markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Lets see how the data looks like.
bins = 200 plt.hist(exp_A, bins=200, histtype='step', label='Exeriment A') plt.hist(exp_B, bins=200, histtype='step', label='Exeriment B') plt.hist(exp_C, bins=200, histtype='step', label='Exeriment C') plt.hist(exp_D, bins=200, histtype='step', label='Exeriment D') plt.ylabel('Counts') plt.xlabel('Energy (keV)') plt.legend() plt.show()
_____no_output_____
CC-BY-4.0
data/test_data/generate_data.ipynb
fewagner/excess
We save the data in a simple txt format.
np.savetxt('experiment_A.txt', exp_A) np.savetxt('experiment_B.txt', exp_B) np.savetxt('experiment_C.txt', exp_C)
_____no_output_____
CC-BY-4.0
data/test_data/generate_data.ipynb
fewagner/excess
For one of the experiments, we save the binned file only.
hist_D, bins_D = np.histogram(exp_D, bins=300, range=(0,40)) np.savetxt('experiment_D.txt', np.column_stack([bins_D[:-1], bins_D[1:], hist_D]))
_____no_output_____
CC-BY-4.0
data/test_data/generate_data.ipynb
fewagner/excess
Efficiency Data We create the efficiency curves on an already binned grid.
grid = np.arange(0.002, 20, 0.002) eff_A = (np.ones(grid.shape) - np.exp(-grid))*0.8 + 0.2 eff_B = 0.9*np.ones(grid.shape) eff_C = (np.sqrt(grid) / np.sqrt(grid[-1]) * 0.7*np.ones(grid.shape))*0.8 + 0.2 eff_D = np.ones(grid.shape)
_____no_output_____
CC-BY-4.0
data/test_data/generate_data.ipynb
fewagner/excess
Lets plot the curves.
plt.plot(eff_A, label='Efficiency A') plt.plot(eff_B, label='Efficiency B') plt.plot(eff_C, label='Efficiency C') plt.plot(eff_D, label='Efficiency D') plt.xlabel('Energy (keV)') plt.ylabel('Survival Probability') plt.legend() plt.show()
_____no_output_____
CC-BY-4.0
data/test_data/generate_data.ipynb
fewagner/excess
Now lets plot the re-weighted histogram.
# put the exposures exposure_A = 1 exposure_B = 0.2 exposure_C = 15 exposure_D = np.random.uniform(size=len(hist_D)) + 1 # make histograms hist_A, bins_A = np.histogram(exp_A, bins) hist_B, bins_B = np.histogram(exp_B, bins) hist_C, bins_C = np.histogram(exp_C, bins) # reweight with efficiencies hist_A = hist_A / np.interp(bins_A[:-1], grid, eff_A) hist_B = hist_B / np.interp(bins_B[:-1], grid, eff_B) hist_C = hist_C / np.interp(bins_C[:-1], grid, eff_C) hist_D = hist_D / np.interp(bins_D[:-1], grid, eff_D) # plot - comment the lines of experiments to not show them plt.hist(bins_A[:-1], bins_A, weights=hist_A/exposure_A, histtype='step', label='Experiment A', color='C0') plt.hist(bins_B[:-1], bins_B, weights=hist_B/exposure_B, histtype='step', label='Experiment B', color='C1') plt.hist(bins_C[:-1], bins_C, weights=hist_C/exposure_C, histtype='step', label='Experiment C', color='C2') plt.hist(bins_D[:-1], bins_D, weights=hist_D/exposure_D, histtype='step', label='Experiment D', color='C3') plt.xlabel('Energy (keV)') plt.ylabel('Counts') plt.legend() plt.show()
_____no_output_____
CC-BY-4.0
data/test_data/generate_data.ipynb
fewagner/excess
And save the efficiency curves to files as well.
np.savetxt('experiment_A_eff.txt', np.column_stack([grid, eff_A])) np.savetxt('experiment_B_eff.txt', np.column_stack([grid, eff_B])) np.savetxt('experiment_C_eff.txt', np.column_stack([grid, eff_C])) np.savetxt('experiment_D_eff.txt', np.column_stack([grid, eff_D]))
_____no_output_____
CC-BY-4.0
data/test_data/generate_data.ipynb
fewagner/excess
Finally, write the exposures to files.
np.savetxt('experiment_A_exposure.txt', [exposure_A]) np.savetxt('experiment_B_exposure.txt', [exposure_B]) np.savetxt('experiment_C_exposure.txt', [exposure_C]) np.savetxt('experiment_D_exposure.txt', np.column_stack([(bins_D[1:] - bins_D[:-1])/2 + bins_D[:-1], exposure_D]))
_____no_output_____
CC-BY-4.0
data/test_data/generate_data.ipynb
fewagner/excess
# Google Colab Instructions from google.colab import drive drive.mount('/content/drive') !ls /content/drive/My\ Drive/Colab\ Notebooks # What version of python do you have? import sys import tensorflow.keras import pandas as pd import sklearn as sk import tensorflow as tf print(f"Python Version: {sys.version}") print(f"Tensorflow Version: {tf.__version__}") print(f"Keras Version: {tensorflow.keras.__version__}") print(f"Scikit-Learn Version: {sk.__version__}") print("GPU is ", "Available" if tf.test.is_gpu_available() else "Not Available")
_____no_output_____
MIT
Utility_References.ipynb
chakra-ai/DeepNeuralNetworks
Wind Statistics Introduction:The data have been modified to contain some missing values, identified by NaN. Using pandas should make this exerciseeasier, in particular for the bonus question.You should be able to perform all of these operations without usinga for loop or other looping construct.1. The data in 'wind.data' has the following format:
""" Yr Mo Dy RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO BEL MAL 61 1 1 15.04 14.96 13.17 9.29 NaN 9.87 13.67 10.25 10.83 12.58 18.50 15.04 61 1 2 14.71 NaN 10.83 6.50 12.62 7.67 11.50 10.04 9.79 9.67 17.54 13.83 61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 NaN 8.50 7.67 12.75 12.71 """
_____no_output_____
Apache-2.0
pandas/06_Stats/Wind_Stats/Solutions.ipynb
eric999j/Udemy_Python_Hand_On
The first three columns are year, month and day. The remaining 12 columns are average windspeeds in knots at 12 locations in Ireland on that day. More information about the dataset go [here](wind.desc). Step 1. Import the necessary libraries
import pandas as pd import datetime
_____no_output_____
Apache-2.0
pandas/06_Stats/Wind_Stats/Solutions.ipynb
eric999j/Udemy_Python_Hand_On
Agenda1. Recap: list and loops // Questions about assignment2. List comprehension3. Dictionaries4. Pandas datatypes5. Read data with Pandas6. Explore data with Pandas7. Work with missing values List comprehension
my_list = ['wordA', 'wordB'] #normal loop new_list1 = [] for item in my_list: new_list1.append(item.upper()) #list comprehension new_list2 = [item.upper() for item in my_list] print(new_list1, new_list2)
['WORDA', 'WORDB'] ['WORDA', 'WORDB']
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
Python dictionaries- Dictionary is a python datatype that is used to store key-value pairs. It enables you to quickly retrieve, add, remove, modify values using a key. Dictionary is very similar to what we call associative array or hash in other languages.- {} and seprated by ,Dictionaries and lists share the following characteristics:- Both are mutable (can be changed)- Both are dynamic. They can grow and shrink as needed.- Both can be nested. A list can contain another list. A dictionary can contain another dictionary. A dictionary can also contain a list, and vice versa.- Dictionaries differ from lists primarily in how elements are accessed:List elements are accessed by their position in the list, via indexing.Dictionary elements are accessed via keys.
mydict = {"name": "Demi", "birth_year": 1994, "hobby": "programming"} print(mydict['name']) mydict[0] mydict.keys() mydict.values() for key, value in mydict.items(): print(key.upper()) for item in mydict.values(): print(item) #change a value mydict['name'] = "DeeJay" mydict.items() # dictonaries can contain any data type mydict = {"names": ["Demi", "DeeJay"], "birth_year": 1994, "hobby": ["programming", "yoga", "drinking wine"]}
_____no_output_____
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
Exercise- Create a dictionary about yourself, list at least 2 hobbies- Print only your second hobby- What is your birth_year? Pandas- Pandas stands for “Python Data Analysis Library"- pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, it takes data (like a CSV or TSV file, or a SQL database) and creates a Python object with rows and columns called dataframe that looks very similar to table in a statistical software (think Excel or SPSS for example). - similar to R- pandas is a libary or module, therefore if we want to use it, we need to instal and import it. You can make use of the functions that are defined in the module by calling them with . (dot), like you did with list.split() or string.strip()
# Install a conda package in the current Jupyter kernel import sys !conda install --yes --prefix {sys.prefix} pandas
Collecting package metadata (current_repodata.jsodone Solving envidone ## Package Plan ## environment location: /usr/local/Caskroom/miniconda/base/envs/testj added / updated specs: - pandas The following NEW packages will be INSTALLED: blas pkgs/main/osx-64::blas-1.0-mkl intel-openmp pkgs/main/osx-64::intel-openmp-2020.1-216 libgfortran pkgs/main/osx-64::libgfortran-3.0.1-h93005f0_2 mkl pkgs/main/osx-64::mkl-2019.4-233 mkl-service pkgs/main/osx-64::mkl-service-2.3.0-py37hfbe908c_0 mkl_fft pkgs/main/osx-64::mkl_fft-1.0.15-py37h5e564d8_0 mkl_random pkgs/main/osx-64::mkl_random-1.1.0-py37ha771720_0 numpy pkgs/main/osx-64::numpy-1.18.1-py37h7241aed_0 numpy-base pkgs/main/osx-64::numpy-base-1.18.1-py37h6575580_1 pandas pkgs/main/osx-64::pandas-1.0.3-py37h6c726b0_0 pytz pkgs/main/noarch::pytz-2020.1-py_0 Preparing transaction:done Verifying transact| WARNING conda.core.path_actions:verify(963): Unable to create environments file. Path not writable. environment location: /Users/alyonagalyeva/.conda/environments.txt done Execut\ WARNING conda.core.envs_manager:register_env(52): Unable to register environment. Path not writable or missing. environment location: /usr/local/Caskroom/miniconda/base/envs/testj registry file: /Users/alyonagalyeva/.conda/environments.txt done
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
- after the installation we need to import the libary, you need to do import for every Jupyter notebook. - `as pd` is an alias, if you do not do 'as' you will have to type pandas everytime. Programmers are lazy, so we use shortcuts such as pd
import pandas as pd
_____no_output_____
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
Pandas datatypesThere are two core objects in Pandas: the DataFrame and the Series. SeriesPandas Series is a one-dimensional labeled array, capable of holding data of any type (integer, string, float, python objects, etc.). The axis labels are collectively called index. Pandas Series is nothing, but a column in an Excel sheet. Like in Excel every row in the sheet has - an index- a value or datapoint (if you entered a value)**img from: https://codechalleng.es/bites/251/*** Did we already told you, you can do amazing stuff with markdown? https://about.gitlab.com/handbook/markdown-guide/
# assign the variable s to Series s = pd.Series(data, index=index) # lets define data data = [2,4,6,5] # lets try it again s = pd.Series(data, index=index) # we need to have the same amount of indexes as data points my_index = [0,1,2,3] # try to change my_index pd.Series(data, index=my_index)
_____no_output_____
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
ExerciseHow can you use python functions to define the index? Remember, you're lazy!- Hint: - Length of the data and the index needs to be the same - Have you used the range function before? DataFrameA DataFrame is a table. It contains an array of individual entries, each of which has a certain value. Each entry corresponds to a row (or record) and a column.- not limited to integers also strings ** image from = https://www.geeksforgeeks.org/ and https://www.learndatasci.com/For example, consider the following simple DataFrame
df_with_numbers = pd.DataFrame({'Yes': [53, 21], 'No': [13, 1]}) df_with_numbers pd.DataFrame({'Bob': ['I liked it.', 'It was awful.'], 'Sue': ['Pretty good.', 'Boring.']})
_____no_output_____
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
Read dataBeing able to create a DataFrame or Series manually is handy. But, most of the time, we won't actually create our own data manually. Instead, we'll be working with data that already exists.Data can be stored in any number of different forms and formats. By far the most basic is a CSV file. When you open a CSV file you get something that looks like this:Product A,Product B,Product C,30,21,9,35,34,1,41,11,11Download data from Kaggle or take a look at this data descriprion:https://www.kaggle.com/kimjihoo/ds4c-what-is-this-dataset-detailed-description
# read the data and store it in df variable path = 'data/coronavirusdataset/Case.csv' df = pd.read_csv(path)
_____no_output_____
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
Viewing and Inspecting DataNow that you’ve loaded your data, it’s time to take a look at it. How does the dataframe look like? Running the name of the data frame would give you the entire table, but you can also use functions
# get the first n rows with df.head(n), or the last n rows with df.tail(n) df.head() len(df) # check the number of rows and columns df.shape # important to check non-null values df.info() # check only the columns df.columns df.group #df['group'] df['city'].describe() df['province'].unique() # view unique values and counts for a series (like a column or a few columns) df['city'].value_counts()
_____no_output_____
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
Exercise1. How many individual provinces does this dataset contain?2. Display the top three MENTIONED provinces Slices
df[1:4] cases_in_gurogu = df[df.city == 'Guro-gu'] cases_in_gurogu df.confirmed.sum()
_____no_output_____
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
Exercise1. How many confirmed cases are there in Eunpyeong-gu ? Missing dataEntries with missing values are given the value NaN, short for "Not a Number". For technical reasons these NaN values are always float64 dtype. Copying dataframeIn Pandas, indexing a DataFrame returns a reference to the initial DataFrame. By changing the subset we change the initial DataFrame. Thus, you'd want to use the copy if you want to make sure the initial DataFrame shouldn't be changed. Consider the following code:
# index, column missing_data_df = df.copy() missing_data_df # create missing values missing_data_df.at[0, 'confirmed'] = None missing_data_df
_____no_output_____
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
Pandas provides some methods specific to manipulating the missing data. To select NaN entries you can use pd.isnull() (or its companion pd.notnull()).
df[pd.isnull(df.city)] # df.isnull().values.any() # df.info
_____no_output_____
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
Replacing missing values is a common operation. Pandas provides a really handy method for this problem: fillna~(). fillna() provides a few different strategies for mitigating such data. For example, we can simply replace each NaN with an "Unknown":
# if any non value exsist, fill with unknown df.city.fillna("Unknown")
_____no_output_____
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
Exercise1. fill the missing values of the confirmed cases with the average of the confirmed cases Missing values are not always NaN, they can also be ["n/a", "na", "-", ""]. If needed we can also replace these values.
# df.latitude df.latitude.unique() # check the - # replace values df.latitude.replace('-', "unknown")
_____no_output_____
MIT
lessons/Week3-lesson.ipynb
pyladiesams/Bootcamp-Data-Analysis-beginner-apr-may2020
Intervalos de Confiança Francisco A. Rodrigues, University of São Paulo. https://sites.icmc.usp.br/[email protected] Esse notebook é relacionado à aula: https://www.youtube.com/watch?v=AkmyfLc-EOs Podemos interpretaro intervalo de confiança de $(1-\alpha)100\%$ através de simulações.
import numpy as np import matplotlib.pyplot as plt n = 50 # tamanho da amostra Ns = 100 # numero de intervalos mu = 2 # media populacional sigma = 2 # desvio padrão populacional beta = 0.95 # nivel de confianca zalpha = 1.96 # valor de z (a partir de beta) c = 0 # conta o numero de intervalos que contem a media plt.figure(figsize=(14,10)) for s in range(1,Ns): x = np.random.normal(mu, sigma, n) # sorteia uma amostra de tamanho n IC1 = np.mean(x) - zalpha*sigma/np.sqrt(n) #intervalo inferior IC2 = np.mean(x) + zalpha*sigma/np.sqrt(n) #intervalo superior if(mu > IC1 and mu < IC2): c = c + 1 # mostra o intervalo em cinza se continar a media plt.vlines(s, ymin=IC1, ymax=IC2, color = 'gray') plt.plot(s,np.mean(x), 'o', color = 'gray', markersize=5) else: # mostra o intervalo que nao contem a media plt.vlines(s, ymin=IC1, ymax=IC2, color = 'black', linestyles = 'dashed') plt.plot(s,np.mean(x), 'o', color = 'black', markersize=5) plt.axhline(y = mu, color = 'black') # mostra a media populacional plt.xlabel('Amostra', fontsize=20) plt.show() print('Nível de confiança:', beta) print('Fraçao de intervalos que contém a média:', c/Ns)
_____no_output_____
CC0-1.0
Intervalo-de-confianca.ipynb
franciscoicmc/simulacao
Calculo do Intervalo de confiança Podemos implementar uma função para calcular o intervalo de confiança automaticamente.
import scipy.stats import numpy as np def confident_interval(Xs, n, confidence = 0.95, sigma = -1, s = -1): zalpha = abs(scipy.stats.norm.ppf((1 - confidence)/2.)) if(sigma != -1): # se a variancia eh conhecida IC1 = Xs - zalpha*sigma/np.sqrt(n) IC2 = Xs + zalpha*sigma/np.sqrt(n) else: # se a variancia eh desconhecida if(n >= 50): # se o tamanho da amostra eh maior do que 50 # Usa a distribuicao normal IC1 = Xs - zalpha*s/np.sqrt(n) IC2 = Xs + zalpha*s/np.sqrt(n) else: # se o tamanho da amostra eh menor do que 50 # Usa a distribuicao t de Student talpha = scipy.stats.t.ppf((1 + confidence) / 2., n-1) IC1 = Xs - talpha*s/np.sqrt(n) IC2 = Xs + talpha*s/np.sqrt(n) return [IC1, IC2]
_____no_output_____
CC0-1.0
Intervalo-de-confianca.ipynb
franciscoicmc/simulacao
**Exemplo**: Em uma empresa de distribuição de alimentos pela internet, verificou-se que o tempo necessário para uma entrega tem distribuição normal com média $\mu = 30$ minutos e desvio padrão $\sigma = 10$ minutos. Em uma amostra de 50 entregadores, observou-se um tempo médio de entrega $\bar{X}_{50} = 25$ minutos. Determine o intervalo de 95\% de confiança para a média $\mu$ de todos os entregadores da empresa.
Xs = 25 n = 50 confidence =0.95 sigma = 10 IC = confident_interval(Xs,n, confidence, sigma) print('Confidence interval:', IC)
Confidence interval: [22.228192351300645, 27.771807648699355]
CC0-1.0
Intervalo-de-confianca.ipynb
franciscoicmc/simulacao
**Exemplo** Em um provedor de videos na Internet, verificou-se que para uma amostra de 15 usuários, o tempo médio de exibição é igual a $\bar{X}_{15} = 39,3$ minutos e o desvio padrão da amostra $S_{15} = 2,6$ minutos. Encontre um intervalo de 90\% para a média populacional $\mu$.
Xs = 39.3 s = 2.6 n = 15 confidence =0.9 IC = confident_interval(Xs,n, confidence, -1, s) print('Confidence interval:', IC)
Confidence interval: [38.117602363950525, 40.48239763604947]
CC0-1.0
Intervalo-de-confianca.ipynb
franciscoicmc/simulacao
Para um conjunto de dados, temos a função abaixo.
import scipy.stats import numpy as np def confident_interval_data(X, confidence = 0.95, sigma = -1): def S(X): #funcao para calcular o desvio padrao amostral s = 0 for i in range(0,len(X)): s = s + (X[i] - np.mean(X))**2 s = np.sqrt(s/(len(X)-1)) return s n = len(X) # numero de elementos na amostra Xs = np.mean(X) # media amostral s = S(X) # desvio padrao amostral zalpha = abs(scipy.stats.norm.ppf((1 - confidence)/2)) if(sigma != -1): # se a variancia eh conhecida IC1 = Xs - zalpha*sigma/np.sqrt(n) IC2 = Xs + zalpha*sigma/np.sqrt(n) else: # se a variancia eh desconhecida if(n >= 50): # se o tamanho da amostra eh maior do que 50 # Usa a distribuicao normal IC1 = Xs - zalpha*s/np.sqrt(n) IC2 = Xs + zalpha*s/np.sqrt(n) else: # se o tamanho da amostra eh menor do que 50 # Usa a distribuicao t de Student talpha = scipy.stats.t.ppf((1 + confidence) / 2., n-1) IC1 = Xs - talpha*s/np.sqrt(n) IC2 = Xs + talpha*s/np.sqrt(n) return [IC1, IC2]
_____no_output_____
CC0-1.0
Intervalo-de-confianca.ipynb
franciscoicmc/simulacao
Executando para um exemplo.
X = [1, 2, 3, 4, 5] confidence = 0.95 IC = confident_interval_data(X, confidence) print('Confidence interval:', IC)
Confidence interval: [1.0367568385224393, 4.9632431614775605]
CC0-1.0
Intervalo-de-confianca.ipynb
franciscoicmc/simulacao
This notebook will help you practice some of the skills and concepts you learned in chapter 2 of the book:- Strings, Numbers- Variables- Lists, Sets, Dictionaries- Loops and list comprehensions- Control Flow- Functions- Classes- Packages/Modules- Debugging an error- Using documentation Here we have some data on the number of books read by different people who work at Bob's Book Emporium. Create Python code that loops through each of the people and prints out how many books they have read. If someone has read 0 books, print out "___ has not read any books!" instead of the number of books.
people = ['Krishnang', 'Steve', 'Jimmy', 'Mary', 'Divya', 'Robert', 'Yulia'] books_read = [12, 6, 0, 7, 4, 10, 15] for i in range(len(people)): if books_read[i] == 0: print(people[i] + "has not read any books!") else: print(people[i] + " has read " + str(books_read[i]) + " books!")
Krishnang has read 12 books! Steve has read 6 books! Jimmyhas not read any books! Mary has read 7 books! Divya has read 4 books! Robert has read 10 books! Yulia has read 15 books!
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
There are several ways to solve this -- you could look at the `zip()` function, use `enumerate()`, use `range` and `len`, or use other methods. To print the names and values, you can use string concatenation (+), f-string formatting, or other methods.
# your code here
_____no_output_____
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
Turn the loop we just created into a function that takes the two lists (books read and people) as arguments. Be sure to try out your function to make sure it works.
def people_books(people, books_read): for i in range(len(people)): if books_read[i] == 0: print(people[i] + "has not read any books!") else: print(people[i] + " has read " + str(books_read[i]) + " books!") people_books(people, books_read)
Krishnang has read 12 books! Steve has read 6 books! Jimmyhas not read any books! Mary has read 7 books! Divya has read 4 books! Robert has read 10 books! Yulia has read 15 books!
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
Challenge: Sort the values of `books_read` from greatest to least and print the top three people with the number of books they have read. This is a tougher problem. Some possible ways to solve it include using NumPy's argsort, creating a dictionary, and creating tuples.
new_dict = {} for i in range(len(books_read)): new_dict[people[i]] = books_read[i] sorted_dicctionary = sorted(new_dict.items(), key = lambda x: x[1], reverse=True) print(sorted_dicctionary)
[('Yulia', 15), ('Krishnang', 12), ('Robert', 10), ('Mary', 7), ('Steve', 6), ('Divya', 4), ('Jimmy', 0)]
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
Bob's books gets a discount for every multiple of 3 books their employees buy and read. Find out how many multiples of 3 books they have read, and how many more books need to be read to get to the next multiple of 3. Python has a built-in `sum` function that may be useful here, and don't forget about the modulo operator.
sum_books = sum(books_read) discounted = sum_books//3 remaining = sum_books % 3
_____no_output_____
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
Create a dictionary for the data where the keys are people's names and the values are the number of books. An advanced way to do this would be with a dictionary comprehension, but you can also use a loop.
# your code here dicctionary = {person : books for person,books in zip(people, books_read)} print(dicctionary)
{'Krishnang': 12, 'Steve': 6, 'Jimmy': 0, 'Mary': 7, 'Divya': 4, 'Robert': 10, 'Yulia': 15}
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
Challenge: Use the dictionary to print out the top 3 people with the most books read. This is where Stack Overflow and searching the web might come in handy -- try searching 'sort dictionary by value in Python'.
# your code here sorted_dicctionary = sorted(dicctionary.items(), key = lambda x:x[1], reverse = True)[:3] sorted_dicctionary
_____no_output_____
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
Using sets, ensure there are no duplicate names in our data. (Yes, this is trivial since our data is small and we can manually inspect it, but if we had thousands of names, we could use the same method as we do here.)
set_people = set(people) print(set_people)
{'Yulia', 'Robert', 'Steve', 'Mary', 'Divya', 'Jimmy', 'Krishnang'}
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
Create a class for storing the books read and people's names. The class should also include a function for printing out the top three book readers. Test out your class to make sure it works.
class books_people: def __init__(self, people, books_read): self.people = people self.books_read = books_read def print_top_readers(self): book_tuples = ((b,p) for b,p in zip(self.books_read, self.people)) for b,p in sorted(book_tuples, reverse= True)[:3]: print(f'{p} has read {b} books!') br = books_people(people, books_read) br.print_top_readers()
Yulia has read 15 books! Krishnang has read 12 books! Robert has read 10 books!
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
Use the time module to see how long it takes to make a new class and print out the top three readers.
import time start = time.time() br=books_people(people, books_read) br.print_top_readers() elapsed = time.time() - start print(f'It has elapsed {elapsed} seconds')
Yulia has read 15 books! Krishnang has read 12 books! Robert has read 10 books! It has elapsed 0.0005550384521484375 seconds
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
Another way to do this is with the %%timeit magic command: The code below is throwing a few errors. Debug and correct the error so the code runs.
for b, p in list(zip(books_read, people))[:3]: if b > 0 and b < 10: print(p + ' has only read ' + str(b) + ' books')
Steve has only read 6 books
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
Use the documentation (https://docs.python.org/3/library/stdtypes.htmlstring-methods) to understand how the functions `rjust` and `ljust` work, then modify the loop below so the output looks something like:```Krishnang------12 booksSteve---------- 6 booksJimmy---------- 0 booksMary----------- 7 booksDivya---------- 4 booksRobert---------10 booksYulia----------15 books```
for b, p in zip(books_read, people): print(f'{p.ljust(15, "-")}{str(b).rjust(2)} books')
Krishnang------12 books Steve---------- 6 books Jimmy---------- 0 books Mary----------- 7 books Divya---------- 4 books Robert---------10 books Yulia----------15 books
MIT
2-Chapter-2/Test_your_knowledge.ipynb
DiegoMerino28/Practical-Data-Science-with-Python
A/B test 4 - loved journeys, control vs LLRThis related links B/C test (ab4) was conducted from 22nd-28th March 2019.The data used in this report are 23rd-27th Mar 2019 because the test was started partway through 22nd Ma, and ended partway through 28th Mar.The test compared the existing related links (where available) to links generated using LLR algorithm Import
%load_ext autoreload %autoreload 2 import os import pandas as pd import numpy as np import ast import re # z test from statsmodels.stats.proportion import proportions_ztest # bayesian bootstrap and vis import matplotlib.pyplot as plt import seaborn as sns import bayesian_bootstrap.bootstrap as bb from astropy.utils import NumpyRNGContext # progress bar from tqdm import tqdm, tqdm_notebook from scipy import stats from collections import Counter import sys sys.path.insert(0, '../../src' ) import analysis as analysis # set up the style for our plots sns.set(style='white', palette='colorblind', font_scale=1.3, rc={'figure.figsize':(12,9), "axes.facecolor": (0, 0, 0, 0)}) # instantiate progress bar goodness tqdm.pandas(tqdm_notebook) pd.set_option('max_colwidth',500) # the number of bootstrap means used to generate a distribution boot_reps = 10000 # alpha - false positive rate alpha = 0.05 # number of tests m = 4 # Correct alpha for multiple comparisons alpha = alpha / m # The Bonferroni correction can be used to adjust confidence intervals also. # If one establishes m confidence intervals, and wishes to have an overall confidence level of 1-alpha, # each individual confidence interval can be adjusted to the level of 1-(alpha/m). # reproducible seed = 1337
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
File/dir locations Processed journey data
DATA_DIR = os.getenv("DATA_DIR") filename = "full_sample_loved_947858.csv.gz" filepath = os.path.join( DATA_DIR, "sampled_journey", "20190323_20190327", filename) filepath CONTROL_GROUP = "B" INTERVENTION_GROUP = "C" VARIANT_DICT = { 'CONTROL_GROUP':'B', 'INTERVENTION_GROUP':'C' } # read in processed sampled journey with just the cols we need for related links df = pd.read_csv(filepath, sep ="\t", compression="gzip") # convert from str to list df['Event_cat_act_agg']= df['Event_cat_act_agg'].progress_apply(ast.literal_eval) df['Page_Event_List'] = df['Page_Event_List'].progress_apply(ast.literal_eval) df['Page_List'] = df['Page_List'].progress_apply(ast.literal_eval) # drop dodgy rows, where page variant is not A or B. df = df.query('ABVariant in [@CONTROL_GROUP, @INTERVENTION_GROUP]') df[['Occurrences', 'ABVariant']].groupby('ABVariant').sum() df['Page_List_Length'] = df['Page_List'].progress_apply(len)
100%|██████████| 772387/772387 [00:00<00:00, 786616.91it/s]
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Nav type of page lookup - is it a finding page? if not it's a thing page
filename = "document_types.csv.gz" # created a metadata dir in the DATA_DIR to hold this data filepath = os.path.join( DATA_DIR, "metadata", filename) print(filepath) df_finding_thing = pd.read_csv(filepath, sep="\t", compression="gzip") df_finding_thing.head() thing_page_paths = df_finding_thing[ df_finding_thing['is_finding']==0]['pagePath'].tolist() finding_page_paths = df_finding_thing[ df_finding_thing['is_finding']==1]['pagePath'].tolist()
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
OutliersSome rows should be removed before analysis. For example rows with journey lengths of 500 or very high related link click rates. This process might have to happen once features have been created. Derive variables journey_click_rateThere is no difference in the proportion of journeys using at least one related link (journey_click_rate) between page variant A and page variant B. \begin{equation*}\frac{\text{total number of journeys including at least one click on a related link}}{\text{total number of journeys}}\end{equation*}
# get the number of related links clicks per Sequence df['Related Links Clicks per seq'] = df['Event_cat_act_agg'].map(analysis.sum_related_click_events) # map across the Sequence variable, which includes pages and Events # we want to pass all the list elements to a function one-by-one and then collect the output. df["Has_Related"] = df["Related Links Clicks per seq"].map(analysis.is_related) df['Related Links Clicks row total'] = df['Related Links Clicks per seq'] * df['Occurrences'] df.head(3)
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
count of clicks on navigation elementsThere is no statistically significant difference in the count of clicks on navigation elements per journey between page variant A and page variant B.\begin{equation*}{\text{total number of navigation element click events from content pages}}\end{equation*} Related link counts
# get the total number of related links clicks for that row (clicks per sequence multiplied by occurrences) df['Related Links Clicks row total'] = df['Related Links Clicks per seq'] * df['Occurrences']
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Navigation events
def count_nav_events(page_event_list): """Counts the number of nav events from a content page in a Page Event List.""" content_page_nav_events = 0 for pair in page_event_list: if analysis.is_nav_event(pair[1]): if pair[0] in thing_page_paths: content_page_nav_events += 1 return content_page_nav_events # needs finding_thing_df read in from document_types.csv.gz df['Content_Page_Nav_Event_Count'] = df['Page_Event_List'].progress_map(count_nav_events) def count_search_from_content(page_list): search_from_content = 0 for i, page in enumerate(page_list): if i > 0: if '/search?q=' in page: if page_list[i-1] in thing_page_paths: search_from_content += 1 return search_from_content df['Content_Search_Event_Count'] = df['Page_List'].progress_map(count_search_from_content) # count of nav or search clicks df['Content_Nav_or_Search_Count'] = df['Content_Page_Nav_Event_Count'] + df['Content_Search_Event_Count'] # occurrences is accounted for by the group by bit in our bayesian boot analysis function df['Content_Nav_Search_Event_Sum_row_total'] = df['Content_Nav_or_Search_Count'] * df['Occurrences'] # required for journeys with no nav later df['Has_No_Nav_Or_Search'] = df['Content_Nav_Search_Event_Sum_row_total'] == 0
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Temporary df file in case of crash Save
df.to_csv(os.path.join( DATA_DIR, "ab3_loved_temp.csv.gz"), sep="\t", compression="gzip", index=False) df = pd.read_csv(os.path.join( DATA_DIR, "ab3_loved_temp.csv.gz"), sep="\t", compression="gzip")
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Frequentist statistics Statistical significance
# help(proportions_ztest) has_rel = analysis.z_prop(df, 'Has_Related', VARIANT_DICT) has_rel has_rel['p-value'] < alpha
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Practical significance - uplift
# Due to multiple testing we used the Bonferroni correction for alpha ci_low,ci_upp = analysis.zconf_interval_two_samples(has_rel['x_a'], has_rel['n_a'], has_rel['x_b'], has_rel['n_b'], alpha = alpha) print(' difference in proportions = {0:.2f}%'.format(100*(has_rel['p_b']-has_rel['p_a']))) print(' % relative change in proportions = {0:.2f}%'.format(100*((has_rel['p_b']-has_rel['p_a'])/has_rel['p_a']))) print(' 95% Confidence Interval = ( {0:.2f}% , {1:.2f}% )' .format(100*ci_low, 100*ci_upp))
difference in proportions = 2.20% % relative change in proportions = 62.91% 95% Confidence Interval = ( 2.12% , 2.28% )
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Bayesian statistics Based on [this](https://medium.com/@thibalbo/coding-bayesian-ab-tests-in-python-e89356b3f4bd) blog To be developed, a Bayesian approach can provide a simpler interpretation. Bayesian bootstrap
analysis.compare_total_searches(df, VARIANT_DICT) fig, ax = plt.subplots() plot_df_B = df[df.ABVariant == VARIANT_DICT['INTERVENTION_GROUP']].groupby( 'Content_Nav_or_Search_Count').sum().iloc[:, 0] plot_df_A = df[df.ABVariant == VARIANT_DICT['CONTROL_GROUP']].groupby( 'Content_Nav_or_Search_Count').sum().iloc[:, 0] ax.set_yscale('log') width =0.4 ax = plot_df_B.plot.bar(label='B', position=1, width=width) ax = plot_df_A.plot.bar(label='A', color='salmon', position=0, width=width) plt.title("loved journeys") plt.ylabel("Log(number of journeys)") plt.xlabel("Number of uses of search/nav elements in journey") legend = plt.legend(frameon=True) frame = legend.get_frame() frame.set_facecolor('white') plt.savefig('nav_counts_loved_bar.png', dpi = 900, bbox_inches = 'tight') a_bootstrap, b_bootstrap = analysis.bayesian_bootstrap_analysis(df, col_name='Content_Nav_or_Search_Count', boot_reps=boot_reps, seed = seed, variant_dict=VARIANT_DICT) np.array(a_bootstrap).mean() np.array(a_bootstrap).mean() - (0.05 * np.array(a_bootstrap).mean()) np.array(b_bootstrap).mean() print("A relative change of {0:.2f}% from control to intervention".format((np.array(b_bootstrap).mean()-np.array(a_bootstrap).mean())/np.array(a_bootstrap).mean()*100)) # ratio is vestigial but we keep it here for convenience # it's actually a count but considers occurrences ratio_stats = analysis.bb_hdi(a_bootstrap, b_bootstrap, alpha=alpha) ratio_stats ax = sns.distplot(b_bootstrap, label='B') ax.errorbar(x=[ratio_stats['b_ci_low'], ratio_stats['b_ci_hi']], y=[2, 2], linewidth=5, c='teal', marker='o', label='95% HDI B') ax = sns.distplot(a_bootstrap, label='A', ax=ax, color='salmon') ax.errorbar(x=[ratio_stats['a_ci_low'], ratio_stats['a_ci_hi']], y=[5, 5], linewidth=5, c='salmon', marker='o', label='95% HDI A') ax.set(xlabel='mean search/nav count per journey', ylabel='Density') sns.despine() legend = plt.legend(frameon=True, bbox_to_anchor=(0.75, 1), loc='best') frame = legend.get_frame() frame.set_facecolor('white') plt.title("loved journeys") plt.savefig('nav_counts_loved.png', dpi = 900, bbox_inches = 'tight') # calculate the posterior for the difference between A's and B's ratio # ypa prefix is vestigial from blog post ypa_diff = np.array(b_bootstrap) - np.array(a_bootstrap) # get the hdi ypa_diff_ci_low, ypa_diff_ci_hi = bb.highest_density_interval(ypa_diff) # the mean of the posterior print('mean:', ypa_diff.mean()) print('low ci:', ypa_diff_ci_low, '\nhigh ci:', ypa_diff_ci_hi) ax = sns.distplot(ypa_diff) ax.plot([ypa_diff_ci_low, ypa_diff_ci_hi], [0, 0], linewidth=10, c='k', marker='o', label='95% HDI') ax.set(xlabel='Content_Nav_or_Search_Count', ylabel='Density', title='The difference between B\'s and A\'s mean counts times occurrences') sns.despine() legend = plt.legend(frameon=True) frame = legend.get_frame() frame.set_facecolor('white') plt.show(); # We count the number of values greater than 0 and divide by the total number # of observations # which returns us the the proportion of values in the distribution that are # greater than 0, could act a bit like a p-value (ypa_diff > 0).sum() / ypa_diff.shape[0] # We count the number of values less than 0 and divide by the total number # of observations # which returns us the the proportion of values in the distribution that are # less than 0, could act a bit like a p-value (ypa_diff < 0).sum() / ypa_diff.shape[0] (ypa_diff>0).sum() (ypa_diff<0).sum()
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
proportion of journeys with a page sequence including content and related links onlyThere is no statistically significant difference in the proportion of journeys with a page sequence including content and related links only (including loops) between page variant A and page variant B \begin{equation*}\frac{\text{total number of journeys that only contain content pages and related links (i.e. no nav pages)}}{\text{total number of journeys}}\end{equation*} Overall
# if (Content_Nav_Search_Event_Sum == 0) that's our success # Has_No_Nav_Or_Search == 1 is a success # the problem is symmetrical so doesn't matter too much sum(df.Has_No_Nav_Or_Search * df.Occurrences) / df.Occurrences.sum() sns.distplot(df.Content_Nav_or_Search_Count.values);
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Frequentist statistics Statistical significance
nav = analysis.z_prop(df, 'Has_No_Nav_Or_Search', VARIANT_DICT) nav
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Practical significance - uplift
# Due to multiple testing we used the Bonferroni correction for alpha ci_low,ci_upp = analysis.zconf_interval_two_samples(nav['x_a'], nav['n_a'], nav['x_b'], nav['n_b'], alpha = alpha) diff = 100*(nav['x_b']/nav['n_b']-nav['x_a']/nav['n_a']) print(' difference in proportions = {0:.2f}%'.format(diff)) print(' 95% Confidence Interval = ( {0:.2f}% , {1:.2f}% )' .format(100*ci_low, 100*ci_upp)) print("There was a {0: .2f}% relative change in the proportion of journeys not using search/nav elements".format(100 * ((nav['p_b']-nav['p_a'])/nav['p_a'])))
There was a 0.29% relative change in the proportion of journeys not using search/nav elements
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Average Journey Length (number of page views)There is no statistically significant difference in the average page list length of journeys (including loops) between page variant A and page variant B.
length_B = df[df.ABVariant == VARIANT_DICT['INTERVENTION_GROUP']].groupby( 'Page_List_Length').sum().iloc[:, 0] lengthB_2 = length_B.reindex(np.arange(1, 501, 1), fill_value=0) length_A = df[df.ABVariant == VARIANT_DICT['CONTROL_GROUP']].groupby( 'Page_List_Length').sum().iloc[:, 0] lengthA_2 = length_A.reindex(np.arange(1, 501, 1), fill_value=0) fig, ax = plt.subplots(figsize=(100, 30)) ax.set_yscale('log') width = 0.4 ax = lengthB_2.plot.bar(label='B', position=1, width=width) ax = lengthA_2.plot.bar(label='A', color='salmon', position=0, width=width) plt.xlabel('length', fontsize=1) legend = plt.legend(frameon=True) frame = legend.get_frame() frame.set_facecolor('white') plt.show();
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Bayesian bootstrap for non-parametric hypotheses
# http://savvastjortjoglou.com/nfl-bayesian-bootstrap.html # let's use mean journey length (could probably model parametrically but we use it for demonstration here) # some journeys have length 500 and should probably be removed as they are liekely bots or other weirdness #exclude journeys of longer than 500 as these could be automated traffic df_short = df[df['Page_List_Length'] < 500] print("The mean number of pages in an loved journey is {0:.3f}".format(sum(df.Page_List_Length*df.Occurrences)/df.Occurrences.sum())) # for reproducibility, set the seed within this context a_bootstrap, b_bootstrap = analysis.bayesian_bootstrap_analysis(df, col_name='Page_List_Length', boot_reps=boot_reps, seed = seed, variant_dict=VARIANT_DICT) a_bootstrap_short, b_bootstrap_short = analysis.bayesian_bootstrap_analysis(df_short, col_name='Page_List_Length', boot_reps=boot_reps, seed = seed, variant_dict=VARIANT_DICT) np.array(a_bootstrap).mean() np.array(b_bootstrap).mean() print("There's a relative change in page length of {0:.2f}% from A to B".format((np.array(b_bootstrap).mean()-np.array(a_bootstrap).mean())/np.array(a_bootstrap).mean()*100)) print(np.array(a_bootstrap_short).mean()) print(np.array(b_bootstrap_short).mean()) # Calculate a 95% HDI a_ci_low, a_ci_hi = bb.highest_density_interval(a_bootstrap) print('low ci:', a_ci_low, '\nhigh ci:', a_ci_hi) ax = sns.distplot(a_bootstrap, color='salmon') ax.plot([a_ci_low, a_ci_hi], [0, 0], linewidth=10, c='k', marker='o', label='95% HDI') ax.set(xlabel='Journey Length', ylabel='Density', title='Page Variant A Mean Journey Length') sns.despine() plt.legend(); # Calculate a 95% HDI b_ci_low, b_ci_hi = bb.highest_density_interval(b_bootstrap) print('low ci:', b_ci_low, '\nhigh ci:', b_ci_hi) ax = sns.distplot(b_bootstrap) ax.plot([b_ci_low, b_ci_hi], [0, 0], linewidth=10, c='k', marker='o', label='95% HDI') ax.set(xlabel='Journey Length', ylabel='Density', title='Page Variant B Mean Journey Length') sns.despine() legend = plt.legend(frameon=True) frame = legend.get_frame() frame.set_facecolor('white') plt.show(); ax = sns.distplot(b_bootstrap, label='B') ax = sns.distplot(a_bootstrap, label='A', ax=ax, color='salmon') ax.set(xlabel='Journey Length', ylabel='Density') sns.despine() legend = plt.legend(frameon=True) frame = legend.get_frame() frame.set_facecolor('white') plt.title("loved journeys") plt.savefig('journey_length_loved.png', dpi = 900, bbox_inches = 'tight') ax = sns.distplot(b_bootstrap_short, label='B') ax = sns.distplot(a_bootstrap_short, label='A', ax=ax, color='salmon') ax.set(xlabel='Journey Length', ylabel='Density') sns.despine() legend = plt.legend(frameon=True) frame = legend.get_frame() frame.set_facecolor('white') plt.show();
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
We can also measure the uncertainty in the difference between the Page Variants's Journey Length by subtracting their posteriors.
# calculate the posterior for the difference between A's and B's YPA ypa_diff = np.array(b_bootstrap) - np.array(a_bootstrap) # get the hdi ypa_diff_ci_low, ypa_diff_ci_hi = bb.highest_density_interval(ypa_diff) # the mean of the posterior ypa_diff.mean() print('low ci:', ypa_diff_ci_low, '\nhigh ci:', ypa_diff_ci_hi) ax = sns.distplot(ypa_diff) ax.plot([ypa_diff_ci_low, ypa_diff_ci_hi], [0, 0], linewidth=10, c='k', marker='o', label='95% HDI') ax.set(xlabel='Journey Length', ylabel='Density', title='The difference between B\'s and A\'s mean Journey Length') sns.despine() legend = plt.legend(frameon=True) frame = legend.get_frame() frame.set_facecolor('white') plt.show();
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
We can actually calculate the probability that B's mean Journey Length was greater than A's mean Journey Length by measuring the proportion of values greater than 0 in the above distribution.
# We count the number of values greater than 0 and divide by the total number # of observations # which returns us the the proportion of values in the distribution that are # greater than 0, could act a bit like a p-value (ypa_diff > 0).sum() / ypa_diff.shape[0] # We count the number of values greater than 0 and divide by the total number # of observations # which returns us the the proportion of values in the distribution that are # greater than 0, could act a bit like a p-value (ypa_diff < 0).sum() / ypa_diff.shape[0]
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Some other analysisSome of these results raised more questions, so here's some analysis (with metrics that weren't defined before looking at the other results, so not sure they are statistically valid, but may be interesting nevertheless) Perhaps journey length is increasing because we're seeing fewer bouncers (journey length = 1) because tey are seeing a relevant lnk on their first page instead of giving up Proportion of journeys that are length 1
def is_one(x): """Compute whether a journey's length is 1.""" return x == 1 df['journey_length_1'] = df['Page_List_Length'].progress_apply(is_one)
100%|██████████| 772387/772387 [00:00<00:00, 846978.07it/s]
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Statistical significance
is_length_1 = analysis.z_prop(df, 'journey_length_1', VARIANT_DICT) is_length_1 is_length_1['p-value'] < alpha
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Practical significance
# Due to multiple testing we used the Bonferroni correction for alpha ci_low,ci_upp = analysis.zconf_interval_two_samples(is_length_1['x_a'], is_length_1['n_a'], is_length_1['x_b'], is_length_1['n_b'], alpha = alpha) print(' difference in proportions = {0:.2f}%'.format(100*(is_length_1['p_b']-is_length_1['p_a']))) print(' % relative change in proportions = {0:.2f}%'.format(100*((is_length_1['p_b']-is_length_1['p_a'])/is_length_1['p_a']))) print(' 95% Confidence Interval = ( {0:.2f}% , {1:.2f}% )' .format(100*ci_low, 100*ci_upp))
difference in proportions = -0.31% % relative change in proportions = -0.63% 95% Confidence Interval = ( -0.49% , -0.13% )
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
Average journey length where length > 1
# for reproducibility, set the seed within this context a_bootstrap_gt_1, b_bootstrap_gt_1 = analysis.bayesian_bootstrap_analysis(df[df['journey_length_1'] == False], col_name='Page_List_Length', boot_reps=boot_reps, seed = seed, variant_dict=VARIANT_DICT) # a_bootstrap_short_gt_1, b_bootstrap_short_gt_1 = analysis.bayesian_bootstrap_analysis(df_short, col_name='Page_List_Length', boot_reps=boot_reps, seed = seed, variant_dict=VARIANT_DICT) np.array(a_bootstrap_gt_1).mean() np.array(b_bootstrap_gt_1).mean() print("There's a relative change in page length of {0:.2f}% from A to B".format((np.array(b_bootstrap_gt_1).mean()-np.array(a_bootstrap_gt_1).mean())/np.array(a_bootstrap_gt_1).mean()*100)) # calculate the posterior for the difference between A's and B's YPA ypa_diff = np.array(b_bootstrap_gt_1) - np.array(a_bootstrap_gt_1) # get the hdi ypa_diff_ci_low, ypa_diff_ci_hi = bb.highest_density_interval(ypa_diff) print('low ci:', ypa_diff_ci_low, '\nhigh ci:', ypa_diff_ci_hi) # We count the number of values greater than 0 and divide by the total number # of observations # which returns us the the proportion of values in the distribution that are # greater than 0, could act a bit like a p-value (ypa_diff > 0).sum() / ypa_diff.shape[0] # We count the number of values greater than 0 and divide by the total number # of observations # which returns us the the proportion of values in the distribution that are # greater than 0, could act a bit like a p-value (ypa_diff < 0).sum() / ypa_diff.shape[0]
_____no_output_____
MIT
notebooks/analyses_reports/2019-03-23_to_03-27_ab4_llr_i_loved.ipynb
alphagov/govuk_ab_analysis
LeNet ![image.png]()
import torch import random import numpy as np random.seed(0) np.random.seed(0) torch.manual_seed(0) torch.cuda.manual_seed(0) torch.backends.cudnn.deterministic = True import torchvision.datasets MNIST_train = torchvision.datasets.MNIST('./', download=True, train=True) MNIST_test = torchvision.datasets.MNIST('./', download=True, train=False) X_train = MNIST_train.train_data y_train = MNIST_train.train_labels X_test = MNIST_test.test_data y_test = MNIST_test.test_labels X_train X_train.shape len(y_train), len(y_test) import matplotlib.pyplot as plt plt.imshow(X_train[0, :, :]) plt.show() print(y_train[0])
_____no_output_____
MIT
module05_mnist_conv.ipynb
YUMVOLKOVA/Neural_Networks_and_CV
хотим передавать картинку, как трехмерный тензор
X_train = X_train.unsqueeze(1).float() X_test = X_test.unsqueeze(1).float() X_train.shape X_train class LeNet5(torch.nn.Module): def __init__(self): super(LeNet5, self).__init__() self.conv1 = torch.nn.Conv2d( in_channels=1, out_channels=6, kernel_size=5, padding=2) # у нас 28 на 28, чтобы не терять размерность картинки, делаем паддинг self.act1 = torch.nn.Tanh() self.pool1 = torch.nn.AvgPool2d(kernel_size=2, stride=2) self.conv2 = torch.nn.Conv2d( in_channels=6, out_channels=16, kernel_size=5, padding=0) self.act2 = torch.nn.Tanh() self.pool2 = torch.nn.AvgPool2d(kernel_size=2, stride=2) self.fc1 = torch.nn.Linear(5 * 5 * 16, 120) self.act3 = torch.nn.Tanh() self.fc2 = torch.nn.Linear(120, 84) self.act4 = torch.nn.Tanh() self.fc3 = torch.nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = self.act1(x) x = self.pool1(x) x = self.conv2(x) x = self.act2(x) x = self.pool2(x) x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3)) x = self.fc1(x) x = self.act3(x) x = self.fc2(x) x = self.act4(x) x = self.fc3(x) return x lenet5 = LeNet5()
_____no_output_____
MIT
module05_mnist_conv.ipynb
YUMVOLKOVA/Neural_Networks_and_CV
У PyTorch-тензоров есть функция view, которая наш тензор преобразует к нужной размерности. Первая размерность будет x.size[0] -- это размер батча, а дальше тензор будет одномерный, соответственно мы вот эти три размерности должны просто перемножить и получить вот здесь 400.
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') lenet5 = lenet5.to(device) loss = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(lenet5.parameters(), lr=1.0e-3) batch_size = 100 test_accuracy_history = [] test_loss_history = [] X_test = X_test.to(device) y_test = y_test.to(device) for epoch in range(10000): order = np.random.permutation(len(X_train)) for start_index in range(0, len(X_train), batch_size): optimizer.zero_grad() batch_indexes = order[start_index:start_index+batch_size] X_batch = X_train[batch_indexes].to(device) y_batch = y_train[batch_indexes].to(device) preds = lenet5.forward(X_batch) loss_value = loss(preds, y_batch) loss_value.backward() optimizer.step() test_preds = lenet5.forward(X_test) test_loss_history.append(loss(test_preds, y_test).data.cpu()) accuracy = (test_preds.argmax(dim=1) == y_test).float().mean().data.cpu() test_accuracy_history.append(accuracy) print(accuracy) lenet5.forward(X_test) plt.plot(test_accuracy_history); # plt.plot(test_loss_history);
_____no_output_____
MIT
module05_mnist_conv.ipynb
YUMVOLKOVA/Neural_Networks_and_CV
Здача
import torch N = 4 C = 3 C_out = 10 H = 8 W = 16 x = torch.ones((N, C, H, W)) x.shape # torch.Size([4, 10, 8, 16]) out1 = torch.nn.Conv2d(C, C_out, kernel_size=(3, 3), padding=1)(x) print(out1.shape) # для самопроверки # torch.Size([4, 10, 8, 16]) out2 = torch.nn.Conv2d(C, C_out, kernel_size=(5, 5), padding=2)(x) print(out2.shape) # для самопроверки # torch.Size([4, 10, 8, 16]) out3 = torch.nn.Conv2d(C, C_out, kernel_size=(7, 7), padding=3)(x) print(out3.shape) # для самопроверки # torch.Size([4, 10, 8, 16]) out4 = torch.nn.Conv2d(C, C_out, kernel_size=(9, 9), padding=4)(x) print(out4.shape) # для самопроверки # torch.Size([4, 10, 8, 16]) out5 = torch.nn.Conv2d(C, C_out, kernel_size=(3, 5), padding=(1,2))(x) print(out5.shape) # для самопроверки # torch.Size([4, 10, 22, 30]) out6 = torch.nn.Conv2d(C, C_out, kernel_size=(3, 3), padding=(8,8))(x) print(out6.shape) # для самопроверки # torch.Size([4, 10, 7, 15]) out7 = torch.nn.Conv2d(C, C_out, kernel_size=(4, 4), padding=1)(x) print(out7.shape) # для самопроверки # torch.Size([4, 10, 9, 17]) out8 = torch.nn.Conv2d(C, C_out, kernel_size=(2, 2), padding=1)(x) print(out8.shape) # для самопроверки
torch.Size([4, 10, 9, 17])
MIT
module05_mnist_conv.ipynb
YUMVOLKOVA/Neural_Networks_and_CV
In this note book the following steps are taken:1. Find the best hyper parameters for estimator2. Find the most important features by tunned random forest3. Comapring r2 of the tuuned full model and model with selected features4. Furthur step is finding tuned model with selected features and comparing the hyper parameters
#import data Data=pd.read_csv("St.Johns-Transfomed-Data.csv") X = Data.iloc[:,:-1] y = Data.iloc[:,-1] #split test and training set. total number of data is 330 so the test size cannot be large np.random.seed(60) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 1000) regressors = {} regressors.update({"XGBoost": XGBRegressor(random_state=1000)}) FEATURE_IMPORTANCE = {"XGBoost"} #Define range of hyperparameters for estimator np.random.seed(60) parameters = {} parameters.update({"XGBoost": { "regressor__learning_rate":[0.001,0.01,0.02,0.1,0.25,0.5,1], "regressor__gamma":[0.001,0.01,0.02,0.1,0.25,0.5,1], "regressor__max_depth" : [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20], "regressor__reg_alpha":[0.001,0.01,0.02,0.1], "regressor__reg_lambda":[0.001,0.01,0.02,0.1], "regressor__min_child_weight":[0.001,0.01,0.02,0.1]} }) # Make correlation matrix corr_matrix = X_train.corr(method = "spearman").abs() # Draw the heatmap sns.set(font_scale = 1.0) f, ax = plt.subplots(figsize=(11, 9)) sns.heatmap(corr_matrix, cmap= "YlGnBu", square=True, ax = ax) f.tight_layout() plt.savefig("correlation_matrix.png", dpi = 1080) # Select upper triangle of matrix upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k = 1).astype(np.bool)) # Find index of feature columns with correlation greater than 0.8 to_drop = [column for column in upper.columns if any(upper[column] > 0.8)] # Drop features X_train = X_train.drop(to_drop, axis = 1) X_test = X_test.drop(to_drop, axis = 1) X_train FEATURE_IMPORTANCE = {"XGBoost"} selected_regressor = "XGBoost" regressor = regressors[selected_regressor] results = {} for regressor_label, regressor in regressors.items(): # Print message to user print(f"Now tuning {regressor_label}.") scaler = StandardScaler() steps = [("scaler", scaler), ("regressor", regressor)] pipeline = Pipeline(steps = steps) #Define parameters that we want to use in gridsearch cv param_grid = parameters[selected_regressor] # Initialize GridSearch object for estimator gscv = RandomizedSearchCV(pipeline, param_grid, cv = 3, n_jobs= -1, verbose = 1, scoring = r2_score, n_iter=20) # Fit gscv (Tunes estimator) print(f"Now tuning {selected_regressor}. Go grab a beer or something.") gscv.fit(X_train, np.ravel(y_train)) #Getting the best hyperparameters best_params = gscv.best_params_ best_params #Getting the best score of model best_score = gscv.best_score_ best_score #Check overfitting of the estimator from sklearn.model_selection import cross_val_score mod = XGBRegressor(gamma= 0.001, learning_rate= 0.5, max_depth=3, min_child_weight= 0.001, reg_alpha=0.1, reg_lambda = 0.1 ,random_state=10000) scores_test = cross_val_score(mod, X_test, y_test, scoring='r2', cv=5) scores_test tuned_params = {item[11:]: best_params[item] for item in best_params} regressor.set_params(**tuned_params) #Find r2 of the model with all features (Model is tuned for all features) results={} model=regressor.set_params(gamma= 0.001, learning_rate= 0.5, max_depth=3, min_child_weight= 0.001, reg_alpha=0.1, reg_lambda = 0.1 ,random_state=10000) model.fit(X_train,y_train) y_pred = model.predict(X_test) R2 = metrics.r2_score(y_test, y_pred) results = {"classifier": model, "Best Parameters": best_params, "Training r2": best_score*100, "Test r2": R2*100} results # Select Features using RFECV class PipelineRFE(Pipeline): # Source: https://ramhiser.com/post/2018-03-25-feature-selection-with-scikit-learn-pipeline/ def fit(self, X, y=None, **fit_params): super(PipelineRFE, self).fit(X, y, **fit_params) self.feature_importances_ = self.steps[-1][-1].feature_importances_ return self steps = [("scaler", scaler), ("regressor", regressor)] pipe = PipelineRFE(steps = steps) np.random.seed(60) # Initialize RFECV object feature_selector = RFECV(pipe, cv = 5, step = 1, verbose = 1) # Fit RFECV feature_selector.fit(X_train, np.ravel(y_train)) # Get selected features feature_names = X_train.columns selected_features = feature_names[feature_selector.support_].tolist() performance_curve = {"Number of Features": list(range(1, len(feature_names) + 1)), "R2": feature_selector.grid_scores_} performance_curve = pd.DataFrame(performance_curve) # Performance vs Number of Features # Set graph style sns.set(font_scale = 1.75) sns.set_style({"axes.facecolor": "1.0", "axes.edgecolor": "0.85", "grid.color": "0.85", "grid.linestyle": "-", 'axes.labelcolor': '0.4', "xtick.color": "0.4", 'ytick.color': '0.4'}) colors = sns.color_palette("RdYlGn", 20) line_color = colors[3] marker_colors = colors[-1] # Plot f, ax = plt.subplots(figsize=(13, 6.5)) sns.lineplot(x = "Number of Features", y = "R2", data = performance_curve, color = line_color, lw = 4, ax = ax) sns.regplot(x = performance_curve["Number of Features"], y = performance_curve["R2"], color = marker_colors, fit_reg = False, scatter_kws = {"s": 200}, ax = ax) # Axes limits plt.xlim(0.5, len(feature_names)+0.5) plt.ylim(0.60, 1) # Generate a bolded horizontal line at y = 0 ax.axhline(y = 0.625, color = 'black', linewidth = 1.3, alpha = .7) # Turn frame off ax.set_frame_on(False) # Tight layout plt.tight_layout() #Define new training and test set based based on selected features by RFECV X_train_rfecv = X_train[selected_features] X_test_rfecv= X_test[selected_features] np.random.seed(60) regressor.fit(X_train_rfecv, np.ravel(y_train)) #Finding important features np.random.seed(60) feature_importance = pd.DataFrame(selected_features, columns = ["Feature Label"]) feature_importance["Feature Importance"] = regressor.feature_importances_ feature_importance = feature_importance.sort_values(by="Feature Importance", ascending=False) feature_importance # Initialize GridSearch object for model with selected features np.random.seed(60) gscv = RandomizedSearchCV(pipeline, param_grid, cv = 3, n_jobs= -1, verbose = 1, scoring = r2_score, n_iter=20) #Tuning random forest classifier with selected features np.random.seed(60) gscv.fit(X_train_rfecv,y_train) #Getting the best parameters of model with selected features best_params = gscv.best_params_ best_params #Getting the score of model with selected features best_score = gscv.best_score_ best_score #Check overfitting of the tuned model with selected features from sklearn.model_selection import cross_val_score mod = XGBRegressor(gamma= 0.001, learning_rate= 0.5, max_depth=3, min_child_weight= 0.001, reg_alpha=0.1, reg_lambda = 0.1 ,random_state=10000) scores_test = cross_val_score(mod, X_test_rfecv, y_test, scoring='r2', cv=5) scores_test results={} model=regressor.set_params(gamma= 0.001, learning_rate= 0.5, max_depth=3, min_child_weight= 0.001, reg_alpha=0.1, reg_lambda = 0.1 ,random_state=10000) model.fit(X_train_rfecv,y_train) y_pred = model.predict(X_test_rfecv) R2 = metrics.r2_score(y_test, y_pred) results = {"classifier": model, "Best Parameters": best_params, "Training r2": best_score*100, "Test r2": R2*100} results
_____no_output_____
Unlicense
XGBoost-RFECV-RoF-St.Johns.ipynb
SadafGharaati/Important-factors
Building and submitting search queries to AGRISThis script is used with the aim to submit a search query to the (AGRIS database) and retrieve the list of the URLs (or a subset of the returned URLs) directing to the search results. The result URLs that are obtained are stored in a txt file in order to be used for scraping the AGRIS database for relevant content (i.e., abstracts of publications available from the specific database) to be used for text annotation-related purposes. The first step in the process of submitting a search query to the AGRIS database and receiving the result URLs is to import the Python libraries and packages that are necessary for the execution of this task.
import requests from bs4 import BeautifulSoup
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
The findNumOfTokens function is defined and used with the aim to enable the retrieval of the number of the search results returned from the submission of the query to the AGRIS database (by making use of the search parameters presented and explained below).
def findNumOfTokens(string): numOfTokens = len(string.split()) return numOfTokens
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
When builing a search query to submit to the AGRIS database, there is a list of search parameters that need to be configured. In other words, these parameters need to be assigned the values that will be used for the execution of the search task and the retrieval of the result URLs. These parameters are the following: subject (i.e., the subject of the results to be identified and returned - what the text documents/abstracts to be eventually retrieved need to be about); result type (AGRIS allows to execute searches in regard to a list of predefined types; these types are "Publications" and "Databsets"); start year (i.e., the year from which results for the search query should be identified and returned); end year (i.e., the year till which results for the search query should be identified and returned); country name (i.e., the name of the country that the content of the resources to be identifed and retrieved with the help of the search results should relate to); language (i.e., the language of the content of the resources made available from the search results that are identified and retrieved); content type (i.e., the type of the content of the resources -theses, journal papers, reports, etc.- made available from the search results that are identified and retrieved); To build the search query by taking account of the values provided to the search parameters listed above (i.e., the configurable part of the search query), we define and use the buildConfigurableQueryStr function. The input provided to the function are the values of the search parameters. In addition, the function takes into consideration the number of tokens included in the search query when "constructing" the value to be finally provided to the subject parameter.
def buildConfigurableQueryStr (subject, resultType, startYear, endYear, countryName, language, contentType): numOfTokensInSubj = findNumOfTokens(subject) if numOfTokensInSubj == 1: filterString = "filterString=%2Bsubject%3A%28" + subject + "%29" else: filterString = "" for subjectToken in subject.split(): filterString = filterString + "filterString=%2Bsubject%3A%28" + subjectToken + "%29" typeresultsField = "typeresultsField=" + resultType fromDate = "fromDate=" + str(startYear) toDate = "toDate=" + str(endYear) if countryName == "0": country = "country=" + str(countryName) else: country = "country=" + countryName if language == "0": lang = "lang=" + str(0) else: lang = "lang=" + language if contentType == "0": typeToAdd = "typeToAdd=" + str(0) else: typeToAdd = "typeToAdd=" + contentType configurableQueryStr = filterString + "&" + typeresultsField + "&" + fromDate + "&" + toDate + "&" + country + "&" + lang + "&" + typeToAdd return configurableQueryStr
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Apart from the configurable part of the search query to be submitted to the AGRIS database, there is also a part of the search query consisting of parameters that receive default values (more specifically, most of those parameters receive no values at all!). This part of the search query can be named as the default part of the search query. The parameters receiving no values at all or specific values by default are: (i) agrovocString; (ii) agrovocToRemove; (iii) advQuery; (iv) centerString; (v) centerToRemove; (vi) filterToRemove; (vii) typeString; (viii) typeToRemove; and (ix) filterQuery.
def AGRISqueryBuilder (): queryStr = "" # list of query parameters receiving no values paramsWithNullValues = ["agrovocString=", "agrovocToRemove=", "advQuery=", "centerString=", "centerToRemove=", "filterToRemove=", "typeString=", "typeToRemove=", "filterQuery="] # concatenating the parameters with no values to start assemblying the AGRIS query string for param in paramsWithNullValues: queryStr = queryStr + param + "&" # list of query parameters with default values, such as onlyFullText, enableField and aggregatorField # onlyFullText = false --> access resources that may not provide access to a full-text version! # enableField = Disable --> multi-lingual search is disabled! # aggregatorField = Disable --> include records from aggregators! paramsWithDefaultValues = ["onlyFullText=false", "operator=Required", "field=0", "enableField=Disable", "aggregatorField=Disable"] for param in paramsWithDefaultValues: queryStr = queryStr + param + "&" return queryStr
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
By calling the AGRISqueryBuilder function, we are able to create the first part of the search query that will be submitted to the AGRIS database (i.e., the default part of the search query containing the search parameters that receive default values or no value at all).
queryStr_1 = AGRISqueryBuilder()
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Assignment of values to the search parameters to be used for creating the configurable part of the serch query Step 1: Subject of the search query.
subject = input("Type in the subject of your search in AGRIS: ")
Type in the subject of your search in AGRIS: agriculture
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Step 2: Type of the results to be retrieved (namely: "Publications", "Datasets" or both).
resultType = input("Type in the type of results (i.e., 'Publications', 'Datasets', 'Both') you are interested in: ")
Type in the type of results (i.e., 'Publications', 'Datasets', 'Both') you are interested in: Publications
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Step 3: Starting year from which results should become available.
startYear = input("Find resources that have become available from this year and on: ")
Find resources that have become available from this year and on: 2000
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Step 4: Year till which results should become available (i.e., end year).
endYear = input("Find resources that have become available up until this year: ")
Find resources that have become available up until this year: 2021
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Step 5: The name of the country that the content of the resources to be retrieved should relate to.
countryName = input("Type in the name of the country the resource's content relates to. If not relevant, provide 0 as a value: ")
Type in the name of the country the resource's content relates to. If not relevant, provide 0 as a value: 0
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Step 6: The language of the content that will become available from the resources to be retreved.
language = input("Type in the language in which content should be made available. In the case of no particular preference provide 0 as a value: ")
Type in the language in which content should be made available. In the case of no particular preference provide 0 as a value: English
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Step 7: The type of the content to be retrived (pertinent to the "Publications" result type - potential values are: theses, journal papers, reports, etc.).
contentType = input("Provide the type of content you are interested in (applies only to Publications). If not relevant, provide 0 as a value: ")
Provide the type of content you are interested in (applies only to Publications). If not relevant, provide 0 as a value: 0
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
By calling the buildConfigurableQueryStr function, we are able to create the second part of the search query that will be submitted to the AGRIS database (i.e., the configurable part of the search query containing the values provided to the search parameters as part of the steps executed above).
queryStr_2 = buildConfigurableQueryStr(subject, resultType, startYear, endYear, countryName, language, contentType)
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
The search query (i.e., the baseQueryStr) is built by concatenating the default (i.e., queryStr_1) and the configurable part (queryStr_2) of it.
baseQueryStr = queryStr_1 + queryStr_2
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Display the search query (i.e, the baseQueryStr) to be finally submitted to the AGRIS database.
baseQueryStr
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
The constructed search query gets submitted to the AGRIS database.
response = requests.get("https://agris.fao.org/agris-search/biblio.do?" + baseQueryStr)
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Printing out the status code of the response provided to the query that has been submitted in order to receive feedback on whether the query submission has been successful or not (a response value equal to 200 reveals a successful query submission attempt!).
response.status_code
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Parsing content The page of the AGRIS database that has been retrieved and contains the results related to the submitted query is parsed with the aim to fetch the number of the search results.To do so, a parsing object (namely, an instance of the BeautifulSoup class) aiming to find the classes having the "pull-left grey-scale-1 last" label (this is the section/part of the results page where the number of the search results becomes available) is created. The execution of the find method called on the parsing object will allow to get the record in which the number of the search results is contained.
soup = BeautifulSoup(response.content, "html.parser") numOfResultsRecord = soup.find("div", class_ = "pull-left grey-scale-1 last")
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
The number of the search results is eventually retrieved by splitting the respective record into pieces and retrieving the appropriate one (i.e., piece) after converting it to an integer. A check is also made to figure out the existence of the "," character in the results' number. If this is the case, the "," sign is removed.
if "," in numOfResultsRecord.find("p").find("strong").text.split()[-1]: numOfResults = int(numOfResultsRecord.find("p").find("strong").text.split()[-1].replace(",", ""))
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Displaying the number of the search results that have been retrieved.
numOfResults
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
A quick check is done to make sure that there are indeed results that have been retrieved from the execution of the search query. If the number of search results is not 0, then there is a request for the number of the search results to keep (in the case that there are too may and all of them are needed!).
if numOfResults != 0: numOfResultsToKeep = int(input("Type in the number of results to keep: ")) else: print("No results have been found!")
Type in the number of results to keep: 1000
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
The section of the script provided below is about the calculation of the number of iterations to be made in order to skim through all the search results to be kept (based on the number of the search results to be kept provided above). This part is necessary because of the fact the search results provided by the AGRIS database become available in batches of 10. The following cases are considered:The number of the search results that have been returned is exactly 10. The number of the search results that have been returned is more than 0 and less than 10. The number of the search results that have been returned is a multiple of 10. The number of the search results that have been returned is more than 10 but not an exact multiple of it.
if (numOfResultsToKeep // 10 == 1): numOfIterations = 1 elif (numOfResultsToKeep // 10 == 0) and (numOfResultsToKeep % 10 > 0 and numOfResultsToKeep % 10 < 10): numOfIterations = 1 else: if numOfResultsToKeep % 10 == 0: numOfIterations = numOfResultsToKeep // 10 else: numOfIterations = (numOfResultsToKeep // 10) + 1
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Priniting out the number of the iterations that are needed to retrieve the required number of the search result URLs.
numOfIterations
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Creating a text file to store the search result URLs.
fileName = input("Type in the name of the file to use of storing the query result URLs: ") fullFileName = fileName + ".txt" file = open (fullFileName, "w")
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Iterating over the search results, retrieving the search result URLs, and writing/storing the search result URLs into the text file. To execute the iteration, the index from which results should be scanned from is asked.
startIndex = int(input("Index to start the retrieval of search results from: "))
Index to start the retrival of search results from: 0
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Iteration over the search results (from the index that has been provided and on) and storage of the result URLs that get retrieved into the text file.
if numOfResultsToKeep >= 10: if startIndex == 0: iteration = 1 response = requests.get("https://agris.fao.org/agris-search/biblio.do?" + baseQueryStr + "&" + "startIndexSearch=") soup = BeautifulSoup(response.content, "html.parser") resultUrls = soup.find_all("div", class_="col-md-10 col-sm-10 col-xs-12 inner") for resultUrl in resultUrls: url = resultUrl.find("a") file.write(url["href"] + "\n") iteration +=1 while iteration <= numOfIterations: startIndex += 10 response = requests.get("https://agris.fao.org/agris-search/biblio.do?" + baseQueryStr + "&" + "startIndexSearch=" + str(startIndex)) soup = BeautifulSoup(response.content, "html.parser") resultUrls = soup.find_all("div", class_="col-md-10 col-sm-10 col-xs-12 inner") for resultUrl in resultUrls: url = resultUrl.find("a") file.write(url["href"] + "\n") iteration +=1 else: iteration = 1 while iteration <= numOfIterations: response = requests.get("https://agris.fao.org/agris-search/biblio.do?" + baseQueryStr + "&" + "startIndexSearch=" + str(startIndex)) soup = BeautifulSoup(response.content, "html.parser") resultUrls = soup.find_all("div", class_="col-md-10 col-sm-10 col-xs-12 inner") for resultUrl in resultUrls: url = resultUrl.find("a") file.write(url["href"] + "\n") iteration += 1 startIndex +=10 else: if startIndex == 0: response = requests.get("https://agris.fao.org/agris-search/biblio.do?" + baseQueryStr + "&" + "startIndexSearch=") soup = BeautifulSoup(response.content, "html.parser") resultUrls = soup.find_all("div", class_="col-md-10 col-sm-10 col-xs-12 inner") counter = 0 for resultUrl in resultUrls: if counter < numOfResultsToKeep: counter +=1 url = resultUrl.find("a") file.write(url["href"] + "\n") else: break else: response = requests.get("https://agris.fao.org/agris-search/biblio.do?" + baseQueryStr + "&" + "startIndexSearch=" + str(startIndex)) soup = BeautifulSoup(response.content, "html.parser") resultUrls = soup.find_all("div", class_="col-md-10 col-sm-10 col-xs-12 inner") counter = 0 for resultUrl in resultUrls: if counter < numOfResultsToKeep: counter +=1 url = resultUrl.find("a") file.write(url["href"] + "\n") else: break
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
Closing the text file.
file.close()
_____no_output_____
MIT
Building_and_submitting_search_queries_to_AGRIS.ipynb
herculespan/customNERforAgriEntities
ENGR 202 Solver
# importing the needed modules import cmath as c import math as m
_____no_output_____
MIT
Applications/ENGR 202 Solver.ipynb
smithrockmaker/ENGR213
Solve for $X_C$
# Where f is frequency, cap is the value of the capacitor, and xcap is the capacitive reactance f = 5*10**3 cap = 50*(10**-9) xcap = 1/-(2*m.pi*f*cap) print("Xc =",xcap)
Xc = -636.6197723675813
MIT
Applications/ENGR 202 Solver.ipynb
smithrockmaker/ENGR213
Solve for $X_L$
# Where f is the frequency, l is the inductor value, and xind is the inductive reactance f = 5*10**3 l = 200*(10**-3) xind = 2*m.pi*f*l print("XL =",xind)
XL = 6283.185307179587
MIT
Applications/ENGR 202 Solver.ipynb
smithrockmaker/ENGR213
Define A complex number in rectangular form
# All values except r pulled from previous cells # Solutions are given in Rectangular form # Negative value for Xc already accounted for r = 100 # Resistor value x_c = r + 1j*(xcap) print("For capacitor -",x_c) x_i = r + 1j*(xind) print("For inductor -",x_i)
For capacitor - (100-636.6197723675813j) For inductor - (100+6283.185307179587j)
MIT
Applications/ENGR 202 Solver.ipynb
smithrockmaker/ENGR213
Convert from Rectangular to Polar
# Answers are given in magnitude and radians. Convert if degrees are necessary. y = c.polar(x_c) print("Magnitude, radians",y) y = c.polar(x_i) print("Magnitude, radians",y)
Magnitude, radians (644.4258953280439, -1.414989826825355) Magnitude, radians (6283.981031508405, 1.5548821760954434)
MIT
Applications/ENGR 202 Solver.ipynb
smithrockmaker/ENGR213