markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
9.0 Conclusions 9.1 Final Model | # model performance with unseen data
xgb_final_model = XGBClassifier(objective='binary:logistic', n_estimators = 1000, eta=0.03, subsample = 0.7, min_child_weight = 3, max_depth = 30, colssample_bytree = 0.7, scale_pos_weight=80, verbosity=0)
xgb_final_model.fit(X_train, y_train)
pred_final = xgb_final_model.predict(X_test)
pred_final_proba = xgb_final_model.predict_proba(X_test)
xgb_final_model_result = ml_metrics('XGBoost', y_test, pred_final)
xgb_final_model_result | _____no_output_____ | MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
9.2 Business Questions | df9 = df2.copy() | _____no_output_____ | MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
9.2.1 Qual a taxa atual de Churn da TopBank? | churn_rate = df9['exited'].value_counts(normalize=True).reset_index()
churn_rate['exited'] = churn_rate['exited']*100
churn_rate.columns = ['churn', 'exited (%)']
churn_rate
sns.countplot(df9['exited']).set_title('Churn Rate') | _____no_output_____ | MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
**A taxa atual de churn do TopBank é de 20.4%** 9.2.2 Qual o retorno esperado, em termos de faturamento, se a empresa utilizar seu modelo para evitar o churn dos clientes? - Para realização do cálculo de retorno financeiro foi utilizado uma amostra de 1000 clientes (10% do dataset). - Para comparação com os dados reais foram utlizados os valores da predição final do modelo. | aux = pd.concat([X_test9, y_test9], axis=1)
mean_salary = df9['estimated_salary'].mean()
aux['pred_exited'] = pred_final
aux['client_return'] = aux['estimated_salary'].apply(lambda x: x*0.15 if x < mean_salary else x*0.20) | _____no_output_____ | MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
- Cálculo do retorno total para todos os clintes que entraram em churn na amostra | total_return = aux[aux['exited'] == 1]['client_return'].sum()
print('O retorno total de todos os clientes que entraram em churn é de ${}' .format(total_return)) | O retorno total de todos os clientes que entraram em churn é de $3658649.9845000003
| MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
- Selecionando os clientes que o modelo previu corretamente que entraram em churn. - Se fosse possível evitar que todos os clientes entrassem em churn seria possível recuperar aproximadamente 70% do valor total calculado acima. | churn_return = aux[(aux['pred_exited'] == 1) & (aux['exited'] == 1)]['client_return'].sum()
print('O retorno total dos clientes que o modelo previu que entrariam em churn é de ${}' .format(churn_return)) | O retorno total dos clientes que o modelo previu que entrariam em churn é de $2540855.073
| MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
9.2.3 Incentivo Financeiro Uma possível ação para evitar que o cliente entre em churn é oferecer um cupom de desconto, ou algum outro incentivo financeiro para ele renovar seu contrato por mais 12 meses.- Para quais clientes você daria o incentivo financeiro e qual seria esse valor, de modo a maximizar o ROI (Retorno sobre o investimento). Lembrando que a soma dos incentivos não pode ultrapassar os $10.000,00 Ainda levando em conta a amostra de 1000 clientes, foi possível analisar a probabilidade de cada cliente entrar em churn segundo o algoritmo e decidir de qual forma o incentivo finaceiro seria oferecido. Após algumas análises foram definidas as seguintes estratágias (foram considerados apenas clientes que o algoritmo previu como "positivos" para o churn):- Foi definido um ponto de corte (threshold) de 0.95, ou seja, a probabilidade dos clientes entrarem em churn foi comparada com esse ponto de corte e a partir disso foram definidos "grupos" que receberiam o incentivo. - Clientes com uma probabilidade de mais de 95% não receberiam o incentivo, pois foi considerado que possuem uma probabilidade muito grande a entrarem em churn e seria muito difícil convence-los a renovar o contrato mesmo com um incentivo finaceiro. - Clientes com uma probabilidade maior do que 90% e menor do que 95% receberiam um incentivo de 250. - Clientes com uma probabilidade entre 90% e 70% receberiam um incentivo de 200. - Clientes com uma probabilidade menor do que 70% receberiam um incentivo de 100. | threshold = 0.95
proba_list = []
for i in range (len(pred_final_proba)):
proba = pred_final_proba[i][1]
proba_list.append(proba)
aux['pred_exited_proba'] = proba_list
aux2 = aux[(aux['exited'] == 1) & (aux['pred_exited'] ==1)]
aux2 = aux2[aux2['pred_exited_proba'] > threshold]
aux2.sample(10)
# definindo incentivo de acordo com a probabilidade de churn
aux2['destinated_budget'] = aux2['pred_exited_proba'].apply(lambda x: 250 if x > 0.9 else 200 if ((x < 0.9) & (x > 0.7)) else 100 ) | _____no_output_____ | MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
- Supondo que fosse possível evitar que todos os clientes que receberam o incentivo entrassem em churn, e então consequentemente renovassem seus contratos, seria possível obter um retorno finaceiro de $ 938.235,39 | total_return = aux2['client_return'].sum()
print('O Retorno financeiro total a partir dos clientes que receberam o incentivo foi de $ {}'.format(total_return)) | O Retorno financeiro total a partir dos clientes que receberam o incentivo foi de $ 1602619.6835
| MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
10.0 Deploy | #saving models
final_model = XGBClassifier(objective='binary:logistic', n_estimators = 1000, eta=0.03, subsample = 0.7, min_child_weight = 3,
max_depth = 30, colssample_bytree = 0.7, scale_pos_weight=80, verbosity=0)
final_model.fit(X_train, y_train)
joblib.dump(final_model, 'Model/final_model_XGB.joblib')
mm = MinMaxScaler()
le = LabelEncoder()
joblib.dump(mm, 'Parameters/scaler_mm.joblib')
joblib.dump(le, 'Parameters/label_encoder.joblib') | _____no_output_____ | MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
10.1 Churn Class | import joblib
import pandas as pd
import inflection
class Churn (object):
def __init__(self):
self.scaler = joblib.load('Parameters/scaler_mm.joblib')
self.encoder_le = joblib.load('Parameters/label_encoder.joblib')
def data_cleaning(self, df1):
# rename columns
cols_old = ['RowNumber', 'CustomerId', 'Surname', 'CreditScore', 'Geography',
'Gender', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard',
'IsActiveMember', 'EstimatedSalary', 'Exited']
snakecase = lambda x: inflection.underscore(x)
cols_new = list(map(snakecase, cols_old))
df1.columns = cols_new
return df1
def feature_engineering(self, df2):
cols_drop = ['row_number','customer_id','surname']
df2 = df2.drop(cols_drop, axis=1)
return df2
def data_preparation(self, df3):
# rescaling
mm_columns = ['credit_score', 'age', 'balance', 'estimated_salary', 'tenure', 'num_of_products']
df3[mm_columns] = self.scaler.fit_transform(df3[mm_columns])
df3['geography'] = self.encoder_le.fit_transform(df3['geography'])
gender = {'Female':0, 'Male':1}
df3['gender'] = df3['gender'].map(gender)
return df3
def get_prediction(self, model, orignal_data, test_data):
pred = model.predict(test_data)
original_data['prediciton'] = pred
return original_data.to_json(orient='records', date_format='iso') | _____no_output_____ | MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
10.2 API Handler | import joblib
import pandas as pd
from churn.Churn import Churn
from flask import Flask, request, Response
model = joblib.load('Model/final_model_XGB.joblib')
# initialize API
app = Flask(__name__)
@app.route('/churn/predict', methods=['POST'])
def churn_predict():
test_json = request.get_json()
if test_json: # there is data
if isinstance(test_json, dict): # unique example
test_raw = pd.DataFrame(test_json, index=[0])
else: # multiple example
test_raw = pd.DataFrame(test_json, columns=test_json[0].keys())
pipeline = Churn()
# data cleaning
df1 = pipeline.data_cleaning(test_raw)
# feature engineering
df2 = pipeline.feature_engineering(df1)
# data preparation
df3 = pipeline.data_preparation(df2)
# prediction
df_response = pipeline.get_prediciton(model, test_raw, df3)
return df_response
else:
return Response('{}', status=200, mimetype='application/json')
if __name__ == '__main__':
app.run('127.0.0.1') | _____no_output_____ | MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
10.3 API Tester | df10 = pd.read_csv('data/churn.csv')
# convert dataframe to json
data = df10.to_json()
url = 'http://0.0.0.0:5000/churn/predict'
header = {'Content-type': 'application/json'}
r = requests.post(url=url, data=data, headers=header)
r.status_code
r.json()
d1 = pd.DataFrame( r.json(), columns=r.json()[0].keys() )
d1 | _____no_output_____ | MIT | Churn-Prediction.ipynb | Leonardodsch/churn-prediction |
https://py.checkio.org/blog/design-patterns-part-2/https://py.checkio.org/en/mission/dialogues/share/07bc869edadfc11858e1caeaa4415987/ | windows = dict.fromkeys(['main', 'settings', 'help'])
windows
text = """Karl said: Hi! What's new?R2D2 said: Hello, human. Could we speak later about it?"""
text = text.replace('a', '0').replace('e', '0').replace('i', '0').replace('o', '0').replace('u', '0').replace('A', '0').replace('E', '0').replace('I', '0').replace('O', '0').replace('U', '0')
text.replace()
import re
s = """Karl said: Hi! What's new?R2D2 said: Hello, human. Could we speak later about it?"""
replaced = re.sub('[aeiouAEIOU]', '0', s)
replaced = re.sub('[^0]', '1', replaced)
print (replaced )
import re
class Chat:
def __init__(self):
self.human = None
self.robot = None
self.human_dialogue = ''
self.robot_dialogue = ''
def connect_human(self, human):
self.human = human
def connect_robot(self, robot):
self.robot = robot
def send(self, text, name):
self.human_dialogue += '{} said: {}'.format(name, text)
self.robot_dialogue += '{} said: {}'.format(name, self.convert_to_robot_lang(text))
def show_human_dialogue(self):
return self.human_dialogue
def show_robot_dialogue(self):
return self.robot_dialogue
def convert_to_robot_lang(self, text):
text = re.sub('[aeiou]', '0', text)
return re.sub('[^0]', '1', text)
class Human:
def __init__(self, name):
self.name = name
def send(self, text):
super().send(text, self.name)
class Robot:
def __init__(self, serial_number):
self.serial_number = serial_number
def send(self, text):
super().send(text, self.name)
if __name__ == '__main__':
#These "asserts" using only for self-checking and not necessary for auto-testing
chat = Chat()
karl = Human("Karl")
bot = Robot("R2D2")
chat.connect_human(karl)
chat.connect_robot(bot)
karl.send("Hi! What's new?")
bot.send("Hello, human. Could we speak later about it?")
assert chat.show_human_dialogue() == """Karl said: Hi! What's new?
R2D2 said: Hello, human. Could we speak later about it?"""
assert chat.show_robot_dialogue() == """Karl said: 101111011111011
R2D2 said: 10110111010111100111101110011101011010011011"""
print("Coding complete? Let's try tests!")
class Parent:
def __init__(self):
self.parent_variable = 'Parent'
class Child(Parent):
def __init__(self):
super().__init__()
self.child_variable = 'Child'
def print_val(self):
print(self.child_variable)
print(self.parent_variable)
child = Child()
child.print_val()
class Dog():
"""Represent a dog."""
def __init__(self, name):
"""Initialize dog object."""
self.name = name
def sit(self):
"""Simulate sitting."""
print(self.name + ' is sitting.')
my_dog = Dog('Tommy')
print(my_dog.name + ' is a great dog!')
my_dog.sit()
class SDog(Dog):
"""Represent a search dog."""
def __init__(self, name):
"""Initialize the search dog."""
super().__init__(name)
def search(self):
"""Simulate searching."""
print(self.name + ' is searching.')
my_dog = SDog('Lucy')
print(my_dog.name + ' is a search dog.')
my_dog.sit()
my_dog.search() | Lucy is a search dog.
Lucy is sitting.
Lucy is searching.
| MIT | Other/Behavior Design Pattern - Mediator.ipynb | deepaksood619/Python-Competitive-Programming |
Approach 2: Use Traditional statestical modelsIn this notebook we will discuss following models on daily sampled data. 1. MA 2. Simple Exponential Smoothing 3. Holt Linear 4. Holt-Winters These models are implemented using statsmodels library. **Objective: Implement above models and calculate RMSE to compare reults with Approach 1.** 1. Load previously created daily sampled data and decompose the time series 2. Fit each model and predict test data 3. Calculate RMSE and MAE 4. Compare results with Approach 1 | # Load data
data = pd.read_csv("daily_data.csv",parse_dates=[0], index_col=0)
data.head()
| _____no_output_____ | MIT | Portfolio/TS_Traditional_Methods.ipynb | anujakapre/E-commerce-Market-Analysis- |
Decompose time seriesA series is thought to be an aggregate or combination of these four components.All series have a level and noise. The trend and seasonality components are optional.These components combine either additively or multiplicatively. Additive ModelAn additive model suggests that the components are added together as follows: y(t) = Level + Trend + Seasonality + NoiseAn additive model is linear where changes over time are consistently made by the same amount.A linear trend is a straight line.A linear seasonality has the same frequency (width of cycles) and amplitude (height of cycles). Multiplicative ModelA multiplicative model suggests that the components are multiplied together as follows:y(t) = Level * Trend * Seasonality * NoiseA multiplicative model is nonlinear, such as quadratic or exponential. Changes increase or decrease over time.A nonlinear trend is a curved line.A non-linear seasonality has an increasing or decreasing frequency and/or amplitude over time.Referance: https://machinelearningmastery.com/decompose-time-series-data-trend-seasonality/ | #Decompose time series into trend, seasonality and noise
rcParams['figure.figsize'] = 11, 9
result = sm.tsa.seasonal_decompose(data, model='additive')
result.plot()
plt.show()
#Print trend, seasality, residual
print(result.trend)
print(result.seasonal)
print(result.resid)
#print(result.observed)
#Find out outliers
sns.boxplot(x=data['Total Price'],orient='v') | _____no_output_____ | MIT | Portfolio/TS_Traditional_Methods.ipynb | anujakapre/E-commerce-Market-Analysis- |
**Z score denotes how many standerd deviation away your sample is from the mean. Hence we remove all samples which are 3 std. deviations away from mean** | #Calculate Z score for all samples
z = np.abs(stats.zscore(data))
#Locate outliers
outliers = data[(z > 3).all(axis=1)]
outliers
#Replace outliers by median value
median = data[(z < 3).all(axis=1)].median()
data.loc[data['Total Price'] > 71858, 'Total Price'] = np.nan
data.fillna(median,inplace=True)
median
#Plot data again
rcParams['figure.figsize'] = 20, 5
data.plot() | _____no_output_____ | MIT | Portfolio/TS_Traditional_Methods.ipynb | anujakapre/E-commerce-Market-Analysis- |
**Below we can see time series clearly, there is exponential growth in trend at start but linear towards the end. Seasonality is not increasing exponentialy, rather it's constant. Hece we can say that our time serie is additive.** | #Plot the data
rcParams['figure.figsize'] = 20, 10
result = sm.tsa.seasonal_decompose(data, model='additive')
result.plot()
plt.show()
#Train and test data
train=data[0:-100]
test=data[-100:]
y_hat = test.copy() | _____no_output_____ | MIT | Portfolio/TS_Traditional_Methods.ipynb | anujakapre/E-commerce-Market-Analysis- |
1. Moving Average: In this method, we use the mean of the previous data. Using the prices of the initial period would highly affect the forecast for the next period. Therefore, we will take the average of the prices for last few recent time periods only. Such forecasting technique which uses window of time period for calculating the average is called Moving Average technique. Calculation of the moving average involves what is sometimes called a “sliding window” of size n. | #Calculate MA: use last 50 data points
rcParams['figure.figsize'] = 17, 5
y_hat['moving_avg_forecast'] = train['Total Price'].rolling(50).mean().iloc[-1]
plt.plot(train['Total Price'], label='Train')
plt.plot(test['Total Price'], label='Test')
plt.plot(y_hat['moving_avg_forecast'], label='Moving Average Forecast')
plt.legend(loc='best')
plt.show()
#Calculate rmse
rmse = sqrt(mean_squared_error(test['Total Price'], y_hat['moving_avg_forecast']))
print(rms)
#Calculate MAE
mae = mean_absolute_error(test['Total Price'], y_hat['moving_avg_forecast'])
print(mae) | 11707.529420000003
| MIT | Portfolio/TS_Traditional_Methods.ipynb | anujakapre/E-commerce-Market-Analysis- |
Method 2 : Simple Exponential SmoothingThis method takes into account all the data while weighing the data points differently. For example it may be sensible to attach larger weights to more recent observations than to observations from the distant past. The technique which works on this principle is called Simple exponential smoothing. Forecasts are calculated using weighted averages where the weights decrease exponentially as observations come from further in the past, the smallest weights are associated with the oldest observations: | #Fit the mosel
fit1 = SimpleExpSmoothing(train).fit()
y_hat['SES'] = fit1.forecast(len(test)).rename(r'$\alpha=%s$'%fit1.model.params['smoothing_level'])
alpha = fit1.model.params['smoothing_level'] | C:\Users\Snigdha\AppData\Local\conda\conda\envs\neuralnets\lib\site-packages\statsmodels\tsa\base\tsa_model.py:171: ValueWarning: No frequency information was provided, so inferred frequency D will be used.
% freq, ValueWarning)
| MIT | Portfolio/TS_Traditional_Methods.ipynb | anujakapre/E-commerce-Market-Analysis- |
where 0≤ α ≤1 is the smoothing parameter.The one-step-ahead forecast for time T+1 is a weighted average of all the observations in the series y1,…,yT. The rate at which the weights decrease is controlled by the parameter α. | alpha
#Plot the data
rcParams['figure.figsize'] = 17, 5
plt.plot(train['Total Price'], label='Train')
plt.plot(test['Total Price'], label='Test')
plt.plot(y_hat['SES'], label='SES')
plt.legend(loc='best')
plt.show()
#Calculate rmse
rmse = sqrt(mean_squared_error(test['Total Price'], y_hat.SES))
print(rmse)
#Calculate mae
mae = mean_absolute_error(test['Total Price'], y_hat.SES)
print(mae) | 14885.45052998217
| MIT | Portfolio/TS_Traditional_Methods.ipynb | anujakapre/E-commerce-Market-Analysis- |
Method 3 – Holt’s Linear Trend methodIf we use any of the above methods, it won’t take into account this trend. Trend is the general pattern of prices that we observe over a period of time. In this case we can see that there is an increasing trend.Hence we use Holt’s Linear Trend method that can map the trend accurately without any assumptions. | #Holt-Linear model
fit2 = Holt(np.asarray(train['Total Price'])).fit()
y_hat['Holt_linear'] = fit2.forecast(len(test))
print("Smooting level", fit2.model.params['smoothing_level'])
print("Smoothing slope",fit2.model.params['smoothing_slope'])
#Plot the result
rcParams['figure.figsize'] = 17, 5
plt.plot(train['Total Price'], label='Train')
plt.plot(test['Total Price'], label='Test')
plt.plot(y_hat['Holt_linear'], label='Holt_linear')
plt.legend(loc='best')
plt.show()
#Calculate rmse
rmse = sqrt(mean_squared_error(test['Total Price'], y_hat.Holt_linear))
print(rmse)
#Calculate mae
mae = mean_absolute_error(test['Total Price'], y_hat.Holt_linear)
print(mae) | 14058.411166558843
| MIT | Portfolio/TS_Traditional_Methods.ipynb | anujakapre/E-commerce-Market-Analysis- |
If we observe closely, there are spikes in sales in middle of the month. | data.tail(100).plot() | _____no_output_____ | MIT | Portfolio/TS_Traditional_Methods.ipynb | anujakapre/E-commerce-Market-Analysis- |
Method 4 : Holt-Winters MethodDatasets which show a similar set of pattern after fixed intervals of a time period have from seasonality.Hence we need a method that takes into account both trend and seasonality to forecast future prices. One such algorithm that we can use in such a scenario is Holt’s Winter method. The idea behind triple exponential smoothing(Holt’s Winter) is to apply exponential smoothing to the seasonal components in addition to level and trend. | #Fit model
fit3 = ExponentialSmoothing(np.asarray(train['Total Price']) ,seasonal_periods= 30, trend='add', seasonal='add').fit()
y_hat['Holt_Winter'] = fit3.forecast(len(test))
#Plot the data
rcParams['figure.figsize'] = 17, 5
plt.plot( train['Total Price'], label='Train')
plt.plot(test['Total Price'], label='Test')
plt.plot(y_hat['Holt_Winter'], label='Holt_Winter')
plt.legend(loc='best')
plt.show()
#Calculate rmse
rmse = sqrt(mean_squared_error(test['Total Price'], y_hat.Holt_Winter))
print(rms)
#Calculate mae
mae = mean_absolute_error(test['Total Price'], y_hat.Holt_Winter)
print(mae) | 14214.30484223988
| MIT | Portfolio/TS_Traditional_Methods.ipynb | anujakapre/E-commerce-Market-Analysis- |
Load DataAs usual, let's start by loading some network data. This time round, we have a [physician trust](http://konect.uni-koblenz.de/networks/moreno_innovation) network, but slightly modified such that it is undirected rather than directed.> This directed network captures innovation spread among 246 physicians in for towns in Illinois, Peoria, Bloomington, Quincy and Galesburg. The data was collected in 1966. A node represents a physician and an edge between two physicians shows that the left physician told that the righ physician is his friend or that he turns to the right physician if he needs advice or is interested in a discussion. There always only exists one edge between two nodes even if more than one of the listed conditions are true. | # Load the network. This network, while in reality is a directed graph,
# is intentionally converted to an undirected one for simplification.
G = cf.load_physicians_network()
# Make a Circos plot of the graph
from nxviz import CircosPlot
c = CircosPlot(G)
c.draw() | _____no_output_____ | MIT | archive/4-cliques-triangles-structures-instructor.ipynb | ChrisKeefe/Network-Analysis-Made-Simple |
QuestionWhat can you infer about the structure of the graph from the Circos plot? My answer: The structure is interesting. The graph looks like the physician trust network is comprised of discrete subnetworks. Structures in a GraphWe can leverage what we have learned in the previous notebook to identify special structures in a graph. In a network, cliques are one of these special structures. CliquesIn a social network, cliques are groups of people in which everybody knows everybody. **Questions:**1. What is the simplest clique?1. What is the simplest complex clique?Let's try implementing a simple algorithm that finds out whether a node is present in a simple complex clique. | # Example code.
def in_triangle(G, node):
"""
Returns whether a given node is present in a triangle relationship or not.
"""
# Then, iterate over every pair of the node's neighbors.
for nbr1, nbr2 in combinations(G.neighbors(node), 2):
# Check to see if there is an edge between the node's neighbors.
# If there is an edge, then the given node is present in a triangle.
if G.has_edge(nbr1, nbr2):
# We return because any triangle that is present automatically
# satisfies the problem requirements.
return True
return False
in_triangle(G, 3) | _____no_output_____ | MIT | archive/4-cliques-triangles-structures-instructor.ipynb | ChrisKeefe/Network-Analysis-Made-Simple |
In reality, NetworkX already has a function that *counts* the number of triangles that any given node is involved in. This is probably more useful than knowing whether a node is present in a triangle or not, but the above code was simply for practice. | nx.triangles(G, 3) | _____no_output_____ | MIT | archive/4-cliques-triangles-structures-instructor.ipynb | ChrisKeefe/Network-Analysis-Made-Simple |
ExerciseCan you write a function that takes in one node and its associated graph as an input, and returns a list or set of itself + all other nodes that it is in a triangle relationship with? Do not return the triplets, but the `set`/`list` of nodes. (5 min.)**Possible Implementation:** If I check every pair of my neighbors, any pair that are also connected in the graph are in a triangle relationship with me.Hint: Python's [`itertools`](https://docs.python.org/3/library/itertools.html) module has a `combinations` function that may be useful.Hint: NetworkX graphs have a `.has_edge(node1, node2)` function that checks whether an edge exists between two nodes.Verify your answer by drawing out the subgraph composed of those nodes. | # Possible answer
def get_triangles(G, node):
neighbors1 = set(G.neighbors(node))
triangle_nodes = set()
triangle_nodes.add(node)
"""
Fill in the rest of the code below.
"""
for nbr1, nbr2 in combinations(neighbors1, 2):
if G.has_edge(nbr1, nbr2):
triangle_nodes.add(nbr1)
triangle_nodes.add(nbr2)
return triangle_nodes
# Verify your answer with the following funciton call. Should return something of the form:
# {3, 9, 11, 41, 42, 67}
get_triangles(G, 3)
# Then, draw out those nodes.
nx.draw(G.subgraph(get_triangles(G, 3)), with_labels=True)
# Compare for yourself that those are the only triangles that node 3 is involved in.
neighbors3 = list(G.neighbors(3))
neighbors3.append(3)
nx.draw(G.subgraph(neighbors3), with_labels=True) | _____no_output_____ | MIT | archive/4-cliques-triangles-structures-instructor.ipynb | ChrisKeefe/Network-Analysis-Made-Simple |
Friend Recommendation: Open TrianglesNow that we have some code that identifies closed triangles, we might want to see if we can do some friend recommendations by looking for open triangles.Open triangles are like those that we described earlier on - A knows B and B knows C, but C's relationship with A isn't captured in the graph. What are the two general scenarios for finding open triangles that a given node is involved in?1. The given node is the centre node.1. The given node is one of the termini nodes. ExerciseCan you write a function that identifies, for a given node, the other two nodes that it is involved with in an open triangle, if there is one? (5 min.)Note: For this exercise, only consider the case when the node of interest is the centre node.**Possible Implementation:** Check every pair of my neighbors, and if they are not connected to one another, then we are in an open triangle relationship. | def get_open_triangles(G, node):
"""
There are many ways to represent this. One may choose to represent
only the nodes involved in an open triangle; this is not the
approach taken here.
Rather, we have a code that explicitly enumrates every open triangle present.
"""
open_triangle_nodes = []
neighbors = list(G.neighbors(node))
for n1, n2 in combinations(neighbors, 2):
if not G.has_edge(n1, n2):
open_triangle_nodes.append([n1, node, n2])
return open_triangle_nodes
# # Uncomment the following code if you want to draw out each of the triplets.
# nodes = get_open_triangles(G, 2)
# for i, triplet in enumerate(nodes):
# fig = plt.figure(i)
# nx.draw(G.subgraph(triplet), with_labels=True)
print(get_open_triangles(G, 3))
len(get_open_triangles(G, 3)) | _____no_output_____ | MIT | archive/4-cliques-triangles-structures-instructor.ipynb | ChrisKeefe/Network-Analysis-Made-Simple |
Triangle closure is also the core idea behind social networks' friend recommendation systems; of course, it's definitely more complicated than what we've implemented here. CliquesWe have figured out how to find triangles. Now, let's find out what **cliques** are present in the network. Recall: what is the definition of a clique?- NetworkX has a [clique-finding](https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.algorithms.clique.find_cliques.html) algorithm implemented.- This algorithm finds all maximally-sized cliques for a given node.- Note that maximal cliques of size `n` include all cliques of `size < n` | list(nx.find_cliques(G))[0:20] | _____no_output_____ | MIT | archive/4-cliques-triangles-structures-instructor.ipynb | ChrisKeefe/Network-Analysis-Made-Simple |
ExerciseTry writing a function `maximal_cliques_of_size(size, G)` that implements a search for all maximal cliques of a given size. (3 min.) | def maximal_cliqes_of_size(size, G):
# Defensive programming check.
assert isinstance(size, int), "size has to be an integer"
assert size >= 2, "cliques are of size 2 or greater."
return [i for i in list(nx.find_cliques(G)) if len(i) == size]
maximal_cliqes_of_size(2, G)[0:20] | _____no_output_____ | MIT | archive/4-cliques-triangles-structures-instructor.ipynb | ChrisKeefe/Network-Analysis-Made-Simple |
Connected ComponentsFrom [Wikipedia](https://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29):> In graph theory, a connected component (or just component) of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph.NetworkX also implements a [function](https://networkx.github.io/documentation/networkx-1.9.1/reference/generated/networkx.algorithms.components.connected.connected_component_subgraphs.html) that identifies connected component subgraphs.Remember how based on the Circos plot above, we had this hypothesis that the physician trust network may be divided into subgraphs. Let's check that, and see if we can redraw the Circos visualization. | ccsubgraph_nodes = list(nx.connected_components(G))
ccsubgraph_nodes | _____no_output_____ | MIT | archive/4-cliques-triangles-structures-instructor.ipynb | ChrisKeefe/Network-Analysis-Made-Simple |
ExerciseDraw a circos plot of the graph, but now colour and order the nodes by their connected component subgraph. (5 min.)Recall Circos API:```pythonc = CircosPlot(G, node_order='...', node_color='...')c.draw()plt.show() or plt.savefig(...)``` | # Start by labelling each node in the master graph G by some number
# that represents the subgraph that contains the node.
for i, nodeset in enumerate(ccsubgraph_nodes):
for n in nodeset:
G.nodes[n]['subgraph'] = i
c = CircosPlot(G, node_color='subgraph', node_order='subgraph')
c.draw()
plt.savefig('images/physicians.png', dpi=300) | _____no_output_____ | MIT | archive/4-cliques-triangles-structures-instructor.ipynb | ChrisKeefe/Network-Analysis-Made-Simple |
Atmospheric, oceanic and land data handlingIn this notebook we discuss the subtleties of how NetCDF-SCM handles different data 'realms' and why these choices are made. The realms of intereset to date are atmosphere, ocean and land and the distinction between the realms follows the [CMIP6 realm controlled vocabulary](https://github.com/WCRP-CMIP/CMIP6_CVs/blob/master/CMIP6_realm.json). | import traceback
from os.path import join
import iris
import iris.quickplot as qplt
import matplotlib.pyplot as plt
import numpy as np
from netcdf_scm.iris_cube_wrappers import CMIP6OutputCube
from netcdf_scm.utils import broadcast_onto_lat_lon_grid
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
plt.style.use("bmh")
import logging
root_logger = logging.getLogger()
root_logger.setLevel(logging.WARNING)
root_logger.addHandler(logging.StreamHandler())
DATA_PATH_TEST = join("..", "tests", "test-data") | _____no_output_____ | BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
Note that all of our data is on a regular grid, data on native model grids does not plot as nicely. | tas_file = join(
DATA_PATH_TEST,
"cmip6output",
"CMIP6",
"CMIP",
"IPSL",
"IPSL-CM6A-LR",
"historical",
"r1i1p1f1",
"Amon",
"tas",
"gr",
"v20180803",
"tas_Amon_IPSL-CM6A-LR_historical_r1i1p1f1_gr_191001-191003.nc"
)
gpp_file = tas_file.replace(
"Amon", "Lmon"
).replace(
"tas", "gpp"
)
csoilfast_file = gpp_file.replace("gpp", "cSoilFast")
hfds_file = join(
DATA_PATH_TEST,
"cmip6output",
"CMIP6",
"CMIP",
"NOAA-GFDL",
"GFDL-CM4",
"piControl",
"r1i1p1f1",
"Omon",
"hfds",
"gr",
"v20180701",
"hfds_Omon_GFDL-CM4_piControl_r1i1p1f1_gr_015101-015103.nc"
) | _____no_output_____ | BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
OceansWe start by loading our data. | hfds = CMIP6OutputCube()
hfds.load_data_from_path(hfds_file) | Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
| BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
NetCDF-SCM will assume whether the data is "ocean", "land" or "atmosphere". The assumed realm can be checked by examining a `SCMCube`'s `netcdf_scm_realm` property. In our case we have "ocean" data. | hfds.netcdf_scm_realm | _____no_output_____ | BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
If we have ocean data, then there is no data which will go in a "land" box. Hence, if we request e.g. `World|Land` data, an error will be raised. | try:
hfds.get_scm_timeseries(regions=["World", "World|Land"])
except ValueError as e:
traceback.print_exc(limit=0, chain=False) | Traceback (most recent call last):
ValueError: All weights are zero for region: `World|Land`
| BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
As there is no land data, the `World` mean is equal to the `World|Ocean` mean. | hfds_scm_ts = hfds.get_scm_timeseries(
regions=["World", "World|Ocean"]
)
hfds_scm_ts.line_plot(linestyle="region")
np.testing.assert_allclose(
hfds_scm_ts.filter(region="World").values,
hfds_scm_ts.filter(region="World|Ocean").values,
); | Not calculating land fractions as all required cubes are not available
Performing lazy conversion to datetime for calendar: 365_day. This may cause subtle errors in operations that depend on the length of time between dates
Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
| BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
When taking averages, there are 3 obvious options:- unweighted average- area weighted average- area and surface fraction weighted averageIn NetCDF-SCM, we always go for the third type in order to make sure that our weights are both area weighted and take into account how much each cell represents the SCM box of interest.In the cells below, we show the difference this choice makes. | def compare_weighting_options(input_scm_cube):
unweighted_mean = input_scm_cube.cube.collapsed(
["latitude", "longitude"],
iris.analysis.MEAN
)
area_cell = input_scm_cube.get_metadata_cube(
input_scm_cube.areacell_var
).cube
area_weights = broadcast_onto_lat_lon_grid(
input_scm_cube,
area_cell.data
)
area_weighted_mean= input_scm_cube.cube.collapsed(
["latitude", "longitude"],
iris.analysis.MEAN,
weights=area_weights
)
surface_frac = input_scm_cube.get_metadata_cube(
input_scm_cube.surface_fraction_var
).cube
area_sf = area_cell * surface_frac
area_sf_weights = broadcast_onto_lat_lon_grid(
input_scm_cube,
area_sf.data
)
area_sf_weighted_mean = input_scm_cube.cube.collapsed(
["latitude", "longitude"],
iris.analysis.MEAN,
weights=area_sf_weights
)
plt.figure(figsize=(8, 4.5))
qplt.plot(unweighted_mean, label="unweighted")
qplt.plot(area_weighted_mean, label="area weighted")
qplt.plot(
area_sf_weighted_mean,
label="area-surface fraction weighted",
linestyle="--",
dashes=(10, 10),
linewidth=4
)
plt.legend();
compare_weighting_options(hfds) | Collapsing spatial coordinate 'latitude' without weighting
| BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
We go to the trouble of taking these area-surface fraction weightings because they matter. In particular, the area weight is required to not overweight the poles (on whatever grid we're working) whilst the surface fraction ensures that the cells' contribution to the averages reflects how much they belong in a given 'SCM box'. More detailWe can check which variable is being used for the cell areas by loooking at `SCMCube.areacell_var`. For ocean data this is `areacello`. | hfds.areacell_var
hfds_area_cell = hfds.get_metadata_cube(hfds.areacell_var).cube
qplt.contourf(
hfds_area_cell,
); | _____no_output_____ | BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
We can check which variable is being used for the surface fraction by loooking at `SCMCube.surface_fraction_var`. For ocean data this is `sftof`. | hfds.surface_fraction_var
hfds_surface_frac = hfds.get_metadata_cube(hfds.surface_fraction_var).cube
qplt.contourf(
hfds_surface_frac,
); | _____no_output_____ | BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
The product of the area of the cells and the surface fraction gives us the area-surface fraction weights. | hfds_area_sf = hfds_area_cell * hfds_surface_frac
plt.figure(figsize=(16, 9))
plt.subplot(121)
qplt.contourf(
hfds_area_sf,
)
plt.subplot(122)
lat_con = iris.Constraint(latitude=lambda cell: -50 < cell < -20)
lon_con = iris.Constraint(longitude=lambda cell: 140 < cell < 160)
qplt.contourf(
hfds_area_sf.extract(lat_con & lon_con),
); | _____no_output_____ | BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
The timeseries calculated by NetCDF-SCM is the same as the timeseries calculated using the surface fraction and area weights. | hfds_area_sf_weights = broadcast_onto_lat_lon_grid(
hfds,
hfds_area_sf.data
)
hfds_area_sf_weighted_mean = hfds.cube.collapsed(
["latitude", "longitude"],
iris.analysis.MEAN,
weights=hfds_area_sf_weights
)
netcdf_scm_calculated = hfds.get_scm_timeseries(
regions=["World"]
).timeseries()
np.testing.assert_allclose(
hfds_area_sf_weighted_mean.data,
netcdf_scm_calculated.values.squeeze()
)
netcdf_scm_calculated.T | Not calculating land fractions as all required cubes are not available
Performing lazy conversion to datetime for calendar: 365_day. This may cause subtle errors in operations that depend on the length of time between dates
| BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
LandNext we look at land data. | gpp = CMIP6OutputCube()
gpp.load_data_from_path(gpp_file)
csoilfast = CMIP6OutputCube()
csoilfast.load_data_from_path(csoilfast_file)
gpp.netcdf_scm_realm
csoilfast.netcdf_scm_realm | _____no_output_____ | BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
If we have land data, then there is no data which will go in a "ocean" box. Hence, if we request e.g. `World|Ocean` data, an error will be raised. | try:
gpp.get_scm_timeseries(regions=["World", "World|Ocean"])
except ValueError as e:
traceback.print_exc(limit=0, chain=False) | Traceback (most recent call last):
ValueError: All weights are zero for region: `World|Ocean`
| BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
As there is no ocean data, the `World` mean is equal to the `World|Land` mean. | gpp_scm_ts = gpp.get_scm_timeseries(
regions=["World", "World|Land"]
)
gpp_scm_ts.line_plot(linestyle="region")
np.testing.assert_allclose(
gpp_scm_ts.filter(region="World").values,
gpp_scm_ts.filter(region="World|Land").values,
);
compare_weighting_options(gpp)
compare_weighting_options(csoilfast) | Collapsing a non-contiguous coordinate. Metadata may not be fully descriptive for 'latitude'.
Collapsing a non-contiguous coordinate. Metadata may not be fully descriptive for 'longitude'.
| BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
AtmosphereFinally we look at atmospheric data. | tas = CMIP6OutputCube()
tas.load_data_from_path(tas_file)
tas.netcdf_scm_realm | _____no_output_____ | BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
If we have atmosphere data, then we have global coverage and so can split data into both the land and ocean boxes. | fig = plt.figure(figsize=(16, 14))
ax1 = fig.add_subplot(311)
tas.get_scm_timeseries(
regions=[
"World",
"World|Land",
"World|Ocean",
"World|Northern Hemisphere",
"World|Southern Hemisphere",
]
).line_plot(color="region", ax=ax1)
ax2 = fig.add_subplot(312, sharey=ax1, sharex=ax1)
tas.get_scm_timeseries(
regions=[
"World",
"World|Northern Hemisphere|Land",
"World|Southern Hemisphere|Land",
"World|Northern Hemisphere|Ocean",
"World|Southern Hemisphere|Ocean",
]
).line_plot(color="region", ax=ax2)
ax3 = fig.add_subplot(313, sharey=ax1, sharex=ax1)
tas.get_scm_timeseries(
regions=[
"World",
"World|Ocean",
"World|North Atlantic Ocean",
"World|El Nino N3.4",
]
).line_plot(color="region", ax=ax3);
compare_weighting_options(tas) | Collapsing spatial coordinate 'latitude' without weighting
| BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
As our data is global, the "World" data is simply an area-weighted mean. | tas_area = tas.get_metadata_cube(
tas.areacell_var
).cube
tas_area_weights = broadcast_onto_lat_lon_grid(
tas,
tas_area.data
)
tas_area_weighted_mean = tas.cube.collapsed(
["latitude", "longitude"],
iris.analysis.MEAN,
weights=tas_area_weights
)
netcdf_scm_calculated = tas.get_scm_timeseries(
regions=["World"]
).timeseries()
np.testing.assert_allclose(
tas_area_weighted_mean.data,
netcdf_scm_calculated.values.squeeze()
)
netcdf_scm_calculated.T | Not calculating land fractions as all required cubes are not available
| BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
The "World|Land" data is surface fraction weighted. | tas_sf = tas.get_metadata_cube(
tas.surface_fraction_var
).cube
tas_area_sf = tas_area * tas_sf
tas_area_sf_weights = broadcast_onto_lat_lon_grid(
tas,
tas_area_sf.data
)
tas_area_sf_weighted_mean = tas.cube.collapsed(
["latitude", "longitude"],
iris.analysis.MEAN,
weights=tas_area_sf_weights
)
netcdf_scm_calculated = tas.get_scm_timeseries(
regions=["World|Land"]
).timeseries()
np.testing.assert_allclose(
tas_area_sf_weighted_mean.data,
netcdf_scm_calculated.values.squeeze()
)
netcdf_scm_calculated.T | Not calculating land fractions as all required cubes are not available
| BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
The "World|Ocean" data is also surface fraction weighted (calculated as 100 minus land surface fraction). | tas_sf_ocean = tas.get_metadata_cube(
tas.surface_fraction_var
).cube
tas_sf_ocean.data = 100 - tas_sf_ocean.data
tas_area_sf_ocean = tas_area * tas_sf_ocean
tas_area_sf_ocean_weights = broadcast_onto_lat_lon_grid(
tas,
tas_area_sf_ocean.data
)
tas_area_sf_ocean_weighted_mean = tas.cube.collapsed(
["latitude", "longitude"],
iris.analysis.MEAN,
weights=tas_area_sf_ocean_weights
)
netcdf_scm_calculated = tas.get_scm_timeseries(
regions=["World|Ocean"]
).timeseries()
np.testing.assert_allclose(
tas_area_sf_ocean_weighted_mean.data,
netcdf_scm_calculated.values.squeeze()
)
netcdf_scm_calculated.T | Not calculating land fractions as all required cubes are not available
| BSD-2-Clause | notebooks/atmos-land-ocean-handling.ipynb | lewisjared/netcdf-scm |
Decision Tree Classification Part 4 | import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
# yahoo finance is used to fetch data
import yfinance as yf
yf.pdr_override()
# input
symbol = 'AMD'
start = '2014-01-01'
end = '2019-01-01'
# Read data
dataset = yf.download(symbol,start,end)
# View Columns
dataset.head()
dataset['Open_Close'] = (dataset['Open'] - dataset['Adj Close'])/dataset['Open']
dataset['High_Low'] = (dataset['High'] - dataset['Low'])/dataset['Low']
dataset['Increase_Decrease'] = np.where(dataset['Volume'].shift(-1) > dataset['Volume'],1,0)
dataset['Buy_Sell_on_Open'] = np.where(dataset['Open'].shift(-1) > dataset['Open'],1,0)
dataset['Buy_Sell'] = np.where(dataset['Adj Close'].shift(-1) > dataset['Adj Close'],1,0)
dataset['Returns'] = dataset['Adj Close'].pct_change()
dataset = dataset.dropna()
dataset.head()
X = dataset[['Open', 'High', 'Low', 'Volume', 'Adj Close','Returns']].values
y = dataset['Buy_Sell'].values
#Spilitting the dataset
removed =[0,50,100]
new_target = np.delete(y,removed)
new_data = np.delete(X,removed, axis=0)
from sklearn import tree
clf = tree.DecisionTreeClassifier()
clf=clf.fit(new_data,new_target)
prediction = clf.predict(X[removed])
print("Original Labels",y[removed])
print("Labels Predicted",prediction)
tree.plot_tree(clf) | _____no_output_____ | MIT | Stock_Algorithms/Decision_Trees_Classification_Part4.ipynb | NTForked-ML/Deep-Learning-Machine-Learning-Stock |
T81-558: Applications of Deep Neural Networks**Module 11: Natural Language Processing with Hugging Face*** Instructor: [Jeff Heaton](https://sites.wustl.edu/jeffheaton/), McKelvey School of Engineering, [Washington University in St. Louis](https://engineering.wustl.edu/Programs/Pages/default.aspx)* For more information visit the [class website](https://sites.wustl.edu/jeffheaton/t81-558/). Module 11 Material* Part 11.1: Introduction to Hugging Face [[Video]](https://www.youtube.com/watch?v=1IHXSbz02XM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_11_01_huggingface.ipynb)* Part 11.2: Hugging Face Tokenizers [[Video]](https://www.youtube.com/watch?v=U-EGU1RyChg&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_11_02_tokenizers.ipynb)* Part 11.3: Hugging Face Datasets [[Video]](https://www.youtube.com/watch?v=Mq5ODegT17M&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_11_03_hf_datasets.ipynb)* **Part 11.4: Training Hugging Face Models** [[Video]](https://www.youtube.com/watch?v=https://www.youtube.com/watch?v=l69ov6b7DOM&list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_11_04_hf_train.ipynb)* Part 11.5: What are Embedding Layers in Keras [[Video]](https://www.youtube.com/watch?v=OuNH5kT-aD0list=PLjy4p-07OYzulelvJ5KVaT2pDlxivl_BN&index=58) [[Notebook]](https://github.com/jeffheaton/t81_558_deep_learning/blob/master/t81_558_class_11_05_embedding.ipynb) Google CoLab InstructionsThe following code ensures that Google CoLab is running the correct version of TensorFlow. | try:
%tensorflow_version 2.x
COLAB = True
print("Note: using Google CoLab")
except:
print("Note: not using Google CoLab")
COLAB = False | Note: using Google CoLab
| Apache-2.0 | t81_558_class_11_04_hf_train.ipynb | igunduz/t81_558_deep_learning |
Part 11.4: Training Hugging Face Models Up to this point, we've used data and models from the Hugging Face hub unmodified. In this section, we will transfer and train a Hugging Face model. To achieve this training, we will use Hugging Face data sets, tokenizers, and pretrained models.We begin by installing Hugging Face if needed. It is also essential to install Hugging Face datasets. | # HIDE OUTPUT
!pip install transformers
!pip install transformers[sentencepiece]
!pip install datasets | Collecting transformers
Downloading transformers-4.17.0-py3-none-any.whl (3.8 MB)
[K |████████████████████████████████| 3.8 MB 15.1 MB/s
[?25hRequirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers) (2.23.0)
Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (2019.12.20)
Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers) (3.6.0)
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers) (1.21.5)
Collecting tokenizers!=0.11.3,>=0.11.1
Downloading tokenizers-0.11.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.5 MB)
[K |████████████████████████████████| 6.5 MB 56.8 MB/s
[?25hCollecting pyyaml>=5.1
Downloading PyYAML-6.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (596 kB)
[K |████████████████████████████████| 596 kB 72.2 MB/s
[?25hRequirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from transformers) (21.3)
Collecting sacremoses
Downloading sacremoses-0.0.49-py3-none-any.whl (895 kB)
[K |████████████████████████████████| 895 kB 65.0 MB/s
[?25hRequirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers) (4.63.0)
Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers) (4.11.3)
Collecting huggingface-hub<1.0,>=0.1.0
Downloading huggingface_hub-0.4.0-py3-none-any.whl (67 kB)
[K |████████████████████████████████| 67 kB 6.9 MB/s
[?25hRequirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0,>=0.1.0->transformers) (3.10.0.2)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->transformers) (3.0.7)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers) (3.7.0)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2021.10.8)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (3.0.4)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (1.24.3)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers) (2.10)
Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (7.1.2)
Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.1.0)
Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers) (1.15.0)
Installing collected packages: pyyaml, tokenizers, sacremoses, huggingface-hub, transformers
Attempting uninstall: pyyaml
Found existing installation: PyYAML 3.13
Uninstalling PyYAML-3.13:
Successfully uninstalled PyYAML-3.13
Successfully installed huggingface-hub-0.4.0 pyyaml-6.0 sacremoses-0.0.49 tokenizers-0.11.6 transformers-4.17.0
Requirement already satisfied: transformers[sentencepiece] in /usr/local/lib/python3.7/dist-packages (4.17.0)
Requirement already satisfied: sacremoses in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (0.0.49)
Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (3.6.0)
Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (4.63.0)
Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (21.3)
Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (4.11.3)
Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (2.23.0)
Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (2019.12.20)
Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (6.0)
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (1.21.5)
Requirement already satisfied: huggingface-hub<1.0,>=0.1.0 in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (0.4.0)
Requirement already satisfied: tokenizers!=0.11.3,>=0.11.1 in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (0.11.6)
Collecting sentencepiece!=0.1.92,>=0.1.91
Downloading sentencepiece-0.1.96-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)
[K |████████████████████████████████| 1.2 MB 14.4 MB/s
[?25hRequirement already satisfied: protobuf in /usr/local/lib/python3.7/dist-packages (from transformers[sentencepiece]) (3.17.3)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0,>=0.1.0->transformers[sentencepiece]) (3.10.0.2)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->transformers[sentencepiece]) (3.0.7)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers[sentencepiece]) (3.7.0)
Requirement already satisfied: six>=1.9 in /usr/local/lib/python3.7/dist-packages (from protobuf->transformers[sentencepiece]) (1.15.0)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers[sentencepiece]) (2.10)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers[sentencepiece]) (1.24.3)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers[sentencepiece]) (3.0.4)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers[sentencepiece]) (2021.10.8)
Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers[sentencepiece]) (7.1.2)
Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers[sentencepiece]) (1.1.0)
Installing collected packages: sentencepiece
Successfully installed sentencepiece-0.1.96
Collecting datasets
Downloading datasets-2.0.0-py3-none-any.whl (325 kB)
[K |████████████████████████████████| 325 kB 14.5 MB/s
[?25hCollecting xxhash
Downloading xxhash-3.0.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (212 kB)
[K |████████████████████████████████| 212 kB 70.9 MB/s
[?25hRequirement already satisfied: multiprocess in /usr/local/lib/python3.7/dist-packages (from datasets) (0.70.12.2)
Requirement already satisfied: huggingface-hub<1.0.0,>=0.1.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (0.4.0)
Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from datasets) (1.21.5)
Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (2.23.0)
Requirement already satisfied: pyarrow>=5.0.0 in /usr/local/lib/python3.7/dist-packages (from datasets) (6.0.1)
Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.7/dist-packages (from datasets) (4.63.0)
Collecting responses<0.19
Downloading responses-0.18.0-py3-none-any.whl (38 kB)
Requirement already satisfied: dill in /usr/local/lib/python3.7/dist-packages (from datasets) (0.3.4)
Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from datasets) (4.11.3)
Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from datasets) (21.3)
Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from datasets) (1.3.5)
Collecting aiohttp
Downloading aiohttp-3.8.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (1.1 MB)
[K |████████████████████████████████| 1.1 MB 62.9 MB/s
[?25hCollecting fsspec[http]>=2021.05.0
Downloading fsspec-2022.2.0-py3-none-any.whl (134 kB)
[K |████████████████████████████████| 134 kB 74.3 MB/s
[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.6.0)
Requirement already satisfied: pyyaml in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (6.0)
Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0.0,>=0.1.0->datasets) (3.10.0.2)
Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->datasets) (3.0.7)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (1.24.3)
Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (3.0.4)
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2.10)
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.19.0->datasets) (2021.10.8)
Collecting urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1
Downloading urllib3-1.25.11-py2.py3-none-any.whl (127 kB)
[K |████████████████████████████████| 127 kB 76.1 MB/s
[?25hCollecting asynctest==0.13.0
Downloading asynctest-0.13.0-py3-none-any.whl (26 kB)
Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (21.4.0)
Collecting multidict<7.0,>=4.5
Downloading multidict-6.0.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (94 kB)
[K |████████████████████████████████| 94 kB 4.6 MB/s
[?25hCollecting yarl<2.0,>=1.0
Downloading yarl-1.7.2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_12_x86_64.manylinux2010_x86_64.whl (271 kB)
[K |████████████████████████████████| 271 kB 65.7 MB/s
[?25hCollecting frozenlist>=1.1.1
Downloading frozenlist-1.3.0-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (144 kB)
[K |████████████████████████████████| 144 kB 78.0 MB/s
[?25hCollecting async-timeout<5.0,>=4.0.0a3
Downloading async_timeout-4.0.2-py3-none-any.whl (5.8 kB)
Collecting aiosignal>=1.1.2
Downloading aiosignal-1.2.0-py3-none-any.whl (8.2 kB)
Requirement already satisfied: charset-normalizer<3.0,>=2.0 in /usr/local/lib/python3.7/dist-packages (from aiohttp->datasets) (2.0.12)
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->datasets) (3.7.0)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2018.9)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->datasets) (2.8.2)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->datasets) (1.15.0)
Installing collected packages: multidict, frozenlist, yarl, urllib3, asynctest, async-timeout, aiosignal, fsspec, aiohttp, xxhash, responses, datasets
Attempting uninstall: urllib3
Found existing installation: urllib3 1.24.3
Uninstalling urllib3-1.24.3:
Successfully uninstalled urllib3-1.24.3
[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
datascience 0.10.6 requires folium==0.2.1, but you have folium 0.8.3 which is incompatible.[0m
Successfully installed aiohttp-3.8.1 aiosignal-1.2.0 async-timeout-4.0.2 asynctest-0.13.0 datasets-2.0.0 frozenlist-1.3.0 fsspec-2022.2.0 multidict-6.0.2 responses-0.18.0 urllib3-1.25.11 xxhash-3.0.0 yarl-1.7.2
| Apache-2.0 | t81_558_class_11_04_hf_train.ipynb | igunduz/t81_558_deep_learning |
We begin by loading the emotion data set from the Hugging Face hub. Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. The following code loads the emotion data set from the Hugging Face hub. | # HIDE OUTPUT
from datasets import load_dataset
emotions = load_dataset("emotion") | _____no_output_____ | Apache-2.0 | t81_558_class_11_04_hf_train.ipynb | igunduz/t81_558_deep_learning |
You can see a single observation from the training data set here. This observation includes both the text sample and the assigned emotion label. The label is a numeric index representing the assigned emotion. | emotions['train'][2] | _____no_output_____ | Apache-2.0 | t81_558_class_11_04_hf_train.ipynb | igunduz/t81_558_deep_learning |
We can display the labels in order of their index labels. | emotions['train'].features | _____no_output_____ | Apache-2.0 | t81_558_class_11_04_hf_train.ipynb | igunduz/t81_558_deep_learning |
Next, we utilize Hugging Face tokenizers and data sets together. The following code tokenizes the entire emotion data set. You can see below that the code has transformed the training set into subword tokens that are now ready to be used in conjunction with a transformer for either inference or training. | # HIDE OUTPUT
from transformers import AutoTokenizer
def tokenize(rows):
return tokenizer(rows['text'], padding="max_length", truncation=True)
model_ckpt = "distilbert-base-uncased"
tokenizer=AutoTokenizer.from_pretrained(model_ckpt)
emotions.set_format(type=None)
tokenized_datasets = emotions.map(tokenize, batched=True) | _____no_output_____ | Apache-2.0 | t81_558_class_11_04_hf_train.ipynb | igunduz/t81_558_deep_learning |
We will utilize the Hugging Face DefaultDataCollator to transform the emotion data set into TensorFlow type data that we can use to finetune a neural network. | from transformers import DefaultDataCollator
data_collator = DefaultDataCollator(return_tensors="tf") | _____no_output_____ | Apache-2.0 | t81_558_class_11_04_hf_train.ipynb | igunduz/t81_558_deep_learning |
Now we generate a shuffled training and evaluation data set. | small_train_dataset = tokenized_datasets["train"].shuffle(seed=42)
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42) | _____no_output_____ | Apache-2.0 | t81_558_class_11_04_hf_train.ipynb | igunduz/t81_558_deep_learning |
We can now generate the TensorFlow data sets. We specify which columns should map to the input features and labels. We do not need to shuffle because we previously shuffled the data. | tf_train_dataset = small_train_dataset.to_tf_dataset(
columns=["attention_mask", "input_ids", "token_type_ids"],
label_cols=["labels"],
shuffle=True,
collate_fn=data_collator,
batch_size=8,
)
tf_validation_dataset = small_eval_dataset.to_tf_dataset(
columns=["attention_mask", "input_ids", "token_type_ids"],
label_cols=["labels"],
shuffle=False,
collate_fn=data_collator,
batch_size=8,
) | _____no_output_____ | Apache-2.0 | t81_558_class_11_04_hf_train.ipynb | igunduz/t81_558_deep_learning |
We will now load the distilbert model for classification. We will adjust the pretrained weights to predict the emotions of text lines. | # HIDE OUTPUT
import tensorflow as tf
from transformers import TFAutoModelForSequenceClassification
model = TFAutoModelForSequenceClassification.from_pretrained(\
"distilbert-base-uncased", num_labels=6) | _____no_output_____ | Apache-2.0 | t81_558_class_11_04_hf_train.ipynb | igunduz/t81_558_deep_learning |
We now train the neural network. Because the network is already pretrained, we use a small learning rate. | model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=5e-5),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=tf.metrics.SparseCategoricalAccuracy(),
)
model.fit(tf_train_dataset, validation_data=tf_validation_dataset, \
epochs=5) | Epoch 1/5
2000/2000 [==============================] - 360s 174ms/step - loss: 0.3720 - sparse_categorical_accuracy: 0.8669 - val_loss: 0.1728 - val_sparse_categorical_accuracy: 0.9180
Epoch 2/5
2000/2000 [==============================] - 347s 174ms/step - loss: 0.1488 - sparse_categorical_accuracy: 0.9338 - val_loss: 0.1496 - val_sparse_categorical_accuracy: 0.9295
Epoch 3/5
2000/2000 [==============================] - 347s 173ms/step - loss: 0.1253 - sparse_categorical_accuracy: 0.9420 - val_loss: 0.1617 - val_sparse_categorical_accuracy: 0.9245
Epoch 4/5
2000/2000 [==============================] - 346s 173ms/step - loss: 0.1092 - sparse_categorical_accuracy: 0.9486 - val_loss: 0.1654 - val_sparse_categorical_accuracy: 0.9295
Epoch 5/5
2000/2000 [==============================] - 347s 173ms/step - loss: 0.0960 - sparse_categorical_accuracy: 0.9585 - val_loss: 0.1830 - val_sparse_categorical_accuracy: 0.9220
| Apache-2.0 | t81_558_class_11_04_hf_train.ipynb | igunduz/t81_558_deep_learning |
Paired a x b cross tableAlternative of z-test and chi-square test | # Enable the commands below when running this program on Google Colab.
# !pip install arviz==0.7
# !pip install pymc3==3.8
# !pip install Theano==1.0.4
import numpy as np
import pandas as pd
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns
import pymc3 as pm
import math
plt.style.use('seaborn-darkgrid')
np.set_printoptions(precision=3)
pd.set_option('display.precision', 3) | _____no_output_____ | MIT | src/bayes/proportion/cross_table/paired_axb.ipynb | shigeodayo/ex_design_analysis |
Q. A restaurant counted up what wines (red, rose, and white) customers chose for their main dishes (roast veal, pasta gorgonzola, and sole meuniere). Analyze the relationship between main dish and wine. | a = 3 # Kinds of man dishes
b = 3 # Kinds of wines
data = pd.DataFrame([[19, 12, 6], [8, 8, 4], [15, 19, 18]], columns=['Veal', 'Pasta', 'Sole'], index=['Red', 'Rose', 'White'])
observed = [data['Veal']['Red'],
data['Pasta']['Red'],
data['Sole']['Red'],
data['Veal']['Rose'],
data['Pasta']['Rose'],
data['Sole']['Rose'],
data['Veal']['White'],
data['Pasta']['White'],
data['Sole']['White']]
display(data)
N = data.sum().sum() | _____no_output_____ | MIT | src/bayes/proportion/cross_table/paired_axb.ipynb | shigeodayo/ex_design_analysis |
Bayesian analysis | with pm.Model() as model:
# Prior distribution
p_ = pm.Uniform('p_', 0, 1, shape=(a * b))
p = pm.Deterministic('p', p_ / pm.math.sum(p_))
# Likelihood
x = pm.Multinomial('x', n=N, p=p, observed=observed)
# Marginal probability
p1d = pm.Deterministic('p1d', p[0] + p[1] + p[2]) # p1. = p11 + p12 + p13
p2d = pm.Deterministic('p2d', p[3] + p[4] + p[5]) # p2. = p21 + p22 + p23
p3d = pm.Deterministic('p3d', p[6] + p[7] + p[8]) # p3. = p31 + p32 + p33
pd1 = pm.Deterministic('pd1', p[0] + p[3] + p[6]) # p.1 = p11 + p21 + p31
pd2 = pm.Deterministic('pd2', p[1] + p[4] + p[7]) # p.2 = p12 + p22 + p32
pd3 = pm.Deterministic('pd3', p[2] + p[5] + p[8]) # p.3 = p13 + p23 + p33
# Pearson's residual
pp = [p1d * pd1, p1d * pd2, p1d * pd3,
p2d * pd1, p2d * pd2, p2d * pd3,
p3d * pd1, p3d * pd2, p3d * pd3]
e = pm.Deterministic('e', (p - pp) / pm.math.sqrt(pp))
# Cramer's association coefficient
V = pm.Deterministic('V', pm.math.sqrt(pm.math.sum(e**2) / (min(a, b) - 1)))
trace = pm.sample(21000, chains=5)
chain = trace[1000:]
pm.traceplot(chain)
plt.show()
pm.summary(chain, var_names=['p', 'V', 'p1d', 'p2d', 'p3d', 'pd1', 'pd2', 'pd3']) | _____no_output_____ | MIT | src/bayes/proportion/cross_table/paired_axb.ipynb | shigeodayo/ex_design_analysis |
Independence and association | plt.boxplot(
[chain['e'][:,0],
chain['e'][:,1],
chain['e'][:,2],
chain['e'][:,3],
chain['e'][:,4],
chain['e'][:,5],
chain['e'][:,6],
chain['e'][:,7],
chain['e'][:,8],],
labels=['e11', 'e12', 'e13', 'e21', 'e22', 'e23', 'e31', 'e32', 'e33'])
plt.show()
print("Cramer's association coefficient: {:.3f}".format(chain['V'].mean()))
# 1.0 - 0.5: strong association
# 0.5 - 0.25: association
# 0.25 - 0.1: weak association
# 0.1 > : very weak association
# 0: no association
egz = pd.DataFrame(
[[(chain['e'][:,0] > 0).mean(), (chain['e'][:,1] > 0).mean(), (chain['e'][:,2] > 0).mean()],
[(chain['e'][:,3] > 0).mean(), (chain['e'][:,4] > 0).mean(), (chain['e'][:,5] > 0).mean()],
[(chain['e'][:,6] > 0).mean(), (chain['e'][:,7] > 0).mean(), (chain['e'][:,8] > 0).mean()]
],
columns=['Veal', 'Pasta', 'Sole'],
index=['Red', 'Rose', 'White']
)
elz = pd.DataFrame(
[[(chain['e'][:,0] < 0).mean(), (chain['e'][:,1] < 0).mean(), (chain['e'][:,2] < 0).mean()],
[(chain['e'][:,3] < 0).mean(), (chain['e'][:,4] < 0).mean(), (chain['e'][:,5] < 0).mean()],
[(chain['e'][:,6] < 0).mean(), (chain['e'][:,7] < 0).mean(), (chain['e'][:,8] < 0).mean()]
],
columns=['Veal', 'Pasta', 'Sole'],
index=['Red', 'Rose', 'White']
)
print('e > 0')
display(egz)
print('e < 0')
display(elz) | _____no_output_____ | MIT | src/bayes/proportion/cross_table/paired_axb.ipynb | shigeodayo/ex_design_analysis |
RQ1: 「子牛」料理を選んだ客は「赤」を選び「白」は避け、「舌平目」料理を選んだ客は「白」を選び「赤」は避ける | val_1 = (chain['e'][:,0] > 0).mean() * (chain['e'][:,8] > 0).mean() * (chain['e'][:,6] < 0).mean() * (chain['e'][:,2] < 0).mean()
print('Probability: {:.3f} %'.format(val_1 * 100)) | _____no_output_____ | MIT | src/bayes/proportion/cross_table/paired_axb.ipynb | shigeodayo/ex_design_analysis |
RQ2: 「子牛」料理を選んだ客は「赤」を選び「白」は避け、「舌平目」料理を選んだ客は「白」を選ぶ | val_2 = (chain['e'][:,0] > 0).mean() * (chain['e'][:,8] > 0).mean() * (chain['e'][:,6] < 0).mean()
print('Probability: {:.3f} %'.format(val_2 * 100)) | _____no_output_____ | MIT | src/bayes/proportion/cross_table/paired_axb.ipynb | shigeodayo/ex_design_analysis |
RQ3: 「子牛」料理を選んだ客は「赤」を選び、「舌平目」料理を選んだ客は「白」を選ぶ | val_3 = (chain['e'][:,0] > 0).mean() * (chain['e'][:,8] > 0).mean()
print('Probability: {:.3f} %'.format(val_3 * 100)) | _____no_output_____ | MIT | src/bayes/proportion/cross_table/paired_axb.ipynb | shigeodayo/ex_design_analysis |
Sebastian Raschka, 2015 Python Machine Learning Essentials Chapter 3 - A Tour of Machine Learning Classifiers Using Scikit-Learn Note that the optional watermark extension is a small IPython notebook plugin that I developed to make the code reproducible. You can just skip the following line(s). | %load_ext watermark
%watermark -a 'Sebastian Raschka' -u -d -v -p numpy,pandas,matplotlib,scikit-learn
# to install watermark just uncomment the following line:
#%install_ext https://raw.githubusercontent.com/rasbt/watermark/master/watermark.py | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Sections- [First steps with scikit-learn](First-steps-with-scikit-learn) - [Loading and preprocessing the data](Loading-and-preprocessing-the-data ) - [Training a perceptron via scikit-learn](Training-a-perceptron-via-scikit-learn)- [Modeling class probabilities via logistic regression](Modeling-class-probabilities-via-logistic-regression)- [Maximum margin classification with support vector machines](Maximum-margin-classification-with-support-vector-machines)- [Solving non-linear problems using a kernel SVM](Solving-non-linear-problems-using-a-kernel-SVM)- [Decision trees learning](Decision-trees-learning)- [Combining weak to strong learners via random forests](Combining-weak-to-strong-learners-via-random-forests)- [K-nearest neighbors - a lazy learning algorithm](K-nearest-neighbors---a-lazy-learning-algorithm) First steps with scikit-learn [[back to top](Sections)] Loading and preprocessing the data [[back to top](Sections)] Loading the Iris dataset from scikit-learn. Here, the third column represents the petal length, and the fourth column the petal width of the flower samples. The classes are already converted to integer labels where 0=Iris-Setosa, 1=Iris-Versicolor, 2=Iris-Virginica. | from sklearn import datasets
import numpy as np
iris = datasets.load_iris()
X = iris.data[:, [2, 3]]
y = iris.target
print('Class labels:', np.unique(y)) | Class labels: [0 1 2]
| MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Splitting data into 70% training and 30% test data: | from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0) | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Standardizing the features: | from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
sc.fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test) | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Training a perceptron via scikit-learn [[back to top](Sections)] Redefining the `plot_decision_region` function from chapter 2: | from sklearn.linear_model import Perceptron
ppn = Perceptron(n_iter=40, eta0=0.1, random_state=0)
ppn.fit(X_train_std, y_train)
y_test.shape
y_pred = ppn.predict(X_test_std)
print('Misclassified samples: %d' % (y_test != y_pred).sum())
from sklearn.metrics import accuracy_score
print('Accuracy: %.2f' % accuracy_score(y_test, y_pred))
from matplotlib.colors import ListedColormap
import matplotlib.pyplot as plt
%matplotlib inline
def plot_decision_regions(X, y, classifier, test_idx=None, resolution=0.02):
# setup marker generator and color map
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
# plot all samples
X_test, y_test = X[test_idx, :], y[test_idx]
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
alpha=0.8, c=cmap(idx),
marker=markers[idx], label=cl)
# highlight test samples
if test_idx:
X_test, y_test = X[test_idx, :], y[test_idx]
plt.scatter(X_test[:, 0], X_test[:, 1], c='',
alpha=1.0, linewidth=1, marker='o',
s=55, label='test set') | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Training a perceptron model using the standardized training data: | %matplotlib inline
X_combined_std = np.vstack((X_train_std, X_test_std))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X=X_combined_std, y=y_combined,
classifier=ppn, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/iris_perceptron_scikit.png', dpi=300)
plt.show() | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Modeling class probabilities via logistic regression [[back to top](Sections)] Plot sigmoid function: | %matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
def sigmoid(z):
return 1.0 / (1.0 + np.exp(-z))
z = np.arange(-7, 7, 0.1)
phi_z = sigmoid(z)
plt.plot(z, phi_z)
plt.axvline(0.0, color='k')
plt.ylim(-0.1, 1.1)
plt.xlabel('z')
plt.ylabel('$\phi (z)$')
# y axis ticks and gridline
plt.yticks([0.0, 0.5, 1.0])
ax = plt.gca()
ax.yaxis.grid(True)
plt.tight_layout()
# plt.savefig('./figures/sigmoid.png', dpi=300)
plt.show() | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Plot cost function: | def cost_1(z):
return - np.log(sigmoid(z))
def cost_0(z):
return - np.log(1 - sigmoid(z))
z = np.arange(-10, 10, 0.1)
phi_z = sigmoid(z)
c1 = [cost_1(x) for x in z]
plt.plot(phi_z, c1, label='J(w) if y=1')
c0 = [cost_0(x) for x in z]
plt.plot(phi_z, c0, linestyle='--', label='J(w) if y=0')
plt.ylim(0.0, 5.1)
plt.xlim([0, 1])
plt.xlabel('$\phi$(z)')
plt.ylabel('J(w)')
plt.legend(loc='best')
plt.tight_layout()
# plt.savefig('./figures/log_cost.png', dpi=300)
plt.show()
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(C=1000.0, random_state=0)
lr.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=lr, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/logistic_regression.png', dpi=300)
plt.show()
lr.predict_proba(X_test_std[0,:]) | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Regularization path: | weights, params = [], []
for c in np.arange(-5, 5):
lr = LogisticRegression(C=10**c, random_state=0)
lr.fit(X_train_std, y_train)
weights.append(lr.coef_[1])
params.append(10**c)
weights = np.array(weights)
plt.plot(params, weights[:, 0],
label='petal length')
plt.plot(params, weights[:, 1], linestyle='--',
label='petal width')
plt.ylabel('weight coefficient')
plt.xlabel('C')
plt.legend(loc='upper left')
plt.xscale('log')
# plt.savefig('./figures/regression_path.png', dpi=300)
plt.show() | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Maximum margin classification with support vector machines [[back to top](Sections)] | from sklearn.svm import SVC
svm = SVC(kernel='linear', C=1.0, random_state=0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=svm, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/support_vector_machine_linear.png', dpi=300)
plt.show() | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Solving non-linear problems using a kernel SVM [[back to top](Sections)] | import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
np.random.seed(0)
X_xor = np.random.randn(200, 2)
y_xor = np.logical_xor(X_xor[:, 0] > 0, X_xor[:, 1] > 0)
y_xor = np.where(y_xor, 1, -1)
plt.scatter(X_xor[y_xor==1, 0], X_xor[y_xor==1, 1], c='b', marker='x', label='1')
plt.scatter(X_xor[y_xor==-1, 0], X_xor[y_xor==-1, 1], c='r', marker='s', label='-1')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend(loc='best')
plt.tight_layout()
# plt.savefig('./figures/xor.png', dpi=300)
plt.show()
svm = SVC(kernel='rbf', random_state=0, gamma=0.10, C=10.0)
svm.fit(X_xor, y_xor)
plot_decision_regions(X_xor, y_xor,
classifier=svm)
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/support_vector_machine_rbf_xor.png', dpi=300)
plt.show()
from sklearn.svm import SVC
svm = SVC(kernel='rbf', random_state=0, gamma=0.2, C=1.0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=svm, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/support_vector_machine_rbf_iris_1.png', dpi=300)
plt.show()
svm = SVC(kernel='rbf', random_state=0, gamma=100.0, C=1.0)
svm.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=svm, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/support_vector_machine_rbf_iris_2.png', dpi=300)
plt.show() | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Decision trees learning | from sklearn.tree import DecisionTreeClassifier
tree = DecisionTreeClassifier(criterion='entropy', max_depth=3, random_state=0)
tree.fit(X_train, y_train)
X_combined = np.vstack((X_train, X_test))
y_combined = np.hstack((y_train, y_test))
plot_decision_regions(X_combined, y_combined,
classifier=tree, test_idx=range(105,150))
plt.xlabel('petal length [cm]')
plt.ylabel('petal width [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/decision_tree_decision.png', dpi=300)
plt.show() | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
[[back to top](Sections)] | import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline
def gini(p):
return (p)*(1 - (p)) + (1-p)*(1 - (1-p))
def entropy(p):
return - p*np.log2(p) - (1 - p)*np.log2((1 - p))
def error(p):
return 1 - np.max([p, 1 - p])
x = np.arange(0.0, 1.0, 0.01)
ent = [entropy(p) if p != 0 else None for p in x]
sc_ent = [e*0.5 if e else None for e in ent]
err = [error(i) for i in x]
fig = plt.figure()
ax = plt.subplot(111)
for i, lab, ls, c, in zip([ent, sc_ent, gini(x), err],
['Entropy', 'Entropy (scaled)',
'Gini Impurity', 'Misclassification Error'],
['-', '-', '--', '-.'],
['black', 'lightgray', 'red', 'green', 'cyan']):
line = ax.plot(x, i, label=lab, linestyle=ls, lw=2, color=c)
ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15),
ncol=3, fancybox=True, shadow=False)
ax.axhline(y=0.5, linewidth=1, color='k', linestyle='--')
ax.axhline(y=1.0, linewidth=1, color='k', linestyle='--')
plt.ylim([0, 1.1])
plt.xlabel('p(i=1)')
plt.ylabel('Impurity Index')
plt.tight_layout()
plt.savefig('./figures/impurity.png', dpi=300, bbox_inches='tight')
plt.show()
from sklearn.tree import export_graphviz
export_graphviz(tree,
out_file='tree.dot',
feature_names=['petal length', 'petal width']) | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
Combining weak to strong learners via random forests [[back to top](Sections)] | from sklearn.ensemble import RandomForestClassifier
forest = RandomForestClassifier(criterion='entropy',
n_estimators=10,
random_state=1,
n_jobs=2)
forest.fit(X_train, y_train)
plot_decision_regions(X_combined, y_combined,
classifier=forest, test_idx=range(105,150))
plt.xlabel('petal length [cm]')
plt.ylabel('petal width [cm]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/random_forest.png', dpi=300)
plt.show() | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
K-nearest neighbors - a lazy learning algorithm [[back to top](Sections)] | from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=5, p=2, metric='minkowski')
knn.fit(X_train_std, y_train)
plot_decision_regions(X_combined_std, y_combined,
classifier=knn, test_idx=range(105,150))
plt.xlabel('petal length [standardized]')
plt.ylabel('petal width [standardized]')
plt.legend(loc='upper left')
plt.tight_layout()
# plt.savefig('./figures/k_nearest_neighbors.png', dpi=300)
plt.show() | _____no_output_____ | MIT | 3547_03_Code.ipynb | varunmuriyanat/Python-Machine-Learning |
12. Interactive Mapping with FoliumIn previous lessons we used `Geopandas` and `matplotlib` to create choropleth and point maps of our data. In this notebook we will take it to the next level by creating `interactive maps` with the **folium** library. > References>>This notebook provides an introduction to `folium`. To see what else you can do, check out the references listed below.>> - [Folium web site](https://github.com/python-visualization/folium)>> - [Folium notebook examples](https://nbviewer.jupyter.org/github/python-visualization/folium/tree/master/examples/) Import Libraries | import pandas as pd
import geopandas as gpd
import numpy as np
import matplotlib # base python plotting library
import matplotlib.pyplot as plt # submodule of matplotlib
# To display plots, maps, charts etc in the notebook
%matplotlib inline
import folium # popular python web mapping tool for creating Leaflet maps
import folium.plugins
# Supress minor warnings about the syntax of CRS definitions,
# ie "init=epsg:4269" vs "epsg:4269"
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning) | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
Check your version of `folium` and `geopandas`.Folium is a new and evolving Python library so make sure you have version 0.10.1 or later installed. | print(folium.__version__) # Make sure you have version 0.10.1 or later of folium!
print(gpd.__version__) # Make sure you have version 0.7.0 or later of GeoPandas! | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
12.1 IntroductionInteractive maps serve two very important purposes in geospatial analysis. First, they provde new tools for exploratory data analysis. With an interactive map you can:- `pan` over the mapped data, - `zoom` into a smaller arear that is not easily visible when the full extent of the map is displayed, and - `click` on or `hover` over a feature to see more information about it.Second, when saved and shared, interactive maps provide a new tool for communicating the results of your analysis and for inviting your online audience to actively explore your work.For those of you who work with tools like ArcGIS or QGIS, interactive maps also make working in the jupyter notebook environment a bit more like working in a desktop GIS.The goal of this notebook is to show you how to create an interactive map with your geospatial data so that you can better analyze your data and save your output to share with others. After completing this lesson you will be able to create an interactive map like the one shown below. | %%html
<iframe src="notebook_data/bartmap_example.html" width="1000" height="600"></iframe> | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
12.2 Interactive Mapping with FoliumUnder the hood, `folium` is a Python package for creating interactive maps with [Leaflet](https://leafletjs.com), a popular javascript web mapping library. Let's start by creating a interactive map with the `folium.Map` function and display it in the notebook. | # Create a new folium map and save it to the variable name map1
map1 = folium.Map(location=[37.8721, -122.2578], # lat, lon around which to center the map
width="100%", # the width & height of the output map
height=500, # in pixels (int) or in percent of available space (str)
zoom_start=13) # the zoom level for the data to be displayed (3-20)
map1 # display the map in the notebook | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
Let's discuss the map above and the code we used to generate it.At any time you can enter the following command to get help with `folium.Map`: | # uncomment to see help docs
?folium.Map | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
Let's make another folium map using the code below: | # Create a new folium map and save it to the variable name map1
#
map1 = folium.Map(location=[37.8721, -122.2578], # lat, lon around which to center the map
tiles='CartoDB Positron',
#width=800, # the width & height of the output map
#height=600, # in pixels or in percent of available space
zoom_start=13) # the zoom level for the data to be displayed | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
Questions- What's new in the code?- How do you think that will change the map?Let's display the map and see what changes... | map1 # display map in notebook | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
Notice how the map changes when you change the underlying **tileset** from the default, which is `OpenStreetMap`, to `CartoDB Positron`. > [OpenStreetMap](https://www.openstreetmap.org/map=5/38.007/-95.844) is the largest free and open source dataset of geographic information about the world. So it is the default basemap for a lot of mapping tools and libraries.- You can find a list of the available tilesets you can use in the help documentation (`folium.Map?`), a snippet of which is shown below:Generate a base map of given width and height with either defaulttilesets or a custom tileset URL. The following tilesets are built-into Folium. Pass any of the following to the "tiles" keyword: - "OpenStreetMap" - "Mapbox Bright" (Limited levels of zoom for free tiles) - "Mapbox Control Room" (Limited levels of zoom for free tiles) - "Stamen" (Terrain, Toner, and Watercolor) - "Cloudmade" (Must pass API key) - "Mapbox" (Must pass API key) - "CartoDB" (positron and dark_matter) ExerciseTake a few minutes to try some of the different tilesets in the code below and see how they change the output map. *Avoid the ones that don't require an API key*. | # Make changes to the code below to change the folium Map
## Try changing the values for the zoom_start and tiles parameters.
map1 = folium.Map(location=[37.8721, -122.2578], # lat, lon around which to center the map
tiles='Stamen Watercolor', # basemap aka baselay or tile set
width=800, # the width & height of the output map
height=500, # in pixels or percent of available space
zoom_start=13) # the zoom level for the data to be displayed
#display the map
map1 | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
12.3 Adding a Map Layer Now that we have created a folium map, let's add our California County data to the map. First, let's read that data into a Geopandas geodataframe. | # Alameda county census tract data with the associated ACS 5yr variables.
ca_counties_gdf = gpd.read_file("notebook_data/california_counties/CaliforniaCounties.shp") | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
Take another brief look at the geodataframe to recall the contents. | # take a look at first two rows
ca_counties_gdf.head(2)
# take a look at all column names
ca_counties_gdf.columns | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
Adding a layer with folium.GeoJsonFolium provides a number of ways to add vector data - points, lines, and polygons - to a map. The data we are working with are in Geopandas geodataframes. The main folium function for adding these to the map is `folium.GeoJson`.Let's build on our last map and add the census tracts as a `folium.GeoJson` layer. | map1 = folium.Map(location=[37.8721, -122.2578], # lat, lon around which to center the map
tiles='CartoDB positron', # basemap aka baselay or tile set
width=800, # the width & height of the output map
height=600, # in pixels or in percent of available space
zoom_start=6) # the zoom level for the data to be displayed
# Add the census tracts to the map
folium.GeoJson(ca_counties_gdf).add_to(map1)
#display the map
map1 | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
That was pretty straight-forward, but `folium.GeoJSON` provides a lot of arguments for customizing the display of the data in the map. We will review some of these soon. However, at any time you can get more information about `folium.GeoJSON` by taking a look at the function documentation. | # Uncomment to view documentation
# folium.GeoJson? | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
Checking and Transforming the CRSIt's always a good idea to check the **CRS** of your geodata before doing anything with that data. This is true when we use `folium` to make an interactive map. Here is how folium deals with the CRS of a geodataframe before mapping it:- Folium checks to see if the gdf has a defined CRS - If the CRS is not defined, it assumes the data to be in the WGS84 CRS (epsg=4326). - If the CRS is defined, it will be transformed dynamically to WGS84 before mapping.So, if your map data doesn't show up where at all or where you think it should, check the CRS of your data!- If it is not defined, define it. Questions- What is the CRS of the tract data?- How is folium dealing with the CRS of this gdf? | # Check the CRS of the data
print(...) | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
*Click here for answers*<!--- What is the CRS of the tract data?tracts_gdf.crs How is folium dealing with the CRS of this gdf? Dynamically transformed to WGS84 (but it already is in that projection so no change)---> Styling features with `folium.GeoJson`Let's dive deeper into the `folium.GeoJson` function. Below is an excerpt from the help documentation for the function that shows all the available function arguments that we can set. QuestionWhat argument do we use to style the color for our polygons?folium.GeoJson( data, style_function=None, highlight_function=None, name=None, overlay=True, control=True, show=True, smooth_factor=None, tooltip=None, embed=True,) Let's examine the options for the `style_function` in more detail since we will use these to change the style of our mapped data.`style_function = lambda x: {` apply to all features being mapped (ie, all rows in the geodataframe) `'weight': line_weight,` set the thickness of a line or polyline where 1 thick, 1 = default `'opacity': line_opacity,` set opacity where 1 is solid, 0.5 is semi-opaque and 0 is transparent `'color': line_color` set the color of the line, eg "red" or some hexidecimal color value`'fillOpacity': opacity,` set opacity of the fill of a polygon `'fillColor': color` set color of the fill of a polygon `'dashArray': '5, 5'` set line pattern to a dash of 5 pixels on, off `}`Ok! Let's try setting the style of our census tract by defining a style function. | # Define the basemap
map1 = folium.Map(location=[37.8721, -122.2578], # lat, lon around which to center the map
tiles='CartoDB Positron',
width=1000, # the width & height of the output map
height=600, # in pixels
zoom_start=6) # the zoom level for the data to be displayed
# Add the census tracts gdf layer
# setting the style of the data
folium.GeoJson(ca_counties_gdf,
style_function = lambda x: {
'weight':2,
'color':"white",
'opacity':1,
'fillColor':"red",
'fillOpacity':0.6
}
).add_to(map1)
map1 | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
ExerciseCopy the code from our last map and paste it below. Take a few minutes edit the code to change the style of the census tract polygons. | # Your code here
map1 = folium.Map(location=[37.8721, -122.2578], # lat, lon around which to center the map
tiles='Stamen Watercolor',
width=1000, # the width & height of the output map
height=600, # in pixels
zoom_start=10) # the zoom level for the data to be displayed
# Add the census tracts gdf layer
# setting the style of the data
folium.GeoJson(ca_counties_gdf,
style_function = lambda x: {
'weight':3,
'color':"black",
'opacity':1,
'fillColor':"none",
'fillOpacity':0.6
}
).add_to(map1)
map1 | _____no_output_____ | MIT | 12_OPTIONAL_Interactive_Mapping_with_Folium.ipynb | reeshav-netizen/Geospatial-Fundamentals-in-Python |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.