch 4/20
313/313 [==============================] - 5s 15ms/step - loss: 0.9158 - accuracy: 0.6686 - val_loss: 0.8012 - val_accuracy: 0.6987
Epoch 5/20
313/313 [==============================] - 5s 15ms/step - loss: 0.7058 - accuracy: 0.7308 - val_loss: 0.6224 - val_accuracy: 0.7599
Epoch 6/20
313/313 [==============================] - 5s 15ms/step - loss: 0.7756 - accuracy: 0.7203 - val_loss: 0.6541 - val_accuracy: 0.7599
Epoch 7/20
313/313 [==============================] - 5s 16ms/step - loss: 0.5379 - accuracy: 0.8034 - val_loss: 0.4174 - val_accuracy: 0.8440
Epoch 8/20
313/313 [==============================] - 5s 15ms/step - loss: 0.4867 - accuracy: 0.8262 - val_loss: 0.4188 - val_accuracy: 0.8480
Epoch 9/20
313/313 [==============================] - 5s 15ms/step - loss: 0.2979 - accuracy: 0.8951 - val_loss: 0.2549 - val_accuracy: 0.9126
Epoch 10/20
313/313 [==============================] - 5s 14ms/step - loss: 0.1785 - accuracy: 0.9479 - val_loss: 0.1461 - val_accuracy: 0.9594
Epoch 11/20
313/313 [==============================] - 5s 15ms/step - loss: 0.1830 - accuracy: 0.9557 - val_loss: 0.1644 - val_accuracy: 0.9550
Epoch 12/20
313/313 [==============================] - 5s 15ms/step - loss: 0.0775 - accuracy: 0.9857 - val_loss: 0.0595 - val_accuracy: 0.9901
Epoch 13/20
313/313 [==============================] - 5s 15ms/step - loss: 0.0400 - accuracy: 0.9953 - val_loss: 0.0342 - val_accuracy: 0.9957
Epoch 14/20
313/313 [==============================] - 5s 15ms/step - loss: 0.0248 - accuracy: 0.9979 - val_loss: 0.0231 - val_accuracy: 0.9983
Epoch 15/20
313/313 [==============================] - 5s 15ms/step - loss: 0.0161 - accuracy: 0.9991 - val_loss: 0.0149 - val_accuracy: 0.9995
Epoch 16/20
313/313 [==============================] - 5s 15ms/step - loss: 0.0108 - accuracy: 0.9997 - val_loss: 0.0106 - val_accuracy: 0.9996
Epoch 17/20
313/313 [==============================] - 5s 15ms/step - loss: 0.0074 - accuracy: 0.9999 - val_loss: 0.0077 - val_accuracy: 0.9999
Epoch 18/20
313/313 [==============================] - 5s 15ms/step - loss: 0.0053 - accuracy: 1.0000 - val_loss: 0.0054 - val_accuracy: 0.9999
Epoch 19/20
313/313 [==============================] - 5s 15ms/step - loss: 0.0039 - accuracy: 1.0000 - val_loss: 0.0041 - val_accuracy: 1.0000
Epoch 20/20
313/313 [==============================] - 5s 15ms/step - loss: 0.0029 - accuracy: 1.0000 - val_loss: 0.0032 - val_accuracy: 1.0000
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Looks great, we reach 100% validation accuracy! Let's use the model to make some predictions. We will need to be able to convert a sequence of character IDs to a readable string: | def ids_to_date_strs(ids, chars=OUTPUT_CHARS):
return ["".join([("?" + chars)[index] for index in sequence])
for sequence in ids] | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Now we can use the model to convert some dates | X_new = prepare_date_strs(["September 17, 2009", "July 14, 1789"])
ids = model.predict_classes(X_new)
for date_str in ids_to_date_strs(ids):
print(date_str) | WARNING:tensorflow:From <ipython-input-15-472ea7c41409>:1: Sequential.predict_classes (from tensorflow.python.keras.engine.sequential) is deprecated and will be removed after 2021-01-01.
Instructions for updating:
Please use instead:* `np.argmax(model.predict(x), axis=-1)`, if your model does multi-class classification (e.g. if it uses a `softmax` last-layer activation).* `(model.predict(x) > 0.5).astype("int32")`, if your model does binary classification (e.g. if it uses a `sigmoid` last-layer activation).
2009-09-17
1789-07-14
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Perfect! :) However, since the model was only trained on input strings of length 18 (which is the length of the longest date), it does not perform well if we try to use it to make predictions on shorter sequences: | X_new = prepare_date_strs(["May 02, 2020", "July 14, 1789"])
ids = model.predict_classes(X_new)
for date_str in ids_to_date_strs(ids):
print(date_str) | 2020-01-02
1789-02-14
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Oops! We need to ensure that we always pass sequences of the same length as during training, using padding if necessary. Let's write a little helper function for that: | max_input_length = X_train.shape[1]
def prepare_date_strs_padded(date_strs):
X = prepare_date_strs(date_strs)
if X.shape[1] < max_input_length:
X = tf.pad(X, [[0, 0], [0, max_input_length - X.shape[1]]])
return X
def convert_date_strs(date_strs):
X = prepare_date_strs_padded(date_strs)
ids = model.predict_classes(X)
return ids_to_date_strs(ids)
convert_date_strs(["May 02, 2020", "July 14, 1789"]) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Cool! Granted, there are certainly much easier ways to write a date conversion tool (e.g., using regular expressions or even basic string manipulation), but you have to admit that using neural networks is way cooler. ;-) However, real-life sequence-to-sequence problems will usually be harder, so for the sake of completeness, let's build a more powerful model. Second version: feeding the shifted targets to the decoder (teacher forcing) Instead of feeding the decoder a simple repetition of the encoder's output vector, we can feed it the target sequence, shifted by one time step to the right. This way, at each time step the decoder will know what the previous target character was. This should help is tackle more complex sequence-to-sequence problems.Since the first output character of each target sequence has no previous character, we will need a new token to represent the start-of-sequence (sos).During inference, we won't know the target, so what will we feed the decoder? We can just predict one character at a time, starting with an sos token, then feeding the decoder all the characters that were predicted so far (we will look at this in more details later in this notebook).But if the decoder's LSTM expects to get the previous target as input at each step, how shall we pass it it the vector output by the encoder? Well, one option is to ignore the output vector, and instead use the encoder's LSTM state as the initial state of the decoder's LSTM (which requires that encoder's LSTM must have the same number of units as the decoder's LSTM).Now let's create the decoder's inputs (for training, validation and testing). The sos token will be represented using the last possible output character's ID + 1. | sos_id = len(OUTPUT_CHARS) + 1
def shifted_output_sequences(Y):
sos_tokens = tf.fill(dims=(len(Y), 1), value=sos_id)
return tf.concat([sos_tokens, Y[:, :-1]], axis=1)
X_train_decoder = shifted_output_sequences(Y_train)
X_valid_decoder = shifted_output_sequences(Y_valid)
X_test_decoder = shifted_output_sequences(Y_test) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Let's take a look at the decoder's training inputs: | X_train_decoder | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Now let's build the model. It's not a simple sequential model anymore, so let's use the functional API: | encoder_embedding_size = 32
decoder_embedding_size = 32
lstm_units = 128
np.random.seed(42)
tf.random.set_seed(42)
encoder_input = keras.layers.Input(shape=[None], dtype=tf.int32)
encoder_embedding = keras.layers.Embedding(
input_dim=len(INPUT_CHARS) + 1,
output_dim=encoder_embedding_size)(encoder_input)
_, encoder_state_h, encoder_state_c = keras.layers.LSTM(
lstm_units, return_state=True)(encoder_embedding)
encoder_state = [encoder_state_h, encoder_state_c]
decoder_input = keras.layers.Input(shape=[None], dtype=tf.int32)
decoder_embedding = keras.layers.Embedding(
input_dim=len(OUTPUT_CHARS) + 2,
output_dim=decoder_embedding_size)(decoder_input)
decoder_lstm_output = keras.layers.LSTM(lstm_units, return_sequences=True)(
decoder_embedding, initial_state=encoder_state)
decoder_output = keras.layers.Dense(len(OUTPUT_CHARS) + 1,
activation="softmax")(decoder_lstm_output)
model = keras.models.Model(inputs=[encoder_input, decoder_input],
outputs=[decoder_output])
optimizer = keras.optimizers.Nadam()
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer,
metrics=["accuracy"])
history = model.fit([X_train, X_train_decoder], Y_train, epochs=10,
validation_data=([X_valid, X_valid_decoder], Y_valid)) | Epoch 1/10
313/313 [==============================] - 5s 17ms/step - loss: 1.6898 - accuracy: 0.3714 - val_loss: 1.4141 - val_accuracy: 0.4603
Epoch 2/10
313/313 [==============================] - 5s 15ms/step - loss: 1.2118 - accuracy: 0.5541 - val_loss: 0.9360 - val_accuracy: 0.6653
Epoch 3/10
313/313 [==============================] - 5s 15ms/step - loss: 0.6399 - accuracy: 0.7766 - val_loss: 0.4054 - val_accuracy: 0.8631
Epoch 4/10
313/313 [==============================] - 5s 15ms/step - loss: 0.2207 - accuracy: 0.9463 - val_loss: 0.1069 - val_accuracy: 0.9869
Epoch 5/10
313/313 [==============================] - 5s 15ms/step - loss: 0.0805 - accuracy: 0.9910 - val_loss: 0.0445 - val_accuracy: 0.9976
Epoch 6/10
313/313 [==============================] - 5s 15ms/step - loss: 0.0297 - accuracy: 0.9993 - val_loss: 0.0237 - val_accuracy: 0.9992
Epoch 7/10
313/313 [==============================] - 5s 15ms/step - loss: 0.0743 - accuracy: 0.9857 - val_loss: 0.0702 - val_accuracy: 0.9889
Epoch 8/10
313/313 [==============================] - 5s 15ms/step - loss: 0.0187 - accuracy: 0.9995 - val_loss: 0.0112 - val_accuracy: 0.9999
Epoch 9/10
313/313 [==============================] - 5s 15ms/step - loss: 0.0084 - accuracy: 1.0000 - val_loss: 0.0072 - val_accuracy: 1.0000
Epoch 10/10
313/313 [==============================] - 5s 15ms/step - loss: 0.0057 - accuracy: 1.0000 - val_loss: 0.0053 - val_accuracy: 1.0000
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
This model also reaches 100% validation accuracy, but it does so even faster. Let's once again use the model to make some predictions. This time we need to predict characters one by one. | sos_id = len(OUTPUT_CHARS) + 1
def predict_date_strs(date_strs):
X = prepare_date_strs_padded(date_strs)
Y_pred = tf.fill(dims=(len(X), 1), value=sos_id)
for index in range(max_output_length):
pad_size = max_output_length - Y_pred.shape[1]
X_decoder = tf.pad(Y_pred, [[0, 0], [0, pad_size]])
Y_probas_next = model.predict([X, X_decoder])[:, index:index+1]
Y_pred_next = tf.argmax(Y_probas_next, axis=-1, output_type=tf.int32)
Y_pred = tf.concat([Y_pred, Y_pred_next], axis=1)
return ids_to_date_strs(Y_pred[:, 1:])
predict_date_strs(["July 14, 1789", "May 01, 2020"]) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Works fine! :) Third version: using TF-Addons's seq2seq implementation Let's build exactly the same model, but using TF-Addon's seq2seq API. The implementation below is almost very similar to the TFA example higher in this notebook, except without the model input to specify the output sequence length, for simplicity (but you can easily add it back in if you need it for your projects, when the output sequences have very different lengths). | import tensorflow_addons as tfa
np.random.seed(42)
tf.random.set_seed(42)
encoder_embedding_size = 32
decoder_embedding_size = 32
units = 128
encoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
decoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
sequence_lengths = keras.layers.Input(shape=[], dtype=np.int32)
encoder_embeddings = keras.layers.Embedding(
len(INPUT_CHARS) + 1, encoder_embedding_size)(encoder_inputs)
decoder_embedding_layer = keras.layers.Embedding(
len(INPUT_CHARS) + 2, decoder_embedding_size)
decoder_embeddings = decoder_embedding_layer(decoder_inputs)
encoder = keras.layers.LSTM(units, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_embeddings)
encoder_state = [state_h, state_c]
sampler = tfa.seq2seq.sampler.TrainingSampler()
decoder_cell = keras.layers.LSTMCell(units)
output_layer = keras.layers.Dense(len(OUTPUT_CHARS) + 1)
decoder = tfa.seq2seq.basic_decoder.BasicDecoder(decoder_cell,
sampler,
output_layer=output_layer)
final_outputs, final_state, final_sequence_lengths = decoder(
decoder_embeddings,
initial_state=encoder_state)
Y_proba = keras.layers.Activation("softmax")(final_outputs.rnn_output)
model = keras.models.Model(inputs=[encoder_inputs, decoder_inputs],
outputs=[Y_proba])
optimizer = keras.optimizers.Nadam()
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer,
metrics=["accuracy"])
history = model.fit([X_train, X_train_decoder], Y_train, epochs=15,
validation_data=([X_valid, X_valid_decoder], Y_valid)) | Epoch 1/15
313/313 [==============================] - 5s 17ms/step - loss: 1.6757 - accuracy: 0.3683 - val_loss: 1.4602 - val_accuracy: 0.4214
Epoch 2/15
313/313 [==============================] - 5s 15ms/step - loss: 1.3873 - accuracy: 0.4566 - val_loss: 1.2904 - val_accuracy: 0.4957
Epoch 3/15
313/313 [==============================] - 5s 15ms/step - loss: 1.0471 - accuracy: 0.6109 - val_loss: 0.7737 - val_accuracy: 0.7276
Epoch 4/15
313/313 [==============================] - 5s 15ms/step - loss: 0.5056 - accuracy: 0.8296 - val_loss: 0.2695 - val_accuracy: 0.9305
Epoch 5/15
313/313 [==============================] - 5s 15ms/step - loss: 0.1677 - accuracy: 0.9657 - val_loss: 0.0870 - val_accuracy: 0.9912
Epoch 6/15
313/313 [==============================] - 5s 15ms/step - loss: 0.1007 - accuracy: 0.9850 - val_loss: 0.0492 - val_accuracy: 0.9975
Epoch 7/15
313/313 [==============================] - 5s 15ms/step - loss: 0.0308 - accuracy: 0.9993 - val_loss: 0.0228 - val_accuracy: 0.9996
Epoch 8/15
313/313 [==============================] - 5s 15ms/step - loss: 0.0168 - accuracy: 0.9999 - val_loss: 0.0144 - val_accuracy: 0.9999
Epoch 9/15
313/313 [==============================] - 5s 15ms/step - loss: 0.0107 - accuracy: 1.0000 - val_loss: 0.0095 - val_accuracy: 0.9999
Epoch 10/15
313/313 [==============================] - 5s 15ms/step - loss: 0.0074 - accuracy: 1.0000 - val_loss: 0.0066 - val_accuracy: 0.9999
Epoch 11/15
313/313 [==============================] - 5s 15ms/step - loss: 0.0053 - accuracy: 1.0000 - val_loss: 0.0051 - val_accuracy: 0.9999
Epoch 12/15
313/313 [==============================] - 5s 15ms/step - loss: 0.0039 - accuracy: 1.0000 - val_loss: 0.0037 - val_accuracy: 1.0000
Epoch 13/15
313/313 [==============================] - 5s 15ms/step - loss: 0.0029 - accuracy: 1.0000 - val_loss: 0.0030 - val_accuracy: 1.0000
Epoch 14/15
313/313 [==============================] - 5s 15ms/step - loss: 0.0023 - accuracy: 1.0000 - val_loss: 0.0022 - val_accuracy: 1.0000
Epoch 15/15
313/313 [==============================] - 5s 15ms/step - loss: 0.0018 - accuracy: 1.0000 - val_loss: 0.0018 - val_accuracy: 1.0000
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
And once again, 100% validation accuracy! To use the model, we can just reuse the `predict_date_strs()` function: | predict_date_strs(["July 14, 1789", "May 01, 2020"]) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
However, there's a much more efficient way to perform inference. Until now, during inference, we've run the model once for each new character. Instead, we can create a new decoder, based on the previously trained layers, but using a `GreedyEmbeddingSampler` instead of a `TrainingSampler`.At each time step, the `GreedyEmbeddingSampler` will compute the argmax of the decoder's outputs, and run the resulting token IDs through the decoder's embedding layer. Then it will feed the resulting embeddings to the decoder's LSTM cell at the next time step. This way, we only need to run the decoder once to get the full prediction. | inference_sampler = tfa.seq2seq.sampler.GreedyEmbeddingSampler(
embedding_fn=decoder_embedding_layer)
inference_decoder = tfa.seq2seq.basic_decoder.BasicDecoder(
decoder_cell, inference_sampler, output_layer=output_layer,
maximum_iterations=max_output_length)
batch_size = tf.shape(encoder_inputs)[:1]
start_tokens = tf.fill(dims=batch_size, value=sos_id)
final_outputs, final_state, final_sequence_lengths = inference_decoder(
start_tokens,
initial_state=encoder_state,
start_tokens=start_tokens,
end_token=0)
inference_model = keras.models.Model(inputs=[encoder_inputs],
outputs=[final_outputs.sample_id]) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
A few notes:* The `GreedyEmbeddingSampler` needs the `start_tokens` (a vector containing the start-of-sequence ID for each decoder sequence), and the `end_token` (the decoder will stop decoding a sequence once the model outputs this token).* We must set `maximum_iterations` when creating the `BasicDecoder`, or else it may run into an infinite loop (if the model never outputs the end token for at least one of the sequences). This would force you would to restart the Jupyter kernel.* The decoder inputs are not needed anymore, since all the decoder inputs are generated dynamically based on the outputs from the previous time step.* The model's outputs are `final_outputs.sample_id` instead of the softmax of `final_outputs.rnn_outputs`. This allows us to directly get the argmax of the model's outputs. If you prefer to have access to the logits, you can replace `final_outputs.sample_id` with `final_outputs.rnn_outputs`. Now we can write a simple function that uses the model to perform the date format conversion: | def fast_predict_date_strs(date_strs):
X = prepare_date_strs_padded(date_strs)
Y_pred = inference_model.predict(X)
return ids_to_date_strs(Y_pred)
fast_predict_date_strs(["July 14, 1789", "May 01, 2020"]) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Let's check that it really is faster: | %timeit predict_date_strs(["July 14, 1789", "May 01, 2020"])
%timeit fast_predict_date_strs(["July 14, 1789", "May 01, 2020"]) | 18.3 ms ± 366 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
That's more than a 10x speedup! And it would be even more if we were handling longer sequences. Fourth version: using TF-Addons's seq2seq implementation with a scheduled sampler **Warning**: due to a TF bug, this version only works using TensorFlow 2.2. When we trained the previous model, at each time step _t_ we gave the model the target token for time step _t_ - 1. However, at inference time, the model did not get the previous target at each time step. Instead, it got the previous prediction. So there is a discrepancy between training and inference, which may lead to disappointing performance. To alleviate this, we can gradually replace the targets with the predictions, during training. For this, we just need to replace the `TrainingSampler` with a `ScheduledEmbeddingTrainingSampler`, and use a Keras callback to gradually increase the `sampling_probability` (i.e., the probability that the decoder will use the prediction from the previous time step rather than the target for the previous time step). | import tensorflow_addons as tfa
np.random.seed(42)
tf.random.set_seed(42)
n_epochs = 20
encoder_embedding_size = 32
decoder_embedding_size = 32
units = 128
encoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
decoder_inputs = keras.layers.Input(shape=[None], dtype=np.int32)
sequence_lengths = keras.layers.Input(shape=[], dtype=np.int32)
encoder_embeddings = keras.layers.Embedding(
len(INPUT_CHARS) + 1, encoder_embedding_size)(encoder_inputs)
decoder_embedding_layer = keras.layers.Embedding(
len(INPUT_CHARS) + 2, decoder_embedding_size)
decoder_embeddings = decoder_embedding_layer(decoder_inputs)
encoder = keras.layers.LSTM(units, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_embeddings)
encoder_state = [state_h, state_c]
sampler = tfa.seq2seq.sampler.ScheduledEmbeddingTrainingSampler(
sampling_probability=0.,
embedding_fn=decoder_embedding_layer)
# we must set the sampling_probability after creating the sampler
# (see https://github.com/tensorflow/addons/pull/1714)
sampler.sampling_probability = tf.Variable(0.)
decoder_cell = keras.layers.LSTMCell(units)
output_layer = keras.layers.Dense(len(OUTPUT_CHARS) + 1)
decoder = tfa.seq2seq.basic_decoder.BasicDecoder(decoder_cell,
sampler,
output_layer=output_layer)
final_outputs, final_state, final_sequence_lengths = decoder(
decoder_embeddings,
initial_state=encoder_state)
Y_proba = keras.layers.Activation("softmax")(final_outputs.rnn_output)
model = keras.models.Model(inputs=[encoder_inputs, decoder_inputs],
outputs=[Y_proba])
optimizer = keras.optimizers.Nadam()
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer,
metrics=["accuracy"])
def update_sampling_probability(epoch, logs):
proba = min(1.0, epoch / (n_epochs - 10))
sampler.sampling_probability.assign(proba)
sampling_probability_cb = keras.callbacks.LambdaCallback(
on_epoch_begin=update_sampling_probability)
history = model.fit([X_train, X_train_decoder], Y_train, epochs=n_epochs,
validation_data=([X_valid, X_valid_decoder], Y_valid),
callbacks=[sampling_probability_cb]) | Epoch 1/20
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Not quite 100% validation accuracy, but close enough! For inference, we could do the exact same thing as earlier, using a `GreedyEmbeddingSampler`. However, just for the sake of completeness, let's use a `SampleEmbeddingSampler` instead. It's almost the same thing, except that instead of using the argmax of the model's output to find the token ID, it treats the outputs as logits and uses them to sample a token ID randomly. This can be useful when you want to generate text. The `softmax_temperature` argument serves the same purpose as when we generated Shakespeare-like text (the higher this argument, the more random the generated text will be). | softmax_temperature = tf.Variable(1.)
inference_sampler = tfa.seq2seq.sampler.SampleEmbeddingSampler(
embedding_fn=decoder_embedding_layer,
softmax_temperature=softmax_temperature)
inference_decoder = tfa.seq2seq.basic_decoder.BasicDecoder(
decoder_cell, inference_sampler, output_layer=output_layer,
maximum_iterations=max_output_length)
batch_size = tf.shape(encoder_inputs)[:1]
start_tokens = tf.fill(dims=batch_size, value=sos_id)
final_outputs, final_state, final_sequence_lengths = inference_decoder(
start_tokens,
initial_state=encoder_state,
start_tokens=start_tokens,
end_token=0)
inference_model = keras.models.Model(inputs=[encoder_inputs],
outputs=[final_outputs.sample_id])
def creative_predict_date_strs(date_strs, temperature=1.0):
softmax_temperature.assign(temperature)
X = prepare_date_strs_padded(date_strs)
Y_pred = inference_model.predict(X)
return ids_to_date_strs(Y_pred)
tf.random.set_seed(42)
creative_predict_date_strs(["July 14, 1789", "May 01, 2020"]) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Dates look good at room temperature. Now let's heat things up a bit: | tf.random.set_seed(42)
creative_predict_date_strs(["July 14, 1789", "May 01, 2020"],
temperature=5.) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Oops, the dates are overcooked, now. Let's call them "creative" dates. Fifth version: using TFA seq2seq, the Keras subclassing API and attention mechanisms The sequences in this problem are pretty short, but if we wanted to tackle longer sequences, we would probably have to use attention mechanisms. While it's possible to code our own implementation, it's simpler and more efficient to use TF-Addons's implementation instead. Let's do that now, this time using Keras' subclassing API.**Warning**: due to a TensorFlow bug (see [this issue](https://github.com/tensorflow/addons/issues/1153) for details), the `get_initial_state()` method fails in eager mode, so for now we have to use the subclassing API, as Keras automatically calls `tf.function()` on the `call()` method (so it runs in graph mode). In this implementation, we've reverted back to using the `TrainingSampler`, for simplicity (but you can easily tweak it to use a `ScheduledEmbeddingTrainingSampler` instead). We also use a `GreedyEmbeddingSampler` during inference, so this class is pretty easy to use: | class DateTranslation(keras.models.Model):
def __init__(self, units=128, encoder_embedding_size=32,
decoder_embedding_size=32, **kwargs):
super().__init__(**kwargs)
self.encoder_embedding = keras.layers.Embedding(
input_dim=len(INPUT_CHARS) + 1,
output_dim=encoder_embedding_size)
self.encoder = keras.layers.LSTM(units,
return_sequences=True,
return_state=True)
self.decoder_embedding = keras.layers.Embedding(
input_dim=len(OUTPUT_CHARS) + 2,
output_dim=decoder_embedding_size)
self.attention = tfa.seq2seq.LuongAttention(units)
decoder_inner_cell = keras.layers.LSTMCell(units)
self.decoder_cell = tfa.seq2seq.AttentionWrapper(
cell=decoder_inner_cell,
attention_mechanism=self.attention)
output_layer = keras.layers.Dense(len(OUTPUT_CHARS) + 1)
self.decoder = tfa.seq2seq.BasicDecoder(
cell=self.decoder_cell,
sampler=tfa.seq2seq.sampler.TrainingSampler(),
output_layer=output_layer)
self.inference_decoder = tfa.seq2seq.BasicDecoder(
cell=self.decoder_cell,
sampler=tfa.seq2seq.sampler.GreedyEmbeddingSampler(
embedding_fn=self.decoder_embedding),
output_layer=output_layer,
maximum_iterations=max_output_length)
def call(self, inputs, training=None):
encoder_input, decoder_input = inputs
encoder_embeddings = self.encoder_embedding(encoder_input)
encoder_outputs, encoder_state_h, encoder_state_c = self.encoder(
encoder_embeddings,
training=training)
encoder_state = [encoder_state_h, encoder_state_c]
self.attention(encoder_outputs,
setup_memory=True)
decoder_embeddings = self.decoder_embedding(decoder_input)
decoder_initial_state = self.decoder_cell.get_initial_state(
decoder_embeddings)
decoder_initial_state = decoder_initial_state.clone(
cell_state=encoder_state)
if training:
decoder_outputs, _, _ = self.decoder(
decoder_embeddings,
initial_state=decoder_initial_state,
training=training)
else:
start_tokens = tf.zeros_like(encoder_input[:, 0]) + sos_id
decoder_outputs, _, _ = self.inference_decoder(
decoder_embeddings,
initial_state=decoder_initial_state,
start_tokens=start_tokens,
end_token=0)
return tf.nn.softmax(decoder_outputs.rnn_output)
np.random.seed(42)
tf.random.set_seed(42)
model = DateTranslation()
optimizer = keras.optimizers.Nadam()
model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer,
metrics=["accuracy"])
history = model.fit([X_train, X_train_decoder], Y_train, epochs=25,
validation_data=([X_valid, X_valid_decoder], Y_valid)) | Epoch 1/25
313/313 [==============================] - 7s 21ms/step - loss: 2.1549 - accuracy: 0.2295 - val_loss: 2.1450 - val_accuracy: 0.2239
Epoch 2/25
313/313 [==============================] - 6s 19ms/step - loss: 1.8147 - accuracy: 0.3492 - val_loss: 1.4931 - val_accuracy: 0.4476
Epoch 3/25
313/313 [==============================] - 6s 18ms/step - loss: 1.3585 - accuracy: 0.4909 - val_loss: 1.3168 - val_accuracy: 0.5100
Epoch 4/25
313/313 [==============================] - 6s 18ms/step - loss: 1.2787 - accuracy: 0.5293 - val_loss: 1.1767 - val_accuracy: 0.5624
Epoch 5/25
313/313 [==============================] - 6s 18ms/step - loss: 1.1236 - accuracy: 0.5776 - val_loss: 1.0769 - val_accuracy: 0.5907
Epoch 6/25
313/313 [==============================] - 6s 18ms/step - loss: 1.0369 - accuracy: 0.6073 - val_loss: 1.0159 - val_accuracy: 0.6199
Epoch 7/25
313/313 [==============================] - 6s 18ms/step - loss: 0.9752 - accuracy: 0.6295 - val_loss: 0.9723 - val_accuracy: 0.6346
Epoch 8/25
313/313 [==============================] - 6s 18ms/step - loss: 0.9794 - accuracy: 0.6315 - val_loss: 0.9444 - val_accuracy: 0.6371
Epoch 9/25
313/313 [==============================] - 6s 18ms/step - loss: 0.9338 - accuracy: 0.6415 - val_loss: 0.9296 - val_accuracy: 0.6381
Epoch 10/25
313/313 [==============================] - 6s 19ms/step - loss: 0.9439 - accuracy: 0.6418 - val_loss: 0.9028 - val_accuracy: 0.6574
Epoch 11/25
313/313 [==============================] - 6s 19ms/step - loss: 0.8807 - accuracy: 0.6637 - val_loss: 0.9835 - val_accuracy: 0.6369
Epoch 12/25
313/313 [==============================] - 6s 19ms/step - loss: 0.7307 - accuracy: 0.6953 - val_loss: 0.8942 - val_accuracy: 0.6873
Epoch 13/25
313/313 [==============================] - 6s 19ms/step - loss: 0.5833 - accuracy: 0.7327 - val_loss: 0.6944 - val_accuracy: 0.7391
Epoch 14/25
313/313 [==============================] - 6s 19ms/step - loss: 0.4664 - accuracy: 0.7940 - val_loss: 0.6228 - val_accuracy: 0.7885
Epoch 15/25
313/313 [==============================] - 6s 19ms/step - loss: 0.3205 - accuracy: 0.8740 - val_loss: 0.4825 - val_accuracy: 0.8780
Epoch 16/25
313/313 [==============================] - 6s 19ms/step - loss: 0.2329 - accuracy: 0.9216 - val_loss: 0.3851 - val_accuracy: 0.9118
Epoch 17/25
313/313 [==============================] - 7s 21ms/step - loss: 0.2480 - accuracy: 0.9372 - val_loss: 0.2785 - val_accuracy: 0.9111
Epoch 18/25
313/313 [==============================] - 7s 22ms/step - loss: 0.1182 - accuracy: 0.9801 - val_loss: 0.1372 - val_accuracy: 0.9786
Epoch 19/25
313/313 [==============================] - 7s 22ms/step - loss: 0.0643 - accuracy: 0.9937 - val_loss: 0.0681 - val_accuracy: 0.9909
Epoch 20/25
313/313 [==============================] - 6s 18ms/step - loss: 0.0446 - accuracy: 0.9952 - val_loss: 0.0487 - val_accuracy: 0.9934
Epoch 21/25
313/313 [==============================] - 6s 18ms/step - loss: 0.0247 - accuracy: 0.9987 - val_loss: 0.0228 - val_accuracy: 0.9987
Epoch 22/25
313/313 [==============================] - 6s 18ms/step - loss: 0.0456 - accuracy: 0.9918 - val_loss: 0.0207 - val_accuracy: 0.9985
Epoch 23/25
313/313 [==============================] - 6s 18ms/step - loss: 0.0131 - accuracy: 0.9997 - val_loss: 0.0127 - val_accuracy: 0.9993
Epoch 24/25
313/313 [==============================] - 6s 19ms/step - loss: 0.0360 - accuracy: 0.9933 - val_loss: 0.0146 - val_accuracy: 0.9990
Epoch 25/25
313/313 [==============================] - 6s 19ms/step - loss: 0.0092 - accuracy: 0.9998 - val_loss: 0.0089 - val_accuracy: 0.9992
| Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Not quite 100% validation accuracy, but close. It took a bit longer to converge this time, but there were also more parameters and more computations per iteration. And we did not use a scheduled sampler.To use the model, we can write yet another little function: | def fast_predict_date_strs_v2(date_strs):
X = prepare_date_strs_padded(date_strs)
X_decoder = tf.zeros(shape=(len(X), max_output_length), dtype=tf.int32)
Y_probas = model.predict([X, X_decoder])
Y_pred = tf.argmax(Y_probas, axis=-1)
return ids_to_date_strs(Y_pred)
fast_predict_date_strs_v2(["July 14, 1789", "May 01, 2020"]) | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
There are still a few interesting features from TF-Addons that you may want to look at:* Using a `BeamSearchDecoder` rather than a `BasicDecoder` for inference. Instead of outputing the character with the highest probability, this decoder keeps track of the several candidates, and keeps only the most likely sequences of candidates (see chapter 16 in the book for more details).* Setting masks or specifying `sequence_length` if the input or target sequences may have very different lengths.* Using a `ScheduledOutputTrainingSampler`, which gives you more flexibility than the `ScheduledEmbeddingTrainingSampler` to decide how to feed the output at time _t_ to the cell at time _t_+1. By default it feeds the outputs directly to cell, without computing the argmax ID and passing it through an embedding layer. Alternatively, you specify a `next_inputs_fn` function that will be used to convert the cell outputs to inputs at the next step. 10._Exercise: Go through TensorFlow's [Neural Machine Translation with Attention tutorial](https://homl.info/nmttuto)._ Simply open the Colab and follow its instructions. Alternatively, if you want a simpler example of using TF-Addons's seq2seq implementation for Neural Machine Translation (NMT), look at the solution to the previous question. The last model implementation will give you a simpler example of using TF-Addons to build an NMT model using attention mechanisms. 11._Exercise: Use one of the recent language models (e.g., GPT) to generate more convincing Shakespearean text._ The simplest way to use recent language models is to use the excellent [transformers library](https://huggingface.co/transformers/), open sourced by Hugging Face. It provides many modern neural net architectures (including BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet and more) for Natural Language Processing (NLP), including many pretrained models. It relies on either TensorFlow or PyTorch. Best of all: it's amazingly simple to use. First, let's load a pretrained model. In this example, we will use OpenAI's GPT model, with an additional Language Model on top (just a linear layer with weights tied to the input embeddings). Let's import it and load the pretrained weights (this will download about 445MB of data to `~/.cache/torch/transformers`): | from transformers import TFOpenAIGPTLMHeadModel
model = TFOpenAIGPTLMHeadModel.from_pretrained("openai-gpt") | _____no_output_____ | Apache-2.0 | 16_nlp_with_rnns_and_attention.ipynb | otamilocintra/ml2gh |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.