markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Flow Control Control flow statements help you to structure the code and direct it towards your convenience and introduce loops and so on. If statements
price = -5; if price <0: print("Price is negative!") elif price <1: print("Price is too small!") else: print("Price is suitable.")
Price is negative!
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Especially in text mining, comparing strings is very important:
#Comparing strings name1 = "edinburgh" name2 = "Edinburgh" if name1 == name2: print("Equal") else: print("Not equal") if name1.lower() == name2.lower(): print("Equal") else: print("Not equal")
Not equal Equal
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Using multiple conditions:
number = 9 if number > 1 and not number > 9: print("Number is between 1 and 10") number = 9 name = 'johannes' if number < 5 or 'j' in name: print("Number is lower than 5 or the name contains a 'j'")
Number is between 1 and 10 Number is lower than 5 or the name contains a 'j'
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
While loops
number = 4 while number > 1: print(number) number = number -1
4 3 2
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
For loops For loops allow you to iteratre over elements in a certain collection, for example a list:
# We'll look into lists in a minute number_list = [1, 2, 3, 4] for item in number_list: print(item) list = ['a', 'b', 'c'] for item in list: print(item)
a b c
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Ranges are also useful. Note that the upper element is not included and we can adjust the step size:
for i in range(1,4): print(i) for i in range(30,100, 10): print(i)
30 40 50 60 70 80 90
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Indentation Please be very careful with indentation
number_1 = 3 number_2 = 5 print('No indent (no tabs used)') if number_1 > 1: print('\tNumber 1 higher than 1.') if number_2 > 5: print('\t\tnumber 2 higher than 5') print('\tnumber 2 higher than 5') number_1 = 3 number_2 = 6 print('No indent (no tabs used)') if number_1 > 1: print('\tNumber 1 higher than 1.') if number_2 > 5: print('\t\tnumber 2 higher than 5') print('\tnumber 2 higher than 5')
No indent (no tabs used) Number 1 higher than 1. number 2 higher than 5 No indent (no tabs used) Number 1 higher than 1. number 2 higher than 5 number 2 higher than 5
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
List & Tuple Lists Lists are great for collecting anything. They can contain objects of different types. For example:
names = [5, "Giovanni", "Rose", "Yongzhe", "Luciana", "Imani"]
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Although that is not best practice. Let's start with a list of names:
names = ["Johannes", "Giovanni", "Rose", "Yongzhe", "Luciana", "Imani"] # Loop names for name in names: print('Name: '+name) # Get 'Giovanni' from list # Lists start counting at 0 giovanni = names[1] print(giovanni.upper()) # Get last item name = names[-1] print(name.upper()) # Get second to last item name = names[-2] print(name.upper()) print("First three: "+str(names[0:3])) print("First four: "+str(names[:4])) print("Up until the second to last one: "+str(names[:-2])) print("Last two: "+str(names[-2:]))
Name: Johannes Name: Giovanni Name: Rose Name: Yongzhe Name: Luciana Name: Imani GIOVANNI IMANI LUCIANA First three: ['Johannes', 'Giovanni', 'Rose'] First four: ['Johannes', 'Giovanni', 'Rose', 'Yongzhe'] Up until the second to last one: ['Johannes', 'Giovanni', 'Rose', 'Yongzhe'] Last two: ['Luciana', 'Imani']
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Enumeration We can enumerate collections/lists that adds an index to every element:
for index, name in enumerate(names): print(str(index) , " " , name, " is in the list.")
0 Johannes is in the list. 1 Giovanni is in the list. 2 Rose is in the list. 3 Yongzhe is in the list. 4 Luciana is in the list. 5 Imani is in the list.
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Searching and editing
names = ["Johannes", "Giovanni", "Rose", "Yongzhe", "Luciana", "Imani"] # Finding an element print(names.index("Johannes")) # Adding an element names.append("Kumiko") # Adding an element at a specific location names.insert(2, "Roberta") print(names) #Removal fruits = ["apple","orange","pear"] del fruits[0] fruits.remove("pear") print('Fruits: ', fruits) # Modifying an element names[5] = "Tom" print(names) # Test whether an item is in the list (best do this before removing to avoid raising errors) print("Tom" in names) # Length of a list print("Length of the list: " + str(len(names)))
0 ['Johannes', 'Giovanni', 'Roberta', 'Rose', 'Yongzhe', 'Luciana', 'Imani', 'Kumiko'] Fruits: ['orange'] ['Johannes', 'Giovanni', 'Roberta', 'Rose', 'Yongzhe', 'Tom', 'Imani', 'Kumiko'] True Length of the list: 8
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Python starts at 0!!! Sorting and copying
# Temporary sorting: print(sorted(names)) print(names) # Make changes permanent names.sort() print("Sorted names: " + str(names)) names.sort(reverse=True) print("Reverse sorted names: " + str(names)) # Copying list (a shallow copy just duplicates the pointer to the memory address) namez = names namez.remove("Johannes") print(namez) print(names) # Now a 'deep' copy print("After deep copy") namez = names.copy() namez.remove("Giovanni") print(namez) print(names) #Alternative namez = names[:] print(namez)
['Yongzhe', 'Tom', 'Rose', 'Roberta', 'Kumiko', 'Imani', 'Giovanni'] ['Yongzhe', 'Tom', 'Rose', 'Roberta', 'Kumiko', 'Imani', 'Giovanni'] After deep copy ['Yongzhe', 'Tom', 'Rose', 'Roberta', 'Kumiko', 'Imani'] ['Yongzhe', 'Tom', 'Rose', 'Roberta', 'Kumiko', 'Imani', 'Giovanni'] ['Yongzhe', 'Tom', 'Rose', 'Roberta', 'Kumiko', 'Imani', 'Giovanni']
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Strings as lists Strings can be manipulated and used just like lists. This is especially handy in text mining:
course = "Predictive analytics" print("Last nine letters: "+course[-9:]) print("Analytics in course title? " + str("analytics" in course)) print("Start location of 'analytics': " + str(course.find("analytics"))) print(course.replace("analytics","analysis")) list_of_words = course.split(" ") for index, word in enumerate(list_of_words): print("Word ", index, ": "+word)
Last nine letters: analytics Analytics in course title? True Start location of 'analytics': 11 Predictive analysis Word 0 : Predictive Word 1 : analytics
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Sets Sets only contain unique elements. They have to be declared upfront using set() and allow for operations such as intersection():
name_set = set(names) print(name_set) # Add an element name_set.add("Galina") print(name_set) # Discard an element name_set.discard("Johannes") print(name_set) name_set2 = set(["Rose", "Tom"]) # Difference and intersection difference = name_set - name_set2 print(difference) intersection = name_set.intersection(name_set2) print(intersection)
{'Yongzhe', 'Kumiko', 'Roberta', 'Giovanni', 'Tom', 'Imani', 'Rose'} {'Yongzhe', 'Kumiko', 'Roberta', 'Giovanni', 'Tom', 'Imani', 'Galina', 'Rose'} {'Yongzhe', 'Kumiko', 'Roberta', 'Giovanni', 'Tom', 'Imani', 'Galina', 'Rose'} {'Yongzhe', 'Kumiko', 'Roberta', 'Giovanni', 'Imani', 'Galina'} {'Tom', 'Rose'}
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Dictionary & Function Dictionaries Dictionaries are a great way to store particular data as key-value pairs, which mimics the basic structure of a simple database.
courses = {"Johannes" : "Predictive analytics", "Kumiko" : "Prescriptive analytics", "Luciana" : "Descriptive analytics"} for organizer in courses: print(organizer + " teaches " + courses[organizer])
Johannes teaches Predictive analytics Kumiko teaches Prescriptive analytics Luciana teaches Descriptive analytics
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
We can also write:
for organizer, course in courses.items(): print(organizer + " teaches " + course) # Adding items courses["Imani"] = "Other analytics" print(courses) # Overwrite courses["Johannes"] = "Business analytics" print(courses) # Remove del courses["Johannes"] print(courses) # Looping values for course in courses.values(): print(course) # Sorted output (on keys) for organizer, course in sorted(courses.items()): print(organizer +" teaches " + course)
Imani teaches Other analytics Kumiko teaches Prescriptive analytics Luciana teaches Descriptive analytics
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Functions Functions form the backbone of all code. You have already used some, like print(). They can be easily defined by yourself as well.
def my_function(a, b): a = a.title() b = b.upper() print(a+ " "+b) def my_function2(a, b): a = a.title() b = b.upper() return a + " " + b my_function("johannes","de smedt") output = my_function2("johannes","de smedt") print(output)
Johannes DE SMEDT Johannes DE SMEDT
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Notice how the first function already prints, while the second returns a string we have to print ourselves. Python is weakly-typed, so a function can produce different results, like in this example:
# Different output type def calculate_mean(a, b): if (a>0): return (a+b)/2 else: return "a is negative" output = calculate_mean(1,2) print(output) output = calculate_mean(0,1) print(output)
1.5 a is negative
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Comprehensions Comprehensions allow you to quickly/efficiently write lists/dictionaries:
# Finding even numbers evens = [i for i in range(1,11) if i % 2 ==0] print(evens)
[2, 4, 6, 8, 10]
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
In Python, you can easily make tuples such as pairs, like here:
# Double fun pairs = [(x,y) for x in range(1,11) for y in range(5,11) if x>y] print(pairs)
[(6, 5), (7, 5), (7, 6), (8, 5), (8, 6), (8, 7), (9, 5), (9, 6), (9, 7), (9, 8), (10, 5), (10, 6), (10, 7), (10, 8), (10, 9)]
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
They are also useful to perform some pre-processing, e.g., on strings:
# Operations names = ["jamal", "maurizio", "johannes"] titled_names = [name.title() for name in names] print(titled_names) j_s = [name.title() for name in names if name.lower()[0] == 'j'] print(j_s)
['Jamal', 'Maurizio', 'Johannes'] ['Jamal', 'Johannes']
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
IO & Library
# Download some datasets # If you are using git, then you don't need to run the following. !wget -q https://raw.githubusercontent.com/Magica-Chen/WebSNA-notes/main/Week0/data/DM_1.csv !wget -q https://raw.githubusercontent.com/Magica-Chen/WebSNA-notes/main/Week0/data/DM_2.csv !wget -q https://raw.githubusercontent.com/Magica-Chen/WebSNA-notes/main/Week0/data/ordered_amounts_per_person.csv !mkdir data !mv *.csv ./data
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Reading files In Python, we can easily open any file type. Naturally, it is most suitable for plainly-structured formats such as .txt., .csv., as so on. You can also open Excel files with appropriate packages, such as pandas (more on this later). Let's read in a .csv file:
# Open a file for reading ('r') file = open('data/DM_1.csv','r') for line in file: print(line)
Name,Email,City,Salary Brent Hopkins,[email protected],Mount Pearl,38363 Colt Bender,[email protected],Castle Douglas,21506 Arthur Hammond,[email protected],Biloxi,27511 Sean Warner,[email protected],Moere,25201 Tate Greene,[email protected],Ipswich,35052 Gavin Gibson,[email protected],Oordegem,37126 Kelly Garza,[email protected],Kukatpalle,39420 Zane Preston,[email protected],Neudšrfl,28553 Cole Cunningham,[email protected],Catemu,27972 Tarik Hendricks,[email protected],Newbury,39027 Elvis Collier,[email protected],Paradise,22568 Jackson Huber,[email protected],Veere,29922 Macaulay Cline,[email protected],Campobasso,24163 Elijah Chase,[email protected],Grantham,23881 Dennis Anthony,[email protected],Cedar Rapids,27969 Fulton Snyder,[email protected],San Pedro,21594 Leo Willis,[email protected],Kester,31203 Matthew Hooper,[email protected],Bellefontaine,33222 Todd Jones,[email protected],Toledo,24809 Palmer Byrd,[email protected],Bissegem,29045
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
We can store this information in objects and start using it:
# File is looped now, hence, reread file file = open('data/DM_1.csv','r') # ignore the header next(file) # Store names with amount (i.e. columns 1 & 2) amount_per_person = {} for line in file: cells = line.split(",") amount_per_person[cells[0]] = int(cells[3]) for person, amount in sorted(amount_per_person.items()): if amount > 25000: print(person , " has " , amount) # Now we use 'w' for write output_file = open('data/ordered_amounts_per_person.csv','w') for person, amount in sorted(amount_per_person.items()): output_file.write(person.lower()+","+str(amount)) output_file.close()
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Libraries Libraries are imported by using `import`:
import numpy import pandas import sklearn
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
If you haven't installed sklearn, please install it by:
!pip install sklearn
Collecting sklearn Downloading sklearn-0.0.tar.gz (1.1 kB) Requirement already satisfied: scikit-learn in c:\users\zchen112\anaconda3\lib\site-packages (from sklearn) (0.24.1) Requirement already satisfied: joblib>=0.11 in c:\users\zchen112\anaconda3\lib\site-packages (from scikit-learn->sklearn) (1.0.1) Requirement already satisfied: scipy>=0.19.1 in c:\users\zchen112\anaconda3\lib\site-packages (from scikit-learn->sklearn) (1.6.2) Requirement already satisfied: numpy>=1.13.3 in c:\users\zchen112\anaconda3\lib\site-packages (from scikit-learn->sklearn) (1.20.1) Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\zchen112\anaconda3\lib\site-packages (from scikit-learn->sklearn) (2.1.0) Building wheels for collected packages: sklearn Building wheel for sklearn (setup.py): started Building wheel for sklearn (setup.py): finished with status 'done' Created wheel for sklearn: filename=sklearn-0.0-py2.py3-none-any.whl size=1316 sha256=de54cc32dd40e89c8b3d1fd541e221f659546c0f556371dadf408a133d078ca0 Stored in directory: c:\users\zchen112\appdata\local\pip\cache\wheels\22\0b\40\fd3f795caaa1fb4c6cb738bc1f56100be1e57da95849bfc897 Successfully built sklearn Installing collected packages: sklearn Successfully installed sklearn-0.0
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
We can import just a few bits using `from`, or create aliases using `as`:
import math as m from math import pi print(numpy.add(1, 2)) print(pi) print(m.sin(1))
3 3.141592653589793 0.8414709848078965
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
In the next part, some basic procedures that exist in NumPy, pandas, and scikit-learn are covered. This only scratches the surface of the possibilities, and many other functions and code will be used later on. Make sure to search around for the possiblities that exist yourself, and get a grasp of how the modules are called and used. Let's import them in this notebook to start with:
import numpy as np import pandas as pd import sklearn
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Numpy
# Create empty arrays/matrices empty_array = np.zeros(5) empty_matrix = np.zeros((5,2)) print('Empty array: \n',empty_array) print('Empty matrix: \n',empty_matrix) # Create matrices mat = np.array([[1,2,3],[4,5,6]]) print('Matrix: \n', mat) print('Transpose: \n', mat.T) print('Item 2,2: ', mat[1,1]) print('Item 2,3: ', mat[1,2]) print('rows and columns: ', np.shape(mat)) print('Sum total matrix: ', np.sum(mat)) print('Sum row 1: ' , np.sum(mat[0])) print('Sum row 2: ', np.sum(mat[1])) print('Sum column 2: ', np.sum(mat,axis=0)[2])
Matrix: [[1 2 3] [4 5 6]] Transpose: [[1 4] [2 5] [3 6]] Item 2,2: 5 Item 2,3: 6 rows and columns: (2, 3) Sum total matrix: 21 Sum row 1: 6 Sum row 2: 15 Sum column 2: 9
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
pandas Creating dataframes pandas is great for reading and creating datasets, as well as performing basic operations on them.
# Creating a matrix with three rows of data data = [['johannes',10], ['giovanni',2], ['john',3]] # Creating and printing a pandas DataFrame object from the matrix df = pd.DataFrame(data) print(df) # Adding columns to the DataFrame object df.columns = ['names', 'years'] print(df) df_2 = pd.DataFrame(data = data, columns = ['names', 'years']) print(df_2) # Taking out a single column and calculating its sum # This also shows the type of the variable: a 64 bit integer (array) print(df['years']) print('Sum of all values in column: ', df['years'].sum()) # Creating a larger matrix data = [['johannes',10], ['giovanni',2], ['john',3], ['giovanni',2], ['john',3], ['giovanni',2], ['john',3], ['giovanni',2], ['john',3], ['johannes',10]] # Again, creating a DataFrame object, now with columns df = pd.DataFrame(data, columns = ['names','years']) # Print the 5 first (head) and 5 last (tail) observations print(df.head()) print('\n') print(df.tail())
names years 0 johannes 10 1 giovanni 2 2 john 3 3 giovanni 2 4 john 3 names years 5 giovanni 2 6 john 3 7 giovanni 2 8 john 3 9 johannes 10
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Reading files You can read files:
dataset = pd.read_csv('data/DM_1.csv') print(dataset.head())
Name Email City \ 0 Brent Hopkins [email protected] Mount Pearl 1 Colt Bender [email protected] Castle Douglas 2 Arthur Hammond [email protected] Biloxi 3 Sean Warner [email protected] Moere 4 Tate Greene [email protected] Ipswich Salary 0 38363 1 21506 2 27511 3 25201 4 35052
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Using dataframes
# Print all unique values of the column names print(df['names'].unique()) # Print all values and their frequency: print(df['names'].value_counts()) print(df['years'].value_counts()) # Add a column names 'code' with all zeros df['code'] = np.zeros(10) print(df)
names years code 0 johannes 10 0.0 1 giovanni 2 0.0 2 john 3 0.0 3 giovanni 2 0.0 4 john 3 0.0 5 giovanni 2 0.0 6 john 3 0.0 7 giovanni 2 0.0 8 john 3 0.0 9 johannes 10 0.0
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
You can also easily find things in a DataFrame use `.loc`:
# Rows 2 to 5 and all columns: print(df.loc[2:5, :]) # Looping columns for variable in df.columns: print(df[variable]) # Looping columns and obtaining the values (which returns an array) for variable in df.columns: print(df[variable].values)
['johannes' 'giovanni' 'john' 'giovanni' 'john' 'giovanni' 'john' 'giovanni' 'john' 'johannes'] [10 2 3 2 3 2 3 2 3 10] [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
preparing datasets
dataset_1 = pd.read_csv('data/DM_1.csv', encoding='latin1') dataset_2 = pd.read_csv('data/DM_2.csv', encoding='latin1') dataset_1 dataset_2 dataset_2.columns = ['First name', 'Last name', 'Days active'] dataset_2
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
We can convert the second dataset to only have 1 column for names:
# .title() can be used to only make the first letter a capital names = [dataset_2.loc[i,'First name'] + " " + dataset_2.loc[i,'Last name'].title() for i in range(0, len(dataset_2))] # Make a new column for the name dataset_2['Name'] = names # Remove the old columns dataset_2 = dataset_2.drop(['First name', 'Last name'], axis=1) dataset_2
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Bringing together the datasets Now the datasets are made compatible, we can merge them in a few different ways.
# A left join starts from the left dataset, in this case dataset_1, and for every row matches the value in the # column used for joining. As you will see, the result has 22 rows since some names appear multiple times in # the second dataset dataset_2. both = pd.merge(dataset_1, dataset_2, on='Name', how='left') both # A right join does the opposite: now, dataset_2 is used to match all names with the corresponding # observations in dataset_1. There are as many observations as there are in dataset_2, as the rows # in dataset_1 are unique. The last row cannot be matched with any observation in dataset_1. both = pd.merge(dataset_1, dataset_2, on='Name', how='right') both # Inner and outer join # It is also possible to only retain the values that are matched in both tables, or match any value # that matches. This is using an inner and outer join respectively. both = pd.merge(dataset_1, dataset_2, on='Name', how='inner') both
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Notice how observation 12 is missing, as there is no corresponding value in `dataset_1`.
both = pd.merge(dataset_1, dataset_2, on='Name', how='outer') both
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
In the last table, we have 23 rows, as both matching and non-matching values are returned.Merging datasets can be really helpful. This code should give you ample ideas on how to do this quickly yourself. As always, there are a number of ways of achieving the same result. Don't hold back to explore other solutions that might be quicker or easier. scikit-learn scikit-learn is great for performing all major data analysis operations. It also contains datasets. In this code, we will load a dataset and fit a simple linear regression.
from sklearn import datasets as ds # Load the Boston Housing dataset dataset = ds.load_boston() # It is a dictionary, see the keys for details: print(dataset.keys()) # The 'DESCR' key holds a description text for the whole dataset print(dataset['DESCR']) # The data (independent variables) are stored under the 'data' key # The names of the independent variables are stored in the 'feature_names' key # Let's use them to create a DataFrame object: df = pd.DataFrame(data=dataset['data'], columns=dataset['feature_names']) print(df.head()) # The dependent variable is stored separately df_y = pd.DataFrame(data=dataset['target'], columns=['target']) print(df_y.head()) # Now, let's build a linear regression model from sklearn.linear_model import LinearRegression as LR # First we create a linear regression object regression = LR() # Then, we fit the independent and dependent data regression.fit(df, df_y) # We can obtain the R^2 score (more on this later) print(regression.score(df, df_y))
0.7406426641094095
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Very often, we need to perform an operation on a single observation. In that case, we have to reshape the data using numpy:
# Consider a single observation so = df.loc[2, :] print(so) # Just the values of the observation without meta data print(so.values) # Reshaping yields a new matrix with one row with as many columns as the original observation (indicated by the -1) print(np.reshape(so.values, (1, -1))) # For two observations: so_2 = df.loc[2:3, :] print(np.reshape(so_2.values, (2, -1)))
[[2.7290e-02 0.0000e+00 7.0700e+00 0.0000e+00 4.6900e-01 7.1850e+00 6.1100e+01 4.9671e+00 2.0000e+00 2.4200e+02 1.7800e+01 3.9283e+02 4.0300e+00] [3.2370e-02 0.0000e+00 2.1800e+00 0.0000e+00 4.5800e-01 6.9980e+00 4.5800e+01 6.0622e+00 3.0000e+00 2.2200e+02 1.8700e+01 3.9463e+02 2.9400e+00]]
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
This concludes our quick run-through of some basic functionality of the modules. Later on, we will use more and more specialized functions and objects, but for now this allows you to play around with data already. Visualisation The visualisations often require a bit of tricks and extra lines of code to make things look better. This is often confusing at first, but it will become more and more intuitive once you get the hang of how the general ideas work. We will be working mostly with Matplotlib (often imported as plt), Numpy (np), and pandas (pd). Often, both Matplotlib and pandas offer similar solutions, but one is often slightly more convenient than the other in various situations. Make sure to look up some of the alternatives, as they might also make more sense to you.
# First, we need to import our packages import numpy as np import matplotlib.pyplot as plt import pandas as pd
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Pie and bar chart
# Data to plot labels = 'classification', 'regression', 'time series' sizes = [10, 22, 2] colors = ['lightblue', 'lightgreen', 'pink'] # Allows us to highlight a certain piece of the pie chart explode = (0.1, 0, 0) # Plot a pie chart with the pie() function. Notice how various parameters are given for coloring, labels, etc. # They should be relatively self-explanatory plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%', shadow=True, startangle=90) # This function makes the axes equal, so the circle is round plt.axis('equal') # Add a title to the plot plt.title("Pie chart of modelling techniques") # Finally, show the plot plt.show()
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Adding a legend:
patches, texts = plt.pie(sizes, colors=colors, shadow=True, startangle=90) plt.legend(patches, labels, loc="best") plt.axis('equal') plt.title("Pie chart of modelling techniques") plt.show() # Bar charts are relatively similar. Here we use the bar() function plt.bar(labels, sizes, align='center') plt.xticks(labels) plt.ylabel('#use cases') plt.title('Bar chart of modelling technique') plt.show()
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Histogram
# This function plots a diagram with the 'data' object providing the data # bins are calculated automatically, as indicated by the 'auto' option, which makes them relatively balanced and # sets appropriate boundaries # color sets the color of the bars # the rwidth sets the bars to somewhat slightly less wide than the bins are wide to leave space between the bars data = np.random.normal(10, 2, 1000) plt.hist(x= data, bins='auto', color='#008000', rwidth=0.85) # For more information on colour codes, please visit: https://htmlcolorcodes.com/ # Additionally, some options are added: # This option sets the grid of the plot to follow the values on the y-axis plt.grid(axis='y') # Adds a label to the x-axis plt.xlabel('Value') # Adds a label to the y-axis plt.ylabel('Frequency') # Adds a title to the plot plt.title('Histogram of x') # Makes the plot visible in the program plt.show() # Here, a different color and manually-specified bins are used plt.hist(x= data, bins=[0,1,2,3,4,5,6,7,8,9,10], color='olive', rwidth=0.85) plt.grid(axis='y') plt.xlabel('Value') plt.ylabel('Frequency') plt.title('Histogram of x and y') plt.show()
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
See how we cut the tail off the distribution.
# Now, let's build a histogram with radomly generated data that follows a normal distribution # Mean = 10, stddev = 15, sample size = 1,000 # More on random numbers will follow in module 2 s = np.random.normal(10, 15, 1000) plt.hist(x=s, bins='auto', color='#008000', rwidth=0.85) plt.grid(axis='y') plt.xlabel('Value') plt.ylabel('Frequency') plt.title('Histogram of x') plt.show()
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Boxplot
# Boxplots are even easier. We can just use the boxplot() function without many parameters # We use the implementation of Pandas, which relies on Matplotlib in the background # We now use subplots. data = [3,8,3,4,1,7,5,3,8,2,7,3,1,6,10,10,3,6,5,10] # Subplot with 1 row, 2 columns, here we add figure 1 of 2 (first row, first column) plt.subplot(1,2,1) plt.boxplot(data) data_2 = [3,8,3,4,1,7,5,3,8,2,7,3,1,6,10,10,3,6,5,10, 99,87,45,-20] # Here we add figure 2 of 2, hence it will be positioned in the second column of the first row plt.subplot(1,2,2) plt.boxplot(data_2) plt.show()
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Boxplot for multiple variables:
# Generate 4 columns with 10 observations df = pd.DataFrame(data = np.random.random(size=(10,3)), columns = ['class.','reg.','time series']) print(df) boxplot = df.boxplot() plt.title('Triple boxplot') plt.show() df = pd.DataFrame(data = np.random.random(size=(10,3)), columns = ['class.','reg.','time series']) df['number_of_runs'] = [0,0,0,1,1,2,0,1,2,0] boxplot = df.boxplot(by='number_of_runs') plt.show()
class. reg. time series 0 0.402362 0.348025 0.893360 1 0.496534 0.454527 0.631422 2 0.268591 0.815153 0.371747 3 0.596372 0.121358 0.591864 4 0.575830 0.964928 0.908575 5 0.380839 0.435604 0.488436 6 0.788519 0.562830 0.303210 7 0.424057 0.888664 0.476388 8 0.699300 0.380225 0.776302 9 0.463731 0.239730 0.686004
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Scatterplot
# We load the data gain x = [3,8,3,4,1,7,5,3,8,2,7,3,1,6,10,10,3,6,5,10] y = [10,7,2,7,5,4,2,3,4,1,5,7,8,4,10,2,3,4,5,6] # Here, we build a simple scatterplot of the two variables plt.scatter(x,y) plt.xlabel('x') plt.ylabel('y') plt.title('Simple scatterplot') plt.show()
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
Hard to tell which variable is what, but it gives an overall impression of the data.
# A simple line plot # We use the plot function for this. 'o-' indicates we want to use circles for markers and connect them with lines plt.plot(x,'o-',color='blue',) # Here we use 'x--' for cross-shaped markers connected with intermittent lines plt.plot(y,'x--',color='red') plt.xlabel('Time') plt.ylabel('Value') plt.title("x and y over time") # This function sets the range limits for the x axis at 0 and 20 plt.xlim(0,20) # Adding a grid plt.grid(True) # Adding markets on the x and y axis. We start at zero, make our way to 10 (the last integer is not included, # hence we use 21 and 11) # We add steps of 4 for the x axis, and 4 for the y axis plt.xticks(range(0,21,4)) plt.yticks(range(0,11,2)) plt.show()
_____no_output_____
MIT
Week0/Week0-notes-python-fundamentals.ipynb
Magica-Chen/WebSNA-notes
---_You are currently looking at **version 1.0** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the [Jupyter Notebook FAQ](https://www.coursera.org/learn/python-text-mining/resources/d9pwm) course resource._--- Assignment 4 - Document Similarity & Topic Modelling Part 1 - Document SimilarityFor the first part of this assignment, you will complete the functions `doc_to_synsets` and `similarity_score` which will be used by `document_path_similarity` to find the path similarity between two documents.The following functions are provided:* **`convert_tag:`** converts the tag given by `nltk.pos_tag` to a tag used by `wordnet.synsets`. You will need to use this function in `doc_to_synsets`.* **`document_path_similarity:`** computes the symmetrical path similarity between two documents by finding the synsets in each document using `doc_to_synsets`, then computing similarities using `similarity_score`.You will need to finish writing the following functions:* **`doc_to_synsets:`** returns a list of synsets in document. This function should first tokenize and part of speech tag the document using `nltk.word_tokenize` and `nltk.pos_tag`. Then it should find each tokens corresponding synset using `wn.synsets(token, wordnet_tag)`. The first synset match should be used. If there is no match, that token is skipped.* **`similarity_score:`** returns the normalized similarity score of a list of synsets (s1) onto a second list of synsets (s2). For each synset in s1, find the synset in s2 with the largest similarity value. Sum all of the largest similarity values together and normalize this value by dividing it by the number of largest similarity values found. Be careful with data types, which should be floats. Missing values should be ignored.Once `doc_to_synsets` and `similarity_score` have been completed, submit to the autograder which will run `test_document_path_similarity` to test that these functions are running correctly. *Do not modify the functions `convert_tag`, `document_path_similarity`, and `test_document_path_similarity`.*
import numpy as np import nltk nltk.download('punkt') nltk.download('averaged_perceptron_tagger') nltk.download('wordnet') from nltk.corpus import wordnet as wn import pandas as pd def convert_tag(tag): """Convert the tag given by nltk.pos_tag to the tag used by wordnet.synsets""" tag_dict = {'N': 'n', 'J': 'a', 'R': 'r', 'V': 'v'} try: return tag_dict[tag[0]] except KeyError: return None def doc_to_synsets(doc): """ Returns a list of synsets in document. Tokenizes and tags the words in the document doc. Then finds the first synset for each word/tag combination. If a synset is not found for that combination it is skipped. Args: doc: string to be converted Returns: list of synsets Example: doc_to_synsets('Fish are nvqjp friends.') Out: [Synset('fish.n.01'), Synset('be.v.01'), Synset('friend.n.01')] """ # Your Code Here tokens = nltk.word_tokenize(doc) tags = [tag[1] for tag in nltk.pos_tag(tokens)] wordnet_tags = [convert_tag(tag) for tag in tags] synsets = [wn.synsets(token, wordnet_tag) for token, wordnet_tag in list(zip(tokens, wordnet_tags))] answer = [i[0] for i in synsets if len(i) > 0] return answer # Your Answer Here def similarity_score(s1, s2): """ Calculate the normalized similarity score of s1 onto s2 For each synset in s1, finds the synset in s2 with the largest similarity value. Sum of all of the largest similarity values and normalize this value by dividing it by the number of largest similarity values found. Args: s1, s2: list of synsets from doc_to_synsets Returns: normalized similarity score of s1 onto s2 Example: synsets1 = doc_to_synsets('I like cats') synsets2 = doc_to_synsets('I like dogs') similarity_score(synsets1, synsets2) Out: 0.73333333333333339 """ # Your Code Here lvs = [] # largest similarity values for i1 in s1: scores=[x for x in [i1.path_similarity(i2) for i2 in s2] if x is not None] if scores: lvs.append(max(scores)) return sum(lvs) / len(lvs)# Your Answer Here def document_path_similarity(doc1, doc2): """Finds the symmetrical similarity between doc1 and doc2""" synsets1 = doc_to_synsets(doc1) synsets2 = doc_to_synsets(doc2) return (similarity_score(synsets1, synsets2) + similarity_score(synsets2, synsets1)) / 2
[nltk_data] Downloading package punkt to /home/jovyan/nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package averaged_perceptron_tagger to [nltk_data] /home/jovyan/nltk_data... [nltk_data] Package averaged_perceptron_tagger is already up-to- [nltk_data] date! [nltk_data] Downloading package wordnet to /home/jovyan/nltk_data... [nltk_data] Package wordnet is already up-to-date!
MIT
4-5 Applied Text Mining in Python/Assignment 4.ipynb
MLunov/Applied-Data-Science-with-Python-Specialization-Michigan
test_document_path_similarityUse this function to check if doc_to_synsets and similarity_score are correct.*This function should return the similarity score as a float.*
def test_document_path_similarity(): doc1 = 'This is a function to test document_path_similarity.' doc2 = 'Use this function to see if your code in doc_to_synsets \ and similarity_score is correct!' return document_path_similarity(doc1, doc2) test_document_path_similarity()
_____no_output_____
MIT
4-5 Applied Text Mining in Python/Assignment 4.ipynb
MLunov/Applied-Data-Science-with-Python-Specialization-Michigan
___`paraphrases` is a DataFrame which contains the following columns: `Quality`, `D1`, and `D2`.`Quality` is an indicator variable which indicates if the two documents `D1` and `D2` are paraphrases of one another (1 for paraphrase, 0 for not paraphrase).
# Use this dataframe for questions most_similar_docs and label_accuracy paraphrases = pd.read_csv('paraphrases.csv') paraphrases.head()
_____no_output_____
MIT
4-5 Applied Text Mining in Python/Assignment 4.ipynb
MLunov/Applied-Data-Science-with-Python-Specialization-Michigan
___ most_similar_docsUsing `document_path_similarity`, find the pair of documents in paraphrases which has the maximum similarity score.*This function should return a tuple `(D1, D2, similarity_score)`*
def most_similar_docs(): # Your Code Here return max(map(document_path_similarity, paraphrases['D1'], paraphrases['D2'])) # Your Answer Here most_similar_docs()
_____no_output_____
MIT
4-5 Applied Text Mining in Python/Assignment 4.ipynb
MLunov/Applied-Data-Science-with-Python-Specialization-Michigan
label_accuracyProvide labels for the twenty pairs of documents by computing the similarity for each pair using `document_path_similarity`. Let the classifier rule be that if the score is greater than 0.75, label is paraphrase (1), else label is not paraphrase (0). Report accuracy of the classifier using scikit-learn's accuracy_score.*This function should return a float.*
def label_accuracy(): from sklearn.metrics import accuracy_score paraphrases['labels'] = [1 if i > 0.75 else 0 for i in map(document_path_similarity, paraphrases['D1'], paraphrases['D2'])] # Your Code Here return accuracy_score(paraphrases['Quality'], paraphrases['labels']) # Your Answer Here label_accuracy()
_____no_output_____
MIT
4-5 Applied Text Mining in Python/Assignment 4.ipynb
MLunov/Applied-Data-Science-with-Python-Specialization-Michigan
Part 2 - Topic ModellingFor the second part of this assignment, you will use Gensim's LDA (Latent Dirichlet Allocation) model to model topics in `newsgroup_data`. You will first need to finish the code in the cell below by using gensim.models.ldamodel.LdaModel constructor to estimate LDA model parameters on the corpus, and save to the variable `ldamodel`. Extract 10 topics using `corpus` and `id_map`, and with `passes=25` and `random_state=34`.
import pickle import gensim from sklearn.feature_extraction.text import CountVectorizer # Load the list of documents with open('newsgroups', 'rb') as f: newsgroup_data = pickle.load(f) # Use CountVectorizor to find three letter tokens, remove stop_words, # remove tokens that don't appear in at least 20 documents, # remove tokens that appear in more than 20% of the documents vect = CountVectorizer(min_df=20, max_df=0.2, stop_words='english', token_pattern='(?u)\\b\\w\\w\\w+\\b') # Fit and transform X = vect.fit_transform(newsgroup_data) # Convert sparse matrix to gensim corpus. corpus = gensim.matutils.Sparse2Corpus(X, documents_columns=False) # Mapping from word IDs to words (To be used in LdaModel's id2word parameter) id_map = dict((v, k) for k, v in vect.vocabulary_.items()) # Use the gensim.models.ldamodel.LdaModel constructor to estimate # LDA model parameters on the corpus, and save to the variable `ldamodel` # Your code here: ldamodel = gensim.models.ldamodel.LdaModel(corpus=corpus, num_topics=10, id2word=id_map, passes=25, random_state=34)
_____no_output_____
MIT
4-5 Applied Text Mining in Python/Assignment 4.ipynb
MLunov/Applied-Data-Science-with-Python-Specialization-Michigan
lda_topicsUsing `ldamodel`, find a list of the 10 topics and the most significant 10 words in each topic. This should be structured as a list of 10 tuples where each tuple takes on the form:`(9, '0.068*"space" + 0.036*"nasa" + 0.021*"science" + 0.020*"edu" + 0.019*"data" + 0.017*"shuttle" + 0.015*"launch" + 0.015*"available" + 0.014*"center" + 0.014*"sci"')`for example.*This function should return a list of tuples.*
def lda_topics(): # Your Code Here return ldamodel.print_topics(num_topics=10, num_words=10) # Your Answer Here lda_topics()
_____no_output_____
MIT
4-5 Applied Text Mining in Python/Assignment 4.ipynb
MLunov/Applied-Data-Science-with-Python-Specialization-Michigan
topic_distributionFor the new document `new_doc`, find the topic distribution. Remember to use vect.transform on the the new doc, and Sparse2Corpus to convert the sparse matrix to gensim corpus.*This function should return a list of tuples, where each tuple is `(topic, probability)`*
new_doc = ["\n\nIt's my understanding that the freezing will start to occur because \ of the\ngrowing distance of Pluto and Charon from the Sun, due to it's\nelliptical orbit. \ It is not due to shadowing effects. \n\n\nPluto can shadow Charon, and vice-versa.\n\nGeorge \ Krumins\n-- "] def topic_distribution(): # Your Code Here # Transform X = vect.transform(new_doc) # Convert sparse matrix to gensim corpus. corpus = gensim.matutils.Sparse2Corpus(X, documents_columns=False) return list(ldamodel[corpus])[0] # Your Answer Here topic_distribution()
_____no_output_____
MIT
4-5 Applied Text Mining in Python/Assignment 4.ipynb
MLunov/Applied-Data-Science-with-Python-Specialization-Michigan
topic_namesFrom the list of the following given topics, assign topic names to the topics you found. If none of these names best matches the topics you found, create a new 1-3 word "title" for the topic.Topics: Health, Science, Automobiles, Politics, Government, Travel, Computers & IT, Sports, Business, Society & Lifestyle, Religion, Education.*This function should return a list of 10 strings.*
def topic_names(): # Your Code Here return ['Automobiles', 'Health', 'Science', 'Politics', 'Sports', 'Business', 'Society & Lifestyle', 'Religion', 'Education', 'Computers & IT'] # Your Answer Here topic_names()
_____no_output_____
MIT
4-5 Applied Text Mining in Python/Assignment 4.ipynb
MLunov/Applied-Data-Science-with-Python-Specialization-Michigan
NOAA extreme weather eventsThe [National Oceanic and Atmospheric Administration](https://en.wikipedia.org/wiki/National_Oceanic_and_Atmospheric_Administration) has a database of extreme weather events that contains lots of detail for every year ([Link](https://www.climate.gov/maps-data/dataset/severe-storms-and-extreme-events-data-table)). In this notebook I will create map files for individual weather events, mapped to their coordinates.
import pandas as pd import numpy as np import random import geopandas import matplotlib.pyplot as plt pd.set_option('display.max_columns', None) # Unlimited columns # Custom function for displaying the shape and head of a dataframe def display(df, n=5): print(df.shape) return df.head(n)
_____no_output_____
MIT
notebooks/DMA8 - NOAA weather events by coords.ipynb
KimDuclos/liveSafe-data
Get map of US counties
# Import a shape file with all the counties in the US. # Note how it doesn't include all the same territories as the # quake contour map. counties = geopandas.read_file('../data_input/1_USCounties/') # Turn state codes from strings to integers for col in ['STATE_FIPS', 'CNTY_FIPS', 'FIPS']: counties[col] = counties[col].astype(int)
_____no_output_____
MIT
notebooks/DMA8 - NOAA weather events by coords.ipynb
KimDuclos/liveSafe-data
Process NOAA data for one year onlyAs a starting point that I'll generalize later.
# Get NOAA extreme weather event data for one year df1 = pd.read_csv('../data_local/NOAA/StormEvents_details-ftp_v1.0_d2018_c20190422.csv') print(df1.shape) print(df1.columns) df1.head(2) # Extract only a few useful columns df2 = df1[['TOR_F_SCALE','EVENT_TYPE','BEGIN_LAT','BEGIN_LON']].copy() # Remove any rows with null coordinates df2 = df2.dropna(subset=['BEGIN_LAT','BEGIN_LON']) # Create geoDF of all the points df3 = geopandas.GeoDataFrame( df2, geometry=geopandas.points_from_xy(df2.BEGIN_LON, df2.BEGIN_LAT)) # Trim the list of events to only include those that happened within one of our official counties. df4 = geopandas.sjoin(df3, counties, how='left', op='within').dropna(subset=['FIPS']) # Drop useless columns df4 = df4[['TOR_F_SCALE','EVENT_TYPE','geometry']] # Add new columns for event categories flood_types =['Flood','Flash Flood','Coastal Flood', 'Storm Surge/Tide','Lakeshore Flood','Debris Flow'] df4['Flood'] = df4['EVENT_TYPE'].isin(flood_types) storm_types = ['Thunderstorm Wind','Marine Thunderstorm Wind','Marine High Wind', 'High Wind','Funnel Cloud','Dust Storm', 'Strong Wind','Dust Devil','Tropical Depression','Lightning', 'Tropical Storm','High Surf','Heavy Rain','Hail','Marine Hail', 'Marine Strong Wind','Waterspout'] df4['Storm'] = df4['EVENT_TYPE'].isin(storm_types) df4['Tornado'] = df4['EVENT_TYPE'].isin(['Tornado']) # Reorganize columns type_columns = ['Storm','Flood','Tornado'] df4 = df4[['TOR_F_SCALE','EVENT_TYPE','geometry'] + type_columns] display(df4) # Plot over a map of US counties fig, ax = plt.subplots(figsize=(20,20)) counties.plot(ax=ax, color='white', edgecolor='black'); df4.plot(ax=ax, marker='o') # ax.set_xlim(-125,-114) ax.set_ylim(15,75) plt.show()
_____no_output_____
MIT
notebooks/DMA8 - NOAA weather events by coords.ipynb
KimDuclos/liveSafe-data
NOAA file processing functionGeneralize the previous operations so they can apply to the data for any year
def process_noaa(filepath): """ Process one year of NOAA Extreme weather events. Requires the list of official counties and the list of official weather event types. Inputs ------ filepath (string) : file path for the list of events from one year. Outputs ------- result (pandas.DataFrame) : Dataframe each event for that year, with boolean columns for each event category. """ df1 = pd.read_csv(filepath) # Extract only a few useful columns df2 = df1[['TOR_F_SCALE','EVENT_TYPE','BEGIN_LAT','BEGIN_LON']].copy() # Remove any rows with null coordinates df2 = df2.dropna(subset=['BEGIN_LAT','BEGIN_LON']) # Create geoDF of all the points df3 = geopandas.GeoDataFrame( df2, geometry=geopandas.points_from_xy(df2.BEGIN_LON, df2.BEGIN_LAT)) # Trim the list of events to only include those that happened within one of our official counties. df4 = geopandas.sjoin(df3, counties, how='left', op='within').dropna(subset=['FIPS']) # Drop useless columns df4 = df4[['TOR_F_SCALE','EVENT_TYPE','geometry']] # Add new columns for event categories flood_types =['Flood','Flash Flood','Coastal Flood', 'Storm Surge/Tide','Lakeshore Flood','Debris Flow'] df4['Flood'] = df4['EVENT_TYPE'].isin(flood_types) storm_types = ['Thunderstorm Wind','Marine Thunderstorm Wind','Marine High Wind', 'High Wind','Funnel Cloud','Dust Storm', 'Strong Wind','Dust Devil','Tropical Depression','Lightning', 'Tropical Storm','High Surf','Heavy Rain','Hail','Marine Hail', 'Marine Strong Wind','Waterspout'] df4['Storm'] = df4['EVENT_TYPE'].isin(storm_types) df4['Tornado'] = df4['EVENT_TYPE'].isin(['Tornado']) # Reorganize columns type_columns = ['Storm','Flood','Tornado'] df4 = df4[['TOR_F_SCALE','EVENT_TYPE','geometry'] + type_columns] # Add a column for the year of this file year = int(filepath[49:53]) df4['year'] = year return df4 # Example test_2018 = process_noaa('../data_local/NOAA/StormEvents_details-ftp_v1.0_d2018_c20190422.csv') display(test_2018) # These are the extreme weather events recorded in 2018 test_2018[type_columns].sum().sort_values(ascending=False)
_____no_output_____
MIT
notebooks/DMA8 - NOAA weather events by coords.ipynb
KimDuclos/liveSafe-data
Process all the available data
import glob import os # Read the CSV files for each year going back to 1996 (the first year # when many of these event types started being recorded) path = '../data_local/NOAA/' filenames = sorted(glob.glob(os.path.join(path, '*.csv'))) layers = [] # Aggregate the dataframes in a list for name in filenames: year = int(name[49:53]) print(f'Processing {year}') layers.append(process_noaa(name)) # Concatenate all these dataframes into a single dataframe noaa = pd.concat(layers) display(noaa) # total events per type noaa[type_columns].sum() # Aggregate event types into different geopandas dataframes. storms = noaa[noaa['Storm']][['EVENT_TYPE','year','geometry']].reset_index(drop=True) floods = noaa[noaa['Flood']][['EVENT_TYPE','year','geometry']].reset_index(drop=True) tornadoes = noaa[noaa['Tornado']][['TOR_F_SCALE','year','geometry']].reset_index(drop=True) storms.shape, floods.shape, tornadoes.shape
_____no_output_____
MIT
notebooks/DMA8 - NOAA weather events by coords.ipynb
KimDuclos/liveSafe-data
Process tornado dataIn 2007, the National Weather Service (NWS) switched their scale for measuring tornado intensity, from the Fujita (F) scale to the Enhanced Fujita (EF) scale. I will lump them together here and just make a note for the user that the scale means something slightly different before and after 2007. Also, I'll cast unknown magnitudes (EFU) as if they were EF0.
# Tornadoes by magnitude, using the NWS's original labels. # Notice the two different scales and also a label for 'unknown' tornadoes.TOR_F_SCALE.value_counts() # Function that extracts the scale level and sets unkwnown to zero. def process_fujita(x): if x[-1] == 'U': return 0 else: return int(x[-1]) tornadoes['intensity'] = tornadoes['TOR_F_SCALE'].apply(process_fujita) tornadoes = tornadoes.drop(columns='TOR_F_SCALE') display(tornadoes) # Distribution of tornado intensities. tornadoes.intensity.hist();
_____no_output_____
MIT
notebooks/DMA8 - NOAA weather events by coords.ipynb
KimDuclos/liveSafe-data
Visualizing the data
# Sample of 2000 storms in the Lower48 fig, ax = plt.subplots(figsize=(20,20)) counties.plot(ax=ax, color='white', edgecolor='black'); storms.sample(2000).plot(ax=ax, marker='o') ax.set_xlim(-125.0011,-66.9326) ax.set_ylim(24.9493, 49.5904) plt.show()
_____no_output_____
MIT
notebooks/DMA8 - NOAA weather events by coords.ipynb
KimDuclos/liveSafe-data
Floods and tornadoes show basically the same distribution, so I won't plot them separately. For reference, this is what the dataframes that we're about to export look like.
display(storms) display(floods) display(tornadoes)
(30898, 3)
MIT
notebooks/DMA8 - NOAA weather events by coords.ipynb
KimDuclos/liveSafe-data
Export!
storms.to_file("../data_output/5__NOAA/storms.geojson", driver='GeoJSON') floods.to_file("../data_output/5__NOAA/floods.geojson", driver='GeoJSON') tornadoes.to_file("../data_output/5__NOAA/tornadoes.geojson", driver='GeoJSON')
_____no_output_____
MIT
notebooks/DMA8 - NOAA weather events by coords.ipynb
KimDuclos/liveSafe-data
**1D Convolutional Neural Networks**"A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm which can take in an input image, assign importance (learnable weights and biases) to various aspects/objects in the image and be able to differentiate one from the other. The pre-processing required in a ConvNet is much lower as compared to other classification algorithms. While in primitive methods filters are hand-engineered, with enough training, ConvNets have the ability to learn these filters/characteristics." [4]"The architecture of a ConvNet is analogous to that of the connectivity pattern of Neurons in the Human Brain and was inspired by the organization of the Visual Cortex. Individual neurons respond to stimuli only in a restricted region of the visual field known as the Receptive Field. A collection of such fields overlap to cover the entire visual area." [4]"Convolutional neural network models were developed for image classification problems, where the model learns an internal representation of a two-dimensional input, in a process referred to as feature learning." [1]"This same process can be harnessed on one-dimensional sequences of data, such as in the case of acceleration and gyroscopic data for human activity recognition. The model learns to extract features from sequences of observations and how to map the internal features to different activity types." [1]"The benefit of using CNNs for sequence classification is that they can learn from the raw time series data directly, and in turn do not require domain expertise to manually engineer input features. The model can learn an internal representation of the time series data and ideally achieve comparable performance to models fit on a version of the dataset with engineered features." [1]**Convolutional Neural Network Architecture**"A CNN typically has three layers: a convolutional layer, a pooling layer, and a fully connected layer." [5]![CNN-arch.png]()**Convolution Layer**"The convolution layer is the core building block of the CNN. It carries the main portion of the network’s computational load." [5]"This layer performs a dot product between two matrices, where one matrix is the set of learnable parameters otherwise known as a kernel, and the other matrix is the restricted portion of the receptive field. The kernel is spatially smaller than an image but is more in-depth. This means that, if the image is composed of three (RGB) channels, the kernel height and width will be spatially small, but the depth extends up to all three channels." [5]"During the forward pass, the kernel slides across the height and width of the image-producing the image representation of that receptive region. This produces a two-dimensional representation of the image known as an activation map that gives the response of the kernel at each spatial position of the image. The sliding size of the kernel is called a stride.If we have an input of size W x W x D and Dout number of kernels with a spatial size of F with stride S and amount of padding P, then the size of output volume can be determined by the following formula:" [5]![CNN-eq.png]()**Pooling Layer**"The pooling layer replaces the output of the network at certain locations by deriving a summary statistic of the nearby outputs. This helps in reducing the spatial size of the representation, which decreases the required amount of computation and weights. The pooling operation is processed on every slice of the representation individually." [5]"There are several pooling functions such as the average of the rectangular neighborhood, L2 norm of the rectangular neighborhood, and a weighted average based on the distance from the central pixel. However, the most popular process is max pooling, which reports the maximum output from the neighborhood." [5]"If we have an activation map of size W x W x D, a pooling kernel of spatial size F, and stride S, then the size of output volume can be determined by the following formula:" [5]![CCN-padform.png]()"This will yield an output volume of size Wout x Wout x D.In all cases, pooling provides some translation invariance which means that an object would be recognizable regardless of where it appears on the frame." [5]**Fully Connected Layer**"Neurons in this layer have full connectivity with all neurons in the preceding and succeeding layer as seen in regular FCNN. This is why it can be computed as usual by a matrix multiplication followed by a bias effect." [5]"The FC layer helps to map the representation between the input and the output." [5]**Non-Linearity Layers**"Since convolution is a linear operation and images are far from linear, non-linearity layers are often placed directly after the convolutional layer to introduce non-linearity to the activation map." [5]"There are several types of non-linear operations, the popular ones being:" [5]1. Sigmoid2. Tanh3. ReLU**Advantages:**1. Speed vs. other type of neural networks [2]2. Capacity to extract the most important features automatically [2]**Disadvantages:**1. Classification of similar objects with different Positions [3]2. Vulnerable to adversarial examples [3]3. Coordinate Frame [3]4. Other minor disadvantages like performance [3]**References:**1. https://machinelearningmastery.com/cnn-models-for-human-activity-recognition-time-series-classification/2. https://cai.tools.sap/blog/ml-spotlight-cnn/3. https://iq.opengenus.org/disadvantages-of-cnn/4. https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a535. https://towardsdatascience.com/convolutional-neural-networks-explained-9cc5188c4939
pip install tensorflow !pip install fsspec # cnn model from numpy import mean from numpy import std from numpy import dstack from pandas import read_csv from matplotlib import pyplot from keras.models import Sequential from keras.layers import Dense from keras.layers import Flatten from keras.layers import Dropout from keras.layers.convolutional import Conv1D from keras.layers.convolutional import MaxPooling1D #from keras.utils import to_categorical from tensorflow.keras.utils import to_categorical # previous commented out line does not work # load a single file as a numpy array def load_file(filepath): dataframe = read_csv(filepath, header=None, delim_whitespace=True) return dataframe.values # load a list of files and return as a 3d numpy array def load_group(filenames, prefix=''): loaded = list() for name in filenames: data = load_file(prefix + name) loaded.append(data) # stack group so that features are the 3rd dimension loaded = dstack(loaded) return loaded # load a dataset group, such as train or test def load_dataset_group(group, prefix=''): #filepath = prefix + group + '/Inertial Signals/' filepath = 'https://raw.githubusercontent.com/iotanalytics/IoTTutorial/main/data/UCI%20HAR%20Dataset/' + group + '/Inertial%20Signals/' # load all 9 files as a single array filenames = list() # total acceleration filenames += ['total_acc_x_'+group+'.txt', 'total_acc_y_'+group+'.txt', 'total_acc_z_'+group+'.txt'] # body acceleration filenames += ['body_acc_x_'+group+'.txt', 'body_acc_y_'+group+'.txt', 'body_acc_z_'+group+'.txt'] # body gyroscope filenames += ['body_gyro_x_'+group+'.txt', 'body_gyro_y_'+group+'.txt', 'body_gyro_z_'+group+'.txt'] # load input data X = load_group(filenames, filepath) # load class output #y = load_file(prefix + group + '/y_'+group+'.txt') y = load_file('https://raw.githubusercontent.com/iotanalytics/IoTTutorial/main/data/UCI%20HAR%20Dataset/'+group+'/y_'+group+'.txt') return X, y # load the dataset, returns train and test X and y elements def load_dataset(prefix=''): # load all train #trainX, trainy = load_dataset_group('train', prefix + 'HARDataset/') trainX, trainy = load_dataset_group('train', prefix) print(trainX.shape, trainy.shape) # load all test #testX, testy = load_dataset_group('test', prefix + 'HARDataset/') testX, testy = load_dataset_group('test', prefix) print(testX.shape, testy.shape) # zero-offset class values trainy = trainy - 1 testy = testy - 1 # one hot encode y trainy = to_categorical(trainy) testy = to_categorical(testy) print(trainX.shape, trainy.shape, testX.shape, testy.shape) return trainX, trainy, testX, testy # fit and evaluate a model def evaluate_model(trainX, trainy, testX, testy): verbose, epochs, batch_size = 0, 10, 32 n_timesteps, n_features, n_outputs = trainX.shape[1], trainX.shape[2], trainy.shape[1] model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(n_timesteps,n_features))) model.add(Conv1D(filters=64, kernel_size=3, activation='relu')) model.add(Dropout(0.5)) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(100, activation='relu')) model.add(Dense(n_outputs, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) # fit network model.fit(trainX, trainy, epochs=epochs, batch_size=batch_size, verbose=verbose) # evaluate model _, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0) return accuracy # summarize scores def summarize_results(scores): print(scores) m, s = mean(scores), std(scores) print('Accuracy: %.3f%% (+/-%.3f)' % (m, s)) # run an experiment def run_experiment(repeats=10): # load data trainX, trainy, testX, testy = load_dataset() # repeat experiment scores = list() for r in range(repeats): score = evaluate_model(trainX, trainy, testX, testy) score = score * 100.0 print('>#%d: %.3f' % (r+1, score)) scores.append(score) # summarize results summarize_results(scores) # run the experiment run_experiment()
(7352, 128, 9) (7352, 1) (2947, 128, 9) (2947, 1) (7352, 128, 9) (7352, 6) (2947, 128, 9) (2947, 6) >#1: 90.363 >#2: 88.157 >#3: 92.467 >#4: 90.601 >#5: 90.227 >#6: 90.058 >#7: 91.992 >#8: 90.363 >#9: 89.786 >#10: 91.211 [90.3630793094635, 88.15745115280151, 92.46691465377808, 90.60060977935791, 90.22734761238098, 90.05768299102783, 91.99185371398926, 90.3630793094635, 89.78622555732727, 91.21140241622925] Accuracy: 90.523% (+/-1.136)
MIT
code/clustering_and_classification/1D_CNN.ipynb
iotanalytics/IoTTutorial
Pymaceuticals Inc.--- Analysis* Overall, it is clear that Capomulin is a viable drug regimen to reduce tumor growth.* Capomulin had the most number of mice complete the study, with the exception of Remicane, all other regimens observed a number of mice deaths across the duration of the study. * There is a strong correlation between mouse weight and tumor volume, indicating that mouse weight may be contributing to the effectiveness of any drug regimen.* There was one potential outlier within the Infubinol regimen. While most mice showed tumor volume increase, there was one mouse that had a reduction in tumor growth in the study.
# Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import scipy.stats as st # Study data files mouse_metadata_path = "data/Mouse_metadata.csv" study_results_path = "data/Study_results.csv" # Read the mouse data and the study results mouse_metadata = pd.read_csv(mouse_metadata_path) study_results = pd.read_csv(study_results_path) # Combine the data into a single dataset # Display the data table for preview # Checking the number of mice. # Getting the duplicate mice by ID number that shows up for Mouse ID and Timepoint. # Optional: Get all the data for the duplicate mouse ID. # Create a clean DataFrame by dropping the duplicate mouse by its ID. # Checking the number of mice in the clean DataFrame.
_____no_output_____
ADSL
pymaceuticals_starter_with_plots.ipynb
vaideheeshah13/MatPlotLib
Summary Statistics
# Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen # Use groupby and summary statistical methods to calculate the following properties of each drug regimen: # mean, median, variance, standard deviation, and SEM of the tumor volume. # Assemble the resulting series into a single summary dataframe. # Generate a summary statistics table of mean, median, variance, standard deviation, and SEM of the tumor volume for each regimen # Using the aggregation method, produce the same summary statistics in a single line
_____no_output_____
ADSL
pymaceuticals_starter_with_plots.ipynb
vaideheeshah13/MatPlotLib
Bar and Pie Charts
# Generate a bar plot showing the total number of measurements taken on each drug regimen using pandas. # Generate a bar plot showing the total number of measurements taken on each drug regimen using using pyplot. # Generate a pie plot showing the distribution of female versus male mice using pandas # Generate a pie plot showing the distribution of female versus male mice using pyplot
_____no_output_____
ADSL
pymaceuticals_starter_with_plots.ipynb
vaideheeshah13/MatPlotLib
Quartiles, Outliers and Boxplots
# Calculate the final tumor volume of each mouse across four of the treatment regimens: # Capomulin, Ramicane, Infubinol, and Ceftamin # Start by getting the last (greatest) timepoint for each mouse # Merge this group df with the original dataframe to get the tumor volume at the last timepoint # Put treatments into a list for for loop (and later for plot labels) # Create empty list to fill with tumor vol data (for plotting) # Calculate the IQR and quantitatively determine if there are any potential outliers. # Locate the rows which contain mice on each drug and get the tumor volumes # add subset # Determine outliers using upper and lower bounds # Generate a box plot of the final tumor volume of each mouse across four regimens of interest
_____no_output_____
ADSL
pymaceuticals_starter_with_plots.ipynb
vaideheeshah13/MatPlotLib
Line and Scatter Plots
# Generate a line plot of tumor volume vs. time point for a mouse treated with Capomulin # Generate a scatter plot of average tumor volume vs. mouse weight for the Capomulin regimen
_____no_output_____
ADSL
pymaceuticals_starter_with_plots.ipynb
vaideheeshah13/MatPlotLib
Correlation and Regression
# Calculate the correlation coefficient and linear regression model # for mouse weight and average tumor volume for the Capomulin regimen
The correlation between mouse weight and the average tumor volume is 0.84
ADSL
pymaceuticals_starter_with_plots.ipynb
vaideheeshah13/MatPlotLib
Microsoft Insights Module Example Notebook
%run /OEA_py %run /NEW_Insights_py # 0) Initialize the OEA framework and Insights module class notebook. oea = OEA() insights = Insights() insights.ingest()
_____no_output_____
CC-BY-4.0
modules/Microsoft_Data/Microsoft_Education_Insights_Premium/notebook/Insights_module_ingestion.ipynb
ahalabi/OpenEduAnalytics
WeatherPy---- Note* Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.
w_api = 'f85af5acc7275a9eb032d03a3cca5913' # Dependencies and Setup import matplotlib.pyplot as plt import pandas as pd import numpy as np import requests import time from scipy.stats import linregress # Import API key # from api_keys import weather_api_key # Incorporated citipy to determine city based on latitude and longitude from citipy import citipy # Output File (CSV) output_data_file = "output_data/cities.csv" # Range of latitudes and longitudes lat_range = (-90, 90) lng_range = (-180, 180)
_____no_output_____
ADSL
starter_code/old/WeatherPy.ipynb
rbvancleave/python-api-challenge
Generate Cities List
# List for holding lat_lngs and cities lat_lngs = [] cities = [] # Create a set of random lat and lng combinations lats = np.random.uniform(lat_range[0], lat_range[1], size=1500) lngs = np.random.uniform(lng_range[0], lng_range[1], size=1500) lat_lngs = zip(lats, lngs) # Identify nearest city for each lat, lng combination for lat_lng in lat_lngs: city = citipy.nearest_city(lat_lng[0], lat_lng[1]).city_name # If the city is unique, then add it to a our cities list if city not in cities: cities.append(city) # Print the city count to confirm sufficient count len(cities)
_____no_output_____
ADSL
starter_code/old/WeatherPy.ipynb
rbvancleave/python-api-challenge
Perform API Calls* Perform a weather check on each city using a series of successive API calls.* Include a print log of each city as it'sbeing processed (with the city number and city name). Convert Raw Data to DataFrame* Export the city data into a .csv.* Display the DataFrame Inspect the data and remove the cities where the humidity > 100%.----Skip this step if there are no cities that have humidity > 100%.
# Get the indices of cities that have humidity over 100%. # Make a new DataFrame equal to the city data to drop all humidity outliers by index. # Passing "inplace=False" will make a copy of the city_data DataFrame, which we call "clean_city_data".
_____no_output_____
ADSL
starter_code/old/WeatherPy.ipynb
rbvancleave/python-api-challenge
Matplotlib Applied **Aim: SWBAT create a figure with 4 subplots of varying graph types.**
import matplotlib.pyplot as plt import numpy as np from numpy.random import seed, randint seed(100) # Create Figure and Subplots fig, axes = plt.subplots(2,2, figsize=(10,6), sharex=True, sharey=True, dpi=100) # Define the colors and markers to use colors = {0:'g', 1:'b', 2:'r', 3:'y'} markers = {0:'o', 1:'x', 2:'*', 3:'p'} # Plot each axes for i, ax in enumerate(axes.ravel()): ax.plot(sorted(randint(0,10,10)), sorted(randint(0,10,10)), marker=markers[i], color=colors[i]) ax.set_title('Ax: ' + str(i)) ax.yaxis.set_ticks_position('right') plt.suptitle('Four Subplots in One Figure', verticalalignment='bottom', fontsize=16) plt.tight_layout() # plt.show()
_____no_output_____
MIT
Phase_1/ds-data_visualization-main/Matplotlib_Applied.ipynb
BenJMcCarty/ds-east-042621-lectures
Go through and play with the code above to try answer the questions below:- What do you think `sharex` and `sharey` do?- What does the `dpi` argument control?- What does `numpy.ravel()` do, and why do they call it here?- What does `yaxis.set_ticks_position()` do?- How do they use the `colors` and `markers` dictionaries? Your turn:- Create a figure that has 4 sub plots on it.- Plot 1: a line blue graph (`.plot()`) using data `x` and `y`- Plot 2: a scatter plot (`.scatter()`) using data `x2` and `y2` with red markers that are non-filled circles.- Plot 3: a plot that has both a line graph (x and y data) and a scatterplot (x2, y2) that only use 1 y axis- plot 4: a plot that is similiar to plot3 except the scatterplot has it own axis on the right hand side. - Put titles on each subplot.- Create a title for the entire figure.- Save figure as png.
from numpy.random import seed, randint seed(100) x = sorted(randint(0,10,10)) x2 = sorted(randint(0,20,10)) y = sorted(randint(0,10,10)) y2 = sorted(randint(0,20,10))
_____no_output_____
MIT
Phase_1/ds-data_visualization-main/Matplotlib_Applied.ipynb
BenJMcCarty/ds-east-042621-lectures
Great tutorial on matplotlibhttps://www.machinelearningplus.com/plots/matplotlib-tutorial-complete-guide-python-plot-examples/
fig
_____no_output_____
MIT
Phase_1/ds-data_visualization-main/Matplotlib_Applied.ipynb
BenJMcCarty/ds-east-042621-lectures
Now You Code 2: Paint PricingHouse Depot, a big-box hardware retailer, has contracted you to create an app to calculate paint prices. The price of paint is determined by the following factors:- Everyday quality paint is `$19.99` per gallon.- Select quality paint is `$24.99` per gallon.- Premium quality paint is `$32.99` per gallon.In addition if the customer wants computerized color-matching that incurs an additional fee of `$4.99` per gallon. Write a program to ask the user to select a paint quality: 'everyday', 'select' or 'premium' and then whether they need color matching and then outputs the price per gallon of the paint.Example Run 1:```Which paint quality do you require ['everyday', 'select', 'premium'] ?selectDo you require color matching [y/n] ?yTotal price of select paint with color matching is $29.98```Example Run 2:```Which paint quality do you require ['everyday', 'select', 'premium'] ?premiumDo you require color matching [y/n] ?nTotal price of premium paint without color matching is $32.99``` Step 1: Problem AnalysisInputs:Outputs:Algorithm (Steps in Program):
# Step 2: Write code here choices = ["everyday", "select", "premium"] colorChoices = ["y", "n"] quality = input("which paint quality would you like? ["everyday", "select", "premium"]") if quality in choices if quality == "everyday": quality =19.99 elif quality == "select": quality = 24.99 elif quality =="premium": quality = 32.99 colorMatching = input("do you requrie color matching [yes/no]") if colorMatching in colorChoices: if colorMatching == "yes": colorMatching = 4.99 elif colorMatching == "no": colorMatching = 0 final = quality + colorMatching if colorMatching == "yes": print("total price of paint with color matching is %.2f" %(final)) else: print("total price of paint without color matching is %.2f" %(final)) else: print("you must enter yes or no") else: print("That is not a paint quality")
_____no_output_____
MIT
content/lessons/04/Now-You-Code/NYC2-Paint-Matching.ipynb
MahopacHS/spring2019-rizzenM
Kaggle ML and Data Science Survey Analysis Data 512, Final Project Plan - Zicong Liang Project MotivationThis project an analysis for a survey about Machine Learning and Data Science. Recently, lots of people are talking about machine learning and Data Science. In addition, more and more companies hire data science talents and invest in data science in order to make their business more data-driven. According to Wikipedia, Data science is also known as data-driven science, is an interdisciplinary field combined from mathematics, statistics and computer science to extract insights from data. On the one hand, I remember Oliver commented about nobody's really done a proper survey related to Data Science. I think it is a great opportunity to do some research in this field of study because I find out Kaggle releases a survey responses about Data Science and Machine Learning. On the other hand, there are a few reasons drive me to know more about data science and machine learning field of study.1. I am one of the graduate students in the master of science data science program at University of Washington.2. I'd like to get a job in data science filed after graduating from this program.3. I'd like to know how those people related to this field think about data science and machine learning, then analyses their response to draw some conclusions that I am looking for. As one of the beginner in Data Science, it is better to know more about what kind of skills we need to well-equipped in order to be ready to step into this field. That's why I am planning to do this analysis.Throughout this project, we are going to conduct some analyses for Data Science and Machine Learning in various aspects, such as gender, age, programming skills, algorithms, education degree and salary and so on. It helps us gain new insights of Data Science that different from what we have learnt from school. In addition, the analysis of this project can be a reference to those who people for pursuing a career in Data Science, not only for switching job but also looking for their first job in this field. Project DatasetThe data I am going to use for this project is from Kaggle. It is one of the most popular datasets in Kaggle recently. To be more specifically, the data is about a survey which conducted by Kaggle for an industry-wide to establish a comprehensive view of the state of Data Science and Machine Learning. This survey received more than 16000 responses. According to this data, we would be able to learn a ton about who is working in the Data Science Field, what’s happening at the cutting edge of machine learning across industries, and how new data scientists can best break into the field.Here is the link to the main page of [Kaggle ML and Data Science Survey, 2017](https://www.kaggle.com/kaggle/kaggle-survey-2017).The dataset consists of 5 files:1. **schema.csv**: a CSV file with survey schema. This schema includes the questions that correspond to each column name in both the **multipleChoiceResponses.csv** and **freeformResponses.csv**.2. **multipleChoiceResponses.csv**: Respondents' answers to multiple choice and ranking questions.3. **freeformResponses.csv**: Respondents' freeform answers to Kaggle's survey questions.4. **conversionRates.csv**: Currency conversion rates to USD (accessed from the R package "quantmod" on September 14, 2017)5. **RespondentTypeREADME.txt**: This is a schema for decoding the responses in the "Asked" column of the **schema.csv** file.Click [here](https://www.kaggle.com/kaggle/kaggle-survey-2017/data) to the data page.Base on the description above, I am going to use two files from the data.1. **multipleChoiceResponses.csv**2. **conversionRates.csv**The **conversionRates.csv** data is pretty straightforward, so let's look at the **multipleChoiceResponses.csv** before the start any analysis.
import pandas as pd my_data = pd.read_csv("multipleChoiceResponses.csv", encoding='ISO-8859-1', delimiter=',', low_memory=False) my_data.head() my_data.shape
_____no_output_____
MIT
Final Project Plan.ipynb
lzctony/data-512-finalproject
Continuous training pipeline with Kubeflow Pipeline and AI Platform **Learning Objectives:**1. Learn how to use Kubeflow Pipeline(KFP) pre-build components (BiqQuery, AI Platform training and predictions)1. Learn how to use KFP lightweight python components1. Learn how to build a KFP with these components1. Learn how to compile, upload, and run a KFP with the command lineIn this lab, you will build, deploy, and run a KFP pipeline that orchestrates **BigQuery** and **AI Platform** services to train, tune, and deploy a **scikit-learn** model. Understanding the pipeline design The workflow implemented by the pipeline is defined using a Python based Domain Specific Language (DSL). The pipeline's DSL is in the `covertype_training_pipeline.py` file that we will generate below.The pipeline's DSL has been designed to avoid hardcoding any environment specific settings like file paths or connection strings. These settings are provided to the pipeline code through a set of environment variables.
#!grep 'BASE_IMAGE =' -A 5 pipeline/covertype_training_pipeline.py !pip list | grep kfp
kfp 1.0.0 kfp-pipeline-spec 0.1.7 kfp-server-api 1.5.0
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
The pipeline uses a mix of custom and pre-build components.- Pre-build components. The pipeline uses the following pre-build components that are included with the KFP distribution: - [BigQuery query component](https://github.com/kubeflow/pipelines/tree/0.2.5/components/gcp/bigquery/query) - [AI Platform Training component](https://github.com/kubeflow/pipelines/tree/0.2.5/components/gcp/ml_engine/train) - [AI Platform Deploy component](https://github.com/kubeflow/pipelines/tree/0.2.5/components/gcp/ml_engine/deploy)- Custom components. The pipeline uses two custom helper components that encapsulate functionality not available in any of the pre-build components. The components are implemented using the KFP SDK's [Lightweight Python Components](https://www.kubeflow.org/docs/pipelines/sdk/lightweight-python-components/) mechanism. The code for the components is in the `helper_components.py` file: - **Retrieve Best Run**. This component retrieves a tuning metric and hyperparameter values for the best run of a AI Platform Training hyperparameter tuning job. - **Evaluate Model**. This component evaluates a *sklearn* trained model using a provided metric and a testing dataset.
%%writefile ./pipeline/covertype_training_pipeline.py # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """KFP orchestrating BigQuery and Cloud AI Platform services.""" import os from helper_components import evaluate_model from helper_components import retrieve_best_run from jinja2 import Template import kfp from kfp.components import func_to_container_op from kfp.dsl.types import Dict from kfp.dsl.types import GCPProjectID from kfp.dsl.types import GCPRegion from kfp.dsl.types import GCSPath from kfp.dsl.types import String from kfp.gcp import use_gcp_secret # Defaults and environment settings BASE_IMAGE = os.getenv('BASE_IMAGE') TRAINER_IMAGE = os.getenv('TRAINER_IMAGE') RUNTIME_VERSION = os.getenv('RUNTIME_VERSION') PYTHON_VERSION = os.getenv('PYTHON_VERSION') COMPONENT_URL_SEARCH_PREFIX = os.getenv('COMPONENT_URL_SEARCH_PREFIX') USE_KFP_SA = os.getenv('USE_KFP_SA') TRAINING_FILE_PATH = 'datasets/training/data.csv' VALIDATION_FILE_PATH = 'datasets/validation/data.csv' TESTING_FILE_PATH = 'datasets/testing/data.csv' # Parameter defaults SPLITS_DATASET_ID = 'splits' HYPERTUNE_SETTINGS = """ { "hyperparameters": { "goal": "MAXIMIZE", "maxTrials": 6, "maxParallelTrials": 3, "hyperparameterMetricTag": "accuracy", "enableTrialEarlyStopping": True, "params": [ { "parameterName": "max_iter", "type": "DISCRETE", "discreteValues": [500, 1000] }, { "parameterName": "alpha", "type": "DOUBLE", "minValue": 0.0001, "maxValue": 0.001, "scaleType": "UNIT_LINEAR_SCALE" } ] } } """ # Helper functions def generate_sampling_query(source_table_name, num_lots, lots): """Prepares the data sampling query.""" sampling_query_template = """ SELECT * FROM `{{ source_table }}` AS cover WHERE MOD(ABS(FARM_FINGERPRINT(TO_JSON_STRING(cover))), {{ num_lots }}) IN ({{ lots }}) """ query = Template(sampling_query_template).render( source_table=source_table_name, num_lots=num_lots, lots=str(lots)[1:-1]) return query # Create component factories component_store = kfp.components.ComponentStore( local_search_paths=None, url_search_prefixes=[COMPONENT_URL_SEARCH_PREFIX]) bigquery_query_op = component_store.load_component('bigquery/query') mlengine_train_op = component_store.load_component('ml_engine/train') mlengine_deploy_op = component_store.load_component('ml_engine/deploy') retrieve_best_run_op = func_to_container_op( retrieve_best_run, base_image=BASE_IMAGE) evaluate_model_op = func_to_container_op(evaluate_model, base_image=BASE_IMAGE) @kfp.dsl.pipeline( name='Covertype Classifier Training', description='The pipeline training and deploying the Covertype classifierpipeline_yaml' ) def covertype_train(project_id, region, source_table_name, gcs_root, dataset_id, evaluation_metric_name, evaluation_metric_threshold, model_id, version_id, replace_existing_version, hypertune_settings=HYPERTUNE_SETTINGS, dataset_location='US'): """Orchestrates training and deployment of an sklearn model.""" # Create the training split query = generate_sampling_query( source_table_name=source_table_name, num_lots=10, lots=[1, 2, 3, 4]) training_file_path = '{}/{}'.format(gcs_root, TRAINING_FILE_PATH) create_training_split = bigquery_query_op( query=query, project_id=project_id, dataset_id=dataset_id, table_id='', output_gcs_path=training_file_path, dataset_location=dataset_location) # Create the validation split query = generate_sampling_query( source_table_name=source_table_name, num_lots=10, lots=[8]) validation_file_path = '{}/{}'.format(gcs_root, VALIDATION_FILE_PATH) create_validation_split = bigquery_query_op( query=query, project_id=project_id, dataset_id=dataset_id, table_id='', output_gcs_path=validation_file_path, dataset_location=dataset_location) # Create the testing split query = generate_sampling_query( source_table_name=source_table_name, num_lots=10, lots=[9]) testing_file_path = '{}/{}'.format(gcs_root, TESTING_FILE_PATH) create_testing_split = bigquery_query_op( query=query, project_id=project_id, dataset_id=dataset_id, table_id='', output_gcs_path=testing_file_path, dataset_location=dataset_location) # Tune hyperparameters tune_args = [ '--training_dataset_path', create_training_split.outputs['output_gcs_path'], '--validation_dataset_path', create_validation_split.outputs['output_gcs_path'], '--hptune', 'True' ] job_dir = '{}/{}/{}'.format(gcs_root, 'jobdir/hypertune', kfp.dsl.RUN_ID_PLACEHOLDER) hypertune = mlengine_train_op( project_id=project_id, region=region, master_image_uri=TRAINER_IMAGE, job_dir=job_dir, args=tune_args, training_input=hypertune_settings) # Retrieve the best trial get_best_trial = retrieve_best_run_op( project_id, hypertune.outputs['job_id']) # Train the model on a combined training and validation datasets job_dir = '{}/{}/{}'.format(gcs_root, 'jobdir', kfp.dsl.RUN_ID_PLACEHOLDER) train_args = [ '--training_dataset_path', create_training_split.outputs['output_gcs_path'], '--validation_dataset_path', create_validation_split.outputs['output_gcs_path'], '--alpha', get_best_trial.outputs['alpha'], '--max_iter', get_best_trial.outputs['max_iter'], '--hptune', 'False' ] train_model = mlengine_train_op( project_id=project_id, region=region, master_image_uri=TRAINER_IMAGE, job_dir=job_dir, args=train_args) # Evaluate the model on the testing split eval_model = evaluate_model_op( dataset_path=str(create_testing_split.outputs['output_gcs_path']), model_path=str(train_model.outputs['job_dir']), metric_name=evaluation_metric_name) # Deploy the model if the primary metric is better than threshold with kfp.dsl.Condition(eval_model.outputs['metric_value'] > evaluation_metric_threshold): deploy_model = mlengine_deploy_op( model_uri=train_model.outputs['job_dir'], project_id=project_id, model_id=model_id, version_id=version_id, runtime_version=RUNTIME_VERSION, python_version=PYTHON_VERSION, replace_existing_version=replace_existing_version) # Configure the pipeline to run using the service account defined # in the user-gcp-sa k8s secret if USE_KFP_SA == 'True': kfp.dsl.get_pipeline_conf().add_op_transformer( use_gcp_secret('user-gcp-sa'))
_____no_output_____
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
The custom components execute in a container image defined in `base_image/Dockerfile`.
!cat base_image/Dockerfile
_____no_output_____
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
The training step in the pipeline employes the AI Platform Training component to schedule a AI Platform Training job in a custom training container. The custom training image is defined in `trainer_image/Dockerfile`.
!cat trainer_image/Dockerfile
_____no_output_____
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
Building and deploying the pipelineBefore deploying to AI Platform Pipelines, the pipeline DSL has to be compiled into a pipeline runtime format, also refered to as a pipeline package. The runtime format is based on [Argo Workflow](https://github.com/argoproj/argo), which is expressed in YAML. Configure environment settingsUpdate the below constants with the settings reflecting your lab environment. - `REGION` - the compute region for AI Platform Training and Prediction- `ARTIFACT_STORE` - the GCS bucket created during installation of AI Platform Pipelines. The bucket name will be similar to `qwiklabs-gcp-xx-xxxxxxx-kubeflowpipelines-default`.- `ENDPOINT` - set the `ENDPOINT` constant to the endpoint to your AI Platform Pipelines instance. Then endpoint to the AI Platform Pipelines instance can be found on the [AI Platform Pipelines](https://console.cloud.google.com/ai-platform/pipelines/clusters) page in the Google Cloud Console.1. Open the **SETTINGS** for your instance2. Use the value of the `host` variable in the **Connect to this Kubeflow Pipelines instance from a Python client via Kubeflow Pipelines SKD** section of the **SETTINGS** window.Run gsutil ls without URLs to list all of the Cloud Storage buckets under your default project ID.
!gsutil ls
_____no_output_____
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
**HINT:** For **ENDPOINT**, use the value of the `host` variable in the **Connect to this Kubeflow Pipelines instance from a Python client via Kubeflow Pipelines SDK** section of the **SETTINGS** window.For **ARTIFACT_STORE_URI**, copy the bucket name which starts with the qwiklabs-gcp-xx-xxxxxxx-kubeflowpipelines-default prefix from the previous cell output. Your copied value should look like **'gs://qwiklabs-gcp-xx-xxxxxxx-kubeflowpipelines-default'**
REGION = 'us-central1' ENDPOINT = '627be4a1d4049ed3-dot-us-central1.pipelines.googleusercontent.com' # TO DO: REPLACE WITH YOUR ENDPOINT ARTIFACT_STORE_URI = 'gs://dna-gcp-data-kubeflowpipelines-default' # TO DO: REPLACE WITH YOUR ARTIFACT_STORE NAME PROJECT_ID = !(gcloud config get-value core/project) PROJECT_ID = PROJECT_ID[0]
_____no_output_____
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
Build the trainer image
IMAGE_NAME='trainer_image' TAG='test' TRAINER_IMAGE='gcr.io/{}/{}:{}'.format(PROJECT_ID, IMAGE_NAME, TAG)
_____no_output_____
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
**Note**: Please ignore any **incompatibility ERROR** that may appear for the packages visions as it will not affect the lab's functionality.
!gcloud builds submit --timeout 15m --tag $TRAINER_IMAGE trainer_image
_____no_output_____
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
Build the base image for custom components
IMAGE_NAME='base_image' TAG='test2' BASE_IMAGE='gcr.io/{}/{}:{}'.format(PROJECT_ID, IMAGE_NAME, TAG) !pwd !gcloud builds submit --timeout 15m --tag $BASE_IMAGE base_image
Creating temporary tarball archive of 2 file(s) totalling 290 bytes before compression. Uploading tarball of [base_image] to [gs://dna-gcp-data_cloudbuild/source/1621581960.433286-cef9441cb3234402ad8faeccf31ce5fe.tgz] Created [https://cloudbuild.googleapis.com/v1/projects/dna-gcp-data/locations/global/builds/d2e1016b-599c-4537-b03f-3a8e0039c2fc]. Logs are available at [https://console.cloud.google.com/cloud-build/builds/d2e1016b-599c-4537-b03f-3a8e0039c2fc?project=1011566672334]. ----------------------------- REMOTE BUILD OUTPUT ------------------------------ starting build "d2e1016b-599c-4537-b03f-3a8e0039c2fc" FETCHSOURCE Fetching storage object: gs://dna-gcp-data_cloudbuild/source/1621581960.433286-cef9441cb3234402ad8faeccf31ce5fe.tgz#1621581960754721 Copying gs://dna-gcp-data_cloudbuild/source/1621581960.433286-cef9441cb3234402ad8faeccf31ce5fe.tgz#1621581960754721... / [1 files][ 299.0 B/ 299.0 B] Operation completed over 1 objects/299.0 B. BUILD Already have image (with digest): gcr.io/cloud-builders/docker Sending build context to Docker daemon 3.584kB Step 1/3 : FROM gcr.io/deeplearning-platform-release/base-cpu latest: Pulling from deeplearning-platform-release/base-cpu 01bf7da0a88c: Pulling fs layer f3b4a5f15c7a: Pulling fs layer 57ffbe87baa1: Pulling fs layer 424e7c9d5d89: Pulling fs layer 9b397537aef0: Pulling fs layer 2bd5028f4b85: Pulling fs layer 4f4fb700ef54: Pulling fs layer b2ed56b85d3a: Pulling fs layer 8bfb788e9874: Pulling fs layer 0618fb353339: Pulling fs layer 42045a665612: Pulling fs layer 031d8d7b75f7: Pulling fs layer 5780cc9addac: Pulling fs layer 8fbe78107b3d: Pulling fs layer eee173fc570a: Pulling fs layer 424e7c9d5d89: Waiting 9b397537aef0: Waiting 2bd5028f4b85: Waiting 4f4fb700ef54: Waiting b2ed56b85d3a: Waiting 8bfb788e9874: Waiting 0618fb353339: Waiting 42045a665612: Waiting 031d8d7b75f7: Waiting 5780cc9addac: Waiting 8fbe78107b3d: Waiting eee173fc570a: Waiting 9334ecc802d5: Pulling fs layer c631c38965fd: Pulling fs layer 9334ecc802d5: Waiting c631c38965fd: Waiting 1aada407354a: Pulling fs layer 151efcb7d3c3: Pulling fs layer 151efcb7d3c3: Waiting 1aada407354a: Waiting 57ffbe87baa1: Verifying Checksum 57ffbe87baa1: Download complete f3b4a5f15c7a: Verifying Checksum f3b4a5f15c7a: Download complete 424e7c9d5d89: Verifying Checksum 424e7c9d5d89: Download complete 01bf7da0a88c: Verifying Checksum 01bf7da0a88c: Download complete 4f4fb700ef54: Verifying Checksum 4f4fb700ef54: Download complete b2ed56b85d3a: Verifying Checksum b2ed56b85d3a: Download complete 2bd5028f4b85: Verifying Checksum 2bd5028f4b85: Download complete 0618fb353339: Download complete 42045a665612: Verifying Checksum 42045a665612: Download complete 031d8d7b75f7: Verifying Checksum 031d8d7b75f7: Download complete 5780cc9addac: Download complete 8fbe78107b3d: Verifying Checksum 8fbe78107b3d: Download complete eee173fc570a: Verifying Checksum eee173fc570a: Download complete 9334ecc802d5: Verifying Checksum 9334ecc802d5: Download complete c631c38965fd: Verifying Checksum c631c38965fd: Download complete 9b397537aef0: Verifying Checksum 9b397537aef0: Download complete 8bfb788e9874: Verifying Checksum 8bfb788e9874: Download complete 151efcb7d3c3: Verifying Checksum 151efcb7d3c3: Download complete 01bf7da0a88c: Pull complete f3b4a5f15c7a: Pull complete 57ffbe87baa1: Pull complete 424e7c9d5d89: Pull complete 1aada407354a: Verifying Checksum 1aada407354a: Download complete 9b397537aef0: Pull complete 2bd5028f4b85: Pull complete 4f4fb700ef54: Pull complete b2ed56b85d3a: Pull complete 8bfb788e9874: Pull complete 0618fb353339: Pull complete 42045a665612: Pull complete 031d8d7b75f7: Pull complete 5780cc9addac: Pull complete 8fbe78107b3d: Pull complete eee173fc570a: Pull complete 9334ecc802d5: Pull complete c631c38965fd: Pull complete 1aada407354a: Pull complete 151efcb7d3c3: Pull complete Digest: sha256:76ee9c0261dbcfb75e201ce21fd666f61127fe6b9ff74e6cf78b6ef09751de95 Status: Downloaded newer image for gcr.io/deeplearning-platform-release/base-cpu:latest ---> c1e1d5999dc3 Step 2/3 : RUN pip install -U fire scikit-learn==0.20.4 pandas==0.24.2 kfp==1.0.0 ---> Running in c4bf640bbcee Collecting fire Downloading fire-0.4.0.tar.gz (87 kB) Collecting scikit-learn==0.20.4 Downloading scikit_learn-0.20.4-cp37-cp37m-manylinux1_x86_64.whl (5.4 MB) Collecting pandas==0.24.2 Downloading pandas-0.24.2-cp37-cp37m-manylinux1_x86_64.whl (10.1 MB) Collecting kfp==1.0.0 Downloading kfp-1.0.0.tar.gz (116 kB) Requirement already satisfied: scipy>=0.13.3 in /opt/conda/lib/python3.7/site-packages (from scikit-learn==0.20.4) (1.6.3) Requirement already satisfied: numpy>=1.8.2 in /opt/conda/lib/python3.7/site-packages (from scikit-learn==0.20.4) (1.19.5) Requirement already satisfied: python-dateutil>=2.5.0 in /opt/conda/lib/python3.7/site-packages (from pandas==0.24.2) (2.8.1) Requirement already satisfied: pytz>=2011k in /opt/conda/lib/python3.7/site-packages (from pandas==0.24.2) (2021.1) Requirement already satisfied: PyYAML in /opt/conda/lib/python3.7/site-packages (from kfp==1.0.0) (5.4.1) Requirement already satisfied: google-cloud-storage>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from kfp==1.0.0) (1.38.0) Collecting kubernetes<12.0.0,>=8.0.0 Downloading kubernetes-11.0.0-py3-none-any.whl (1.5 MB) Requirement already satisfied: google-auth>=1.6.1 in /opt/conda/lib/python3.7/site-packages (from kfp==1.0.0) (1.30.0) Collecting requests_toolbelt>=0.8.0 Downloading requests_toolbelt-0.9.1-py2.py3-none-any.whl (54 kB) Requirement already satisfied: cloudpickle in /opt/conda/lib/python3.7/site-packages (from kfp==1.0.0) (1.6.0) Collecting kfp-server-api<2.0.0,>=0.2.5 Downloading kfp-server-api-1.5.0.tar.gz (50 kB) Requirement already satisfied: jsonschema>=3.0.1 in /opt/conda/lib/python3.7/site-packages (from kfp==1.0.0) (3.2.0) Collecting tabulate Downloading tabulate-0.8.9-py3-none-any.whl (25 kB) Requirement already satisfied: click in /opt/conda/lib/python3.7/site-packages (from kfp==1.0.0) (7.1.2) Collecting Deprecated Downloading Deprecated-1.2.12-py2.py3-none-any.whl (9.5 kB) Collecting strip-hints Downloading strip-hints-0.1.9.tar.gz (30 kB) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-auth>=1.6.1->kfp==1.0.0) (49.6.0.post20210108) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth>=1.6.1->kfp==1.0.0) (4.2.2) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth>=1.6.1->kfp==1.0.0) (4.7.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth>=1.6.1->kfp==1.0.0) (0.2.7) Requirement already satisfied: six>=1.9.0 in /opt/conda/lib/python3.7/site-packages (from google-auth>=1.6.1->kfp==1.0.0) (1.16.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage>=1.13.0->kfp==1.0.0) (2.25.1) Requirement already satisfied: google-resumable-media<2.0dev,>=1.2.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage>=1.13.0->kfp==1.0.0) (1.2.0) Requirement already satisfied: google-cloud-core<2.0dev,>=1.4.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage>=1.13.0->kfp==1.0.0) (1.6.0) Requirement already satisfied: google-api-core<2.0.0dev,>=1.21.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-core<2.0dev,>=1.4.1->google-cloud-storage>=1.13.0->kfp==1.0.0) (1.26.3) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0.0dev,>=1.21.0->google-cloud-core<2.0dev,>=1.4.1->google-cloud-storage>=1.13.0->kfp==1.0.0) (20.9) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0.0dev,>=1.21.0->google-cloud-core<2.0dev,>=1.4.1->google-cloud-storage>=1.13.0->kfp==1.0.0) (1.53.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<2.0.0dev,>=1.21.0->google-cloud-core<2.0dev,>=1.4.1->google-cloud-storage>=1.13.0->kfp==1.0.0) (3.16.0) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<2.0dev,>=1.2.0->google-cloud-storage>=1.13.0->kfp==1.0.0) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<2.0dev,>=1.2.0->google-cloud-storage>=1.13.0->kfp==1.0.0) (1.14.5) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<2.0dev,>=1.2.0->google-cloud-storage>=1.13.0->kfp==1.0.0) (2.20) Requirement already satisfied: attrs>=17.4.0 in /opt/conda/lib/python3.7/site-packages (from jsonschema>=3.0.1->kfp==1.0.0) (21.2.0) Requirement already satisfied: importlib-metadata in /opt/conda/lib/python3.7/site-packages (from jsonschema>=3.0.1->kfp==1.0.0) (4.0.1) Requirement already satisfied: pyrsistent>=0.14.0 in /opt/conda/lib/python3.7/site-packages (from jsonschema>=3.0.1->kfp==1.0.0) (0.17.3) Requirement already satisfied: urllib3>=1.15 in /opt/conda/lib/python3.7/site-packages (from kfp-server-api<2.0.0,>=0.2.5->kfp==1.0.0) (1.26.4) Requirement already satisfied: certifi in /opt/conda/lib/python3.7/site-packages (from kfp-server-api<2.0.0,>=0.2.5->kfp==1.0.0) (2020.12.5) Requirement already satisfied: websocket-client!=0.40.0,!=0.41.*,!=0.42.*,>=0.32.0 in /opt/conda/lib/python3.7/site-packages (from kubernetes<12.0.0,>=8.0.0->kfp==1.0.0) (0.57.0) Requirement already satisfied: requests-oauthlib in /opt/conda/lib/python3.7/site-packages (from kubernetes<12.0.0,>=8.0.0->kfp==1.0.0) (1.3.0) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-api-core<2.0.0dev,>=1.21.0->google-cloud-core<2.0dev,>=1.4.1->google-cloud-storage>=1.13.0->kfp==1.0.0) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth>=1.6.1->kfp==1.0.0) (0.4.8) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage>=1.13.0->kfp==1.0.0) (2.10) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage>=1.13.0->kfp==1.0.0) (4.0.0) Collecting termcolor Downloading termcolor-1.1.0.tar.gz (3.9 kB) Requirement already satisfied: wrapt<2,>=1.10 in /opt/conda/lib/python3.7/site-packages (from Deprecated->kfp==1.0.0) (1.12.1) Requirement already satisfied: zipp>=0.5 in /opt/conda/lib/python3.7/site-packages (from importlib-metadata->jsonschema>=3.0.1->kfp==1.0.0) (3.4.1) Requirement already satisfied: typing-extensions>=3.6.4 in /opt/conda/lib/python3.7/site-packages (from importlib-metadata->jsonschema>=3.0.1->kfp==1.0.0) (3.7.4.3) Requirement already satisfied: oauthlib>=3.0.0 in /opt/conda/lib/python3.7/site-packages (from requests-oauthlib->kubernetes<12.0.0,>=8.0.0->kfp==1.0.0) (3.0.1) Requirement already satisfied: wheel in /opt/conda/lib/python3.7/site-packages (from strip-hints->kfp==1.0.0) (0.36.2) Building wheels for collected packages: kfp, kfp-server-api, fire, strip-hints, termcolor Building wheel for kfp (setup.py): started Building wheel for kfp (setup.py): finished with status 'done' Created wheel for kfp: filename=kfp-1.0.0-py3-none-any.whl size=159769 sha256=74a8b1d2b91b9957b95f2f878e91ba0a2b847ba6b479ba6090b199fee94f8de1 Stored in directory: /root/.cache/pip/wheels/81/39/f2/ee01d785a5bd135e42e7721fedb05857badf763fc465a4e822 Building wheel for kfp-server-api (setup.py): started Building wheel for kfp-server-api (setup.py): finished with status 'done' Created wheel for kfp-server-api: filename=kfp_server_api-1.5.0-py3-none-any.whl size=92524 sha256=b672a04ca3bcf1257f2981061c5a9b460c20f5e816ede414eb22892649d86973 Stored in directory: /root/.cache/pip/wheels/1e/ab/eb/1608f904a1a3f2a28696129c6dbd3cac00bea2cdad226ee60e Building wheel for fire (setup.py): started Building wheel for fire (setup.py): finished with status 'done' Created wheel for fire: filename=fire-0.4.0-py2.py3-none-any.whl size=115928 sha256=040e97679ac4b63443c3b3127e2f2b0afb4d70d927adcc11efa1f94be0084ba3 Stored in directory: /root/.cache/pip/wheels/8a/67/fb/2e8a12fa16661b9d5af1f654bd199366799740a85c64981226 Building wheel for strip-hints (setup.py): started Building wheel for strip-hints (setup.py): finished with status 'done' Created wheel for strip-hints: filename=strip_hints-0.1.9-py2.py3-none-any.whl size=20993 sha256=9481cd3b4b52c0e9713db3553c23c1bda587a1075bcd59d71e99110b6f1b6533 Stored in directory: /root/.cache/pip/wheels/2d/b8/4e/a3ec111d2db63cec88121bd7c0ab1a123bce3b55dd19dda5c1 Building wheel for termcolor (setup.py): started Building wheel for termcolor (setup.py): finished with status 'done' Created wheel for termcolor: filename=termcolor-1.1.0-py3-none-any.whl size=4829 sha256=b67e2ecf8cbb39455760408250cf67d6ddf4f873c94b486c5e753b4e84f4c8db Stored in directory: /root/.cache/pip/wheels/3f/e3/ec/8a8336ff196023622fbcb36de0c5a5c218cbb24111d1d4c7f2 Successfully built kfp kfp-server-api fire strip-hints termcolor Installing collected packages: termcolor, tabulate, strip-hints, requests-toolbelt, kubernetes, kfp-server-api, Deprecated, scikit-learn, pandas, kfp, fire Attempting uninstall: kubernetes Found existing installation: kubernetes 12.0.1 Uninstalling kubernetes-12.0.1: Successfully uninstalled kubernetes-12.0.1 Attempting uninstall: scikit-learn Found existing installation: scikit-learn 0.24.2 Uninstalling scikit-learn-0.24.2: Successfully uninstalled scikit-learn-0.24.2 Attempting uninstall: pandas Found existing installation: pandas 1.2.4 Uninstalling pandas-1.2.4: Successfully uninstalled pandas-1.2.4 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. visions 0.7.1 requires pandas>=0.25.3, but you have pandas 0.24.2 which is incompatible. phik 0.11.2 requires pandas>=0.25.1, but you have pandas 0.24.2 which is incompatible. pandas-profiling 3.0.0 requires pandas!=1.0.0,!=1.0.1,!=1.0.2,!=1.1.0,>=0.25.3, but you have pandas 0.24.2 which is incompatible. WARNING: Running pip as root will break packages and permissions. You should install packages reliably by using venv: https://pip.pypa.io/warnings/venv Successfully installed Deprecated-1.2.12 fire-0.4.0 kfp-1.0.0 kfp-server-api-1.5.0 kubernetes-11.0.0 pandas-0.24.2 requests-toolbelt-0.9.1 scikit-learn-0.20.4 strip-hints-0.1.9 tabulate-0.8.9 termcolor-1.1.0 Removing intermediate container c4bf640bbcee ---> 94e41aa9f2e0 Step 3/3 : RUN pip list | grep kfp ---> Running in cf3f27276384 kfp 1.0.0 kfp-server-api 1.5.0 Removing intermediate container cf3f27276384 ---> e31322a505ba Successfully built e31322a505ba Successfully tagged gcr.io/dna-gcp-data/base_image:test2 PUSH Pushing gcr.io/dna-gcp-data/base_image:test2 The push refers to repository [gcr.io/dna-gcp-data/base_image] ce2e56091c30: Preparing fed09d378d72: Preparing 896901ec1a67: Preparing 06a5bf49b163: Preparing b34dae69fc5d: Preparing 0ffb7465dde9: Preparing e2563d1ada9a: Preparing 42b027d1e826: Preparing 636a7c2e7d03: Preparing 1ba1158adf89: Preparing 96e46d1341e8: Preparing 954f6dc3f7f5: Preparing 8760a171b659: Preparing 5f70bf18a086: Preparing a0710233fd2d: Preparing 05449afa4be9: Preparing 5b9e34b5cf74: Preparing 8cafc6d2db45: Preparing a5d4bacb0351: Preparing 5153e1acaabc: Preparing 96e46d1341e8: Waiting 954f6dc3f7f5: Waiting 8760a171b659: Waiting 5f70bf18a086: Waiting a0710233fd2d: Waiting 05449afa4be9: Waiting 5b9e34b5cf74: Waiting 8cafc6d2db45: Waiting 0ffb7465dde9: Waiting e2563d1ada9a: Waiting 42b027d1e826: Waiting 636a7c2e7d03: Waiting 1ba1158adf89: Waiting 5153e1acaabc: Waiting 896901ec1a67: Layer already exists fed09d378d72: Layer already exists b34dae69fc5d: Layer already exists 06a5bf49b163: Layer already exists 0ffb7465dde9: Layer already exists e2563d1ada9a: Layer already exists 42b027d1e826: Layer already exists 636a7c2e7d03: Layer already exists 1ba1158adf89: Layer already exists 954f6dc3f7f5: Layer already exists 8760a171b659: Layer already exists 5f70bf18a086: Layer already exists 96e46d1341e8: Layer already exists 8cafc6d2db45: Layer already exists 5b9e34b5cf74: Layer already exists 05449afa4be9: Layer already exists a0710233fd2d: Layer already exists a5d4bacb0351: Layer already exists 5153e1acaabc: Layer already exists ce2e56091c30: Pushed test2: digest: sha256:09e11684e6de0ac905077560c50a24b94b8b3d22afa167ccb7f2b92345068511 size: 4499 DONE -------------------------------------------------------------------------------- ID CREATE_TIME DURATION SOURCE IMAGES STATUS d2e1016b-599c-4537-b03f-3a8e0039c2fc 2021-05-21T07:26:00+00:00 2M25S gs://dna-gcp-data_cloudbuild/source/1621581960.433286-cef9441cb3234402ad8faeccf31ce5fe.tgz gcr.io/dna-gcp-data/base_image:test2 SUCCESS
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
Compile the pipelineYou can compile the DSL using an API from the **KFP SDK** or using the **KFP** compiler.To compile the pipeline DSL using the **KFP** compiler. Set the pipeline's compile time settingsThe pipeline can run using a security context of the GKE default node pool's service account or the service account defined in the `user-gcp-sa` secret of the Kubernetes namespace hosting KFP. If you want to use the `user-gcp-sa` service account you change the value of `USE_KFP_SA` to `True`.Note that the default AI Platform Pipelines configuration does not define the `user-gcp-sa` secret.
USE_KFP_SA = False COMPONENT_URL_SEARCH_PREFIX = 'https://raw.githubusercontent.com/kubeflow/pipelines/0.2.5/components/gcp/' RUNTIME_VERSION = '1.15' PYTHON_VERSION = '3.7' ENDPOINT='https://627be4a1d4049ed3-dot-us-central1.pipelines.googleusercontent.com' %env USE_KFP_SA={USE_KFP_SA} %env BASE_IMAGE={BASE_IMAGE} %env TRAINER_IMAGE={TRAINER_IMAGE} %env COMPONENT_URL_SEARCH_PREFIX={COMPONENT_URL_SEARCH_PREFIX} %env RUNTIME_VERSION={RUNTIME_VERSION} %env PYTHON_VERSION={PYTHON_VERSION} %env ENDPOINT={ENDPOINT}
env: USE_KFP_SA=False env: BASE_IMAGE=gcr.io/dna-gcp-data/base_image:test2 env: TRAINER_IMAGE=gcr.io/dna-gcp-data/trainer_image:test env: COMPONENT_URL_SEARCH_PREFIX=https://raw.githubusercontent.com/kubeflow/pipelines/0.2.5/components/gcp/ env: RUNTIME_VERSION=1.15 env: PYTHON_VERSION=3.7 env: ENDPOINT=https://627be4a1d4049ed3-dot-us-central1.pipelines.googleusercontent.com
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
Use the CLI compiler to compile the pipeline
!dsl-compile --py pipeline/covertype_training_pipeline.py --output covertype_training_pipeline.yaml
_____no_output_____
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
The result is the `covertype_training_pipeline.yaml` file.
!head covertype_training_pipeline.yaml
_____no_output_____
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
Deploy the pipeline package
PIPELINE_NAME='covertype_continuous_training' !kfp --endpoint $ENDPOINT pipeline upload \ -p $PIPELINE_NAME \ covertype_training_pipeline.yaml
Pipeline 7eda6268-681e-41eb-8f65-a9c853030888 has been submitted Pipeline Details ------------------ ID 7eda6268-681e-41eb-8f65-a9c853030888 Name covertype_continuous_training Description Uploaded at 2021-05-21T08:50:00+00:00 +--------------------------+--------------------------------------------------+ | Parameter Name | Default Value | +==========================+==================================================+ | project_id | | +--------------------------+--------------------------------------------------+ | region | | +--------------------------+--------------------------------------------------+ | source_table_name | | +--------------------------+--------------------------------------------------+ | gcs_root | | +--------------------------+--------------------------------------------------+ | dataset_id | | +--------------------------+--------------------------------------------------+ | evaluation_metric_name | | +--------------------------+--------------------------------------------------+ | model_id | | +--------------------------+--------------------------------------------------+ | version_id | | +--------------------------+--------------------------------------------------+ | replace_existing_version | | +--------------------------+--------------------------------------------------+ | experiment_id | | +--------------------------+--------------------------------------------------+ | hypertune_settings | { | | | "hyperparameters": { | | | "goal": "MAXIMIZE", | | | "maxTrials": 6, | | | "maxParallelTrials": 3, | | | "hyperparameterMetricTag": "accuracy", | | | "enableTrialEarlyStopping": True, | | | "params": [ | | | { | | | "parameterName": "max_iter", | | | "type": "DISCRETE", | | | "discreteValues": [500, 1000] | | | }, | | | { | | | "parameterName": "alpha", | | | "type": "DOUBLE", | | | "minValue": 0.0001, | | | "maxValue": 0.001, | | | "scaleType": "UNIT_LINEAR_SCALE" | | | } | | | ] | | | } | | | } | +--------------------------+--------------------------------------------------+ | dataset_location | US | +--------------------------+--------------------------------------------------+
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
Submitting pipeline runsYou can trigger pipeline runs using an API from the KFP SDK or using KFP CLI. To submit the run using KFP CLI, execute the following commands. Notice how the pipeline's parameters are passed to the pipeline run. List the pipelines in AI Platform Pipelines
!kfp --endpoint $ENDPOINT experiment list
+--------------------------------------+-------------------------------+---------------------------+ | Experiment ID | Name | Created at | +======================================+===============================+===========================+ | 889c1532-fee9-4b06-bc2b-10b1cd332c9a | Covertype_Classifier_Training | 2021-05-19T12:54:04+00:00 | +--------------------------------------+-------------------------------+---------------------------+ | 3794c159-24a7-41e0-89be-f23152971870 | helloworld-dev | 2021-05-06T16:07:23+00:00 | +--------------------------------------+-------------------------------+---------------------------+ | 821a36b0-8db9-4604-9e65-035b8f70c77d | my_pipeline | 2021-05-06T10:35:19+00:00 | +--------------------------------------+-------------------------------+---------------------------+ | 6587995a-9b11-4a8e-a2fc-d0b80534dfe8 | Default | 2021-05-04T02:29:12+00:00 | +--------------------------------------+-------------------------------+---------------------------+
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
Submit a runFind the ID of the `covertype_continuous_training` pipeline you uploaded in the previous step and update the value of `PIPELINE_ID` .
PIPELINE_ID='7eda6268-681e-41eb-8f65-a9c853030888' # TO DO: REPLACE WITH YOUR PIPELINE ID EXPERIMENT_NAME = 'Covertype_Classifier_Training' RUN_ID = 'Run_001' SOURCE_TABLE = 'covertype_dataset.covertype' DATASET_ID = 'covertype_dataset' EVALUATION_METRIC = 'accuracy' MODEL_ID = 'covertype_classifier' VERSION_ID = 'v01' REPLACE_EXISTING_VERSION = 'True' EXPERIMENT_ID = '889c1532-fee9-4b06-bc2b-10b1cd332c9a' GCS_STAGING_PATH = '{}/staging'.format(ARTIFACT_STORE_URI)
_____no_output_____
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
Run the pipeline using the `kfp` command line by retrieving the variables from the environment to pass to the pipeline where:- EXPERIMENT_NAME is set to the experiment used to run the pipeline. You can choose any name you want. If the experiment does not exist it will be created by the command- RUN_ID is the name of the run. You can use an arbitrary name- PIPELINE_ID is the id of your pipeline. Use the value retrieved by the `kfp pipeline list` command- GCS_STAGING_PATH is the URI to the Cloud Storage location used by the pipeline to store intermediate files. By default, it is set to the `staging` folder in your artifact store.- REGION is a compute region for AI Platform Training and Prediction. You should be already familiar with these and other parameters passed to the command. If not go back and review the pipeline code.
!kfp --endpoint $ENDPOINT run submit \ -e $EXPERIMENT_NAME \ -r $RUN_ID \ -p $PIPELINE_ID \ project_id=$PROJECT_ID \ gcs_root=$GCS_STAGING_PATH \ region=$REGION \ source_table_name=$SOURCE_TABLE \ dataset_id=$DATASET_ID \ evaluation_metric_name=$EVALUATION_METRIC \ model_id=$MODEL_ID \ version_id=$VERSION_ID \ replace_existing_version=$REPLACE_EXISTING_VERSION \ experiment_id=$EXPERIMENT_ID #!kfp --endpoint $ENDPOINT experiment list from typing import NamedTuple def get_previous_run_metric( ENDPOINT: str, experiment_id: str ) -> NamedTuple('Outputs', [('run_id', str), ('accuracy', float)]): import kfp as kfp runs_details= kfp.Client(host=ENDPOINT).list_runs(experiment_id=experiment_id, sort_by='created_at desc').to_dict() # print(runs_details) latest_success_run_details='' print("runs_details['runs'] type {}".format(type(runs_details['runs']))) for i in runs_details['runs']: print("i['status'] type {}".format(type(i['status']))) if i['status'] == 'Succeeded': run_id=i['id'] accuracy=i['metrics'][0]['number_value'] break; print("accuracy={}".format(accuracy)) print(type(run_id)) return (run_id, accuracy) a=get_previous_run_metric(ENDPOINT, experiment_id) print(a) import kfp as kfp runs_details= kfp.Client(host=ENDPOINT).list_runs(experiment_id=experiment_id, sort_by='created_at desc').to_dict() latest_success_run_details='' print("runs_details['runs'] type {}".format(type(runs_details['runs']))) for i in runs_details['runs']: print("i['status'] type {}".format(type(i['status']))) if i['status'] == 'Succeeded': latest_success_run_details=i break; run_id=latest_success_run_details['id'] run_id_details=kfp.Client(host=ENDPOINT).get_run(run_id=run_id).to_dict() print(run_id_details) accuracy=run_id_details['run']['metrics'][0]['number_value'] print(accuracy) from googleapiclient import discovery ml = discovery.build('ml', 'v1') job_name = 'projects/{}/jobs/{}'.format('dna-gcp-data', 'job_1dae51e7dd77989943e0aaf271f1effd') request = ml.projects().jobs().get(name=job_name) print(type(request.execute())
_____no_output_____
Apache-2.0
on_demand/kfp-caip-sklearn/lab-02-kfp-pipeline/lab-02.ipynb
bharathraja23/mlops-on-gcp
Feature: TF-IDF Distances Create TF-IDF vectors from question texts and compute vector distances between them. Imports This utility package imports `numpy`, `pandas`, `matplotlib` and a helper `kg` module into the root namespace.
from pygoose import * from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_distances, euclidean_distances
_____no_output_____
MIT
notebooks/feature-tfidf.ipynb
MinuteswithMetrics/kaggle-quora-question-pairs
Config Automatically discover the paths to various data folders and compose the project structure.
project = kg.Project.discover()
_____no_output_____
MIT
notebooks/feature-tfidf.ipynb
MinuteswithMetrics/kaggle-quora-question-pairs