markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
Rather than using batches, we could just import all the data into an array to save some processing time. (In most examples I'm using the batches, however - just because that's how I happened to start out.) | trn = get_data(path+'train')
val = get_data(path+'valid')
save_array(path+'results/val.dat', val)
save_array(path+'results/trn.dat', trn)
val = load_array(path+'results/val.dat')
trn = load_array(path+'results/trn.dat') | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Re-run sample experiments on full dataset We should find that everything that worked on the sample (see statefarm-sample.ipynb), works on the full dataset too. Only better! Because now we have more data. So let's see how they go - the models in this section are exact copies of the sample notebook models. Single conv layer | def conv1(batches):
model = Sequential([
BatchNormalization(axis=1, input_shape=(3,224,224)),
Convolution2D(32,3,3, activation='relu'),
BatchNormalization(axis=1),
MaxPooling2D((3,3)),
Convolution2D(64,3,3, activation='relu'),
BatchNormalization(axis=1),
MaxPooling2D((3,3)),
Flatten(),
Dense(200, activation='relu'),
BatchNormalization(),
Dense(10, activation='softmax')
])
model.compile(Adam(lr=1e-4), loss='categorical_crossentropy', metrics=['accuracy'])
model.fit_generator(batches, batches.nb_sample, nb_epoch=2, validation_data=val_batches,
nb_val_samples=val_batches.nb_sample)
model.optimizer.lr = 0.001
model.fit_generator(batches, batches.nb_sample, nb_epoch=4, validation_data=val_batches,
nb_val_samples=val_batches.nb_sample)
return model
model = conv1(batches) | Epoch 1/2
18946/18946 [==============================] - 114s - loss: 0.2273 - acc: 0.9405 - val_loss: 2.4946 - val_acc: 0.2826
Epoch 2/2
18946/18946 [==============================] - 114s - loss: 0.0120 - acc: 0.9990 - val_loss: 1.5872 - val_acc: 0.5253
Epoch 1/4
18946/18946 [==============================] - 114s - loss: 0.0093 - acc: 0.9992 - val_loss: 1.4836 - val_acc: 0.5825
Epoch 2/4
18946/18946 [==============================] - 114s - loss: 0.0032 - acc: 1.0000 - val_loss: 1.3142 - val_acc: 0.6162
Epoch 3/4
18946/18946 [==============================] - 114s - loss: 0.0035 - acc: 0.9996 - val_loss: 1.5061 - val_acc: 0.5771
Epoch 4/4
18946/18946 [==============================] - 114s - loss: 0.0036 - acc: 0.9997 - val_loss: 1.4528 - val_acc: 0.5808
| Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Interestingly, with no regularization or augmentation we're getting some reasonable results from our simple convolutional model. So with augmentation, we hopefully will see some very good results. Data augmentation | gen_t = image.ImageDataGenerator(rotation_range=15, height_shift_range=0.05,
shear_range=0.1, channel_shift_range=20, width_shift_range=0.1)
batches = get_batches(path+'train', gen_t, batch_size=batch_size)
model = conv1(batches)
model.optimizer.lr = 0.0001
model.fit_generator(batches, batches.nb_sample, nb_epoch=15, validation_data=val_batches,
nb_val_samples=val_batches.nb_sample) | Epoch 1/15
18946/18946 [==============================] - 114s - loss: 0.2391 - acc: 0.9361 - val_loss: 1.2511 - val_acc: 0.6886
Epoch 2/15
18946/18946 [==============================] - 114s - loss: 0.2075 - acc: 0.9430 - val_loss: 1.1327 - val_acc: 0.7294
Epoch 3/15
18946/18946 [==============================] - 114s - loss: 0.1800 - acc: 0.9529 - val_loss: 1.1099 - val_acc: 0.7294
Epoch 4/15
18946/18946 [==============================] - 114s - loss: 0.1675 - acc: 0.9557 - val_loss: 1.0660 - val_acc: 0.7363
Epoch 5/15
18946/18946 [==============================] - 114s - loss: 0.1432 - acc: 0.9625 - val_loss: 1.1585 - val_acc: 0.7073
Epoch 6/15
18946/18946 [==============================] - 114s - loss: 0.1358 - acc: 0.9627 - val_loss: 1.1389 - val_acc: 0.6947
Epoch 7/15
18946/18946 [==============================] - 114s - loss: 0.1283 - acc: 0.9665 - val_loss: 1.1329 - val_acc: 0.7369
Epoch 8/15
18946/18946 [==============================] - 114s - loss: 0.1180 - acc: 0.9686 - val_loss: 1.1817 - val_acc: 0.7194
Epoch 9/15
18946/18946 [==============================] - 114s - loss: 0.1137 - acc: 0.9704 - val_loss: 1.0923 - val_acc: 0.7142
Epoch 10/15
18946/18946 [==============================] - 114s - loss: 0.1076 - acc: 0.9720 - val_loss: 1.0983 - val_acc: 0.7358
Epoch 11/15
18946/18946 [==============================] - 114s - loss: 0.1032 - acc: 0.9736 - val_loss: 1.0206 - val_acc: 0.7458
Epoch 12/15
18946/18946 [==============================] - 114s - loss: 0.0956 - acc: 0.9740 - val_loss: 0.9039 - val_acc: 0.7809
Epoch 13/15
18946/18946 [==============================] - 114s - loss: 0.0962 - acc: 0.9740 - val_loss: 1.3386 - val_acc: 0.6587
Epoch 14/15
18946/18946 [==============================] - 114s - loss: 0.0892 - acc: 0.9777 - val_loss: 1.1150 - val_acc: 0.7470
Epoch 15/15
18946/18946 [==============================] - 114s - loss: 0.0886 - acc: 0.9773 - val_loss: 1.9190 - val_acc: 0.5802
| Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
I'm shocked by *how* good these results are! We're regularly seeing 75-80% accuracy on the validation set, which puts us into the top third or better of the competition. With such a simple model and no dropout or semi-supervised learning, this really speaks to the power of this approach to data augmentation. Four conv/pooling pairs + dropout Unfortunately, the results are still very unstable - the validation accuracy jumps from epoch to epoch. Perhaps a deeper model with some dropout would help. | gen_t = image.ImageDataGenerator(rotation_range=15, height_shift_range=0.05,
shear_range=0.1, channel_shift_range=20, width_shift_range=0.1)
batches = get_batches(path+'train', gen_t, batch_size=batch_size)
model = Sequential([
BatchNormalization(axis=1, input_shape=(3,224,224)),
Convolution2D(32,3,3, activation='relu'),
BatchNormalization(axis=1),
MaxPooling2D(),
Convolution2D(64,3,3, activation='relu'),
BatchNormalization(axis=1),
MaxPooling2D(),
Convolution2D(128,3,3, activation='relu'),
BatchNormalization(axis=1),
MaxPooling2D(),
Flatten(),
Dense(200, activation='relu'),
BatchNormalization(),
Dropout(0.5),
Dense(200, activation='relu'),
BatchNormalization(),
Dropout(0.5),
Dense(10, activation='softmax')
])
model.compile(Adam(lr=10e-5), loss='categorical_crossentropy', metrics=['accuracy'])
model.fit_generator(batches, batches.nb_sample, nb_epoch=2, validation_data=val_batches,
nb_val_samples=val_batches.nb_sample)
model.optimizer.lr=0.001
model.fit_generator(batches, batches.nb_sample, nb_epoch=10, validation_data=val_batches,
nb_val_samples=val_batches.nb_sample)
model.optimizer.lr=0.00001
model.fit_generator(batches, batches.nb_sample, nb_epoch=10, validation_data=val_batches,
nb_val_samples=val_batches.nb_sample) | Epoch 1/10
18946/18946 [==============================] - 159s - loss: 0.3183 - acc: 0.8976 - val_loss: 1.0359 - val_acc: 0.7688
Epoch 2/10
18946/18946 [==============================] - 158s - loss: 0.2788 - acc: 0.9109 - val_loss: 1.5806 - val_acc: 0.6705
Epoch 3/10
18946/18946 [==============================] - 158s - loss: 0.2810 - acc: 0.9124 - val_loss: 0.9836 - val_acc: 0.7887
Epoch 4/10
18946/18946 [==============================] - 158s - loss: 0.2403 - acc: 0.9244 - val_loss: 1.1832 - val_acc: 0.7493
Epoch 5/10
18946/18946 [==============================] - 159s - loss: 0.2195 - acc: 0.9303 - val_loss: 1.1524 - val_acc: 0.7510
Epoch 6/10
18946/18946 [==============================] - 159s - loss: 0.2085 - acc: 0.9359 - val_loss: 1.2245 - val_acc: 0.7415
Epoch 7/10
18946/18946 [==============================] - 158s - loss: 0.1961 - acc: 0.9399 - val_loss: 1.1232 - val_acc: 0.7654
Epoch 8/10
18946/18946 [==============================] - 158s - loss: 0.1851 - acc: 0.9416 - val_loss: 1.0956 - val_acc: 0.6892
Epoch 9/10
18946/18946 [==============================] - 158s - loss: 0.1798 - acc: 0.9451 - val_loss: 1.0586 - val_acc: 0.7740
Epoch 10/10
18946/18946 [==============================] - 159s - loss: 0.1669 - acc: 0.9471 - val_loss: 1.4633 - val_acc: 0.6656
| Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
This is looking quite a bit better - the accuracy is similar, but the stability is higher. There's still some way to go however... Imagenet conv features Since we have so little data, and it is similar to imagenet images (full color photos), using pre-trained VGG weights is likely to be helpful - in fact it seems likely that we won't need to fine-tune the convolutional layer weights much, if at all. So we can pre-compute the output of the last convolutional layer, as we did in lesson 3 when we experimented with dropout. (However this means that we can't use full data augmentation, since we can't pre-compute something that changes every image.) | vgg = Vgg16()
model=vgg.model
last_conv_idx = [i for i,l in enumerate(model.layers) if type(l) is Convolution2D][-1]
conv_layers = model.layers[:last_conv_idx+1]
conv_model = Sequential(conv_layers)
(val_classes, trn_classes, val_labels, trn_labels,
val_filenames, filenames, test_filenames) = get_classes(path)
conv_feat = conv_model.predict_generator(batches, batches.nb_sample)
conv_val_feat = conv_model.predict_generator(val_batches, val_batches.nb_sample)
conv_test_feat = conv_model.predict_generator(test_batches, test_batches.nb_sample)
save_array(path+'results/conv_val_feat.dat', conv_val_feat)
save_array(path+'results/conv_test_feat.dat', conv_test_feat)
save_array(path+'results/conv_feat.dat', conv_feat)
conv_feat = load_array(path+'results/conv_feat.dat')
conv_val_feat = load_array(path+'results/conv_val_feat.dat')
conv_val_feat.shape | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Batchnorm dense layers on pretrained conv layers Since we've pre-computed the output of the last convolutional layer, we need to create a network that takes that as input, and predicts our 10 classes. Let's try using a simplified version of VGG's dense layers. | def get_bn_layers(p):
return [
MaxPooling2D(input_shape=conv_layers[-1].output_shape[1:]),
Flatten(),
Dropout(p/2),
Dense(128, activation='relu'),
BatchNormalization(),
Dropout(p/2),
Dense(128, activation='relu'),
BatchNormalization(),
Dropout(p),
Dense(10, activation='softmax')
]
p=0.8
bn_model = Sequential(get_bn_layers(p))
bn_model.compile(Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy'])
bn_model.fit(conv_feat, trn_labels, batch_size=batch_size, nb_epoch=1,
validation_data=(conv_val_feat, val_labels))
bn_model.optimizer.lr=0.01
bn_model.fit(conv_feat, trn_labels, batch_size=batch_size, nb_epoch=2,
validation_data=(conv_val_feat, val_labels))
bn_model.save_weights(path+'models/conv8.h5') | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Looking good! Let's try pre-computing 5 epochs worth of augmented data, so we can experiment with combining dropout and augmentation on the pre-trained model. Pre-computed data augmentation + dropout We'll use our usual data augmentation parameters: | gen_t = image.ImageDataGenerator(rotation_range=15, height_shift_range=0.05,
shear_range=0.1, channel_shift_range=20, width_shift_range=0.1)
da_batches = get_batches(path+'train', gen_t, batch_size=batch_size, shuffle=False) | Found 18946 images belonging to 10 classes.
| Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
We use those to create a dataset of convolutional features 5x bigger than the training set. | da_conv_feat = conv_model.predict_generator(da_batches, da_batches.nb_sample*5)
save_array(path+'results/da_conv_feat2.dat', da_conv_feat)
da_conv_feat = load_array(path+'results/da_conv_feat2.dat') | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Let's include the real training data as well in its non-augmented form. | da_conv_feat = np.concatenate([da_conv_feat, conv_feat]) | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Since we've now got a dataset 6x bigger than before, we'll need to copy our labels 6 times too. | da_trn_labels = np.concatenate([trn_labels]*6) | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Based on some experiments the previous model works well, with bigger dense layers. | def get_bn_da_layers(p):
return [
MaxPooling2D(input_shape=conv_layers[-1].output_shape[1:]),
Flatten(),
Dropout(p),
Dense(256, activation='relu'),
BatchNormalization(),
Dropout(p),
Dense(256, activation='relu'),
BatchNormalization(),
Dropout(p),
Dense(10, activation='softmax')
]
p=0.8
bn_model = Sequential(get_bn_da_layers(p))
bn_model.compile(Adam(lr=0.001), loss='categorical_crossentropy', metrics=['accuracy']) | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Now we can train the model as usual, with pre-computed augmented data. | bn_model.fit(da_conv_feat, da_trn_labels, batch_size=batch_size, nb_epoch=1,
validation_data=(conv_val_feat, val_labels))
bn_model.optimizer.lr=0.01
bn_model.fit(da_conv_feat, da_trn_labels, batch_size=batch_size, nb_epoch=4,
validation_data=(conv_val_feat, val_labels))
bn_model.optimizer.lr=0.0001
bn_model.fit(da_conv_feat, da_trn_labels, batch_size=batch_size, nb_epoch=4,
validation_data=(conv_val_feat, val_labels)) | Train on 113676 samples, validate on 3478 samples
Epoch 1/4
113676/113676 [==============================] - 16s - loss: 0.3837 - acc: 0.8775 - val_loss: 0.6904 - val_acc: 0.8197
Epoch 2/4
113676/113676 [==============================] - 16s - loss: 0.3576 - acc: 0.8872 - val_loss: 0.6593 - val_acc: 0.8209
Epoch 3/4
113676/113676 [==============================] - 16s - loss: 0.3384 - acc: 0.8939 - val_loss: 0.7057 - val_acc: 0.8085
Epoch 4/4
113676/113676 [==============================] - 16s - loss: 0.3254 - acc: 0.8977 - val_loss: 0.6867 - val_acc: 0.8128
| Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Looks good - let's save those weights. | bn_model.save_weights(path+'models/da_conv8_1.h5') | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Pseudo labeling We're going to try using a combination of [pseudo labeling](http://deeplearning.net/wp-content/uploads/2013/03/pseudo_label_final.pdf) and [knowledge distillation](https://arxiv.org/abs/1503.02531) to allow us to use unlabeled data (i.e. do semi-supervised learning). For our initial experiment we'll use the validation set as the unlabeled data, so that we can see that it is working without using the test set. At a later date we'll try using the test set. To do this, we simply calculate the predictions of our model... | val_pseudo = bn_model.predict(conv_val_feat, batch_size=batch_size) | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
...concatenate them with our training labels... | comb_pseudo = np.concatenate([da_trn_labels, val_pseudo])
comb_feat = np.concatenate([da_conv_feat, conv_val_feat]) | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
...and fine-tune our model using that data. | bn_model.load_weights(path+'models/da_conv8_1.h5')
bn_model.fit(comb_feat, comb_pseudo, batch_size=batch_size, nb_epoch=1,
validation_data=(conv_val_feat, val_labels))
bn_model.fit(comb_feat, comb_pseudo, batch_size=batch_size, nb_epoch=4,
validation_data=(conv_val_feat, val_labels))
bn_model.optimizer.lr=0.00001
bn_model.fit(comb_feat, comb_pseudo, batch_size=batch_size, nb_epoch=4,
validation_data=(conv_val_feat, val_labels)) | Train on 117154 samples, validate on 3478 samples
Epoch 1/4
117154/117154 [==============================] - 17s - loss: 0.2837 - acc: 0.9134 - val_loss: 0.7901 - val_acc: 0.8200
Epoch 2/4
117154/117154 [==============================] - 17s - loss: 0.2760 - acc: 0.9155 - val_loss: 0.7648 - val_acc: 0.8275
Epoch 3/4
117154/117154 [==============================] - 17s - loss: 0.2723 - acc: 0.9183 - val_loss: 0.7382 - val_acc: 0.8358
Epoch 4/4
117154/117154 [==============================] - 17s - loss: 0.2657 - acc: 0.9191 - val_loss: 0.7227 - val_acc: 0.8329
| Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
That's a distinct improvement - even although the validation set isn't very big. This looks encouraging for when we try this on the test set. | bn_model.save_weights(path+'models/bn-ps8.h5') | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Submit We'll find a good clipping amount using the validation set, prior to submitting. | def do_clip(arr, mx): return np.clip(arr, (1-mx)/9, mx)
keras.metrics.categorical_crossentropy(val_labels, do_clip(val_preds, 0.93)).eval()
conv_test_feat = load_array(path+'results/conv_test_feat.dat')
preds = bn_model.predict(conv_test_feat, batch_size=batch_size*2)
subm = do_clip(preds,0.93)
subm_name = path+'results/subm.gz'
classes = sorted(batches.class_indices, key=batches.class_indices.get)
submission = pd.DataFrame(subm, columns=classes)
submission.insert(0, 'img', [a[4:] for a in test_filenames])
submission.head()
submission.to_csv(subm_name, index=False, compression='gzip')
FileLink(subm_name) | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
This gets 0.534 on the leaderboard. The "things that didn't really work" section You can safely ignore everything from here on, because they didn't really help. Finetune some conv layers too | for l in get_bn_layers(p): conv_model.add(l)
for l1,l2 in zip(bn_model.layers, conv_model.layers[last_conv_idx+1:]):
l2.set_weights(l1.get_weights())
for l in conv_model.layers: l.trainable =False
for l in conv_model.layers[last_conv_idx+1:]: l.trainable =True
comb = np.concatenate([trn, val])
gen_t = image.ImageDataGenerator(rotation_range=8, height_shift_range=0.04,
shear_range=0.03, channel_shift_range=10, width_shift_range=0.08)
batches = gen_t.flow(comb, comb_pseudo, batch_size=batch_size)
val_batches = get_batches(path+'valid', batch_size=batch_size*2, shuffle=False)
conv_model.compile(Adam(lr=0.00001), loss='categorical_crossentropy', metrics=['accuracy'])
conv_model.fit_generator(batches, batches.N, nb_epoch=1, validation_data=val_batches,
nb_val_samples=val_batches.N)
conv_model.optimizer.lr = 0.0001
conv_model.fit_generator(batches, batches.N, nb_epoch=3, validation_data=val_batches,
nb_val_samples=val_batches.N)
for l in conv_model.layers[16:]: l.trainable =True
conv_model.optimizer.lr = 0.00001
conv_model.fit_generator(batches, batches.N, nb_epoch=8, validation_data=val_batches,
nb_val_samples=val_batches.N)
conv_model.save_weights(path+'models/conv8_ps.h5')
conv_model.load_weights(path+'models/conv8_da.h5')
val_pseudo = conv_model.predict(val, batch_size=batch_size*2)
save_array(path+'models/pseudo8_da.dat', val_pseudo) | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Ensembling | drivers_ds = pd.read_csv(path+'driver_imgs_list.csv')
drivers_ds.head()
img2driver = drivers_ds.set_index('img')['subject'].to_dict()
driver2imgs = {k: g["img"].tolist()
for k,g in drivers_ds[['subject', 'img']].groupby("subject")}
def get_idx(driver_list):
return [i for i,f in enumerate(filenames) if img2driver[f[3:]] in driver_list]
drivers = driver2imgs.keys()
rnd_drivers = np.random.permutation(drivers)
ds1 = rnd_drivers[:len(rnd_drivers)//2]
ds2 = rnd_drivers[len(rnd_drivers)//2:]
models=[fit_conv([d]) for d in drivers]
models=[m for m in models if m is not None]
all_preds = np.stack([m.predict(conv_test_feat, batch_size=128) for m in models])
avg_preds = all_preds.mean(axis=0)
avg_preds = avg_preds/np.expand_dims(avg_preds.sum(axis=1), 1)
keras.metrics.categorical_crossentropy(val_labels, np.clip(avg_val_preds,0.01,0.99)).eval()
keras.metrics.categorical_accuracy(val_labels, np.clip(avg_val_preds,0.01,0.99)).eval() | _____no_output_____ | Apache-2.0 | deeplearning1/nbs/statefarm.ipynb | Fandekasp/fastai_courses |
Built-in function | print(abs(4.5))
print(abs(-4.5)) | 4.5
4.5
| MIT | mod_05_list_tuple_dict/Untitled0.ipynb | merazlab/python |
all - Return True if all elements of the iterable are true (or if the iterable is empty) | a = [2, 3, 4, 5]
b = [0]
c = []
d = [2, 3, 4, 0]
print(all(a))
print(all(b))
print(all(c))
print(all(d))
| True
False
True
False
| MIT | mod_05_list_tuple_dict/Untitled0.ipynb | merazlab/python |
any - Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to: | a = [2, 3, 4, 5]
b = [0]
c = []
d = [2, 3, 4, 0]
print(any(a))
print(any(b))
print(any(c))
print(any(d)) | True
False
False
True
| MIT | mod_05_list_tuple_dict/Untitled0.ipynb | merazlab/python |
ascii | print(ascii(1111))
dir()
dir(struct)
meta = {}
meta[item] = [] | _____no_output_____ | MIT | mod_05_list_tuple_dict/Untitled0.ipynb | merazlab/python |
Using notebooks we will explore the process of trainign and consuming a modelFirst let's load some packages to maniupulate images | #r "nuget:SixLabors.ImageSharp,1.0.2" | _____no_output_____ | MIT | Notebooks/Classifier.ipynb | colombod/MachineTeaching |
Get imagesWe can download images from the web, let's create some helper function | using SixLabors.ImageSharp;
using SixLabors.ImageSharp.PixelFormats;
using System.Net.Http;
Image GetImage(string url)
{
var client = new HttpClient();
var image = client.GetByteArrayAsync(url).Result;
return Image.Load(image);
}
var image = GetImage("https://user-images.githubusercontent.com/2546640/56708992-deee8780-66ec-11e9-9991-eb85abb1d10a.png");
image | _____no_output_____ | MIT | Notebooks/Classifier.ipynb | colombod/MachineTeaching |
it would be better to see the image, let's use the foramtter api | using System.IO;
using SixLabors.ImageSharp.Formats.Png;
using Microsoft.DotNet.Interactive.Formatting;
Formatter.Register<Image>((image, writer) =>
{
var id = Guid.NewGuid().ToString("N");
using var stream = new MemoryStream();
image.Save(stream, new PngEncoder());
stream.Flush();
var data = stream.ToArray();
var imageSource = $"data:image/png;base64, {Convert.ToBase64String(data)}";
PocketView imgTag = PocketViewTags.img[id: id, src: imageSource, height: image.Height, width: image.Width]();
writer.Write(imgTag);
}, HtmlFormatter.MimeType);
image | _____no_output_____ | MIT | Notebooks/Classifier.ipynb | colombod/MachineTeaching |
Good but something smaller would be better | using SixLabors.ImageSharp.Processing;
Image Reduce(Image source, int maxSize = 300){
var max = Math.Max(source.Width, source.Height);
var ratio = ((double)(maxSize)) / max;
return source.Clone(c => c.Resize((int)(source.Width * ratio), (int)(source.Height * ratio)));
}
Reduce(image) | _____no_output_____ | MIT | Notebooks/Classifier.ipynb | colombod/MachineTeaching |
Better, now I am interested in bayblade, let's display some | var urls = new string[]{
"https://cdn.shopify.com/s/files/1/0016/0674/6186/products/B154_1_1024x1024.jpg?v=1573909023",
"https://i.ytimg.com/vi/yUH2QeluaIU/maxresdefault.jpg",
"https://www.biggerbids.com/members/images/29371/public/8065336_-DSC5628-32467-26524-.jpg",
"https://i.ytimg.com/vi/BT4SwVmnqqQ/maxresdefault.jpg",
"https://cdn.shopify.com/s/files/1/0016/0674/6186/products/B160covercopy2_1200x1200.jpg?v=1585425105",
"https://animeukiyo.com/wp-content/uploads/2020/05/king-helios-zone-1B-1140x570.jpg",
"https://http2.mlstatic.com/beyblade-burn-phoenix-ice-blue-90wf-takara-tomy-frete-pac-D_NQ_NP_19415-MLB20171031427_092014-F.jpg"
};
var beyBlades = urls.Select(url => new { Image = Reduce(GetImage(url))});
beyBlades | _____no_output_____ | MIT | Notebooks/Classifier.ipynb | colombod/MachineTeaching |
Enter lobeWe will now use lobe and it's .NET Bindings to developa model to classify those images. Let's start lobe and have a look first, then we will proceed with loading the pacakges we need. | #r "nuget:lobe"
#r "nuget:lobe.ImageSharp"
using lobe;
using lobe.ImageSharp; | _____no_output_____ | MIT | Notebooks/Classifier.ipynb | colombod/MachineTeaching |
Lobe can be accessed via web api let's use that for fast loops | #r "nuget:lobe.Http"
using lobe.Http;
var beyblades_start = new Uri("http://localhost:38100/predict/3af915df-14b7-4834-afbd-6615deca4e26");
var beyblades = new Uri("http://localhost:38100/predict/f56e1050-391e-4cd6-9bb9-ff74dc4d84f5");
var beyblades_2 = new Uri("http://localhost:38100/predict/f56e1050-391e-4cd6-9bb9-ff74dc4d84f5");
var beyblades_3 = new Uri("http://localhost:38100/predict/a3271b3a-f63b-4c00-9304-beda43375284");
var beyblade_remote = new Uri("http://lobe-diego.ngrok.io/predict/2a6a3005-a8cc-4bc1-a71a-a0fe85f258bb");
var httpClassifier = new LobeClient(beyblades_3);
httpClassifier.Classify(beyBlades.First().Image.CloneAs<Rgb24>())
var imageSources = urls.Select(url => Reduce(GetImage(url),800).CloneAs<Rgb24>()).ToList();
var classifications = imageSources.Select((img) => {
var cls = httpClassifier.Classify(img);
return new {
Image = Reduce(img),
Label = cls.Prediction.Label,
Confidence = cls.Prediction.Confidence
};
});
classifications | _____no_output_____ | MIT | Notebooks/Classifier.ipynb | colombod/MachineTeaching |
- Install TPOT within Anancoda - https://anaconda.org/conda-forge/tpot- More Details - https://epistasislab.github.io/tpot/using/- GitHub - https://github.com/EpistasisLab/tpot/ | import pandas as pd
from tpot import TPOTClassifier
from sklearn.model_selection import train_test_split
train = pd.read_csv("excel_full_train.csv")
test = pd.read_csv("excel_test.csv")
X = train.drop(['PassengerId','Survived'], axis = 1)
y = train['Survived']
#### Use Test Train Split to divide into train and test
import numpy as np
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=21) | _____no_output_____ | MIT | Titanic Solution using Excel and Python/21_Titanic_Solution_TPOT_All_feat_30Jan2019.ipynb | KunaalNaik/YT_Kaggle_Titanic_Solution |
Run AutoML with TPOT **Verbose** - How much information TPOT communicates while it is running.- 0 = none, 1 = minimal, 2 = high, 3 = all.- A setting of 2 or higher will add a progress bar during the optimization procedure. | #Set max time for 10 Minutes
tpot = TPOTClassifier(verbosity=2, max_time_mins=1)
tpot.fit(X_train, y_train)
print(f'Train : {tpot.score(X_test, y_test):.3f}')
print(f'Test : {tpot.score(X_train, y_train):.3f}') | Train : 0.840
Test : 0.867
| MIT | Titanic Solution using Excel and Python/21_Titanic_Solution_TPOT_All_feat_30Jan2019.ipynb | KunaalNaik/YT_Kaggle_Titanic_Solution |
Export Best Pipeline | tpot.export('Auto_ML_TPOT_titanic_pipeline2.py') | _____no_output_____ | MIT | Titanic Solution using Excel and Python/21_Titanic_Solution_TPOT_All_feat_30Jan2019.ipynb | KunaalNaik/YT_Kaggle_Titanic_Solution |
Prediction of Test | sub_test = test.drop(['PassengerId'], axis = 1)
sub_test_pred = tpot.predict(sub_test).astype(int)
AllSub = pd.DataFrame({ 'PassengerId': test['PassengerId'],
'Survived' : sub_test_pred
})
AllSub.to_csv("Auto_ML_TPOT_Titanic_Solution.csv", index = False)
#Kaggle LB Score - 0.78468 | _____no_output_____ | MIT | Titanic Solution using Excel and Python/21_Titanic_Solution_TPOT_All_feat_30Jan2019.ipynb | KunaalNaik/YT_Kaggle_Titanic_Solution |
Display Sample Records | import gzip
import json
import re
import os
import sys
import numpy as np
import pandas as pd | _____no_output_____ | Apache-2.0 | samples.ipynb | nancywen25/goodreads |
**Specify your directory here:** | DIR = './data' | _____no_output_____ | Apache-2.0 | samples.ipynb | nancywen25/goodreads |
**This function shows how to load datasets** | def load_data(file_name, head = 500):
'''
Given a *.json.gz file, returns a list of dictionaries,
optionally can select the first n records
'''
count = 0
data = []
with gzip.open(file_name) as fin:
for l in fin:
d = json.loads(l)
count += 1
data.append(d)
# break if reaches the 500th line
if (head is not None) and (count >= head):
break
return data | _____no_output_____ | Apache-2.0 | samples.ipynb | nancywen25/goodreads |
**Load and display sample records of books/authors/works/series** | poetry = load_data(os.path.join(DIR, 'goodreads_books_poetry.json.gz'))
# books = load_data(os.path.join(DIR, 'goodreads_books.json.gz'))
# authors = load_data(os.path.join(DIR, 'goodreads_book_authors.json.gz'))
# works = load_data(os.path.join(DIR, 'goodreads_book_works.json.gz'))
# series = load_data(os.path.join(DIR, 'goodreads_book_series.json.gz'))
len(poetry)
poetry[0]
# print(' == sample record (books) ==')
# display(np.random.choice(books))
# print(' == sample record (authors) ==')
# display(np.random.choice(authors))
# print(' == sample record (works) ==')
# display(np.random.choice(works))
# print(' == sample record (series) ==')
# display(np.random.choice(series)) | _____no_output_____ | Apache-2.0 | samples.ipynb | nancywen25/goodreads |
**Load and display sample records of user-book interactions (shelves)** | interactions = load_data(os.path.join(DIR, 'goodreads_interactions_poetry.json.gz'))
np.random.choice(interactions) | _____no_output_____ | Apache-2.0 | samples.ipynb | nancywen25/goodreads |
**Load and display sample records of book reviews** | reviews = load_data(os.path.join(DIR, 'goodreads_reviews_poetry.json.gz'))
np.random.choice(reviews) | _____no_output_____ | Apache-2.0 | samples.ipynb | nancywen25/goodreads |
**Load and display sample records of book reviews (with spoiler tags)** | spoilers = load_data(os.path.join(DIR, 'goodreads_reviews_spoiler.json.gz'))
np.random.choice([s for s in spoilers if s['has_spoiler']])
# spoilers = load_data(os.path.join(DIR, 'goodreads_reviews_spoiler_raw.json.gz'))
# np.random.choice([s for s in spoilers if 'view spoiler' in s['review_text']]) | _____no_output_____ | Apache-2.0 | samples.ipynb | nancywen25/goodreads |
Introduction to the Interstellar Medium Jonathan Williams Figure 4.2: Extinction curve uses extcurve_s16.py and cubicspline.py from https://faun.rc.fas.harvard.edu/eschlafly/apored/extcurve.html | import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import extcurve_s16
fig = plt.figure(figsize=(6,4))
ax1 = fig.add_subplot(1,1,1)
#ax1.set_xlabel('$\lambda$ (nm)', fontsize=16)
ax1.set_xlabel('$\lambda\ (\mu m)$', fontsize=16)
ax1.set_ylabel('$A(\lambda)/A_K$', fontsize=16)
#ax1.set_xlim(350,2500)
ax1.set_xlim(0.350,2.500)
#ax1.set_ylim(0,1.3)
ax1.set_ylim(0,15)
lam = np.linspace(500,2500, 100)
lam_ext = np.linspace(350,500, 10)
oir = np.nonzero((lam > 500) & (lam < 3000))
ec = extcurve_s16.extcurve(0.0)
#f = ec(5420)/ec(5510)
f = ec(5420)/ec(21900)
x = np.log10(lam)
y = f*ec(10*lam)
w = 500/lam[oir]
w = lam[oir] * 0 + 1
a,b = np.polyfit(x[oir],np.log10(y[oir]),1,w=w)
print("R_V = 3.3 power law index = {0:4.2f}".format(a))
#ax1.plot(10**x,10**(a*x+b),'r-')
#ax1.plot(lam, y, 'k-', lw=2)
#ax1.plot(lam_ext, f*ec(10*lam_ext), 'k:', lw=2)
ax1.plot(lam/1000, y, 'k-', lw=2)
ax1.plot(lam_ext/1000, f*ec(10*lam_ext), 'k:', lw=2)
ec = extcurve_s16.extcurve(0.04)
#f = ec(5420)/ec(5510)
f = ec(5420)/ec(21900)
y = f*ec(10*lam)
a,b = np.polyfit(x[oir],np.log10(y[oir]),1,w=w)
print("R_V = 3.6 power law index = {0:4.2f}".format(a))
#ax1.plot(10**x,10**(a*x+b),'r-')
#ax1.plot(lam, f*ec(10*lam), 'k-', lw=0.5)
#ax1.plot(lam_ext, f*ec(10*lam_ext), 'k:', lw=0.5)
ax1.plot(lam/1000, f*ec(10*lam), 'k-', lw=0.5)
ax1.plot(lam_ext/1000, f*ec(10*lam_ext), 'k:', lw=0.5)
ec = extcurve_s16.extcurve(-0.04)
#f = ec(5420)/ec(5510)
f = ec(5420)/ec(21900)
y = f*ec(10*lam)
a,b = np.polyfit(x[oir],np.log10(y[oir]),1,w=w)
print("R_V = 3.0 power law index = {0:4.2f}".format(a))
ax1.plot(lam/1000, f*ec(10*lam), 'k-', lw=0.5)
ax1.plot(lam_ext/1000, f*ec(10*lam_ext), 'k:', lw=0.5)
ylab = 3.7
plt.text(.445, ylab, 'B', fontsize=16, ha='center')
plt.text(.551, ylab, 'V', fontsize=16, ha='center')
plt.text(.656, ylab, 'R', fontsize=16, ha='center')
plt.text(.806, ylab, 'I', fontsize=16, ha='center')
plt.text(1.220,ylab, 'J', fontsize=16, ha='center')
plt.text(1.630,ylab, 'H', fontsize=16, ha='center')
plt.text(2.190,ylab, 'K', fontsize=16, ha='center')
plt.savefig('extinction.pdf') | R_V = 3.3 power law index = -1.76
R_V = 3.6 power law index = -1.72
R_V = 3.0 power law index = -1.79
| CC0-1.0 | dust/.ipynb_checkpoints/extinction-checkpoint.ipynb | CambridgeUniversityPress/IntroductionInterstellarMedium |
dataset = [
['i1','i2','i5'],
['i2', 'i4'],
['i2', 'i3'],
['i1', 'i2', 'i4'],
['i1', 'i3'],
['i2', 'i3'],
['i1','i3'],
['i1', 'i2', 'i3','i5'],
['i1', 'i2','i3']]
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)
df
from mlxtend.frequent_patterns import apriori
apriori(df, min_support=0.22)
apriori(df, min_support=0.22, use_colnames=True)
frequent_itemsets = apriori(df, min_support=0.2, use_colnames=True)
frequent_itemsets['length'] = frequent_itemsets['itemsets'].apply(lambda x: len(x))
frequent_itemsets
frequent_itemsets[ (frequent_itemsets['length'] == 2) &
(frequent_itemsets['support'] >= 0.2) ]
frequent_itemsets[ (frequent_itemsets['length'] == 3) &
(frequent_itemsets['support'] >= 0.2) ]
dataset = [
['i1','i2','i5'],
['i2', 'i4'],
['i1', 'i2', 'i4'],
['i1', 'i3'],
['i2', 'i3'],
['i1','i3'],
['i1', 'i2','i3']]
print(dataset)
frequent_itemsets = apriori(df, min_support=0.22, use_colnames=True)
frequent_itemsets['length'] = frequent_itemsets['itemsets'].apply(lambda x: len(x))
frequent_itemsets
dataset = [
['i1','i2','i4'],
['i1', 'i4'],
['i2', 'i3', 'i4'],
['i2', 'i3'],
['i2', 'i4'],
['i1','i5'],
['i1', 'i4','i5']]
frequent_itemsets = apriori(df, min_support=0.20, use_colnames=True)
frequent_itemsets['length'] = frequent_itemsets['itemsets'].apply(lambda x: len(x))
frequent_itemsets
| _____no_output_____ | Apache-2.0 | ASSIGNMENT_7.ipynb | archana1822/DMDW |
|
.. _data_tutorial:.. currentmodule:: seaborn Data structures accepted by seaborn===================================.. raw:: html As a data visualization library, seaborn requires that you provide it with data. This chapter explains the various ways to accomplish that task. Seaborn supports several different dataset formats, and most functions accept data represented with objects from the `pandas `_ or `numpy `_ libraries as well as built-in Python types like lists and dictionaries. Understanding the usage patterns associated with these different options will help you quickly create useful visualizations for nearly any dataset... note:: As of current writing (v0.11.0), the full breadth of options covered here are supported by only a subset of the modules in seaborn (namely, the :ref:`relational ` and :ref:`distribution ` modules). The other modules offer much of the same flexibility, but have some exceptions (e.g., :func:`catplot` and :func:`lmplot` are limited to long-form data with named variables). The data-ingest code will be standardized over the next few release cycles, but until that point, be mindful of the specific documentation for each function if it is not doing what you expect with your dataset. | import numpy as np
import pandas as pd
import seaborn as sns
sns.set_theme() | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
Long-form vs. wide-form data----------------------------Most plotting functions in seaborn are oriented towards *vectors* of data. When plotting ``x`` against ``y``, each variable should be a vector. Seaborn accepts data *sets* that have more than one vector organized in some tabular fashion. There is a fundamental distinction between "long-form" and "wide-form" data tables, and seaborn will treat each differently.Long-form data~~~~~~~~~~~~~~A long-form data table has the following characteristics:- Each variable is a column- Each observation is a row As a simple example, consider the "flights" dataset, which records the number of airline passengers who flew in each month from 1949 to 1960. This dataset has three variables (*year*, *month*, and number of *passengers*): | flights = sns.load_dataset("flights")
flights.head() | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
With long-form data, columns in the table are given roles in the plot by explicitly assigning them to one of the variables. For example, making a monthly plot of the number of passengers per year looks like this: | sns.relplot(data=flights, x="year", y="passengers", hue="month", kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
The advantage of long-form data is that it lends itself well to this explicit specification of the plot. It can accommodate datasets of arbitrary complexity, so long as the variables and observations can be clearly defined. But this format takes some getting used to, because it is often not the model of the data that one has in their head.Wide-form data~~~~~~~~~~~~~~For simple datasets, it is often more intuitive to think about data the way it might be viewed in a spreadsheet, where the columns and rows contain *levels* of different variables. For example, we can convert the flights dataset into a wide-form organization by "pivoting" it so that each column has each month's time series over years: | flights_wide = flights.pivot(index="year", columns="month", values="passengers")
flights_wide.head() | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
Here we have the same three variables, but they are organized differently. The variables in this dataset are linked to the *dimensions* of the table, rather than to named fields. Each observation is defined by both the value at a cell in the table and the coordinates of that cell with respect to the row and column indices. With long-form data, we can access variables in the dataset by their name. That is not the case with wide-form data. Nevertheless, because there is a clear association between the dimensions of the table and the variable in the dataset, seaborn is able to assign those variables roles in the plot... note:: Seaborn treats the argument to ``data`` as wide form when neither ``x`` nor ``y`` are assigned. | sns.relplot(data=flights_wide, kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
This plot looks very similar to the one before. Seaborn has assigned the index of the dataframe to ``x``, the values of the dataframe to ``y``, and it has drawn a separate line for each month. There is a notable difference between the two plots, however. When the dataset went through the "pivot" operation that converted it from long-form to wide-form, the information about what the values mean was lost. As a result, there is no y axis label. (The lines also have dashes here, because :func:`relplot` has mapped the column variable to both the ``hue`` and ``style`` semantic so that the plot is more accessible. We didn't do that in the long-form case, but we could have by setting ``style="month"``).Thus far, we did much less typing while using wide-form data and made nearly the same plot. This seems easier! But a big advantage of long-form data is that, once you have the data in the correct format, you no longer need to think about its *structure*. You can design your plots by thinking only about the variables contained within it. For example, to draw lines that represent the monthly time series for each year, simply reassign the variables: | sns.relplot(data=flights, x="month", y="passengers", hue="year", kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
To achieve the same remapping with the wide-form dataset, we would need to transpose the table: | sns.relplot(data=flights_wide.transpose(), kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
(This example also illustrates another wrinkle, which is that seaborn currently considers the column variable in a wide-form dataset to be categorical regardless of its datatype, whereas, because the long-form variable is numeric, it is assigned a quantitative color palette and legend. This may change in the future).The absence of explicit variable assignments also means that each plot type needs to define a fixed mapping between the dimensions of the wide-form data and the roles in the plot. Because this natural mapping may vary across plot types, the results are less predictable when using wide-form data. For example, the :ref:`categorical ` plots assign the *column* dimension of the table to ``x`` and then aggregate across the rows (ignoring the index): | sns.catplot(data=flights_wide, kind="box") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
When using pandas to represent wide-form data, you are limited to just a few variables (no more than three). This is because seaborn does not make use of multi-index information, which is how pandas represents additional variables in a tabular format. The `xarray `_ project offers labeled N-dimensional array objects, which can be considered a generalization of wide-form data to higher dimensions. At present, seaborn does not directly support objects from ``xarray``, but they can be transformed into a long-form :class:`pandas.DataFrame` using the ``to_pandas`` method and then plotted in seaborn like any other long-form data set.In summary, we can think of long-form and wide-form datasets as looking something like this: | import matplotlib.pyplot as plt
f = plt.figure(figsize=(7, 5))
gs = plt.GridSpec(
ncols=6, nrows=2, figure=f,
left=0, right=.35, bottom=0, top=.9,
height_ratios=(1, 20),
wspace=.1, hspace=.01
)
colors = [c + (.5,) for c in sns.color_palette()]
f.add_subplot(gs[0, :], facecolor=".8")
[
f.add_subplot(gs[1:, i], facecolor=colors[i])
for i in range(gs.ncols)
]
gs = plt.GridSpec(
ncols=2, nrows=2, figure=f,
left=.4, right=1, bottom=.2, top=.8,
height_ratios=(1, 8), width_ratios=(1, 11),
wspace=.015, hspace=.02
)
f.add_subplot(gs[0, 1:], facecolor=colors[2])
f.add_subplot(gs[1:, 0], facecolor=colors[1])
f.add_subplot(gs[1, 1], facecolor=colors[0])
for ax in f.axes:
ax.set(xticks=[], yticks=[])
f.text(.35 / 2, .91, "Long-form", ha="center", va="bottom", size=15)
f.text(.7, .81, "Wide-form", ha="center", va="bottom", size=15) | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
Messy data~~~~~~~~~~Many datasets cannot be clearly interpreted using either long-form or wide-form rules. If datasets that are clearly long-form or wide-form are `"tidy" `_, we might say that these more ambiguous datasets are "messy". In a messy dataset, the variables are neither uniquely defined by the keys nor by the dimensions of the table. This often occurs with *repeated-measures* data, where it is natural to organize a table such that each row corresponds to the *unit* of data collection. Consider this simple dataset from a psychology experiment in which twenty subjects performed a memory task where they studied anagrams while their attention was either divided or focused: | anagrams = sns.load_dataset("anagrams")
anagrams | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
The attention variable is *between-subjects*, but there is also a *within-subjects* variable: the number of possible solutions to the anagrams, which varied from 1 to 3. The dependent measure is a score of memory performance. These two variables (number and score) are jointly encoded across several columns. As a result, the whole dataset is neither clearly long-form nor clearly wide-form.How might we tell seaborn to plot the average score as a function of attention and number of solutions? We'd first need to coerce the data into one of our two structures. Let's transform it to a tidy long-form table, such that each variable is a column and each row is an observation. We can use the method :meth:`pandas.DataFrame.melt` to accomplish this task: | anagrams_long = anagrams.melt(id_vars=["subidr", "attnr"], var_name="solutions", value_name="score")
anagrams_long.head() | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
Now we can make the plot that we want: | sns.catplot(data=anagrams_long, x="solutions", y="score", hue="attnr", kind="point") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
Further reading and take-home points~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~For a longer discussion about tabular data structures, you could read the `"Tidy Data" `_ paper by Hadley Whickham. Note that seaborn uses a slightly different set of concepts than are defined in the paper. While the paper associates tidyness with long-form structure, we have drawn a distinction between "tidy wide-form" data, where there is a clear mapping between variables in the dataset and the dimensions of the table, and "messy data", where no such mapping exists.The long-form structure has clear advantages. It allows you to create figures by explicitly assigning variables in the dataset to roles in plot, and you can do so with more than three variables. When possible, try to represent your data with a long-form structure when embarking on serious analysis. Most of the examples in the seaborn documentation will use long-form data. But in cases where it is more natural to keep the dataset wide, remember that seaborn can remain useful. Options for visualizing long-form data--------------------------------------While long-form data has a precise definition, seaborn is fairly flexible in terms of how it is actually organized across the data structures in memory. The examples in the rest of the documentation will typically use :class:`pandas.DataFrame` objects and reference variables in them by assigning names of their columns to the variables in the plot. But it is also possible to store vectors in a Python dictionary or a class that implements that interface: | flights_dict = flights.to_dict()
sns.relplot(data=flights_dict, x="year", y="passengers", hue="month", kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
Many pandas operations, such as a the split-apply-combine operations of a group-by, will produce a dataframe where information has moved from the columns of the input dataframe to the index of the output. So long as the name is retained, you can still reference the data as normal: | flights_avg = flights.groupby("year").mean()
sns.relplot(data=flights_avg, x="year", y="passengers", kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
Additionally, it's possible to pass vectors of data directly as arguments to ``x``, ``y``, and other plotting variables. If these vectors are pandas objects, the ``name`` attribute will be used to label the plot: | year = flights_avg.index
passengers = flights_avg["passengers"]
sns.relplot(x=year, y=passengers, kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
Numpy arrays and other objects that implement the Python sequence interface work too, but if they don't have names, the plot will not be as informative without further tweaking: | sns.relplot(x=year.to_numpy(), y=passengers.to_list(), kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
Options for visualizing wide-form data--------------------------------------The options for passing wide-form data are even more flexible. As with long-form data, pandas objects are preferable because the name (and, in some cases, index) information can be used. But in essence, any format that can be viewed as a single vector or a collection of vectors can be passed to ``data``, and a valid plot can usually be constructed.The example we saw above used a rectangular :class:`pandas.DataFrame`, which can be thought of as a collection of its columns. A dict or list of pandas objects will also work, but we'll lose the axis labels: | flights_wide_list = [col for _, col in flights_wide.items()]
sns.relplot(data=flights_wide_list, kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
The vectors in a collection do not need to have the same length. If they have an ``index``, it will be used to align them: | two_series = [flights_wide.loc[:1955, "Jan"], flights_wide.loc[1952:, "Aug"]]
sns.relplot(data=two_series, kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
Whereas an ordinal index will be used for numpy arrays or simple Python sequences: | two_arrays = [s.to_numpy() for s in two_series]
sns.relplot(data=two_arrays, kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
But a dictionary of such vectors will at least use the keys: | two_arrays_dict = {s.name: s.to_numpy() for s in two_series}
sns.relplot(data=two_arrays_dict, kind="line") | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
Rectangular numpy arrays are treated just like a dataframe without index information, so they are viewed as a collection of column vectors. Note that this is different from how numpy indexing operations work, where a single indexer will access a row. But it is consistent with how pandas would turn the array into a dataframe or how matplotlib would plot it: | flights_array = flights_wide.to_numpy()
sns.relplot(data=flights_array, kind="line")
# TODO once the categorical module is refactored, its single vectors will get special treatment
# (they'll look like collection of singletons, rather than a single collection). That should be noted. | _____no_output_____ | MIT | doc/tutorial/data_structure.ipynb | luzpaz/seaborn |
风格迁移的实现本文件是集智学园开发的“火炬上的深度学习”课程的配套源代码。我们讲解了Prisma软件实现风格迁移的实现原理在这节课中,我们将学会玩图像的风格迁移。我们需要准备两张图像,一张作为化作风格,一张作为图像内容同时,在本文件中,我们还展示了如何实用GPU来进行计算 本文件是集智学园http://campus.swarma.org 出品的“火炬上的深度学习”第IV课的配套源代码 | #导入必要的包
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
from PIL import Image
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
import torchvision.models as models
import copy
# 是否用GPU计算,如果检测到有安装好的GPU,则利用它来计算
use_cuda = torch.cuda.is_available()
dtype = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor | _____no_output_____ | Apache-2.0 | 07_StyleTransfer/图像风格迁移_Style_Transfer.ipynb | swarmapytorch/book_DeepLearning_in_PyTorch_Source |
一、准备输入文件我们需要准备两张同样大小的文件,一张作为风格,一张作为内容 | #风格图像的路径,自行设定
style = 'images/escher.jpg'
#内容图像的路径,自行设定
content = 'images/portrait1.jpg'
#风格损失所占比重
style_weight=1000
#内容损失所占比重
content_weight=1
#希望得到的图片大小(越大越清晰,计算越慢)
imsize = 128
loader = transforms.Compose([
transforms.Resize(imsize), # 将加载的图像转变为指定的大小
transforms.ToTensor()]) # 将图像转化为tensor
#图片加载函数
def image_loader(image_name):
image = Image.open(image_name)
image = loader(image).clone().detach().requires_grad_(True)
# 为了适应卷积网络的需要,虚拟一个batch的维度
image = image.unsqueeze(0)
return image
#载入图片并检查尺寸
style_img = image_loader(style).type(dtype)
content_img = image_loader(content).type(dtype)
assert style_img.size() == content_img.size(), \
"我们需要输入相同尺寸的风格和内容图像"
# 绘制图像的函数
def imshow(tensor, title=None):
image = tensor.clone().cpu() # 克隆Tensor防止改变
image = image.view(3, imsize, imsize) # 删除添加的batch层
image = unloader(image)
plt.imshow(image)
if title is not None:
plt.title(title)
plt.pause(0.001) # 停一会以便更新视图
#绘制图片并查看
unloader = transforms.ToPILImage() # 将其转化为PIL图像(Python Imaging Library)
plt.ion()
plt.figure()
imshow(style_img.data, title='Style Image')
plt.figure()
imshow(content_img.data, title='Content Image') | _____no_output_____ | Apache-2.0 | 07_StyleTransfer/图像风格迁移_Style_Transfer.ipynb | swarmapytorch/book_DeepLearning_in_PyTorch_Source |
二、风格迁移网络的实现值得注意的是,风格迁移的实现并没有训练一个神经网络,而是将已训练好的卷积神经网络价格直接迁移过来网络的学习过程并不体现为对神经网络权重的训练,而是训练一张输入的图像,让它尽可能地靠近内容图像的内容和风格图像的风格为了实现风格迁移,我们需要在迁移网络的基础上再构建一个计算图,这样可以加速计算。构建计算图分为两部:1、加载一个训练好的CNN;2、在原网络的基础上添加计算风格损失和内容损失的新计算层 1. 加载已训练好的大型网络VGG | cnn = models.vgg19(pretrained=True).features
# 如果可能就用GPU计算:
if use_cuda:
cnn = cnn.cuda() | _____no_output_____ | Apache-2.0 | 07_StyleTransfer/图像风格迁移_Style_Transfer.ipynb | swarmapytorch/book_DeepLearning_in_PyTorch_Source |
2. 重新定义新的计算模块 | #内容损失模块
class ContentLoss(nn.Module):
def __init__(self, target, weight):
super(ContentLoss, self).__init__()
# 由于网络的权重都是从target上迁移过来,所以在计算梯度的时候,需要把它和原始计算图分离
self.target = target.detach() * weight
self.weight = weight
self.criterion = nn.MSELoss()
def forward(self, input):
# 输入input为一个特征图
# 它的功能就是计算误差,误差就是当前计算的内容与target之间的均方误差
self.loss = self.criterion(input * self.weight, self.target)
self.output = input
return self.output
def backward(self, retain_graph=True):
# 开始进行反向传播算法
self.loss.backward(retain_graph=retain_graph)
return self.loss
class StyleLoss(nn.Module):
# 计算风格损失的神经模块
def __init__(self, target, weight):
super(StyleLoss, self).__init__()
self.target = target.detach() * weight
self.weight = weight
#self.gram = GramMatrix()
self.criterion = nn.MSELoss()
def forward(self, input):
# 输入input就是一个特征图
self.output = input.clone()
# 计算本图像的gram矩阵,并将它与target对比
input = input.cuda() if use_cuda else input
self_G = Gram(input)
self_G.mul_(self.weight)
# 计算损失函数,即输入特征图的gram矩阵与目标特征图的gram矩阵之间的差异
self.loss = self.criterion(self_G, self.target)
return self.output
def backward(self, retain_graph=True):
# 反向传播算法
self.loss.backward(retain_graph=retain_graph)
return self.loss
#定义Gram矩阵
def Gram(input):
# 输入一个特征图,计算gram矩阵
a, b, c, d = input.size() # a=batch size(=1)
# b=特征图的数量
# (c,d)=特征图的图像尺寸 (N=c*d)
features = input.view(a * b, c * d) # 将特征图图像扁平化为一个向量
G = torch.mm(features, features.t()) # 计算任意两个向量之间的乘积
# 我们通过除以特征图中的像素数量来归一化特征图
return G.div(a * b * c * d)
# 希望计算的内容或者风格层 :
content_layers = ['conv_4'] #只考虑第四个卷积层的内容
style_layers = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
# 考虑第1、2、3、4、5层的风格损失
# 定义列表存储每一个周期的计算损失
content_losses = []
style_losses = []
model = nn.Sequential() # 一个新的序贯网络模型
# 如果有GPU就把这些计算挪到GPU上:
if use_cuda:
model = model.cuda()
# 接下来要做的操作是:循环vgg的每一层,同时构造一个全新的神经网络model
# 这个新网络与vgg基本一样,只是多了一些新的层来计算风格损失和内容损失。
# 将每层卷积核的数据都加载到新的网络模型model上来
i = 1
for layer in list(cnn):
if isinstance(layer, nn.Conv2d):
name = "conv_" + str(i)
#将已加载的模块放到model这个新的神经模块中
model.add_module(name, layer)
if name in content_layers:
# 如果当前层模型在定义好的要计算内容的层:
target = model(content_img).clone() #将内容图像当前层的feature信息拷贝到target中
content_loss = ContentLoss(target, content_weight) #定义content_loss的目标函数
content_loss = content_loss if use_cuda else content_loss
model.add_module("content_loss_" + str(i), content_loss) #在新网络上加content_loss层
content_losses.append(content_loss)
if name in style_layers:
# 如果当前层在指定的风格层中,进行风格层损失的计算
target_feature = model(style_img).clone()
target_feature = target_feature.cuda() if use_cuda else target_feature
target_feature_gram = Gram(target_feature)
style_loss = StyleLoss(target_feature_gram, style_weight)
style_loss = style_loss.cuda() if use_cuda else style_loss
model.add_module("style_loss_" + str(i), style_loss)
style_losses.append(style_loss)
if isinstance(layer, nn.ReLU):
#如果不是卷积层,则做同样处理
name = "relu_" + str(i)
model.add_module(name, layer)
i += 1
if isinstance(layer, nn.MaxPool2d):
name = "pool_" + str(i)
model.add_module(name, layer) # ***
| _____no_output_____ | Apache-2.0 | 07_StyleTransfer/图像风格迁移_Style_Transfer.ipynb | swarmapytorch/book_DeepLearning_in_PyTorch_Source |
二、风格迁移的训练 1. 首先,我们需要现准备一张原始的图像,可以是一张噪音图或者就是内容图 |
# 如果想从调整一张噪声图像开始,请用下面一行的代码
input_img = torch.randn(content_img.data.size())
if use_cuda:
input_img = input_img.cuda()
content_img = content_img.cuda()
style_img = style_img.cuda()
# 将选中的待调整图打印出来:
plt.figure()
imshow(input_img.data, title='Input Image')
| _____no_output_____ | Apache-2.0 | 07_StyleTransfer/图像风格迁移_Style_Transfer.ipynb | swarmapytorch/book_DeepLearning_in_PyTorch_Source |
2. 优化输入的图像(训练过程) | # 首先,需要先讲输入图像变成神经网络的参数,这样我们就可以用反向传播算法来调节这个输入图像了
input_param = nn.Parameter(input_img.data)
#定义个优化器,采用LBFGS优化算法来优化(试验效果很好,它的特点是可以计算大规模数据的梯度下降)
optimizer = optim.LBFGS([input_param])
# 迭代步数
num_steps=300
"""运行风格迁移的主算法过程."""
print('正在构造风格迁移模型..')
print('开始优化..')
for i in range(num_steps):
#每一个训练周期
# 限制输入图像的色彩取值范围在0-1间
input_param.data.clamp_(0, 1)
# 清空梯度
optimizer.zero_grad()
# 将图像输入构造的神经网络中
model(input_param)
style_score = 0
content_score = 0
# 每个损失函数层都开始反向传播算法
for sl in style_losses:
style_score += sl.backward()
for cl in content_losses:
content_score += cl.backward()
# 每隔50个周期打印一次训练数据
if i % 50 == 0:
print("运行 {}轮:".format(i))
print('风格损失 : {:4f} 内容损失: {:4f}'.format(
style_score.data.item(), content_score.data.item()))
print()
def closure():
return style_score + content_score
#一步优化
optimizer.step(closure)
# 做一些修正,防止数据超界...
output = input_param.data.clamp_(0, 1)
# 打印结果图
plt.figure()
imshow(output, title='Output Image')
plt.ioff()
plt.show() | _____no_output_____ | Apache-2.0 | 07_StyleTransfer/图像风格迁移_Style_Transfer.ipynb | swarmapytorch/book_DeepLearning_in_PyTorch_Source |
Overfitting and regularization (with ``gluon``)Now that we've built a [regularized logistic regression model from scratch](regularization-scratch.html), let's make this more efficient with ``gluon``. We recommend that you read that section for a description as to why regularization is a good idea. As always, we begin by loading libraries and some data.[**REFINED DRAFT - RELEASE STAGE: CATFOOD**] | from __future__ import print_function
import mxnet as mx
from mxnet import autograd
from mxnet import gluon
import mxnet.ndarray as nd
import numpy as np
ctx = mx.cpu()
# for plotting purposes
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt | _____no_output_____ | Apache-2.0 | chapter02_supervised-learning/regularization-gluon.ipynb | andylamp/mxnet-the-straight-dope |
The MNIST Dataset | mnist = mx.test_utils.get_mnist()
num_examples = 1000
batch_size = 64
train_data = mx.gluon.data.DataLoader(
mx.gluon.data.ArrayDataset(mnist["train_data"][:num_examples],
mnist["train_label"][:num_examples].astype(np.float32)),
batch_size, shuffle=True)
test_data = mx.gluon.data.DataLoader(
mx.gluon.data.ArrayDataset(mnist["test_data"][:num_examples],
mnist["test_label"][:num_examples].astype(np.float32)),
batch_size, shuffle=False) | _____no_output_____ | Apache-2.0 | chapter02_supervised-learning/regularization-gluon.ipynb | andylamp/mxnet-the-straight-dope |
Multiclass Logistic Regression | net = gluon.nn.Sequential()
with net.name_scope():
net.add(gluon.nn.Dense(10)) | _____no_output_____ | Apache-2.0 | chapter02_supervised-learning/regularization-gluon.ipynb | andylamp/mxnet-the-straight-dope |
Parameter initialization | net.collect_params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx) | _____no_output_____ | Apache-2.0 | chapter02_supervised-learning/regularization-gluon.ipynb | andylamp/mxnet-the-straight-dope |
Softmax Cross Entropy Loss | loss = gluon.loss.SoftmaxCrossEntropyLoss() | _____no_output_____ | Apache-2.0 | chapter02_supervised-learning/regularization-gluon.ipynb | andylamp/mxnet-the-straight-dope |
OptimizerBy default ``gluon`` tries to keep the coefficients from diverging by using a *weight decay* penalty. So, to get the real overfitting experience we need to switch it off. We do this by passing `'wd': 0.0'` when we instantiate the trainer. | trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.01, 'wd': 0.0}) | _____no_output_____ | Apache-2.0 | chapter02_supervised-learning/regularization-gluon.ipynb | andylamp/mxnet-the-straight-dope |
Evaluation Metric | def evaluate_accuracy(data_iterator, net, loss_fun):
acc = mx.metric.Accuracy()
loss_avg = 0.
for i, (data, label) in enumerate(data_iterator):
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
output = net(data)
loss = loss_fun(output, label)
predictions = nd.argmax(output, axis=1)
acc.update(preds=predictions, labels=label)
loss_avg = loss_avg*i/(i+1) + nd.mean(loss).asscalar()/(i+1)
return acc.get()[1], loss_avg
def plot_learningcurves(loss_tr,loss_ts, acc_tr,acc_ts):
xs = list(range(len(loss_tr)))
f = plt.figure(figsize=(12,6))
fg1 = f.add_subplot(121)
fg2 = f.add_subplot(122)
fg1.set_xlabel('epoch',fontsize=14)
fg1.set_title('Comparing loss functions')
fg1.semilogy(xs, loss_tr)
fg1.semilogy(xs, loss_ts)
fg1.grid(True,which="both")
fg1.legend(['training loss', 'testing loss'],fontsize=14)
fg2.set_title('Comparing accuracy')
fg1.set_xlabel('epoch',fontsize=14)
fg2.plot(xs, acc_tr)
fg2.plot(xs, acc_ts)
fg2.grid(True,which="both")
fg2.legend(['training accuracy', 'testing accuracy'],fontsize=14)
plt.show() | _____no_output_____ | Apache-2.0 | chapter02_supervised-learning/regularization-gluon.ipynb | andylamp/mxnet-the-straight-dope |
Execute training loop | epochs = 700
moving_loss = 0.
niter=0
loss_seq_train = []
loss_seq_test = []
acc_seq_train = []
acc_seq_test = []
for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
with autograd.record():
output = net(data)
cross_entropy = loss(output, label)
cross_entropy.backward()
trainer.step(data.shape[0])
##########################
# Keep a moving average of the losses
##########################
niter +=1
moving_loss = .99 * moving_loss + .01 * nd.mean(cross_entropy).asscalar()
est_loss = moving_loss/(1-0.99**niter)
test_accuracy, test_loss = evaluate_accuracy(test_data, net, loss)
train_accuracy, train_loss = evaluate_accuracy(train_data, net, loss)
# save them for later
loss_seq_train.append(train_loss)
loss_seq_test.append(test_loss)
acc_seq_train.append(train_accuracy)
acc_seq_test.append(test_accuracy)
if e % 20 == 0:
print("Completed epoch %s. Train Loss: %s, Test Loss %s, Train_acc %s, Test_acc %s" %
(e+1, train_loss, test_loss, train_accuracy, test_accuracy))
## Plotting the learning curves
plot_learningcurves(loss_seq_train,loss_seq_test,acc_seq_train,acc_seq_test) | _____no_output_____ | Apache-2.0 | chapter02_supervised-learning/regularization-gluon.ipynb | andylamp/mxnet-the-straight-dope |
RegularizationNow let's see what this mysterious *weight decay* is all about. We begin with a bit of math. When we add an L2 penalty to the weights we are effectively adding $\frac{\lambda}{2} \|w\|^2$ to the loss. Hence, every time we compute the gradient it gets an additional $\lambda w$ term that is added to $g_t$, since this is the very derivative of the L2 penalty. As a result we end up taking a descent step not in the direction $-\eta g_t$ but rather in the direction $-\eta (g_t + \lambda w)$. This effectively shrinks $w$ at each step by $\eta \lambda w$, thus the name weight decay. To make this work in practice we just need to set the weight decay to something nonzero. | net.collect_params().initialize(mx.init.Xavier(magnitude=2.24), ctx=ctx, force_reinit=True)
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.01, 'wd': 0.001})
moving_loss = 0.
niter=0
loss_seq_train = []
loss_seq_test = []
acc_seq_train = []
acc_seq_test = []
for e in range(epochs):
for i, (data, label) in enumerate(train_data):
data = data.as_in_context(ctx).reshape((-1,784))
label = label.as_in_context(ctx)
with autograd.record():
output = net(data)
cross_entropy = loss(output, label)
cross_entropy.backward()
trainer.step(data.shape[0])
##########################
# Keep a moving average of the losses
##########################
niter +=1
moving_loss = .99 * moving_loss + .01 * nd.mean(cross_entropy).asscalar()
est_loss = moving_loss/(1-0.99**niter)
test_accuracy, test_loss = evaluate_accuracy(test_data, net,loss)
train_accuracy, train_loss = evaluate_accuracy(train_data, net, loss)
# save them for later
loss_seq_train.append(train_loss)
loss_seq_test.append(test_loss)
acc_seq_train.append(train_accuracy)
acc_seq_test.append(test_accuracy)
if e % 20 == 0:
print("Completed epoch %s. Train Loss: %s, Test Loss %s, Train_acc %s, Test_acc %s" %
(e+1, train_loss, test_loss, train_accuracy, test_accuracy))
## Plotting the learning curves
plot_learningcurves(loss_seq_train,loss_seq_test,acc_seq_train,acc_seq_test) | _____no_output_____ | Apache-2.0 | chapter02_supervised-learning/regularization-gluon.ipynb | andylamp/mxnet-the-straight-dope |
Introduction**Prerequisites**- Python Fundamentals**Outcomes**- Understand the core pandas objects - Series - DataFrame - Index into particular elements of a Series and DataFrame - Understand what `.dtype`/`.dtypes` do - Make basic visualizations **Data**- US regional unemployment data from Bureau of Labor Statistics PandasThis notebook begins the material on `pandas`To start we will import the pandas package and give it the nickname`"pd"`, which is the conventional way to import pandas | import pandas as pd
# Don't worry about this line for now!
%matplotlib inline | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
Sometimes it will be helpful to know which version of pandas we areusingWe can check this by running the code below SeriesThe first main pandas type we will introduce is called SeriesA Series is a single column of data, with row labels for eachobservationPandas refers to the row labels as the *index* of the Series Below we create a Series which contains the US unemployment rate everyother year starting in 1995 | values = [5.6, 5.3, 4.3, 4.2, 5.8, 5.3, 4.6, 7.8, 9.1, 8., 5.7]
years = list(range(1995, 2017, 2))
unemp = pd.Series(data=values, index=years, name="Unemployment")
unemp | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
We can look at the index and values in our Series | unemp.index
unemp.values
unemp. | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
What can we do with a Series object? `.head` and `.tail`Often our data will have many rows and we won’t want to display it allat onceThe methods `.head` and `.tail` show rows at the beginning and endof our Series, respectively | unemp.head()
unemp.tail() | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
Basic PlottingWe can also plot data using the `.plot` methodThis is why we needed the `%matplotlib inline` — it tells the notebookto display figures inside the notebook itself*Note*: Pandas can do much more in terms of visualizationWe will talk about more advanced visualization features later | unemp.plot(kind="bar") | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
Unique valuesIn this dataset it doesn’t make much sense, but we may want to find theunique values in a SeriesThis can be done with the `.unique` method | unemp.unique() | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
IndexingSometimes we will want to select particular elements from a SeriesWe can do this using `.loc[index_things]`; where `index_things` isan item from the index, or a list of items in the indexWe will see this more in depth in a coming lecture, but for now wedemonstrate how to select one or multiple elements of the Series | unemp
unemp.loc[[2009, 1995]]
unemp.iloc[-1]
unemp.loc[[1995, 2005, 2015]] | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
**Check for understanding**For each of the following exercises, we recommend reading the documentationfor help- Display only the first 2 elements of the Series using the `.head` method - Using the `plot` method, make a bar plot - Use `.loc` to select the lowest/highest unemployment rate shown in the Series - Run the code `unemp.dtype` below. What does it give you? Talk with your neighbor about where it might come from | unemp.loc[[unemp.idxmin(), unemp.idxmax()]] | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
DataFrameA DataFrame is how pandas stores one or more columns of dataWe can think a DataFrames a multiple Series stacked side by side ascolumnsThis is similar to a sheet in an Excel workbook or a table in a SQLdatabaseIn addition to row labels (an index), DataFrames also have column labelsWe refer to these column labels as the columns or column names Below we create a DataFrame that contains the unemployment rate everyother year by region of the US starting in 1995. | data = {"NorthEast": [5.9, 5.6, 4.4, 3.8, 5.8, 4.9, 4.3, 7.1, 8.3, 7.9, 5.7],
"MidWest": [4.5, 4.3, 3.6, 4. , 5.7, 5.7, 4.9, 8.1, 8.7, 7.4, 5.1],
"South": [5.3, 5.2, 4.2, 4. , 5.7, 5.2, 4.3, 7.6, 9.1, 7.4, 5.5],
"West": [6.6, 6., 5.2, 4.6, 6.5, 5.5, 4.5, 8.6, 10.7, 8.5, 6.1],
"National": [5.6, 5.3, 4.3, 4.2, 5.8, 5.3, 4.6, 7.8, 9.1, 8., 5.7]}
unemp_region = pd.DataFrame(data, index=years)
unemp_region | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
We can retrieve the index and the DataFrame values in the same way wedid with a Series | unemp_region.index
unemp_region.values | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
What can we do with a DataFrame?Pretty much everything we can do with a Series `.head` and `.tail`As with Series, we can use `.head` and `.tail` to show only thefirst or last `n` rows | unemp_region.head()
unemp_region.tail(3) | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
PlottingWe can generate plots with the `.plot` methodNotice we now have a separate line for each column of data | unemp_region.plot() | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
IndexingWe can also do indexing using `.loc`However, there is a little more to it than before because we can choosesubsets of both row and columns | unemp_region.head()
unemp_region.loc[1995, "NorthEast"]
unemp_region.loc[[1995, 2005], "South"]
unemp_region.loc[1995, ["NorthEast", "National"]]
unemp_region.loc[:, "NorthEast"]
# `[string]` with no `.loc` extracts a whole column
unemp_region["MidWest"] | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
Computations with columnsPandas can do various computations and mathematical operations oncolumnsLet’s take a look at a few of them | # Divide by 100 to move from percent units to a rate
unemp_region["West"] / 100
# Find maximum
unemp_region["West"].max()
unemp_region["West"].iloc[1:5]
unemp_region["MidWest"].head(6)
# Find the difference between two columns
# Notice that pandas applies `-` to _all rows_ at one time
# We'll see more of this throughout these materials
unemp_region["West"].iloc[1:5] - unemp_region["MidWest"].head(6)
# Find correlation between two columns
unemp_region.West.corr(unemp_region["MidWest"])
# find correlation between all column pairs
unemp_region.corr() | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
**Check for understanding**For each of the following, we recommend reading the documentation for help- Use introspection (or google-fu) to find a way to obtain a list with all of the column names in `unemp_region` - Using the `plot` method, make a bar plot. What does it look like now? - Use `.loc` to select the the unemployment data for the `NorthEast` and `West` for the years 1995, 2005, 2011, and 2015. - Run the code `unemp_region.dtypes` below. What does it give you? How does this compare with `unemp.dtype`? Data typesWe asked you to run the commands `unemp.dtype` and`unemp_region.dtypes` and think about what these methods outputYou might have guessed that they return the type of the values insideeach columnOccasionally, you might need to investigate what types you have in yourDataFrame when an operation is not doing what you expect it to | unemp.dtype
unemp_region.dtypes | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
DataFrames will only distinguish between a few types- Booleans (`bool`) - Floating point numbers (`float64`) - Integers (`int64`) - Dates (`datetime`) — we will learn this soon - Categorical data (`categorical`) - Everything else, including strings (`object`) In the future, we will often refer to the type of data stored in acolumn as its `dtype`Let’s look at an example for when having an incorrect `dtype` cancause problemsSuppose that when we imported the data the `South` column wasinterpreted as a string | str_unemp = unemp_region.copy()
str_unemp["South"] = str_unemp["South"].astype(str)
str_unemp.dtypes | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
Everything *looks* ok… | str_unemp.head() | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
But if we try to do something like compute the sum of all the columns,we get unexpected results… | str_unemp.sum() | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
This happened because `.sum` effectively calls `+` on all rows ineach columnRecall that when we apply `+` to two strings, the result is thestrings mashed togetherSo in this case we saw that the entries in all the rows of the Southcolumn were stitched together into one long string Changing DataFramesWe can change the data inside of a DataFrame in various ways:- Adding new columns - Changing index labels or column names - Altering existing data (e.g. doing some arithmetic or making a column of strings lowercase) Some of these “mutations” will be topics of future notebooks, so we willonly briefly discuss a few of the things we can do below Creating new columnsWe can create new data by “assigning values to a column” similar to howwe assign values to a variableIn pandas, we create a new column of a DataFrame by writing ```pythondf["New Column Name"] = new_values``` Below we create an unweighted mean of the unemployment rate across thefour regions of the US — notice this differs from the nationalunemployment rate | unemp_region["UnweightedMean"] = (unemp_region["NorthEast"] +
unemp_region["MidWest"] +
unemp_region["South"] +
unemp_region["West"])/4
unemp_region.head() | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
Changing valuesChanging the values inside of a DataFrame should be done sparinglyHowever, it can be done by assigning a value to a location in theDataFrame`df.loc[index, column] = value` | unemp_region.loc[1995, "UnweightedMean"] = 0.0
unemp_region.head() | _____no_output_____ | MIT | 2019-07-09__InDepthPandas/03_pandas_intro.ipynb | snowdj/UCF-MSDA-workshop |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.