markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
**Expected Output**: **out** [ 0.94822985 0. 1.16101444 2.747859 0. 1.36677003] 2.2 - The convolutional blockThe ResNet "convolutional block" is the second block type. You can use this type of block when the input and output dimensions don't match up. The difference with the identity block is that there is a CONV2D layer in the shortcut path: **Figure 4** : **Convolutional block** * The CONV2D layer in the shortcut path is used to resize the input $x$ to a different dimension, so that the dimensions match up in the final addition needed to add the shortcut value back to the main path. (This plays a similar role as the matrix $W_s$ discussed in lecture.) * For example, to reduce the activation dimensions's height and width by a factor of 2, you can use a 1x1 convolution with a stride of 2. * The CONV2D layer on the shortcut path does not use any non-linear activation function. Its main role is to just apply a (learned) linear function that reduces the dimension of the input, so that the dimensions match up for the later addition step. The details of the convolutional block are as follows. First component of main path:- The first CONV2D has $F_1$ filters of shape (1,1) and a stride of (s,s). Its padding is "valid" and its name should be `conv_name_base + '2a'`. Use 0 as the `glorot_uniform` seed.- The first BatchNorm is normalizing the 'channels' axis. Its name should be `bn_name_base + '2a'`.- Then apply the ReLU activation function. This has no name and no hyperparameters. Second component of main path:- The second CONV2D has $F_2$ filters of shape (f,f) and a stride of (1,1). Its padding is "same" and it's name should be `conv_name_base + '2b'`. Use 0 as the `glorot_uniform` seed.- The second BatchNorm is normalizing the 'channels' axis. Its name should be `bn_name_base + '2b'`.- Then apply the ReLU activation function. This has no name and no hyperparameters. Third component of main path:- The third CONV2D has $F_3$ filters of shape (1,1) and a stride of (1,1). Its padding is "valid" and it's name should be `conv_name_base + '2c'`. Use 0 as the `glorot_uniform` seed.- The third BatchNorm is normalizing the 'channels' axis. Its name should be `bn_name_base + '2c'`. Note that there is no ReLU activation function in this component. Shortcut path:- The CONV2D has $F_3$ filters of shape (1,1) and a stride of (s,s). Its padding is "valid" and its name should be `conv_name_base + '1'`. Use 0 as the `glorot_uniform` seed.- The BatchNorm is normalizing the 'channels' axis. Its name should be `bn_name_base + '1'`. Final step: - The shortcut and the main path values are added together.- Then apply the ReLU activation function. This has no name and no hyperparameters. **Exercise**: Implement the convolutional block. We have implemented the first component of the main path; you should implement the rest. As before, always use 0 as the seed for the random initialization, to ensure consistency with our grader.- [Conv2D](https://keras.io/layers/convolutional/conv2d)- [BatchNormalization](https://keras.io/layers/normalization/batchnormalization) (axis: Integer, the axis that should be normalized (typically the features axis))- For the activation, use: `Activation('relu')(X)`- [Add](https://keras.io/layers/merge/add)
def convolutional_block(X, f, filters, stage, block, s = 2): """ Implementation of the convolutional block as defined in Figure 4 Arguments: X -- input tensor of shape (m, n_H_prev, n_W_prev, n_C_prev) f -- integer, specifying the shape of the middle CONV's window for the main path filters -- python list of integers, defining the number of filters in the CONV layers of the main path stage -- integer, used to name the layers, depending on their position in the network block -- string/character, used to name the layers, depending on their position in the network s -- Integer, specifying the stride to be used Returns: X -- output of the convolutional block, tensor of shape (n_H, n_W, n_C) """ # defining name basis conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' # Retrieve Filters F1, F2, F3 = filters # Save the input value X_shortcut = X ##### MAIN PATH ##### # First component of main path X = Conv2D(filters =F1, kernel_size =(1, 1), strides = (s,s), padding = 'valid', name = conv_name_base + '2a', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2a')(X) X = Activation('relu')(X) ### START CODE HERE ### # Second component of main path (≈3 lines) X = Conv2D(filters =F2, kernel_size =(f, f), strides = (1,1), padding = 'same', name = conv_name_base + '2b', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2b')(X) X = Activation('relu')(X) # Third component of main path (≈2 lines) X = Conv2D(filters =F3, kernel_size =(1, 1), strides = (1,1), padding = 'valid', name = conv_name_base + '2c', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = bn_name_base + '2c')(X) ##### SHORTCUT PATH #### (≈2 lines) X_shortcut = Conv2D(filters =F3, kernel_size =(1, 1), strides = (s,s), padding = 'valid', name = conv_name_base + '1', kernel_initializer = glorot_uniform(seed=0))(X_shortcut) X_shortcut = BatchNormalization(axis = 3, name = bn_name_base + '1')(X_shortcut) # Final step: Add shortcut value to main path, and pass it through a RELU activation (≈2 lines) X = Add()([X, X_shortcut]) X = Activation('relu')(X) ### END CODE HERE ### return X tf.reset_default_graph() with tf.Session() as test: np.random.seed(1) A_prev = tf.placeholder("float", [3, 4, 4, 6]) X = np.random.randn(3, 4, 4, 6) A = convolutional_block(A_prev, f = 2, filters = [2, 4, 6], stage = 1, block = 'a') test.run(tf.global_variables_initializer()) out = test.run([A], feed_dict={A_prev: X, K.learning_phase(): 0}) print("out = " + str(out[0][1][1][0]))
out = [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603]
MIT
Convolutional Neural Networks/Residual_Networks_v2a.ipynb
joyfinder/Deep_Learning_Specialisation
**Expected Output**: **out** [ 0.09018463 1.23489773 0.46822017 0.0367176 0. 0.65516603] 3 - Building your first ResNet model (50 layers)You now have the necessary blocks to build a very deep ResNet. The following figure describes in detail the architecture of this neural network. "ID BLOCK" in the diagram stands for "Identity block," and "ID BLOCK x3" means you should stack 3 identity blocks together. **Figure 5** : **ResNet-50 model** The details of this ResNet-50 model are:- Zero-padding pads the input with a pad of (3,3)- Stage 1: - The 2D Convolution has 64 filters of shape (7,7) and uses a stride of (2,2). Its name is "conv1". - BatchNorm is applied to the 'channels' axis of the input. - MaxPooling uses a (3,3) window and a (2,2) stride.- Stage 2: - The convolutional block uses three sets of filters of size [64,64,256], "f" is 3, "s" is 1 and the block is "a". - The 2 identity blocks use three sets of filters of size [64,64,256], "f" is 3 and the blocks are "b" and "c".- Stage 3: - The convolutional block uses three sets of filters of size [128,128,512], "f" is 3, "s" is 2 and the block is "a". - The 3 identity blocks use three sets of filters of size [128,128,512], "f" is 3 and the blocks are "b", "c" and "d".- Stage 4: - The convolutional block uses three sets of filters of size [256, 256, 1024], "f" is 3, "s" is 2 and the block is "a". - The 5 identity blocks use three sets of filters of size [256, 256, 1024], "f" is 3 and the blocks are "b", "c", "d", "e" and "f".- Stage 5: - The convolutional block uses three sets of filters of size [512, 512, 2048], "f" is 3, "s" is 2 and the block is "a". - The 2 identity blocks use three sets of filters of size [512, 512, 2048], "f" is 3 and the blocks are "b" and "c".- The 2D Average Pooling uses a window of shape (2,2) and its name is "avg_pool".- The 'flatten' layer doesn't have any hyperparameters or name.- The Fully Connected (Dense) layer reduces its input to the number of classes using a softmax activation. Its name should be `'fc' + str(classes)`.**Exercise**: Implement the ResNet with 50 layers described in the figure above. We have implemented Stages 1 and 2. Please implement the rest. (The syntax for implementing Stages 3-5 should be quite similar to that of Stage 2.) Make sure you follow the naming convention in the text above. You'll need to use this function: - Average pooling [see reference](https://keras.io/layers/pooling/averagepooling2d)Here are some other functions we used in the code below:- Conv2D: [See reference](https://keras.io/layers/convolutional/conv2d)- BatchNorm: [See reference](https://keras.io/layers/normalization/batchnormalization) (axis: Integer, the axis that should be normalized (typically the features axis))- Zero padding: [See reference](https://keras.io/layers/convolutional/zeropadding2d)- Max pooling: [See reference](https://keras.io/layers/pooling/maxpooling2d)- Fully connected layer: [See reference](https://keras.io/layers/core/dense)- Addition: [See reference](https://keras.io/layers/merge/add)
# GRADED FUNCTION: ResNet50 def ResNet50(input_shape = (64, 64, 3), classes = 6): """ Implementation of the popular ResNet50 the following architecture: CONV2D -> BATCHNORM -> RELU -> MAXPOOL -> CONVBLOCK -> IDBLOCK*2 -> CONVBLOCK -> IDBLOCK*3 -> CONVBLOCK -> IDBLOCK*5 -> CONVBLOCK -> IDBLOCK*2 -> AVGPOOL -> TOPLAYER Arguments: input_shape -- shape of the images of the dataset classes -- integer, number of classes Returns: model -- a Model() instance in Keras """ # Define the input as a tensor with shape input_shape X_input = Input(input_shape) # Zero-Padding X = ZeroPadding2D((3, 3))(X_input) # Stage 1 X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X) X = BatchNormalization(axis = 3, name = 'bn_conv1')(X) X = Activation('relu')(X) X = MaxPooling2D((3, 3), strides=(2, 2))(X) # Stage 2 X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1) X = identity_block(X, 3, [64, 64, 256], stage=2, block='b') X = identity_block(X, 3, [64, 64, 256], stage=2, block='c') ### START CODE HERE ### # Stage 3 (≈4 lines) X = convolutional_block(X, f = 3, filters = [128, 128, 512], stage = 3, block='a', s = 2) X = identity_block(X, 3, [128, 128, 512], stage=3, block='b') X = identity_block(X, 3, [128, 128, 512], stage=3, block='c') X = identity_block(X, 3, [128, 128, 512], stage=3, block='d') # Stage 4 (≈6 lines) X = convolutional_block(X, f = 3, filters = [256, 256, 1024], stage = 4, block='a', s = 2) X = identity_block(X, 3, [256, 256, 1024], stage=4, block='b') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='c') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='d') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='e') X = identity_block(X, 3, [256, 256, 1024], stage=4, block='f') # Stage 5 (≈3 lines) X = convolutional_block(X, f = 3, filters = [512, 512, 2048], stage = 5, block='a', s = 2) X = identity_block(X, 3, [512, 512, 2048], stage=5, block='b') X = identity_block(X, 3, [512, 512, 2048], stage=5, block='c') # AVGPOOL (≈1 line). Use "X = AveragePooling2D(...)(X)" X = AveragePooling2D(pool_size=(2, 2), name = 'avg_pool')(X) ### END CODE HERE ### # output layer X = Flatten()(X) X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X) # Create model model = Model(inputs = X_input, outputs = X, name='ResNet50') return model
_____no_output_____
MIT
Convolutional Neural Networks/Residual_Networks_v2a.ipynb
joyfinder/Deep_Learning_Specialisation
Run the following code to build the model's graph. If your implementation is not correct you will know it by checking your accuracy when running `model.fit(...)` below.
model = ResNet50(input_shape = (64, 64, 3), classes = 6)
_____no_output_____
MIT
Convolutional Neural Networks/Residual_Networks_v2a.ipynb
joyfinder/Deep_Learning_Specialisation
As seen in the Keras Tutorial Notebook, prior training a model, you need to configure the learning process by compiling the model.
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
_____no_output_____
MIT
Convolutional Neural Networks/Residual_Networks_v2a.ipynb
joyfinder/Deep_Learning_Specialisation
The model is now ready to be trained. The only thing you need is a dataset. Let's load the SIGNS Dataset. **Figure 6** : **SIGNS dataset**
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset() # Normalize image vectors X_train = X_train_orig/255. X_test = X_test_orig/255. # Convert training and test labels to one hot matrices Y_train = convert_to_one_hot(Y_train_orig, 6).T Y_test = convert_to_one_hot(Y_test_orig, 6).T print ("number of training examples = " + str(X_train.shape[0])) print ("number of test examples = " + str(X_test.shape[0])) print ("X_train shape: " + str(X_train.shape)) print ("Y_train shape: " + str(Y_train.shape)) print ("X_test shape: " + str(X_test.shape)) print ("Y_test shape: " + str(Y_test.shape))
number of training examples = 1080 number of test examples = 120 X_train shape: (1080, 64, 64, 3) Y_train shape: (1080, 6) X_test shape: (120, 64, 64, 3) Y_test shape: (120, 6)
MIT
Convolutional Neural Networks/Residual_Networks_v2a.ipynb
joyfinder/Deep_Learning_Specialisation
Run the following cell to train your model on 2 epochs with a batch size of 32. On a CPU it should take you around 5min per epoch.
model.fit(X_train, Y_train, epochs = 2, batch_size = 32)
Epoch 1/2 1080/1080 [==============================] - 265s - loss: 2.5033 - acc: 0.3380 Epoch 2/2 1080/1080 [==============================] - 259s - loss: 1.3300 - acc: 0.6204
MIT
Convolutional Neural Networks/Residual_Networks_v2a.ipynb
joyfinder/Deep_Learning_Specialisation
**Expected Output**: ** Epoch 1/2** loss: between 1 and 5, acc: between 0.2 and 0.5, although your results can be different from ours. ** Epoch 2/2** loss: between 1 and 5, acc: between 0.2 and 0.5, you should see your loss decreasing and the accuracy increasing. Let's see how this model (trained on only two epochs) performs on the test set.
preds = model.evaluate(X_test, Y_test) print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1]))
120/120 [==============================] - 9s Loss = 13.2004664103 Test Accuracy = 0.166666667163
MIT
Convolutional Neural Networks/Residual_Networks_v2a.ipynb
joyfinder/Deep_Learning_Specialisation
**Expected Output**: **Test Accuracy** between 0.16 and 0.25 For the purpose of this assignment, we've asked you to train the model for just two epochs. You can see that it achieves poor performances. Please go ahead and submit your assignment; to check correctness, the online grader will run your code only for a small number of epochs as well. After you have finished this official (graded) part of this assignment, you can also optionally train the ResNet for more iterations, if you want. We get a lot better performance when we train for ~20 epochs, but this will take more than an hour when training on a CPU. Using a GPU, we've trained our own ResNet50 model's weights on the SIGNS dataset. You can load and run our trained model on the test set in the cells below. It may take ≈1min to load the model.
model = load_model('ResNet50.h5') preds = model.evaluate(X_test, Y_test) print ("Loss = " + str(preds[0])) print ("Test Accuracy = " + str(preds[1]))
120/120 [==============================] - 9s Loss = 0.530178320408 Test Accuracy = 0.866666662693
MIT
Convolutional Neural Networks/Residual_Networks_v2a.ipynb
joyfinder/Deep_Learning_Specialisation
ResNet50 is a powerful model for image classification when it is trained for an adequate number of iterations. We hope you can use what you've learnt and apply it to your own classification problem to perform state-of-the-art accuracy.Congratulations on finishing this assignment! You've now implemented a state-of-the-art image classification system! 4 - Test on your own image (Optional/Ungraded) If you wish, you can also take a picture of your own hand and see the output of the model. To do this: 1. Click on "File" in the upper bar of this notebook, then click "Open" to go on your Coursera Hub. 2. Add your image to this Jupyter Notebook's directory, in the "images" folder 3. Write your image's name in the following code 4. Run the code and check if the algorithm is right!
img_path = 'images/my_image.jpg' img = image.load_img(img_path, target_size=(64, 64)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = x/255.0 print('Input image shape:', x.shape) my_image = scipy.misc.imread(img_path) imshow(my_image) print("class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = ") print(model.predict(x))
Input image shape: (1, 64, 64, 3) class prediction vector [p(0), p(1), p(2), p(3), p(4), p(5)] = [[ 3.41876671e-06 2.77412561e-04 9.99522924e-01 1.98842812e-07 1.95619068e-04 4.11686671e-07]]
MIT
Convolutional Neural Networks/Residual_Networks_v2a.ipynb
joyfinder/Deep_Learning_Specialisation
You can also print a summary of your model by running the following code.
model.summary()
____________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ==================================================================================================== input_1 (InputLayer) (None, 64, 64, 3) 0 ____________________________________________________________________________________________________ zero_padding2d_1 (ZeroPadding2D) (None, 70, 70, 3) 0 input_1[0][0] ____________________________________________________________________________________________________ conv1 (Conv2D) (None, 32, 32, 64) 9472 zero_padding2d_1[0][0] ____________________________________________________________________________________________________ bn_conv1 (BatchNormalization) (None, 32, 32, 64) 256 conv1[0][0] ____________________________________________________________________________________________________ activation_4 (Activation) (None, 32, 32, 64) 0 bn_conv1[0][0] ____________________________________________________________________________________________________ max_pooling2d_1 (MaxPooling2D) (None, 15, 15, 64) 0 activation_4[0][0] ____________________________________________________________________________________________________ res2a_branch2a (Conv2D) (None, 15, 15, 64) 4160 max_pooling2d_1[0][0] ____________________________________________________________________________________________________ bn2a_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2a_branch2a[0][0] ____________________________________________________________________________________________________ activation_5 (Activation) (None, 15, 15, 64) 0 bn2a_branch2a[0][0] ____________________________________________________________________________________________________ res2a_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_5[0][0] ____________________________________________________________________________________________________ bn2a_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2a_branch2b[0][0] ____________________________________________________________________________________________________ activation_6 (Activation) (None, 15, 15, 64) 0 bn2a_branch2b[0][0] ____________________________________________________________________________________________________ res2a_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_6[0][0] ____________________________________________________________________________________________________ res2a_branch1 (Conv2D) (None, 15, 15, 256) 16640 max_pooling2d_1[0][0] ____________________________________________________________________________________________________ bn2a_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2a_branch2c[0][0] ____________________________________________________________________________________________________ bn2a_branch1 (BatchNormalization (None, 15, 15, 256) 1024 res2a_branch1[0][0] ____________________________________________________________________________________________________ add_2 (Add) (None, 15, 15, 256) 0 bn2a_branch2c[0][0] bn2a_branch1[0][0] ____________________________________________________________________________________________________ activation_7 (Activation) (None, 15, 15, 256) 0 add_2[0][0] ____________________________________________________________________________________________________ res2b_branch2a (Conv2D) (None, 15, 15, 64) 16448 activation_7[0][0] ____________________________________________________________________________________________________ bn2b_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2b_branch2a[0][0] ____________________________________________________________________________________________________ activation_8 (Activation) (None, 15, 15, 64) 0 bn2b_branch2a[0][0] ____________________________________________________________________________________________________ res2b_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_8[0][0] ____________________________________________________________________________________________________ bn2b_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2b_branch2b[0][0] ____________________________________________________________________________________________________ activation_9 (Activation) (None, 15, 15, 64) 0 bn2b_branch2b[0][0] ____________________________________________________________________________________________________ res2b_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_9[0][0] ____________________________________________________________________________________________________ bn2b_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2b_branch2c[0][0] ____________________________________________________________________________________________________ add_3 (Add) (None, 15, 15, 256) 0 bn2b_branch2c[0][0] activation_7[0][0] ____________________________________________________________________________________________________ activation_10 (Activation) (None, 15, 15, 256) 0 add_3[0][0] ____________________________________________________________________________________________________ res2c_branch2a (Conv2D) (None, 15, 15, 64) 16448 activation_10[0][0] ____________________________________________________________________________________________________ bn2c_branch2a (BatchNormalizatio (None, 15, 15, 64) 256 res2c_branch2a[0][0] ____________________________________________________________________________________________________ activation_11 (Activation) (None, 15, 15, 64) 0 bn2c_branch2a[0][0] ____________________________________________________________________________________________________ res2c_branch2b (Conv2D) (None, 15, 15, 64) 36928 activation_11[0][0] ____________________________________________________________________________________________________ bn2c_branch2b (BatchNormalizatio (None, 15, 15, 64) 256 res2c_branch2b[0][0] ____________________________________________________________________________________________________ activation_12 (Activation) (None, 15, 15, 64) 0 bn2c_branch2b[0][0] ____________________________________________________________________________________________________ res2c_branch2c (Conv2D) (None, 15, 15, 256) 16640 activation_12[0][0] ____________________________________________________________________________________________________ bn2c_branch2c (BatchNormalizatio (None, 15, 15, 256) 1024 res2c_branch2c[0][0] ____________________________________________________________________________________________________ add_4 (Add) (None, 15, 15, 256) 0 bn2c_branch2c[0][0] activation_10[0][0] ____________________________________________________________________________________________________ activation_13 (Activation) (None, 15, 15, 256) 0 add_4[0][0] ____________________________________________________________________________________________________ res3a_branch2a (Conv2D) (None, 8, 8, 128) 32896 activation_13[0][0] ____________________________________________________________________________________________________ bn3a_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3a_branch2a[0][0] ____________________________________________________________________________________________________ activation_14 (Activation) (None, 8, 8, 128) 0 bn3a_branch2a[0][0] ____________________________________________________________________________________________________ res3a_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_14[0][0] ____________________________________________________________________________________________________ bn3a_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3a_branch2b[0][0] ____________________________________________________________________________________________________ activation_15 (Activation) (None, 8, 8, 128) 0 bn3a_branch2b[0][0] ____________________________________________________________________________________________________ res3a_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_15[0][0] ____________________________________________________________________________________________________ res3a_branch1 (Conv2D) (None, 8, 8, 512) 131584 activation_13[0][0] ____________________________________________________________________________________________________ bn3a_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3a_branch2c[0][0] ____________________________________________________________________________________________________ bn3a_branch1 (BatchNormalization (None, 8, 8, 512) 2048 res3a_branch1[0][0] ____________________________________________________________________________________________________ add_5 (Add) (None, 8, 8, 512) 0 bn3a_branch2c[0][0] bn3a_branch1[0][0] ____________________________________________________________________________________________________ activation_16 (Activation) (None, 8, 8, 512) 0 add_5[0][0] ____________________________________________________________________________________________________ res3b_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_16[0][0] ____________________________________________________________________________________________________ bn3b_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3b_branch2a[0][0] ____________________________________________________________________________________________________ activation_17 (Activation) (None, 8, 8, 128) 0 bn3b_branch2a[0][0] ____________________________________________________________________________________________________ res3b_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_17[0][0] ____________________________________________________________________________________________________ bn3b_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3b_branch2b[0][0] ____________________________________________________________________________________________________ activation_18 (Activation) (None, 8, 8, 128) 0 bn3b_branch2b[0][0] ____________________________________________________________________________________________________ res3b_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_18[0][0] ____________________________________________________________________________________________________ bn3b_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3b_branch2c[0][0] ____________________________________________________________________________________________________ add_6 (Add) (None, 8, 8, 512) 0 bn3b_branch2c[0][0] activation_16[0][0] ____________________________________________________________________________________________________ activation_19 (Activation) (None, 8, 8, 512) 0 add_6[0][0] ____________________________________________________________________________________________________ res3c_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_19[0][0] ____________________________________________________________________________________________________ bn3c_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3c_branch2a[0][0] ____________________________________________________________________________________________________ activation_20 (Activation) (None, 8, 8, 128) 0 bn3c_branch2a[0][0] ____________________________________________________________________________________________________ res3c_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_20[0][0] ____________________________________________________________________________________________________ bn3c_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3c_branch2b[0][0] ____________________________________________________________________________________________________ activation_21 (Activation) (None, 8, 8, 128) 0 bn3c_branch2b[0][0] ____________________________________________________________________________________________________ res3c_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_21[0][0] ____________________________________________________________________________________________________ bn3c_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3c_branch2c[0][0] ____________________________________________________________________________________________________ add_7 (Add) (None, 8, 8, 512) 0 bn3c_branch2c[0][0] activation_19[0][0] ____________________________________________________________________________________________________ activation_22 (Activation) (None, 8, 8, 512) 0 add_7[0][0] ____________________________________________________________________________________________________ res3d_branch2a (Conv2D) (None, 8, 8, 128) 65664 activation_22[0][0] ____________________________________________________________________________________________________ bn3d_branch2a (BatchNormalizatio (None, 8, 8, 128) 512 res3d_branch2a[0][0] ____________________________________________________________________________________________________ activation_23 (Activation) (None, 8, 8, 128) 0 bn3d_branch2a[0][0] ____________________________________________________________________________________________________ res3d_branch2b (Conv2D) (None, 8, 8, 128) 147584 activation_23[0][0] ____________________________________________________________________________________________________ bn3d_branch2b (BatchNormalizatio (None, 8, 8, 128) 512 res3d_branch2b[0][0] ____________________________________________________________________________________________________ activation_24 (Activation) (None, 8, 8, 128) 0 bn3d_branch2b[0][0] ____________________________________________________________________________________________________ res3d_branch2c (Conv2D) (None, 8, 8, 512) 66048 activation_24[0][0] ____________________________________________________________________________________________________ bn3d_branch2c (BatchNormalizatio (None, 8, 8, 512) 2048 res3d_branch2c[0][0] ____________________________________________________________________________________________________ add_8 (Add) (None, 8, 8, 512) 0 bn3d_branch2c[0][0] activation_22[0][0] ____________________________________________________________________________________________________ activation_25 (Activation) (None, 8, 8, 512) 0 add_8[0][0] ____________________________________________________________________________________________________ res4a_branch2a (Conv2D) (None, 4, 4, 256) 131328 activation_25[0][0] ____________________________________________________________________________________________________ bn4a_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4a_branch2a[0][0] ____________________________________________________________________________________________________ activation_26 (Activation) (None, 4, 4, 256) 0 bn4a_branch2a[0][0] ____________________________________________________________________________________________________ res4a_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_26[0][0] ____________________________________________________________________________________________________ bn4a_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4a_branch2b[0][0] ____________________________________________________________________________________________________ activation_27 (Activation) (None, 4, 4, 256) 0 bn4a_branch2b[0][0] ____________________________________________________________________________________________________ res4a_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_27[0][0] ____________________________________________________________________________________________________ res4a_branch1 (Conv2D) (None, 4, 4, 1024) 525312 activation_25[0][0] ____________________________________________________________________________________________________ bn4a_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4a_branch2c[0][0] ____________________________________________________________________________________________________ bn4a_branch1 (BatchNormalization (None, 4, 4, 1024) 4096 res4a_branch1[0][0] ____________________________________________________________________________________________________ add_9 (Add) (None, 4, 4, 1024) 0 bn4a_branch2c[0][0] bn4a_branch1[0][0] ____________________________________________________________________________________________________ activation_28 (Activation) (None, 4, 4, 1024) 0 add_9[0][0] ____________________________________________________________________________________________________ res4b_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_28[0][0] ____________________________________________________________________________________________________ bn4b_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4b_branch2a[0][0] ____________________________________________________________________________________________________ activation_29 (Activation) (None, 4, 4, 256) 0 bn4b_branch2a[0][0] ____________________________________________________________________________________________________ res4b_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_29[0][0] ____________________________________________________________________________________________________ bn4b_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4b_branch2b[0][0] ____________________________________________________________________________________________________ activation_30 (Activation) (None, 4, 4, 256) 0 bn4b_branch2b[0][0] ____________________________________________________________________________________________________ res4b_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_30[0][0] ____________________________________________________________________________________________________ bn4b_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4b_branch2c[0][0] ____________________________________________________________________________________________________ add_10 (Add) (None, 4, 4, 1024) 0 bn4b_branch2c[0][0] activation_28[0][0] ____________________________________________________________________________________________________ activation_31 (Activation) (None, 4, 4, 1024) 0 add_10[0][0] ____________________________________________________________________________________________________ res4c_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_31[0][0] ____________________________________________________________________________________________________ bn4c_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4c_branch2a[0][0] ____________________________________________________________________________________________________ activation_32 (Activation) (None, 4, 4, 256) 0 bn4c_branch2a[0][0] ____________________________________________________________________________________________________ res4c_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_32[0][0] ____________________________________________________________________________________________________ bn4c_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4c_branch2b[0][0] ____________________________________________________________________________________________________ activation_33 (Activation) (None, 4, 4, 256) 0 bn4c_branch2b[0][0] ____________________________________________________________________________________________________ res4c_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_33[0][0] ____________________________________________________________________________________________________ bn4c_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4c_branch2c[0][0] ____________________________________________________________________________________________________ add_11 (Add) (None, 4, 4, 1024) 0 bn4c_branch2c[0][0] activation_31[0][0] ____________________________________________________________________________________________________ activation_34 (Activation) (None, 4, 4, 1024) 0 add_11[0][0] ____________________________________________________________________________________________________ res4d_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_34[0][0] ____________________________________________________________________________________________________ bn4d_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4d_branch2a[0][0] ____________________________________________________________________________________________________ activation_35 (Activation) (None, 4, 4, 256) 0 bn4d_branch2a[0][0] ____________________________________________________________________________________________________ res4d_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_35[0][0] ____________________________________________________________________________________________________ bn4d_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4d_branch2b[0][0] ____________________________________________________________________________________________________ activation_36 (Activation) (None, 4, 4, 256) 0 bn4d_branch2b[0][0] ____________________________________________________________________________________________________ res4d_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_36[0][0] ____________________________________________________________________________________________________ bn4d_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4d_branch2c[0][0] ____________________________________________________________________________________________________ add_12 (Add) (None, 4, 4, 1024) 0 bn4d_branch2c[0][0] activation_34[0][0] ____________________________________________________________________________________________________ activation_37 (Activation) (None, 4, 4, 1024) 0 add_12[0][0] ____________________________________________________________________________________________________ res4e_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_37[0][0] ____________________________________________________________________________________________________ bn4e_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4e_branch2a[0][0] ____________________________________________________________________________________________________ activation_38 (Activation) (None, 4, 4, 256) 0 bn4e_branch2a[0][0] ____________________________________________________________________________________________________ res4e_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_38[0][0] ____________________________________________________________________________________________________ bn4e_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4e_branch2b[0][0] ____________________________________________________________________________________________________ activation_39 (Activation) (None, 4, 4, 256) 0 bn4e_branch2b[0][0] ____________________________________________________________________________________________________ res4e_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_39[0][0] ____________________________________________________________________________________________________ bn4e_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4e_branch2c[0][0] ____________________________________________________________________________________________________ add_13 (Add) (None, 4, 4, 1024) 0 bn4e_branch2c[0][0] activation_37[0][0] ____________________________________________________________________________________________________ activation_40 (Activation) (None, 4, 4, 1024) 0 add_13[0][0] ____________________________________________________________________________________________________ res4f_branch2a (Conv2D) (None, 4, 4, 256) 262400 activation_40[0][0] ____________________________________________________________________________________________________ bn4f_branch2a (BatchNormalizatio (None, 4, 4, 256) 1024 res4f_branch2a[0][0] ____________________________________________________________________________________________________ activation_41 (Activation) (None, 4, 4, 256) 0 bn4f_branch2a[0][0] ____________________________________________________________________________________________________ res4f_branch2b (Conv2D) (None, 4, 4, 256) 590080 activation_41[0][0] ____________________________________________________________________________________________________ bn4f_branch2b (BatchNormalizatio (None, 4, 4, 256) 1024 res4f_branch2b[0][0] ____________________________________________________________________________________________________ activation_42 (Activation) (None, 4, 4, 256) 0 bn4f_branch2b[0][0] ____________________________________________________________________________________________________ res4f_branch2c (Conv2D) (None, 4, 4, 1024) 263168 activation_42[0][0] ____________________________________________________________________________________________________ bn4f_branch2c (BatchNormalizatio (None, 4, 4, 1024) 4096 res4f_branch2c[0][0] ____________________________________________________________________________________________________ add_14 (Add) (None, 4, 4, 1024) 0 bn4f_branch2c[0][0] activation_40[0][0] ____________________________________________________________________________________________________ activation_43 (Activation) (None, 4, 4, 1024) 0 add_14[0][0] ____________________________________________________________________________________________________ res5a_branch2a (Conv2D) (None, 2, 2, 512) 524800 activation_43[0][0] ____________________________________________________________________________________________________ bn5a_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5a_branch2a[0][0] ____________________________________________________________________________________________________ activation_44 (Activation) (None, 2, 2, 512) 0 bn5a_branch2a[0][0] ____________________________________________________________________________________________________ res5a_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_44[0][0] ____________________________________________________________________________________________________ bn5a_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5a_branch2b[0][0] ____________________________________________________________________________________________________ activation_45 (Activation) (None, 2, 2, 512) 0 bn5a_branch2b[0][0] ____________________________________________________________________________________________________ res5a_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_45[0][0] ____________________________________________________________________________________________________ res5a_branch1 (Conv2D) (None, 2, 2, 2048) 2099200 activation_43[0][0] ____________________________________________________________________________________________________ bn5a_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5a_branch2c[0][0] ____________________________________________________________________________________________________ bn5a_branch1 (BatchNormalization (None, 2, 2, 2048) 8192 res5a_branch1[0][0] ____________________________________________________________________________________________________ add_15 (Add) (None, 2, 2, 2048) 0 bn5a_branch2c[0][0] bn5a_branch1[0][0] ____________________________________________________________________________________________________ activation_46 (Activation) (None, 2, 2, 2048) 0 add_15[0][0] ____________________________________________________________________________________________________ res5b_branch2a (Conv2D) (None, 2, 2, 512) 1049088 activation_46[0][0] ____________________________________________________________________________________________________ bn5b_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5b_branch2a[0][0] ____________________________________________________________________________________________________ activation_47 (Activation) (None, 2, 2, 512) 0 bn5b_branch2a[0][0] ____________________________________________________________________________________________________ res5b_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_47[0][0] ____________________________________________________________________________________________________ bn5b_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5b_branch2b[0][0] ____________________________________________________________________________________________________ activation_48 (Activation) (None, 2, 2, 512) 0 bn5b_branch2b[0][0] ____________________________________________________________________________________________________ res5b_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_48[0][0] ____________________________________________________________________________________________________ bn5b_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5b_branch2c[0][0] ____________________________________________________________________________________________________ add_16 (Add) (None, 2, 2, 2048) 0 bn5b_branch2c[0][0] activation_46[0][0] ____________________________________________________________________________________________________ activation_49 (Activation) (None, 2, 2, 2048) 0 add_16[0][0] ____________________________________________________________________________________________________ res5c_branch2a (Conv2D) (None, 2, 2, 512) 1049088 activation_49[0][0] ____________________________________________________________________________________________________ bn5c_branch2a (BatchNormalizatio (None, 2, 2, 512) 2048 res5c_branch2a[0][0] ____________________________________________________________________________________________________ activation_50 (Activation) (None, 2, 2, 512) 0 bn5c_branch2a[0][0] ____________________________________________________________________________________________________ res5c_branch2b (Conv2D) (None, 2, 2, 512) 2359808 activation_50[0][0] ____________________________________________________________________________________________________ bn5c_branch2b (BatchNormalizatio (None, 2, 2, 512) 2048 res5c_branch2b[0][0] ____________________________________________________________________________________________________ activation_51 (Activation) (None, 2, 2, 512) 0 bn5c_branch2b[0][0] ____________________________________________________________________________________________________ res5c_branch2c (Conv2D) (None, 2, 2, 2048) 1050624 activation_51[0][0] ____________________________________________________________________________________________________ bn5c_branch2c (BatchNormalizatio (None, 2, 2, 2048) 8192 res5c_branch2c[0][0] ____________________________________________________________________________________________________ add_17 (Add) (None, 2, 2, 2048) 0 bn5c_branch2c[0][0] activation_49[0][0] ____________________________________________________________________________________________________ activation_52 (Activation) (None, 2, 2, 2048) 0 add_17[0][0] ____________________________________________________________________________________________________ avg_pool (AveragePooling2D) (None, 1, 1, 2048) 0 activation_52[0][0] ____________________________________________________________________________________________________ flatten_1 (Flatten) (None, 2048) 0 avg_pool[0][0] ____________________________________________________________________________________________________ fc6 (Dense) (None, 6) 12294 flatten_1[0][0] ==================================================================================================== Total params: 23,600,006 Trainable params: 23,546,886 Non-trainable params: 53,120 ____________________________________________________________________________________________________
MIT
Convolutional Neural Networks/Residual_Networks_v2a.ipynb
joyfinder/Deep_Learning_Specialisation
Finally, run the code below to visualize your ResNet50. You can also download a .png picture of your model by going to "File -> Open...-> model.png".
plot_model(model, to_file='model.png') SVG(model_to_dot(model).create(prog='dot', format='svg'))
_____no_output_____
MIT
Convolutional Neural Networks/Residual_Networks_v2a.ipynb
joyfinder/Deep_Learning_Specialisation
Plotting is Back
%matplotlib inline from massinference.plot import Limits from massinference.map import KappaMap, ShearMap import matplotlib.pyplot as plt limits = Limits(1.8, 1.65, -2.0, -1.9) plot_config = KappaMap.default().plot(limits=limits) ShearMap.default().plot(plot_config=plot_config)
_____no_output_____
MIT
GroupMeeting12_5_16.ipynb
davidthomas5412/PanglossNotebooks
Rearchitected MassInference Benchmarking Benchmark- 36 square arcmin field- 10 source objects / arcmin- lightcnoe radius of 4 arcmins- no relevance filtering- no smooth kappas- 4 independent samples- no setup/io/etc, timer starts after objects initialized Pangloss ... 214.165 seconds MassInference ... 1.082 seconds Numpy Performance Hacks
import numpy as np x = np.random.rand(10**8) %timeit -n 1 -r 1 np.isnan(x) %timeit -n 1 -r 1 np.isnan(np.sum(x)) %timeit -n 1 -r 1 np.sum(-x) %timeit -n 1 -r 1 (-np.sum(x))
1 loop, best of 1: 6.02 s per loop 1 loop, best of 1: 1.51 s per loop
MIT
GroupMeeting12_5_16.ipynb
davidthomas5412/PanglossNotebooks
Table of Contents1  Data2  Model3  Training4  Explore Latent Space
import sys import yaml import tensorflow as tf import numpy as np import pandas as pd import functools from pathlib import Path from datetime import datetime from tqdm import tqdm_notebook as tqdm # Plotting import matplotlib import matplotlib.pyplot as plt from matplotlib import animation plt.rcParams['animation.ffmpeg_path'] = str(Path.home() / "anaconda3/envs/image-processing/bin/ffmpeg") %load_ext autoreload %autoreload 2 import dcgan import gan_utils from load_data import preprocess_images from ds_utils.generative_utils import animate_latent_transition, gen_latent_linear, gen_latent_idx from ds_utils.plot_utils import plot_sample_imgs data_folder = Path.home() / "Documents/datasets" # load model config with open('configs/dcgan_celeba_config.yaml', 'r') as f: config = yaml.load(f) HIDDEN_DIM = config['data']['z_size'] IMG_SHAPE = config['data']['input_shape'] BATCH_SIZE = config['training']['batch_size'] IMG_IS_BW = IMG_SHAPE[2] == 1 PLOT_IMG_SHAPE = IMG_SHAPE[:2] if IMG_IS_BW else IMG_SHAPE config
_____no_output_____
Apache-2.0
deep learning/GAN/DCGAN.ipynb
sugatoray/data-science-learning
Data
# load Fashion MNIST dataset ((X_train, y_train), (X_test, y_test)) = tf.keras.datasets.fashion_mnist.load_data() X_train = preprocess_images(X_train) X_test = preprocess_images(X_test) print(X_train[0].shape) print(X_train[0].max()) print(X_train[0].min()) print(X_train.shape) assert X_train[0].shape == tuple(config['data']['input_shape']) train_ds = tf.data.Dataset.from_tensor_slices(X_train).take(5000) test_ds = tf.data.Dataset.from_tensor_slices(X_test).take(256) sys.path.append("../") from tmp_load_data import load_imgs_tfdataset train_ds = load_imgs_tfdataset(data_folder/'img_align_celeba', '*.jpg', config, 500, zipped=False) test_ds = load_imgs_tfdataset(data_folder/'img_align_celeba', '*.jpg', config, 100, zipped=False)
_____no_output_____
Apache-2.0
deep learning/GAN/DCGAN.ipynb
sugatoray/data-science-learning
Model
# instantiate GAN gan = dcgan.DCGan(IMG_SHAPE, config) # test generator generator_out = gan.generator.predict(np.random.randn(BATCH_SIZE, HIDDEN_DIM)) generator_out.shape # test discriminator discriminator_out = gan.discriminator.predict(generator_out) discriminator_out.shape # test gan gan.gan.predict(np.random.randn(BATCH_SIZE, HIDDEN_DIM)).max() # plot random generated image plt.imshow(gan.generator.predict([np.random.randn(1, HIDDEN_DIM)])[0] .reshape(PLOT_IMG_SHAPE), cmap='gray' if IMG_IS_BW else 'jet') plt.show() gan.generator.summary()
_____no_output_____
Apache-2.0
deep learning/GAN/DCGAN.ipynb
sugatoray/data-science-learning
Training
# setup model directory for checkpoint and tensorboard logs model_name = "dcgan_celeba" model_dir = Path.home() / "Documents/models/tf_playground/gan" / model_name model_dir.mkdir(exist_ok=True, parents=True) export_dir = model_dir / 'export' export_dir.mkdir(exist_ok=True) log_dir = model_dir / "logs" / datetime.now().strftime("%Y%m%d-%H%M%S") nb_epochs = 1000 gan._train(train_ds=gan.setup_dataset(train_ds), validation_ds=gan.setup_dataset(test_ds), nb_epochs=nb_epochs, log_dir=log_dir, checkpoint_dir=export_dir, is_tfdataset=True) # export Keras model (.h5) gan.generator.save(str(export_dir / 'generator.h5')) gan.discriminator.save(str(export_dir / 'discriminator.h5')) # plot generator results plot_side = 5 plot_sample_imgs(lambda x: gan.generator.predict(np.random.randn(plot_side*plot_side, HIDDEN_DIM)), img_shape=PLOT_IMG_SHAPE, plot_side=plot_side, cmap='gray' if IMG_IS_BW else 'jet')
_____no_output_____
Apache-2.0
deep learning/GAN/DCGAN.ipynb
sugatoray/data-science-learning
Explore Latent Space
%matplotlib inline def gen_image_fun(latent_vectors): img = gan.generator.predict(latent_vectors)[0].reshape(PLOT_IMG_SHAPE) return img img = gen_image_fun(z_s) render_dir = Path.home() / 'Documents/videos/gan' / "gan_celeba" nb_samples = 10 nb_transition_frames = 10 nb_frames = min(2000, (nb_samples-1)*nb_transition_frames) # random list of z vectors z_s = np.random.randn(nb_samples, HIDDEN_DIM) animate_latent_transition(latent_vectors=z_s, gen_image_fun=gen_image_fun, gen_latent_fun=lambda z_s, i: gen_latent_linear(z_s, i, nb_transition_frames), img_size=PLOT_IMG_SHAPE, nb_frames=nb_frames, render_dir=render_dir) render_dir = Path.home() / 'Documents/videos/gan' / "gan_fmnist_test" nb_transition_frames = 10 # random list of z vectors #rand_idx = np.random.randint(len(X_train)) z_start = np.random.randn(1, HIDDEN_DIM) vals = np.linspace(-1., 1., nb_transition_frames) for z_idx in range(20): animate_latent_transition(latent_vectors=z_start, gen_image_fun=gen_image_fun, gen_latent_fun=lambda z_s, i: gen_latent_idx(z_s, i, z_idx, vals), img_size=PLOT_IMG_SHAPE, nb_frames=nb_transition_frames, render_dir=render_dir)
_____no_output_____
Apache-2.0
deep learning/GAN/DCGAN.ipynb
sugatoray/data-science-learning
ReferencesKoGPT3 shares the same structure as KoGPT2. - [KoGPT2-Transformers huggingface 활용 예시](https://github.com/taeminlee/KoGPT2-Transformers)
from transformers import GPT2Tokenizer, PreTrainedTokenizerFast model_dir = "skt/ko-gpt-trinity-1.2B-v0.5" # Load the Tokenizer: "Fast" means that the tokenizer code is written in Rust Lang tokenizer = PreTrainedTokenizerFast.from_pretrained( model_dir, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", ) from transformers import GPT2LMHeadModel # designate the model's name registered on huggingface: https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5 model_dir = "skt/ko-gpt-trinity-1.2B-v0.5" # Attach Language model Head to the pretrained GPT model model = GPT2LMHeadModel.from_pretrained(model_dir) # KoGPT3 shares the same structure as KoGPT2. import torch # move the model to device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) model.eval() # encode the sample sentence sample = "이 편지는 영국에서 최초로 시작되어 일년에 한바퀴 돌면서 받는 사람에게 행운을 주었고 지금은 당신에게로 옮겨진 이 편지는" print(tokenizer.encode(sample)) import torch torch.manual_seed(42) # encode the sample sentence input_ids = tokenizer.encode(sample, add_special_tokens=False, return_tensors="pt") # generate output sequence from the given encoded input sequence output_sequences = model.generate(input_ids=input_ids, do_sample=True, max_length=150, num_return_sequences=3) # decode the output sequence and print its outcome for index, generated_sequence in enumerate(output_sequences): generated_sequence = generated_sequence.tolist() decoded_sequence = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True) print(f"Generated Sequence | Number {index} : {decoded_sequence}") print()
Generated Sequence | Number 0 : 이 편지는 영국에서 최초로 시작되어 일년에 한바퀴 돌면서 받는 사람에게 행운을 주었고 지금은 당신에게로 옮겨진 이 편지는 이 지구 상의 모든 사람에게 복을 주는 것이 된다. 이 편지는 그 내용이 진실되고 당신이 다른 사람에게 복을 주기를 바라는 마음이 담겨져 있다. 그리고 당신의 친구들은 이 편지를 읽고 당신의 행운을 기원해주며 당신에게 다시 연락한다. 마지막으로 당신의 친구들은 이 편지를 읽을 때마다 복을 받길 기원하며 당신에게 행운을 가져다 줄 것이다. 이 우체통에 넣은 편지는 당신이 한밤중에 받아도 좋을 것이다. 그 편지 안에는 당신이 받을 것으로 예상하는 것에 대한 목록이 나와 있다. 그리고 당신이 생각하고 있는 행운에 대한 목록이 있다. 당신에게 좋은 일이나 불행한 일을 예상해보기 바란다. 행운 편지지와 함께 당신이 예상 Generated Sequence | Number 1 : 이 편지는 영국에서 최초로 시작되어 일년에 한바퀴 돌면서 받는 사람에게 행운을 주었고 지금은 당신에게로 옮겨진 이 편지는 지금 당신의 가장 가까운 사람에게 당신의 가장 진실한 사랑을 전하는 편지입니다. ( 내가 가장 아끼는 사람은... ) <unk> 당신이 나의 삶의 가장 큰 행복이랍니다. <unk> 당신이 나의 가장 사랑하는 사람이랍니다. <unk> 나는 당신에게 한평생 좋은 친구가 될 것입니다. <unk> 당신은 나와 우정을 나누면 좋은 친구이고 <unk> 나는 당신에게 일생의 동반자가 될 것입니다. <unk> 당신은 나와 행복할 것이고 나와 슬픔을 나누면 행복할 것입니다. <unk> 당신은 나와 하나가 될 것이고 당신이 바로 나입니다. <unk> 당신은 나의 가장 소중한 친구입니다. <unk> 당신은 나의 Generated Sequence | Number 2 : 이 편지는 영국에서 최초로 시작되어 일년에 한바퀴 돌면서 받는 사람에게 행운을 주었고 지금은 당신에게로 옮겨진 이 편지는 세계에서 가장 많은 사람이 읽어주는 이 편지 중에서 최고의 베스트 셀러가 되었다. '당신이 원하는 모든 것은 당신 안에 있소. 당신의 소망을 들어주는 사람이 있다는 것이 얼마나 행운인지 아나요?' '당신의 마음을 이해하게 된다면 그것만으로도 큰 기쁨이오. 당신은 당신 자신을 위해 무엇을 해야 할까요?" '당신이 원하는 무엇이든 당신이 원하는 것을 하는 사람이 있으면 당신도 그것을 원하오. 당신이 지금 무엇을 해야 하는지는 결코 생각하지도 않으면서도 그것을 바라고 있지 않는 사람을 위한 것은 아무것도 없지.' '당신이 지금 그것을 해야 한다는 것이 무엇을 의미하는지 아나요?' '당신의 인생을 위해서 무엇이든 하시오. 모든
MIT
inference_without_finetune_kogpt_trinity.ipynb
snoop2head/KoGPT-Joong-2
Suport Vector clustering let us learn how to work on svm in sk learn
import pandas as pd from sklearn.datasets import load_iris from matplotlib import pyplot as plt from sklearn.model_selection import train_test_split from sklearn.svm import SVC #importing necessary libraries #loading the iris data set from the sklearn library iris = load_iris() df = pd.DataFrame(iris.data, columns=iris.feature_names) #seperating the data set and getting #ready to get data ready to give input to the model df['target'] = iris.target df['flower_name'] = df.target.apply(lambda x: iris.target_names[x]) X = df.drop(['target', 'flower_name'], axis = 'columns') y = df.target #spliting the data set into 2 for traning and predicting X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.2) #traning the model and provideint the result model = SVC() model.fit(X_train, y_train) #providing the presentage of the correct answer predicted model.score(X_test, y_test)
_____no_output_____
BSD-3-Clause
svc/SVC.ipynb
aswathyaa/Acharya-MachineLearning
new dataframe with one column from each VM
new_df = pd.DataFrame() for index in range(len(dataframes)): diter = dataframes[index] new_df[['net_write_' + diter.dataframeName]] = diter[['net_write']] print(new_df.shape) df = new_df df.describe() df.index df.dtypes df.head()
_____no_output_____
Apache-2.0
time_series/materna_dataset/Materna_PCA.ipynb
sanjosh/machine_learning
Inf columns
df.columns.to_series()[np.isinf(df).any()] df.index[np.isinf(df).any(1)] import numpy as np df.replace([np.inf, -np.inf], np.nan)
_____no_output_____
Apache-2.0
time_series/materna_dataset/Materna_PCA.ipynb
sanjosh/machine_learning
Null columns
df.isnull().values.any() df[df.isnull().any(axis=1)] df = df.interpolate( axis='columns') df.dropna() df.shape
_____no_output_____
Apache-2.0
time_series/materna_dataset/Materna_PCA.ipynb
sanjosh/machine_learning
mean throughput over time per VM
ax = df.mean().plot(grid=False) ### mean throughput across VMs at any time ax = df.T.mean().plot(grid=False)
_____no_output_____
Apache-2.0
time_series/materna_dataset/Materna_PCA.ipynb
sanjosh/machine_learning
multivariate PCAhttps://www.statsmodels.org/stable/examples/notebooks/generated/pca_fertility_factors.html
import statsmodels.api as sm from statsmodels.multivariate.pca import PCA pca_model = PCA(df, standardize=False, demean=True) fig = pca_model.plot_scree(log_scale=False) %matplotlib inline import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(8, 4)) lines = ax.plot(pca_model.factors.iloc[:,:3], lw=4, alpha=.6) ax.set_xticklabels(df.T.columns.values[::10]) ax.set_xlim(0, 51) ax.set_xlabel("time", size=17) fig.subplots_adjust(.1, .1, .85, .9) legend = fig.legend(lines, ['PC 1', 'PC 2', 'PC 3'], loc='center right') legend.draw_frame(False) idx = pca_model.loadings.iloc[:,0].argsort() def make_plot(labels): fig, ax = plt.subplots(figsize=(9,5)) ax = df.loc[labels].T.plot(legend=False, grid=False, ax=ax) df.T.mean().plot(ax=ax, grid=False, label='Mean') ax.set_xlim(0, 51); fig.subplots_adjust(.1, .1, .75, .9) ax.set_xlabel("time", size=17) ax.set_ylabel("vm", size=17); legend = ax.legend(*ax.get_legend_handles_labels(), loc='center left', bbox_to_anchor=(1, .5)) legend.draw_frame(False) labels = df.index[idx[-5:]] make_plot(labels) idx = pca_model.loadings.iloc[:,1].argsort() make_plot(df.index[idx[-5:]]) make_plot(df.index[idx[:5]]) fig, ax = plt.subplots() pca_model.loadings.plot.scatter(x='comp_00',y='comp_01', ax=ax) ax.set_xlabel("PC 1", size=17) ax.set_ylabel("PC 2", size=17) df.index[pca_model.loadings.iloc[:, 1] > .2].values
_____no_output_____
Apache-2.0
time_series/materna_dataset/Materna_PCA.ipynb
sanjosh/machine_learning
Linear Regression with Db2 Stored Procedures Contents:* [1. Introduction](Introduction)* [2. Libraries and Modules](Libraries-and-Modules)* [3. Connect to Db2](Connect-to-Db2)* [4. Data exploration](Data-exploration)* [5. Train/Test Split](Train/Test-Split)* [6. Data transformation](Data-transformation-after-Train/Test-Split)* [7. Train a linear regression model](Train-a-linear-regression-model)* [8. Predict purchase amount for train and test data](Predict-sale-prices-for-test-data)* [9. Evaluate Model Performance](Evaluate-Model-Performance) 1. Introduction Historical customer data for a fictional outdoor equipment store is used in IBM offering tutorials to train the machine learning models. The sample data is structured in rows and columns.**Feature columns**Feature columns are columns that contain the attributes on which the machine learning model will base predictions. In this historical data, there are four feature columns:GENDER: Customer genderAGE: Customer ageMARITAL_STATUS: "Married", "Single", or "Unspecified"PROFESSION: General category of the customer's profession, such "Hospitality" or "Sales", or simply "Other"IS_TENT: Whether or not the customer bought a tentPRODUCT_LINE: The product category in which the customer has been most interested**Label column**PURCHASE_AMOUNT: The average amount of money the customer has spent on each visit to the storeLink: https://dataplatform.cloud.ibm.com/exchange/public/entry/view/aa07a773f71cf1172a349f33e2028e4e 2. Libraries and Modules
import os import sys module_path = os.path.abspath(os.path.join('../lib/')) if module_path not in sys.path: sys.path.append(module_path) import ibm_db import ibm_db_dbi # import ibm_db_sa import pandas as pd import matplotlib.pyplot as plt import numpy as np from InDBMLModules import col_to_row_organize, print_multi_result_set, connect_to_db,\ close_connection_to_db, drop_object, plot_histogram, plot_barchart,\ null_impute_most_freq, null_impute_mean, plot_pred_act %load_ext autoreload %autoreload 2
_____no_output_____
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
3. Connect to Db2
conn_str = "DATABASE=in_db;" + \ "HOSTNAME=*********************;"+ \ "PROTOCOL=TCPIP;" + \ "PORT=*******;" + \ "UID=***;" + \ "PWD=******************;" ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=True) rc = close_connection_to_db(ibm_db_conn, verbose=True)
Connected to the database! Connection is closed.
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
4. Data exploration Create a special schema for this experiment
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG", "SCHEMA", ibm_db_conn, verbose = True) sql ="create schema LINREG authorization MLP" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("Schema LINREG was created.") rc = close_connection_to_db(ibm_db_conn, verbose=False)
Pre-existing SCHEMA LINREG was not found. Schema LINREG was created.
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Collect statistics on the entire dataset by creating the column properties table
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG.GS_COL_PROP", "TABLE", ibm_db_conn, verbose = True) sql = """CALL IDAX.COLUMN_PROPERTIES('intable=DATA.GO_SALES, outtable=LINREG.GS_COL_PROP, withstatistics=true, incolumn=ID:id; PURCHASE_AMOUNT:target')""" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("TABLE LINREG.GS_COL_PROP was created.") rc = close_connection_to_db(ibm_db_conn, verbose=False)
Pre-existing TABLE LINREG.GS_COL_PROP was not found. TABLE LINREG.GS_COL_PROP was created.
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
List columns with any nulls
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) sql = "select COLNO, NAME, TYPE,NUMMISSING,NUMMISSING+NUMINVALID+NUMVALID as ALL_VALUES, dec(NUMMISSING,10,2)/(dec(NUMMISSING, 10,2)+dec(NUMINVALID, 10,2)+dec(NUMVALID, 10,2))*100 as NULL_PERCENTAGE from LINREG.GS_COL_PROP where NUMMISSING > 0" GS_NULL_PREC = pd.read_sql(sql,ibm_db_dbi_conn) print("Column properties table fetched successfully!") rc = close_connection_to_db(ibm_db_conn, verbose=False) GS_NULL_PREC.sort_values('COLNO')
Column properties table fetched successfully!
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Evaluate CONTINIOUS columns using RUNSTATS Plot distribution based on runstats results
numerical_columns = ["AGE"] plot_histogram (numerical_columns,"DATA","GO_SALES",conn_str)
_____no_output_____
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Evaluate NOMINAL columns using RUNSTATS Plot data distribution for nominal columns
nominal_columns = ["GENDER","MARITAL_STATUS","PROFESSION","PRODUCT_LINE","IS_TENT"] plot_barchart (nominal_columns, "DATA", "GO_SALES", conn_str)
_____no_output_____
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Check data skewness using SUMMARY1000 stored procedure
# Create HOUSING_PRICES_SUM1000 table that contains whole dataset feature stats (mean, stdev, freq, etc) ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG.GO_SALES_SUM1000", "TABLE", ibm_db_conn, verbose = True) drop_object("LINREG.GO_SALES_SUM1000_CHAR", "TABLE", ibm_db_conn, verbose = True) drop_object("LINREG.GO_SALES_SUM1000_NUM", "TABLE", ibm_db_conn, verbose = True) sql = "CALL IDAX.SUMMARY1000('intable=DATA.GO_SALES,outtable=LINREG.GO_SALES_SUM1000')" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("SUM1000 tables were created.") sql = "select * from LINREG.GO_SALES_SUM1000_NUM" GO_SALES_SUM1000_NUM = pd.read_sql(sql,ibm_db_dbi_conn) rc = close_connection_to_db(ibm_db_conn, verbose=False) GO_SALES_SUM1000_NUM[["COLUMNNAME", "SKEWNESS"]]
Pre-existing TABLE LINREG.GO_SALES_SUM1000 was not found. Pre-existing TABLE LINREG.GO_SALES_SUM1000_CHAR was not found. Pre-existing TABLE LINREG.GO_SALES_SUM1000_NUM was not found. SUM1000 tables were created.
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
**Observation:**SKEWNESS on numerical columns is negligible. 5. Train/Test Split
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG.GSTRAIN", "TABLE", ibm_db_conn, verbose = True) drop_object("LINREG.GSTEST", "TABLE", ibm_db_conn, verbose = True) sql = "CALL IDAX.SPLIT_DATA('intable = DATA.GO_SALES, id = ID, traintable = LINREG.GSTRAIN, testtable = LINREG.GSTEST, fraction=0.8, seed=1')" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("Dataset splitting was successful!") rc = close_connection_to_db(ibm_db_conn, verbose=False)
Pre-existing TABLE LINREG.GSTRAIN was not found. Pre-existing TABLE LINREG.GSTEST was not found. Dataset splitting was successful!
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
6. Data transformation Get statistics of the train data to be used for transforming the test data Create the SUMMARY1000 table for training dataset
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG.GSTRAIN_STATS", "TABLE", ibm_db_conn, verbose = True) drop_object("LINREG.GSTRAIN_STATS_NUM", "TABLE", ibm_db_conn, verbose = True) drop_object("LINREG.GSTRAIN_STATS_CHAR", "TABLE", ibm_db_conn, verbose = True) sql = """CALL IDAX.SUMMARY1000('intable=LINREG.GSTRAIN,outtable=LINREG.GSTRAIN_STATS')""" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("LINREG.GSTRAIN_STATS, LINREG.GSTRAIN_STATS_NUM, and LINREG.GSTRAIN_STATS_CHAR were created") rc = close_connection_to_db(ibm_db_conn, verbose=False)
Pre-existing TABLE LINREG.GSTRAIN_STATS was not found. Pre-existing TABLE LINREG.GSTRAIN_STATS_NUM was not found. Pre-existing TABLE LINREG.GSTRAIN_STATS_CHAR was not found. LINREG.GSTRAIN_STATS, LINREG.GSTRAIN_STATS_NUM, and LINREG.GSTRAIN_STATS_CHAR were created
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Null imputation Null impute NUMERICAL columns in TRAINING data with mean
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) sql = """CALL IDAX.IMPUTE_DATA('intable=LINREG.GSTRAIN,method=mean,inColumn=AGE');""" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("AGE in LINREG.GSTRAIN null imputed successfully!") rc = close_connection_to_db(ibm_db_conn, verbose=False)
AGE in LINREG.GSTRAIN null imputed successfully!
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Null impute the NOMINAL columns in TRAINING with the most frequent value
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) for column in nominal_columns: null_impute_most_freq ("LINREG", "GSTRAIN", column, "GSTRAIN_STATS",ibm_db_conn, verbose=True) rc = close_connection_to_db(ibm_db_conn, verbose=False)
GENDER in LINREG.GSTRAIN null imputed successfully! MARITAL_STATUS in LINREG.GSTRAIN null imputed successfully! PROFESSION in LINREG.GSTRAIN null imputed successfully! PRODUCT_LINE in LINREG.GSTRAIN null imputed successfully! IS_TENT in LINREG.GSTRAIN null imputed successfully!
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Null impute NUMERICAL column in TEST data with mean
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) for column in numerical_columns: null_impute_mean("LINREG", "GSTEST", column, "GSTRAIN_STATS",ibm_db_conn, verbose=True) rc = close_connection_to_db(ibm_db_conn, verbose=False)
AGE in LINREG.GSTEST null imputed successfully!
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Null impute the NOMINAL columns in TEST data with the most frequent value
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) for column in nominal_columns: null_impute_most_freq ("LINREG", "GSTEST", column, "GSTRAIN_STATS",ibm_db_conn, verbose=True) rc = close_connection_to_db(ibm_db_conn, verbose=False)
GENDER in LINREG.GSTEST null imputed successfully! MARITAL_STATUS in LINREG.GSTEST null imputed successfully! PROFESSION in LINREG.GSTEST null imputed successfully! PRODUCT_LINE in LINREG.GSTEST null imputed successfully! IS_TENT in LINREG.GSTEST null imputed successfully!
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Standardize AGE in training data
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG.GSTRAIN_STD", "TABLE", ibm_db_conn, verbose = True) sql = """CALL IDAX.STD_NORM('intable=LINREG.GSTRAIN, incolumn="GENDER":L;"AGE":S;"MARITAL_STATUS":L;"PROFESSION":L;"IS_TENT":L;"PRODUCT_LINE":L;"PURCHASE_AMOUNT":L, id=ID, outtable=LINREG.GSTRAIN_STD');""" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("LINREG.GSTRAIN_STD was created and AGE column was standardized.") rc = close_connection_to_db(ibm_db_conn, verbose=False)
Pre-existing TABLE LINREG.GSTRAIN_STD was not found. LINREG.GSTRAIN_STD was created and AGE column was standardized.
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Standardize AGE in test data
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG.GSTEST_STD", "TABLE", ibm_db_conn, verbose = True) sql = "CREATE TABLE LINREG.GSTEST_STD AS (SELECT * FROM LINREG.GSTEST) WITH DATA" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print ("Table LINREG.GSTEST_STD was created.") sql = """UPDATE LINREG.GSTEST_STD SET AGE = ((CAST(AGE AS FLOAT) - (SELECT AVERAGE FROM LINREG.GSTRAIN_STATS_NUM WHERE COLUMNNAME='AGE'))/(SELECT STDDEV FROM LINREG.GSTRAIN_STATS_NUM WHERE COLUMNNAME='AGE'))""" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("AGE was standardized in test data successfully!") #renaming AGE to STD_AGE sql = """ALTER TABLE LINREG.GSTEST_STD RENAME COLUMN AGE TO STD_AGE""" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) rc = close_connection_to_db(ibm_db_conn, verbose=False)
Pre-existing TABLE LINREG.GSTEST_STD was not found. Table LINREG.GSTEST_STD was created. AGE was standardized in test data successfully!
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
7. Train a linear regression model Train the model
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG.GSLINREG", "MODEL", ibm_db_conn, verbose = True) sql = """CALL IDAX.LINEAR_REGRESSION('model=LINREG.GSLINREG, intable=LINREG.GSTRAIN_STD, id=ID, target= PURCHASE_AMOUNT, incolumn =GENDER;STD_AGE;MARITAL_STATUS;PROFESSION;IS_TENT;PRODUCT_LINE');""" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("Model trained successfully!") rc = close_connection_to_db(ibm_db_conn, verbose=False)
Pre-existing MODEL LINREG.GSLINREG was not found. Model trained successfully!
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
8. Predict purchase amount for train and test data Create view GSTEST_INPUT from feature columns in GSTEST_STD
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG.GSTEST_INPUT", "VIEW", ibm_db_conn, verbose = True) sql = "CREATE VIEW LINREG.GSTEST_INPUT AS (SELECT ID,GENDER,STD_AGE,MARITAL_STATUS,PROFESSION,IS_TENT,PRODUCT_LINE FROM LINREG.GSTEST_STD)" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("VIEW LINREG.GSTEST_INPUT was created successfuly!") rc = close_connection_to_db(ibm_db_conn, verbose=False)
Pre-existing VIEW LINREG.GSTEST_INPUT was not found. VIEW LINREG.GSTEST_INPUT was created successfuly!
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Predict purchase amounts using IDAX.PREDICT_LINEAR_REGRESSION
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG.GSTEST_OUTPUT", "TABLE", ibm_db_conn, verbose = True) sql = """CALL IDAX.PREDICT_LINEAR_REGRESSION('model=LINREG.GSLINREG, intable=LINREG.GSTEST_INPUT, outtable =LINREG.GSTEST_OUTPUT, id=ID')""" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("LINREG.GSTEST_OUTPUT was created with test results.") rc = close_connection_to_db(ibm_db_conn, verbose=False)
Pre-existing TABLE LINREG.GSTEST_OUTPUT was not found. LINREG.GSTEST_OUTPUT was created with test results.
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Create view GSTRAIN_INPUT from feature columns in GSTRAIN_STD
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG.GSTRAIN_INPUT", "VIEW", ibm_db_conn, verbose = True) sql = "CREATE VIEW LINREG.GSTRAIN_INPUT AS (SELECT ID,GENDER,STD_AGE,MARITAL_STATUS,PROFESSION,IS_TENT,PRODUCT_LINE FROM LINREG.GSTRAIN_STD)" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("VIEW LINREG.GSTRAIN_INPUT was created successfuly!") rc = close_connection_to_db(ibm_db_conn, verbose=False)
Pre-existing VIEW LINREG.GSTRAIN_INPUT was not found. VIEW LINREG.GSTRAIN_INPUT was created successfuly!
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Predict purchase amounts using IDAX.PREDICT_LINEAR_REGRESSION
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) drop_object("LINREG.GSTRAIN_OUTPUT", "TABLE", ibm_db_conn, verbose = True) sql = """CALL IDAX.PREDICT_LINEAR_REGRESSION('model=LINREG.GSLINREG, intable=LINREG.GSTRAIN_INPUT, outtable =LINREG.GSTRAIN_OUTPUT, id=ID')""" stmt = ibm_db.exec_immediate(ibm_db_conn, sql) print("LINREG.GSTEST_OUTPUT was created with train results.") rc = close_connection_to_db(ibm_db_conn, verbose=False)
Pre-existing TABLE LINREG.GSTRAIN_OUTPUT was not found. LINREG.GSTEST_OUTPUT was created with train results.
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
9. Evaluate Model Performance Evaluate model performance on TRAINING data
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) print("Training performance: ") sql = """CALL IDAX.MSE('intable= LINREG.GSTRAIN_STD, id = ID, target = PURCHASE_AMOUNT, resulttable=LINREG.GSTRAIN_OUTPUT, resultid=ID, resulttarget=PURCHASE_AMOUNT')""" print_multi_result_set(ibm_db_conn, sql) sql = """CALL IDAX.MAE('intable= LINREG.GSTRAIN_STD, id = ID, target = PURCHASE_AMOUNT, resulttable=LINREG.GSTRAIN_OUTPUT, resultid=ID, resulttarget=PURCHASE_AMOUNT')""" print_multi_result_set(ibm_db_conn, sql) rc = close_connection_to_db(ibm_db_conn, verbose=False)
Training performance: {'MSE': 98.36862842452432} {'MAE': 7.5297574998766}
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Evaluate model performance on TEST data
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) print("Test performance: ") sql = """CALL IDAX.MSE('intable= LINREG.GSTEST_STD, id = ID, target = PURCHASE_AMOUNT, resulttable=LINREG.GSTEST_OUTPUT, resultid=ID, resulttarget=PURCHASE_AMOUNT')""" print_multi_result_set(ibm_db_conn, sql) sql = """CALL IDAX.MAE('intable= LINREG.GSTEST_STD, id = ID, target = PURCHASE_AMOUNT, resulttable=LINREG.GSTEST_OUTPUT, resultid=ID, resulttarget=PURCHASE_AMOUNT')""" print_multi_result_set(ibm_db_conn, sql) rc = close_connection_to_db(ibm_db_conn, verbose=False)
Test performance: {'MSE': 97.53595615684684} {'MAE': 7.461251686160011}
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
**Observations:*** Mean absolute error on test data is 7.46 -> Model predicts with a fairly good accuracy.* Performance is consistent for Training and Test datasets -> Model is not overfitting the training set. Visually evaluate model performance
ibm_db_conn, ibm_db_dbi_conn = connect_to_db(conn_str, verbose=False) sql = """select ACT.ID, ACT.PURCHASE_AMOUNT AS ACTUAL, PRED.PURCHASE_AMOUNT AS PREDICTION from LINREG.GSTEST_STD AS ACT, LINREG.GSTEST_OUTPUT AS PRED where ACT.ID = PRED.ID""" GSTEST_ACT_PRED = pd.read_sql(sql,ibm_db_dbi_conn) rc = close_connection_to_db(ibm_db_conn, verbose=False) act = GSTEST_ACT_PRED.ACTUAL.values pred = GSTEST_ACT_PRED.PREDICTION.values plot_pred_act(pred,act,"Purchase Amount Prediction Performance on Test Data", "Actual", "Prediction")
_____no_output_____
Apache-2.0
In_Db2_Machine_Learning/Building ML Models with Db2/Notebooks/Regression_Demo.ipynb
ibmmichaelschapira/db2-samples
Copyright 2018 The AdaNet Authors.
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
_____no_output_____
Apache-2.0
adanet/examples/tutorials/adanet_objective.ipynb
sararob/adanet
The AdaNet objective Run in Google Colab View source on GitHub One of key contributions from *AdaNet: Adaptive Structural Learning of NeuralNetworks* [[Cortes et al., ICML 2017](https://arxiv.org/abs/1607.01097)] isdefining an algorithm that aims to directly minimize the DeepBoostgeneralization bound from *Deep Boosting*[[Cortes et al., ICML 2014](http://proceedings.mlr.press/v32/cortesb14.pdf)]when applied to neural networks. This algorithm, called **AdaNet**, adaptivelygrows a neural network as an ensemble of subnetworks that minimizes the AdaNetobjective (a.k.a. AdaNet loss):$$F(w) = \frac{1}{m} \sum_{i=1}^{m} \Phi \left(\sum_{j=1}^{N}w_jh_j(x_i), y_i \right) + \sum_{j=1}^{N} \left(\lambda r(h_j) + \beta \right) |w_j| $$where $w$ is the set of mixture weights, one per subnetwork $h$,$\Phi$ is a surrogate loss function such as logistic loss or MSE, $r$ is afunction for measuring a subnetwork's complexity, and $\lambda$ and $\beta$are hyperparameters. Mixture weightsSo what are mixture weights? When forming an ensemble $f$ of subnetworks $h$,we need to somehow combine the their predictions. This is done by multiplyingthe outputs of subnetwork $h_i$ with mixture weight $w_i$, and summing theresults:$$f(x) = \sum_{j=1}^{N}w_jh_j(x)$$In practice, most commonly used set of mixture weight is **uniform averageweighting**:$$f(x) = \frac{1}{N}\sum_{j=1}^{N}h_j(x)$$However, we can also solve a convex optimization problem to learn the mixtureweights that minimize the loss function $\Phi$:$$F(w) = \frac{1}{m} \sum_{i=1}^{m} \Phi \left(\sum_{j=1}^{N}w_jh_j(x_i), y_i \right)$$This is the first term in the AdaNet objective. The second term applies L1regularization to the mixture weights:$$\sum_{j=1}^{N} \left(\lambda r(h_j) + \beta \right) |w_j|$$When $\lambda > 0$ this penalty serves to prevent the optimization fromassigning too much weight to more complex subnetworks according to thecomplexity measure function $r$. How AdaNet uses the objectiveThis objective function serves two purposes:1. To **learn to scale/transform the outputs of each subnetwork $h$** as part of the ensemble.2. To **select the best candidate subnetwork $h$** at each AdaNet iteration to include in the ensemble.Effectively, when learning mixture weights $w$, AdaNet solves a convexcombination of the outputs of the frozen subnetworks $h$. For $\lambda >0$,AdaNet penalizes more complex subnetworks with greater L1 regularization ontheir mixture weight, and will be less likely to select more complex subnetworksto add to the ensemble at each iteration.In this tutorial, in you will observe the benefits of using AdaNet to learn theensemble's mixture weights and to perform candidate selection.
# If you're running this in Colab, first install the adanet package: !pip install adanet from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import adanet import tensorflow as tf # The random seed to use. RANDOM_SEED = 42
_____no_output_____
Apache-2.0
adanet/examples/tutorials/adanet_objective.ipynb
sararob/adanet
Boston Housing datasetIn this example, we will solve a regression task known as the [Boston Housing dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the price of suburban houses in Boston, MA in the 1970s. There are 13 numerical features, the labels are in thousands of dollars, and there are only 506 examples. Download the dataConveniently, the data is available via Keras:
(x_train, y_train), (x_test, y_test) = ( tf.keras.datasets.boston_housing.load_data()) # Preview the first example from the training data print('Model inputs: %s \n' % x_train[0]) print('Model output (house price): $%s ' % (y_train[0] * 1000))
Model inputs: [ 1.23247 0. 8.14 0. 0.538 6.142 91.7 3.9769 4. 307. 21. 396.9 18.72 ] Model output (house price): $15200.0
Apache-2.0
adanet/examples/tutorials/adanet_objective.ipynb
sararob/adanet
Supply the data in TensorFlowOur first task is to supply the data in TensorFlow. Using thetf.estimator.Estimator convention, we will define a function that returns aninput_fn which returns feature and label Tensors.We will also use the tf.data.Dataset API to feed the data into our models.Also, as a preprocessing step, we will apply `tf.log1p` to log-scale thefeatures and labels for improved numerical stability during training. To recoverthe model's predictions in the correct scale, you can apply `tf.math.expm1` to theprediction.
FEATURES_KEY = "x" def input_fn(partition, training, batch_size): """Generate an input function for the Estimator.""" def _input_fn(): if partition == "train": dataset = tf.data.Dataset.from_tensor_slices(({ FEATURES_KEY: tf.log1p(x_train) }, tf.log1p(y_train))) else: dataset = tf.data.Dataset.from_tensor_slices(({ FEATURES_KEY: tf.log1p(x_test) }, tf.log1p(y_test))) # We call repeat after shuffling, rather than before, to prevent separate # epochs from blending together. if training: dataset = dataset.shuffle(10 * batch_size, seed=RANDOM_SEED).repeat() dataset = dataset.batch(batch_size) iterator = dataset.make_one_shot_iterator() features, labels = iterator.get_next() return features, labels return _input_fn
_____no_output_____
Apache-2.0
adanet/examples/tutorials/adanet_objective.ipynb
sararob/adanet
Define the subnetwork generatorLet's define a subnetwork generator similar to the one in[[Cortes et al., ICML 2017](https://arxiv.org/abs/1607.01097)] and in`simple_dnn.py` which creates two candidate fully-connected neural networks ateach iteration with the same width, but one an additional hidden layer. To makeour generator *adaptive*, each subnetwork will have at least the same numberof hidden layers as the most recently added subnetwork to the`previous_ensemble`.We define the complexity measure function $r$ to be $r(h) = \sqrt{d(h)}$, where$d$ is the number of hidden layers in the neural network $h$, to approximate theRademacher bounds from[[Golowich et. al, 2017](https://arxiv.org/abs/1712.06541)]. So subnetworkswith more hidden layers, and therefore more capacity, will have more heavilyregularized mixture weights.
_NUM_LAYERS_KEY = "num_layers" class _SimpleDNNBuilder(adanet.subnetwork.Builder): """Builds a DNN subnetwork for AdaNet.""" def __init__(self, optimizer, layer_size, num_layers, learn_mixture_weights, seed): """Initializes a `_DNNBuilder`. Args: optimizer: An `Optimizer` instance for training both the subnetwork and the mixture weights. layer_size: The number of nodes to output at each hidden layer. num_layers: The number of hidden layers. learn_mixture_weights: Whether to solve a learning problem to find the best mixture weights, or use their default value according to the mixture weight type. When `False`, the subnetworks will return a no_op for the mixture weight train op. seed: A random seed. Returns: An instance of `_SimpleDNNBuilder`. """ self._optimizer = optimizer self._layer_size = layer_size self._num_layers = num_layers self._learn_mixture_weights = learn_mixture_weights self._seed = seed def build_subnetwork(self, features, logits_dimension, training, iteration_step, summary, previous_ensemble=None): """See `adanet.subnetwork.Builder`.""" input_layer = tf.to_float(features[FEATURES_KEY]) kernel_initializer = tf.glorot_uniform_initializer(seed=self._seed) last_layer = input_layer for _ in range(self._num_layers): last_layer = tf.layers.dense( last_layer, units=self._layer_size, activation=tf.nn.relu, kernel_initializer=kernel_initializer) logits = tf.layers.dense( last_layer, units=logits_dimension, kernel_initializer=kernel_initializer) persisted_tensors = {_NUM_LAYERS_KEY: tf.constant(self._num_layers)} return adanet.Subnetwork( last_layer=last_layer, logits=logits, complexity=self._measure_complexity(), persisted_tensors=persisted_tensors) def _measure_complexity(self): """Approximates Rademacher complexity as the square-root of the depth.""" return tf.sqrt(tf.to_float(self._num_layers)) def build_subnetwork_train_op(self, subnetwork, loss, var_list, labels, iteration_step, summary, previous_ensemble): """See `adanet.subnetwork.Builder`.""" return self._optimizer.minimize(loss=loss, var_list=var_list) def build_mixture_weights_train_op(self, loss, var_list, logits, labels, iteration_step, summary): """See `adanet.subnetwork.Builder`.""" if not self._learn_mixture_weights: return tf.no_op() return self._optimizer.minimize(loss=loss, var_list=var_list) @property def name(self): """See `adanet.subnetwork.Builder`.""" if self._num_layers == 0: # A DNN with no hidden layers is a linear model. return "linear" return "{}_layer_dnn".format(self._num_layers) class SimpleDNNGenerator(adanet.subnetwork.Generator): """Generates a two DNN subnetworks at each iteration. The first DNN has an identical shape to the most recently added subnetwork in `previous_ensemble`. The second has the same shape plus one more dense layer on top. This is similar to the adaptive network presented in Figure 2 of [Cortes et al. ICML 2017](https://arxiv.org/abs/1607.01097), without the connections to hidden layers of networks from previous iterations. """ def __init__(self, optimizer, layer_size=32, learn_mixture_weights=False, seed=None): """Initializes a DNN `Generator`. Args: optimizer: An `Optimizer` instance for training both the subnetwork and the mixture weights. layer_size: Number of nodes in each hidden layer of the subnetwork candidates. Note that this parameter is ignored in a DNN with no hidden layers. learn_mixture_weights: Whether to solve a learning problem to find the best mixture weights, or use their default value according to the mixture weight type. When `False`, the subnetworks will return a no_op for the mixture weight train op. seed: A random seed. Returns: An instance of `Generator`. """ self._seed = seed self._dnn_builder_fn = functools.partial( _SimpleDNNBuilder, optimizer=optimizer, layer_size=layer_size, learn_mixture_weights=learn_mixture_weights) def generate_candidates(self, previous_ensemble, iteration_number, previous_ensemble_reports, all_reports): """See `adanet.subnetwork.Generator`.""" num_layers = 0 seed = self._seed if previous_ensemble: num_layers = tf.contrib.util.constant_value( previous_ensemble.weighted_subnetworks[ -1].subnetwork.persisted_tensors[_NUM_LAYERS_KEY]) if seed is not None: seed += iteration_number return [ self._dnn_builder_fn(num_layers=num_layers, seed=seed), self._dnn_builder_fn(num_layers=num_layers + 1, seed=seed), ]
_____no_output_____
Apache-2.0
adanet/examples/tutorials/adanet_objective.ipynb
sararob/adanet
Train and evaluateNext we create an `adanet.Estimator` using the `SimpleDNNGenerator` we just defined.In this section we will show the effects of two hyperparamters: **learning mixture weights** and **complexity regularization**.On the righthand side you will be able to play with the hyperparameters of this model. Until you reach the end of this section, we ask that you not change them. At first we will not learn the mixture weights, using their default initial value. Here they will be scalars initialized to $1/N$ where $N$ is the number of subnetworks in the ensemble, effectively creating a **uniform average ensemble**.
#@title AdaNet parameters LEARNING_RATE = 0.001 #@param {type:"number"} TRAIN_STEPS = 100000 #@param {type:"integer"} BATCH_SIZE = 32 #@param {type:"integer"} LEARN_MIXTURE_WEIGHTS = False #@param {type:"boolean"} ADANET_LAMBDA = 0 #@param {type:"number"} BOOSTING_ITERATIONS = 5 #@param {type:"integer"} def train_and_evaluate(learn_mixture_weights=LEARN_MIXTURE_WEIGHTS, adanet_lambda=ADANET_LAMBDA): """Trains an `adanet.Estimator` to predict housing prices.""" estimator = adanet.Estimator( # Since we are predicting housing prices, we'll use a regression # head that optimizes for MSE. head=tf.contrib.estimator.regression_head( loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE), # Define the generator, which defines our search space of subnetworks # to train as candidates to add to the final AdaNet model. subnetwork_generator=SimpleDNNGenerator( optimizer=tf.train.RMSPropOptimizer(learning_rate=LEARNING_RATE), learn_mixture_weights=learn_mixture_weights, seed=RANDOM_SEED), # Lambda is a the strength of complexity regularization. A larger # value will penalize more complex subnetworks. adanet_lambda=adanet_lambda, # The number of train steps per iteration. max_iteration_steps=TRAIN_STEPS // BOOSTING_ITERATIONS, # The evaluator will evaluate the model on the full training set to # compute the overall AdaNet loss (train loss + complexity # regularization) to select the best candidate to include in the # final AdaNet model. evaluator=adanet.Evaluator( input_fn=input_fn("train", training=False, batch_size=BATCH_SIZE)), # Configuration for Estimators. config=tf.estimator.RunConfig( save_checkpoints_steps=50000, save_summary_steps=50000, tf_random_seed=RANDOM_SEED)) # Train and evaluate using using the tf.estimator tooling. train_spec = tf.estimator.TrainSpec( input_fn=input_fn("train", training=True, batch_size=BATCH_SIZE), max_steps=TRAIN_STEPS) eval_spec = tf.estimator.EvalSpec( input_fn=input_fn("test", training=False, batch_size=BATCH_SIZE), steps=None) return tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) def ensemble_architecture(result): """Extracts the ensemble architecture from evaluation results.""" architecture = result["architecture/adanet/ensembles"] # The architecture is a serialized Summary proto for TensorBoard. summary_proto = tf.summary.Summary.FromString(architecture) return summary_proto.value[0].tensor.string_val[0] results, _ = train_and_evaluate() print("Loss:", results["average_loss"]) print("Architecture:", ensemble_architecture(results))
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpBX73lD INFO:tensorflow:Using config: {'_save_checkpoints_secs': None, '_num_ps_replicas': 0, '_keep_checkpoint_max': 5, '_task_type': 'worker', '_global_id_in_cluster': 0, '_is_chief': True, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f27c3980390>, '_model_dir': '/tmp/tmpBX73lD', '_protocol': None, '_save_checkpoints_steps': 50000, '_keep_checkpoint_every_n_hours': 10000, '_service': None, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_tf_random_seed': 42, '_save_summary_steps': 50000, '_device_fn': None, '_experimental_distribute': None, '_num_worker_replicas': 1, '_task_id': 0, '_log_step_count_steps': 100, '_evaluation_master': '', '_eval_distribute': None, '_train_distribute': None, '_master': ''} INFO:tensorflow:Not using Distribute Coordinator. INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 50000 or save_checkpoints_secs None. INFO:tensorflow:Beginning training AdaNet iteration 0 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Building iteration 0 INFO:tensorflow:Building subnetwork 'linear' WARNING:tensorflow:From <ipython-input-15-6099e5c14e79>:60: calling __new__ (from adanet.core.subnetwork.generator) with persisted_tensors is deprecated and will be removed in a future version. Instructions for updating: `persisted_tensors` is deprecated, please use `shared` instead. INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpBX73lD/model.ckpt. INFO:tensorflow:loss = 21.773132, step = 1 INFO:tensorflow:global_step/sec: 218.829 INFO:tensorflow:loss = 0.647101, step = 101 (0.458 sec) INFO:tensorflow:global_step/sec: 600.6 INFO:tensorflow:loss = 0.58654284, step = 201 (0.166 sec) INFO:tensorflow:global_step/sec: 507.035 INFO:tensorflow:loss = 0.07683488, step = 301 (0.197 sec) INFO:tensorflow:global_step/sec: 561.539 INFO:tensorflow:loss = 0.08281773, step = 401 (0.178 sec) INFO:tensorflow:global_step/sec: 550.797 INFO:tensorflow:loss = 0.08148783, step = 501 (0.182 sec) INFO:tensorflow:global_step/sec: 532.507 INFO:tensorflow:loss = 0.056522045, step = 601 (0.188 sec) INFO:tensorflow:global_step/sec: 546.83 INFO:tensorflow:loss = 0.025881847, step = 701 (0.183 sec) INFO:tensorflow:global_step/sec: 533.994 INFO:tensorflow:loss = 0.030095275, step = 801 (0.187 sec) INFO:tensorflow:global_step/sec: 580.347 INFO:tensorflow:loss = 0.03755435, step = 901 (0.172 sec) INFO:tensorflow:global_step/sec: 524.546 INFO:tensorflow:loss = 0.06690027, step = 1001 (0.191 sec) INFO:tensorflow:global_step/sec: 539.782 INFO:tensorflow:loss = 0.036151223, step = 1101 (0.185 sec) INFO:tensorflow:global_step/sec: 554.345 INFO:tensorflow:loss = 0.05018542, step = 1201 (0.180 sec) INFO:tensorflow:global_step/sec: 580.845 INFO:tensorflow:loss = 0.09921485, step = 1301 (0.172 sec) INFO:tensorflow:global_step/sec: 562.908 INFO:tensorflow:loss = 0.026417136, step = 1401 (0.178 sec) INFO:tensorflow:global_step/sec: 558.397 INFO:tensorflow:loss = 0.020782702, step = 1501 (0.179 sec) INFO:tensorflow:global_step/sec: 545.393 INFO:tensorflow:loss = 0.031655625, step = 1601 (0.183 sec) INFO:tensorflow:global_step/sec: 557.737 INFO:tensorflow:loss = 0.041417748, step = 1701 (0.180 sec) INFO:tensorflow:global_step/sec: 572.938 INFO:tensorflow:loss = 0.035113975, step = 1801 (0.174 sec) INFO:tensorflow:global_step/sec: 548.576 INFO:tensorflow:loss = 0.044721745, step = 1901 (0.182 sec) INFO:tensorflow:global_step/sec: 556.57 INFO:tensorflow:loss = 0.029930526, step = 2001 (0.180 sec) INFO:tensorflow:global_step/sec: 556.449 INFO:tensorflow:loss = 0.04725881, step = 2101 (0.179 sec) INFO:tensorflow:global_step/sec: 563.86 INFO:tensorflow:loss = 0.024880443, step = 2201 (0.178 sec) INFO:tensorflow:global_step/sec: 562.158 INFO:tensorflow:loss = 0.024809971, step = 2301 (0.178 sec) INFO:tensorflow:global_step/sec: 572.017 INFO:tensorflow:loss = 0.022308439, step = 2401 (0.175 sec) INFO:tensorflow:global_step/sec: 549.26 INFO:tensorflow:loss = 0.047627836, step = 2501 (0.182 sec) INFO:tensorflow:global_step/sec: 571.579 INFO:tensorflow:loss = 0.031944193, step = 2601 (0.175 sec) INFO:tensorflow:global_step/sec: 582.499 INFO:tensorflow:loss = 0.033454694, step = 2701 (0.171 sec) INFO:tensorflow:global_step/sec: 558.372 INFO:tensorflow:loss = 0.0144810015, step = 2801 (0.179 sec) INFO:tensorflow:global_step/sec: 519.988 INFO:tensorflow:loss = 0.031083355, step = 2901 (0.192 sec) INFO:tensorflow:global_step/sec: 560.406 INFO:tensorflow:loss = 0.026340073, step = 3001 (0.179 sec) INFO:tensorflow:global_step/sec: 539.284 INFO:tensorflow:loss = 0.026516797, step = 3101 (0.185 sec) INFO:tensorflow:global_step/sec: 501.253 INFO:tensorflow:loss = 0.027183983, step = 3201 (0.200 sec) INFO:tensorflow:global_step/sec: 572.866 INFO:tensorflow:loss = 0.03581643, step = 3301 (0.174 sec) INFO:tensorflow:global_step/sec: 551.779 INFO:tensorflow:loss = 0.02551708, step = 3401 (0.181 sec) INFO:tensorflow:global_step/sec: 580.602 INFO:tensorflow:loss = 0.04934936, step = 3501 (0.172 sec) INFO:tensorflow:global_step/sec: 554.77 INFO:tensorflow:loss = 0.024015218, step = 3601 (0.180 sec) INFO:tensorflow:global_step/sec: 535.117 INFO:tensorflow:loss = 0.01724116, step = 3701 (0.187 sec) INFO:tensorflow:global_step/sec: 601.895 INFO:tensorflow:loss = 0.02012146, step = 3801 (0.166 sec) INFO:tensorflow:global_step/sec: 522.764 INFO:tensorflow:loss = 0.021484248, step = 3901 (0.194 sec) INFO:tensorflow:global_step/sec: 583.07 INFO:tensorflow:loss = 0.037488047, step = 4001 (0.169 sec) INFO:tensorflow:global_step/sec: 554.139 INFO:tensorflow:loss = 0.0400841, step = 4101 (0.180 sec) INFO:tensorflow:global_step/sec: 577.945 INFO:tensorflow:loss = 0.021273054, step = 4201 (0.173 sec) INFO:tensorflow:global_step/sec: 549.055 INFO:tensorflow:loss = 0.033386715, step = 4301 (0.182 sec) INFO:tensorflow:global_step/sec: 546.14 INFO:tensorflow:loss = 0.03614325, step = 4401 (0.183 sec) INFO:tensorflow:global_step/sec: 480.381 INFO:tensorflow:loss = 0.039583392, step = 4501 (0.208 sec) INFO:tensorflow:global_step/sec: 573.411 INFO:tensorflow:loss = 0.03670223, step = 4601 (0.175 sec) INFO:tensorflow:global_step/sec: 539.371 INFO:tensorflow:loss = 0.05008475, step = 4701 (0.186 sec) INFO:tensorflow:global_step/sec: 540.658 INFO:tensorflow:loss = 0.043987878, step = 4801 (0.185 sec) INFO:tensorflow:global_step/sec: 591.149 INFO:tensorflow:loss = 0.023454443, step = 4901 (0.172 sec) INFO:tensorflow:global_step/sec: 544.102 INFO:tensorflow:loss = 0.014781421, step = 5001 (0.181 sec) INFO:tensorflow:global_step/sec: 556.3 INFO:tensorflow:loss = 0.020877514, step = 5101 (0.179 sec) INFO:tensorflow:global_step/sec: 575.229 INFO:tensorflow:loss = 0.02810637, step = 5201 (0.174 sec) INFO:tensorflow:global_step/sec: 561.574 INFO:tensorflow:loss = 0.044017207, step = 5301 (0.178 sec) INFO:tensorflow:global_step/sec: 532.629 INFO:tensorflow:loss = 0.015634824, step = 5401 (0.188 sec) INFO:tensorflow:global_step/sec: 531.386 INFO:tensorflow:loss = 0.017649807, step = 5501 (0.188 sec) INFO:tensorflow:global_step/sec: 564.461 INFO:tensorflow:loss = 0.026881127, step = 5601 (0.177 sec) INFO:tensorflow:global_step/sec: 554.017 INFO:tensorflow:loss = 0.025159126, step = 5701 (0.180 sec) INFO:tensorflow:global_step/sec: 544.728 INFO:tensorflow:loss = 0.03226287, step = 5801 (0.184 sec) INFO:tensorflow:global_step/sec: 587.082 INFO:tensorflow:loss = 0.014366589, step = 5901 (0.170 sec) INFO:tensorflow:global_step/sec: 567.489 INFO:tensorflow:loss = 0.02068457, step = 6001 (0.176 sec) INFO:tensorflow:global_step/sec: 559.756 INFO:tensorflow:loss = 0.03591814, step = 6101 (0.178 sec) INFO:tensorflow:global_step/sec: 555.843 INFO:tensorflow:loss = 0.052825674, step = 6201 (0.180 sec) INFO:tensorflow:global_step/sec: 585.148 INFO:tensorflow:loss = 0.02681419, step = 6301 (0.171 sec) INFO:tensorflow:global_step/sec: 573.957 INFO:tensorflow:loss = 0.035378102, step = 6401 (0.174 sec) INFO:tensorflow:global_step/sec: 554.272 INFO:tensorflow:loss = 0.041909285, step = 6501 (0.180 sec) INFO:tensorflow:global_step/sec: 570.554 INFO:tensorflow:loss = 0.02528148, step = 6601 (0.175 sec) INFO:tensorflow:global_step/sec: 578.784 INFO:tensorflow:loss = 0.020565271, step = 6701 (0.173 sec) INFO:tensorflow:global_step/sec: 561.808 INFO:tensorflow:loss = 0.020750936, step = 6801 (0.178 sec) INFO:tensorflow:global_step/sec: 556.526 INFO:tensorflow:loss = 0.016550815, step = 6901 (0.180 sec) INFO:tensorflow:global_step/sec: 529.358 INFO:tensorflow:loss = 0.02629447, step = 7001 (0.189 sec) INFO:tensorflow:global_step/sec: 550.61 INFO:tensorflow:loss = 0.025629781, step = 7101 (0.181 sec) INFO:tensorflow:global_step/sec: 553.235 INFO:tensorflow:loss = 0.017876446, step = 7201 (0.181 sec) INFO:tensorflow:global_step/sec: 555.371 INFO:tensorflow:loss = 0.04798486, step = 7301 (0.180 sec) INFO:tensorflow:global_step/sec: 542.376 INFO:tensorflow:loss = 0.025404511, step = 7401 (0.185 sec) INFO:tensorflow:global_step/sec: 571.161 INFO:tensorflow:loss = 0.02567752, step = 7501 (0.175 sec) INFO:tensorflow:global_step/sec: 560.686 INFO:tensorflow:loss = 0.012580611, step = 7601 (0.178 sec) INFO:tensorflow:global_step/sec: 556.316 INFO:tensorflow:loss = 0.022672791, step = 7701 (0.180 sec) INFO:tensorflow:global_step/sec: 566.454 INFO:tensorflow:loss = 0.019256786, step = 7801 (0.176 sec) INFO:tensorflow:global_step/sec: 567.579 INFO:tensorflow:loss = 0.017491028, step = 7901 (0.176 sec) INFO:tensorflow:global_step/sec: 581.216 INFO:tensorflow:loss = 0.025461707, step = 8001 (0.172 sec) INFO:tensorflow:global_step/sec: 538.387 INFO:tensorflow:loss = 0.02162715, step = 8101 (0.186 sec) INFO:tensorflow:global_step/sec: 561.848 INFO:tensorflow:loss = 0.038915493, step = 8201 (0.178 sec) INFO:tensorflow:global_step/sec: 543.239 INFO:tensorflow:loss = 0.02371198, step = 8301 (0.184 sec) INFO:tensorflow:global_step/sec: 560.416 INFO:tensorflow:loss = 0.04633055, step = 8401 (0.178 sec) INFO:tensorflow:global_step/sec: 559.936 INFO:tensorflow:loss = 0.020572973, step = 8501 (0.179 sec) INFO:tensorflow:global_step/sec: 583.761 INFO:tensorflow:loss = 0.029029911, step = 8601 (0.172 sec) INFO:tensorflow:global_step/sec: 549.496 INFO:tensorflow:loss = 0.022643939, step = 8701 (0.182 sec) INFO:tensorflow:global_step/sec: 575.486 INFO:tensorflow:loss = 0.036244065, step = 8801 (0.174 sec) INFO:tensorflow:global_step/sec: 557.955 INFO:tensorflow:loss = 0.054826558, step = 8901 (0.179 sec) INFO:tensorflow:global_step/sec: 562.015 INFO:tensorflow:loss = 0.042737592, step = 9001 (0.178 sec) INFO:tensorflow:global_step/sec: 562.949 INFO:tensorflow:loss = 0.020140037, step = 9101 (0.178 sec) INFO:tensorflow:global_step/sec: 539.66 INFO:tensorflow:loss = 0.035308473, step = 9201 (0.185 sec) INFO:tensorflow:global_step/sec: 555.454 INFO:tensorflow:loss = 0.0140126925, step = 9301 (0.180 sec) INFO:tensorflow:global_step/sec: 567.627 INFO:tensorflow:loss = 0.017350888, step = 9401 (0.176 sec) INFO:tensorflow:global_step/sec: 560.102 INFO:tensorflow:loss = 0.036257066, step = 9501 (0.179 sec) INFO:tensorflow:global_step/sec: 565.042 INFO:tensorflow:loss = 0.03181795, step = 9601 (0.177 sec) INFO:tensorflow:global_step/sec: 559.67 INFO:tensorflow:loss = 0.011875551, step = 9701 (0.179 sec) INFO:tensorflow:global_step/sec: 552.605 INFO:tensorflow:loss = 0.021412933, step = 9801 (0.181 sec) INFO:tensorflow:global_step/sec: 566.807 INFO:tensorflow:loss = 0.022191094, step = 9901 (0.176 sec) INFO:tensorflow:global_step/sec: 543.934 INFO:tensorflow:loss = 0.029810011, step = 10001 (0.184 sec) INFO:tensorflow:global_step/sec: 576.352 INFO:tensorflow:loss = 0.021032713, step = 10101 (0.173 sec) INFO:tensorflow:global_step/sec: 574.218 INFO:tensorflow:loss = 0.043715518, step = 10201 (0.174 sec) INFO:tensorflow:global_step/sec: 563.383 INFO:tensorflow:loss = 0.031914454, step = 10301 (0.178 sec) INFO:tensorflow:global_step/sec: 564.284 INFO:tensorflow:loss = 0.03337904, step = 10401 (0.177 sec) INFO:tensorflow:global_step/sec: 574.841 INFO:tensorflow:loss = 0.038901534, step = 10501 (0.174 sec) INFO:tensorflow:global_step/sec: 553.689 INFO:tensorflow:loss = 0.025083914, step = 10601 (0.180 sec) INFO:tensorflow:global_step/sec: 564.687 INFO:tensorflow:loss = 0.012228267, step = 10701 (0.177 sec) INFO:tensorflow:global_step/sec: 569.743 INFO:tensorflow:loss = 0.021361638, step = 10801 (0.176 sec) INFO:tensorflow:global_step/sec: 558.066 INFO:tensorflow:loss = 0.026665423, step = 10901 (0.179 sec) INFO:tensorflow:global_step/sec: 536.901 INFO:tensorflow:loss = 0.009950843, step = 11001 (0.186 sec) INFO:tensorflow:global_step/sec: 530.648 INFO:tensorflow:loss = 0.027443334, step = 11101 (0.188 sec) INFO:tensorflow:global_step/sec: 542.149 INFO:tensorflow:loss = 0.013024814, step = 11201 (0.184 sec) INFO:tensorflow:global_step/sec: 569.444 INFO:tensorflow:loss = 0.041840516, step = 11301 (0.176 sec) INFO:tensorflow:global_step/sec: 569.674 INFO:tensorflow:loss = 0.017739808, step = 11401 (0.176 sec) INFO:tensorflow:global_step/sec: 568.689 INFO:tensorflow:loss = 0.059714716, step = 11501 (0.176 sec) INFO:tensorflow:global_step/sec: 581.913 INFO:tensorflow:loss = 0.014170061, step = 11601 (0.172 sec) INFO:tensorflow:global_step/sec: 587.987 INFO:tensorflow:loss = 0.024093378, step = 11701 (0.170 sec) INFO:tensorflow:global_step/sec: 571.542 INFO:tensorflow:loss = 0.013223974, step = 11801 (0.175 sec) INFO:tensorflow:global_step/sec: 590.298 INFO:tensorflow:loss = 0.035453733, step = 11901 (0.169 sec) INFO:tensorflow:global_step/sec: 542.95 INFO:tensorflow:loss = 0.024634361, step = 12001 (0.184 sec) INFO:tensorflow:global_step/sec: 559.4 INFO:tensorflow:loss = 0.014634531, step = 12101 (0.179 sec) INFO:tensorflow:global_step/sec: 559.622 INFO:tensorflow:loss = 0.010114573, step = 12201 (0.179 sec) INFO:tensorflow:global_step/sec: 590.016 INFO:tensorflow:loss = 0.018301172, step = 12301 (0.170 sec) INFO:tensorflow:global_step/sec: 571.893 INFO:tensorflow:loss = 0.016491232, step = 12401 (0.175 sec) INFO:tensorflow:global_step/sec: 560.164 INFO:tensorflow:loss = 0.023242606, step = 12501 (0.179 sec) INFO:tensorflow:global_step/sec: 535.277 INFO:tensorflow:loss = 0.021020273, step = 12601 (0.187 sec) INFO:tensorflow:global_step/sec: 574.835 INFO:tensorflow:loss = 0.018893082, step = 12701 (0.174 sec) INFO:tensorflow:global_step/sec: 566.044 INFO:tensorflow:loss = 0.02025078, step = 12801 (0.177 sec) INFO:tensorflow:global_step/sec: 556.514 INFO:tensorflow:loss = 0.026029501, step = 12901 (0.179 sec) INFO:tensorflow:global_step/sec: 567.765 INFO:tensorflow:loss = 0.023721898, step = 13001 (0.176 sec) INFO:tensorflow:global_step/sec: 583.745 INFO:tensorflow:loss = 0.02941418, step = 13101 (0.171 sec) INFO:tensorflow:global_step/sec: 548.372 INFO:tensorflow:loss = 0.030588109, step = 13201 (0.182 sec) INFO:tensorflow:global_step/sec: 556.278 INFO:tensorflow:loss = 0.0150418775, step = 13301 (0.180 sec) INFO:tensorflow:global_step/sec: 582.646 INFO:tensorflow:loss = 0.023598528, step = 13401 (0.172 sec) INFO:tensorflow:global_step/sec: 574.514 INFO:tensorflow:loss = 0.02438465, step = 13501 (0.174 sec) INFO:tensorflow:global_step/sec: 557.2 INFO:tensorflow:loss = 0.016647844, step = 13601 (0.180 sec) INFO:tensorflow:global_step/sec: 554.394 INFO:tensorflow:loss = 0.015543609, step = 13701 (0.180 sec) INFO:tensorflow:global_step/sec: 571.615 INFO:tensorflow:loss = 0.035159364, step = 13801 (0.175 sec) INFO:tensorflow:global_step/sec: 579.838 INFO:tensorflow:loss = 0.021462178, step = 13901 (0.172 sec) INFO:tensorflow:global_step/sec: 564.71 INFO:tensorflow:loss = 0.015813632, step = 14001 (0.177 sec) INFO:tensorflow:global_step/sec: 556.598 INFO:tensorflow:loss = 0.015878404, step = 14101 (0.180 sec) INFO:tensorflow:global_step/sec: 574.135 INFO:tensorflow:loss = 0.016619552, step = 14201 (0.174 sec) INFO:tensorflow:global_step/sec: 564.946 INFO:tensorflow:loss = 0.020005483, step = 14301 (0.176 sec) INFO:tensorflow:global_step/sec: 567.869 INFO:tensorflow:loss = 0.012884559, step = 14401 (0.176 sec) INFO:tensorflow:global_step/sec: 551.247 INFO:tensorflow:loss = 0.020677546, step = 14501 (0.182 sec) INFO:tensorflow:global_step/sec: 541.398 INFO:tensorflow:loss = 0.027778989, step = 14601 (0.185 sec) INFO:tensorflow:global_step/sec: 555.302 INFO:tensorflow:loss = 0.02477769, step = 14701 (0.180 sec) INFO:tensorflow:global_step/sec: 534.648 INFO:tensorflow:loss = 0.02744386, step = 14801 (0.187 sec) INFO:tensorflow:global_step/sec: 556.836 INFO:tensorflow:loss = 0.043053888, step = 14901 (0.179 sec) INFO:tensorflow:global_step/sec: 567.279 INFO:tensorflow:loss = 0.026561439, step = 15001 (0.176 sec) INFO:tensorflow:global_step/sec: 542.594 INFO:tensorflow:loss = 0.014701788, step = 15101 (0.184 sec) INFO:tensorflow:global_step/sec: 566.993 INFO:tensorflow:loss = 0.0250272, step = 15201 (0.177 sec) INFO:tensorflow:global_step/sec: 573.075 INFO:tensorflow:loss = 0.023796145, step = 15301 (0.174 sec) INFO:tensorflow:global_step/sec: 577.761 INFO:tensorflow:loss = 0.010803474, step = 15401 (0.173 sec) INFO:tensorflow:global_step/sec: 572.436 INFO:tensorflow:loss = 0.020810109, step = 15501 (0.175 sec) INFO:tensorflow:global_step/sec: 560.695 INFO:tensorflow:loss = 0.024044476, step = 15601 (0.178 sec) INFO:tensorflow:global_step/sec: 576.111 INFO:tensorflow:loss = 0.026181871, step = 15701 (0.174 sec) INFO:tensorflow:global_step/sec: 588.99 INFO:tensorflow:loss = 0.0360455, step = 15801 (0.170 sec) INFO:tensorflow:global_step/sec: 572.702 INFO:tensorflow:loss = 0.030199537, step = 15901 (0.175 sec) INFO:tensorflow:global_step/sec: 558.082 INFO:tensorflow:loss = 0.025341598, step = 16001 (0.179 sec) INFO:tensorflow:global_step/sec: 579.421 INFO:tensorflow:loss = 0.055967607, step = 16101 (0.172 sec) INFO:tensorflow:global_step/sec: 567.376 INFO:tensorflow:loss = 0.016494218, step = 16201 (0.176 sec) INFO:tensorflow:global_step/sec: 566.297 INFO:tensorflow:loss = 0.031872004, step = 16301 (0.177 sec) INFO:tensorflow:global_step/sec: 569.518 INFO:tensorflow:loss = 0.050789293, step = 16401 (0.175 sec) INFO:tensorflow:global_step/sec: 557.965 INFO:tensorflow:loss = 0.014910404, step = 16501 (0.179 sec) INFO:tensorflow:global_step/sec: 574.907 INFO:tensorflow:loss = 0.020343851, step = 16601 (0.174 sec) INFO:tensorflow:global_step/sec: 576.542 INFO:tensorflow:loss = 0.0264525, step = 16701 (0.173 sec) INFO:tensorflow:global_step/sec: 579.71 INFO:tensorflow:loss = 0.02900825, step = 16801 (0.173 sec) INFO:tensorflow:global_step/sec: 586.449 INFO:tensorflow:loss = 0.01755685, step = 16901 (0.171 sec) INFO:tensorflow:global_step/sec: 568.602 INFO:tensorflow:loss = 0.026210094, step = 17001 (0.176 sec) INFO:tensorflow:global_step/sec: 554.782 INFO:tensorflow:loss = 0.023637617, step = 17101 (0.180 sec) INFO:tensorflow:global_step/sec: 506.742 INFO:tensorflow:loss = 0.0139544, step = 17201 (0.197 sec) INFO:tensorflow:global_step/sec: 575.712 INFO:tensorflow:loss = 0.022931451, step = 17301 (0.174 sec) INFO:tensorflow:global_step/sec: 554.724 INFO:tensorflow:loss = 0.014839102, step = 17401 (0.180 sec) INFO:tensorflow:global_step/sec: 583.938 INFO:tensorflow:loss = 0.019862954, step = 17501 (0.171 sec) INFO:tensorflow:global_step/sec: 565.656 INFO:tensorflow:loss = 0.024700183, step = 17601 (0.177 sec) INFO:tensorflow:global_step/sec: 544.49 INFO:tensorflow:loss = 0.016027404, step = 17701 (0.184 sec) INFO:tensorflow:global_step/sec: 557.125 INFO:tensorflow:loss = 0.016922206, step = 17801 (0.180 sec) INFO:tensorflow:global_step/sec: 546.401 INFO:tensorflow:loss = 0.015673462, step = 17901 (0.183 sec) INFO:tensorflow:global_step/sec: 569.498 INFO:tensorflow:loss = 0.02691972, step = 18001 (0.175 sec) INFO:tensorflow:global_step/sec: 569.372 INFO:tensorflow:loss = 0.02881617, step = 18101 (0.176 sec) INFO:tensorflow:global_step/sec: 552.538 INFO:tensorflow:loss = 0.021425078, step = 18201 (0.181 sec) INFO:tensorflow:global_step/sec: 583.199 INFO:tensorflow:loss = 0.028980933, step = 18301 (0.172 sec) INFO:tensorflow:global_step/sec: 572.411 INFO:tensorflow:loss = 0.03021842, step = 18401 (0.175 sec) INFO:tensorflow:global_step/sec: 560.004 INFO:tensorflow:loss = 0.017465986, step = 18501 (0.178 sec) INFO:tensorflow:global_step/sec: 584.262 INFO:tensorflow:loss = 0.018047271, step = 18601 (0.171 sec) INFO:tensorflow:global_step/sec: 559.241 INFO:tensorflow:loss = 0.04243151, step = 18701 (0.179 sec) INFO:tensorflow:global_step/sec: 567.762 INFO:tensorflow:loss = 0.009879965, step = 18801 (0.177 sec) INFO:tensorflow:global_step/sec: 559.469 INFO:tensorflow:loss = 0.026315855, step = 18901 (0.178 sec) INFO:tensorflow:global_step/sec: 568.677 INFO:tensorflow:loss = 0.014082297, step = 19001 (0.175 sec) INFO:tensorflow:global_step/sec: 582.489 INFO:tensorflow:loss = 0.02952011, step = 19101 (0.172 sec) INFO:tensorflow:global_step/sec: 586.122 INFO:tensorflow:loss = 0.024289865, step = 19201 (0.170 sec) INFO:tensorflow:global_step/sec: 578.61 INFO:tensorflow:loss = 0.019341573, step = 19301 (0.173 sec) INFO:tensorflow:global_step/sec: 551.298 INFO:tensorflow:loss = 0.015597891, step = 19401 (0.181 sec) INFO:tensorflow:global_step/sec: 574.554 INFO:tensorflow:loss = 0.013870528, step = 19501 (0.174 sec) INFO:tensorflow:global_step/sec: 581.304 INFO:tensorflow:loss = 0.011807093, step = 19601 (0.172 sec) INFO:tensorflow:global_step/sec: 572.617 INFO:tensorflow:loss = 0.0114907455, step = 19701 (0.175 sec) INFO:tensorflow:global_step/sec: 573.516 INFO:tensorflow:loss = 0.017667146, step = 19801 (0.174 sec) INFO:tensorflow:global_step/sec: 558.638 INFO:tensorflow:loss = 0.04704179, step = 19901 (0.179 sec) INFO:tensorflow:Saving checkpoints for 20000 into /tmp/tmpBX73lD/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Building iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:23:18 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/model.ckpt-20000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't0_linear' dict for global step 20000: architecture/adanet/ensembles = W 9adanet/iteration_0/ensemble_t0_linear/architecture/adanetBB | linear |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.049421377, average_loss/adanet/subnetwork = 0.049421377, average_loss/adanet/uniform_average_ensemble = 0.049421377, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.062442042, loss/adanet/subnetwork = 0.062442042, loss/adanet/uniform_average_ensemble = 0.062442042, prediction/mean/adanet/adanet_weighted_ensemble = 3.105895, prediction/mean/adanet/subnetwork = 3.105895, prediction/mean/adanet/uniform_average_ensemble = 3.105895 INFO:tensorflow:Saving candidate 't0_1_layer_dnn' dict for global step 20000: architecture/adanet/ensembles = a >adanet/iteration_0/ensemble_t0_1_layer_dnn/architecture/adanetBB| 1_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03993654, average_loss/adanet/subnetwork = 0.03993654, average_loss/adanet/uniform_average_ensemble = 0.03993654, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.053605493, loss/adanet/subnetwork = 0.053605493, loss/adanet/uniform_average_ensemble = 0.053605493, prediction/mean/adanet/adanet_weighted_ensemble = 3.1580222, prediction/mean/adanet/subnetwork = 3.1580222, prediction/mean/adanet/uniform_average_ensemble = 3.1580222 INFO:tensorflow:Finished evaluation at 2018-12-13-19:23:19 INFO:tensorflow:Saving dict for global step 20000: average_loss = 0.03993654, average_loss/adanet/adanet_weighted_ensemble = 0.03993654, average_loss/adanet/subnetwork = 0.03993654, average_loss/adanet/uniform_average_ensemble = 0.03993654, global_step = 20000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.053605493, loss/adanet/adanet_weighted_ensemble = 0.053605493, loss/adanet/subnetwork = 0.053605493, loss/adanet/uniform_average_ensemble = 0.053605493, prediction/mean = 3.1580222, prediction/mean/adanet/adanet_weighted_ensemble = 3.1580222, prediction/mean/adanet/subnetwork = 3.1580222, prediction/mean/adanet/uniform_average_ensemble = 3.1580222 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20000: /tmp/tmpBX73lD/model.ckpt-20000 INFO:tensorflow:Loss for final step: 0.034048468. INFO:tensorflow:Finished training Adanet iteration 0 INFO:tensorflow:Beginning bookkeeping phase for iteration 0 INFO:tensorflow:Building iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 0 INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/model.ckpt-20000 WARNING:tensorflow:From /usr/local/lib/python2.7/dist-packages/adanet/core/estimator.py:717: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t0_linear = 0.035089, adanet_loss/t0_1_layer_dnn = 0.020803 INFO:tensorflow:Finished ensemble evaluation for iteration 0 INFO:tensorflow:'t0_1_layer_dnn' at index 1 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-0.txt: ['0:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpBX73lD/model.ckpt-20000',) INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 1 to /tmp/tmpBX73lD/model.ckpt-20000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 0 INFO:tensorflow:Beginning training AdaNet iteration 1 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-0.txt: ['0:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/increment.ckpt-1 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 20000 into /tmp/tmpBX73lD/model.ckpt. INFO:tensorflow:loss = 0.02689482, step = 20001 INFO:tensorflow:global_step/sec: 177.265 INFO:tensorflow:loss = 0.026641333, step = 20101 (0.565 sec) INFO:tensorflow:global_step/sec: 571.393 INFO:tensorflow:loss = 0.020572826, step = 20201 (0.175 sec) INFO:tensorflow:global_step/sec: 534.231 INFO:tensorflow:loss = 0.018674508, step = 20301 (0.187 sec) INFO:tensorflow:global_step/sec: 552.2 INFO:tensorflow:loss = 0.027517587, step = 20401 (0.181 sec) INFO:tensorflow:global_step/sec: 510.477 INFO:tensorflow:loss = 0.01638335, step = 20501 (0.196 sec) INFO:tensorflow:global_step/sec: 542.85 INFO:tensorflow:loss = 0.018517539, step = 20601 (0.184 sec) INFO:tensorflow:global_step/sec: 547.313 INFO:tensorflow:loss = 0.011325995, step = 20701 (0.183 sec) INFO:tensorflow:global_step/sec: 547.207 INFO:tensorflow:loss = 0.019037172, step = 20801 (0.182 sec) INFO:tensorflow:global_step/sec: 548.318 INFO:tensorflow:loss = 0.015460573, step = 20901 (0.183 sec) INFO:tensorflow:global_step/sec: 548.185 INFO:tensorflow:loss = 0.027241766, step = 21001 (0.182 sec) INFO:tensorflow:global_step/sec: 547.049 INFO:tensorflow:loss = 0.02371575, step = 21101 (0.183 sec) INFO:tensorflow:global_step/sec: 517.958 INFO:tensorflow:loss = 0.024092598, step = 21201 (0.193 sec) INFO:tensorflow:global_step/sec: 583.39 INFO:tensorflow:loss = 0.028579984, step = 21301 (0.171 sec) INFO:tensorflow:global_step/sec: 524.161 INFO:tensorflow:loss = 0.017033618, step = 21401 (0.191 sec) INFO:tensorflow:global_step/sec: 559.967 INFO:tensorflow:loss = 0.01003223, step = 21501 (0.179 sec) INFO:tensorflow:global_step/sec: 541.765 INFO:tensorflow:loss = 0.01647801, step = 21601 (0.185 sec) INFO:tensorflow:global_step/sec: 525.798 INFO:tensorflow:loss = 0.022877093, step = 21701 (0.190 sec) INFO:tensorflow:global_step/sec: 546.634 INFO:tensorflow:loss = 0.018278336, step = 21801 (0.183 sec) INFO:tensorflow:global_step/sec: 547.336 INFO:tensorflow:loss = 0.023737881, step = 21901 (0.183 sec) INFO:tensorflow:global_step/sec: 529.397 INFO:tensorflow:loss = 0.011803246, step = 22001 (0.189 sec) INFO:tensorflow:global_step/sec: 532.067 INFO:tensorflow:loss = 0.03296115, step = 22101 (0.188 sec) INFO:tensorflow:global_step/sec: 548.679 INFO:tensorflow:loss = 0.019257832, step = 22201 (0.182 sec) INFO:tensorflow:global_step/sec: 514.462 INFO:tensorflow:loss = 0.0164644, step = 22301 (0.194 sec) INFO:tensorflow:global_step/sec: 537.744 INFO:tensorflow:loss = 0.01193467, step = 22401 (0.186 sec) INFO:tensorflow:global_step/sec: 550.294 INFO:tensorflow:loss = 0.029213233, step = 22501 (0.182 sec) INFO:tensorflow:global_step/sec: 552.972 INFO:tensorflow:loss = 0.017618146, step = 22601 (0.181 sec) INFO:tensorflow:global_step/sec: 567.424 INFO:tensorflow:loss = 0.024926536, step = 22701 (0.177 sec) INFO:tensorflow:global_step/sec: 549.031 INFO:tensorflow:loss = 0.016292248, step = 22801 (0.182 sec) INFO:tensorflow:global_step/sec: 527.17 INFO:tensorflow:loss = 0.017500443, step = 22901 (0.190 sec) INFO:tensorflow:global_step/sec: 554.779 INFO:tensorflow:loss = 0.01822316, step = 23001 (0.180 sec) INFO:tensorflow:global_step/sec: 553.502 INFO:tensorflow:loss = 0.008426819, step = 23101 (0.181 sec) INFO:tensorflow:global_step/sec: 544.416 INFO:tensorflow:loss = 0.025954742, step = 23201 (0.184 sec) INFO:tensorflow:global_step/sec: 543.842 INFO:tensorflow:loss = 0.027257022, step = 23301 (0.184 sec) INFO:tensorflow:global_step/sec: 525.528 INFO:tensorflow:loss = 0.018963318, step = 23401 (0.190 sec) INFO:tensorflow:global_step/sec: 535.989 INFO:tensorflow:loss = 0.031914793, step = 23501 (0.186 sec) INFO:tensorflow:global_step/sec: 542.352 INFO:tensorflow:loss = 0.012208786, step = 23601 (0.185 sec) INFO:tensorflow:global_step/sec: 541.674 INFO:tensorflow:loss = 0.011193404, step = 23701 (0.184 sec) INFO:tensorflow:global_step/sec: 551.563 INFO:tensorflow:loss = 0.015754636, step = 23801 (0.181 sec) INFO:tensorflow:global_step/sec: 553.535 INFO:tensorflow:loss = 0.013732923, step = 23901 (0.180 sec) INFO:tensorflow:global_step/sec: 555.42 INFO:tensorflow:loss = 0.02079191, step = 24001 (0.183 sec) INFO:tensorflow:global_step/sec: 534.427 INFO:tensorflow:loss = 0.023126412, step = 24101 (0.184 sec) INFO:tensorflow:global_step/sec: 544.515 INFO:tensorflow:loss = 0.013298021, step = 24201 (0.183 sec) INFO:tensorflow:global_step/sec: 530.51 INFO:tensorflow:loss = 0.01107317, step = 24301 (0.189 sec) INFO:tensorflow:global_step/sec: 518.108 INFO:tensorflow:loss = 0.010421526, step = 24401 (0.193 sec) INFO:tensorflow:global_step/sec: 556.254 INFO:tensorflow:loss = 0.017193377, step = 24501 (0.180 sec) INFO:tensorflow:global_step/sec: 531.904 INFO:tensorflow:loss = 0.021527879, step = 24601 (0.188 sec) INFO:tensorflow:global_step/sec: 534.025 INFO:tensorflow:loss = 0.02800101, step = 24701 (0.187 sec) INFO:tensorflow:global_step/sec: 546.18 INFO:tensorflow:loss = 0.016313508, step = 24801 (0.183 sec) INFO:tensorflow:global_step/sec: 554.939 INFO:tensorflow:loss = 0.016563449, step = 24901 (0.180 sec) INFO:tensorflow:global_step/sec: 594.205 INFO:tensorflow:loss = 0.010573461, step = 25001 (0.168 sec) INFO:tensorflow:global_step/sec: 538.834 INFO:tensorflow:loss = 0.015758982, step = 25101 (0.186 sec) INFO:tensorflow:global_step/sec: 566.203 INFO:tensorflow:loss = 0.013544958, step = 25201 (0.176 sec) INFO:tensorflow:global_step/sec: 575.632 INFO:tensorflow:loss = 0.034690935, step = 25301 (0.174 sec) INFO:tensorflow:global_step/sec: 570.002 INFO:tensorflow:loss = 0.010672317, step = 25401 (0.175 sec) INFO:tensorflow:global_step/sec: 594.841 INFO:tensorflow:loss = 0.0081842495, step = 25501 (0.168 sec) INFO:tensorflow:global_step/sec: 505.043 INFO:tensorflow:loss = 0.028937507, step = 25601 (0.198 sec) INFO:tensorflow:global_step/sec: 547.961 INFO:tensorflow:loss = 0.015525733, step = 25701 (0.182 sec) INFO:tensorflow:global_step/sec: 550.278 INFO:tensorflow:loss = 0.0148458965, step = 25801 (0.181 sec) INFO:tensorflow:global_step/sec: 548.3 INFO:tensorflow:loss = 0.010360732, step = 25901 (0.183 sec) INFO:tensorflow:global_step/sec: 539.272 INFO:tensorflow:loss = 0.01247085, step = 26001 (0.185 sec) INFO:tensorflow:global_step/sec: 553.202 INFO:tensorflow:loss = 0.024499211, step = 26101 (0.181 sec) INFO:tensorflow:global_step/sec: 533.711 INFO:tensorflow:loss = 0.020909723, step = 26201 (0.188 sec) INFO:tensorflow:global_step/sec: 544.746 INFO:tensorflow:loss = 0.01373519, step = 26301 (0.184 sec) INFO:tensorflow:global_step/sec: 537.262 INFO:tensorflow:loss = 0.020242168, step = 26401 (0.186 sec) INFO:tensorflow:global_step/sec: 548.095 INFO:tensorflow:loss = 0.029708786, step = 26501 (0.183 sec) INFO:tensorflow:global_step/sec: 557.968 INFO:tensorflow:loss = 0.023566445, step = 26601 (0.179 sec) INFO:tensorflow:global_step/sec: 576.399 INFO:tensorflow:loss = 0.017634012, step = 26701 (0.174 sec) INFO:tensorflow:global_step/sec: 550.373 INFO:tensorflow:loss = 0.011539813, step = 26801 (0.182 sec) INFO:tensorflow:global_step/sec: 550.209 INFO:tensorflow:loss = 0.008406332, step = 26901 (0.182 sec) INFO:tensorflow:global_step/sec: 538.967 INFO:tensorflow:loss = 0.011983597, step = 27001 (0.186 sec) INFO:tensorflow:global_step/sec: 548.45 INFO:tensorflow:loss = 0.017931957, step = 27101 (0.182 sec) INFO:tensorflow:global_step/sec: 545.137 INFO:tensorflow:loss = 0.011202335, step = 27201 (0.184 sec) INFO:tensorflow:global_step/sec: 539.162 INFO:tensorflow:loss = 0.031743504, step = 27301 (0.185 sec) INFO:tensorflow:global_step/sec: 528.921 INFO:tensorflow:loss = 0.014932214, step = 27401 (0.189 sec) INFO:tensorflow:global_step/sec: 532.839 INFO:tensorflow:loss = 0.010680702, step = 27501 (0.188 sec) INFO:tensorflow:global_step/sec: 541.841 INFO:tensorflow:loss = 0.009482684, step = 27601 (0.185 sec) INFO:tensorflow:global_step/sec: 551.213 INFO:tensorflow:loss = 0.017488897, step = 27701 (0.181 sec) INFO:tensorflow:global_step/sec: 546.592 INFO:tensorflow:loss = 0.015694784, step = 27801 (0.183 sec) INFO:tensorflow:global_step/sec: 541.6 INFO:tensorflow:loss = 0.009877086, step = 27901 (0.185 sec) INFO:tensorflow:global_step/sec: 562.945 INFO:tensorflow:loss = 0.017907567, step = 28001 (0.178 sec) INFO:tensorflow:global_step/sec: 532.717 INFO:tensorflow:loss = 0.021617237, step = 28101 (0.188 sec) INFO:tensorflow:global_step/sec: 554.881 INFO:tensorflow:loss = 0.037934303, step = 28201 (0.180 sec) INFO:tensorflow:global_step/sec: 550.697 INFO:tensorflow:loss = 0.017070279, step = 28301 (0.182 sec) INFO:tensorflow:global_step/sec: 559.767 INFO:tensorflow:loss = 0.016645355, step = 28401 (0.179 sec) INFO:tensorflow:global_step/sec: 554.729 INFO:tensorflow:loss = 0.011926045, step = 28501 (0.180 sec) INFO:tensorflow:global_step/sec: 557.311 INFO:tensorflow:loss = 0.0185716, step = 28601 (0.180 sec) INFO:tensorflow:global_step/sec: 486.934 INFO:tensorflow:loss = 0.012995226, step = 28701 (0.210 sec) INFO:tensorflow:global_step/sec: 504.378 INFO:tensorflow:loss = 0.024929004, step = 28801 (0.199 sec) INFO:tensorflow:global_step/sec: 530.712 INFO:tensorflow:loss = 0.038651876, step = 28901 (0.183 sec) INFO:tensorflow:global_step/sec: 552.227 INFO:tensorflow:loss = 0.02828104, step = 29001 (0.181 sec) INFO:tensorflow:global_step/sec: 547.729 INFO:tensorflow:loss = 0.014936969, step = 29101 (0.183 sec) INFO:tensorflow:global_step/sec: 553.4 INFO:tensorflow:loss = 0.022527486, step = 29201 (0.181 sec) INFO:tensorflow:global_step/sec: 549.838 INFO:tensorflow:loss = 0.0075648124, step = 29301 (0.182 sec) INFO:tensorflow:global_step/sec: 547.124 INFO:tensorflow:loss = 0.014851436, step = 29401 (0.183 sec) INFO:tensorflow:global_step/sec: 512.29 INFO:tensorflow:loss = 0.021254335, step = 29501 (0.195 sec) INFO:tensorflow:global_step/sec: 543.224 INFO:tensorflow:loss = 0.02393078, step = 29601 (0.184 sec) INFO:tensorflow:global_step/sec: 549.179 INFO:tensorflow:loss = 0.008230279, step = 29701 (0.182 sec) INFO:tensorflow:global_step/sec: 561.155 INFO:tensorflow:loss = 0.011171926, step = 29801 (0.178 sec) INFO:tensorflow:global_step/sec: 520.966 INFO:tensorflow:loss = 0.021518653, step = 29901 (0.192 sec) INFO:tensorflow:global_step/sec: 539.566 INFO:tensorflow:loss = 0.020230716, step = 30001 (0.185 sec) INFO:tensorflow:global_step/sec: 537.845 INFO:tensorflow:loss = 0.009607708, step = 30101 (0.186 sec) INFO:tensorflow:global_step/sec: 540.491 INFO:tensorflow:loss = 0.024883462, step = 30201 (0.185 sec) INFO:tensorflow:global_step/sec: 450.928 INFO:tensorflow:loss = 0.02555336, step = 30301 (0.222 sec) INFO:tensorflow:global_step/sec: 534.474 INFO:tensorflow:loss = 0.011907431, step = 30401 (0.187 sec) INFO:tensorflow:global_step/sec: 533.957 INFO:tensorflow:loss = 0.01029122, step = 30501 (0.187 sec) INFO:tensorflow:global_step/sec: 523.303 INFO:tensorflow:loss = 0.013868979, step = 30601 (0.191 sec) INFO:tensorflow:global_step/sec: 516.182 INFO:tensorflow:loss = 0.007916614, step = 30701 (0.194 sec) INFO:tensorflow:global_step/sec: 568.725 INFO:tensorflow:loss = 0.015428416, step = 30801 (0.176 sec) INFO:tensorflow:global_step/sec: 541.815 INFO:tensorflow:loss = 0.018393354, step = 30901 (0.184 sec) INFO:tensorflow:global_step/sec: 549.511 INFO:tensorflow:loss = 0.0073081004, step = 31001 (0.188 sec) INFO:tensorflow:global_step/sec: 504.645 INFO:tensorflow:loss = 0.014896774, step = 31101 (0.193 sec) INFO:tensorflow:global_step/sec: 531.794 INFO:tensorflow:loss = 0.012042155, step = 31201 (0.188 sec) INFO:tensorflow:global_step/sec: 542.691 INFO:tensorflow:loss = 0.022437997, step = 31301 (0.184 sec) INFO:tensorflow:global_step/sec: 540.585 INFO:tensorflow:loss = 0.006232311, step = 31401 (0.185 sec) INFO:tensorflow:global_step/sec: 555.404 INFO:tensorflow:loss = 0.030879425, step = 31501 (0.180 sec) INFO:tensorflow:global_step/sec: 553.235 INFO:tensorflow:loss = 0.011982078, step = 31601 (0.181 sec) INFO:tensorflow:global_step/sec: 540.944 INFO:tensorflow:loss = 0.015685122, step = 31701 (0.185 sec) INFO:tensorflow:global_step/sec: 536.942 INFO:tensorflow:loss = 0.009588946, step = 31801 (0.186 sec) INFO:tensorflow:global_step/sec: 537.618 INFO:tensorflow:loss = 0.01949366, step = 31901 (0.186 sec) INFO:tensorflow:global_step/sec: 529.29 INFO:tensorflow:loss = 0.016845737, step = 32001 (0.189 sec) INFO:tensorflow:global_step/sec: 545.387 INFO:tensorflow:loss = 0.013241226, step = 32101 (0.183 sec) INFO:tensorflow:global_step/sec: 555.386 INFO:tensorflow:loss = 0.007763939, step = 32201 (0.180 sec) INFO:tensorflow:global_step/sec: 544.226 INFO:tensorflow:loss = 0.012886829, step = 32301 (0.184 sec) INFO:tensorflow:global_step/sec: 558.046 INFO:tensorflow:loss = 0.008924153, step = 32401 (0.180 sec) INFO:tensorflow:global_step/sec: 545.449 INFO:tensorflow:loss = 0.013111419, step = 32501 (0.182 sec) INFO:tensorflow:global_step/sec: 549.441 INFO:tensorflow:loss = 0.013761312, step = 32601 (0.182 sec) INFO:tensorflow:global_step/sec: 556.306 INFO:tensorflow:loss = 0.011531368, step = 32701 (0.180 sec) INFO:tensorflow:global_step/sec: 532.244 INFO:tensorflow:loss = 0.018508688, step = 32801 (0.188 sec) INFO:tensorflow:global_step/sec: 535.174 INFO:tensorflow:loss = 0.012416309, step = 32901 (0.187 sec) INFO:tensorflow:global_step/sec: 536.619 INFO:tensorflow:loss = 0.021730969, step = 33001 (0.186 sec) INFO:tensorflow:global_step/sec: 546.01 INFO:tensorflow:loss = 0.02161136, step = 33101 (0.188 sec) INFO:tensorflow:global_step/sec: 524.701 INFO:tensorflow:loss = 0.007678924, step = 33201 (0.186 sec) INFO:tensorflow:global_step/sec: 567.924 INFO:tensorflow:loss = 0.010848792, step = 33301 (0.176 sec) INFO:tensorflow:global_step/sec: 556.693 INFO:tensorflow:loss = 0.015239689, step = 33401 (0.180 sec) INFO:tensorflow:global_step/sec: 549.466 INFO:tensorflow:loss = 0.018869447, step = 33501 (0.182 sec) INFO:tensorflow:global_step/sec: 538.933 INFO:tensorflow:loss = 0.014404563, step = 33601 (0.186 sec) INFO:tensorflow:global_step/sec: 570.873 INFO:tensorflow:loss = 0.007743339, step = 33701 (0.175 sec) INFO:tensorflow:global_step/sec: 523.04 INFO:tensorflow:loss = 0.021582767, step = 33801 (0.191 sec) INFO:tensorflow:global_step/sec: 533.758 INFO:tensorflow:loss = 0.009738045, step = 33901 (0.187 sec) INFO:tensorflow:global_step/sec: 549.783 INFO:tensorflow:loss = 0.010697973, step = 34001 (0.182 sec) INFO:tensorflow:global_step/sec: 549.312 INFO:tensorflow:loss = 0.014111896, step = 34101 (0.182 sec) INFO:tensorflow:global_step/sec: 506.714 INFO:tensorflow:loss = 0.01161824, step = 34201 (0.198 sec) INFO:tensorflow:global_step/sec: 528.597 INFO:tensorflow:loss = 0.013626029, step = 34301 (0.189 sec) INFO:tensorflow:global_step/sec: 549.305 INFO:tensorflow:loss = 0.014306208, step = 34401 (0.186 sec) INFO:tensorflow:global_step/sec: 539.406 INFO:tensorflow:loss = 0.010782365, step = 34501 (0.182 sec) INFO:tensorflow:global_step/sec: 564.149 INFO:tensorflow:loss = 0.014526726, step = 34601 (0.177 sec) INFO:tensorflow:global_step/sec: 543.195 INFO:tensorflow:loss = 0.016402217, step = 34701 (0.184 sec) INFO:tensorflow:global_step/sec: 554.256 INFO:tensorflow:loss = 0.019311573, step = 34801 (0.181 sec) INFO:tensorflow:global_step/sec: 547.708 INFO:tensorflow:loss = 0.022482123, step = 34901 (0.182 sec) INFO:tensorflow:global_step/sec: 527.343 INFO:tensorflow:loss = 0.02219373, step = 35001 (0.190 sec) INFO:tensorflow:global_step/sec: 538.46 INFO:tensorflow:loss = 0.010233812, step = 35101 (0.186 sec) INFO:tensorflow:global_step/sec: 545.09 INFO:tensorflow:loss = 0.011155672, step = 35201 (0.183 sec) INFO:tensorflow:global_step/sec: 510.36 INFO:tensorflow:loss = 0.019443393, step = 35301 (0.196 sec) INFO:tensorflow:global_step/sec: 549.995 INFO:tensorflow:loss = 0.0088263145, step = 35401 (0.182 sec) INFO:tensorflow:global_step/sec: 539.31 INFO:tensorflow:loss = 0.019199822, step = 35501 (0.185 sec) INFO:tensorflow:global_step/sec: 547.963 INFO:tensorflow:loss = 0.016015904, step = 35601 (0.182 sec) INFO:tensorflow:global_step/sec: 542.803 INFO:tensorflow:loss = 0.012871675, step = 35701 (0.184 sec) INFO:tensorflow:global_step/sec: 538.764 INFO:tensorflow:loss = 0.021360168, step = 35801 (0.186 sec) INFO:tensorflow:global_step/sec: 528.896 INFO:tensorflow:loss = 0.015004412, step = 35901 (0.189 sec) INFO:tensorflow:global_step/sec: 550.146 INFO:tensorflow:loss = 0.016787032, step = 36001 (0.182 sec) INFO:tensorflow:global_step/sec: 544.037 INFO:tensorflow:loss = 0.02503136, step = 36101 (0.184 sec) INFO:tensorflow:global_step/sec: 554.173 INFO:tensorflow:loss = 0.008402772, step = 36201 (0.181 sec) INFO:tensorflow:global_step/sec: 556.137 INFO:tensorflow:loss = 0.0091250455, step = 36301 (0.180 sec) INFO:tensorflow:global_step/sec: 532.992 INFO:tensorflow:loss = 0.0181378, step = 36401 (0.188 sec) INFO:tensorflow:global_step/sec: 550.661 INFO:tensorflow:loss = 0.008492513, step = 36501 (0.181 sec) INFO:tensorflow:global_step/sec: 536.25 INFO:tensorflow:loss = 0.0114019755, step = 36601 (0.187 sec) INFO:tensorflow:global_step/sec: 549.158 INFO:tensorflow:loss = 0.02097696, step = 36701 (0.182 sec) INFO:tensorflow:global_step/sec: 562.939 INFO:tensorflow:loss = 0.0132971015, step = 36801 (0.178 sec) INFO:tensorflow:global_step/sec: 521.469 INFO:tensorflow:loss = 0.00968274, step = 36901 (0.192 sec) INFO:tensorflow:global_step/sec: 563.196 INFO:tensorflow:loss = 0.014091542, step = 37001 (0.177 sec) INFO:tensorflow:global_step/sec: 547.948 INFO:tensorflow:loss = 0.020744445, step = 37101 (0.183 sec) INFO:tensorflow:global_step/sec: 564.589 INFO:tensorflow:loss = 0.009579487, step = 37201 (0.177 sec) INFO:tensorflow:global_step/sec: 549.351 INFO:tensorflow:loss = 0.011741485, step = 37301 (0.182 sec) INFO:tensorflow:global_step/sec: 573.677 INFO:tensorflow:loss = 0.009951888, step = 37401 (0.174 sec) INFO:tensorflow:global_step/sec: 524.599 INFO:tensorflow:loss = 0.014136355, step = 37501 (0.191 sec) INFO:tensorflow:global_step/sec: 547.861 INFO:tensorflow:loss = 0.014360774, step = 37601 (0.183 sec) INFO:tensorflow:global_step/sec: 539.901 INFO:tensorflow:loss = 0.00806953, step = 37701 (0.185 sec) INFO:tensorflow:global_step/sec: 551.742 INFO:tensorflow:loss = 0.014863034, step = 37801 (0.181 sec) INFO:tensorflow:global_step/sec: 556.973 INFO:tensorflow:loss = 0.008398596, step = 37901 (0.180 sec) INFO:tensorflow:global_step/sec: 548.026 INFO:tensorflow:loss = 0.017693192, step = 38001 (0.190 sec) INFO:tensorflow:global_step/sec: 519.251 INFO:tensorflow:loss = 0.01951421, step = 38101 (0.185 sec) INFO:tensorflow:global_step/sec: 557.135 INFO:tensorflow:loss = 0.013768952, step = 38201 (0.180 sec) INFO:tensorflow:global_step/sec: 562.828 INFO:tensorflow:loss = 0.019956227, step = 38301 (0.178 sec) INFO:tensorflow:global_step/sec: 546.224 INFO:tensorflow:loss = 0.018904533, step = 38401 (0.183 sec) INFO:tensorflow:global_step/sec: 550.261 INFO:tensorflow:loss = 0.010122333, step = 38501 (0.182 sec) INFO:tensorflow:global_step/sec: 535.693 INFO:tensorflow:loss = 0.013586002, step = 38601 (0.187 sec) INFO:tensorflow:global_step/sec: 547.357 INFO:tensorflow:loss = 0.013408544, step = 38701 (0.183 sec) INFO:tensorflow:global_step/sec: 543.493 INFO:tensorflow:loss = 0.0072285975, step = 38801 (0.184 sec) INFO:tensorflow:global_step/sec: 524.888 INFO:tensorflow:loss = 0.018272143, step = 38901 (0.190 sec) INFO:tensorflow:global_step/sec: 559.776 INFO:tensorflow:loss = 0.015372202, step = 39001 (0.178 sec) INFO:tensorflow:global_step/sec: 533.097 INFO:tensorflow:loss = 0.018851195, step = 39101 (0.188 sec) INFO:tensorflow:global_step/sec: 559.75 INFO:tensorflow:loss = 0.012927763, step = 39201 (0.179 sec) INFO:tensorflow:global_step/sec: 536.7 INFO:tensorflow:loss = 0.010040123, step = 39301 (0.186 sec) INFO:tensorflow:global_step/sec: 567.781 INFO:tensorflow:loss = 0.009394429, step = 39401 (0.176 sec) INFO:tensorflow:global_step/sec: 554.859 INFO:tensorflow:loss = 0.01086911, step = 39501 (0.180 sec) INFO:tensorflow:global_step/sec: 554.505 INFO:tensorflow:loss = 0.009075993, step = 39601 (0.180 sec) INFO:tensorflow:global_step/sec: 534.188 INFO:tensorflow:loss = 0.008560747, step = 39701 (0.187 sec) INFO:tensorflow:global_step/sec: 545.825 INFO:tensorflow:loss = 0.017553164, step = 39801 (0.184 sec) INFO:tensorflow:global_step/sec: 554.441 INFO:tensorflow:loss = 0.019945253, step = 39901 (0.180 sec) INFO:tensorflow:Saving checkpoints for 40000 into /tmp/tmpBX73lD/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-0.txt: ['0:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:24:10 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/model.ckpt-40000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't0_1_layer_dnn' dict for global step 40000: architecture/adanet/ensembles = a >adanet/iteration_0/ensemble_t0_1_layer_dnn/architecture/adanetBB| 1_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03993654, average_loss/adanet/subnetwork = 0.03993654, average_loss/adanet/uniform_average_ensemble = 0.03993654, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.053605493, loss/adanet/subnetwork = 0.053605493, loss/adanet/uniform_average_ensemble = 0.053605493, prediction/mean/adanet/adanet_weighted_ensemble = 3.1580222, prediction/mean/adanet/subnetwork = 3.1580222, prediction/mean/adanet/uniform_average_ensemble = 3.1580222 INFO:tensorflow:Saving candidate 't1_1_layer_dnn' dict for global step 40000: architecture/adanet/ensembles = o >adanet/iteration_1/ensemble_t1_1_layer_dnn/architecture/adanetB#B| 1_layer_dnn | 1_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.04097581, average_loss/adanet/subnetwork = 0.044653624, average_loss/adanet/uniform_average_ensemble = 0.04097581, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.059345886, loss/adanet/subnetwork = 0.06800773, loss/adanet/uniform_average_ensemble = 0.059345886, prediction/mean/adanet/adanet_weighted_ensemble = 3.1586797, prediction/mean/adanet/subnetwork = 3.1593368, prediction/mean/adanet/uniform_average_ensemble = 3.1586797 INFO:tensorflow:Saving candidate 't1_2_layer_dnn' dict for global step 40000: architecture/adanet/ensembles = o >adanet/iteration_1/ensemble_t1_2_layer_dnn/architecture/adanetB#B| 1_layer_dnn | 2_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.034043197, average_loss/adanet/subnetwork = 0.032510567, average_loss/adanet/uniform_average_ensemble = 0.034043197, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.045813102, loss/adanet/subnetwork = 0.042689238, loss/adanet/uniform_average_ensemble = 0.045813102, prediction/mean/adanet/adanet_weighted_ensemble = 3.151645, prediction/mean/adanet/subnetwork = 3.1452672, prediction/mean/adanet/uniform_average_ensemble = 3.151645 INFO:tensorflow:Finished evaluation at 2018-12-13-19:24:13 INFO:tensorflow:Saving dict for global step 40000: average_loss = 0.034043197, average_loss/adanet/adanet_weighted_ensemble = 0.034043197, average_loss/adanet/subnetwork = 0.032510567, average_loss/adanet/uniform_average_ensemble = 0.034043197, global_step = 40000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.045813102, loss/adanet/adanet_weighted_ensemble = 0.045813102, loss/adanet/subnetwork = 0.042689238, loss/adanet/uniform_average_ensemble = 0.045813102, prediction/mean = 3.151645, prediction/mean/adanet/adanet_weighted_ensemble = 3.151645, prediction/mean/adanet/subnetwork = 3.1452672, prediction/mean/adanet/uniform_average_ensemble = 3.151645 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 40000: /tmp/tmpBX73lD/model.ckpt-40000 INFO:tensorflow:Loss for final step: 0.011342968. INFO:tensorflow:Finished training Adanet iteration 1 INFO:tensorflow:Beginning bookkeeping phase for iteration 1 INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-0.txt: ['0:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 1 INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/model.ckpt-40000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t0_1_layer_dnn = 0.020803, adanet_loss/t1_1_layer_dnn = 0.020815, adanet_loss/t1_2_layer_dnn = 0.014043 INFO:tensorflow:Finished ensemble evaluation for iteration 1 INFO:tensorflow:'t1_2_layer_dnn' at index 2 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-1.txt: ['0:1_layer_dnn', '1:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpBX73lD/model.ckpt-40000',) INFO:tensorflow:Warm-starting variable: adanet/iteration_1/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 2 to /tmp/tmpBX73lD/model.ckpt-40000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 1 INFO:tensorflow:Beginning training AdaNet iteration 2 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-1.txt: ['0:1_layer_dnn', '1:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/increment.ckpt-2 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 40000 into /tmp/tmpBX73lD/model.ckpt. INFO:tensorflow:loss = 0.017468113, step = 40001 INFO:tensorflow:global_step/sec: 146.85 INFO:tensorflow:loss = 0.018093407, step = 40101 (0.682 sec) INFO:tensorflow:global_step/sec: 507.802 INFO:tensorflow:loss = 0.015324731, step = 40201 (0.196 sec) INFO:tensorflow:global_step/sec: 520.817 INFO:tensorflow:loss = 0.012765523, step = 40301 (0.192 sec) INFO:tensorflow:global_step/sec: 518.662 INFO:tensorflow:loss = 0.019902166, step = 40401 (0.193 sec) INFO:tensorflow:global_step/sec: 520.075 INFO:tensorflow:loss = 0.009869992, step = 40501 (0.192 sec) INFO:tensorflow:global_step/sec: 515.259 INFO:tensorflow:loss = 0.009510946, step = 40601 (0.194 sec) INFO:tensorflow:global_step/sec: 501.361 INFO:tensorflow:loss = 0.0093863765, step = 40701 (0.199 sec) INFO:tensorflow:global_step/sec: 483.72 INFO:tensorflow:loss = 0.013932006, step = 40801 (0.207 sec) INFO:tensorflow:global_step/sec: 514.726 INFO:tensorflow:loss = 0.012854252, step = 40901 (0.194 sec) INFO:tensorflow:global_step/sec: 491.079 INFO:tensorflow:loss = 0.018182788, step = 41001 (0.204 sec) INFO:tensorflow:global_step/sec: 518.707 INFO:tensorflow:loss = 0.018021746, step = 41101 (0.192 sec) INFO:tensorflow:global_step/sec: 482.246 INFO:tensorflow:loss = 0.017811758, step = 41201 (0.207 sec) INFO:tensorflow:global_step/sec: 495.84 INFO:tensorflow:loss = 0.013001744, step = 41301 (0.202 sec) INFO:tensorflow:global_step/sec: 517.741 INFO:tensorflow:loss = 0.010265199, step = 41401 (0.193 sec) INFO:tensorflow:global_step/sec: 501.716 INFO:tensorflow:loss = 0.0071805054, step = 41501 (0.199 sec) INFO:tensorflow:global_step/sec: 511.841 INFO:tensorflow:loss = 0.009893357, step = 41601 (0.198 sec) INFO:tensorflow:global_step/sec: 501.918 INFO:tensorflow:loss = 0.018157754, step = 41701 (0.197 sec) INFO:tensorflow:global_step/sec: 503.674 INFO:tensorflow:loss = 0.015058249, step = 41801 (0.198 sec) INFO:tensorflow:global_step/sec: 512.929 INFO:tensorflow:loss = 0.013771176, step = 41901 (0.195 sec) INFO:tensorflow:global_step/sec: 508.901 INFO:tensorflow:loss = 0.009073267, step = 42001 (0.197 sec) INFO:tensorflow:global_step/sec: 511.58 INFO:tensorflow:loss = 0.02188246, step = 42101 (0.196 sec) INFO:tensorflow:global_step/sec: 529.849 INFO:tensorflow:loss = 0.011396105, step = 42201 (0.193 sec) INFO:tensorflow:global_step/sec: 486.486 INFO:tensorflow:loss = 0.011808677, step = 42301 (0.201 sec) INFO:tensorflow:global_step/sec: 516.273 INFO:tensorflow:loss = 0.008540548, step = 42401 (0.194 sec) INFO:tensorflow:global_step/sec: 473.073 INFO:tensorflow:loss = 0.021454208, step = 42501 (0.212 sec) INFO:tensorflow:global_step/sec: 483.983 INFO:tensorflow:loss = 0.009850922, step = 42601 (0.207 sec) INFO:tensorflow:global_step/sec: 519.837 INFO:tensorflow:loss = 0.015087103, step = 42701 (0.192 sec) INFO:tensorflow:global_step/sec: 508.184 INFO:tensorflow:loss = 0.010692885, step = 42801 (0.197 sec) INFO:tensorflow:global_step/sec: 514.221 INFO:tensorflow:loss = 0.011624115, step = 42901 (0.196 sec) INFO:tensorflow:global_step/sec: 504.803 INFO:tensorflow:loss = 0.013021843, step = 43001 (0.197 sec) INFO:tensorflow:global_step/sec: 493.338 INFO:tensorflow:loss = 0.008456488, step = 43101 (0.204 sec) INFO:tensorflow:global_step/sec: 488.472 INFO:tensorflow:loss = 0.01821088, step = 43201 (0.204 sec) INFO:tensorflow:global_step/sec: 500.375 INFO:tensorflow:loss = 0.019609537, step = 43301 (0.200 sec) INFO:tensorflow:global_step/sec: 531.101 INFO:tensorflow:loss = 0.01440832, step = 43401 (0.188 sec) INFO:tensorflow:global_step/sec: 517.679 INFO:tensorflow:loss = 0.02079041, step = 43501 (0.193 sec) INFO:tensorflow:global_step/sec: 509.627 INFO:tensorflow:loss = 0.009131884, step = 43601 (0.196 sec) INFO:tensorflow:global_step/sec: 531.637 INFO:tensorflow:loss = 0.009203339, step = 43701 (0.188 sec) INFO:tensorflow:global_step/sec: 513.843 INFO:tensorflow:loss = 0.014136048, step = 43801 (0.195 sec) INFO:tensorflow:global_step/sec: 507.017 INFO:tensorflow:loss = 0.009038294, step = 43901 (0.197 sec) INFO:tensorflow:global_step/sec: 517.762 INFO:tensorflow:loss = 0.012316119, step = 44001 (0.196 sec) INFO:tensorflow:global_step/sec: 519.805 INFO:tensorflow:loss = 0.01415319, step = 44101 (0.189 sec) INFO:tensorflow:global_step/sec: 497.05 INFO:tensorflow:loss = 0.01141306, step = 44201 (0.201 sec) INFO:tensorflow:global_step/sec: 516.908 INFO:tensorflow:loss = 0.010589264, step = 44301 (0.194 sec) INFO:tensorflow:global_step/sec: 516.534 INFO:tensorflow:loss = 0.00965721, step = 44401 (0.194 sec) INFO:tensorflow:global_step/sec: 512.507 INFO:tensorflow:loss = 0.010868691, step = 44501 (0.195 sec) INFO:tensorflow:global_step/sec: 513.925 INFO:tensorflow:loss = 0.013449676, step = 44601 (0.194 sec) INFO:tensorflow:global_step/sec: 504.554 INFO:tensorflow:loss = 0.015651185, step = 44701 (0.198 sec) INFO:tensorflow:global_step/sec: 524.733 INFO:tensorflow:loss = 0.009516459, step = 44801 (0.191 sec) INFO:tensorflow:global_step/sec: 502.288 INFO:tensorflow:loss = 0.0143834585, step = 44901 (0.199 sec) INFO:tensorflow:global_step/sec: 489.168 INFO:tensorflow:loss = 0.0077656917, step = 45001 (0.204 sec) INFO:tensorflow:global_step/sec: 521.344 INFO:tensorflow:loss = 0.0054778853, step = 45101 (0.192 sec) INFO:tensorflow:global_step/sec: 485.515 INFO:tensorflow:loss = 0.011726222, step = 45201 (0.206 sec) INFO:tensorflow:global_step/sec: 520.118 INFO:tensorflow:loss = 0.018662084, step = 45301 (0.192 sec) INFO:tensorflow:global_step/sec: 521.706 INFO:tensorflow:loss = 0.009167017, step = 45401 (0.193 sec) INFO:tensorflow:global_step/sec: 516.18 INFO:tensorflow:loss = 0.008098583, step = 45501 (0.193 sec) INFO:tensorflow:global_step/sec: 515.796 INFO:tensorflow:loss = 0.0221938, step = 45601 (0.194 sec) INFO:tensorflow:global_step/sec: 512.576 INFO:tensorflow:loss = 0.011623999, step = 45701 (0.195 sec) INFO:tensorflow:global_step/sec: 476.976 INFO:tensorflow:loss = 0.009234013, step = 45801 (0.210 sec) INFO:tensorflow:global_step/sec: 520.421 INFO:tensorflow:loss = 0.008745046, step = 45901 (0.192 sec) INFO:tensorflow:global_step/sec: 501.709 INFO:tensorflow:loss = 0.011892943, step = 46001 (0.199 sec) INFO:tensorflow:global_step/sec: 498.668 INFO:tensorflow:loss = 0.017181993, step = 46101 (0.200 sec) INFO:tensorflow:global_step/sec: 500.328 INFO:tensorflow:loss = 0.016571296, step = 46201 (0.200 sec) INFO:tensorflow:global_step/sec: 506.332 INFO:tensorflow:loss = 0.0070566144, step = 46301 (0.197 sec) INFO:tensorflow:global_step/sec: 496.758 INFO:tensorflow:loss = 0.011321435, step = 46401 (0.202 sec) INFO:tensorflow:global_step/sec: 501.063 INFO:tensorflow:loss = 0.02300739, step = 46501 (0.200 sec) INFO:tensorflow:global_step/sec: 490.79 INFO:tensorflow:loss = 0.011725863, step = 46601 (0.204 sec) INFO:tensorflow:global_step/sec: 512.815 INFO:tensorflow:loss = 0.011536422, step = 46701 (0.195 sec) INFO:tensorflow:global_step/sec: 524.181 INFO:tensorflow:loss = 0.0074939406, step = 46801 (0.190 sec) INFO:tensorflow:global_step/sec: 511.792 INFO:tensorflow:loss = 0.007844357, step = 46901 (0.195 sec) INFO:tensorflow:global_step/sec: 534.282 INFO:tensorflow:loss = 0.007860575, step = 47001 (0.187 sec) INFO:tensorflow:global_step/sec: 504.948 INFO:tensorflow:loss = 0.012994383, step = 47101 (0.198 sec) INFO:tensorflow:global_step/sec: 487.588 INFO:tensorflow:loss = 0.010521249, step = 47201 (0.205 sec) INFO:tensorflow:global_step/sec: 517.953 INFO:tensorflow:loss = 0.020745177, step = 47301 (0.193 sec) INFO:tensorflow:global_step/sec: 522.416 INFO:tensorflow:loss = 0.010111434, step = 47401 (0.191 sec) INFO:tensorflow:global_step/sec: 525.914 INFO:tensorflow:loss = 0.006004952, step = 47501 (0.190 sec) INFO:tensorflow:global_step/sec: 484.145 INFO:tensorflow:loss = 0.012459682, step = 47601 (0.207 sec) INFO:tensorflow:global_step/sec: 479.593 INFO:tensorflow:loss = 0.01421849, step = 47701 (0.209 sec) INFO:tensorflow:global_step/sec: 524.562 INFO:tensorflow:loss = 0.011351295, step = 47801 (0.190 sec) INFO:tensorflow:global_step/sec: 513.421 INFO:tensorflow:loss = 0.0067988476, step = 47901 (0.195 sec) INFO:tensorflow:global_step/sec: 483.312 INFO:tensorflow:loss = 0.022579135, step = 48001 (0.209 sec) INFO:tensorflow:global_step/sec: 512.668 INFO:tensorflow:loss = 0.015356412, step = 48101 (0.193 sec) INFO:tensorflow:global_step/sec: 529.24 INFO:tensorflow:loss = 0.028900355, step = 48201 (0.189 sec) INFO:tensorflow:global_step/sec: 493.109 INFO:tensorflow:loss = 0.016056355, step = 48301 (0.203 sec) INFO:tensorflow:global_step/sec: 514.639 INFO:tensorflow:loss = 0.009139307, step = 48401 (0.194 sec) INFO:tensorflow:global_step/sec: 530.983 INFO:tensorflow:loss = 0.008170824, step = 48501 (0.188 sec) INFO:tensorflow:global_step/sec: 486.034 INFO:tensorflow:loss = 0.012461541, step = 48601 (0.206 sec) INFO:tensorflow:global_step/sec: 519.305 INFO:tensorflow:loss = 0.010816611, step = 48701 (0.194 sec) INFO:tensorflow:global_step/sec: 488.563 INFO:tensorflow:loss = 0.019418199, step = 48801 (0.208 sec) INFO:tensorflow:global_step/sec: 459.813 INFO:tensorflow:loss = 0.028262725, step = 48901 (0.213 sec) INFO:tensorflow:global_step/sec: 500.894 INFO:tensorflow:loss = 0.019928953, step = 49001 (0.199 sec) INFO:tensorflow:global_step/sec: 501.464 INFO:tensorflow:loss = 0.015327201, step = 49101 (0.200 sec) INFO:tensorflow:global_step/sec: 497.473 INFO:tensorflow:loss = 0.015008008, step = 49201 (0.201 sec) INFO:tensorflow:global_step/sec: 510.18 INFO:tensorflow:loss = 0.0051358948, step = 49301 (0.196 sec) INFO:tensorflow:global_step/sec: 518.969 INFO:tensorflow:loss = 0.010307699, step = 49401 (0.193 sec) INFO:tensorflow:global_step/sec: 489.321 INFO:tensorflow:loss = 0.011590662, step = 49501 (0.204 sec) INFO:tensorflow:global_step/sec: 482.253 INFO:tensorflow:loss = 0.012576545, step = 49601 (0.207 sec) INFO:tensorflow:global_step/sec: 497.063 INFO:tensorflow:loss = 0.010206463, step = 49701 (0.201 sec) INFO:tensorflow:global_step/sec: 512.379 INFO:tensorflow:loss = 0.009683546, step = 49801 (0.195 sec) INFO:tensorflow:global_step/sec: 519.763 INFO:tensorflow:loss = 0.019511562, step = 49901 (0.193 sec) INFO:tensorflow:global_step/sec: 482.165 INFO:tensorflow:loss = 0.014295067, step = 50001 (0.207 sec) INFO:tensorflow:global_step/sec: 514.817 INFO:tensorflow:loss = 0.007459954, step = 50101 (0.194 sec) INFO:tensorflow:global_step/sec: 545.111 INFO:tensorflow:loss = 0.016832381, step = 50201 (0.185 sec) INFO:tensorflow:global_step/sec: 426.363 INFO:tensorflow:loss = 0.0125337485, step = 50301 (0.233 sec) INFO:tensorflow:global_step/sec: 474.937 INFO:tensorflow:loss = 0.009039086, step = 50401 (0.211 sec) INFO:tensorflow:global_step/sec: 484.811 INFO:tensorflow:loss = 0.005735507, step = 50501 (0.206 sec) INFO:tensorflow:global_step/sec: 506.673 INFO:tensorflow:loss = 0.0173325, step = 50601 (0.197 sec) INFO:tensorflow:global_step/sec: 504.261 INFO:tensorflow:loss = 0.008636335, step = 50701 (0.198 sec) INFO:tensorflow:global_step/sec: 488.964 INFO:tensorflow:loss = 0.016918551, step = 50801 (0.205 sec) INFO:tensorflow:global_step/sec: 506.984 INFO:tensorflow:loss = 0.0148557965, step = 50901 (0.197 sec) INFO:tensorflow:global_step/sec: 522.196 INFO:tensorflow:loss = 0.0060494742, step = 51001 (0.191 sec) INFO:tensorflow:global_step/sec: 505.14 INFO:tensorflow:loss = 0.012138335, step = 51101 (0.198 sec) INFO:tensorflow:global_step/sec: 506.411 INFO:tensorflow:loss = 0.007853473, step = 51201 (0.198 sec) INFO:tensorflow:global_step/sec: 509.199 INFO:tensorflow:loss = 0.014691928, step = 51301 (0.196 sec) INFO:tensorflow:global_step/sec: 504.175 INFO:tensorflow:loss = 0.0060182875, step = 51401 (0.198 sec) INFO:tensorflow:global_step/sec: 507.957 INFO:tensorflow:loss = 0.023528608, step = 51501 (0.197 sec) INFO:tensorflow:global_step/sec: 491.84 INFO:tensorflow:loss = 0.008916151, step = 51601 (0.203 sec) INFO:tensorflow:global_step/sec: 504.119 INFO:tensorflow:loss = 0.015216347, step = 51701 (0.199 sec) INFO:tensorflow:global_step/sec: 502.922 INFO:tensorflow:loss = 0.0076746964, step = 51801 (0.199 sec) INFO:tensorflow:global_step/sec: 522.621 INFO:tensorflow:loss = 0.010943584, step = 51901 (0.192 sec) INFO:tensorflow:global_step/sec: 503.459 INFO:tensorflow:loss = 0.011525083, step = 52001 (0.198 sec) INFO:tensorflow:global_step/sec: 509.396 INFO:tensorflow:loss = 0.009468526, step = 52101 (0.196 sec) INFO:tensorflow:global_step/sec: 493.031 INFO:tensorflow:loss = 0.006191155, step = 52201 (0.203 sec) INFO:tensorflow:global_step/sec: 528.092 INFO:tensorflow:loss = 0.009383469, step = 52301 (0.189 sec) INFO:tensorflow:global_step/sec: 500.163 INFO:tensorflow:loss = 0.007131893, step = 52401 (0.200 sec) INFO:tensorflow:global_step/sec: 504.917 INFO:tensorflow:loss = 0.012247307, step = 52501 (0.198 sec) INFO:tensorflow:global_step/sec: 460.927 INFO:tensorflow:loss = 0.008317162, step = 52601 (0.217 sec) INFO:tensorflow:global_step/sec: 511.821 INFO:tensorflow:loss = 0.012988508, step = 52701 (0.195 sec) INFO:tensorflow:global_step/sec: 487.348 INFO:tensorflow:loss = 0.015612132, step = 52801 (0.205 sec) INFO:tensorflow:global_step/sec: 501.502 INFO:tensorflow:loss = 0.010452649, step = 52901 (0.200 sec) INFO:tensorflow:global_step/sec: 520.064 INFO:tensorflow:loss = 0.020963026, step = 53001 (0.192 sec) INFO:tensorflow:global_step/sec: 473.409 INFO:tensorflow:loss = 0.012349683, step = 53101 (0.211 sec) INFO:tensorflow:global_step/sec: 498.594 INFO:tensorflow:loss = 0.004926747, step = 53201 (0.201 sec) INFO:tensorflow:global_step/sec: 494.555 INFO:tensorflow:loss = 0.012891041, step = 53301 (0.202 sec) INFO:tensorflow:global_step/sec: 503.466 INFO:tensorflow:loss = 0.011349333, step = 53401 (0.198 sec) INFO:tensorflow:global_step/sec: 504.798 INFO:tensorflow:loss = 0.013867449, step = 53501 (0.198 sec) INFO:tensorflow:global_step/sec: 476.558 INFO:tensorflow:loss = 0.0094574895, step = 53601 (0.210 sec) INFO:tensorflow:global_step/sec: 504.826 INFO:tensorflow:loss = 0.0061339987, step = 53701 (0.198 sec) INFO:tensorflow:global_step/sec: 504.61 INFO:tensorflow:loss = 0.012387009, step = 53801 (0.198 sec) INFO:tensorflow:global_step/sec: 495.624 INFO:tensorflow:loss = 0.0076987687, step = 53901 (0.203 sec) INFO:tensorflow:global_step/sec: 509.16 INFO:tensorflow:loss = 0.007590723, step = 54001 (0.196 sec) INFO:tensorflow:global_step/sec: 517.093 INFO:tensorflow:loss = 0.0133831715, step = 54101 (0.193 sec) INFO:tensorflow:global_step/sec: 513.07 INFO:tensorflow:loss = 0.012165307, step = 54201 (0.195 sec) INFO:tensorflow:global_step/sec: 522.813 INFO:tensorflow:loss = 0.0068596248, step = 54301 (0.191 sec) INFO:tensorflow:global_step/sec: 504.594 INFO:tensorflow:loss = 0.00834945, step = 54401 (0.198 sec) INFO:tensorflow:global_step/sec: 514.867 INFO:tensorflow:loss = 0.008180528, step = 54501 (0.194 sec) INFO:tensorflow:global_step/sec: 501.754 INFO:tensorflow:loss = 0.012112301, step = 54601 (0.202 sec) INFO:tensorflow:global_step/sec: 490.304 INFO:tensorflow:loss = 0.011778267, step = 54701 (0.204 sec) INFO:tensorflow:global_step/sec: 495.246 INFO:tensorflow:loss = 0.014212363, step = 54801 (0.199 sec) INFO:tensorflow:global_step/sec: 513.266 INFO:tensorflow:loss = 0.012455655, step = 54901 (0.195 sec) INFO:tensorflow:global_step/sec: 488.796 INFO:tensorflow:loss = 0.021063983, step = 55001 (0.204 sec) INFO:tensorflow:global_step/sec: 523.368 INFO:tensorflow:loss = 0.008634172, step = 55101 (0.196 sec) INFO:tensorflow:global_step/sec: 496.843 INFO:tensorflow:loss = 0.008450467, step = 55201 (0.196 sec) INFO:tensorflow:global_step/sec: 504.548 INFO:tensorflow:loss = 0.01652814, step = 55301 (0.198 sec) INFO:tensorflow:global_step/sec: 457.27 INFO:tensorflow:loss = 0.0068244287, step = 55401 (0.219 sec) INFO:tensorflow:global_step/sec: 447.786 INFO:tensorflow:loss = 0.013384435, step = 55501 (0.224 sec) INFO:tensorflow:global_step/sec: 445.166 INFO:tensorflow:loss = 0.0077829137, step = 55601 (0.225 sec) INFO:tensorflow:global_step/sec: 410.946 INFO:tensorflow:loss = 0.0073004365, step = 55701 (0.243 sec) INFO:tensorflow:global_step/sec: 422.09 INFO:tensorflow:loss = 0.022338329, step = 55801 (0.237 sec) INFO:tensorflow:global_step/sec: 436.2 INFO:tensorflow:loss = 0.00855221, step = 55901 (0.229 sec) INFO:tensorflow:global_step/sec: 416.569 INFO:tensorflow:loss = 0.011254726, step = 56001 (0.240 sec) INFO:tensorflow:global_step/sec: 371.648 INFO:tensorflow:loss = 0.014746165, step = 56101 (0.269 sec) INFO:tensorflow:global_step/sec: 404.403 INFO:tensorflow:loss = 0.0057478026, step = 56201 (0.247 sec) INFO:tensorflow:global_step/sec: 418.531 INFO:tensorflow:loss = 0.0074014785, step = 56301 (0.239 sec) INFO:tensorflow:global_step/sec: 406.025 INFO:tensorflow:loss = 0.012084539, step = 56401 (0.246 sec) INFO:tensorflow:global_step/sec: 397.556 INFO:tensorflow:loss = 0.013305117, step = 56501 (0.252 sec) INFO:tensorflow:global_step/sec: 395.23 INFO:tensorflow:loss = 0.008080397, step = 56601 (0.253 sec) INFO:tensorflow:global_step/sec: 416.243 INFO:tensorflow:loss = 0.013839096, step = 56701 (0.240 sec) INFO:tensorflow:global_step/sec: 423.462 INFO:tensorflow:loss = 0.010279523, step = 56801 (0.236 sec) INFO:tensorflow:global_step/sec: 404.57 INFO:tensorflow:loss = 0.0067279865, step = 56901 (0.247 sec) INFO:tensorflow:global_step/sec: 415.839 INFO:tensorflow:loss = 0.012175392, step = 57001 (0.240 sec) INFO:tensorflow:global_step/sec: 396.198 INFO:tensorflow:loss = 0.018850144, step = 57101 (0.253 sec) INFO:tensorflow:global_step/sec: 412.649 INFO:tensorflow:loss = 0.0075007323, step = 57201 (0.242 sec) INFO:tensorflow:global_step/sec: 408.375 INFO:tensorflow:loss = 0.0069033727, step = 57301 (0.245 sec) INFO:tensorflow:global_step/sec: 400.787 INFO:tensorflow:loss = 0.008404282, step = 57401 (0.249 sec) INFO:tensorflow:global_step/sec: 400.386 INFO:tensorflow:loss = 0.011441771, step = 57501 (0.250 sec) INFO:tensorflow:global_step/sec: 397.627 INFO:tensorflow:loss = 0.011922065, step = 57601 (0.252 sec) INFO:tensorflow:global_step/sec: 408.916 INFO:tensorflow:loss = 0.005451596, step = 57701 (0.245 sec) INFO:tensorflow:global_step/sec: 478.181 INFO:tensorflow:loss = 0.014451191, step = 57801 (0.209 sec) INFO:tensorflow:global_step/sec: 526.316 INFO:tensorflow:loss = 0.0053738244, step = 57901 (0.194 sec) INFO:tensorflow:global_step/sec: 494.1 INFO:tensorflow:loss = 0.013297284, step = 58001 (0.198 sec) INFO:tensorflow:global_step/sec: 500.516 INFO:tensorflow:loss = 0.01874832, step = 58101 (0.200 sec) INFO:tensorflow:global_step/sec: 504.269 INFO:tensorflow:loss = 0.009302543, step = 58201 (0.198 sec) INFO:tensorflow:global_step/sec: 498.803 INFO:tensorflow:loss = 0.017056834, step = 58301 (0.200 sec) INFO:tensorflow:global_step/sec: 508.975 INFO:tensorflow:loss = 0.013326164, step = 58401 (0.196 sec) INFO:tensorflow:global_step/sec: 502.498 INFO:tensorflow:loss = 0.010238957, step = 58501 (0.199 sec) INFO:tensorflow:global_step/sec: 512.4 INFO:tensorflow:loss = 0.00997032, step = 58601 (0.195 sec) INFO:tensorflow:global_step/sec: 517.741 INFO:tensorflow:loss = 0.0059714033, step = 58701 (0.193 sec) INFO:tensorflow:global_step/sec: 537.591 INFO:tensorflow:loss = 0.009870318, step = 58801 (0.186 sec) INFO:tensorflow:global_step/sec: 523.782 INFO:tensorflow:loss = 0.02004344, step = 58901 (0.191 sec) INFO:tensorflow:global_step/sec: 528.176 INFO:tensorflow:loss = 0.00976455, step = 59001 (0.190 sec) INFO:tensorflow:global_step/sec: 521.096 INFO:tensorflow:loss = 0.011357179, step = 59101 (0.192 sec) INFO:tensorflow:global_step/sec: 508.942 INFO:tensorflow:loss = 0.008579284, step = 59201 (0.196 sec) INFO:tensorflow:global_step/sec: 527.872 INFO:tensorflow:loss = 0.009293977, step = 59301 (0.190 sec) INFO:tensorflow:global_step/sec: 512.264 INFO:tensorflow:loss = 0.0066968855, step = 59401 (0.195 sec) INFO:tensorflow:global_step/sec: 502.195 INFO:tensorflow:loss = 0.005933701, step = 59501 (0.199 sec) INFO:tensorflow:global_step/sec: 526.382 INFO:tensorflow:loss = 0.007187545, step = 59601 (0.190 sec) INFO:tensorflow:global_step/sec: 510.626 INFO:tensorflow:loss = 0.0061123613, step = 59701 (0.196 sec) INFO:tensorflow:global_step/sec: 509.269 INFO:tensorflow:loss = 0.010090194, step = 59801 (0.196 sec) INFO:tensorflow:global_step/sec: 520.288 INFO:tensorflow:loss = 0.012975221, step = 59901 (0.192 sec) INFO:tensorflow:Saving checkpoints for 60000 into /tmp/tmpBX73lD/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-1.txt: ['0:1_layer_dnn', '1:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:25:14 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/model.ckpt-60000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't1_2_layer_dnn' dict for global step 60000: architecture/adanet/ensembles = o >adanet/iteration_1/ensemble_t1_2_layer_dnn/architecture/adanetB#B| 1_layer_dnn | 2_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.034043197, average_loss/adanet/subnetwork = 0.032510567, average_loss/adanet/uniform_average_ensemble = 0.034043197, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.045813102, loss/adanet/subnetwork = 0.042689238, loss/adanet/uniform_average_ensemble = 0.045813102, prediction/mean/adanet/adanet_weighted_ensemble = 3.151645, prediction/mean/adanet/subnetwork = 3.1452672, prediction/mean/adanet/uniform_average_ensemble = 3.151645 INFO:tensorflow:Saving candidate 't2_2_layer_dnn' dict for global step 60000: architecture/adanet/ensembles = } >adanet/iteration_2/ensemble_t2_2_layer_dnn/architecture/adanetB1B+| 1_layer_dnn | 2_layer_dnn | 2_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.031925783, average_loss/adanet/subnetwork = 0.032713592, average_loss/adanet/uniform_average_ensemble = 0.031925786, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.043711387, loss/adanet/subnetwork = 0.043944843, loss/adanet/uniform_average_ensemble = 0.043711387, prediction/mean/adanet/adanet_weighted_ensemble = 3.1529949, prediction/mean/adanet/subnetwork = 3.1556947, prediction/mean/adanet/uniform_average_ensemble = 3.1529949 INFO:tensorflow:Saving candidate 't2_3_layer_dnn' dict for global step 60000: architecture/adanet/ensembles = } >adanet/iteration_2/ensemble_t2_3_layer_dnn/architecture/adanetB1B+| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.032317463, average_loss/adanet/subnetwork = 0.032910354, average_loss/adanet/uniform_average_ensemble = 0.03231746, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.043847356, loss/adanet/subnetwork = 0.043785788, loss/adanet/uniform_average_ensemble = 0.04384736, prediction/mean/adanet/adanet_weighted_ensemble = 3.1457782, prediction/mean/adanet/subnetwork = 3.134045, prediction/mean/adanet/uniform_average_ensemble = 3.1457782 INFO:tensorflow:Finished evaluation at 2018-12-13-19:25:17 INFO:tensorflow:Saving dict for global step 60000: average_loss = 0.032317463, average_loss/adanet/adanet_weighted_ensemble = 0.032317463, average_loss/adanet/subnetwork = 0.032910354, average_loss/adanet/uniform_average_ensemble = 0.03231746, global_step = 60000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.043847356, loss/adanet/adanet_weighted_ensemble = 0.043847356, loss/adanet/subnetwork = 0.043785788, loss/adanet/uniform_average_ensemble = 0.04384736, prediction/mean = 3.1457782, prediction/mean/adanet/adanet_weighted_ensemble = 3.1457782, prediction/mean/adanet/subnetwork = 3.134045, prediction/mean/adanet/uniform_average_ensemble = 3.1457782 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 60000: /tmp/tmpBX73lD/model.ckpt-60000 INFO:tensorflow:Loss for final step: 0.006897436. INFO:tensorflow:Finished training Adanet iteration 2 INFO:tensorflow:Beginning bookkeeping phase for iteration 2 INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-1.txt: ['0:1_layer_dnn', '1:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 2 INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/model.ckpt-60000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t1_2_layer_dnn = 0.014043, adanet_loss/t2_2_layer_dnn = 0.012769, adanet_loss/t2_3_layer_dnn = 0.011257 INFO:tensorflow:Finished ensemble evaluation for iteration 2 INFO:tensorflow:'t2_3_layer_dnn' at index 2 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-2.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpBX73lD/model.ckpt-60000',) INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_3/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_3/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 3 to /tmp/tmpBX73lD/model.ckpt-60000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 2 INFO:tensorflow:Beginning training AdaNet iteration 3 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-2.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/increment.ckpt-3 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 60000 into /tmp/tmpBX73lD/model.ckpt. INFO:tensorflow:loss = 0.014349232, step = 60001 INFO:tensorflow:global_step/sec: 122.827 INFO:tensorflow:loss = 0.014175814, step = 60101 (0.815 sec) INFO:tensorflow:global_step/sec: 500.977 INFO:tensorflow:loss = 0.012988036, step = 60201 (0.200 sec) INFO:tensorflow:global_step/sec: 458.789 INFO:tensorflow:loss = 0.010762272, step = 60301 (0.217 sec) INFO:tensorflow:global_step/sec: 472.133 INFO:tensorflow:loss = 0.015884051, step = 60401 (0.212 sec) INFO:tensorflow:global_step/sec: 479.759 INFO:tensorflow:loss = 0.007582067, step = 60501 (0.209 sec) INFO:tensorflow:global_step/sec: 500.406 INFO:tensorflow:loss = 0.00642565, step = 60601 (0.200 sec) INFO:tensorflow:global_step/sec: 492.545 INFO:tensorflow:loss = 0.007641523, step = 60701 (0.203 sec) INFO:tensorflow:global_step/sec: 475.946 INFO:tensorflow:loss = 0.011311023, step = 60801 (0.210 sec) INFO:tensorflow:global_step/sec: 433.981 INFO:tensorflow:loss = 0.012714136, step = 60901 (0.231 sec) INFO:tensorflow:global_step/sec: 488.529 INFO:tensorflow:loss = 0.015741285, step = 61001 (0.205 sec) INFO:tensorflow:global_step/sec: 465.532 INFO:tensorflow:loss = 0.014458665, step = 61101 (0.215 sec) INFO:tensorflow:global_step/sec: 463.407 INFO:tensorflow:loss = 0.01391992, step = 61201 (0.216 sec) INFO:tensorflow:global_step/sec: 497.08 INFO:tensorflow:loss = 0.007650324, step = 61301 (0.201 sec) INFO:tensorflow:global_step/sec: 475.615 INFO:tensorflow:loss = 0.008895887, step = 61401 (0.210 sec) INFO:tensorflow:global_step/sec: 490.354 INFO:tensorflow:loss = 0.006260482, step = 61501 (0.204 sec) INFO:tensorflow:global_step/sec: 458.579 INFO:tensorflow:loss = 0.007975491, step = 61601 (0.218 sec) INFO:tensorflow:global_step/sec: 487.035 INFO:tensorflow:loss = 0.01617087, step = 61701 (0.205 sec) INFO:tensorflow:global_step/sec: 488.785 INFO:tensorflow:loss = 0.011673059, step = 61801 (0.205 sec) INFO:tensorflow:global_step/sec: 489.61 INFO:tensorflow:loss = 0.010906876, step = 61901 (0.204 sec) INFO:tensorflow:global_step/sec: 484.318 INFO:tensorflow:loss = 0.0073513957, step = 62001 (0.206 sec) INFO:tensorflow:global_step/sec: 454.578 INFO:tensorflow:loss = 0.017136538, step = 62101 (0.220 sec) INFO:tensorflow:global_step/sec: 483.011 INFO:tensorflow:loss = 0.009429395, step = 62201 (0.207 sec) INFO:tensorflow:global_step/sec: 481.891 INFO:tensorflow:loss = 0.009464838, step = 62301 (0.208 sec) INFO:tensorflow:global_step/sec: 489.893 INFO:tensorflow:loss = 0.0076065753, step = 62401 (0.204 sec) INFO:tensorflow:global_step/sec: 482.309 INFO:tensorflow:loss = 0.016479883, step = 62501 (0.207 sec) INFO:tensorflow:global_step/sec: 466.007 INFO:tensorflow:loss = 0.0073400293, step = 62601 (0.215 sec) INFO:tensorflow:global_step/sec: 501.452 INFO:tensorflow:loss = 0.012695417, step = 62701 (0.199 sec) INFO:tensorflow:global_step/sec: 491.884 INFO:tensorflow:loss = 0.0101601835, step = 62801 (0.203 sec) INFO:tensorflow:global_step/sec: 483.8 INFO:tensorflow:loss = 0.010170883, step = 62901 (0.207 sec) INFO:tensorflow:global_step/sec: 481.621 INFO:tensorflow:loss = 0.010603026, step = 63001 (0.208 sec) INFO:tensorflow:global_step/sec: 473.655 INFO:tensorflow:loss = 0.007322383, step = 63101 (0.211 sec) INFO:tensorflow:global_step/sec: 492.708 INFO:tensorflow:loss = 0.0148867555, step = 63201 (0.203 sec) INFO:tensorflow:global_step/sec: 473.361 INFO:tensorflow:loss = 0.017221898, step = 63301 (0.212 sec) INFO:tensorflow:global_step/sec: 498.122 INFO:tensorflow:loss = 0.0131410295, step = 63401 (0.201 sec) INFO:tensorflow:global_step/sec: 477.76 INFO:tensorflow:loss = 0.017954867, step = 63501 (0.209 sec) INFO:tensorflow:global_step/sec: 496.771 INFO:tensorflow:loss = 0.0077373376, step = 63601 (0.201 sec) INFO:tensorflow:global_step/sec: 486.384 INFO:tensorflow:loss = 0.0084258355, step = 63701 (0.206 sec) INFO:tensorflow:global_step/sec: 477.737 INFO:tensorflow:loss = 0.009624679, step = 63801 (0.209 sec) INFO:tensorflow:global_step/sec: 487.211 INFO:tensorflow:loss = 0.006020199, step = 63901 (0.205 sec) INFO:tensorflow:global_step/sec: 473.151 INFO:tensorflow:loss = 0.011776499, step = 64001 (0.213 sec) INFO:tensorflow:global_step/sec: 458.794 INFO:tensorflow:loss = 0.010384669, step = 64101 (0.216 sec) INFO:tensorflow:global_step/sec: 491.449 INFO:tensorflow:loss = 0.008962873, step = 64201 (0.204 sec) INFO:tensorflow:global_step/sec: 498.251 INFO:tensorflow:loss = 0.0046904236, step = 64301 (0.201 sec) INFO:tensorflow:global_step/sec: 408.564 INFO:tensorflow:loss = 0.009667809, step = 64401 (0.245 sec) INFO:tensorflow:global_step/sec: 450.197 INFO:tensorflow:loss = 0.009793492, step = 64501 (0.222 sec) INFO:tensorflow:global_step/sec: 465.476 INFO:tensorflow:loss = 0.012524443, step = 64601 (0.215 sec) INFO:tensorflow:global_step/sec: 482 INFO:tensorflow:loss = 0.0068974327, step = 64701 (0.207 sec) INFO:tensorflow:global_step/sec: 483.91 INFO:tensorflow:loss = 0.008452025, step = 64801 (0.207 sec) INFO:tensorflow:global_step/sec: 479.242 INFO:tensorflow:loss = 0.012261448, step = 64901 (0.209 sec) INFO:tensorflow:global_step/sec: 467.681 INFO:tensorflow:loss = 0.0065639215, step = 65001 (0.214 sec) INFO:tensorflow:global_step/sec: 487.016 INFO:tensorflow:loss = 0.0072128996, step = 65101 (0.205 sec) INFO:tensorflow:global_step/sec: 488.635 INFO:tensorflow:loss = 0.008089228, step = 65201 (0.208 sec) INFO:tensorflow:global_step/sec: 475.862 INFO:tensorflow:loss = 0.015109103, step = 65301 (0.214 sec) INFO:tensorflow:global_step/sec: 451.859 INFO:tensorflow:loss = 0.010164745, step = 65401 (0.215 sec) INFO:tensorflow:global_step/sec: 475.477 INFO:tensorflow:loss = 0.007488979, step = 65501 (0.210 sec) INFO:tensorflow:global_step/sec: 486.888 INFO:tensorflow:loss = 0.01756696, step = 65601 (0.206 sec) INFO:tensorflow:global_step/sec: 403.704 INFO:tensorflow:loss = 0.009442094, step = 65701 (0.247 sec) INFO:tensorflow:global_step/sec: 481.668 INFO:tensorflow:loss = 0.009446172, step = 65801 (0.208 sec) INFO:tensorflow:global_step/sec: 479.653 INFO:tensorflow:loss = 0.00790675, step = 65901 (0.208 sec) INFO:tensorflow:global_step/sec: 456.184 INFO:tensorflow:loss = 0.014462812, step = 66001 (0.219 sec) INFO:tensorflow:global_step/sec: 479.519 INFO:tensorflow:loss = 0.014726914, step = 66101 (0.208 sec) INFO:tensorflow:global_step/sec: 469.782 INFO:tensorflow:loss = 0.013557127, step = 66201 (0.213 sec) INFO:tensorflow:global_step/sec: 469.404 INFO:tensorflow:loss = 0.0056417743, step = 66301 (0.213 sec) INFO:tensorflow:global_step/sec: 456.061 INFO:tensorflow:loss = 0.0076914574, step = 66401 (0.219 sec) INFO:tensorflow:global_step/sec: 475.586 INFO:tensorflow:loss = 0.020085715, step = 66501 (0.210 sec) INFO:tensorflow:global_step/sec: 468.538 INFO:tensorflow:loss = 0.014946561, step = 66601 (0.214 sec) INFO:tensorflow:global_step/sec: 473.561 INFO:tensorflow:loss = 0.010401423, step = 66701 (0.211 sec) INFO:tensorflow:global_step/sec: 482.427 INFO:tensorflow:loss = 0.0070528616, step = 66801 (0.207 sec) INFO:tensorflow:global_step/sec: 496.672 INFO:tensorflow:loss = 0.007295311, step = 66901 (0.201 sec) INFO:tensorflow:global_step/sec: 443.892 INFO:tensorflow:loss = 0.0067928964, step = 67001 (0.225 sec) INFO:tensorflow:global_step/sec: 452.436 INFO:tensorflow:loss = 0.010201834, step = 67101 (0.222 sec) INFO:tensorflow:global_step/sec: 467.12 INFO:tensorflow:loss = 0.009510251, step = 67201 (0.214 sec) INFO:tensorflow:global_step/sec: 467.978 INFO:tensorflow:loss = 0.013937269, step = 67301 (0.214 sec) INFO:tensorflow:global_step/sec: 465.439 INFO:tensorflow:loss = 0.010768862, step = 67401 (0.215 sec) INFO:tensorflow:global_step/sec: 476.333 INFO:tensorflow:loss = 0.00456707, step = 67501 (0.210 sec) INFO:tensorflow:global_step/sec: 489.579 INFO:tensorflow:loss = 0.008822214, step = 67601 (0.204 sec) INFO:tensorflow:global_step/sec: 491.906 INFO:tensorflow:loss = 0.014752589, step = 67701 (0.203 sec) INFO:tensorflow:global_step/sec: 488.844 INFO:tensorflow:loss = 0.01246707, step = 67801 (0.205 sec) INFO:tensorflow:global_step/sec: 452.931 INFO:tensorflow:loss = 0.0072872615, step = 67901 (0.220 sec) INFO:tensorflow:global_step/sec: 474.793 INFO:tensorflow:loss = 0.01730576, step = 68001 (0.211 sec) INFO:tensorflow:global_step/sec: 486.398 INFO:tensorflow:loss = 0.015187411, step = 68101 (0.206 sec) INFO:tensorflow:global_step/sec: 450.203 INFO:tensorflow:loss = 0.013181204, step = 68201 (0.222 sec) INFO:tensorflow:global_step/sec: 472.021 INFO:tensorflow:loss = 0.014625701, step = 68301 (0.212 sec) INFO:tensorflow:global_step/sec: 451.41 INFO:tensorflow:loss = 0.009088153, step = 68401 (0.221 sec) INFO:tensorflow:global_step/sec: 470.985 INFO:tensorflow:loss = 0.006735581, step = 68501 (0.212 sec) INFO:tensorflow:global_step/sec: 482.95 INFO:tensorflow:loss = 0.011414693, step = 68601 (0.207 sec) INFO:tensorflow:global_step/sec: 478.829 INFO:tensorflow:loss = 0.008719599, step = 68701 (0.209 sec) INFO:tensorflow:global_step/sec: 488.1 INFO:tensorflow:loss = 0.016607951, step = 68801 (0.205 sec) INFO:tensorflow:global_step/sec: 487.213 INFO:tensorflow:loss = 0.021428429, step = 68901 (0.205 sec) INFO:tensorflow:global_step/sec: 495.766 INFO:tensorflow:loss = 0.018561859, step = 69001 (0.202 sec) INFO:tensorflow:global_step/sec: 473.972 INFO:tensorflow:loss = 0.012570044, step = 69101 (0.211 sec) INFO:tensorflow:global_step/sec: 492.138 INFO:tensorflow:loss = 0.0117163975, step = 69201 (0.204 sec) INFO:tensorflow:global_step/sec: 471.138 INFO:tensorflow:loss = 0.010117748, step = 69301 (0.212 sec) INFO:tensorflow:global_step/sec: 486.218 INFO:tensorflow:loss = 0.009999806, step = 69401 (0.206 sec) INFO:tensorflow:global_step/sec: 503.776 INFO:tensorflow:loss = 0.008249035, step = 69501 (0.199 sec) INFO:tensorflow:global_step/sec: 499.658 INFO:tensorflow:loss = 0.013595214, step = 69601 (0.203 sec) INFO:tensorflow:global_step/sec: 466.553 INFO:tensorflow:loss = 0.006964251, step = 69701 (0.211 sec) INFO:tensorflow:global_step/sec: 469.021 INFO:tensorflow:loss = 0.008460038, step = 69801 (0.216 sec) INFO:tensorflow:global_step/sec: 463.815 INFO:tensorflow:loss = 0.016430806, step = 69901 (0.213 sec) INFO:tensorflow:global_step/sec: 481.763 INFO:tensorflow:loss = 0.013513658, step = 70001 (0.207 sec) INFO:tensorflow:global_step/sec: 487.85 INFO:tensorflow:loss = 0.00617994, step = 70101 (0.205 sec) INFO:tensorflow:global_step/sec: 461.248 INFO:tensorflow:loss = 0.010562475, step = 70201 (0.217 sec) INFO:tensorflow:global_step/sec: 487.434 INFO:tensorflow:loss = 0.009897685, step = 70301 (0.206 sec) INFO:tensorflow:global_step/sec: 449.651 INFO:tensorflow:loss = 0.00854541, step = 70401 (0.222 sec) INFO:tensorflow:global_step/sec: 469.629 INFO:tensorflow:loss = 0.0049584727, step = 70501 (0.213 sec) INFO:tensorflow:global_step/sec: 463.208 INFO:tensorflow:loss = 0.011869925, step = 70601 (0.216 sec) INFO:tensorflow:global_step/sec: 485.062 INFO:tensorflow:loss = 0.008131639, step = 70701 (0.206 sec) INFO:tensorflow:global_step/sec: 484.325 INFO:tensorflow:loss = 0.01208318, step = 70801 (0.211 sec) INFO:tensorflow:global_step/sec: 482.378 INFO:tensorflow:loss = 0.012321655, step = 70901 (0.203 sec) INFO:tensorflow:global_step/sec: 496.473 INFO:tensorflow:loss = 0.006670419, step = 71001 (0.203 sec) INFO:tensorflow:global_step/sec: 483.753 INFO:tensorflow:loss = 0.011287295, step = 71101 (0.205 sec) INFO:tensorflow:global_step/sec: 493.323 INFO:tensorflow:loss = 0.005714275, step = 71201 (0.203 sec) INFO:tensorflow:global_step/sec: 487.18 INFO:tensorflow:loss = 0.012623739, step = 71301 (0.205 sec) INFO:tensorflow:global_step/sec: 497.285 INFO:tensorflow:loss = 0.0060354862, step = 71401 (0.201 sec) INFO:tensorflow:global_step/sec: 490.405 INFO:tensorflow:loss = 0.02119733, step = 71501 (0.204 sec) INFO:tensorflow:global_step/sec: 461.644 INFO:tensorflow:loss = 0.006808838, step = 71601 (0.217 sec) INFO:tensorflow:global_step/sec: 477.619 INFO:tensorflow:loss = 0.013444901, step = 71701 (0.210 sec) INFO:tensorflow:global_step/sec: 481.294 INFO:tensorflow:loss = 0.009731604, step = 71801 (0.208 sec) INFO:tensorflow:global_step/sec: 496.702 INFO:tensorflow:loss = 0.0075439215, step = 71901 (0.201 sec) INFO:tensorflow:global_step/sec: 479.641 INFO:tensorflow:loss = 0.010953972, step = 72001 (0.209 sec) INFO:tensorflow:global_step/sec: 453.896 INFO:tensorflow:loss = 0.007781538, step = 72101 (0.220 sec) INFO:tensorflow:global_step/sec: 504.33 INFO:tensorflow:loss = 0.010394486, step = 72201 (0.198 sec) INFO:tensorflow:global_step/sec: 495.594 INFO:tensorflow:loss = 0.009234263, step = 72301 (0.202 sec) INFO:tensorflow:global_step/sec: 492.601 INFO:tensorflow:loss = 0.006700014, step = 72401 (0.203 sec) INFO:tensorflow:global_step/sec: 468.134 INFO:tensorflow:loss = 0.010772013, step = 72501 (0.214 sec) INFO:tensorflow:global_step/sec: 472.066 INFO:tensorflow:loss = 0.0060116714, step = 72601 (0.212 sec) INFO:tensorflow:global_step/sec: 480.024 INFO:tensorflow:loss = 0.011722708, step = 72701 (0.208 sec) INFO:tensorflow:global_step/sec: 490.458 INFO:tensorflow:loss = 0.013143127, step = 72801 (0.204 sec) INFO:tensorflow:global_step/sec: 483.078 INFO:tensorflow:loss = 0.009265941, step = 72901 (0.207 sec) INFO:tensorflow:global_step/sec: 481.297 INFO:tensorflow:loss = 0.016384896, step = 73001 (0.208 sec) INFO:tensorflow:global_step/sec: 480.406 INFO:tensorflow:loss = 0.010736043, step = 73101 (0.208 sec) INFO:tensorflow:global_step/sec: 489.975 INFO:tensorflow:loss = 0.0039101024, step = 73201 (0.204 sec) INFO:tensorflow:global_step/sec: 459.204 INFO:tensorflow:loss = 0.0075296564, step = 73301 (0.218 sec) INFO:tensorflow:global_step/sec: 469.642 INFO:tensorflow:loss = 0.010320512, step = 73401 (0.213 sec) INFO:tensorflow:global_step/sec: 489.017 INFO:tensorflow:loss = 0.013765342, step = 73501 (0.205 sec) INFO:tensorflow:global_step/sec: 488.031 INFO:tensorflow:loss = 0.007436739, step = 73601 (0.205 sec) INFO:tensorflow:global_step/sec: 500.769 INFO:tensorflow:loss = 0.0079130065, step = 73701 (0.200 sec) INFO:tensorflow:global_step/sec: 480.188 INFO:tensorflow:loss = 0.0099165905, step = 73801 (0.208 sec) INFO:tensorflow:global_step/sec: 492.922 INFO:tensorflow:loss = 0.0072672125, step = 73901 (0.203 sec) INFO:tensorflow:global_step/sec: 467.233 INFO:tensorflow:loss = 0.005922256, step = 74001 (0.214 sec) INFO:tensorflow:global_step/sec: 502.381 INFO:tensorflow:loss = 0.010643217, step = 74101 (0.199 sec) INFO:tensorflow:global_step/sec: 493.94 INFO:tensorflow:loss = 0.011121646, step = 74201 (0.202 sec) INFO:tensorflow:global_step/sec: 501.436 INFO:tensorflow:loss = 0.008452261, step = 74301 (0.200 sec) INFO:tensorflow:global_step/sec: 483.978 INFO:tensorflow:loss = 0.0065449663, step = 74401 (0.207 sec) INFO:tensorflow:global_step/sec: 498.509 INFO:tensorflow:loss = 0.0097762775, step = 74501 (0.201 sec) INFO:tensorflow:global_step/sec: 484.013 INFO:tensorflow:loss = 0.010385942, step = 74601 (0.206 sec) INFO:tensorflow:global_step/sec: 467.207 INFO:tensorflow:loss = 0.011105723, step = 74701 (0.215 sec) INFO:tensorflow:global_step/sec: 478.171 INFO:tensorflow:loss = 0.012939494, step = 74801 (0.209 sec) INFO:tensorflow:global_step/sec: 482.693 INFO:tensorflow:loss = 0.009049785, step = 74901 (0.207 sec) INFO:tensorflow:global_step/sec: 482.276 INFO:tensorflow:loss = 0.021380838, step = 75001 (0.207 sec) INFO:tensorflow:global_step/sec: 447.628 INFO:tensorflow:loss = 0.0074647972, step = 75101 (0.224 sec) INFO:tensorflow:global_step/sec: 440.645 INFO:tensorflow:loss = 0.007178474, step = 75201 (0.226 sec) INFO:tensorflow:global_step/sec: 471.389 INFO:tensorflow:loss = 0.015906963, step = 75301 (0.212 sec) INFO:tensorflow:global_step/sec: 463.255 INFO:tensorflow:loss = 0.0059212055, step = 75401 (0.216 sec) INFO:tensorflow:global_step/sec: 476.007 INFO:tensorflow:loss = 0.013277557, step = 75501 (0.210 sec) INFO:tensorflow:global_step/sec: 484.733 INFO:tensorflow:loss = 0.0070092604, step = 75601 (0.206 sec) INFO:tensorflow:global_step/sec: 479.414 INFO:tensorflow:loss = 0.006367581, step = 75701 (0.208 sec) INFO:tensorflow:global_step/sec: 478.105 INFO:tensorflow:loss = 0.016521107, step = 75801 (0.209 sec) INFO:tensorflow:global_step/sec: 442.267 INFO:tensorflow:loss = 0.0073288074, step = 75901 (0.226 sec) INFO:tensorflow:global_step/sec: 454.103 INFO:tensorflow:loss = 0.010486348, step = 76001 (0.220 sec) INFO:tensorflow:global_step/sec: 478.407 INFO:tensorflow:loss = 0.011561921, step = 76101 (0.209 sec) INFO:tensorflow:global_step/sec: 493.538 INFO:tensorflow:loss = 0.006081101, step = 76201 (0.203 sec) INFO:tensorflow:global_step/sec: 478.471 INFO:tensorflow:loss = 0.005869668, step = 76301 (0.210 sec) INFO:tensorflow:global_step/sec: 471.394 INFO:tensorflow:loss = 0.009690834, step = 76401 (0.212 sec) INFO:tensorflow:global_step/sec: 472.179 INFO:tensorflow:loss = 0.011438882, step = 76501 (0.212 sec) INFO:tensorflow:global_step/sec: 463.334 INFO:tensorflow:loss = 0.008249163, step = 76601 (0.216 sec) INFO:tensorflow:global_step/sec: 461.537 INFO:tensorflow:loss = 0.013074286, step = 76701 (0.217 sec) INFO:tensorflow:global_step/sec: 468.799 INFO:tensorflow:loss = 0.008532705, step = 76801 (0.213 sec) INFO:tensorflow:global_step/sec: 476.706 INFO:tensorflow:loss = 0.007875957, step = 76901 (0.210 sec) INFO:tensorflow:global_step/sec: 477.154 INFO:tensorflow:loss = 0.010441838, step = 77001 (0.209 sec) INFO:tensorflow:global_step/sec: 475.473 INFO:tensorflow:loss = 0.016036626, step = 77101 (0.210 sec) INFO:tensorflow:global_step/sec: 452.751 INFO:tensorflow:loss = 0.007660943, step = 77201 (0.221 sec) INFO:tensorflow:global_step/sec: 491.147 INFO:tensorflow:loss = 0.005767421, step = 77301 (0.204 sec) INFO:tensorflow:global_step/sec: 477.571 INFO:tensorflow:loss = 0.0055149226, step = 77401 (0.209 sec) INFO:tensorflow:global_step/sec: 482.297 INFO:tensorflow:loss = 0.010023586, step = 77501 (0.207 sec) INFO:tensorflow:global_step/sec: 459.238 INFO:tensorflow:loss = 0.010996474, step = 77601 (0.218 sec) INFO:tensorflow:global_step/sec: 454.663 INFO:tensorflow:loss = 0.005551029, step = 77701 (0.220 sec) INFO:tensorflow:global_step/sec: 460.534 INFO:tensorflow:loss = 0.012583815, step = 77801 (0.217 sec) INFO:tensorflow:global_step/sec: 467.539 INFO:tensorflow:loss = 0.0056791697, step = 77901 (0.214 sec) INFO:tensorflow:global_step/sec: 458.735 INFO:tensorflow:loss = 0.011437742, step = 78001 (0.218 sec) INFO:tensorflow:global_step/sec: 489.375 INFO:tensorflow:loss = 0.009679522, step = 78101 (0.204 sec) INFO:tensorflow:global_step/sec: 488.332 INFO:tensorflow:loss = 0.009729374, step = 78201 (0.205 sec) INFO:tensorflow:global_step/sec: 467.895 INFO:tensorflow:loss = 0.012433505, step = 78301 (0.213 sec) INFO:tensorflow:global_step/sec: 490.918 INFO:tensorflow:loss = 0.011398161, step = 78401 (0.204 sec) INFO:tensorflow:global_step/sec: 482.8 INFO:tensorflow:loss = 0.010340607, step = 78501 (0.207 sec) INFO:tensorflow:global_step/sec: 484.266 INFO:tensorflow:loss = 0.010301631, step = 78601 (0.206 sec) INFO:tensorflow:global_step/sec: 481.498 INFO:tensorflow:loss = 0.0049466062, step = 78701 (0.208 sec) INFO:tensorflow:global_step/sec: 447.063 INFO:tensorflow:loss = 0.0072362237, step = 78801 (0.224 sec) INFO:tensorflow:global_step/sec: 472.212 INFO:tensorflow:loss = 0.013689649, step = 78901 (0.212 sec) INFO:tensorflow:global_step/sec: 475.971 INFO:tensorflow:loss = 0.010056267, step = 79001 (0.210 sec) INFO:tensorflow:global_step/sec: 482.049 INFO:tensorflow:loss = 0.007534829, step = 79101 (0.207 sec) INFO:tensorflow:global_step/sec: 469.55 INFO:tensorflow:loss = 0.010161445, step = 79201 (0.213 sec) INFO:tensorflow:global_step/sec: 480.4 INFO:tensorflow:loss = 0.0071275346, step = 79301 (0.208 sec) INFO:tensorflow:global_step/sec: 465.213 INFO:tensorflow:loss = 0.006760837, step = 79401 (0.215 sec) INFO:tensorflow:global_step/sec: 456.544 INFO:tensorflow:loss = 0.005613528, step = 79501 (0.219 sec) INFO:tensorflow:global_step/sec: 471.007 INFO:tensorflow:loss = 0.008591261, step = 79601 (0.213 sec) INFO:tensorflow:global_step/sec: 468.477 INFO:tensorflow:loss = 0.0063990387, step = 79701 (0.213 sec) INFO:tensorflow:global_step/sec: 447.661 INFO:tensorflow:loss = 0.010303696, step = 79801 (0.224 sec) INFO:tensorflow:global_step/sec: 451.606 INFO:tensorflow:loss = 0.015051338, step = 79901 (0.221 sec) INFO:tensorflow:Saving checkpoints for 80000 into /tmp/tmpBX73lD/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-2.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:26:26 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/model.ckpt-80000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't2_3_layer_dnn' dict for global step 80000: architecture/adanet/ensembles = } >adanet/iteration_2/ensemble_t2_3_layer_dnn/architecture/adanetB1B+| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.032317463, average_loss/adanet/subnetwork = 0.032910354, average_loss/adanet/uniform_average_ensemble = 0.03231746, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.043847356, loss/adanet/subnetwork = 0.043785788, loss/adanet/uniform_average_ensemble = 0.04384736, prediction/mean/adanet/adanet_weighted_ensemble = 3.1457782, prediction/mean/adanet/subnetwork = 3.134045, prediction/mean/adanet/uniform_average_ensemble = 3.1457782 INFO:tensorflow:Saving candidate 't3_3_layer_dnn' dict for global step 80000: architecture/adanet/ensembles = � >adanet/iteration_3/ensemble_t3_3_layer_dnn/architecture/adanetB?B9| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 3_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03251077, average_loss/adanet/subnetwork = 0.03740776, average_loss/adanet/uniform_average_ensemble = 0.032510772, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.045306467, loss/adanet/subnetwork = 0.055050053, loss/adanet/uniform_average_ensemble = 0.04530649, prediction/mean/adanet/adanet_weighted_ensemble = 3.1480103, prediction/mean/adanet/subnetwork = 3.1547055, prediction/mean/adanet/uniform_average_ensemble = 3.1480103 INFO:tensorflow:Saving candidate 't3_4_layer_dnn' dict for global step 80000: architecture/adanet/ensembles = � >adanet/iteration_3/ensemble_t3_4_layer_dnn/architecture/adanetB?B9| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 4_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.031587753, average_loss/adanet/subnetwork = 0.03348904, average_loss/adanet/uniform_average_ensemble = 0.03158775, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.04207115, loss/adanet/subnetwork = 0.041055106, loss/adanet/uniform_average_ensemble = 0.04207114, prediction/mean/adanet/adanet_weighted_ensemble = 3.1415138, prediction/mean/adanet/subnetwork = 3.1287208, prediction/mean/adanet/uniform_average_ensemble = 3.1415138 INFO:tensorflow:Finished evaluation at 2018-12-13-19:26:31 INFO:tensorflow:Saving dict for global step 80000: average_loss = 0.031587753, average_loss/adanet/adanet_weighted_ensemble = 0.031587753, average_loss/adanet/subnetwork = 0.03348904, average_loss/adanet/uniform_average_ensemble = 0.03158775, global_step = 80000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.04207115, loss/adanet/adanet_weighted_ensemble = 0.04207115, loss/adanet/subnetwork = 0.041055106, loss/adanet/uniform_average_ensemble = 0.04207114, prediction/mean = 3.1415138, prediction/mean/adanet/adanet_weighted_ensemble = 3.1415138, prediction/mean/adanet/subnetwork = 3.1287208, prediction/mean/adanet/uniform_average_ensemble = 3.1415138 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 80000: /tmp/tmpBX73lD/model.ckpt-80000 INFO:tensorflow:Loss for final step: 0.0061327047. INFO:tensorflow:Finished training Adanet iteration 3 INFO:tensorflow:Beginning bookkeeping phase for iteration 3 INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-2.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 3 INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/model.ckpt-80000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t2_3_layer_dnn = 0.011257, adanet_loss/t3_3_layer_dnn = 0.011323, adanet_loss/t3_4_layer_dnn = 0.009588 INFO:tensorflow:Finished ensemble evaluation for iteration 3 INFO:tensorflow:'t3_4_layer_dnn' at index 2 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-3.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn', '3:4_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Rebuilding iteration 3 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpBX73lD/model.ckpt-80000',) INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_3/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_2/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_3/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t3_4_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t3_4_layer_dnn/adanet/iteration_3/candidate_t3_4_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_4/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t3_4_layer_dnn/adanet/iteration_3/candidate_t3_4_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_4/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_3/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t2_3_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t2_3_layer_dnn/adanet/iteration_3/candidate_t2_3_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_3/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t2_3_layer_dnn/adanet/iteration_3/candidate_t2_3_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Building iteration 4 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Building subnetwork '5_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 4 to /tmp/tmpBX73lD/model.ckpt-80000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 3 INFO:tensorflow:Beginning training AdaNet iteration 4 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-3.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn', '3:4_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Rebuilding iteration 3 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Building iteration 4 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Building subnetwork '5_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/increment.ckpt-4 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 80000 into /tmp/tmpBX73lD/model.ckpt. INFO:tensorflow:loss = 0.01076022, step = 80001 INFO:tensorflow:global_step/sec: 106.247 INFO:tensorflow:loss = 0.011567029, step = 80101 (0.942 sec) INFO:tensorflow:global_step/sec: 433.175 INFO:tensorflow:loss = 0.0105704125, step = 80201 (0.230 sec) INFO:tensorflow:global_step/sec: 430.274 INFO:tensorflow:loss = 0.009286735, step = 80301 (0.233 sec) INFO:tensorflow:global_step/sec: 428.392 INFO:tensorflow:loss = 0.013190662, step = 80401 (0.233 sec) INFO:tensorflow:global_step/sec: 450.708 INFO:tensorflow:loss = 0.0066475794, step = 80501 (0.222 sec) INFO:tensorflow:global_step/sec: 468.729 INFO:tensorflow:loss = 0.0055183023, step = 80601 (0.214 sec) INFO:tensorflow:global_step/sec: 435.68 INFO:tensorflow:loss = 0.0071699126, step = 80701 (0.230 sec) INFO:tensorflow:global_step/sec: 436.822 INFO:tensorflow:loss = 0.009832906, step = 80801 (0.229 sec) INFO:tensorflow:global_step/sec: 443.821 INFO:tensorflow:loss = 0.011850201, step = 80901 (0.225 sec) INFO:tensorflow:global_step/sec: 428.919 INFO:tensorflow:loss = 0.013372295, step = 81001 (0.233 sec) INFO:tensorflow:global_step/sec: 456.289 INFO:tensorflow:loss = 0.0111810835, step = 81101 (0.219 sec) INFO:tensorflow:global_step/sec: 438.926 INFO:tensorflow:loss = 0.011970724, step = 81201 (0.228 sec) INFO:tensorflow:global_step/sec: 465.977 INFO:tensorflow:loss = 0.0065958686, step = 81301 (0.215 sec) INFO:tensorflow:global_step/sec: 433.362 INFO:tensorflow:loss = 0.007469721, step = 81401 (0.231 sec) INFO:tensorflow:global_step/sec: 472.037 INFO:tensorflow:loss = 0.005948479, step = 81501 (0.217 sec) INFO:tensorflow:global_step/sec: 445.149 INFO:tensorflow:loss = 0.0074148737, step = 81601 (0.220 sec) INFO:tensorflow:global_step/sec: 459.35 INFO:tensorflow:loss = 0.012823062, step = 81701 (0.217 sec) INFO:tensorflow:global_step/sec: 442.603 INFO:tensorflow:loss = 0.009658838, step = 81801 (0.226 sec) INFO:tensorflow:global_step/sec: 447.389 INFO:tensorflow:loss = 0.0110181635, step = 81901 (0.224 sec) INFO:tensorflow:global_step/sec: 452.133 INFO:tensorflow:loss = 0.0074777408, step = 82001 (0.221 sec) INFO:tensorflow:global_step/sec: 446.444 INFO:tensorflow:loss = 0.0150109315, step = 82101 (0.224 sec) INFO:tensorflow:global_step/sec: 456.667 INFO:tensorflow:loss = 0.008159091, step = 82201 (0.219 sec) INFO:tensorflow:global_step/sec: 453.416 INFO:tensorflow:loss = 0.007832337, step = 82301 (0.221 sec) INFO:tensorflow:global_step/sec: 450.367 INFO:tensorflow:loss = 0.006455669, step = 82401 (0.222 sec) INFO:tensorflow:global_step/sec: 447.561 INFO:tensorflow:loss = 0.01277595, step = 82501 (0.223 sec) INFO:tensorflow:global_step/sec: 452.52 INFO:tensorflow:loss = 0.006126184, step = 82601 (0.221 sec) INFO:tensorflow:global_step/sec: 445.669 INFO:tensorflow:loss = 0.01073208, step = 82701 (0.230 sec) INFO:tensorflow:global_step/sec: 441.269 INFO:tensorflow:loss = 0.009560438, step = 82801 (0.221 sec) INFO:tensorflow:global_step/sec: 460.764 INFO:tensorflow:loss = 0.008874605, step = 82901 (0.217 sec) INFO:tensorflow:global_step/sec: 457.411 INFO:tensorflow:loss = 0.008558904, step = 83001 (0.219 sec) INFO:tensorflow:global_step/sec: 456.777 INFO:tensorflow:loss = 0.0047848914, step = 83101 (0.219 sec) INFO:tensorflow:global_step/sec: 456.383 INFO:tensorflow:loss = 0.013862016, step = 83201 (0.219 sec) INFO:tensorflow:global_step/sec: 439.964 INFO:tensorflow:loss = 0.014882583, step = 83301 (0.227 sec) INFO:tensorflow:global_step/sec: 452.46 INFO:tensorflow:loss = 0.011824507, step = 83401 (0.221 sec) INFO:tensorflow:global_step/sec: 474.861 INFO:tensorflow:loss = 0.014059515, step = 83501 (0.210 sec) INFO:tensorflow:global_step/sec: 451.095 INFO:tensorflow:loss = 0.0069136624, step = 83601 (0.222 sec) INFO:tensorflow:global_step/sec: 435.603 INFO:tensorflow:loss = 0.008130037, step = 83701 (0.229 sec) INFO:tensorflow:global_step/sec: 451.657 INFO:tensorflow:loss = 0.0081698615, step = 83801 (0.221 sec) INFO:tensorflow:global_step/sec: 466.033 INFO:tensorflow:loss = 0.005401345, step = 83901 (0.214 sec) INFO:tensorflow:global_step/sec: 452.589 INFO:tensorflow:loss = 0.009502525, step = 84001 (0.221 sec) INFO:tensorflow:global_step/sec: 450.554 INFO:tensorflow:loss = 0.0075874086, step = 84101 (0.222 sec) INFO:tensorflow:global_step/sec: 470.395 INFO:tensorflow:loss = 0.007451632, step = 84201 (0.213 sec) INFO:tensorflow:global_step/sec: 445.072 INFO:tensorflow:loss = 0.004052775, step = 84301 (0.225 sec) INFO:tensorflow:global_step/sec: 471.629 INFO:tensorflow:loss = 0.006894485, step = 84401 (0.212 sec) INFO:tensorflow:global_step/sec: 468.239 INFO:tensorflow:loss = 0.009384276, step = 84501 (0.214 sec) INFO:tensorflow:global_step/sec: 441.032 INFO:tensorflow:loss = 0.011024917, step = 84601 (0.227 sec) INFO:tensorflow:global_step/sec: 477.591 INFO:tensorflow:loss = 0.0065401867, step = 84701 (0.209 sec) INFO:tensorflow:global_step/sec: 450.806 INFO:tensorflow:loss = 0.009705102, step = 84801 (0.222 sec) INFO:tensorflow:global_step/sec: 426.918 INFO:tensorflow:loss = 0.01221613, step = 84901 (0.234 sec) INFO:tensorflow:global_step/sec: 439.88 INFO:tensorflow:loss = 0.004846774, step = 85001 (0.227 sec) INFO:tensorflow:global_step/sec: 455.384 INFO:tensorflow:loss = 0.005345362, step = 85101 (0.220 sec) INFO:tensorflow:global_step/sec: 476.276 INFO:tensorflow:loss = 0.0062981583, step = 85201 (0.210 sec) INFO:tensorflow:global_step/sec: 452.372 INFO:tensorflow:loss = 0.011848188, step = 85301 (0.221 sec) INFO:tensorflow:global_step/sec: 459.365 INFO:tensorflow:loss = 0.006783499, step = 85401 (0.217 sec) INFO:tensorflow:global_step/sec: 436.975 INFO:tensorflow:loss = 0.006241713, step = 85501 (0.229 sec) INFO:tensorflow:global_step/sec: 460.003 INFO:tensorflow:loss = 0.012918718, step = 85601 (0.217 sec) INFO:tensorflow:global_step/sec: 426.345 INFO:tensorflow:loss = 0.008487627, step = 85701 (0.235 sec) INFO:tensorflow:global_step/sec: 444.27 INFO:tensorflow:loss = 0.008613524, step = 85801 (0.225 sec) INFO:tensorflow:global_step/sec: 449.667 INFO:tensorflow:loss = 0.006900057, step = 85901 (0.222 sec) INFO:tensorflow:global_step/sec: 429.614 INFO:tensorflow:loss = 0.009854027, step = 86001 (0.233 sec) INFO:tensorflow:global_step/sec: 445.738 INFO:tensorflow:loss = 0.01331093, step = 86101 (0.224 sec) INFO:tensorflow:global_step/sec: 459.747 INFO:tensorflow:loss = 0.010404253, step = 86201 (0.218 sec) INFO:tensorflow:global_step/sec: 449.715 INFO:tensorflow:loss = 0.0046990267, step = 86301 (0.222 sec) INFO:tensorflow:global_step/sec: 467.432 INFO:tensorflow:loss = 0.0064316783, step = 86401 (0.214 sec) INFO:tensorflow:global_step/sec: 459.379 INFO:tensorflow:loss = 0.0120327715, step = 86501 (0.218 sec) INFO:tensorflow:global_step/sec: 448.461 INFO:tensorflow:loss = 0.006700837, step = 86601 (0.223 sec) INFO:tensorflow:global_step/sec: 440.857 INFO:tensorflow:loss = 0.008075792, step = 86701 (0.227 sec) INFO:tensorflow:global_step/sec: 419.799 INFO:tensorflow:loss = 0.0068634166, step = 86801 (0.238 sec) INFO:tensorflow:global_step/sec: 456.038 INFO:tensorflow:loss = 0.006373025, step = 86901 (0.219 sec) INFO:tensorflow:global_step/sec: 435.591 INFO:tensorflow:loss = 0.0049459804, step = 87001 (0.230 sec) INFO:tensorflow:global_step/sec: 430.734 INFO:tensorflow:loss = 0.007862547, step = 87101 (0.232 sec) INFO:tensorflow:global_step/sec: 454.916 INFO:tensorflow:loss = 0.00981736, step = 87201 (0.220 sec) INFO:tensorflow:global_step/sec: 446.329 INFO:tensorflow:loss = 0.011696544, step = 87301 (0.224 sec) INFO:tensorflow:global_step/sec: 434.412 INFO:tensorflow:loss = 0.0095561575, step = 87401 (0.230 sec) INFO:tensorflow:global_step/sec: 456.45 INFO:tensorflow:loss = 0.0037475978, step = 87501 (0.219 sec) INFO:tensorflow:global_step/sec: 444.852 INFO:tensorflow:loss = 0.0091656465, step = 87601 (0.225 sec) INFO:tensorflow:global_step/sec: 437.065 INFO:tensorflow:loss = 0.014315022, step = 87701 (0.229 sec) INFO:tensorflow:global_step/sec: 429.411 INFO:tensorflow:loss = 0.012980651, step = 87801 (0.233 sec) INFO:tensorflow:global_step/sec: 441.531 INFO:tensorflow:loss = 0.0048240935, step = 87901 (0.226 sec) INFO:tensorflow:global_step/sec: 466.352 INFO:tensorflow:loss = 0.015078744, step = 88001 (0.214 sec) INFO:tensorflow:global_step/sec: 405.053 INFO:tensorflow:loss = 0.011876026, step = 88101 (0.247 sec) INFO:tensorflow:global_step/sec: 452.976 INFO:tensorflow:loss = 0.010125502, step = 88201 (0.221 sec) INFO:tensorflow:global_step/sec: 458.186 INFO:tensorflow:loss = 0.013823442, step = 88301 (0.219 sec) INFO:tensorflow:global_step/sec: 448.392 INFO:tensorflow:loss = 0.0053028753, step = 88401 (0.223 sec) INFO:tensorflow:global_step/sec: 452.16 INFO:tensorflow:loss = 0.007541458, step = 88501 (0.221 sec) INFO:tensorflow:global_step/sec: 457.381 INFO:tensorflow:loss = 0.008431977, step = 88601 (0.219 sec) INFO:tensorflow:global_step/sec: 455.766 INFO:tensorflow:loss = 0.010850932, step = 88701 (0.219 sec) INFO:tensorflow:global_step/sec: 436.296 INFO:tensorflow:loss = 0.017362352, step = 88801 (0.229 sec) INFO:tensorflow:global_step/sec: 450.779 INFO:tensorflow:loss = 0.017081048, step = 88901 (0.222 sec) INFO:tensorflow:global_step/sec: 423.594 INFO:tensorflow:loss = 0.01579927, step = 89001 (0.237 sec) INFO:tensorflow:global_step/sec: 450.869 INFO:tensorflow:loss = 0.009363698, step = 89101 (0.220 sec) INFO:tensorflow:global_step/sec: 470.537 INFO:tensorflow:loss = 0.009390919, step = 89201 (0.213 sec) INFO:tensorflow:global_step/sec: 443.465 INFO:tensorflow:loss = 0.0060469382, step = 89301 (0.225 sec) INFO:tensorflow:global_step/sec: 463.372 INFO:tensorflow:loss = 0.009950854, step = 89401 (0.221 sec) INFO:tensorflow:global_step/sec: 410.127 INFO:tensorflow:loss = 0.0071807606, step = 89501 (0.239 sec) INFO:tensorflow:global_step/sec: 459.375 INFO:tensorflow:loss = 0.0075567663, step = 89601 (0.218 sec) INFO:tensorflow:global_step/sec: 480.372 INFO:tensorflow:loss = 0.004868718, step = 89701 (0.208 sec) INFO:tensorflow:global_step/sec: 468.689 INFO:tensorflow:loss = 0.008060325, step = 89801 (0.213 sec) INFO:tensorflow:global_step/sec: 456.521 INFO:tensorflow:loss = 0.010573608, step = 89901 (0.219 sec) INFO:tensorflow:global_step/sec: 420.315 INFO:tensorflow:loss = 0.010056749, step = 90001 (0.238 sec) INFO:tensorflow:global_step/sec: 475.448 INFO:tensorflow:loss = 0.004914472, step = 90101 (0.210 sec) INFO:tensorflow:global_step/sec: 445.567 INFO:tensorflow:loss = 0.008606965, step = 90201 (0.224 sec) INFO:tensorflow:global_step/sec: 448.602 INFO:tensorflow:loss = 0.008953879, step = 90301 (0.223 sec) INFO:tensorflow:global_step/sec: 455.711 INFO:tensorflow:loss = 0.00606883, step = 90401 (0.220 sec) INFO:tensorflow:global_step/sec: 439.607 INFO:tensorflow:loss = 0.0047713965, step = 90501 (0.228 sec) INFO:tensorflow:global_step/sec: 465.712 INFO:tensorflow:loss = 0.008342918, step = 90601 (0.214 sec) INFO:tensorflow:global_step/sec: 478.801 INFO:tensorflow:loss = 0.0068472945, step = 90701 (0.209 sec) INFO:tensorflow:global_step/sec: 438.214 INFO:tensorflow:loss = 0.010479212, step = 90801 (0.228 sec) INFO:tensorflow:global_step/sec: 449.317 INFO:tensorflow:loss = 0.0111814905, step = 90901 (0.223 sec) INFO:tensorflow:global_step/sec: 441.287 INFO:tensorflow:loss = 0.006364339, step = 91001 (0.227 sec) INFO:tensorflow:global_step/sec: 418.224 INFO:tensorflow:loss = 0.012501595, step = 91101 (0.239 sec) INFO:tensorflow:global_step/sec: 421.417 INFO:tensorflow:loss = 0.007942257, step = 91201 (0.237 sec) INFO:tensorflow:global_step/sec: 411.007 INFO:tensorflow:loss = 0.009648362, step = 91301 (0.243 sec) INFO:tensorflow:global_step/sec: 441.102 INFO:tensorflow:loss = 0.004326268, step = 91401 (0.227 sec) INFO:tensorflow:global_step/sec: 425.064 INFO:tensorflow:loss = 0.014749368, step = 91501 (0.235 sec) INFO:tensorflow:global_step/sec: 425.8 INFO:tensorflow:loss = 0.005853046, step = 91601 (0.235 sec) INFO:tensorflow:global_step/sec: 440.121 INFO:tensorflow:loss = 0.012736705, step = 91701 (0.227 sec) INFO:tensorflow:global_step/sec: 380.625 INFO:tensorflow:loss = 0.006685883, step = 91801 (0.263 sec) INFO:tensorflow:global_step/sec: 440.184 INFO:tensorflow:loss = 0.006259484, step = 91901 (0.227 sec) INFO:tensorflow:global_step/sec: 440.847 INFO:tensorflow:loss = 0.009421283, step = 92001 (0.227 sec) INFO:tensorflow:global_step/sec: 428.61 INFO:tensorflow:loss = 0.0056731515, step = 92101 (0.234 sec) INFO:tensorflow:global_step/sec: 450.369 INFO:tensorflow:loss = 0.0067383423, step = 92201 (0.222 sec) INFO:tensorflow:global_step/sec: 454.783 INFO:tensorflow:loss = 0.008340258, step = 92301 (0.220 sec) INFO:tensorflow:global_step/sec: 446.281 INFO:tensorflow:loss = 0.007261906, step = 92401 (0.225 sec) INFO:tensorflow:global_step/sec: 445.353 INFO:tensorflow:loss = 0.008833823, step = 92501 (0.224 sec) INFO:tensorflow:global_step/sec: 454.267 INFO:tensorflow:loss = 0.0042939773, step = 92601 (0.220 sec) INFO:tensorflow:global_step/sec: 453.377 INFO:tensorflow:loss = 0.012260348, step = 92701 (0.220 sec) INFO:tensorflow:global_step/sec: 438.672 INFO:tensorflow:loss = 0.011230526, step = 92801 (0.228 sec) INFO:tensorflow:global_step/sec: 438.941 INFO:tensorflow:loss = 0.008917751, step = 92901 (0.228 sec) INFO:tensorflow:global_step/sec: 440.568 INFO:tensorflow:loss = 0.011714136, step = 93001 (0.227 sec) INFO:tensorflow:global_step/sec: 466.014 INFO:tensorflow:loss = 0.0073758443, step = 93101 (0.215 sec) INFO:tensorflow:global_step/sec: 468.119 INFO:tensorflow:loss = 0.003955289, step = 93201 (0.213 sec) INFO:tensorflow:global_step/sec: 470.834 INFO:tensorflow:loss = 0.0046369513, step = 93301 (0.213 sec) INFO:tensorflow:global_step/sec: 469.162 INFO:tensorflow:loss = 0.007927978, step = 93401 (0.213 sec) INFO:tensorflow:global_step/sec: 458.322 INFO:tensorflow:loss = 0.008177168, step = 93501 (0.219 sec) INFO:tensorflow:global_step/sec: 476.606 INFO:tensorflow:loss = 0.007055303, step = 93601 (0.209 sec) INFO:tensorflow:global_step/sec: 471.298 INFO:tensorflow:loss = 0.0064525036, step = 93701 (0.212 sec) INFO:tensorflow:global_step/sec: 485.527 INFO:tensorflow:loss = 0.010708123, step = 93801 (0.206 sec) INFO:tensorflow:global_step/sec: 442.813 INFO:tensorflow:loss = 0.007946094, step = 93901 (0.226 sec) INFO:tensorflow:global_step/sec: 468.186 INFO:tensorflow:loss = 0.0055915033, step = 94001 (0.214 sec) INFO:tensorflow:global_step/sec: 464.727 INFO:tensorflow:loss = 0.009732682, step = 94101 (0.215 sec) INFO:tensorflow:global_step/sec: 466.611 INFO:tensorflow:loss = 0.009899803, step = 94201 (0.214 sec) INFO:tensorflow:global_step/sec: 451.482 INFO:tensorflow:loss = 0.007355769, step = 94301 (0.221 sec) INFO:tensorflow:global_step/sec: 449.604 INFO:tensorflow:loss = 0.006268471, step = 94401 (0.223 sec) INFO:tensorflow:global_step/sec: 465.948 INFO:tensorflow:loss = 0.0055277785, step = 94501 (0.215 sec) INFO:tensorflow:global_step/sec: 449.761 INFO:tensorflow:loss = 0.008253826, step = 94601 (0.222 sec) INFO:tensorflow:global_step/sec: 457.675 INFO:tensorflow:loss = 0.008863449, step = 94701 (0.219 sec) INFO:tensorflow:global_step/sec: 476.456 INFO:tensorflow:loss = 0.010726278, step = 94801 (0.210 sec) INFO:tensorflow:global_step/sec: 430.424 INFO:tensorflow:loss = 0.006165526, step = 94901 (0.232 sec) INFO:tensorflow:global_step/sec: 454.45 INFO:tensorflow:loss = 0.014830342, step = 95001 (0.220 sec) INFO:tensorflow:global_step/sec: 456.236 INFO:tensorflow:loss = 0.0061218496, step = 95101 (0.219 sec) INFO:tensorflow:global_step/sec: 456.612 INFO:tensorflow:loss = 0.0061841793, step = 95201 (0.219 sec) INFO:tensorflow:global_step/sec: 458.266 INFO:tensorflow:loss = 0.013126951, step = 95301 (0.218 sec) INFO:tensorflow:global_step/sec: 468.801 INFO:tensorflow:loss = 0.0057089217, step = 95401 (0.213 sec) INFO:tensorflow:global_step/sec: 473.514 INFO:tensorflow:loss = 0.010399368, step = 95501 (0.216 sec) INFO:tensorflow:global_step/sec: 441.127 INFO:tensorflow:loss = 0.0056310957, step = 95601 (0.222 sec) INFO:tensorflow:global_step/sec: 451.263 INFO:tensorflow:loss = 0.0053259893, step = 95701 (0.222 sec) INFO:tensorflow:global_step/sec: 439.391 INFO:tensorflow:loss = 0.015028892, step = 95801 (0.227 sec) INFO:tensorflow:global_step/sec: 466.444 INFO:tensorflow:loss = 0.0061596353, step = 95901 (0.214 sec) INFO:tensorflow:global_step/sec: 450.024 INFO:tensorflow:loss = 0.007637582, step = 96001 (0.222 sec) INFO:tensorflow:global_step/sec: 460.299 INFO:tensorflow:loss = 0.008166807, step = 96101 (0.217 sec) INFO:tensorflow:global_step/sec: 442.73 INFO:tensorflow:loss = 0.0056512663, step = 96201 (0.226 sec) INFO:tensorflow:global_step/sec: 471.994 INFO:tensorflow:loss = 0.0050436864, step = 96301 (0.212 sec) INFO:tensorflow:global_step/sec: 467.734 INFO:tensorflow:loss = 0.009083891, step = 96401 (0.214 sec) INFO:tensorflow:global_step/sec: 463.82 INFO:tensorflow:loss = 0.0092610065, step = 96501 (0.216 sec) INFO:tensorflow:global_step/sec: 449.634 INFO:tensorflow:loss = 0.0062198066, step = 96601 (0.223 sec) INFO:tensorflow:global_step/sec: 452.253 INFO:tensorflow:loss = 0.01348327, step = 96701 (0.221 sec) INFO:tensorflow:global_step/sec: 451.927 INFO:tensorflow:loss = 0.0075592278, step = 96801 (0.221 sec) INFO:tensorflow:global_step/sec: 454.775 INFO:tensorflow:loss = 0.0052253455, step = 96901 (0.220 sec) INFO:tensorflow:global_step/sec: 457.882 INFO:tensorflow:loss = 0.009982036, step = 97001 (0.219 sec) INFO:tensorflow:global_step/sec: 453.202 INFO:tensorflow:loss = 0.014037208, step = 97101 (0.225 sec) INFO:tensorflow:global_step/sec: 423.68 INFO:tensorflow:loss = 0.0053974064, step = 97201 (0.232 sec) INFO:tensorflow:global_step/sec: 440.476 INFO:tensorflow:loss = 0.004785974, step = 97301 (0.227 sec) INFO:tensorflow:global_step/sec: 450.995 INFO:tensorflow:loss = 0.006669085, step = 97401 (0.221 sec) INFO:tensorflow:global_step/sec: 441.568 INFO:tensorflow:loss = 0.010448052, step = 97501 (0.226 sec) INFO:tensorflow:global_step/sec: 450.503 INFO:tensorflow:loss = 0.008053826, step = 97601 (0.222 sec) INFO:tensorflow:global_step/sec: 442.894 INFO:tensorflow:loss = 0.0048241923, step = 97701 (0.226 sec) INFO:tensorflow:global_step/sec: 435.682 INFO:tensorflow:loss = 0.010347674, step = 97801 (0.229 sec) INFO:tensorflow:global_step/sec: 479.042 INFO:tensorflow:loss = 0.0047979965, step = 97901 (0.209 sec) INFO:tensorflow:global_step/sec: 447.66 INFO:tensorflow:loss = 0.010023495, step = 98001 (0.223 sec) INFO:tensorflow:global_step/sec: 464.753 INFO:tensorflow:loss = 0.009690805, step = 98101 (0.215 sec) INFO:tensorflow:global_step/sec: 467.06 INFO:tensorflow:loss = 0.008275158, step = 98201 (0.214 sec) INFO:tensorflow:global_step/sec: 465.55 INFO:tensorflow:loss = 0.011195747, step = 98301 (0.215 sec) INFO:tensorflow:global_step/sec: 458.14 INFO:tensorflow:loss = 0.009275818, step = 98401 (0.218 sec) INFO:tensorflow:global_step/sec: 456.97 INFO:tensorflow:loss = 0.008696778, step = 98501 (0.219 sec) INFO:tensorflow:global_step/sec: 473.882 INFO:tensorflow:loss = 0.0084723625, step = 98601 (0.211 sec) INFO:tensorflow:global_step/sec: 463.555 INFO:tensorflow:loss = 0.005408332, step = 98701 (0.216 sec) INFO:tensorflow:global_step/sec: 472.934 INFO:tensorflow:loss = 0.006189944, step = 98801 (0.212 sec) INFO:tensorflow:global_step/sec: 474.264 INFO:tensorflow:loss = 0.013700008, step = 98901 (0.210 sec) INFO:tensorflow:global_step/sec: 468.353 INFO:tensorflow:loss = 0.009340456, step = 99001 (0.214 sec) INFO:tensorflow:global_step/sec: 466.54 INFO:tensorflow:loss = 0.008566959, step = 99101 (0.214 sec) INFO:tensorflow:global_step/sec: 458.68 INFO:tensorflow:loss = 0.0067969724, step = 99201 (0.218 sec) INFO:tensorflow:global_step/sec: 428.467 INFO:tensorflow:loss = 0.008139711, step = 99301 (0.233 sec) INFO:tensorflow:global_step/sec: 443.178 INFO:tensorflow:loss = 0.0058223605, step = 99401 (0.226 sec) INFO:tensorflow:global_step/sec: 424.465 INFO:tensorflow:loss = 0.005538292, step = 99501 (0.236 sec) INFO:tensorflow:global_step/sec: 453.76 INFO:tensorflow:loss = 0.0075483248, step = 99601 (0.220 sec) INFO:tensorflow:global_step/sec: 460.636 INFO:tensorflow:loss = 0.008077534, step = 99701 (0.217 sec) INFO:tensorflow:global_step/sec: 450.708 INFO:tensorflow:loss = 0.01044227, step = 99801 (0.222 sec) INFO:tensorflow:global_step/sec: 460.872 INFO:tensorflow:loss = 0.009272017, step = 99901 (0.217 sec) INFO:tensorflow:Saving checkpoints for 100000 into /tmp/tmpBX73lD/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpBX73lD/architecture-3.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn', '3:4_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Rebuilding iteration 3 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Building iteration 4 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Building subnetwork '5_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:27:49 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpBX73lD/model.ckpt-100000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't3_4_layer_dnn' dict for global step 100000: architecture/adanet/ensembles = � >adanet/iteration_3/ensemble_t3_4_layer_dnn/architecture/adanetB?B9| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 4_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.031587753, average_loss/adanet/subnetwork = 0.03348904, average_loss/adanet/uniform_average_ensemble = 0.031587753, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.04207115, loss/adanet/subnetwork = 0.041055106, loss/adanet/uniform_average_ensemble = 0.04207115, prediction/mean/adanet/adanet_weighted_ensemble = 3.1415138, prediction/mean/adanet/subnetwork = 3.1287208, prediction/mean/adanet/uniform_average_ensemble = 3.1415138 INFO:tensorflow:Saving candidate 't4_4_layer_dnn' dict for global step 100000: architecture/adanet/ensembles = � >adanet/iteration_4/ensemble_t4_4_layer_dnn/architecture/adanetBMBG| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 4_layer_dnn | 4_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.031320337, average_loss/adanet/subnetwork = 0.036771663, average_loss/adanet/uniform_average_ensemble = 0.031320345, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.042101234, loss/adanet/subnetwork = 0.049315907, loss/adanet/uniform_average_ensemble = 0.04210123, prediction/mean/adanet/adanet_weighted_ensemble = 3.1364617, prediction/mean/adanet/subnetwork = 3.116253, prediction/mean/adanet/uniform_average_ensemble = 3.1364617 INFO:tensorflow:Saving candidate 't4_5_layer_dnn' dict for global step 100000: architecture/adanet/ensembles = � >adanet/iteration_4/ensemble_t4_5_layer_dnn/architecture/adanetBMBG| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 4_layer_dnn | 5_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.032695297, average_loss/adanet/subnetwork = 0.0495253, average_loss/adanet/uniform_average_ensemble = 0.032695293, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.043896608, loss/adanet/subnetwork = 0.06338713, loss/adanet/uniform_average_ensemble = 0.0438966, prediction/mean/adanet/adanet_weighted_ensemble = 3.1284606, prediction/mean/adanet/subnetwork = 3.0762491, prediction/mean/adanet/uniform_average_ensemble = 3.1284606 INFO:tensorflow:Finished evaluation at 2018-12-13-19:27:54 INFO:tensorflow:Saving dict for global step 100000: average_loss = 0.032695297, average_loss/adanet/adanet_weighted_ensemble = 0.032695297, average_loss/adanet/subnetwork = 0.0495253, average_loss/adanet/uniform_average_ensemble = 0.032695293, global_step = 100000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.043896608, loss/adanet/adanet_weighted_ensemble = 0.043896608, loss/adanet/subnetwork = 0.06338713, loss/adanet/uniform_average_ensemble = 0.0438966, prediction/mean = 3.1284606, prediction/mean/adanet/adanet_weighted_ensemble = 3.1284606, prediction/mean/adanet/subnetwork = 3.0762491, prediction/mean/adanet/uniform_average_ensemble = 3.1284606 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 100000: /tmp/tmpBX73lD/model.ckpt-100000 INFO:tensorflow:Loss for final step: 0.0064807483. INFO:tensorflow:Finished training Adanet iteration 4 Loss: 0.032695297 Architecture: | 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 4_layer_dnn | 5_layer_dnn |
Apache-2.0
adanet/examples/tutorials/adanet_objective.ipynb
sararob/adanet
These hyperparameters preduce a model that achieves **0.0348** MSE on the testset (exact MSE will vary depending on the hardware you're using to train the model). Notice that the ensemble is composed of 5 subnetworks, each one a hiddenlayer deeper than the previous. The most complex subnetwork is made of 5 hiddenlayers.Since `SimpleDNNGenerator` produces subnetworks of varying complexity, and ourmodel gives each one an equal weight, AdaNet selected the subnetwork that mostlowered the ensemble's training loss at each iteration, likely the one with themost hidden layers, since it has the most capacity, and we aren't penalizingmore complex subnetworks (yet).Next, instead of assigning equal weight to each subnetwork, let's learn themixture weights as a convex optimization problem using SGD:
#@test {"skip": true} results, _ = train_and_evaluate(learn_mixture_weights=True) print("Loss:", results["average_loss"]) print("Uniform average loss:", results["average_loss/adanet/uniform_average_ensemble"]) print("Architecture:", ensemble_architecture(results))
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpDexXZd INFO:tensorflow:Using config: {'_save_checkpoints_secs': None, '_num_ps_replicas': 0, '_keep_checkpoint_max': 5, '_task_type': 'worker', '_global_id_in_cluster': 0, '_is_chief': True, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f2794692a50>, '_model_dir': '/tmp/tmpDexXZd', '_protocol': None, '_save_checkpoints_steps': 50000, '_keep_checkpoint_every_n_hours': 10000, '_service': None, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_tf_random_seed': 42, '_save_summary_steps': 50000, '_device_fn': None, '_experimental_distribute': None, '_num_worker_replicas': 1, '_task_id': 0, '_log_step_count_steps': 100, '_evaluation_master': '', '_eval_distribute': None, '_train_distribute': None, '_master': ''} INFO:tensorflow:Not using Distribute Coordinator. INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 50000 or save_checkpoints_secs None. INFO:tensorflow:Beginning training AdaNet iteration 0 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Building iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpDexXZd/model.ckpt. INFO:tensorflow:loss = 21.773132, step = 1 INFO:tensorflow:global_step/sec: 174.652 INFO:tensorflow:loss = 0.6285208, step = 101 (0.574 sec) INFO:tensorflow:global_step/sec: 556.031 INFO:tensorflow:loss = 0.56869733, step = 201 (0.180 sec) INFO:tensorflow:global_step/sec: 557.64 INFO:tensorflow:loss = 0.07774231, step = 301 (0.179 sec) INFO:tensorflow:global_step/sec: 536.303 INFO:tensorflow:loss = 0.08270252, step = 401 (0.186 sec) INFO:tensorflow:global_step/sec: 544.736 INFO:tensorflow:loss = 0.08153409, step = 501 (0.184 sec) INFO:tensorflow:global_step/sec: 511.091 INFO:tensorflow:loss = 0.056552373, step = 601 (0.195 sec) INFO:tensorflow:global_step/sec: 550.621 INFO:tensorflow:loss = 0.025883075, step = 701 (0.182 sec) INFO:tensorflow:global_step/sec: 559.246 INFO:tensorflow:loss = 0.030127663, step = 801 (0.179 sec) INFO:tensorflow:global_step/sec: 548.297 INFO:tensorflow:loss = 0.03756211, step = 901 (0.185 sec) INFO:tensorflow:global_step/sec: 536.855 INFO:tensorflow:loss = 0.06788661, step = 1001 (0.184 sec) INFO:tensorflow:global_step/sec: 556.328 INFO:tensorflow:loss = 0.036306266, step = 1101 (0.180 sec) INFO:tensorflow:global_step/sec: 552.101 INFO:tensorflow:loss = 0.05074877, step = 1201 (0.181 sec) INFO:tensorflow:global_step/sec: 571.497 INFO:tensorflow:loss = 0.10058474, step = 1301 (0.175 sec) INFO:tensorflow:global_step/sec: 567.55 INFO:tensorflow:loss = 0.026643533, step = 1401 (0.176 sec) INFO:tensorflow:global_step/sec: 546.287 INFO:tensorflow:loss = 0.020885473, step = 1501 (0.183 sec) INFO:tensorflow:global_step/sec: 543.292 INFO:tensorflow:loss = 0.032396816, step = 1601 (0.184 sec) INFO:tensorflow:global_step/sec: 543.632 INFO:tensorflow:loss = 0.041603133, step = 1701 (0.185 sec) INFO:tensorflow:global_step/sec: 543.496 INFO:tensorflow:loss = 0.035292536, step = 1801 (0.183 sec) INFO:tensorflow:global_step/sec: 539.173 INFO:tensorflow:loss = 0.04474579, step = 1901 (0.185 sec) INFO:tensorflow:global_step/sec: 552.816 INFO:tensorflow:loss = 0.029937664, step = 2001 (0.181 sec) INFO:tensorflow:global_step/sec: 540.912 INFO:tensorflow:loss = 0.047246538, step = 2101 (0.185 sec) INFO:tensorflow:global_step/sec: 534.233 INFO:tensorflow:loss = 0.024866749, step = 2201 (0.187 sec) INFO:tensorflow:global_step/sec: 531.472 INFO:tensorflow:loss = 0.025053516, step = 2301 (0.188 sec) INFO:tensorflow:global_step/sec: 539.714 INFO:tensorflow:loss = 0.022536632, step = 2401 (0.186 sec) INFO:tensorflow:global_step/sec: 544.71 INFO:tensorflow:loss = 0.047800276, step = 2501 (0.184 sec) INFO:tensorflow:global_step/sec: 579.096 INFO:tensorflow:loss = 0.03202751, step = 2601 (0.173 sec) INFO:tensorflow:global_step/sec: 517.886 INFO:tensorflow:loss = 0.033754677, step = 2701 (0.193 sec) INFO:tensorflow:global_step/sec: 534.408 INFO:tensorflow:loss = 0.014495829, step = 2801 (0.187 sec) INFO:tensorflow:global_step/sec: 524.406 INFO:tensorflow:loss = 0.031205812, step = 2901 (0.191 sec) INFO:tensorflow:global_step/sec: 540.38 INFO:tensorflow:loss = 0.026792966, step = 3001 (0.185 sec) INFO:tensorflow:global_step/sec: 550.285 INFO:tensorflow:loss = 0.026968574, step = 3101 (0.182 sec) INFO:tensorflow:global_step/sec: 534.265 INFO:tensorflow:loss = 0.027100379, step = 3201 (0.187 sec) INFO:tensorflow:global_step/sec: 545.899 INFO:tensorflow:loss = 0.035916645, step = 3301 (0.183 sec) INFO:tensorflow:global_step/sec: 526.704 INFO:tensorflow:loss = 0.025515234, step = 3401 (0.190 sec) INFO:tensorflow:global_step/sec: 539.397 INFO:tensorflow:loss = 0.049373515, step = 3501 (0.191 sec) INFO:tensorflow:global_step/sec: 520.882 INFO:tensorflow:loss = 0.024171062, step = 3601 (0.186 sec) INFO:tensorflow:global_step/sec: 542.608 INFO:tensorflow:loss = 0.017237261, step = 3701 (0.184 sec) INFO:tensorflow:global_step/sec: 537.415 INFO:tensorflow:loss = 0.02012871, step = 3801 (0.186 sec) INFO:tensorflow:global_step/sec: 530.105 INFO:tensorflow:loss = 0.021598272, step = 3901 (0.188 sec) INFO:tensorflow:global_step/sec: 522.654 INFO:tensorflow:loss = 0.037727967, step = 4001 (0.191 sec) INFO:tensorflow:global_step/sec: 532.776 INFO:tensorflow:loss = 0.041009873, step = 4101 (0.188 sec) INFO:tensorflow:global_step/sec: 550.134 INFO:tensorflow:loss = 0.02131496, step = 4201 (0.182 sec) INFO:tensorflow:global_step/sec: 553.848 INFO:tensorflow:loss = 0.03397341, step = 4301 (0.182 sec) INFO:tensorflow:global_step/sec: 563.51 INFO:tensorflow:loss = 0.037425887, step = 4401 (0.177 sec) INFO:tensorflow:global_step/sec: 543.715 INFO:tensorflow:loss = 0.04003139, step = 4501 (0.184 sec) INFO:tensorflow:global_step/sec: 565.096 INFO:tensorflow:loss = 0.037306778, step = 4601 (0.177 sec) INFO:tensorflow:global_step/sec: 558.344 INFO:tensorflow:loss = 0.050043687, step = 4701 (0.179 sec) INFO:tensorflow:global_step/sec: 541.864 INFO:tensorflow:loss = 0.04509886, step = 4801 (0.185 sec) INFO:tensorflow:global_step/sec: 527.897 INFO:tensorflow:loss = 0.023579344, step = 4901 (0.189 sec) INFO:tensorflow:global_step/sec: 566.797 INFO:tensorflow:loss = 0.014783389, step = 5001 (0.176 sec) INFO:tensorflow:global_step/sec: 540.345 INFO:tensorflow:loss = 0.021115452, step = 5101 (0.185 sec) INFO:tensorflow:global_step/sec: 562.921 INFO:tensorflow:loss = 0.028692478, step = 5201 (0.178 sec) INFO:tensorflow:global_step/sec: 549.931 INFO:tensorflow:loss = 0.044227492, step = 5301 (0.182 sec) INFO:tensorflow:global_step/sec: 547.064 INFO:tensorflow:loss = 0.015665479, step = 5401 (0.183 sec) INFO:tensorflow:global_step/sec: 555.155 INFO:tensorflow:loss = 0.01773511, step = 5501 (0.180 sec) INFO:tensorflow:global_step/sec: 560.799 INFO:tensorflow:loss = 0.026888533, step = 5601 (0.178 sec) INFO:tensorflow:global_step/sec: 551.42 INFO:tensorflow:loss = 0.025225485, step = 5701 (0.181 sec) INFO:tensorflow:global_step/sec: 550.509 INFO:tensorflow:loss = 0.032536205, step = 5801 (0.182 sec) INFO:tensorflow:global_step/sec: 553.937 INFO:tensorflow:loss = 0.014430038, step = 5901 (0.180 sec) INFO:tensorflow:global_step/sec: 535.117 INFO:tensorflow:loss = 0.020685751, step = 6001 (0.187 sec) INFO:tensorflow:global_step/sec: 524.816 INFO:tensorflow:loss = 0.03591007, step = 6101 (0.190 sec) INFO:tensorflow:global_step/sec: 542.738 INFO:tensorflow:loss = 0.053759784, step = 6201 (0.184 sec) INFO:tensorflow:global_step/sec: 560.535 INFO:tensorflow:loss = 0.02680358, step = 6301 (0.178 sec) INFO:tensorflow:global_step/sec: 568.76 INFO:tensorflow:loss = 0.035358988, step = 6401 (0.176 sec) INFO:tensorflow:global_step/sec: 550.904 INFO:tensorflow:loss = 0.04194644, step = 6501 (0.182 sec) INFO:tensorflow:global_step/sec: 547.193 INFO:tensorflow:loss = 0.025395703, step = 6601 (0.183 sec) INFO:tensorflow:global_step/sec: 541.818 INFO:tensorflow:loss = 0.020708144, step = 6701 (0.186 sec) INFO:tensorflow:global_step/sec: 482.784 INFO:tensorflow:loss = 0.020778311, step = 6801 (0.205 sec) INFO:tensorflow:global_step/sec: 507.454 INFO:tensorflow:loss = 0.01670653, step = 6901 (0.197 sec) INFO:tensorflow:global_step/sec: 537.438 INFO:tensorflow:loss = 0.026352288, step = 7001 (0.186 sec) INFO:tensorflow:global_step/sec: 537.545 INFO:tensorflow:loss = 0.0261777, step = 7101 (0.186 sec) INFO:tensorflow:global_step/sec: 549.001 INFO:tensorflow:loss = 0.01794462, step = 7201 (0.182 sec) INFO:tensorflow:global_step/sec: 553.174 INFO:tensorflow:loss = 0.048021037, step = 7301 (0.181 sec) INFO:tensorflow:global_step/sec: 496.9 INFO:tensorflow:loss = 0.025696136, step = 7401 (0.202 sec) INFO:tensorflow:global_step/sec: 527.852 INFO:tensorflow:loss = 0.025690787, step = 7501 (0.189 sec) INFO:tensorflow:global_step/sec: 550.58 INFO:tensorflow:loss = 0.012600312, step = 7601 (0.182 sec) INFO:tensorflow:global_step/sec: 552.339 INFO:tensorflow:loss = 0.022771204, step = 7701 (0.181 sec) INFO:tensorflow:global_step/sec: 551.28 INFO:tensorflow:loss = 0.019244373, step = 7801 (0.181 sec) INFO:tensorflow:global_step/sec: 551.858 INFO:tensorflow:loss = 0.017517129, step = 7901 (0.181 sec) INFO:tensorflow:global_step/sec: 542.059 INFO:tensorflow:loss = 0.025490459, step = 8001 (0.184 sec) INFO:tensorflow:global_step/sec: 545.601 INFO:tensorflow:loss = 0.02163744, step = 8101 (0.184 sec) INFO:tensorflow:global_step/sec: 562.312 INFO:tensorflow:loss = 0.039411552, step = 8201 (0.178 sec) INFO:tensorflow:global_step/sec: 544.654 INFO:tensorflow:loss = 0.023735859, step = 8301 (0.183 sec) INFO:tensorflow:global_step/sec: 526.21 INFO:tensorflow:loss = 0.046903748, step = 8401 (0.190 sec) INFO:tensorflow:global_step/sec: 549.66 INFO:tensorflow:loss = 0.020569675, step = 8501 (0.182 sec) INFO:tensorflow:global_step/sec: 531.997 INFO:tensorflow:loss = 0.02903841, step = 8601 (0.188 sec) INFO:tensorflow:global_step/sec: 521.521 INFO:tensorflow:loss = 0.022762362, step = 8701 (0.192 sec) INFO:tensorflow:global_step/sec: 552.193 INFO:tensorflow:loss = 0.036313385, step = 8801 (0.181 sec) INFO:tensorflow:global_step/sec: 544.182 INFO:tensorflow:loss = 0.05480792, step = 8901 (0.184 sec) INFO:tensorflow:global_step/sec: 539.852 INFO:tensorflow:loss = 0.04281692, step = 9001 (0.185 sec) INFO:tensorflow:global_step/sec: 540.833 INFO:tensorflow:loss = 0.020093214, step = 9101 (0.185 sec) INFO:tensorflow:global_step/sec: 528.016 INFO:tensorflow:loss = 0.035362348, step = 9201 (0.190 sec) INFO:tensorflow:global_step/sec: 536.933 INFO:tensorflow:loss = 0.014011826, step = 9301 (0.186 sec) INFO:tensorflow:global_step/sec: 549.185 INFO:tensorflow:loss = 0.01780463, step = 9401 (0.182 sec) INFO:tensorflow:global_step/sec: 544.89 INFO:tensorflow:loss = 0.03639295, step = 9501 (0.184 sec) INFO:tensorflow:global_step/sec: 550.291 INFO:tensorflow:loss = 0.032045305, step = 9601 (0.182 sec) INFO:tensorflow:global_step/sec: 527.507 INFO:tensorflow:loss = 0.011883362, step = 9701 (0.189 sec) INFO:tensorflow:global_step/sec: 523.634 INFO:tensorflow:loss = 0.021471867, step = 9801 (0.191 sec) INFO:tensorflow:global_step/sec: 529.498 INFO:tensorflow:loss = 0.022176802, step = 9901 (0.188 sec) INFO:tensorflow:global_step/sec: 559.493 INFO:tensorflow:loss = 0.029772094, step = 10001 (0.179 sec) INFO:tensorflow:global_step/sec: 544.639 INFO:tensorflow:loss = 0.021319227, step = 10101 (0.184 sec) INFO:tensorflow:global_step/sec: 557.075 INFO:tensorflow:loss = 0.04389864, step = 10201 (0.179 sec) INFO:tensorflow:global_step/sec: 487.984 INFO:tensorflow:loss = 0.03191474, step = 10301 (0.205 sec) INFO:tensorflow:global_step/sec: 547.975 INFO:tensorflow:loss = 0.03408063, step = 10401 (0.183 sec) INFO:tensorflow:global_step/sec: 548.273 INFO:tensorflow:loss = 0.039806467, step = 10501 (0.182 sec) INFO:tensorflow:global_step/sec: 565.518 INFO:tensorflow:loss = 0.025473367, step = 10601 (0.177 sec) INFO:tensorflow:global_step/sec: 524.134 INFO:tensorflow:loss = 0.012293407, step = 10701 (0.191 sec) INFO:tensorflow:global_step/sec: 502.922 INFO:tensorflow:loss = 0.021352112, step = 10801 (0.199 sec) INFO:tensorflow:global_step/sec: 525.237 INFO:tensorflow:loss = 0.026855603, step = 10901 (0.190 sec) INFO:tensorflow:global_step/sec: 556.149 INFO:tensorflow:loss = 0.009965676, step = 11001 (0.180 sec) INFO:tensorflow:global_step/sec: 564.902 INFO:tensorflow:loss = 0.028150808, step = 11101 (0.177 sec) INFO:tensorflow:global_step/sec: 568.818 INFO:tensorflow:loss = 0.013019005, step = 11201 (0.176 sec) INFO:tensorflow:global_step/sec: 540.617 INFO:tensorflow:loss = 0.04203432, step = 11301 (0.185 sec) INFO:tensorflow:global_step/sec: 531.924 INFO:tensorflow:loss = 0.018489825, step = 11401 (0.188 sec) INFO:tensorflow:global_step/sec: 536.429 INFO:tensorflow:loss = 0.060697384, step = 11501 (0.186 sec) INFO:tensorflow:global_step/sec: 510.345 INFO:tensorflow:loss = 0.014159491, step = 11601 (0.196 sec) INFO:tensorflow:global_step/sec: 546.696 INFO:tensorflow:loss = 0.024260698, step = 11701 (0.183 sec) INFO:tensorflow:global_step/sec: 513.672 INFO:tensorflow:loss = 0.013246283, step = 11801 (0.194 sec) INFO:tensorflow:global_step/sec: 537.891 INFO:tensorflow:loss = 0.03547176, step = 11901 (0.186 sec) INFO:tensorflow:global_step/sec: 566.473 INFO:tensorflow:loss = 0.024981104, step = 12001 (0.177 sec) INFO:tensorflow:global_step/sec: 542.481 INFO:tensorflow:loss = 0.014895246, step = 12101 (0.184 sec) INFO:tensorflow:global_step/sec: 551.542 INFO:tensorflow:loss = 0.010142172, step = 12201 (0.181 sec) INFO:tensorflow:global_step/sec: 533.86 INFO:tensorflow:loss = 0.018302724, step = 12301 (0.187 sec) INFO:tensorflow:global_step/sec: 548.606 INFO:tensorflow:loss = 0.016508352, step = 12401 (0.182 sec) INFO:tensorflow:global_step/sec: 531.686 INFO:tensorflow:loss = 0.023406351, step = 12501 (0.189 sec) INFO:tensorflow:global_step/sec: 490.28 INFO:tensorflow:loss = 0.02101646, step = 12601 (0.203 sec) INFO:tensorflow:global_step/sec: 542.712 INFO:tensorflow:loss = 0.018962208, step = 12701 (0.187 sec) INFO:tensorflow:global_step/sec: 530.763 INFO:tensorflow:loss = 0.02032728, step = 12801 (0.185 sec) INFO:tensorflow:global_step/sec: 519.343 INFO:tensorflow:loss = 0.026288046, step = 12901 (0.193 sec) INFO:tensorflow:global_step/sec: 531.485 INFO:tensorflow:loss = 0.023811035, step = 13001 (0.188 sec) INFO:tensorflow:global_step/sec: 534.531 INFO:tensorflow:loss = 0.029657403, step = 13101 (0.187 sec) INFO:tensorflow:global_step/sec: 537.62 INFO:tensorflow:loss = 0.031518616, step = 13201 (0.186 sec) INFO:tensorflow:global_step/sec: 541.298 INFO:tensorflow:loss = 0.015049446, step = 13301 (0.185 sec) INFO:tensorflow:global_step/sec: 545.59 INFO:tensorflow:loss = 0.023619259, step = 13401 (0.183 sec) INFO:tensorflow:global_step/sec: 500.566 INFO:tensorflow:loss = 0.024361568, step = 13501 (0.200 sec) INFO:tensorflow:global_step/sec: 512.76 INFO:tensorflow:loss = 0.01664589, step = 13601 (0.195 sec) INFO:tensorflow:global_step/sec: 546.245 INFO:tensorflow:loss = 0.015613385, step = 13701 (0.183 sec) INFO:tensorflow:global_step/sec: 551.493 INFO:tensorflow:loss = 0.03519985, step = 13801 (0.182 sec) INFO:tensorflow:global_step/sec: 541.102 INFO:tensorflow:loss = 0.02177224, step = 13901 (0.185 sec) INFO:tensorflow:global_step/sec: 532.155 INFO:tensorflow:loss = 0.015915873, step = 14001 (0.188 sec) INFO:tensorflow:global_step/sec: 548.51 INFO:tensorflow:loss = 0.015847687, step = 14101 (0.182 sec) INFO:tensorflow:global_step/sec: 537.098 INFO:tensorflow:loss = 0.016645633, step = 14201 (0.186 sec) INFO:tensorflow:global_step/sec: 523.196 INFO:tensorflow:loss = 0.020216886, step = 14301 (0.196 sec) INFO:tensorflow:global_step/sec: 533.327 INFO:tensorflow:loss = 0.012887245, step = 14401 (0.183 sec) INFO:tensorflow:global_step/sec: 515.81 INFO:tensorflow:loss = 0.020852203, step = 14501 (0.194 sec) INFO:tensorflow:global_step/sec: 531.358 INFO:tensorflow:loss = 0.028111286, step = 14601 (0.188 sec) INFO:tensorflow:global_step/sec: 516.534 INFO:tensorflow:loss = 0.024844358, step = 14701 (0.193 sec) INFO:tensorflow:global_step/sec: 520.536 INFO:tensorflow:loss = 0.027477147, step = 14801 (0.192 sec) INFO:tensorflow:global_step/sec: 536.955 INFO:tensorflow:loss = 0.04302305, step = 14901 (0.187 sec) INFO:tensorflow:global_step/sec: 520.798 INFO:tensorflow:loss = 0.026721848, step = 15001 (0.192 sec) INFO:tensorflow:global_step/sec: 517.735 INFO:tensorflow:loss = 0.014863384, step = 15101 (0.193 sec) INFO:tensorflow:global_step/sec: 460.524 INFO:tensorflow:loss = 0.02510932, step = 15201 (0.218 sec) INFO:tensorflow:global_step/sec: 534.468 INFO:tensorflow:loss = 0.023844965, step = 15301 (0.187 sec) INFO:tensorflow:global_step/sec: 541.968 INFO:tensorflow:loss = 0.010820297, step = 15401 (0.184 sec) INFO:tensorflow:global_step/sec: 511.59 INFO:tensorflow:loss = 0.020977903, step = 15501 (0.195 sec) INFO:tensorflow:global_step/sec: 539.031 INFO:tensorflow:loss = 0.024180591, step = 15601 (0.186 sec) INFO:tensorflow:global_step/sec: 555.753 INFO:tensorflow:loss = 0.026313858, step = 15701 (0.180 sec) INFO:tensorflow:global_step/sec: 528.687 INFO:tensorflow:loss = 0.036804, step = 15801 (0.189 sec) INFO:tensorflow:global_step/sec: 536.075 INFO:tensorflow:loss = 0.030261764, step = 15901 (0.186 sec) INFO:tensorflow:global_step/sec: 535.843 INFO:tensorflow:loss = 0.025344506, step = 16001 (0.187 sec) INFO:tensorflow:global_step/sec: 517.095 INFO:tensorflow:loss = 0.056984924, step = 16101 (0.193 sec) INFO:tensorflow:global_step/sec: 540.246 INFO:tensorflow:loss = 0.016870756, step = 16201 (0.185 sec) INFO:tensorflow:global_step/sec: 533.911 INFO:tensorflow:loss = 0.03213037, step = 16301 (0.187 sec) INFO:tensorflow:global_step/sec: 558.756 INFO:tensorflow:loss = 0.051552918, step = 16401 (0.179 sec) INFO:tensorflow:global_step/sec: 545.384 INFO:tensorflow:loss = 0.015004854, step = 16501 (0.183 sec) INFO:tensorflow:global_step/sec: 495.314 INFO:tensorflow:loss = 0.020500047, step = 16601 (0.202 sec) INFO:tensorflow:global_step/sec: 514.602 INFO:tensorflow:loss = 0.026695244, step = 16701 (0.194 sec) INFO:tensorflow:global_step/sec: 552.877 INFO:tensorflow:loss = 0.029320031, step = 16801 (0.181 sec) INFO:tensorflow:global_step/sec: 526.172 INFO:tensorflow:loss = 0.017987214, step = 16901 (0.190 sec) INFO:tensorflow:global_step/sec: 563.187 INFO:tensorflow:loss = 0.02652337, step = 17001 (0.178 sec) INFO:tensorflow:global_step/sec: 559.785 INFO:tensorflow:loss = 0.02373223, step = 17101 (0.180 sec) INFO:tensorflow:global_step/sec: 550.152 INFO:tensorflow:loss = 0.014032694, step = 17201 (0.181 sec) INFO:tensorflow:global_step/sec: 562.37 INFO:tensorflow:loss = 0.023032904, step = 17301 (0.178 sec) INFO:tensorflow:global_step/sec: 517.724 INFO:tensorflow:loss = 0.014849782, step = 17401 (0.193 sec) INFO:tensorflow:global_step/sec: 554.139 INFO:tensorflow:loss = 0.019791802, step = 17501 (0.180 sec) INFO:tensorflow:global_step/sec: 553.747 INFO:tensorflow:loss = 0.024741933, step = 17601 (0.181 sec) INFO:tensorflow:global_step/sec: 545.114 INFO:tensorflow:loss = 0.016027771, step = 17701 (0.183 sec) INFO:tensorflow:global_step/sec: 569.788 INFO:tensorflow:loss = 0.017028531, step = 17801 (0.175 sec) INFO:tensorflow:global_step/sec: 540.353 INFO:tensorflow:loss = 0.01566209, step = 17901 (0.185 sec) INFO:tensorflow:global_step/sec: 586.696 INFO:tensorflow:loss = 0.026907403, step = 18001 (0.171 sec) INFO:tensorflow:global_step/sec: 540.879 INFO:tensorflow:loss = 0.029422838, step = 18101 (0.185 sec) INFO:tensorflow:global_step/sec: 574.755 INFO:tensorflow:loss = 0.02157263, step = 18201 (0.174 sec) INFO:tensorflow:global_step/sec: 526.621 INFO:tensorflow:loss = 0.02905935, step = 18301 (0.190 sec) INFO:tensorflow:global_step/sec: 536.11 INFO:tensorflow:loss = 0.030221801, step = 18401 (0.187 sec) INFO:tensorflow:global_step/sec: 546.34 INFO:tensorflow:loss = 0.017446585, step = 18501 (0.183 sec) INFO:tensorflow:global_step/sec: 537.054 INFO:tensorflow:loss = 0.018040529, step = 18601 (0.186 sec) INFO:tensorflow:global_step/sec: 531.011 INFO:tensorflow:loss = 0.04388584, step = 18701 (0.188 sec) INFO:tensorflow:global_step/sec: 534.094 INFO:tensorflow:loss = 0.009870393, step = 18801 (0.187 sec) INFO:tensorflow:global_step/sec: 547.51 INFO:tensorflow:loss = 0.02640358, step = 18901 (0.183 sec) INFO:tensorflow:global_step/sec: 538.756 INFO:tensorflow:loss = 0.014067678, step = 19001 (0.186 sec) INFO:tensorflow:global_step/sec: 533.325 INFO:tensorflow:loss = 0.029862395, step = 19101 (0.187 sec) INFO:tensorflow:global_step/sec: 545.887 INFO:tensorflow:loss = 0.024341501, step = 19201 (0.183 sec) INFO:tensorflow:global_step/sec: 550.327 INFO:tensorflow:loss = 0.01970948, step = 19301 (0.181 sec) INFO:tensorflow:global_step/sec: 541.683 INFO:tensorflow:loss = 0.01575839, step = 19401 (0.185 sec) INFO:tensorflow:global_step/sec: 536.115 INFO:tensorflow:loss = 0.014000012, step = 19501 (0.186 sec) INFO:tensorflow:global_step/sec: 554.613 INFO:tensorflow:loss = 0.011808527, step = 19601 (0.180 sec) INFO:tensorflow:global_step/sec: 548.35 INFO:tensorflow:loss = 0.011488184, step = 19701 (0.183 sec) INFO:tensorflow:global_step/sec: 549.668 INFO:tensorflow:loss = 0.017856855, step = 19801 (0.182 sec) INFO:tensorflow:global_step/sec: 541.225 INFO:tensorflow:loss = 0.04791218, step = 19901 (0.185 sec) INFO:tensorflow:Saving checkpoints for 20000 into /tmp/tmpDexXZd/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Building iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:28:36 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/model.ckpt-20000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't0_linear' dict for global step 20000: architecture/adanet/ensembles = W 9adanet/iteration_0/ensemble_t0_linear/architecture/adanetBB | linear |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.049419947, average_loss/adanet/subnetwork = 0.049421377, average_loss/adanet/uniform_average_ensemble = 0.049421377, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.0625109, loss/adanet/subnetwork = 0.062442042, loss/adanet/uniform_average_ensemble = 0.062442042, prediction/mean/adanet/adanet_weighted_ensemble = 3.1072564, prediction/mean/adanet/subnetwork = 3.105895, prediction/mean/adanet/uniform_average_ensemble = 3.105895 INFO:tensorflow:Saving candidate 't0_1_layer_dnn' dict for global step 20000: architecture/adanet/ensembles = a >adanet/iteration_0/ensemble_t0_1_layer_dnn/architecture/adanetBB| 1_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.04015306, average_loss/adanet/subnetwork = 0.03993654, average_loss/adanet/uniform_average_ensemble = 0.03993654, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.054008663, loss/adanet/subnetwork = 0.053605493, loss/adanet/uniform_average_ensemble = 0.053605493, prediction/mean/adanet/adanet_weighted_ensemble = 3.1601584, prediction/mean/adanet/subnetwork = 3.1580222, prediction/mean/adanet/uniform_average_ensemble = 3.1580222 INFO:tensorflow:Finished evaluation at 2018-12-13-19:28:38 INFO:tensorflow:Saving dict for global step 20000: average_loss = 0.04015306, average_loss/adanet/adanet_weighted_ensemble = 0.04015306, average_loss/adanet/subnetwork = 0.03993654, average_loss/adanet/uniform_average_ensemble = 0.03993654, global_step = 20000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.054008663, loss/adanet/adanet_weighted_ensemble = 0.054008663, loss/adanet/subnetwork = 0.053605493, loss/adanet/uniform_average_ensemble = 0.053605493, prediction/mean = 3.1601584, prediction/mean/adanet/adanet_weighted_ensemble = 3.1601584, prediction/mean/adanet/subnetwork = 3.1580222, prediction/mean/adanet/uniform_average_ensemble = 3.1580222 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20000: /tmp/tmpDexXZd/model.ckpt-20000 INFO:tensorflow:Loss for final step: 0.034532204. INFO:tensorflow:Finished training Adanet iteration 0 INFO:tensorflow:Beginning bookkeeping phase for iteration 0 INFO:tensorflow:Building iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 0 INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/model.ckpt-20000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t0_linear = 0.035082, adanet_loss/t0_1_layer_dnn = 0.021061 INFO:tensorflow:Finished ensemble evaluation for iteration 0 INFO:tensorflow:'t0_1_layer_dnn' at index 1 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-0.txt: ['0:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpDexXZd/model.ckpt-20000',) INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 1 to /tmp/tmpDexXZd/model.ckpt-20000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 0 INFO:tensorflow:Beginning training AdaNet iteration 1 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-0.txt: ['0:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/increment.ckpt-1 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 20000 into /tmp/tmpDexXZd/model.ckpt. INFO:tensorflow:loss = 0.027296644, step = 20001 INFO:tensorflow:global_step/sec: 125.556 INFO:tensorflow:loss = 0.02694778, step = 20101 (0.798 sec) INFO:tensorflow:global_step/sec: 514.298 INFO:tensorflow:loss = 0.02080372, step = 20201 (0.194 sec) INFO:tensorflow:global_step/sec: 509.448 INFO:tensorflow:loss = 0.018986495, step = 20301 (0.196 sec) INFO:tensorflow:global_step/sec: 501.6 INFO:tensorflow:loss = 0.027806558, step = 20401 (0.200 sec) INFO:tensorflow:global_step/sec: 491.988 INFO:tensorflow:loss = 0.016540758, step = 20501 (0.209 sec) INFO:tensorflow:global_step/sec: 475.348 INFO:tensorflow:loss = 0.01869046, step = 20601 (0.204 sec) INFO:tensorflow:global_step/sec: 477.975 INFO:tensorflow:loss = 0.011502648, step = 20701 (0.210 sec) INFO:tensorflow:global_step/sec: 461.406 INFO:tensorflow:loss = 0.019393912, step = 20801 (0.217 sec) INFO:tensorflow:global_step/sec: 461.474 INFO:tensorflow:loss = 0.01570483, step = 20901 (0.217 sec) INFO:tensorflow:global_step/sec: 430.998 INFO:tensorflow:loss = 0.027598895, step = 21001 (0.232 sec) INFO:tensorflow:global_step/sec: 500.683 INFO:tensorflow:loss = 0.02409819, step = 21101 (0.200 sec) INFO:tensorflow:global_step/sec: 487.372 INFO:tensorflow:loss = 0.024426196, step = 21201 (0.205 sec) INFO:tensorflow:global_step/sec: 492.126 INFO:tensorflow:loss = 0.028549444, step = 21301 (0.203 sec) INFO:tensorflow:global_step/sec: 529.692 INFO:tensorflow:loss = 0.010229438, step = 21401 (0.189 sec) INFO:tensorflow:global_step/sec: 491.683 INFO:tensorflow:loss = 0.010179108, step = 21501 (0.203 sec) INFO:tensorflow:global_step/sec: 513.555 INFO:tensorflow:loss = 0.016775038, step = 21601 (0.194 sec) INFO:tensorflow:global_step/sec: 474.053 INFO:tensorflow:loss = 0.023403853, step = 21701 (0.211 sec) INFO:tensorflow:global_step/sec: 496.196 INFO:tensorflow:loss = 0.017619435, step = 21801 (0.202 sec) INFO:tensorflow:global_step/sec: 469.149 INFO:tensorflow:loss = 0.023911498, step = 21901 (0.213 sec) INFO:tensorflow:global_step/sec: 504.579 INFO:tensorflow:loss = 0.011964874, step = 22001 (0.198 sec) INFO:tensorflow:global_step/sec: 516.735 INFO:tensorflow:loss = 0.030546013, step = 22101 (0.194 sec) INFO:tensorflow:global_step/sec: 495.864 INFO:tensorflow:loss = 0.023705944, step = 22201 (0.202 sec) INFO:tensorflow:global_step/sec: 503.329 INFO:tensorflow:loss = 0.013165451, step = 22301 (0.199 sec) INFO:tensorflow:global_step/sec: 487.729 INFO:tensorflow:loss = 0.012252132, step = 22401 (0.205 sec) INFO:tensorflow:global_step/sec: 481.616 INFO:tensorflow:loss = 0.025068112, step = 22501 (0.207 sec) INFO:tensorflow:global_step/sec: 475.901 INFO:tensorflow:loss = 0.018972568, step = 22601 (0.210 sec) INFO:tensorflow:global_step/sec: 508.313 INFO:tensorflow:loss = 0.020364989, step = 22701 (0.197 sec) INFO:tensorflow:global_step/sec: 512.797 INFO:tensorflow:loss = 0.012045037, step = 22801 (0.195 sec) INFO:tensorflow:global_step/sec: 475.306 INFO:tensorflow:loss = 0.022771345, step = 22901 (0.210 sec) INFO:tensorflow:global_step/sec: 511.145 INFO:tensorflow:loss = 0.015176754, step = 23001 (0.196 sec) INFO:tensorflow:global_step/sec: 508.549 INFO:tensorflow:loss = 0.008884909, step = 23101 (0.197 sec) INFO:tensorflow:global_step/sec: 504.582 INFO:tensorflow:loss = 0.01678998, step = 23201 (0.198 sec) INFO:tensorflow:global_step/sec: 502.719 INFO:tensorflow:loss = 0.028632753, step = 23301 (0.199 sec) INFO:tensorflow:global_step/sec: 507.218 INFO:tensorflow:loss = 0.01956751, step = 23401 (0.197 sec) INFO:tensorflow:global_step/sec: 526.078 INFO:tensorflow:loss = 0.03295834, step = 23501 (0.190 sec) INFO:tensorflow:global_step/sec: 511.098 INFO:tensorflow:loss = 0.013111612, step = 23601 (0.196 sec) INFO:tensorflow:global_step/sec: 529.212 INFO:tensorflow:loss = 0.010788411, step = 23701 (0.189 sec) INFO:tensorflow:global_step/sec: 490.3 INFO:tensorflow:loss = 0.016299147, step = 23801 (0.204 sec) INFO:tensorflow:global_step/sec: 520.521 INFO:tensorflow:loss = 0.011471503, step = 23901 (0.192 sec) INFO:tensorflow:global_step/sec: 523.681 INFO:tensorflow:loss = 0.021366708, step = 24001 (0.191 sec) INFO:tensorflow:global_step/sec: 519.454 INFO:tensorflow:loss = 0.018561717, step = 24101 (0.193 sec) INFO:tensorflow:global_step/sec: 503.969 INFO:tensorflow:loss = 0.010790765, step = 24201 (0.198 sec) INFO:tensorflow:global_step/sec: 487.36 INFO:tensorflow:loss = 0.012166491, step = 24301 (0.205 sec) INFO:tensorflow:global_step/sec: 507.4 INFO:tensorflow:loss = 0.012328864, step = 24401 (0.197 sec) INFO:tensorflow:global_step/sec: 518.985 INFO:tensorflow:loss = 0.01842606, step = 24501 (0.193 sec) INFO:tensorflow:global_step/sec: 504.587 INFO:tensorflow:loss = 0.017016035, step = 24601 (0.198 sec) INFO:tensorflow:global_step/sec: 466.662 INFO:tensorflow:loss = 0.026989652, step = 24701 (0.215 sec) INFO:tensorflow:global_step/sec: 498.432 INFO:tensorflow:loss = 0.01762497, step = 24801 (0.201 sec) INFO:tensorflow:global_step/sec: 513.084 INFO:tensorflow:loss = 0.014085125, step = 24901 (0.195 sec) INFO:tensorflow:global_step/sec: 473.655 INFO:tensorflow:loss = 0.010767302, step = 25001 (0.211 sec) INFO:tensorflow:global_step/sec: 513.439 INFO:tensorflow:loss = 0.010639524, step = 25101 (0.195 sec) INFO:tensorflow:global_step/sec: 511.389 INFO:tensorflow:loss = 0.0118070785, step = 25201 (0.196 sec) INFO:tensorflow:global_step/sec: 465.125 INFO:tensorflow:loss = 0.029877687, step = 25301 (0.214 sec) INFO:tensorflow:global_step/sec: 499.912 INFO:tensorflow:loss = 0.011379703, step = 25401 (0.200 sec) INFO:tensorflow:global_step/sec: 475.197 INFO:tensorflow:loss = 0.0078331195, step = 25501 (0.210 sec) INFO:tensorflow:global_step/sec: 485.951 INFO:tensorflow:loss = 0.024221335, step = 25601 (0.206 sec) INFO:tensorflow:global_step/sec: 456.05 INFO:tensorflow:loss = 0.015124493, step = 25701 (0.220 sec) INFO:tensorflow:global_step/sec: 501.311 INFO:tensorflow:loss = 0.014690703, step = 25801 (0.200 sec) INFO:tensorflow:global_step/sec: 491.787 INFO:tensorflow:loss = 0.011645423, step = 25901 (0.203 sec) INFO:tensorflow:global_step/sec: 523.396 INFO:tensorflow:loss = 0.012304948, step = 26001 (0.191 sec) INFO:tensorflow:global_step/sec: 502.75 INFO:tensorflow:loss = 0.023488127, step = 26101 (0.199 sec) INFO:tensorflow:global_step/sec: 509.463 INFO:tensorflow:loss = 0.022057274, step = 26201 (0.196 sec) INFO:tensorflow:global_step/sec: 507.54 INFO:tensorflow:loss = 0.015472866, step = 26301 (0.197 sec) INFO:tensorflow:global_step/sec: 517.92 INFO:tensorflow:loss = 0.020114496, step = 26401 (0.193 sec) INFO:tensorflow:global_step/sec: 516.118 INFO:tensorflow:loss = 0.028981863, step = 26501 (0.194 sec) INFO:tensorflow:global_step/sec: 520.687 INFO:tensorflow:loss = 0.016902642, step = 26601 (0.192 sec) INFO:tensorflow:global_step/sec: 491.938 INFO:tensorflow:loss = 0.014692128, step = 26701 (0.203 sec) INFO:tensorflow:global_step/sec: 505.454 INFO:tensorflow:loss = 0.012283293, step = 26801 (0.198 sec) INFO:tensorflow:global_step/sec: 489.599 INFO:tensorflow:loss = 0.0076038223, step = 26901 (0.204 sec) INFO:tensorflow:global_step/sec: 520.524 INFO:tensorflow:loss = 0.013220595, step = 27001 (0.192 sec) INFO:tensorflow:global_step/sec: 512.19 INFO:tensorflow:loss = 0.012533921, step = 27101 (0.195 sec) INFO:tensorflow:global_step/sec: 512.319 INFO:tensorflow:loss = 0.011515586, step = 27201 (0.195 sec) INFO:tensorflow:global_step/sec: 500.666 INFO:tensorflow:loss = 0.030524896, step = 27301 (0.200 sec) INFO:tensorflow:global_step/sec: 520.01 INFO:tensorflow:loss = 0.015720565, step = 27401 (0.192 sec) INFO:tensorflow:global_step/sec: 522.893 INFO:tensorflow:loss = 0.011721436, step = 27501 (0.192 sec) INFO:tensorflow:global_step/sec: 468.43 INFO:tensorflow:loss = 0.009658318, step = 27601 (0.213 sec) INFO:tensorflow:global_step/sec: 520.321 INFO:tensorflow:loss = 0.01778774, step = 27701 (0.193 sec) INFO:tensorflow:global_step/sec: 490.413 INFO:tensorflow:loss = 0.015258025, step = 27801 (0.203 sec) INFO:tensorflow:global_step/sec: 499.715 INFO:tensorflow:loss = 0.00996981, step = 27901 (0.203 sec) INFO:tensorflow:global_step/sec: 495.616 INFO:tensorflow:loss = 0.017968249, step = 28001 (0.199 sec) INFO:tensorflow:global_step/sec: 485.9 INFO:tensorflow:loss = 0.018120103, step = 28101 (0.206 sec) INFO:tensorflow:global_step/sec: 512.061 INFO:tensorflow:loss = 0.03020626, step = 28201 (0.195 sec) INFO:tensorflow:global_step/sec: 500.553 INFO:tensorflow:loss = 0.016781444, step = 28301 (0.200 sec) INFO:tensorflow:global_step/sec: 508.764 INFO:tensorflow:loss = 0.019098205, step = 28401 (0.202 sec) INFO:tensorflow:global_step/sec: 480.136 INFO:tensorflow:loss = 0.0102314055, step = 28501 (0.203 sec) INFO:tensorflow:global_step/sec: 521.257 INFO:tensorflow:loss = 0.018879682, step = 28601 (0.191 sec) INFO:tensorflow:global_step/sec: 502.217 INFO:tensorflow:loss = 0.0128694195, step = 28701 (0.200 sec) INFO:tensorflow:global_step/sec: 492.548 INFO:tensorflow:loss = 0.023393746, step = 28801 (0.203 sec) INFO:tensorflow:global_step/sec: 502.647 INFO:tensorflow:loss = 0.039639026, step = 28901 (0.199 sec) INFO:tensorflow:global_step/sec: 504.36 INFO:tensorflow:loss = 0.02720677, step = 29001 (0.198 sec) INFO:tensorflow:global_step/sec: 513.542 INFO:tensorflow:loss = 0.012253448, step = 29101 (0.195 sec) INFO:tensorflow:global_step/sec: 492.492 INFO:tensorflow:loss = 0.022054993, step = 29201 (0.203 sec) INFO:tensorflow:global_step/sec: 537.302 INFO:tensorflow:loss = 0.0084997425, step = 29301 (0.186 sec) INFO:tensorflow:global_step/sec: 510.498 INFO:tensorflow:loss = 0.011618842, step = 29401 (0.196 sec) INFO:tensorflow:global_step/sec: 496.734 INFO:tensorflow:loss = 0.02253382, step = 29501 (0.201 sec) INFO:tensorflow:global_step/sec: 503.193 INFO:tensorflow:loss = 0.019953515, step = 29601 (0.199 sec) INFO:tensorflow:global_step/sec: 487.841 INFO:tensorflow:loss = 0.008872455, step = 29701 (0.205 sec) INFO:tensorflow:global_step/sec: 456.171 INFO:tensorflow:loss = 0.012030635, step = 29801 (0.219 sec) INFO:tensorflow:global_step/sec: 474.356 INFO:tensorflow:loss = 0.020582441, step = 29901 (0.211 sec) INFO:tensorflow:global_step/sec: 506.186 INFO:tensorflow:loss = 0.020316554, step = 30001 (0.198 sec) INFO:tensorflow:global_step/sec: 500.506 INFO:tensorflow:loss = 0.010370528, step = 30101 (0.200 sec) INFO:tensorflow:global_step/sec: 487.453 INFO:tensorflow:loss = 0.023312874, step = 30201 (0.205 sec) INFO:tensorflow:global_step/sec: 479.922 INFO:tensorflow:loss = 0.021624638, step = 30301 (0.208 sec) INFO:tensorflow:global_step/sec: 468.931 INFO:tensorflow:loss = 0.013914967, step = 30401 (0.214 sec) INFO:tensorflow:global_step/sec: 496.219 INFO:tensorflow:loss = 0.014039486, step = 30501 (0.202 sec) INFO:tensorflow:global_step/sec: 489.002 INFO:tensorflow:loss = 0.010958173, step = 30601 (0.209 sec) INFO:tensorflow:global_step/sec: 493.347 INFO:tensorflow:loss = 0.00800906, step = 30701 (0.198 sec) INFO:tensorflow:global_step/sec: 502.293 INFO:tensorflow:loss = 0.016856924, step = 30801 (0.199 sec) INFO:tensorflow:global_step/sec: 478.464 INFO:tensorflow:loss = 0.019304685, step = 30901 (0.209 sec) INFO:tensorflow:global_step/sec: 504.798 INFO:tensorflow:loss = 0.007980205, step = 31001 (0.198 sec) INFO:tensorflow:global_step/sec: 484.351 INFO:tensorflow:loss = 0.017069487, step = 31101 (0.206 sec) INFO:tensorflow:global_step/sec: 486.249 INFO:tensorflow:loss = 0.010463448, step = 31201 (0.206 sec) INFO:tensorflow:global_step/sec: 483.141 INFO:tensorflow:loss = 0.023204867, step = 31301 (0.207 sec) INFO:tensorflow:global_step/sec: 496.078 INFO:tensorflow:loss = 0.00646232, step = 31401 (0.202 sec) INFO:tensorflow:global_step/sec: 497.374 INFO:tensorflow:loss = 0.026689123, step = 31501 (0.201 sec) INFO:tensorflow:global_step/sec: 504.05 INFO:tensorflow:loss = 0.009177749, step = 31601 (0.198 sec) INFO:tensorflow:global_step/sec: 475.703 INFO:tensorflow:loss = 0.017115649, step = 31701 (0.210 sec) INFO:tensorflow:global_step/sec: 496.268 INFO:tensorflow:loss = 0.009676232, step = 31801 (0.202 sec) INFO:tensorflow:global_step/sec: 481.814 INFO:tensorflow:loss = 0.022674382, step = 31901 (0.208 sec) INFO:tensorflow:global_step/sec: 489.759 INFO:tensorflow:loss = 0.0146349855, step = 32001 (0.203 sec) INFO:tensorflow:global_step/sec: 500.441 INFO:tensorflow:loss = 0.009005962, step = 32101 (0.200 sec) INFO:tensorflow:global_step/sec: 488.014 INFO:tensorflow:loss = 0.008703032, step = 32201 (0.207 sec) INFO:tensorflow:global_step/sec: 482.009 INFO:tensorflow:loss = 0.013115581, step = 32301 (0.205 sec) INFO:tensorflow:global_step/sec: 511.913 INFO:tensorflow:loss = 0.00883637, step = 32401 (0.196 sec) INFO:tensorflow:global_step/sec: 510.892 INFO:tensorflow:loss = 0.013913523, step = 32501 (0.195 sec) INFO:tensorflow:global_step/sec: 504.111 INFO:tensorflow:loss = 0.014914172, step = 32601 (0.198 sec) INFO:tensorflow:global_step/sec: 480.622 INFO:tensorflow:loss = 0.012681922, step = 32701 (0.208 sec) INFO:tensorflow:global_step/sec: 496.167 INFO:tensorflow:loss = 0.016758347, step = 32801 (0.202 sec) INFO:tensorflow:global_step/sec: 506.027 INFO:tensorflow:loss = 0.015428397, step = 32901 (0.198 sec) INFO:tensorflow:global_step/sec: 482.295 INFO:tensorflow:loss = 0.018653603, step = 33001 (0.207 sec) INFO:tensorflow:global_step/sec: 516.332 INFO:tensorflow:loss = 0.016913021, step = 33101 (0.194 sec) INFO:tensorflow:global_step/sec: 479.478 INFO:tensorflow:loss = 0.009802844, step = 33201 (0.209 sec) INFO:tensorflow:global_step/sec: 515.182 INFO:tensorflow:loss = 0.00943646, step = 33301 (0.194 sec) INFO:tensorflow:global_step/sec: 511.211 INFO:tensorflow:loss = 0.016679987, step = 33401 (0.196 sec) INFO:tensorflow:global_step/sec: 462.924 INFO:tensorflow:loss = 0.017915051, step = 33501 (0.216 sec) INFO:tensorflow:global_step/sec: 516.124 INFO:tensorflow:loss = 0.018016018, step = 33601 (0.194 sec) INFO:tensorflow:global_step/sec: 493.51 INFO:tensorflow:loss = 0.0066340254, step = 33701 (0.203 sec) INFO:tensorflow:global_step/sec: 484.344 INFO:tensorflow:loss = 0.0236358, step = 33801 (0.206 sec) INFO:tensorflow:global_step/sec: 506.222 INFO:tensorflow:loss = 0.0104007255, step = 33901 (0.198 sec) INFO:tensorflow:global_step/sec: 487.86 INFO:tensorflow:loss = 0.008748459, step = 34001 (0.205 sec) INFO:tensorflow:global_step/sec: 486.604 INFO:tensorflow:loss = 0.0130307125, step = 34101 (0.205 sec) INFO:tensorflow:global_step/sec: 482.551 INFO:tensorflow:loss = 0.01137045, step = 34201 (0.207 sec) INFO:tensorflow:global_step/sec: 508.045 INFO:tensorflow:loss = 0.011736378, step = 34301 (0.196 sec) INFO:tensorflow:global_step/sec: 505.107 INFO:tensorflow:loss = 0.0110898595, step = 34401 (0.198 sec) INFO:tensorflow:global_step/sec: 517.398 INFO:tensorflow:loss = 0.011882299, step = 34501 (0.193 sec) INFO:tensorflow:global_step/sec: 517.837 INFO:tensorflow:loss = 0.016648699, step = 34601 (0.193 sec) INFO:tensorflow:global_step/sec: 541.204 INFO:tensorflow:loss = 0.015699964, step = 34701 (0.185 sec) INFO:tensorflow:global_step/sec: 515.717 INFO:tensorflow:loss = 0.019044194, step = 34801 (0.194 sec) INFO:tensorflow:global_step/sec: 500.927 INFO:tensorflow:loss = 0.02375797, step = 34901 (0.200 sec) INFO:tensorflow:global_step/sec: 513.173 INFO:tensorflow:loss = 0.02138744, step = 35001 (0.196 sec) INFO:tensorflow:global_step/sec: 527.977 INFO:tensorflow:loss = 0.011620376, step = 35101 (0.188 sec) INFO:tensorflow:global_step/sec: 513.909 INFO:tensorflow:loss = 0.012534291, step = 35201 (0.194 sec) INFO:tensorflow:global_step/sec: 515.618 INFO:tensorflow:loss = 0.017634407, step = 35301 (0.194 sec) INFO:tensorflow:global_step/sec: 495.432 INFO:tensorflow:loss = 0.009034702, step = 35401 (0.202 sec) INFO:tensorflow:global_step/sec: 510.194 INFO:tensorflow:loss = 0.017300691, step = 35501 (0.196 sec) INFO:tensorflow:global_step/sec: 503.662 INFO:tensorflow:loss = 0.019155424, step = 35601 (0.200 sec) INFO:tensorflow:global_step/sec: 485.322 INFO:tensorflow:loss = 0.014960597, step = 35701 (0.205 sec) INFO:tensorflow:global_step/sec: 495.975 INFO:tensorflow:loss = 0.018164353, step = 35801 (0.203 sec) INFO:tensorflow:global_step/sec: 511.399 INFO:tensorflow:loss = 0.01751562, step = 35901 (0.194 sec) INFO:tensorflow:global_step/sec: 504.51 INFO:tensorflow:loss = 0.016572908, step = 36001 (0.198 sec) INFO:tensorflow:global_step/sec: 495.627 INFO:tensorflow:loss = 0.020869441, step = 36101 (0.202 sec) INFO:tensorflow:global_step/sec: 500.488 INFO:tensorflow:loss = 0.006655407, step = 36201 (0.200 sec) INFO:tensorflow:global_step/sec: 505.071 INFO:tensorflow:loss = 0.012891432, step = 36301 (0.197 sec) INFO:tensorflow:global_step/sec: 525.276 INFO:tensorflow:loss = 0.02040265, step = 36401 (0.191 sec) INFO:tensorflow:global_step/sec: 486.173 INFO:tensorflow:loss = 0.0075813686, step = 36501 (0.206 sec) INFO:tensorflow:global_step/sec: 515.355 INFO:tensorflow:loss = 0.01294738, step = 36601 (0.199 sec) INFO:tensorflow:global_step/sec: 483.788 INFO:tensorflow:loss = 0.016664455, step = 36701 (0.201 sec) INFO:tensorflow:global_step/sec: 500.33 INFO:tensorflow:loss = 0.01150747, step = 36801 (0.200 sec) INFO:tensorflow:global_step/sec: 491.778 INFO:tensorflow:loss = 0.007865945, step = 36901 (0.203 sec) INFO:tensorflow:global_step/sec: 521.844 INFO:tensorflow:loss = 0.015020737, step = 37001 (0.192 sec) INFO:tensorflow:global_step/sec: 511.668 INFO:tensorflow:loss = 0.018812396, step = 37101 (0.195 sec) INFO:tensorflow:global_step/sec: 506.216 INFO:tensorflow:loss = 0.010153979, step = 37201 (0.197 sec) INFO:tensorflow:global_step/sec: 505.784 INFO:tensorflow:loss = 0.011845584, step = 37301 (0.198 sec) INFO:tensorflow:global_step/sec: 414.422 INFO:tensorflow:loss = 0.008618769, step = 37401 (0.242 sec) INFO:tensorflow:global_step/sec: 436.474 INFO:tensorflow:loss = 0.012981546, step = 37501 (0.228 sec) INFO:tensorflow:global_step/sec: 425.313 INFO:tensorflow:loss = 0.014249604, step = 37601 (0.235 sec) INFO:tensorflow:global_step/sec: 432.724 INFO:tensorflow:loss = 0.008844063, step = 37701 (0.231 sec) INFO:tensorflow:global_step/sec: 433.674 INFO:tensorflow:loss = 0.0117831705, step = 37801 (0.231 sec) INFO:tensorflow:global_step/sec: 424.484 INFO:tensorflow:loss = 0.011038644, step = 37901 (0.236 sec) INFO:tensorflow:global_step/sec: 407.579 INFO:tensorflow:loss = 0.01588466, step = 38001 (0.245 sec) INFO:tensorflow:global_step/sec: 431.131 INFO:tensorflow:loss = 0.01634461, step = 38101 (0.232 sec) INFO:tensorflow:global_step/sec: 455.201 INFO:tensorflow:loss = 0.015869806, step = 38201 (0.220 sec) INFO:tensorflow:global_step/sec: 434.166 INFO:tensorflow:loss = 0.021173127, step = 38301 (0.234 sec) INFO:tensorflow:global_step/sec: 451.6 INFO:tensorflow:loss = 0.01940126, step = 38401 (0.218 sec) INFO:tensorflow:global_step/sec: 436.3 INFO:tensorflow:loss = 0.010010801, step = 38501 (0.230 sec) INFO:tensorflow:global_step/sec: 429.754 INFO:tensorflow:loss = 0.014012074, step = 38601 (0.232 sec) INFO:tensorflow:global_step/sec: 426.216 INFO:tensorflow:loss = 0.013948511, step = 38701 (0.235 sec) INFO:tensorflow:global_step/sec: 416.545 INFO:tensorflow:loss = 0.009588575, step = 38801 (0.240 sec) INFO:tensorflow:global_step/sec: 443.017 INFO:tensorflow:loss = 0.016781844, step = 38901 (0.226 sec) INFO:tensorflow:global_step/sec: 425.593 INFO:tensorflow:loss = 0.012341503, step = 39001 (0.235 sec) INFO:tensorflow:global_step/sec: 436.329 INFO:tensorflow:loss = 0.01744554, step = 39101 (0.230 sec) INFO:tensorflow:global_step/sec: 448.549 INFO:tensorflow:loss = 0.01344978, step = 39201 (0.222 sec) INFO:tensorflow:global_step/sec: 442.085 INFO:tensorflow:loss = 0.0075440723, step = 39301 (0.226 sec) INFO:tensorflow:global_step/sec: 416.82 INFO:tensorflow:loss = 0.012211935, step = 39401 (0.240 sec) INFO:tensorflow:global_step/sec: 444.842 INFO:tensorflow:loss = 0.008865875, step = 39501 (0.224 sec) INFO:tensorflow:global_step/sec: 426.612 INFO:tensorflow:loss = 0.010440472, step = 39601 (0.237 sec) INFO:tensorflow:global_step/sec: 431.079 INFO:tensorflow:loss = 0.0091326535, step = 39701 (0.230 sec) INFO:tensorflow:global_step/sec: 445.569 INFO:tensorflow:loss = 0.014855575, step = 39801 (0.225 sec) INFO:tensorflow:global_step/sec: 429.166 INFO:tensorflow:loss = 0.017114088, step = 39901 (0.234 sec) INFO:tensorflow:Saving checkpoints for 40000 into /tmp/tmpDexXZd/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-0.txt: ['0:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:29:36 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/model.ckpt-40000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't0_1_layer_dnn' dict for global step 40000: architecture/adanet/ensembles = a >adanet/iteration_0/ensemble_t0_1_layer_dnn/architecture/adanetBB| 1_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.04015306, average_loss/adanet/subnetwork = 0.03993654, average_loss/adanet/uniform_average_ensemble = 0.03993654, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.054008663, loss/adanet/subnetwork = 0.053605493, loss/adanet/uniform_average_ensemble = 0.053605493, prediction/mean/adanet/adanet_weighted_ensemble = 3.1601584, prediction/mean/adanet/subnetwork = 3.1580222, prediction/mean/adanet/uniform_average_ensemble = 3.1580222 INFO:tensorflow:Saving candidate 't1_1_layer_dnn' dict for global step 40000: architecture/adanet/ensembles = o >adanet/iteration_1/ensemble_t1_1_layer_dnn/architecture/adanetB#B| 1_layer_dnn | 1_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03752409, average_loss/adanet/subnetwork = 0.044653624, average_loss/adanet/uniform_average_ensemble = 0.04097581, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.048775025, loss/adanet/subnetwork = 0.06800773, loss/adanet/uniform_average_ensemble = 0.059345886, prediction/mean/adanet/adanet_weighted_ensemble = 3.1091015, prediction/mean/adanet/subnetwork = 3.1593368, prediction/mean/adanet/uniform_average_ensemble = 3.1586797 INFO:tensorflow:Saving candidate 't1_2_layer_dnn' dict for global step 40000: architecture/adanet/ensembles = o >adanet/iteration_1/ensemble_t1_2_layer_dnn/architecture/adanetB#B| 1_layer_dnn | 2_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03245418, average_loss/adanet/subnetwork = 0.032510567, average_loss/adanet/uniform_average_ensemble = 0.034043197, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.042194255, loss/adanet/subnetwork = 0.042689238, loss/adanet/uniform_average_ensemble = 0.045813102, prediction/mean/adanet/adanet_weighted_ensemble = 3.122271, prediction/mean/adanet/subnetwork = 3.1452672, prediction/mean/adanet/uniform_average_ensemble = 3.151645 INFO:tensorflow:Finished evaluation at 2018-12-13-19:29:39 INFO:tensorflow:Saving dict for global step 40000: average_loss = 0.03245418, average_loss/adanet/adanet_weighted_ensemble = 0.03245418, average_loss/adanet/subnetwork = 0.032510567, average_loss/adanet/uniform_average_ensemble = 0.034043197, global_step = 40000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.042194255, loss/adanet/adanet_weighted_ensemble = 0.042194255, loss/adanet/subnetwork = 0.042689238, loss/adanet/uniform_average_ensemble = 0.045813102, prediction/mean = 3.122271, prediction/mean/adanet/adanet_weighted_ensemble = 3.122271, prediction/mean/adanet/subnetwork = 3.1452672, prediction/mean/adanet/uniform_average_ensemble = 3.151645 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 40000: /tmp/tmpDexXZd/model.ckpt-40000 INFO:tensorflow:Loss for final step: 0.013128125. INFO:tensorflow:Finished training Adanet iteration 1 INFO:tensorflow:Beginning bookkeeping phase for iteration 1 INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-0.txt: ['0:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 1 INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/model.ckpt-40000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t0_1_layer_dnn = 0.021061, adanet_loss/t1_1_layer_dnn = 0.016978, adanet_loss/t1_2_layer_dnn = 0.011639 INFO:tensorflow:Finished ensemble evaluation for iteration 1 INFO:tensorflow:'t1_2_layer_dnn' at index 2 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-1.txt: ['0:1_layer_dnn', '1:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpDexXZd/model.ckpt-40000',) INFO:tensorflow:Warm-starting variable: adanet/iteration_1/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 2 to /tmp/tmpDexXZd/model.ckpt-40000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 1 INFO:tensorflow:Beginning training AdaNet iteration 2 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-1.txt: ['0:1_layer_dnn', '1:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/increment.ckpt-2 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 40000 into /tmp/tmpDexXZd/model.ckpt. INFO:tensorflow:loss = 0.0137471, step = 40001 INFO:tensorflow:global_step/sec: 101.146 INFO:tensorflow:loss = 0.01532535, step = 40101 (0.990 sec) INFO:tensorflow:global_step/sec: 483.735 INFO:tensorflow:loss = 0.013514066, step = 40201 (0.212 sec) INFO:tensorflow:global_step/sec: 466.098 INFO:tensorflow:loss = 0.009523302, step = 40301 (0.210 sec) INFO:tensorflow:global_step/sec: 474.802 INFO:tensorflow:loss = 0.0171542, step = 40401 (0.210 sec) INFO:tensorflow:global_step/sec: 490.8 INFO:tensorflow:loss = 0.0076334905, step = 40501 (0.204 sec) INFO:tensorflow:global_step/sec: 473.496 INFO:tensorflow:loss = 0.008361066, step = 40601 (0.211 sec) INFO:tensorflow:global_step/sec: 468.856 INFO:tensorflow:loss = 0.0078119845, step = 40701 (0.213 sec) INFO:tensorflow:global_step/sec: 469.805 INFO:tensorflow:loss = 0.010584909, step = 40801 (0.213 sec) INFO:tensorflow:global_step/sec: 476.379 INFO:tensorflow:loss = 0.010545989, step = 40901 (0.210 sec) INFO:tensorflow:global_step/sec: 461.239 INFO:tensorflow:loss = 0.014772711, step = 41001 (0.217 sec) INFO:tensorflow:global_step/sec: 495.958 INFO:tensorflow:loss = 0.014564341, step = 41101 (0.202 sec) INFO:tensorflow:global_step/sec: 479.411 INFO:tensorflow:loss = 0.015027757, step = 41201 (0.208 sec) INFO:tensorflow:global_step/sec: 462.648 INFO:tensorflow:loss = 0.013337929, step = 41301 (0.216 sec) INFO:tensorflow:global_step/sec: 475.138 INFO:tensorflow:loss = 0.0073587466, step = 41401 (0.210 sec) INFO:tensorflow:global_step/sec: 475.871 INFO:tensorflow:loss = 0.0054927142, step = 41501 (0.210 sec) INFO:tensorflow:global_step/sec: 479.389 INFO:tensorflow:loss = 0.007360665, step = 41601 (0.209 sec) INFO:tensorflow:global_step/sec: 457.053 INFO:tensorflow:loss = 0.014645707, step = 41701 (0.219 sec) INFO:tensorflow:global_step/sec: 479.476 INFO:tensorflow:loss = 0.012285827, step = 41801 (0.209 sec) INFO:tensorflow:global_step/sec: 472.166 INFO:tensorflow:loss = 0.012192512, step = 41901 (0.211 sec) INFO:tensorflow:global_step/sec: 454.605 INFO:tensorflow:loss = 0.0075900974, step = 42001 (0.220 sec) INFO:tensorflow:global_step/sec: 471.22 INFO:tensorflow:loss = 0.018640764, step = 42101 (0.212 sec) INFO:tensorflow:global_step/sec: 459.797 INFO:tensorflow:loss = 0.008761501, step = 42201 (0.218 sec) INFO:tensorflow:global_step/sec: 471.581 INFO:tensorflow:loss = 0.009257115, step = 42301 (0.212 sec) INFO:tensorflow:global_step/sec: 468.698 INFO:tensorflow:loss = 0.0061153397, step = 42401 (0.213 sec) INFO:tensorflow:global_step/sec: 473.882 INFO:tensorflow:loss = 0.017473524, step = 42501 (0.211 sec) INFO:tensorflow:global_step/sec: 449.238 INFO:tensorflow:loss = 0.0081728585, step = 42601 (0.222 sec) INFO:tensorflow:global_step/sec: 454.959 INFO:tensorflow:loss = 0.012855861, step = 42701 (0.220 sec) INFO:tensorflow:global_step/sec: 464.764 INFO:tensorflow:loss = 0.007984189, step = 42801 (0.215 sec) INFO:tensorflow:global_step/sec: 446.841 INFO:tensorflow:loss = 0.009112917, step = 42901 (0.224 sec) INFO:tensorflow:global_step/sec: 467.028 INFO:tensorflow:loss = 0.008185251, step = 43001 (0.214 sec) INFO:tensorflow:global_step/sec: 431.814 INFO:tensorflow:loss = 0.0060589975, step = 43101 (0.231 sec) INFO:tensorflow:global_step/sec: 454.399 INFO:tensorflow:loss = 0.0138734905, step = 43201 (0.220 sec) INFO:tensorflow:global_step/sec: 480.215 INFO:tensorflow:loss = 0.017423537, step = 43301 (0.208 sec) INFO:tensorflow:global_step/sec: 460.834 INFO:tensorflow:loss = 0.013033772, step = 43401 (0.217 sec) INFO:tensorflow:global_step/sec: 489.313 INFO:tensorflow:loss = 0.018026771, step = 43501 (0.204 sec) INFO:tensorflow:global_step/sec: 475.597 INFO:tensorflow:loss = 0.008088482, step = 43601 (0.210 sec) INFO:tensorflow:global_step/sec: 459.796 INFO:tensorflow:loss = 0.00725925, step = 43701 (0.217 sec) INFO:tensorflow:global_step/sec: 454.434 INFO:tensorflow:loss = 0.010700462, step = 43801 (0.220 sec) INFO:tensorflow:global_step/sec: 485.871 INFO:tensorflow:loss = 0.006103119, step = 43901 (0.206 sec) INFO:tensorflow:global_step/sec: 481.494 INFO:tensorflow:loss = 0.010852184, step = 44001 (0.207 sec) INFO:tensorflow:global_step/sec: 467.93 INFO:tensorflow:loss = 0.010531217, step = 44101 (0.214 sec) INFO:tensorflow:global_step/sec: 453.365 INFO:tensorflow:loss = 0.0073792683, step = 44201 (0.221 sec) INFO:tensorflow:global_step/sec: 456.138 INFO:tensorflow:loss = 0.0056517217, step = 44301 (0.220 sec) INFO:tensorflow:global_step/sec: 427.916 INFO:tensorflow:loss = 0.009233334, step = 44401 (0.233 sec) INFO:tensorflow:global_step/sec: 387.669 INFO:tensorflow:loss = 0.008945169, step = 44501 (0.258 sec) INFO:tensorflow:global_step/sec: 380.011 INFO:tensorflow:loss = 0.010574166, step = 44601 (0.263 sec) INFO:tensorflow:global_step/sec: 376.635 INFO:tensorflow:loss = 0.013343923, step = 44701 (0.265 sec) INFO:tensorflow:global_step/sec: 385.77 INFO:tensorflow:loss = 0.009692784, step = 44801 (0.259 sec) INFO:tensorflow:global_step/sec: 376.301 INFO:tensorflow:loss = 0.010447414, step = 44901 (0.266 sec) INFO:tensorflow:global_step/sec: 373.331 INFO:tensorflow:loss = 0.006807711, step = 45001 (0.271 sec) INFO:tensorflow:global_step/sec: 369.024 INFO:tensorflow:loss = 0.0049399105, step = 45101 (0.268 sec) INFO:tensorflow:global_step/sec: 385.551 INFO:tensorflow:loss = 0.0061659655, step = 45201 (0.260 sec) INFO:tensorflow:global_step/sec: 370.528 INFO:tensorflow:loss = 0.014129622, step = 45301 (0.270 sec) INFO:tensorflow:global_step/sec: 380.428 INFO:tensorflow:loss = 0.0068014106, step = 45401 (0.263 sec) INFO:tensorflow:global_step/sec: 365.342 INFO:tensorflow:loss = 0.004838192, step = 45501 (0.274 sec) INFO:tensorflow:global_step/sec: 395.007 INFO:tensorflow:loss = 0.015045141, step = 45601 (0.253 sec) INFO:tensorflow:global_step/sec: 384.004 INFO:tensorflow:loss = 0.009517975, step = 45701 (0.261 sec) INFO:tensorflow:global_step/sec: 384.175 INFO:tensorflow:loss = 0.008561723, step = 45801 (0.260 sec) INFO:tensorflow:global_step/sec: 374.008 INFO:tensorflow:loss = 0.0068531577, step = 45901 (0.268 sec) INFO:tensorflow:global_step/sec: 378.05 INFO:tensorflow:loss = 0.011003407, step = 46001 (0.265 sec) INFO:tensorflow:global_step/sec: 359.694 INFO:tensorflow:loss = 0.012901819, step = 46101 (0.278 sec) INFO:tensorflow:global_step/sec: 370.976 INFO:tensorflow:loss = 0.015841253, step = 46201 (0.269 sec) INFO:tensorflow:global_step/sec: 388.523 INFO:tensorflow:loss = 0.0071182987, step = 46301 (0.257 sec) INFO:tensorflow:global_step/sec: 381.968 INFO:tensorflow:loss = 0.009662391, step = 46401 (0.262 sec) INFO:tensorflow:global_step/sec: 379.256 INFO:tensorflow:loss = 0.018189866, step = 46501 (0.264 sec) INFO:tensorflow:global_step/sec: 482.339 INFO:tensorflow:loss = 0.008831465, step = 46601 (0.207 sec) INFO:tensorflow:global_step/sec: 455.117 INFO:tensorflow:loss = 0.008682405, step = 46701 (0.220 sec) INFO:tensorflow:global_step/sec: 453.077 INFO:tensorflow:loss = 0.005749801, step = 46801 (0.221 sec) INFO:tensorflow:global_step/sec: 471.098 INFO:tensorflow:loss = 0.006978311, step = 46901 (0.212 sec) INFO:tensorflow:global_step/sec: 454.156 INFO:tensorflow:loss = 0.0061075217, step = 47001 (0.220 sec) INFO:tensorflow:global_step/sec: 479.081 INFO:tensorflow:loss = 0.0070029953, step = 47101 (0.209 sec) INFO:tensorflow:global_step/sec: 464.6 INFO:tensorflow:loss = 0.008448597, step = 47201 (0.215 sec) INFO:tensorflow:global_step/sec: 461.272 INFO:tensorflow:loss = 0.01530963, step = 47301 (0.217 sec) INFO:tensorflow:global_step/sec: 465.272 INFO:tensorflow:loss = 0.010236602, step = 47401 (0.215 sec) INFO:tensorflow:global_step/sec: 446.956 INFO:tensorflow:loss = 0.0056663156, step = 47501 (0.224 sec) INFO:tensorflow:global_step/sec: 456.136 INFO:tensorflow:loss = 0.008336479, step = 47601 (0.219 sec) INFO:tensorflow:global_step/sec: 475.455 INFO:tensorflow:loss = 0.011462681, step = 47701 (0.210 sec) INFO:tensorflow:global_step/sec: 459.531 INFO:tensorflow:loss = 0.010124264, step = 47801 (0.218 sec) INFO:tensorflow:global_step/sec: 467.41 INFO:tensorflow:loss = 0.005644566, step = 47901 (0.214 sec) INFO:tensorflow:global_step/sec: 464.408 INFO:tensorflow:loss = 0.01634513, step = 48001 (0.215 sec) INFO:tensorflow:global_step/sec: 476.629 INFO:tensorflow:loss = 0.012271572, step = 48101 (0.210 sec) INFO:tensorflow:global_step/sec: 471.949 INFO:tensorflow:loss = 0.015318329, step = 48201 (0.212 sec) INFO:tensorflow:global_step/sec: 462.238 INFO:tensorflow:loss = 0.013058911, step = 48301 (0.216 sec) INFO:tensorflow:global_step/sec: 457.091 INFO:tensorflow:loss = 0.009103151, step = 48401 (0.219 sec) INFO:tensorflow:global_step/sec: 445.359 INFO:tensorflow:loss = 0.008441424, step = 48501 (0.224 sec) INFO:tensorflow:global_step/sec: 475.082 INFO:tensorflow:loss = 0.010041006, step = 48601 (0.211 sec) INFO:tensorflow:global_step/sec: 465.35 INFO:tensorflow:loss = 0.009227474, step = 48701 (0.215 sec) INFO:tensorflow:global_step/sec: 462.212 INFO:tensorflow:loss = 0.013637528, step = 48801 (0.216 sec) INFO:tensorflow:global_step/sec: 475.867 INFO:tensorflow:loss = 0.020799551, step = 48901 (0.210 sec) INFO:tensorflow:global_step/sec: 461.033 INFO:tensorflow:loss = 0.019677676, step = 49001 (0.217 sec) INFO:tensorflow:global_step/sec: 477.637 INFO:tensorflow:loss = 0.009188135, step = 49101 (0.210 sec) INFO:tensorflow:global_step/sec: 456.362 INFO:tensorflow:loss = 0.010784849, step = 49201 (0.219 sec) INFO:tensorflow:global_step/sec: 451.459 INFO:tensorflow:loss = 0.0055096457, step = 49301 (0.221 sec) INFO:tensorflow:global_step/sec: 464.106 INFO:tensorflow:loss = 0.00841219, step = 49401 (0.215 sec) INFO:tensorflow:global_step/sec: 482.989 INFO:tensorflow:loss = 0.009682183, step = 49501 (0.207 sec) INFO:tensorflow:global_step/sec: 469.153 INFO:tensorflow:loss = 0.00786082, step = 49601 (0.213 sec) INFO:tensorflow:global_step/sec: 456.198 INFO:tensorflow:loss = 0.005133249, step = 49701 (0.219 sec) INFO:tensorflow:global_step/sec: 473.281 INFO:tensorflow:loss = 0.009866834, step = 49801 (0.211 sec) INFO:tensorflow:global_step/sec: 491.405 INFO:tensorflow:loss = 0.01244057, step = 49901 (0.203 sec) INFO:tensorflow:global_step/sec: 485.581 INFO:tensorflow:loss = 0.012799989, step = 50001 (0.206 sec) INFO:tensorflow:global_step/sec: 467.768 INFO:tensorflow:loss = 0.005624939, step = 50101 (0.213 sec) INFO:tensorflow:global_step/sec: 455.351 INFO:tensorflow:loss = 0.011780135, step = 50201 (0.220 sec) INFO:tensorflow:global_step/sec: 448.105 INFO:tensorflow:loss = 0.009567579, step = 50301 (0.223 sec) INFO:tensorflow:global_step/sec: 466.978 INFO:tensorflow:loss = 0.008895083, step = 50401 (0.214 sec) INFO:tensorflow:global_step/sec: 454.39 INFO:tensorflow:loss = 0.0076741823, step = 50501 (0.220 sec) INFO:tensorflow:global_step/sec: 452.8 INFO:tensorflow:loss = 0.009617523, step = 50601 (0.221 sec) INFO:tensorflow:global_step/sec: 466.997 INFO:tensorflow:loss = 0.00584445, step = 50701 (0.214 sec) INFO:tensorflow:global_step/sec: 475.645 INFO:tensorflow:loss = 0.011215346, step = 50801 (0.210 sec) INFO:tensorflow:global_step/sec: 473.007 INFO:tensorflow:loss = 0.012271669, step = 50901 (0.212 sec) INFO:tensorflow:global_step/sec: 456.348 INFO:tensorflow:loss = 0.007091139, step = 51001 (0.219 sec) INFO:tensorflow:global_step/sec: 462.313 INFO:tensorflow:loss = 0.010636905, step = 51101 (0.216 sec) INFO:tensorflow:global_step/sec: 462.969 INFO:tensorflow:loss = 0.0059023993, step = 51201 (0.216 sec) INFO:tensorflow:global_step/sec: 472.121 INFO:tensorflow:loss = 0.010111769, step = 51301 (0.212 sec) INFO:tensorflow:global_step/sec: 457.465 INFO:tensorflow:loss = 0.0042239064, step = 51401 (0.219 sec) INFO:tensorflow:global_step/sec: 455.431 INFO:tensorflow:loss = 0.016194275, step = 51501 (0.220 sec) INFO:tensorflow:global_step/sec: 470.491 INFO:tensorflow:loss = 0.0047591464, step = 51601 (0.213 sec) INFO:tensorflow:global_step/sec: 451.943 INFO:tensorflow:loss = 0.011088285, step = 51701 (0.221 sec) INFO:tensorflow:global_step/sec: 464.887 INFO:tensorflow:loss = 0.005757529, step = 51801 (0.215 sec) INFO:tensorflow:global_step/sec: 446.253 INFO:tensorflow:loss = 0.00988936, step = 51901 (0.224 sec) INFO:tensorflow:global_step/sec: 477.651 INFO:tensorflow:loss = 0.0077861943, step = 52001 (0.210 sec) INFO:tensorflow:global_step/sec: 458.459 INFO:tensorflow:loss = 0.004958364, step = 52101 (0.218 sec) INFO:tensorflow:global_step/sec: 462.939 INFO:tensorflow:loss = 0.004744456, step = 52201 (0.216 sec) INFO:tensorflow:global_step/sec: 458.176 INFO:tensorflow:loss = 0.007713549, step = 52301 (0.218 sec) INFO:tensorflow:global_step/sec: 461.233 INFO:tensorflow:loss = 0.006713408, step = 52401 (0.217 sec) INFO:tensorflow:global_step/sec: 487.764 INFO:tensorflow:loss = 0.00816009, step = 52501 (0.209 sec) INFO:tensorflow:global_step/sec: 473.837 INFO:tensorflow:loss = 0.0061250767, step = 52601 (0.207 sec) INFO:tensorflow:global_step/sec: 485.171 INFO:tensorflow:loss = 0.012142177, step = 52701 (0.206 sec) INFO:tensorflow:global_step/sec: 483.444 INFO:tensorflow:loss = 0.012386767, step = 52801 (0.207 sec) INFO:tensorflow:global_step/sec: 443.19 INFO:tensorflow:loss = 0.0108658485, step = 52901 (0.226 sec) INFO:tensorflow:global_step/sec: 449.531 INFO:tensorflow:loss = 0.012192146, step = 53001 (0.222 sec) INFO:tensorflow:global_step/sec: 448.776 INFO:tensorflow:loss = 0.007505279, step = 53101 (0.223 sec) INFO:tensorflow:global_step/sec: 487.781 INFO:tensorflow:loss = 0.004307149, step = 53201 (0.205 sec) INFO:tensorflow:global_step/sec: 437.103 INFO:tensorflow:loss = 0.0076565198, step = 53301 (0.229 sec) INFO:tensorflow:global_step/sec: 477.086 INFO:tensorflow:loss = 0.011304293, step = 53401 (0.209 sec) INFO:tensorflow:global_step/sec: 447.387 INFO:tensorflow:loss = 0.00830624, step = 53501 (0.224 sec) INFO:tensorflow:global_step/sec: 485.999 INFO:tensorflow:loss = 0.010162868, step = 53601 (0.206 sec) INFO:tensorflow:global_step/sec: 465.03 INFO:tensorflow:loss = 0.004446827, step = 53701 (0.215 sec) INFO:tensorflow:global_step/sec: 450.418 INFO:tensorflow:loss = 0.010949729, step = 53801 (0.222 sec) INFO:tensorflow:global_step/sec: 460.396 INFO:tensorflow:loss = 0.0057958183, step = 53901 (0.217 sec) INFO:tensorflow:global_step/sec: 389.695 INFO:tensorflow:loss = 0.0049026543, step = 54001 (0.257 sec) INFO:tensorflow:global_step/sec: 472.552 INFO:tensorflow:loss = 0.010716478, step = 54101 (0.212 sec) INFO:tensorflow:global_step/sec: 471.338 INFO:tensorflow:loss = 0.0073531447, step = 54201 (0.212 sec) INFO:tensorflow:global_step/sec: 490.99 INFO:tensorflow:loss = 0.007303466, step = 54301 (0.204 sec) INFO:tensorflow:global_step/sec: 485.63 INFO:tensorflow:loss = 0.0046647578, step = 54401 (0.206 sec) INFO:tensorflow:global_step/sec: 491.174 INFO:tensorflow:loss = 0.00559157, step = 54501 (0.204 sec) INFO:tensorflow:global_step/sec: 483.821 INFO:tensorflow:loss = 0.010638798, step = 54601 (0.206 sec) INFO:tensorflow:global_step/sec: 476.122 INFO:tensorflow:loss = 0.0096184425, step = 54701 (0.210 sec) INFO:tensorflow:global_step/sec: 477.35 INFO:tensorflow:loss = 0.01297844, step = 54801 (0.210 sec) INFO:tensorflow:global_step/sec: 479.378 INFO:tensorflow:loss = 0.009132976, step = 54901 (0.208 sec) INFO:tensorflow:global_step/sec: 459.948 INFO:tensorflow:loss = 0.015770674, step = 55001 (0.217 sec) INFO:tensorflow:global_step/sec: 482.795 INFO:tensorflow:loss = 0.010697407, step = 55101 (0.207 sec) INFO:tensorflow:global_step/sec: 472.72 INFO:tensorflow:loss = 0.009993464, step = 55201 (0.211 sec) INFO:tensorflow:global_step/sec: 439.491 INFO:tensorflow:loss = 0.011722613, step = 55301 (0.228 sec) INFO:tensorflow:global_step/sec: 470.181 INFO:tensorflow:loss = 0.0075947065, step = 55401 (0.213 sec) INFO:tensorflow:global_step/sec: 481.406 INFO:tensorflow:loss = 0.013326233, step = 55501 (0.208 sec) INFO:tensorflow:global_step/sec: 481.447 INFO:tensorflow:loss = 0.009337759, step = 55601 (0.208 sec) INFO:tensorflow:global_step/sec: 477.784 INFO:tensorflow:loss = 0.0060269767, step = 55701 (0.209 sec) INFO:tensorflow:global_step/sec: 472.844 INFO:tensorflow:loss = 0.015555512, step = 55801 (0.212 sec) INFO:tensorflow:global_step/sec: 478.758 INFO:tensorflow:loss = 0.010265168, step = 55901 (0.209 sec) INFO:tensorflow:global_step/sec: 486.532 INFO:tensorflow:loss = 0.008330882, step = 56001 (0.205 sec) INFO:tensorflow:global_step/sec: 475.405 INFO:tensorflow:loss = 0.009440938, step = 56101 (0.211 sec) INFO:tensorflow:global_step/sec: 461.349 INFO:tensorflow:loss = 0.006797244, step = 56201 (0.217 sec) INFO:tensorflow:global_step/sec: 479.669 INFO:tensorflow:loss = 0.0061167153, step = 56301 (0.209 sec) INFO:tensorflow:global_step/sec: 468.132 INFO:tensorflow:loss = 0.008877866, step = 56401 (0.213 sec) INFO:tensorflow:global_step/sec: 487.572 INFO:tensorflow:loss = 0.00635955, step = 56501 (0.205 sec) INFO:tensorflow:global_step/sec: 461.533 INFO:tensorflow:loss = 0.00695836, step = 56601 (0.217 sec) INFO:tensorflow:global_step/sec: 479.64 INFO:tensorflow:loss = 0.007901347, step = 56701 (0.208 sec) INFO:tensorflow:global_step/sec: 473.42 INFO:tensorflow:loss = 0.0077539934, step = 56801 (0.212 sec) INFO:tensorflow:global_step/sec: 468.731 INFO:tensorflow:loss = 0.0040710955, step = 56901 (0.213 sec) INFO:tensorflow:global_step/sec: 460.248 INFO:tensorflow:loss = 0.009691806, step = 57001 (0.217 sec) INFO:tensorflow:global_step/sec: 465.523 INFO:tensorflow:loss = 0.01473847, step = 57101 (0.215 sec) INFO:tensorflow:global_step/sec: 451.245 INFO:tensorflow:loss = 0.008093638, step = 57201 (0.222 sec) INFO:tensorflow:global_step/sec: 465.268 INFO:tensorflow:loss = 0.0048230374, step = 57301 (0.215 sec) INFO:tensorflow:global_step/sec: 463.779 INFO:tensorflow:loss = 0.006130575, step = 57401 (0.216 sec) INFO:tensorflow:global_step/sec: 465.4 INFO:tensorflow:loss = 0.007890692, step = 57501 (0.215 sec) INFO:tensorflow:global_step/sec: 446.58 INFO:tensorflow:loss = 0.008413052, step = 57601 (0.224 sec) INFO:tensorflow:global_step/sec: 461.431 INFO:tensorflow:loss = 0.004950462, step = 57701 (0.217 sec) INFO:tensorflow:global_step/sec: 478.771 INFO:tensorflow:loss = 0.010200614, step = 57801 (0.209 sec) INFO:tensorflow:global_step/sec: 457.521 INFO:tensorflow:loss = 0.0050936504, step = 57901 (0.219 sec) INFO:tensorflow:global_step/sec: 483.361 INFO:tensorflow:loss = 0.009040279, step = 58001 (0.207 sec) INFO:tensorflow:global_step/sec: 453.708 INFO:tensorflow:loss = 0.012236675, step = 58101 (0.220 sec) INFO:tensorflow:global_step/sec: 459.548 INFO:tensorflow:loss = 0.0077486634, step = 58201 (0.218 sec) INFO:tensorflow:global_step/sec: 481.926 INFO:tensorflow:loss = 0.013432663, step = 58301 (0.207 sec) INFO:tensorflow:global_step/sec: 465.162 INFO:tensorflow:loss = 0.009004887, step = 58401 (0.215 sec) INFO:tensorflow:global_step/sec: 448.35 INFO:tensorflow:loss = 0.007098233, step = 58501 (0.223 sec) INFO:tensorflow:global_step/sec: 463.394 INFO:tensorflow:loss = 0.007232779, step = 58601 (0.216 sec) INFO:tensorflow:global_step/sec: 443.679 INFO:tensorflow:loss = 0.004959191, step = 58701 (0.225 sec) INFO:tensorflow:global_step/sec: 473.83 INFO:tensorflow:loss = 0.006908235, step = 58801 (0.211 sec) INFO:tensorflow:global_step/sec: 476.467 INFO:tensorflow:loss = 0.0141474735, step = 58901 (0.210 sec) INFO:tensorflow:global_step/sec: 461.393 INFO:tensorflow:loss = 0.008379664, step = 59001 (0.217 sec) INFO:tensorflow:global_step/sec: 495.687 INFO:tensorflow:loss = 0.010867199, step = 59101 (0.203 sec) INFO:tensorflow:global_step/sec: 485.229 INFO:tensorflow:loss = 0.0071855583, step = 59201 (0.205 sec) INFO:tensorflow:global_step/sec: 482.091 INFO:tensorflow:loss = 0.0051718047, step = 59301 (0.208 sec) INFO:tensorflow:global_step/sec: 464.531 INFO:tensorflow:loss = 0.009021869, step = 59401 (0.215 sec) INFO:tensorflow:global_step/sec: 474.012 INFO:tensorflow:loss = 0.005612652, step = 59501 (0.211 sec) INFO:tensorflow:global_step/sec: 458.11 INFO:tensorflow:loss = 0.0084251575, step = 59601 (0.218 sec) INFO:tensorflow:global_step/sec: 459.245 INFO:tensorflow:loss = 0.0064932797, step = 59701 (0.218 sec) INFO:tensorflow:global_step/sec: 482.2 INFO:tensorflow:loss = 0.009190215, step = 59801 (0.208 sec) INFO:tensorflow:global_step/sec: 502.836 INFO:tensorflow:loss = 0.0087354295, step = 59901 (0.199 sec) INFO:tensorflow:Saving checkpoints for 60000 into /tmp/tmpDexXZd/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-1.txt: ['0:1_layer_dnn', '1:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:30:45 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/model.ckpt-60000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't1_2_layer_dnn' dict for global step 60000: architecture/adanet/ensembles = o >adanet/iteration_1/ensemble_t1_2_layer_dnn/architecture/adanetB#B| 1_layer_dnn | 2_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03245418, average_loss/adanet/subnetwork = 0.032510567, average_loss/adanet/uniform_average_ensemble = 0.034043197, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.042194255, loss/adanet/subnetwork = 0.042689238, loss/adanet/uniform_average_ensemble = 0.045813102, prediction/mean/adanet/adanet_weighted_ensemble = 3.122271, prediction/mean/adanet/subnetwork = 3.1452672, prediction/mean/adanet/uniform_average_ensemble = 3.151645 INFO:tensorflow:Saving candidate 't2_2_layer_dnn' dict for global step 60000: architecture/adanet/ensembles = } >adanet/iteration_2/ensemble_t2_2_layer_dnn/architecture/adanetB1B+| 1_layer_dnn | 2_layer_dnn | 2_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.029876871, average_loss/adanet/subnetwork = 0.032713592, average_loss/adanet/uniform_average_ensemble = 0.031925786, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.03766784, loss/adanet/subnetwork = 0.043944843, loss/adanet/uniform_average_ensemble = 0.043711387, prediction/mean/adanet/adanet_weighted_ensemble = 3.1007698, prediction/mean/adanet/subnetwork = 3.1556947, prediction/mean/adanet/uniform_average_ensemble = 3.1529949 INFO:tensorflow:Saving candidate 't2_3_layer_dnn' dict for global step 60000: architecture/adanet/ensembles = } >adanet/iteration_2/ensemble_t2_3_layer_dnn/architecture/adanetB1B+| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.030102361, average_loss/adanet/subnetwork = 0.032910354, average_loss/adanet/uniform_average_ensemble = 0.03231746, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.038314007, loss/adanet/subnetwork = 0.043785788, loss/adanet/uniform_average_ensemble = 0.04384736, prediction/mean/adanet/adanet_weighted_ensemble = 3.1021514, prediction/mean/adanet/subnetwork = 3.134045, prediction/mean/adanet/uniform_average_ensemble = 3.1457782 INFO:tensorflow:Finished evaluation at 2018-12-13-19:30:49 INFO:tensorflow:Saving dict for global step 60000: average_loss = 0.030102361, average_loss/adanet/adanet_weighted_ensemble = 0.030102361, average_loss/adanet/subnetwork = 0.032910354, average_loss/adanet/uniform_average_ensemble = 0.03231746, global_step = 60000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.038314007, loss/adanet/adanet_weighted_ensemble = 0.038314007, loss/adanet/subnetwork = 0.043785788, loss/adanet/uniform_average_ensemble = 0.04384736, prediction/mean = 3.1021514, prediction/mean/adanet/adanet_weighted_ensemble = 3.1021514, prediction/mean/adanet/subnetwork = 3.134045, prediction/mean/adanet/uniform_average_ensemble = 3.1457782 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 60000: /tmp/tmpDexXZd/model.ckpt-60000 INFO:tensorflow:Loss for final step: 0.0064613554. INFO:tensorflow:Finished training Adanet iteration 2 INFO:tensorflow:Beginning bookkeeping phase for iteration 2 INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-1.txt: ['0:1_layer_dnn', '1:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 2 INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/model.ckpt-60000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t1_2_layer_dnn = 0.011639, adanet_loss/t2_2_layer_dnn = 0.008030, adanet_loss/t2_3_layer_dnn = 0.007307 INFO:tensorflow:Finished ensemble evaluation for iteration 2 INFO:tensorflow:'t2_3_layer_dnn' at index 2 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-2.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpDexXZd/model.ckpt-60000',) INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_3/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_3/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 3 to /tmp/tmpDexXZd/model.ckpt-60000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 2 INFO:tensorflow:Beginning training AdaNet iteration 3 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-2.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/increment.ckpt-3 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 60000 into /tmp/tmpDexXZd/model.ckpt. INFO:tensorflow:loss = 0.008016532, step = 60001 INFO:tensorflow:global_step/sec: 86.6128 INFO:tensorflow:loss = 0.009209515, step = 60101 (1.155 sec) INFO:tensorflow:global_step/sec: 471.158 INFO:tensorflow:loss = 0.01075724, step = 60201 (0.212 sec) INFO:tensorflow:global_step/sec: 437.641 INFO:tensorflow:loss = 0.0059028785, step = 60301 (0.228 sec) INFO:tensorflow:global_step/sec: 436.302 INFO:tensorflow:loss = 0.011906806, step = 60401 (0.229 sec) INFO:tensorflow:global_step/sec: 452.837 INFO:tensorflow:loss = 0.0039542457, step = 60501 (0.221 sec) INFO:tensorflow:global_step/sec: 442.837 INFO:tensorflow:loss = 0.0043944037, step = 60601 (0.226 sec) INFO:tensorflow:global_step/sec: 454.003 INFO:tensorflow:loss = 0.0061429534, step = 60701 (0.220 sec) INFO:tensorflow:global_step/sec: 454.473 INFO:tensorflow:loss = 0.0069281845, step = 60801 (0.220 sec) INFO:tensorflow:global_step/sec: 450.475 INFO:tensorflow:loss = 0.0092753135, step = 60901 (0.222 sec) INFO:tensorflow:global_step/sec: 467.688 INFO:tensorflow:loss = 0.009403301, step = 61001 (0.214 sec) INFO:tensorflow:global_step/sec: 450.793 INFO:tensorflow:loss = 0.00983897, step = 61101 (0.221 sec) INFO:tensorflow:global_step/sec: 449.982 INFO:tensorflow:loss = 0.010074519, step = 61201 (0.223 sec) INFO:tensorflow:global_step/sec: 459.688 INFO:tensorflow:loss = 0.004837831, step = 61301 (0.217 sec) INFO:tensorflow:global_step/sec: 473.48 INFO:tensorflow:loss = 0.003884089, step = 61401 (0.211 sec) INFO:tensorflow:global_step/sec: 438.768 INFO:tensorflow:loss = 0.0039161984, step = 61501 (0.228 sec) INFO:tensorflow:global_step/sec: 442.4 INFO:tensorflow:loss = 0.004391333, step = 61601 (0.226 sec) INFO:tensorflow:global_step/sec: 446.632 INFO:tensorflow:loss = 0.011235558, step = 61701 (0.224 sec) INFO:tensorflow:global_step/sec: 456.198 INFO:tensorflow:loss = 0.007418411, step = 61801 (0.219 sec) INFO:tensorflow:global_step/sec: 474.331 INFO:tensorflow:loss = 0.0071272356, step = 61901 (0.215 sec) INFO:tensorflow:global_step/sec: 440.575 INFO:tensorflow:loss = 0.00686712, step = 62001 (0.222 sec) INFO:tensorflow:global_step/sec: 461.446 INFO:tensorflow:loss = 0.010292519, step = 62101 (0.217 sec) INFO:tensorflow:global_step/sec: 440.387 INFO:tensorflow:loss = 0.0039625755, step = 62201 (0.227 sec) INFO:tensorflow:global_step/sec: 452.014 INFO:tensorflow:loss = 0.0054634213, step = 62301 (0.221 sec) INFO:tensorflow:global_step/sec: 438.016 INFO:tensorflow:loss = 0.0035767714, step = 62401 (0.228 sec) INFO:tensorflow:global_step/sec: 468.766 INFO:tensorflow:loss = 0.009523136, step = 62501 (0.214 sec) INFO:tensorflow:global_step/sec: 477.288 INFO:tensorflow:loss = 0.0035087317, step = 62601 (0.209 sec) INFO:tensorflow:global_step/sec: 452.339 INFO:tensorflow:loss = 0.008077238, step = 62701 (0.221 sec) INFO:tensorflow:global_step/sec: 467.189 INFO:tensorflow:loss = 0.0061389813, step = 62801 (0.214 sec) INFO:tensorflow:global_step/sec: 449.372 INFO:tensorflow:loss = 0.006167573, step = 62901 (0.222 sec) INFO:tensorflow:global_step/sec: 434.509 INFO:tensorflow:loss = 0.0056978366, step = 63001 (0.230 sec) INFO:tensorflow:global_step/sec: 459.705 INFO:tensorflow:loss = 0.00419854, step = 63101 (0.217 sec) INFO:tensorflow:global_step/sec: 447.265 INFO:tensorflow:loss = 0.007870656, step = 63201 (0.224 sec) INFO:tensorflow:global_step/sec: 471.963 INFO:tensorflow:loss = 0.0106264595, step = 63301 (0.212 sec) INFO:tensorflow:global_step/sec: 474.908 INFO:tensorflow:loss = 0.009301414, step = 63401 (0.211 sec) INFO:tensorflow:global_step/sec: 464.17 INFO:tensorflow:loss = 0.011040909, step = 63501 (0.215 sec) INFO:tensorflow:global_step/sec: 457.779 INFO:tensorflow:loss = 0.0058821742, step = 63601 (0.218 sec) INFO:tensorflow:global_step/sec: 460.431 INFO:tensorflow:loss = 0.006685866, step = 63701 (0.217 sec) INFO:tensorflow:global_step/sec: 438.225 INFO:tensorflow:loss = 0.007290181, step = 63801 (0.228 sec) INFO:tensorflow:global_step/sec: 444.638 INFO:tensorflow:loss = 0.0045587993, step = 63901 (0.225 sec) INFO:tensorflow:global_step/sec: 452.941 INFO:tensorflow:loss = 0.006104091, step = 64001 (0.220 sec) INFO:tensorflow:global_step/sec: 461.704 INFO:tensorflow:loss = 0.0055608135, step = 64101 (0.217 sec) INFO:tensorflow:global_step/sec: 434.471 INFO:tensorflow:loss = 0.0045667156, step = 64201 (0.230 sec) INFO:tensorflow:global_step/sec: 446.854 INFO:tensorflow:loss = 0.0035601123, step = 64301 (0.224 sec) INFO:tensorflow:global_step/sec: 429.236 INFO:tensorflow:loss = 0.007950223, step = 64401 (0.233 sec) INFO:tensorflow:global_step/sec: 463.349 INFO:tensorflow:loss = 0.00501996, step = 64501 (0.216 sec) INFO:tensorflow:global_step/sec: 463.545 INFO:tensorflow:loss = 0.00829908, step = 64601 (0.216 sec) INFO:tensorflow:global_step/sec: 445.543 INFO:tensorflow:loss = 0.0058983793, step = 64701 (0.224 sec) INFO:tensorflow:global_step/sec: 440.191 INFO:tensorflow:loss = 0.005716239, step = 64801 (0.227 sec) INFO:tensorflow:global_step/sec: 444.828 INFO:tensorflow:loss = 0.0063681947, step = 64901 (0.224 sec) INFO:tensorflow:global_step/sec: 475.69 INFO:tensorflow:loss = 0.005070969, step = 65001 (0.211 sec) INFO:tensorflow:global_step/sec: 430.246 INFO:tensorflow:loss = 0.0031899558, step = 65101 (0.232 sec) INFO:tensorflow:global_step/sec: 457.119 INFO:tensorflow:loss = 0.003931294, step = 65201 (0.219 sec) INFO:tensorflow:global_step/sec: 459.741 INFO:tensorflow:loss = 0.008194013, step = 65301 (0.218 sec) INFO:tensorflow:global_step/sec: 456.366 INFO:tensorflow:loss = 0.005469339, step = 65401 (0.219 sec) INFO:tensorflow:global_step/sec: 471.247 INFO:tensorflow:loss = 0.0035420237, step = 65501 (0.216 sec) INFO:tensorflow:global_step/sec: 450.258 INFO:tensorflow:loss = 0.007944604, step = 65601 (0.219 sec) INFO:tensorflow:global_step/sec: 475.83 INFO:tensorflow:loss = 0.0055986336, step = 65701 (0.210 sec) INFO:tensorflow:global_step/sec: 456.033 INFO:tensorflow:loss = 0.005359305, step = 65801 (0.219 sec) INFO:tensorflow:global_step/sec: 467.284 INFO:tensorflow:loss = 0.005838528, step = 65901 (0.214 sec) INFO:tensorflow:global_step/sec: 472.835 INFO:tensorflow:loss = 0.008952239, step = 66001 (0.211 sec) INFO:tensorflow:global_step/sec: 458.14 INFO:tensorflow:loss = 0.008125879, step = 66101 (0.218 sec) INFO:tensorflow:global_step/sec: 457.767 INFO:tensorflow:loss = 0.010595839, step = 66201 (0.219 sec) INFO:tensorflow:global_step/sec: 462.086 INFO:tensorflow:loss = 0.004360906, step = 66301 (0.216 sec) INFO:tensorflow:global_step/sec: 444.026 INFO:tensorflow:loss = 0.005472458, step = 66401 (0.225 sec) INFO:tensorflow:global_step/sec: 451.127 INFO:tensorflow:loss = 0.009706709, step = 66501 (0.221 sec) INFO:tensorflow:global_step/sec: 481.362 INFO:tensorflow:loss = 0.0058737276, step = 66601 (0.208 sec) INFO:tensorflow:global_step/sec: 448.974 INFO:tensorflow:loss = 0.005375354, step = 66701 (0.223 sec) INFO:tensorflow:global_step/sec: 453.542 INFO:tensorflow:loss = 0.0051962878, step = 66801 (0.220 sec) INFO:tensorflow:global_step/sec: 455.828 INFO:tensorflow:loss = 0.004631044, step = 66901 (0.219 sec) INFO:tensorflow:global_step/sec: 467.034 INFO:tensorflow:loss = 0.0036607399, step = 67001 (0.214 sec) INFO:tensorflow:global_step/sec: 447.937 INFO:tensorflow:loss = 0.0042718584, step = 67101 (0.224 sec) INFO:tensorflow:global_step/sec: 464.857 INFO:tensorflow:loss = 0.0060365, step = 67201 (0.215 sec) INFO:tensorflow:global_step/sec: 472.802 INFO:tensorflow:loss = 0.0057770684, step = 67301 (0.211 sec) INFO:tensorflow:global_step/sec: 464.572 INFO:tensorflow:loss = 0.007338159, step = 67401 (0.215 sec) INFO:tensorflow:global_step/sec: 450.024 INFO:tensorflow:loss = 0.003209616, step = 67501 (0.222 sec) INFO:tensorflow:global_step/sec: 402.198 INFO:tensorflow:loss = 0.0061726947, step = 67601 (0.249 sec) INFO:tensorflow:global_step/sec: 466.459 INFO:tensorflow:loss = 0.010532187, step = 67701 (0.215 sec) INFO:tensorflow:global_step/sec: 460.095 INFO:tensorflow:loss = 0.0068775183, step = 67801 (0.217 sec) INFO:tensorflow:global_step/sec: 438.587 INFO:tensorflow:loss = 0.003887407, step = 67901 (0.231 sec) INFO:tensorflow:global_step/sec: 458.894 INFO:tensorflow:loss = 0.010415395, step = 68001 (0.215 sec) INFO:tensorflow:global_step/sec: 446.07 INFO:tensorflow:loss = 0.009217195, step = 68101 (0.224 sec) INFO:tensorflow:global_step/sec: 443.274 INFO:tensorflow:loss = 0.0074221427, step = 68201 (0.225 sec) INFO:tensorflow:global_step/sec: 456.147 INFO:tensorflow:loss = 0.010360572, step = 68301 (0.219 sec) INFO:tensorflow:global_step/sec: 442.065 INFO:tensorflow:loss = 0.004218365, step = 68401 (0.226 sec) INFO:tensorflow:global_step/sec: 446.83 INFO:tensorflow:loss = 0.00443579, step = 68501 (0.224 sec) INFO:tensorflow:global_step/sec: 464.784 INFO:tensorflow:loss = 0.0053496305, step = 68601 (0.215 sec) INFO:tensorflow:global_step/sec: 460.521 INFO:tensorflow:loss = 0.0067975875, step = 68701 (0.217 sec) INFO:tensorflow:global_step/sec: 444.809 INFO:tensorflow:loss = 0.009376096, step = 68801 (0.225 sec) INFO:tensorflow:global_step/sec: 419.725 INFO:tensorflow:loss = 0.012522965, step = 68901 (0.238 sec) INFO:tensorflow:global_step/sec: 459.324 INFO:tensorflow:loss = 0.01441093, step = 69001 (0.217 sec) INFO:tensorflow:global_step/sec: 468.123 INFO:tensorflow:loss = 0.0070652366, step = 69101 (0.214 sec) INFO:tensorflow:global_step/sec: 460.687 INFO:tensorflow:loss = 0.005794105, step = 69201 (0.217 sec) INFO:tensorflow:global_step/sec: 475.367 INFO:tensorflow:loss = 0.003959253, step = 69301 (0.210 sec) INFO:tensorflow:global_step/sec: 466.879 INFO:tensorflow:loss = 0.006276269, step = 69401 (0.214 sec) INFO:tensorflow:global_step/sec: 437.938 INFO:tensorflow:loss = 0.0045333365, step = 69501 (0.228 sec) INFO:tensorflow:global_step/sec: 460.792 INFO:tensorflow:loss = 0.003597036, step = 69601 (0.218 sec) INFO:tensorflow:global_step/sec: 442.832 INFO:tensorflow:loss = 0.0047999304, step = 69701 (0.226 sec) INFO:tensorflow:global_step/sec: 445.29 INFO:tensorflow:loss = 0.008004857, step = 69801 (0.225 sec) INFO:tensorflow:global_step/sec: 460.155 INFO:tensorflow:loss = 0.0075903703, step = 69901 (0.217 sec) INFO:tensorflow:global_step/sec: 442.654 INFO:tensorflow:loss = 0.008740846, step = 70001 (0.226 sec) INFO:tensorflow:global_step/sec: 446.397 INFO:tensorflow:loss = 0.005103236, step = 70101 (0.224 sec) INFO:tensorflow:global_step/sec: 447.263 INFO:tensorflow:loss = 0.0072469544, step = 70201 (0.224 sec) INFO:tensorflow:global_step/sec: 457.804 INFO:tensorflow:loss = 0.0064546643, step = 70301 (0.218 sec) INFO:tensorflow:global_step/sec: 460.518 INFO:tensorflow:loss = 0.005093436, step = 70401 (0.217 sec) INFO:tensorflow:global_step/sec: 456.533 INFO:tensorflow:loss = 0.0053966255, step = 70501 (0.219 sec) INFO:tensorflow:global_step/sec: 449.873 INFO:tensorflow:loss = 0.0071552694, step = 70601 (0.222 sec) INFO:tensorflow:global_step/sec: 416.691 INFO:tensorflow:loss = 0.004265731, step = 70701 (0.240 sec) INFO:tensorflow:global_step/sec: 444.543 INFO:tensorflow:loss = 0.008054085, step = 70801 (0.225 sec) INFO:tensorflow:global_step/sec: 460.473 INFO:tensorflow:loss = 0.0084706675, step = 70901 (0.217 sec) INFO:tensorflow:global_step/sec: 438.689 INFO:tensorflow:loss = 0.005538496, step = 71001 (0.228 sec) INFO:tensorflow:global_step/sec: 453.449 INFO:tensorflow:loss = 0.0076392516, step = 71101 (0.221 sec) INFO:tensorflow:global_step/sec: 419.511 INFO:tensorflow:loss = 0.0034439913, step = 71201 (0.239 sec) INFO:tensorflow:global_step/sec: 447.429 INFO:tensorflow:loss = 0.007264255, step = 71301 (0.223 sec) INFO:tensorflow:global_step/sec: 440.985 INFO:tensorflow:loss = 0.003469113, step = 71401 (0.227 sec) INFO:tensorflow:global_step/sec: 437.382 INFO:tensorflow:loss = 0.010293648, step = 71501 (0.229 sec) INFO:tensorflow:global_step/sec: 455.226 INFO:tensorflow:loss = 0.002926058, step = 71601 (0.220 sec) INFO:tensorflow:global_step/sec: 474.978 INFO:tensorflow:loss = 0.0074243895, step = 71701 (0.210 sec) INFO:tensorflow:global_step/sec: 465.641 INFO:tensorflow:loss = 0.0049074343, step = 71801 (0.215 sec) INFO:tensorflow:global_step/sec: 437.264 INFO:tensorflow:loss = 0.004615536, step = 71901 (0.229 sec) INFO:tensorflow:global_step/sec: 460.223 INFO:tensorflow:loss = 0.0048172097, step = 72001 (0.217 sec) INFO:tensorflow:global_step/sec: 448.262 INFO:tensorflow:loss = 0.0037294552, step = 72101 (0.223 sec) INFO:tensorflow:global_step/sec: 457.884 INFO:tensorflow:loss = 0.0033380152, step = 72201 (0.219 sec) INFO:tensorflow:global_step/sec: 477.827 INFO:tensorflow:loss = 0.005900569, step = 72301 (0.209 sec) INFO:tensorflow:global_step/sec: 455.069 INFO:tensorflow:loss = 0.0058830604, step = 72401 (0.220 sec) INFO:tensorflow:global_step/sec: 460.479 INFO:tensorflow:loss = 0.005153283, step = 72501 (0.217 sec) INFO:tensorflow:global_step/sec: 461.393 INFO:tensorflow:loss = 0.003062134, step = 72601 (0.217 sec) INFO:tensorflow:global_step/sec: 478.282 INFO:tensorflow:loss = 0.01034358, step = 72701 (0.209 sec) INFO:tensorflow:global_step/sec: 458.951 INFO:tensorflow:loss = 0.0099817775, step = 72801 (0.218 sec) INFO:tensorflow:global_step/sec: 448.398 INFO:tensorflow:loss = 0.00888859, step = 72901 (0.228 sec) INFO:tensorflow:global_step/sec: 422.297 INFO:tensorflow:loss = 0.0084945075, step = 73001 (0.232 sec) INFO:tensorflow:global_step/sec: 468.005 INFO:tensorflow:loss = 0.0048595895, step = 73101 (0.214 sec) INFO:tensorflow:global_step/sec: 466.474 INFO:tensorflow:loss = 0.003486675, step = 73201 (0.215 sec) INFO:tensorflow:global_step/sec: 465.378 INFO:tensorflow:loss = 0.0065548937, step = 73301 (0.215 sec) INFO:tensorflow:global_step/sec: 461.299 INFO:tensorflow:loss = 0.0063932384, step = 73401 (0.217 sec) INFO:tensorflow:global_step/sec: 401.531 INFO:tensorflow:loss = 0.0028781756, step = 73501 (0.249 sec) INFO:tensorflow:global_step/sec: 458.901 INFO:tensorflow:loss = 0.008169038, step = 73601 (0.218 sec) INFO:tensorflow:global_step/sec: 444.002 INFO:tensorflow:loss = 0.0037756446, step = 73701 (0.225 sec) INFO:tensorflow:global_step/sec: 461.949 INFO:tensorflow:loss = 0.007363127, step = 73801 (0.216 sec) INFO:tensorflow:global_step/sec: 452.759 INFO:tensorflow:loss = 0.0049518663, step = 73901 (0.221 sec) INFO:tensorflow:global_step/sec: 455.106 INFO:tensorflow:loss = 0.0045387745, step = 74001 (0.220 sec) INFO:tensorflow:global_step/sec: 493.182 INFO:tensorflow:loss = 0.008615183, step = 74101 (0.203 sec) INFO:tensorflow:global_step/sec: 453.655 INFO:tensorflow:loss = 0.0052963346, step = 74201 (0.220 sec) INFO:tensorflow:global_step/sec: 442.006 INFO:tensorflow:loss = 0.0058054, step = 74301 (0.226 sec) INFO:tensorflow:global_step/sec: 443.243 INFO:tensorflow:loss = 0.003772908, step = 74401 (0.226 sec) INFO:tensorflow:global_step/sec: 447.971 INFO:tensorflow:loss = 0.0042598215, step = 74501 (0.223 sec) INFO:tensorflow:global_step/sec: 430.132 INFO:tensorflow:loss = 0.0069245948, step = 74601 (0.232 sec) INFO:tensorflow:global_step/sec: 462.974 INFO:tensorflow:loss = 0.0068933605, step = 74701 (0.216 sec) INFO:tensorflow:global_step/sec: 465.164 INFO:tensorflow:loss = 0.008349533, step = 74801 (0.215 sec) INFO:tensorflow:global_step/sec: 475.426 INFO:tensorflow:loss = 0.004571722, step = 74901 (0.211 sec) INFO:tensorflow:global_step/sec: 469.074 INFO:tensorflow:loss = 0.01291978, step = 75001 (0.213 sec) INFO:tensorflow:global_step/sec: 471.722 INFO:tensorflow:loss = 0.0064052385, step = 75101 (0.212 sec) INFO:tensorflow:global_step/sec: 474.221 INFO:tensorflow:loss = 0.0060520847, step = 75201 (0.211 sec) INFO:tensorflow:global_step/sec: 446.402 INFO:tensorflow:loss = 0.008798716, step = 75301 (0.224 sec) INFO:tensorflow:global_step/sec: 481.429 INFO:tensorflow:loss = 0.006379231, step = 75401 (0.208 sec) INFO:tensorflow:global_step/sec: 463.553 INFO:tensorflow:loss = 0.009331146, step = 75501 (0.216 sec) INFO:tensorflow:global_step/sec: 460.849 INFO:tensorflow:loss = 0.005894911, step = 75601 (0.217 sec) INFO:tensorflow:global_step/sec: 444.136 INFO:tensorflow:loss = 0.0037616612, step = 75701 (0.225 sec) INFO:tensorflow:global_step/sec: 463.491 INFO:tensorflow:loss = 0.011714017, step = 75801 (0.216 sec) INFO:tensorflow:global_step/sec: 457.113 INFO:tensorflow:loss = 0.0047904057, step = 75901 (0.219 sec) INFO:tensorflow:global_step/sec: 455.869 INFO:tensorflow:loss = 0.0050777653, step = 76001 (0.219 sec) INFO:tensorflow:global_step/sec: 441.663 INFO:tensorflow:loss = 0.005149127, step = 76101 (0.227 sec) INFO:tensorflow:global_step/sec: 438.495 INFO:tensorflow:loss = 0.003949683, step = 76201 (0.228 sec) INFO:tensorflow:global_step/sec: 466.259 INFO:tensorflow:loss = 0.0050260425, step = 76301 (0.214 sec) INFO:tensorflow:global_step/sec: 472.018 INFO:tensorflow:loss = 0.007038864, step = 76401 (0.212 sec) INFO:tensorflow:global_step/sec: 457.151 INFO:tensorflow:loss = 0.0031711794, step = 76501 (0.219 sec) INFO:tensorflow:global_step/sec: 462.717 INFO:tensorflow:loss = 0.006720245, step = 76601 (0.216 sec) INFO:tensorflow:global_step/sec: 463.495 INFO:tensorflow:loss = 0.00505179, step = 76701 (0.216 sec) INFO:tensorflow:global_step/sec: 462.601 INFO:tensorflow:loss = 0.006519336, step = 76801 (0.216 sec) INFO:tensorflow:global_step/sec: 451.04 INFO:tensorflow:loss = 0.0033873874, step = 76901 (0.222 sec) INFO:tensorflow:global_step/sec: 461.138 INFO:tensorflow:loss = 0.007071457, step = 77001 (0.217 sec) INFO:tensorflow:global_step/sec: 450.747 INFO:tensorflow:loss = 0.012458454, step = 77101 (0.222 sec) INFO:tensorflow:global_step/sec: 447.764 INFO:tensorflow:loss = 0.0050108135, step = 77201 (0.223 sec) INFO:tensorflow:global_step/sec: 455.951 INFO:tensorflow:loss = 0.004642292, step = 77301 (0.219 sec) INFO:tensorflow:global_step/sec: 449.315 INFO:tensorflow:loss = 0.0040867925, step = 77401 (0.222 sec) INFO:tensorflow:global_step/sec: 462.342 INFO:tensorflow:loss = 0.0052490076, step = 77501 (0.216 sec) INFO:tensorflow:global_step/sec: 440.938 INFO:tensorflow:loss = 0.00611366, step = 77601 (0.227 sec) INFO:tensorflow:global_step/sec: 474.422 INFO:tensorflow:loss = 0.0046195406, step = 77701 (0.210 sec) INFO:tensorflow:global_step/sec: 451.879 INFO:tensorflow:loss = 0.007076217, step = 77801 (0.221 sec) INFO:tensorflow:global_step/sec: 453.856 INFO:tensorflow:loss = 0.0043232027, step = 77901 (0.221 sec) INFO:tensorflow:global_step/sec: 461.973 INFO:tensorflow:loss = 0.008320088, step = 78001 (0.216 sec) INFO:tensorflow:global_step/sec: 455.716 INFO:tensorflow:loss = 0.007226456, step = 78101 (0.219 sec) INFO:tensorflow:global_step/sec: 476.649 INFO:tensorflow:loss = 0.0063690925, step = 78201 (0.210 sec) INFO:tensorflow:global_step/sec: 438.354 INFO:tensorflow:loss = 0.009858575, step = 78301 (0.229 sec) INFO:tensorflow:global_step/sec: 440.884 INFO:tensorflow:loss = 0.006499151, step = 78401 (0.226 sec) INFO:tensorflow:global_step/sec: 460.764 INFO:tensorflow:loss = 0.0064125946, step = 78501 (0.217 sec) INFO:tensorflow:global_step/sec: 438.978 INFO:tensorflow:loss = 0.0055036284, step = 78601 (0.228 sec) INFO:tensorflow:global_step/sec: 457.536 INFO:tensorflow:loss = 0.004464712, step = 78701 (0.219 sec) INFO:tensorflow:global_step/sec: 467.041 INFO:tensorflow:loss = 0.006037531, step = 78801 (0.214 sec) INFO:tensorflow:global_step/sec: 467.284 INFO:tensorflow:loss = 0.009124339, step = 78901 (0.214 sec) INFO:tensorflow:global_step/sec: 445.984 INFO:tensorflow:loss = 0.0064703375, step = 79001 (0.224 sec) INFO:tensorflow:global_step/sec: 415.031 INFO:tensorflow:loss = 0.006439813, step = 79101 (0.241 sec) INFO:tensorflow:global_step/sec: 426.452 INFO:tensorflow:loss = 0.0041991677, step = 79201 (0.235 sec) INFO:tensorflow:global_step/sec: 447.958 INFO:tensorflow:loss = 0.0046974616, step = 79301 (0.223 sec) INFO:tensorflow:global_step/sec: 472.65 INFO:tensorflow:loss = 0.0066093374, step = 79401 (0.212 sec) INFO:tensorflow:global_step/sec: 499.753 INFO:tensorflow:loss = 0.0034619216, step = 79501 (0.200 sec) INFO:tensorflow:global_step/sec: 477.662 INFO:tensorflow:loss = 0.006463375, step = 79601 (0.209 sec) INFO:tensorflow:global_step/sec: 474.841 INFO:tensorflow:loss = 0.0044739046, step = 79701 (0.211 sec) INFO:tensorflow:global_step/sec: 459.107 INFO:tensorflow:loss = 0.0049773594, step = 79801 (0.218 sec) INFO:tensorflow:global_step/sec: 454.759 INFO:tensorflow:loss = 0.007405264, step = 79901 (0.220 sec) INFO:tensorflow:Saving checkpoints for 80000 into /tmp/tmpDexXZd/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-2.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:32:02 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/model.ckpt-80000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't2_3_layer_dnn' dict for global step 80000: architecture/adanet/ensembles = } >adanet/iteration_2/ensemble_t2_3_layer_dnn/architecture/adanetB1B+| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.030102361, average_loss/adanet/subnetwork = 0.032910354, average_loss/adanet/uniform_average_ensemble = 0.03231746, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.038314007, loss/adanet/subnetwork = 0.043785788, loss/adanet/uniform_average_ensemble = 0.04384736, prediction/mean/adanet/adanet_weighted_ensemble = 3.1021514, prediction/mean/adanet/subnetwork = 3.134045, prediction/mean/adanet/uniform_average_ensemble = 3.1457782 INFO:tensorflow:Saving candidate 't3_3_layer_dnn' dict for global step 80000: architecture/adanet/ensembles = � >adanet/iteration_3/ensemble_t3_3_layer_dnn/architecture/adanetB?B9| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 3_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.032788813, average_loss/adanet/subnetwork = 0.03740776, average_loss/adanet/uniform_average_ensemble = 0.032510772, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.039163962, loss/adanet/subnetwork = 0.055050053, loss/adanet/uniform_average_ensemble = 0.04530649, prediction/mean/adanet/adanet_weighted_ensemble = 3.0593674, prediction/mean/adanet/subnetwork = 3.1547055, prediction/mean/adanet/uniform_average_ensemble = 3.1480103 INFO:tensorflow:Saving candidate 't3_4_layer_dnn' dict for global step 80000: architecture/adanet/ensembles = � >adanet/iteration_3/ensemble_t3_4_layer_dnn/architecture/adanetB?B9| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 4_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03169271, average_loss/adanet/subnetwork = 0.03348904, average_loss/adanet/uniform_average_ensemble = 0.031587753, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.038267143, loss/adanet/subnetwork = 0.041055106, loss/adanet/uniform_average_ensemble = 0.04207115, prediction/mean/adanet/adanet_weighted_ensemble = 3.067704, prediction/mean/adanet/subnetwork = 3.1287208, prediction/mean/adanet/uniform_average_ensemble = 3.1415138 INFO:tensorflow:Finished evaluation at 2018-12-13-19:32:06 INFO:tensorflow:Saving dict for global step 80000: average_loss = 0.03169271, average_loss/adanet/adanet_weighted_ensemble = 0.03169271, average_loss/adanet/subnetwork = 0.03348904, average_loss/adanet/uniform_average_ensemble = 0.031587753, global_step = 80000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.038267143, loss/adanet/adanet_weighted_ensemble = 0.038267143, loss/adanet/subnetwork = 0.041055106, loss/adanet/uniform_average_ensemble = 0.04207115, prediction/mean = 3.067704, prediction/mean/adanet/adanet_weighted_ensemble = 3.067704, prediction/mean/adanet/subnetwork = 3.1287208, prediction/mean/adanet/uniform_average_ensemble = 3.1415138 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 80000: /tmp/tmpDexXZd/model.ckpt-80000 INFO:tensorflow:Loss for final step: 0.0047632405. INFO:tensorflow:Finished training Adanet iteration 3 INFO:tensorflow:Beginning bookkeeping phase for iteration 3 INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-2.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 3 INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/model.ckpt-80000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t2_3_layer_dnn = 0.007307, adanet_loss/t3_3_layer_dnn = 0.006105, adanet_loss/t3_4_layer_dnn = 0.005626 INFO:tensorflow:Finished ensemble evaluation for iteration 3 INFO:tensorflow:'t3_4_layer_dnn' at index 2 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-3.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn', '3:4_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Rebuilding iteration 3 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpDexXZd/model.ckpt-80000',) INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_3/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_2/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_3/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t3_4_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t3_4_layer_dnn/adanet/iteration_3/candidate_t3_4_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_4/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t3_4_layer_dnn/adanet/iteration_3/candidate_t3_4_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_3_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_4/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_3/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t2_3_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_1_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_2_layer_dnn/adanet/iteration_1/candidate_t1_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_1_layer_dnn/adanet/iteration_1/candidate_t0_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_4_layer_dnn/weighted_subnetwork_3/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_2_layer_dnn/weighted_subnetwork_1/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t2_3_layer_dnn/adanet/iteration_3/candidate_t2_3_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_3/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t2_3_layer_dnn/adanet/iteration_3/candidate_t2_3_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_2_layer_dnn/adanet/iteration_2/candidate_t1_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_3_layer_dnn/weighted_subnetwork_2/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Building iteration 4 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Building subnetwork '5_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 4 to /tmp/tmpDexXZd/model.ckpt-80000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 3 INFO:tensorflow:Beginning training AdaNet iteration 4 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-3.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn', '3:4_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Rebuilding iteration 3 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Building iteration 4 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Building subnetwork '5_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/increment.ckpt-4 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 80000 into /tmp/tmpDexXZd/model.ckpt. INFO:tensorflow:loss = 0.005383206, step = 80001 INFO:tensorflow:global_step/sec: 78.49 INFO:tensorflow:loss = 0.0064166253, step = 80101 (1.275 sec) INFO:tensorflow:global_step/sec: 418.887 INFO:tensorflow:loss = 0.008984626, step = 80201 (0.238 sec) INFO:tensorflow:global_step/sec: 405.903 INFO:tensorflow:loss = 0.004674765, step = 80301 (0.246 sec) INFO:tensorflow:global_step/sec: 406.285 INFO:tensorflow:loss = 0.00909529, step = 80401 (0.246 sec) INFO:tensorflow:global_step/sec: 431.88 INFO:tensorflow:loss = 0.002272259, step = 80501 (0.232 sec) INFO:tensorflow:global_step/sec: 430.737 INFO:tensorflow:loss = 0.0045274086, step = 80601 (0.232 sec) INFO:tensorflow:global_step/sec: 413.445 INFO:tensorflow:loss = 0.0054803616, step = 80701 (0.242 sec) INFO:tensorflow:global_step/sec: 416.309 INFO:tensorflow:loss = 0.0052720383, step = 80801 (0.240 sec) INFO:tensorflow:global_step/sec: 400.421 INFO:tensorflow:loss = 0.008549853, step = 80901 (0.250 sec) INFO:tensorflow:global_step/sec: 408.361 INFO:tensorflow:loss = 0.008121803, step = 81001 (0.244 sec) INFO:tensorflow:global_step/sec: 414.845 INFO:tensorflow:loss = 0.0069520036, step = 81101 (0.241 sec) INFO:tensorflow:global_step/sec: 408.255 INFO:tensorflow:loss = 0.0076366886, step = 81201 (0.245 sec) INFO:tensorflow:global_step/sec: 421.117 INFO:tensorflow:loss = 0.003278641, step = 81301 (0.237 sec) INFO:tensorflow:global_step/sec: 429.802 INFO:tensorflow:loss = 0.0028751101, step = 81401 (0.238 sec) INFO:tensorflow:global_step/sec: 420.822 INFO:tensorflow:loss = 0.0037532323, step = 81501 (0.232 sec) INFO:tensorflow:global_step/sec: 436.449 INFO:tensorflow:loss = 0.0046784272, step = 81601 (0.229 sec) INFO:tensorflow:global_step/sec: 413.609 INFO:tensorflow:loss = 0.007498023, step = 81701 (0.242 sec) INFO:tensorflow:global_step/sec: 436.12 INFO:tensorflow:loss = 0.0050562844, step = 81801 (0.229 sec) INFO:tensorflow:global_step/sec: 451.214 INFO:tensorflow:loss = 0.0062173824, step = 81901 (0.222 sec) INFO:tensorflow:global_step/sec: 431.908 INFO:tensorflow:loss = 0.0070055285, step = 82001 (0.232 sec) INFO:tensorflow:global_step/sec: 446.57 INFO:tensorflow:loss = 0.0067753876, step = 82101 (0.224 sec) INFO:tensorflow:global_step/sec: 433.507 INFO:tensorflow:loss = 0.0034281143, step = 82201 (0.231 sec) INFO:tensorflow:global_step/sec: 420.337 INFO:tensorflow:loss = 0.004406165, step = 82301 (0.238 sec) INFO:tensorflow:global_step/sec: 438.057 INFO:tensorflow:loss = 0.0028600814, step = 82401 (0.228 sec) INFO:tensorflow:global_step/sec: 417.812 INFO:tensorflow:loss = 0.005227585, step = 82501 (0.239 sec) INFO:tensorflow:global_step/sec: 423.689 INFO:tensorflow:loss = 0.0023829981, step = 82601 (0.236 sec) INFO:tensorflow:global_step/sec: 439.427 INFO:tensorflow:loss = 0.0073684314, step = 82701 (0.227 sec) INFO:tensorflow:global_step/sec: 450.432 INFO:tensorflow:loss = 0.005705492, step = 82801 (0.222 sec) INFO:tensorflow:global_step/sec: 436.91 INFO:tensorflow:loss = 0.005273375, step = 82901 (0.229 sec) INFO:tensorflow:global_step/sec: 424.995 INFO:tensorflow:loss = 0.0046031997, step = 83001 (0.235 sec) INFO:tensorflow:global_step/sec: 429.823 INFO:tensorflow:loss = 0.0045557586, step = 83101 (0.233 sec) INFO:tensorflow:global_step/sec: 439.452 INFO:tensorflow:loss = 0.005674702, step = 83201 (0.227 sec) INFO:tensorflow:global_step/sec: 437.522 INFO:tensorflow:loss = 0.0070310174, step = 83301 (0.229 sec) INFO:tensorflow:global_step/sec: 435.981 INFO:tensorflow:loss = 0.008453, step = 83401 (0.229 sec) INFO:tensorflow:global_step/sec: 430.563 INFO:tensorflow:loss = 0.0069910833, step = 83501 (0.232 sec) INFO:tensorflow:global_step/sec: 449.976 INFO:tensorflow:loss = 0.0055006915, step = 83601 (0.222 sec) INFO:tensorflow:global_step/sec: 432.556 INFO:tensorflow:loss = 0.006325035, step = 83701 (0.231 sec) INFO:tensorflow:global_step/sec: 427.639 INFO:tensorflow:loss = 0.007590879, step = 83801 (0.234 sec) INFO:tensorflow:global_step/sec: 410.661 INFO:tensorflow:loss = 0.005499037, step = 83901 (0.244 sec) INFO:tensorflow:global_step/sec: 436.698 INFO:tensorflow:loss = 0.004665518, step = 84001 (0.229 sec) INFO:tensorflow:global_step/sec: 442.345 INFO:tensorflow:loss = 0.0043933718, step = 84101 (0.226 sec) INFO:tensorflow:global_step/sec: 419.928 INFO:tensorflow:loss = 0.0033534751, step = 84201 (0.238 sec) INFO:tensorflow:global_step/sec: 404.658 INFO:tensorflow:loss = 0.004103374, step = 84301 (0.247 sec) INFO:tensorflow:global_step/sec: 405.912 INFO:tensorflow:loss = 0.007383922, step = 84401 (0.247 sec) INFO:tensorflow:global_step/sec: 413.824 INFO:tensorflow:loss = 0.004536817, step = 84501 (0.242 sec) INFO:tensorflow:global_step/sec: 438.612 INFO:tensorflow:loss = 0.008081801, step = 84601 (0.228 sec) INFO:tensorflow:global_step/sec: 434.239 INFO:tensorflow:loss = 0.0052011255, step = 84701 (0.230 sec) INFO:tensorflow:global_step/sec: 410.951 INFO:tensorflow:loss = 0.0058519435, step = 84801 (0.243 sec) INFO:tensorflow:global_step/sec: 424.944 INFO:tensorflow:loss = 0.0044878363, step = 84901 (0.235 sec) INFO:tensorflow:global_step/sec: 434.751 INFO:tensorflow:loss = 0.00481012, step = 85001 (0.230 sec) INFO:tensorflow:global_step/sec: 423.553 INFO:tensorflow:loss = 0.0026486877, step = 85101 (0.236 sec) INFO:tensorflow:global_step/sec: 421.31 INFO:tensorflow:loss = 0.0034918466, step = 85201 (0.238 sec) INFO:tensorflow:global_step/sec: 430.698 INFO:tensorflow:loss = 0.00640889, step = 85301 (0.232 sec) INFO:tensorflow:global_step/sec: 408.754 INFO:tensorflow:loss = 0.0045417673, step = 85401 (0.244 sec) INFO:tensorflow:global_step/sec: 424.719 INFO:tensorflow:loss = 0.0033178735, step = 85501 (0.236 sec) INFO:tensorflow:global_step/sec: 425.554 INFO:tensorflow:loss = 0.005359968, step = 85601 (0.235 sec) INFO:tensorflow:global_step/sec: 414.381 INFO:tensorflow:loss = 0.0055321874, step = 85701 (0.241 sec) INFO:tensorflow:global_step/sec: 408.661 INFO:tensorflow:loss = 0.004864615, step = 85801 (0.245 sec) INFO:tensorflow:global_step/sec: 438.687 INFO:tensorflow:loss = 0.005201213, step = 85901 (0.228 sec) INFO:tensorflow:global_step/sec: 425.644 INFO:tensorflow:loss = 0.006251228, step = 86001 (0.239 sec) INFO:tensorflow:global_step/sec: 429.677 INFO:tensorflow:loss = 0.006049957, step = 86101 (0.228 sec) INFO:tensorflow:global_step/sec: 453.875 INFO:tensorflow:loss = 0.008047962, step = 86201 (0.221 sec) INFO:tensorflow:global_step/sec: 438.164 INFO:tensorflow:loss = 0.0037406448, step = 86301 (0.228 sec) INFO:tensorflow:global_step/sec: 447.966 INFO:tensorflow:loss = 0.0044812597, step = 86401 (0.223 sec) INFO:tensorflow:global_step/sec: 432.292 INFO:tensorflow:loss = 0.006492268, step = 86501 (0.231 sec) INFO:tensorflow:global_step/sec: 414.309 INFO:tensorflow:loss = 0.0048469296, step = 86601 (0.241 sec) INFO:tensorflow:global_step/sec: 420.226 INFO:tensorflow:loss = 0.004090667, step = 86701 (0.238 sec) INFO:tensorflow:global_step/sec: 431.527 INFO:tensorflow:loss = 0.004442987, step = 86801 (0.233 sec) INFO:tensorflow:global_step/sec: 422.69 INFO:tensorflow:loss = 0.0048192637, step = 86901 (0.236 sec) INFO:tensorflow:global_step/sec: 411.562 INFO:tensorflow:loss = 0.0032640456, step = 87001 (0.243 sec) INFO:tensorflow:global_step/sec: 430.037 INFO:tensorflow:loss = 0.0036541175, step = 87101 (0.233 sec) INFO:tensorflow:global_step/sec: 446.024 INFO:tensorflow:loss = 0.0069467165, step = 87201 (0.224 sec) INFO:tensorflow:global_step/sec: 436.506 INFO:tensorflow:loss = 0.00457615, step = 87301 (0.229 sec) INFO:tensorflow:global_step/sec: 425.08 INFO:tensorflow:loss = 0.006205321, step = 87401 (0.235 sec) INFO:tensorflow:global_step/sec: 437.602 INFO:tensorflow:loss = 0.0030969642, step = 87501 (0.228 sec) INFO:tensorflow:global_step/sec: 416.349 INFO:tensorflow:loss = 0.0064918445, step = 87601 (0.240 sec) INFO:tensorflow:global_step/sec: 433.996 INFO:tensorflow:loss = 0.011695679, step = 87701 (0.230 sec) INFO:tensorflow:global_step/sec: 426.047 INFO:tensorflow:loss = 0.006250561, step = 87801 (0.235 sec) INFO:tensorflow:global_step/sec: 425.378 INFO:tensorflow:loss = 0.00363587, step = 87901 (0.235 sec) INFO:tensorflow:global_step/sec: 436.102 INFO:tensorflow:loss = 0.0072322786, step = 88001 (0.229 sec) INFO:tensorflow:global_step/sec: 387.201 INFO:tensorflow:loss = 0.009675448, step = 88101 (0.258 sec) INFO:tensorflow:global_step/sec: 422.52 INFO:tensorflow:loss = 0.004536283, step = 88201 (0.237 sec) INFO:tensorflow:global_step/sec: 433.711 INFO:tensorflow:loss = 0.009590596, step = 88301 (0.230 sec) INFO:tensorflow:global_step/sec: 441.24 INFO:tensorflow:loss = 0.0032862434, step = 88401 (0.227 sec) INFO:tensorflow:global_step/sec: 440.67 INFO:tensorflow:loss = 0.0051202993, step = 88501 (0.227 sec) INFO:tensorflow:global_step/sec: 415.745 INFO:tensorflow:loss = 0.0040213135, step = 88601 (0.241 sec) INFO:tensorflow:global_step/sec: 423.725 INFO:tensorflow:loss = 0.008824434, step = 88701 (0.236 sec) INFO:tensorflow:global_step/sec: 427.93 INFO:tensorflow:loss = 0.008001704, step = 88801 (0.234 sec) INFO:tensorflow:global_step/sec: 418.417 INFO:tensorflow:loss = 0.010184696, step = 88901 (0.239 sec) INFO:tensorflow:global_step/sec: 437.29 INFO:tensorflow:loss = 0.011775006, step = 89001 (0.229 sec) INFO:tensorflow:global_step/sec: 426.165 INFO:tensorflow:loss = 0.0058216797, step = 89101 (0.234 sec) INFO:tensorflow:global_step/sec: 422.801 INFO:tensorflow:loss = 0.0043885754, step = 89201 (0.237 sec) INFO:tensorflow:global_step/sec: 393.295 INFO:tensorflow:loss = 0.0027851185, step = 89301 (0.254 sec) INFO:tensorflow:global_step/sec: 427.192 INFO:tensorflow:loss = 0.0047693453, step = 89401 (0.234 sec) INFO:tensorflow:global_step/sec: 412.793 INFO:tensorflow:loss = 0.003990461, step = 89501 (0.242 sec) INFO:tensorflow:global_step/sec: 453.507 INFO:tensorflow:loss = 0.0026294854, step = 89601 (0.220 sec) INFO:tensorflow:global_step/sec: 436.153 INFO:tensorflow:loss = 0.0052362364, step = 89701 (0.229 sec) INFO:tensorflow:global_step/sec: 444.735 INFO:tensorflow:loss = 0.009088694, step = 89801 (0.225 sec) INFO:tensorflow:global_step/sec: 433.372 INFO:tensorflow:loss = 0.005390249, step = 89901 (0.231 sec) INFO:tensorflow:global_step/sec: 439.168 INFO:tensorflow:loss = 0.007205799, step = 90001 (0.227 sec) INFO:tensorflow:global_step/sec: 435.44 INFO:tensorflow:loss = 0.003689984, step = 90101 (0.230 sec) INFO:tensorflow:global_step/sec: 428.245 INFO:tensorflow:loss = 0.0054083467, step = 90201 (0.234 sec) INFO:tensorflow:global_step/sec: 409.696 INFO:tensorflow:loss = 0.005978807, step = 90301 (0.244 sec) INFO:tensorflow:global_step/sec: 431.561 INFO:tensorflow:loss = 0.0036984396, step = 90401 (0.232 sec) INFO:tensorflow:global_step/sec: 442.607 INFO:tensorflow:loss = 0.0044141123, step = 90501 (0.226 sec) INFO:tensorflow:global_step/sec: 439.182 INFO:tensorflow:loss = 0.0047680545, step = 90601 (0.228 sec) INFO:tensorflow:global_step/sec: 450.201 INFO:tensorflow:loss = 0.0034539485, step = 90701 (0.222 sec) INFO:tensorflow:global_step/sec: 437.723 INFO:tensorflow:loss = 0.008106205, step = 90801 (0.228 sec) INFO:tensorflow:global_step/sec: 421.153 INFO:tensorflow:loss = 0.006459282, step = 90901 (0.237 sec) INFO:tensorflow:global_step/sec: 440.875 INFO:tensorflow:loss = 0.0059008165, step = 91001 (0.227 sec) INFO:tensorflow:global_step/sec: 449.115 INFO:tensorflow:loss = 0.0076343603, step = 91101 (0.223 sec) INFO:tensorflow:global_step/sec: 417.472 INFO:tensorflow:loss = 0.0036134154, step = 91201 (0.240 sec) INFO:tensorflow:global_step/sec: 413.1 INFO:tensorflow:loss = 0.008169176, step = 91301 (0.242 sec) INFO:tensorflow:global_step/sec: 438.721 INFO:tensorflow:loss = 0.0027639198, step = 91401 (0.228 sec) INFO:tensorflow:global_step/sec: 426.892 INFO:tensorflow:loss = 0.0072495104, step = 91501 (0.234 sec) INFO:tensorflow:global_step/sec: 431.559 INFO:tensorflow:loss = 0.002784501, step = 91601 (0.232 sec) INFO:tensorflow:global_step/sec: 424.739 INFO:tensorflow:loss = 0.008173542, step = 91701 (0.235 sec) INFO:tensorflow:global_step/sec: 430.228 INFO:tensorflow:loss = 0.0045573693, step = 91801 (0.233 sec) INFO:tensorflow:global_step/sec: 422.408 INFO:tensorflow:loss = 0.0052920775, step = 91901 (0.237 sec) INFO:tensorflow:global_step/sec: 442.752 INFO:tensorflow:loss = 0.004408728, step = 92001 (0.226 sec) INFO:tensorflow:global_step/sec: 419.248 INFO:tensorflow:loss = 0.0039077876, step = 92101 (0.239 sec) INFO:tensorflow:global_step/sec: 428.701 INFO:tensorflow:loss = 0.0029403642, step = 92201 (0.233 sec) INFO:tensorflow:global_step/sec: 432.794 INFO:tensorflow:loss = 0.004977732, step = 92301 (0.231 sec) INFO:tensorflow:global_step/sec: 432.111 INFO:tensorflow:loss = 0.005024727, step = 92401 (0.231 sec) INFO:tensorflow:global_step/sec: 418.994 INFO:tensorflow:loss = 0.005117008, step = 92501 (0.239 sec) INFO:tensorflow:global_step/sec: 424.268 INFO:tensorflow:loss = 0.002897, step = 92601 (0.236 sec) INFO:tensorflow:global_step/sec: 426.479 INFO:tensorflow:loss = 0.0075298087, step = 92701 (0.235 sec) INFO:tensorflow:global_step/sec: 421.681 INFO:tensorflow:loss = 0.007339681, step = 92801 (0.236 sec) INFO:tensorflow:global_step/sec: 427.679 INFO:tensorflow:loss = 0.008566435, step = 92901 (0.234 sec) INFO:tensorflow:global_step/sec: 404.852 INFO:tensorflow:loss = 0.009024516, step = 93001 (0.247 sec) INFO:tensorflow:global_step/sec: 448.017 INFO:tensorflow:loss = 0.002813141, step = 93101 (0.224 sec) INFO:tensorflow:global_step/sec: 432.223 INFO:tensorflow:loss = 0.0032254832, step = 93201 (0.230 sec) INFO:tensorflow:global_step/sec: 438.295 INFO:tensorflow:loss = 0.005016174, step = 93301 (0.228 sec) INFO:tensorflow:global_step/sec: 379.638 INFO:tensorflow:loss = 0.005437582, step = 93401 (0.266 sec) INFO:tensorflow:global_step/sec: 393.871 INFO:tensorflow:loss = 0.0030894382, step = 93501 (0.251 sec) INFO:tensorflow:global_step/sec: 415.015 INFO:tensorflow:loss = 0.008313053, step = 93601 (0.241 sec) INFO:tensorflow:global_step/sec: 411.137 INFO:tensorflow:loss = 0.0036248101, step = 93701 (0.243 sec) INFO:tensorflow:global_step/sec: 402.031 INFO:tensorflow:loss = 0.00810652, step = 93801 (0.251 sec) INFO:tensorflow:global_step/sec: 408.493 INFO:tensorflow:loss = 0.004963128, step = 93901 (0.242 sec) INFO:tensorflow:global_step/sec: 411.645 INFO:tensorflow:loss = 0.0043365946, step = 94001 (0.243 sec) INFO:tensorflow:global_step/sec: 429.109 INFO:tensorflow:loss = 0.0077144424, step = 94101 (0.233 sec) INFO:tensorflow:global_step/sec: 427.771 INFO:tensorflow:loss = 0.004766725, step = 94201 (0.234 sec) INFO:tensorflow:global_step/sec: 414.778 INFO:tensorflow:loss = 0.0045494647, step = 94301 (0.241 sec) INFO:tensorflow:global_step/sec: 438.844 INFO:tensorflow:loss = 0.003908638, step = 94401 (0.228 sec) INFO:tensorflow:global_step/sec: 426.882 INFO:tensorflow:loss = 0.0039011678, step = 94501 (0.234 sec) INFO:tensorflow:global_step/sec: 434.135 INFO:tensorflow:loss = 0.004798631, step = 94601 (0.231 sec) INFO:tensorflow:global_step/sec: 412.807 INFO:tensorflow:loss = 0.0052594873, step = 94701 (0.242 sec) INFO:tensorflow:global_step/sec: 438.564 INFO:tensorflow:loss = 0.00830613, step = 94801 (0.231 sec) INFO:tensorflow:global_step/sec: 450.031 INFO:tensorflow:loss = 0.0026800362, step = 94901 (0.219 sec) INFO:tensorflow:global_step/sec: 439.932 INFO:tensorflow:loss = 0.010185981, step = 95001 (0.228 sec) INFO:tensorflow:global_step/sec: 429.138 INFO:tensorflow:loss = 0.0050802436, step = 95101 (0.233 sec) INFO:tensorflow:global_step/sec: 437.193 INFO:tensorflow:loss = 0.0063868132, step = 95201 (0.228 sec) INFO:tensorflow:global_step/sec: 410.026 INFO:tensorflow:loss = 0.009593469, step = 95301 (0.244 sec) INFO:tensorflow:global_step/sec: 410.539 INFO:tensorflow:loss = 0.00674426, step = 95401 (0.243 sec) INFO:tensorflow:global_step/sec: 417.308 INFO:tensorflow:loss = 0.010876091, step = 95501 (0.240 sec) INFO:tensorflow:global_step/sec: 427.914 INFO:tensorflow:loss = 0.005005857, step = 95601 (0.234 sec) INFO:tensorflow:global_step/sec: 419.595 INFO:tensorflow:loss = 0.0024972835, step = 95701 (0.238 sec) INFO:tensorflow:global_step/sec: 427.427 INFO:tensorflow:loss = 0.008742824, step = 95801 (0.234 sec) INFO:tensorflow:global_step/sec: 408.218 INFO:tensorflow:loss = 0.0036342437, step = 95901 (0.245 sec) INFO:tensorflow:global_step/sec: 430.354 INFO:tensorflow:loss = 0.0037122234, step = 96001 (0.232 sec) INFO:tensorflow:global_step/sec: 432.266 INFO:tensorflow:loss = 0.0037878011, step = 96101 (0.232 sec) INFO:tensorflow:global_step/sec: 423.361 INFO:tensorflow:loss = 0.0027226722, step = 96201 (0.235 sec) INFO:tensorflow:global_step/sec: 418.174 INFO:tensorflow:loss = 0.0038939, step = 96301 (0.239 sec) INFO:tensorflow:global_step/sec: 409.123 INFO:tensorflow:loss = 0.003957896, step = 96401 (0.244 sec) INFO:tensorflow:global_step/sec: 400.882 INFO:tensorflow:loss = 0.0032314742, step = 96501 (0.249 sec) INFO:tensorflow:global_step/sec: 406.075 INFO:tensorflow:loss = 0.0067095207, step = 96601 (0.246 sec) INFO:tensorflow:global_step/sec: 420.992 INFO:tensorflow:loss = 0.005240967, step = 96701 (0.238 sec) INFO:tensorflow:global_step/sec: 412.539 INFO:tensorflow:loss = 0.0044168094, step = 96801 (0.250 sec) INFO:tensorflow:global_step/sec: 400.227 INFO:tensorflow:loss = 0.0031404286, step = 96901 (0.243 sec) INFO:tensorflow:global_step/sec: 388.701 INFO:tensorflow:loss = 0.0059988415, step = 97001 (0.257 sec) INFO:tensorflow:global_step/sec: 401.666 INFO:tensorflow:loss = 0.008864116, step = 97101 (0.249 sec) INFO:tensorflow:global_step/sec: 427.55 INFO:tensorflow:loss = 0.0037582796, step = 97201 (0.234 sec) INFO:tensorflow:global_step/sec: 421.678 INFO:tensorflow:loss = 0.0020435755, step = 97301 (0.237 sec) INFO:tensorflow:global_step/sec: 429.424 INFO:tensorflow:loss = 0.004087096, step = 97401 (0.233 sec) INFO:tensorflow:global_step/sec: 422.187 INFO:tensorflow:loss = 0.005750835, step = 97501 (0.237 sec) INFO:tensorflow:global_step/sec: 404.812 INFO:tensorflow:loss = 0.0053190826, step = 97601 (0.247 sec) INFO:tensorflow:global_step/sec: 428.256 INFO:tensorflow:loss = 0.00376792, step = 97701 (0.234 sec) INFO:tensorflow:global_step/sec: 435.916 INFO:tensorflow:loss = 0.006362297, step = 97801 (0.229 sec) INFO:tensorflow:global_step/sec: 414.76 INFO:tensorflow:loss = 0.0038138563, step = 97901 (0.241 sec) INFO:tensorflow:global_step/sec: 411.326 INFO:tensorflow:loss = 0.0060359696, step = 98001 (0.243 sec) INFO:tensorflow:global_step/sec: 430.408 INFO:tensorflow:loss = 0.0051795617, step = 98101 (0.232 sec) INFO:tensorflow:global_step/sec: 434.779 INFO:tensorflow:loss = 0.006122092, step = 98201 (0.230 sec) INFO:tensorflow:global_step/sec: 429.927 INFO:tensorflow:loss = 0.007171316, step = 98301 (0.232 sec) INFO:tensorflow:global_step/sec: 435.352 INFO:tensorflow:loss = 0.0054256674, step = 98401 (0.230 sec) INFO:tensorflow:global_step/sec: 425.434 INFO:tensorflow:loss = 0.006302964, step = 98501 (0.235 sec) INFO:tensorflow:global_step/sec: 398.473 INFO:tensorflow:loss = 0.005042514, step = 98601 (0.251 sec) INFO:tensorflow:global_step/sec: 392.608 INFO:tensorflow:loss = 0.0032336214, step = 98701 (0.255 sec) INFO:tensorflow:global_step/sec: 395.989 INFO:tensorflow:loss = 0.0043089064, step = 98801 (0.253 sec) INFO:tensorflow:global_step/sec: 424.751 INFO:tensorflow:loss = 0.0066612316, step = 98901 (0.235 sec) INFO:tensorflow:global_step/sec: 424.977 INFO:tensorflow:loss = 0.005831009, step = 99001 (0.235 sec) INFO:tensorflow:global_step/sec: 419.479 INFO:tensorflow:loss = 0.0040449733, step = 99101 (0.242 sec) INFO:tensorflow:global_step/sec: 415.762 INFO:tensorflow:loss = 0.0032267657, step = 99201 (0.237 sec) INFO:tensorflow:global_step/sec: 404.335 INFO:tensorflow:loss = 0.003997384, step = 99301 (0.247 sec) INFO:tensorflow:global_step/sec: 410.295 INFO:tensorflow:loss = 0.008684888, step = 99401 (0.244 sec) INFO:tensorflow:global_step/sec: 423.051 INFO:tensorflow:loss = 0.0028126503, step = 99501 (0.236 sec) INFO:tensorflow:global_step/sec: 433.317 INFO:tensorflow:loss = 0.0060156416, step = 99601 (0.232 sec) INFO:tensorflow:global_step/sec: 406.767 INFO:tensorflow:loss = 0.003310702, step = 99701 (0.245 sec) INFO:tensorflow:global_step/sec: 390.561 INFO:tensorflow:loss = 0.005235779, step = 99801 (0.256 sec) INFO:tensorflow:global_step/sec: 409.527 INFO:tensorflow:loss = 0.005432996, step = 99901 (0.244 sec) INFO:tensorflow:Saving checkpoints for 100000 into /tmp/tmpDexXZd/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpDexXZd/architecture-3.txt: ['0:1_layer_dnn', '1:2_layer_dnn', '2:3_layer_dnn', '3:4_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Rebuilding iteration 3 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Building iteration 4 INFO:tensorflow:Building subnetwork '4_layer_dnn' INFO:tensorflow:Building subnetwork '5_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:33:29 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpDexXZd/model.ckpt-100000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't3_4_layer_dnn' dict for global step 100000: architecture/adanet/ensembles = � >adanet/iteration_3/ensemble_t3_4_layer_dnn/architecture/adanetB?B9| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 4_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03169271, average_loss/adanet/subnetwork = 0.03348904, average_loss/adanet/uniform_average_ensemble = 0.031587753, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.038267143, loss/adanet/subnetwork = 0.041055106, loss/adanet/uniform_average_ensemble = 0.04207115, prediction/mean/adanet/adanet_weighted_ensemble = 3.067704, prediction/mean/adanet/subnetwork = 3.1287208, prediction/mean/adanet/uniform_average_ensemble = 3.1415138 INFO:tensorflow:Saving candidate 't4_4_layer_dnn' dict for global step 100000: architecture/adanet/ensembles = � >adanet/iteration_4/ensemble_t4_4_layer_dnn/architecture/adanetBMBG| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 4_layer_dnn | 4_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.031012552, average_loss/adanet/subnetwork = 0.036771663, average_loss/adanet/uniform_average_ensemble = 0.031320345, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.036733527, loss/adanet/subnetwork = 0.049315907, loss/adanet/uniform_average_ensemble = 0.04210123, prediction/mean/adanet/adanet_weighted_ensemble = 3.0690398, prediction/mean/adanet/subnetwork = 3.116253, prediction/mean/adanet/uniform_average_ensemble = 3.1364617 INFO:tensorflow:Saving candidate 't4_5_layer_dnn' dict for global step 100000: architecture/adanet/ensembles = � >adanet/iteration_4/ensemble_t4_5_layer_dnn/architecture/adanetBMBG| 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 4_layer_dnn | 5_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.032236967, average_loss/adanet/subnetwork = 0.0495253, average_loss/adanet/uniform_average_ensemble = 0.0326953, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.038305804, loss/adanet/subnetwork = 0.06338713, loss/adanet/uniform_average_ensemble = 0.043896608, prediction/mean/adanet/adanet_weighted_ensemble = 3.0657516, prediction/mean/adanet/subnetwork = 3.0762491, prediction/mean/adanet/uniform_average_ensemble = 3.1284606 INFO:tensorflow:Finished evaluation at 2018-12-13-19:33:35 INFO:tensorflow:Saving dict for global step 100000: average_loss = 0.032236967, average_loss/adanet/adanet_weighted_ensemble = 0.032236967, average_loss/adanet/subnetwork = 0.0495253, average_loss/adanet/uniform_average_ensemble = 0.0326953, global_step = 100000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.038305804, loss/adanet/adanet_weighted_ensemble = 0.038305804, loss/adanet/subnetwork = 0.06338713, loss/adanet/uniform_average_ensemble = 0.043896608, prediction/mean = 3.0657516, prediction/mean/adanet/adanet_weighted_ensemble = 3.0657516, prediction/mean/adanet/subnetwork = 3.0762491, prediction/mean/adanet/uniform_average_ensemble = 3.1284606 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 100000: /tmp/tmpDexXZd/model.ckpt-100000 INFO:tensorflow:Loss for final step: 0.00343033. INFO:tensorflow:Finished training Adanet iteration 4 Loss: 0.032236967 Uniform average loss: 0.0326953 Architecture: | 1_layer_dnn | 2_layer_dnn | 3_layer_dnn | 4_layer_dnn | 5_layer_dnn |
Apache-2.0
adanet/examples/tutorials/adanet_objective.ipynb
sararob/adanet
Learning the mixture weights produces a model with **0.0449** MSE, a bit worsethan the uniform average model, which the `adanet.Estimator` always compute as abaseline. The mixture weights were learned without regularization, so theylikely overfit to the training set.Observe that AdaNet learned the same ensemble composition as the previous run.Without complexity regularization, AdaNet will favor more complex subnetworks,which may have worse generalization despite improving the empirical error.Finally, let's apply some **complexity regularization** by using $\lambda > 0$.Since this will penalize more complex subnetworks, AdaNet will select thecandidate subnetwork that most improves the objective for its marginalcomplexity:
#@test {"skip": true} results, _ = train_and_evaluate(learn_mixture_weights=True, adanet_lambda=.015) print("Loss:", results["average_loss"]) print("Uniform average loss:", results["average_loss/adanet/uniform_average_ensemble"]) print("Architecture:", ensemble_architecture(results))
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpU33rCk INFO:tensorflow:Using config: {'_save_checkpoints_secs': None, '_num_ps_replicas': 0, '_keep_checkpoint_max': 5, '_task_type': 'worker', '_global_id_in_cluster': 0, '_is_chief': True, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f2799e49750>, '_model_dir': '/tmp/tmpU33rCk', '_protocol': None, '_save_checkpoints_steps': 50000, '_keep_checkpoint_every_n_hours': 10000, '_service': None, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_tf_random_seed': 42, '_save_summary_steps': 50000, '_device_fn': None, '_experimental_distribute': None, '_num_worker_replicas': 1, '_task_id': 0, '_log_step_count_steps': 100, '_evaluation_master': '', '_eval_distribute': None, '_train_distribute': None, '_master': ''} INFO:tensorflow:Not using Distribute Coordinator. INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 50000 or save_checkpoints_secs None. INFO:tensorflow:Beginning training AdaNet iteration 0 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Building iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpU33rCk/model.ckpt. INFO:tensorflow:loss = 21.773132, step = 1 INFO:tensorflow:global_step/sec: 159.287 INFO:tensorflow:loss = 0.62784123, step = 101 (0.629 sec) INFO:tensorflow:global_step/sec: 565.937 INFO:tensorflow:loss = 0.56678694, step = 201 (0.177 sec) INFO:tensorflow:global_step/sec: 562.364 INFO:tensorflow:loss = 0.0780399, step = 301 (0.178 sec) INFO:tensorflow:global_step/sec: 553.066 INFO:tensorflow:loss = 0.08678259, step = 401 (0.181 sec) INFO:tensorflow:global_step/sec: 539.378 INFO:tensorflow:loss = 0.08137446, step = 501 (0.186 sec) INFO:tensorflow:global_step/sec: 536.173 INFO:tensorflow:loss = 0.05650991, step = 601 (0.186 sec) INFO:tensorflow:global_step/sec: 548.312 INFO:tensorflow:loss = 0.025883615, step = 701 (0.183 sec) INFO:tensorflow:global_step/sec: 539.441 INFO:tensorflow:loss = 0.03018033, step = 801 (0.185 sec) INFO:tensorflow:global_step/sec: 558.404 INFO:tensorflow:loss = 0.037590593, step = 901 (0.179 sec) INFO:tensorflow:global_step/sec: 527.969 INFO:tensorflow:loss = 0.06694436, step = 1001 (0.190 sec) INFO:tensorflow:global_step/sec: 523.316 INFO:tensorflow:loss = 0.03847816, step = 1101 (0.191 sec) INFO:tensorflow:global_step/sec: 539.966 INFO:tensorflow:loss = 0.04998327, step = 1201 (0.185 sec) INFO:tensorflow:global_step/sec: 562.721 INFO:tensorflow:loss = 0.090066634, step = 1301 (0.178 sec) INFO:tensorflow:global_step/sec: 548.134 INFO:tensorflow:loss = 0.02687991, step = 1401 (0.182 sec) INFO:tensorflow:global_step/sec: 551.788 INFO:tensorflow:loss = 0.021093268, step = 1501 (0.181 sec) INFO:tensorflow:global_step/sec: 545.461 INFO:tensorflow:loss = 0.036077544, step = 1601 (0.183 sec) INFO:tensorflow:global_step/sec: 568.288 INFO:tensorflow:loss = 0.034161575, step = 1701 (0.176 sec) INFO:tensorflow:global_step/sec: 545.449 INFO:tensorflow:loss = 0.04626116, step = 1801 (0.183 sec) INFO:tensorflow:global_step/sec: 543.943 INFO:tensorflow:loss = 0.07378493, step = 1901 (0.184 sec) INFO:tensorflow:global_step/sec: 512.521 INFO:tensorflow:loss = 0.04918831, step = 2001 (0.195 sec) INFO:tensorflow:global_step/sec: 572.804 INFO:tensorflow:loss = 0.078179196, step = 2101 (0.176 sec) INFO:tensorflow:global_step/sec: 530.082 INFO:tensorflow:loss = 0.030299027, step = 2201 (0.187 sec) INFO:tensorflow:global_step/sec: 563.393 INFO:tensorflow:loss = 0.024719734, step = 2301 (0.178 sec) INFO:tensorflow:global_step/sec: 561.019 INFO:tensorflow:loss = 0.024992712, step = 2401 (0.178 sec) INFO:tensorflow:global_step/sec: 544.837 INFO:tensorflow:loss = 0.047092065, step = 2501 (0.184 sec) INFO:tensorflow:global_step/sec: 546.753 INFO:tensorflow:loss = 0.04721455, step = 2601 (0.183 sec) INFO:tensorflow:global_step/sec: 563.574 INFO:tensorflow:loss = 0.038211413, step = 2701 (0.178 sec) INFO:tensorflow:global_step/sec: 557.643 INFO:tensorflow:loss = 0.03274205, step = 2801 (0.179 sec) INFO:tensorflow:global_step/sec: 534.748 INFO:tensorflow:loss = 0.04549656, step = 2901 (0.187 sec) INFO:tensorflow:global_step/sec: 534.379 INFO:tensorflow:loss = 0.03548008, step = 3001 (0.187 sec) INFO:tensorflow:global_step/sec: 548.986 INFO:tensorflow:loss = 0.024679914, step = 3101 (0.182 sec) INFO:tensorflow:global_step/sec: 513.339 INFO:tensorflow:loss = 0.04125918, step = 3201 (0.194 sec) INFO:tensorflow:global_step/sec: 507.007 INFO:tensorflow:loss = 0.0435674, step = 3301 (0.197 sec) INFO:tensorflow:global_step/sec: 561.918 INFO:tensorflow:loss = 0.03460297, step = 3401 (0.178 sec) INFO:tensorflow:global_step/sec: 549.285 INFO:tensorflow:loss = 0.06966856, step = 3501 (0.182 sec) INFO:tensorflow:global_step/sec: 538.945 INFO:tensorflow:loss = 0.03479818, step = 3601 (0.186 sec) INFO:tensorflow:global_step/sec: 540.146 INFO:tensorflow:loss = 0.021452513, step = 3701 (0.185 sec) INFO:tensorflow:global_step/sec: 563.866 INFO:tensorflow:loss = 0.026122702, step = 3801 (0.178 sec) INFO:tensorflow:global_step/sec: 543.928 INFO:tensorflow:loss = 0.031272247, step = 3901 (0.185 sec) INFO:tensorflow:global_step/sec: 534.71 INFO:tensorflow:loss = 0.053014666, step = 4001 (0.186 sec) INFO:tensorflow:global_step/sec: 513.751 INFO:tensorflow:loss = 0.028963283, step = 4101 (0.195 sec) INFO:tensorflow:global_step/sec: 529.776 INFO:tensorflow:loss = 0.022142775, step = 4201 (0.189 sec) INFO:tensorflow:global_step/sec: 536.804 INFO:tensorflow:loss = 0.022216441, step = 4301 (0.186 sec) INFO:tensorflow:global_step/sec: 549.644 INFO:tensorflow:loss = 0.027055677, step = 4401 (0.182 sec) INFO:tensorflow:global_step/sec: 552.507 INFO:tensorflow:loss = 0.05059754, step = 4501 (0.180 sec) INFO:tensorflow:global_step/sec: 578.042 INFO:tensorflow:loss = 0.025971584, step = 4601 (0.173 sec) INFO:tensorflow:global_step/sec: 538.198 INFO:tensorflow:loss = 0.07917491, step = 4701 (0.186 sec) INFO:tensorflow:global_step/sec: 571.125 INFO:tensorflow:loss = 0.034027006, step = 4801 (0.175 sec) INFO:tensorflow:global_step/sec: 579.025 INFO:tensorflow:loss = 0.033307493, step = 4901 (0.173 sec) INFO:tensorflow:global_step/sec: 552.831 INFO:tensorflow:loss = 0.026842842, step = 5001 (0.181 sec) INFO:tensorflow:global_step/sec: 571.634 INFO:tensorflow:loss = 0.039310932, step = 5101 (0.175 sec) INFO:tensorflow:global_step/sec: 575.954 INFO:tensorflow:loss = 0.030656494, step = 5201 (0.174 sec) INFO:tensorflow:global_step/sec: 582.065 INFO:tensorflow:loss = 0.078128725, step = 5301 (0.172 sec) INFO:tensorflow:global_step/sec: 507.053 INFO:tensorflow:loss = 0.021291912, step = 5401 (0.197 sec) INFO:tensorflow:global_step/sec: 559.252 INFO:tensorflow:loss = 0.03251325, step = 5501 (0.179 sec) INFO:tensorflow:global_step/sec: 591.716 INFO:tensorflow:loss = 0.028400565, step = 5601 (0.169 sec) INFO:tensorflow:global_step/sec: 580.723 INFO:tensorflow:loss = 0.034857195, step = 5701 (0.172 sec) INFO:tensorflow:global_step/sec: 573.463 INFO:tensorflow:loss = 0.037171304, step = 5801 (0.175 sec) INFO:tensorflow:global_step/sec: 586.414 INFO:tensorflow:loss = 0.017138815, step = 5901 (0.170 sec) INFO:tensorflow:global_step/sec: 592.856 INFO:tensorflow:loss = 0.030491468, step = 6001 (0.169 sec) INFO:tensorflow:global_step/sec: 586.352 INFO:tensorflow:loss = 0.048120137, step = 6101 (0.171 sec) INFO:tensorflow:global_step/sec: 592.877 INFO:tensorflow:loss = 0.044583086, step = 6201 (0.169 sec) INFO:tensorflow:global_step/sec: 590.765 INFO:tensorflow:loss = 0.04749332, step = 6301 (0.169 sec) INFO:tensorflow:global_step/sec: 601.572 INFO:tensorflow:loss = 0.07128419, step = 6401 (0.166 sec) INFO:tensorflow:global_step/sec: 595.572 INFO:tensorflow:loss = 0.05821595, step = 6501 (0.168 sec) INFO:tensorflow:global_step/sec: 558.066 INFO:tensorflow:loss = 0.019353844, step = 6601 (0.179 sec) INFO:tensorflow:global_step/sec: 588.153 INFO:tensorflow:loss = 0.03313767, step = 6701 (0.170 sec) INFO:tensorflow:global_step/sec: 553.474 INFO:tensorflow:loss = 0.021211505, step = 6801 (0.181 sec) INFO:tensorflow:global_step/sec: 552.987 INFO:tensorflow:loss = 0.018065577, step = 6901 (0.180 sec) INFO:tensorflow:global_step/sec: 566.142 INFO:tensorflow:loss = 0.031387277, step = 7001 (0.177 sec) INFO:tensorflow:global_step/sec: 573.444 INFO:tensorflow:loss = 0.032881733, step = 7101 (0.175 sec) INFO:tensorflow:global_step/sec: 550.213 INFO:tensorflow:loss = 0.01538456, step = 7201 (0.182 sec) INFO:tensorflow:global_step/sec: 560.381 INFO:tensorflow:loss = 0.07852745, step = 7301 (0.178 sec) INFO:tensorflow:global_step/sec: 528.837 INFO:tensorflow:loss = 0.037094295, step = 7401 (0.189 sec) INFO:tensorflow:global_step/sec: 554.533 INFO:tensorflow:loss = 0.054601535, step = 7501 (0.180 sec) INFO:tensorflow:global_step/sec: 530.87 INFO:tensorflow:loss = 0.0201954, step = 7601 (0.188 sec) INFO:tensorflow:global_step/sec: 534.342 INFO:tensorflow:loss = 0.027472034, step = 7701 (0.187 sec) INFO:tensorflow:global_step/sec: 527.972 INFO:tensorflow:loss = 0.032032184, step = 7801 (0.189 sec) INFO:tensorflow:global_step/sec: 528.58 INFO:tensorflow:loss = 0.043274466, step = 7901 (0.189 sec) INFO:tensorflow:global_step/sec: 548.655 INFO:tensorflow:loss = 0.03239342, step = 8001 (0.182 sec) INFO:tensorflow:global_step/sec: 541.064 INFO:tensorflow:loss = 0.027077636, step = 8101 (0.185 sec) INFO:tensorflow:global_step/sec: 544.844 INFO:tensorflow:loss = 0.0360922, step = 8201 (0.184 sec) INFO:tensorflow:global_step/sec: 532.938 INFO:tensorflow:loss = 0.03275392, step = 8301 (0.188 sec) INFO:tensorflow:global_step/sec: 550.203 INFO:tensorflow:loss = 0.051111933, step = 8401 (0.182 sec) INFO:tensorflow:global_step/sec: 551.767 INFO:tensorflow:loss = 0.033609618, step = 8501 (0.181 sec) INFO:tensorflow:global_step/sec: 536.288 INFO:tensorflow:loss = 0.06303735, step = 8601 (0.186 sec) INFO:tensorflow:global_step/sec: 569.836 INFO:tensorflow:loss = 0.022497727, step = 8701 (0.176 sec) INFO:tensorflow:global_step/sec: 542.449 INFO:tensorflow:loss = 0.042914927, step = 8801 (0.184 sec) INFO:tensorflow:global_step/sec: 541.586 INFO:tensorflow:loss = 0.07919823, step = 8901 (0.185 sec) INFO:tensorflow:global_step/sec: 552.276 INFO:tensorflow:loss = 0.054977592, step = 9001 (0.181 sec) INFO:tensorflow:global_step/sec: 565.617 INFO:tensorflow:loss = 0.030193526, step = 9101 (0.177 sec) INFO:tensorflow:global_step/sec: 562.054 INFO:tensorflow:loss = 0.059118968, step = 9201 (0.178 sec) INFO:tensorflow:global_step/sec: 572.511 INFO:tensorflow:loss = 0.028942654, step = 9301 (0.175 sec) INFO:tensorflow:global_step/sec: 573.171 INFO:tensorflow:loss = 0.019489078, step = 9401 (0.174 sec) INFO:tensorflow:global_step/sec: 549.988 INFO:tensorflow:loss = 0.0366641, step = 9501 (0.182 sec) INFO:tensorflow:global_step/sec: 485.237 INFO:tensorflow:loss = 0.05093595, step = 9601 (0.206 sec) INFO:tensorflow:global_step/sec: 524.89 INFO:tensorflow:loss = 0.017835636, step = 9701 (0.191 sec) INFO:tensorflow:global_step/sec: 528.924 INFO:tensorflow:loss = 0.031217653, step = 9801 (0.189 sec) INFO:tensorflow:global_step/sec: 526.876 INFO:tensorflow:loss = 0.028995795, step = 9901 (0.190 sec) INFO:tensorflow:global_step/sec: 514.06 INFO:tensorflow:loss = 0.031324398, step = 10001 (0.194 sec) INFO:tensorflow:global_step/sec: 552.026 INFO:tensorflow:loss = 0.030225167, step = 10101 (0.181 sec) INFO:tensorflow:global_step/sec: 571.955 INFO:tensorflow:loss = 0.0560328, step = 10201 (0.175 sec) INFO:tensorflow:global_step/sec: 559.973 INFO:tensorflow:loss = 0.05915151, step = 10301 (0.179 sec) INFO:tensorflow:global_step/sec: 543.75 INFO:tensorflow:loss = 0.019076841, step = 10401 (0.184 sec) INFO:tensorflow:global_step/sec: 551.894 INFO:tensorflow:loss = 0.05866126, step = 10501 (0.181 sec) INFO:tensorflow:global_step/sec: 547.732 INFO:tensorflow:loss = 0.025945794, step = 10601 (0.183 sec) INFO:tensorflow:global_step/sec: 559.879 INFO:tensorflow:loss = 0.02107554, step = 10701 (0.178 sec) INFO:tensorflow:global_step/sec: 569.976 INFO:tensorflow:loss = 0.028491888, step = 10801 (0.176 sec) INFO:tensorflow:global_step/sec: 559.309 INFO:tensorflow:loss = 0.030953847, step = 10901 (0.179 sec) INFO:tensorflow:global_step/sec: 534.828 INFO:tensorflow:loss = 0.014788986, step = 11001 (0.187 sec) INFO:tensorflow:global_step/sec: 528.611 INFO:tensorflow:loss = 0.038508512, step = 11101 (0.189 sec) INFO:tensorflow:global_step/sec: 479.918 INFO:tensorflow:loss = 0.034574755, step = 11201 (0.208 sec) INFO:tensorflow:global_step/sec: 548.751 INFO:tensorflow:loss = 0.054243505, step = 11301 (0.182 sec) INFO:tensorflow:global_step/sec: 540.521 INFO:tensorflow:loss = 0.03519901, step = 11401 (0.185 sec) INFO:tensorflow:global_step/sec: 534.456 INFO:tensorflow:loss = 0.049500115, step = 11501 (0.187 sec) INFO:tensorflow:global_step/sec: 550.41 INFO:tensorflow:loss = 0.031815633, step = 11601 (0.182 sec) INFO:tensorflow:global_step/sec: 556.588 INFO:tensorflow:loss = 0.025518984, step = 11701 (0.180 sec) INFO:tensorflow:global_step/sec: 568.631 INFO:tensorflow:loss = 0.02286969, step = 11801 (0.176 sec) INFO:tensorflow:global_step/sec: 560.626 INFO:tensorflow:loss = 0.047530938, step = 11901 (0.179 sec) INFO:tensorflow:global_step/sec: 554.717 INFO:tensorflow:loss = 0.037891768, step = 12001 (0.180 sec) INFO:tensorflow:global_step/sec: 538.956 INFO:tensorflow:loss = 0.017053518, step = 12101 (0.186 sec) INFO:tensorflow:global_step/sec: 546.153 INFO:tensorflow:loss = 0.018622799, step = 12201 (0.183 sec) INFO:tensorflow:global_step/sec: 563.4 INFO:tensorflow:loss = 0.02716852, step = 12301 (0.178 sec) INFO:tensorflow:global_step/sec: 539.875 INFO:tensorflow:loss = 0.05163239, step = 12401 (0.186 sec) INFO:tensorflow:global_step/sec: 581.392 INFO:tensorflow:loss = 0.023143895, step = 12501 (0.172 sec) INFO:tensorflow:global_step/sec: 533.595 INFO:tensorflow:loss = 0.04246641, step = 12601 (0.187 sec) INFO:tensorflow:global_step/sec: 563.581 INFO:tensorflow:loss = 0.026882555, step = 12701 (0.178 sec) INFO:tensorflow:global_step/sec: 548.224 INFO:tensorflow:loss = 0.043311685, step = 12801 (0.182 sec) INFO:tensorflow:global_step/sec: 561.124 INFO:tensorflow:loss = 0.036629334, step = 12901 (0.179 sec) INFO:tensorflow:global_step/sec: 551.326 INFO:tensorflow:loss = 0.04917693, step = 13001 (0.181 sec) INFO:tensorflow:global_step/sec: 545.509 INFO:tensorflow:loss = 0.035332013, step = 13101 (0.183 sec) INFO:tensorflow:global_step/sec: 523.653 INFO:tensorflow:loss = 0.030816792, step = 13201 (0.191 sec) INFO:tensorflow:global_step/sec: 551.061 INFO:tensorflow:loss = 0.029627524, step = 13301 (0.182 sec) INFO:tensorflow:global_step/sec: 535.186 INFO:tensorflow:loss = 0.034982234, step = 13401 (0.187 sec) INFO:tensorflow:global_step/sec: 575.606 INFO:tensorflow:loss = 0.041481495, step = 13501 (0.174 sec) INFO:tensorflow:global_step/sec: 546.965 INFO:tensorflow:loss = 0.016655888, step = 13601 (0.183 sec) INFO:tensorflow:global_step/sec: 578.995 INFO:tensorflow:loss = 0.030127134, step = 13701 (0.173 sec) INFO:tensorflow:global_step/sec: 532.569 INFO:tensorflow:loss = 0.06522011, step = 13801 (0.188 sec) INFO:tensorflow:global_step/sec: 576.385 INFO:tensorflow:loss = 0.01722128, step = 13901 (0.174 sec) INFO:tensorflow:global_step/sec: 580.339 INFO:tensorflow:loss = 0.025369557, step = 14001 (0.173 sec) INFO:tensorflow:global_step/sec: 528.106 INFO:tensorflow:loss = 0.032870486, step = 14101 (0.189 sec) INFO:tensorflow:global_step/sec: 544.897 INFO:tensorflow:loss = 0.040547296, step = 14201 (0.184 sec) INFO:tensorflow:global_step/sec: 538.723 INFO:tensorflow:loss = 0.019972267, step = 14301 (0.186 sec) INFO:tensorflow:global_step/sec: 532.532 INFO:tensorflow:loss = 0.012934791, step = 14401 (0.188 sec) INFO:tensorflow:global_step/sec: 540.161 INFO:tensorflow:loss = 0.034899343, step = 14501 (0.187 sec) INFO:tensorflow:global_step/sec: 556.746 INFO:tensorflow:loss = 0.028416235, step = 14601 (0.178 sec) INFO:tensorflow:global_step/sec: 548.685 INFO:tensorflow:loss = 0.03656807, step = 14701 (0.182 sec) INFO:tensorflow:global_step/sec: 555.549 INFO:tensorflow:loss = 0.02740157, step = 14801 (0.180 sec) INFO:tensorflow:global_step/sec: 540.564 INFO:tensorflow:loss = 0.043183126, step = 14901 (0.185 sec) INFO:tensorflow:global_step/sec: 552.67 INFO:tensorflow:loss = 0.044043526, step = 15001 (0.181 sec) INFO:tensorflow:global_step/sec: 567.295 INFO:tensorflow:loss = 0.015140781, step = 15101 (0.176 sec) INFO:tensorflow:global_step/sec: 544.722 INFO:tensorflow:loss = 0.025546592, step = 15201 (0.183 sec) INFO:tensorflow:global_step/sec: 558.16 INFO:tensorflow:loss = 0.029243713, step = 15301 (0.179 sec) INFO:tensorflow:global_step/sec: 537.248 INFO:tensorflow:loss = 0.020585796, step = 15401 (0.186 sec) INFO:tensorflow:global_step/sec: 565.802 INFO:tensorflow:loss = 0.02082948, step = 15501 (0.177 sec) INFO:tensorflow:global_step/sec: 519.954 INFO:tensorflow:loss = 0.050177883, step = 15601 (0.192 sec) INFO:tensorflow:global_step/sec: 562.8 INFO:tensorflow:loss = 0.026549798, step = 15701 (0.178 sec) INFO:tensorflow:global_step/sec: 559.309 INFO:tensorflow:loss = 0.05157975, step = 15801 (0.179 sec) INFO:tensorflow:global_step/sec: 549.572 INFO:tensorflow:loss = 0.03964285, step = 15901 (0.182 sec) INFO:tensorflow:global_step/sec: 540.517 INFO:tensorflow:loss = 0.025370112, step = 16001 (0.185 sec) INFO:tensorflow:global_step/sec: 556.979 INFO:tensorflow:loss = 0.03573191, step = 16101 (0.180 sec) INFO:tensorflow:global_step/sec: 540.476 INFO:tensorflow:loss = 0.01646205, step = 16201 (0.185 sec) INFO:tensorflow:global_step/sec: 558.846 INFO:tensorflow:loss = 0.025383826, step = 16301 (0.185 sec) INFO:tensorflow:global_step/sec: 545.81 INFO:tensorflow:loss = 0.0598194, step = 16401 (0.177 sec) INFO:tensorflow:global_step/sec: 535.687 INFO:tensorflow:loss = 0.015108961, step = 16501 (0.187 sec) INFO:tensorflow:global_step/sec: 526.305 INFO:tensorflow:loss = 0.02906358, step = 16601 (0.190 sec) INFO:tensorflow:global_step/sec: 526.937 INFO:tensorflow:loss = 0.026173119, step = 16701 (0.190 sec) INFO:tensorflow:global_step/sec: 555.05 INFO:tensorflow:loss = 0.028957274, step = 16801 (0.180 sec) INFO:tensorflow:global_step/sec: 535.085 INFO:tensorflow:loss = 0.025117926, step = 16901 (0.190 sec) INFO:tensorflow:global_step/sec: 543.895 INFO:tensorflow:loss = 0.026830506, step = 17001 (0.180 sec) INFO:tensorflow:global_step/sec: 546.263 INFO:tensorflow:loss = 0.023872972, step = 17101 (0.183 sec) INFO:tensorflow:global_step/sec: 564.515 INFO:tensorflow:loss = 0.016916137, step = 17201 (0.178 sec) INFO:tensorflow:global_step/sec: 543.133 INFO:tensorflow:loss = 0.02321909, step = 17301 (0.184 sec) INFO:tensorflow:global_step/sec: 535.361 INFO:tensorflow:loss = 0.014806619, step = 17401 (0.186 sec) INFO:tensorflow:global_step/sec: 526.876 INFO:tensorflow:loss = 0.019620089, step = 17501 (0.190 sec) INFO:tensorflow:global_step/sec: 515.223 INFO:tensorflow:loss = 0.024595024, step = 17601 (0.194 sec) INFO:tensorflow:global_step/sec: 572.229 INFO:tensorflow:loss = 0.016030025, step = 17701 (0.175 sec) INFO:tensorflow:global_step/sec: 536.616 INFO:tensorflow:loss = 0.029417565, step = 17801 (0.186 sec) INFO:tensorflow:global_step/sec: 559.462 INFO:tensorflow:loss = 0.031124298, step = 17901 (0.179 sec) INFO:tensorflow:global_step/sec: 526.865 INFO:tensorflow:loss = 0.048947714, step = 18001 (0.190 sec) INFO:tensorflow:global_step/sec: 533.405 INFO:tensorflow:loss = 0.027284618, step = 18101 (0.187 sec) INFO:tensorflow:global_step/sec: 525.403 INFO:tensorflow:loss = 0.031934716, step = 18201 (0.190 sec) INFO:tensorflow:global_step/sec: 485.025 INFO:tensorflow:loss = 0.037095845, step = 18301 (0.206 sec) INFO:tensorflow:global_step/sec: 524.049 INFO:tensorflow:loss = 0.030218042, step = 18401 (0.191 sec) INFO:tensorflow:global_step/sec: 514.793 INFO:tensorflow:loss = 0.036680248, step = 18501 (0.194 sec) INFO:tensorflow:global_step/sec: 540.085 INFO:tensorflow:loss = 0.027322877, step = 18601 (0.185 sec) INFO:tensorflow:global_step/sec: 542.712 INFO:tensorflow:loss = 0.040832005, step = 18701 (0.184 sec) INFO:tensorflow:global_step/sec: 575.261 INFO:tensorflow:loss = 0.0099720275, step = 18801 (0.174 sec) INFO:tensorflow:global_step/sec: 543.889 INFO:tensorflow:loss = 0.044099957, step = 18901 (0.184 sec) INFO:tensorflow:global_step/sec: 542.106 INFO:tensorflow:loss = 0.014038452, step = 19001 (0.184 sec) INFO:tensorflow:global_step/sec: 552.868 INFO:tensorflow:loss = 0.030261023, step = 19101 (0.181 sec) INFO:tensorflow:global_step/sec: 541.468 INFO:tensorflow:loss = 0.024491156, step = 19201 (0.185 sec) INFO:tensorflow:global_step/sec: 531.57 INFO:tensorflow:loss = 0.019349206, step = 19301 (0.188 sec) INFO:tensorflow:global_step/sec: 544.33 INFO:tensorflow:loss = 0.029496612, step = 19401 (0.184 sec) INFO:tensorflow:global_step/sec: 528.042 INFO:tensorflow:loss = 0.02566719, step = 19501 (0.190 sec) INFO:tensorflow:global_step/sec: 541.261 INFO:tensorflow:loss = 0.011755895, step = 19601 (0.185 sec) INFO:tensorflow:global_step/sec: 538.773 INFO:tensorflow:loss = 0.011457266, step = 19701 (0.185 sec) INFO:tensorflow:global_step/sec: 547.462 INFO:tensorflow:loss = 0.02694907, step = 19801 (0.183 sec) INFO:tensorflow:global_step/sec: 536.015 INFO:tensorflow:loss = 0.039816238, step = 19901 (0.187 sec) INFO:tensorflow:Saving checkpoints for 20000 into /tmp/tmpU33rCk/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Building iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:34:17 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/model.ckpt-20000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't0_linear' dict for global step 20000: architecture/adanet/ensembles = W 9adanet/iteration_0/ensemble_t0_linear/architecture/adanetBB | linear |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.049419947, average_loss/adanet/subnetwork = 0.049421377, average_loss/adanet/uniform_average_ensemble = 0.049421377, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.0625109, loss/adanet/subnetwork = 0.062442042, loss/adanet/uniform_average_ensemble = 0.062442042, prediction/mean/adanet/adanet_weighted_ensemble = 3.1072564, prediction/mean/adanet/subnetwork = 3.105895, prediction/mean/adanet/uniform_average_ensemble = 3.105895 INFO:tensorflow:Saving candidate 't0_1_layer_dnn' dict for global step 20000: architecture/adanet/ensembles = a >adanet/iteration_0/ensemble_t0_1_layer_dnn/architecture/adanetBB| 1_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03990466, average_loss/adanet/subnetwork = 0.03993654, average_loss/adanet/uniform_average_ensemble = 0.03993654, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.053545497, loss/adanet/subnetwork = 0.053605493, loss/adanet/uniform_average_ensemble = 0.053605493, prediction/mean/adanet/adanet_weighted_ensemble = 3.1576996, prediction/mean/adanet/subnetwork = 3.1580222, prediction/mean/adanet/uniform_average_ensemble = 3.1580222 INFO:tensorflow:Finished evaluation at 2018-12-13-19:34:19 INFO:tensorflow:Saving dict for global step 20000: average_loss = 0.049419947, average_loss/adanet/adanet_weighted_ensemble = 0.049419947, average_loss/adanet/subnetwork = 0.049421377, average_loss/adanet/uniform_average_ensemble = 0.049421377, global_step = 20000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.0625109, loss/adanet/adanet_weighted_ensemble = 0.0625109, loss/adanet/subnetwork = 0.062442042, loss/adanet/uniform_average_ensemble = 0.062442042, prediction/mean = 3.1072564, prediction/mean/adanet/adanet_weighted_ensemble = 3.1072564, prediction/mean/adanet/subnetwork = 3.105895, prediction/mean/adanet/uniform_average_ensemble = 3.105895 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 20000: /tmp/tmpU33rCk/model.ckpt-20000 INFO:tensorflow:Loss for final step: 0.05016574. INFO:tensorflow:Finished training Adanet iteration 0 INFO:tensorflow:Beginning bookkeeping phase for iteration 0 INFO:tensorflow:Building iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 0 INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/model.ckpt-20000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t0_linear = 0.035082, adanet_loss/t0_1_layer_dnn = 0.035763 INFO:tensorflow:Finished ensemble evaluation for iteration 0 INFO:tensorflow:'t0_linear' at index 0 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-0.txt: ['0:linear']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpU33rCk/model.ckpt-20000',) INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet/iteration_0/candidate_t0_linear/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet/iteration_0/candidate_t0_linear/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 1 to /tmp/tmpU33rCk/model.ckpt-20000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 0 INFO:tensorflow:Beginning training AdaNet iteration 1 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-0.txt: ['0:linear']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/increment.ckpt-1 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 20000 into /tmp/tmpU33rCk/model.ckpt. INFO:tensorflow:loss = 0.030963298, step = 20001 INFO:tensorflow:global_step/sec: 124.894 INFO:tensorflow:loss = 0.03516689, step = 20101 (0.802 sec) INFO:tensorflow:global_step/sec: 539.514 INFO:tensorflow:loss = 0.03981951, step = 20201 (0.185 sec) INFO:tensorflow:global_step/sec: 513.933 INFO:tensorflow:loss = 0.033043213, step = 20301 (0.195 sec) INFO:tensorflow:global_step/sec: 480.78 INFO:tensorflow:loss = 0.0467762, step = 20401 (0.208 sec) INFO:tensorflow:global_step/sec: 530.898 INFO:tensorflow:loss = 0.03045134, step = 20501 (0.188 sec) INFO:tensorflow:global_step/sec: 516.018 INFO:tensorflow:loss = 0.041044854, step = 20601 (0.197 sec) INFO:tensorflow:global_step/sec: 519.834 INFO:tensorflow:loss = 0.01876518, step = 20701 (0.189 sec) INFO:tensorflow:global_step/sec: 512.371 INFO:tensorflow:loss = 0.014937608, step = 20801 (0.195 sec) INFO:tensorflow:global_step/sec: 525.975 INFO:tensorflow:loss = 0.031160582, step = 20901 (0.190 sec) INFO:tensorflow:global_step/sec: 551.898 INFO:tensorflow:loss = 0.028920764, step = 21001 (0.181 sec) INFO:tensorflow:global_step/sec: 515.066 INFO:tensorflow:loss = 0.032353245, step = 21101 (0.194 sec) INFO:tensorflow:global_step/sec: 531.83 INFO:tensorflow:loss = 0.025514642, step = 21201 (0.188 sec) INFO:tensorflow:global_step/sec: 485.63 INFO:tensorflow:loss = 0.075824335, step = 21301 (0.206 sec) INFO:tensorflow:global_step/sec: 516.614 INFO:tensorflow:loss = 0.015722096, step = 21401 (0.194 sec) INFO:tensorflow:global_step/sec: 522.079 INFO:tensorflow:loss = 0.01953032, step = 21501 (0.191 sec) INFO:tensorflow:global_step/sec: 534.123 INFO:tensorflow:loss = 0.021188064, step = 21601 (0.187 sec) INFO:tensorflow:global_step/sec: 520.757 INFO:tensorflow:loss = 0.03627994, step = 21701 (0.192 sec) INFO:tensorflow:global_step/sec: 519.758 INFO:tensorflow:loss = 0.037261367, step = 21801 (0.192 sec) INFO:tensorflow:global_step/sec: 505.114 INFO:tensorflow:loss = 0.049223125, step = 21901 (0.198 sec) INFO:tensorflow:global_step/sec: 535.51 INFO:tensorflow:loss = 0.043363348, step = 22001 (0.186 sec) INFO:tensorflow:global_step/sec: 525.834 INFO:tensorflow:loss = 0.06184654, step = 22101 (0.190 sec) INFO:tensorflow:global_step/sec: 518.716 INFO:tensorflow:loss = 0.024632609, step = 22201 (0.192 sec) INFO:tensorflow:global_step/sec: 512.36 INFO:tensorflow:loss = 0.024932098, step = 22301 (0.195 sec) INFO:tensorflow:global_step/sec: 503.358 INFO:tensorflow:loss = 0.021503564, step = 22401 (0.198 sec) INFO:tensorflow:global_step/sec: 529.14 INFO:tensorflow:loss = 0.04656288, step = 22501 (0.189 sec) INFO:tensorflow:global_step/sec: 515.911 INFO:tensorflow:loss = 0.037371665, step = 22601 (0.194 sec) INFO:tensorflow:global_step/sec: 540.99 INFO:tensorflow:loss = 0.029282678, step = 22701 (0.185 sec) INFO:tensorflow:global_step/sec: 530.24 INFO:tensorflow:loss = 0.019854745, step = 22801 (0.188 sec) INFO:tensorflow:global_step/sec: 519.696 INFO:tensorflow:loss = 0.037007652, step = 22901 (0.193 sec) INFO:tensorflow:global_step/sec: 469.894 INFO:tensorflow:loss = 0.027802797, step = 23001 (0.213 sec) INFO:tensorflow:global_step/sec: 435.785 INFO:tensorflow:loss = 0.018298797, step = 23101 (0.229 sec) INFO:tensorflow:global_step/sec: 430.956 INFO:tensorflow:loss = 0.024072375, step = 23201 (0.232 sec) INFO:tensorflow:global_step/sec: 408.725 INFO:tensorflow:loss = 0.04094688, step = 23301 (0.246 sec) INFO:tensorflow:global_step/sec: 449.246 INFO:tensorflow:loss = 0.027860032, step = 23401 (0.222 sec) INFO:tensorflow:global_step/sec: 453.336 INFO:tensorflow:loss = 0.064778514, step = 23501 (0.220 sec) INFO:tensorflow:global_step/sec: 453.892 INFO:tensorflow:loss = 0.027260652, step = 23601 (0.221 sec) INFO:tensorflow:global_step/sec: 445.129 INFO:tensorflow:loss = 0.021556232, step = 23701 (0.225 sec) INFO:tensorflow:global_step/sec: 438.546 INFO:tensorflow:loss = 0.027705526, step = 23801 (0.228 sec) INFO:tensorflow:global_step/sec: 437.365 INFO:tensorflow:loss = 0.02642343, step = 23901 (0.229 sec) INFO:tensorflow:global_step/sec: 440.74 INFO:tensorflow:loss = 0.04874111, step = 24001 (0.227 sec) INFO:tensorflow:global_step/sec: 434.06 INFO:tensorflow:loss = 0.028818486, step = 24101 (0.230 sec) INFO:tensorflow:global_step/sec: 437.097 INFO:tensorflow:loss = 0.02050123, step = 24201 (0.229 sec) INFO:tensorflow:global_step/sec: 441.363 INFO:tensorflow:loss = 0.017606108, step = 24301 (0.227 sec) INFO:tensorflow:global_step/sec: 452.184 INFO:tensorflow:loss = 0.022820558, step = 24401 (0.220 sec) INFO:tensorflow:global_step/sec: 439.408 INFO:tensorflow:loss = 0.042412907, step = 24501 (0.228 sec) INFO:tensorflow:global_step/sec: 471.045 INFO:tensorflow:loss = 0.021762788, step = 24601 (0.212 sec) INFO:tensorflow:global_step/sec: 434.754 INFO:tensorflow:loss = 0.07007265, step = 24701 (0.230 sec) INFO:tensorflow:global_step/sec: 424.497 INFO:tensorflow:loss = 0.029353648, step = 24801 (0.236 sec) INFO:tensorflow:global_step/sec: 440.087 INFO:tensorflow:loss = 0.025005665, step = 24901 (0.227 sec) INFO:tensorflow:global_step/sec: 414.214 INFO:tensorflow:loss = 0.022534322, step = 25001 (0.241 sec) INFO:tensorflow:global_step/sec: 426.734 INFO:tensorflow:loss = 0.03668832, step = 25101 (0.235 sec) INFO:tensorflow:global_step/sec: 468.812 INFO:tensorflow:loss = 0.022969142, step = 25201 (0.214 sec) INFO:tensorflow:global_step/sec: 458.335 INFO:tensorflow:loss = 0.053870354, step = 25301 (0.218 sec) INFO:tensorflow:global_step/sec: 435.33 INFO:tensorflow:loss = 0.019454079, step = 25401 (0.230 sec) INFO:tensorflow:global_step/sec: 430.181 INFO:tensorflow:loss = 0.020998772, step = 25501 (0.232 sec) INFO:tensorflow:global_step/sec: 461.487 INFO:tensorflow:loss = 0.02694126, step = 25601 (0.217 sec) INFO:tensorflow:global_step/sec: 441.842 INFO:tensorflow:loss = 0.03186059, step = 25701 (0.226 sec) INFO:tensorflow:global_step/sec: 425.232 INFO:tensorflow:loss = 0.028446794, step = 25801 (0.236 sec) INFO:tensorflow:global_step/sec: 407.917 INFO:tensorflow:loss = 0.013250216, step = 25901 (0.244 sec) INFO:tensorflow:global_step/sec: 437.924 INFO:tensorflow:loss = 0.026782522, step = 26001 (0.228 sec) INFO:tensorflow:global_step/sec: 454.258 INFO:tensorflow:loss = 0.03703142, step = 26101 (0.220 sec) INFO:tensorflow:global_step/sec: 419.535 INFO:tensorflow:loss = 0.03735739, step = 26201 (0.238 sec) INFO:tensorflow:global_step/sec: 427.129 INFO:tensorflow:loss = 0.03606581, step = 26301 (0.234 sec) INFO:tensorflow:global_step/sec: 429.356 INFO:tensorflow:loss = 0.05572056, step = 26401 (0.233 sec) INFO:tensorflow:global_step/sec: 441.618 INFO:tensorflow:loss = 0.047298286, step = 26501 (0.226 sec) INFO:tensorflow:global_step/sec: 434.033 INFO:tensorflow:loss = 0.019773448, step = 26601 (0.231 sec) INFO:tensorflow:global_step/sec: 434.926 INFO:tensorflow:loss = 0.0269448, step = 26701 (0.230 sec) INFO:tensorflow:global_step/sec: 417.432 INFO:tensorflow:loss = 0.019713217, step = 26801 (0.239 sec) INFO:tensorflow:global_step/sec: 437.564 INFO:tensorflow:loss = 0.013232482, step = 26901 (0.229 sec) INFO:tensorflow:global_step/sec: 434.554 INFO:tensorflow:loss = 0.025097178, step = 27001 (0.230 sec) INFO:tensorflow:global_step/sec: 428.526 INFO:tensorflow:loss = 0.023188664, step = 27101 (0.233 sec) INFO:tensorflow:global_step/sec: 442.515 INFO:tensorflow:loss = 0.01634363, step = 27201 (0.226 sec) INFO:tensorflow:global_step/sec: 439.91 INFO:tensorflow:loss = 0.06469944, step = 27301 (0.227 sec) INFO:tensorflow:global_step/sec: 442.905 INFO:tensorflow:loss = 0.027050652, step = 27401 (0.226 sec) INFO:tensorflow:global_step/sec: 448.093 INFO:tensorflow:loss = 0.037419617, step = 27501 (0.223 sec) INFO:tensorflow:global_step/sec: 536.688 INFO:tensorflow:loss = 0.014020189, step = 27601 (0.186 sec) INFO:tensorflow:global_step/sec: 509.378 INFO:tensorflow:loss = 0.023243275, step = 27701 (0.196 sec) INFO:tensorflow:global_step/sec: 531.629 INFO:tensorflow:loss = 0.02837298, step = 27801 (0.188 sec) INFO:tensorflow:global_step/sec: 537.444 INFO:tensorflow:loss = 0.031420454, step = 27901 (0.186 sec) INFO:tensorflow:global_step/sec: 529.826 INFO:tensorflow:loss = 0.02842214, step = 28001 (0.189 sec) INFO:tensorflow:global_step/sec: 525.199 INFO:tensorflow:loss = 0.025423417, step = 28101 (0.190 sec) INFO:tensorflow:global_step/sec: 507.035 INFO:tensorflow:loss = 0.03314421, step = 28201 (0.197 sec) INFO:tensorflow:global_step/sec: 543.434 INFO:tensorflow:loss = 0.026891911, step = 28301 (0.184 sec) INFO:tensorflow:global_step/sec: 526.554 INFO:tensorflow:loss = 0.03682626, step = 28401 (0.190 sec) INFO:tensorflow:global_step/sec: 554.76 INFO:tensorflow:loss = 0.024336819, step = 28501 (0.180 sec) INFO:tensorflow:global_step/sec: 541.767 INFO:tensorflow:loss = 0.0462117, step = 28601 (0.185 sec) INFO:tensorflow:global_step/sec: 510.785 INFO:tensorflow:loss = 0.018110778, step = 28701 (0.196 sec) INFO:tensorflow:global_step/sec: 492.771 INFO:tensorflow:loss = 0.035204474, step = 28801 (0.203 sec) INFO:tensorflow:global_step/sec: 527.769 INFO:tensorflow:loss = 0.06147111, step = 28901 (0.189 sec) INFO:tensorflow:global_step/sec: 536.012 INFO:tensorflow:loss = 0.04892836, step = 29001 (0.186 sec) INFO:tensorflow:global_step/sec: 538.178 INFO:tensorflow:loss = 0.023903372, step = 29101 (0.186 sec) INFO:tensorflow:global_step/sec: 549.164 INFO:tensorflow:loss = 0.04787178, step = 29201 (0.182 sec) INFO:tensorflow:global_step/sec: 547.639 INFO:tensorflow:loss = 0.019329004, step = 29301 (0.183 sec) INFO:tensorflow:global_step/sec: 550.234 INFO:tensorflow:loss = 0.013593976, step = 29401 (0.182 sec) INFO:tensorflow:global_step/sec: 535.249 INFO:tensorflow:loss = 0.057428516, step = 29501 (0.187 sec) INFO:tensorflow:global_step/sec: 532.005 INFO:tensorflow:loss = 0.04012476, step = 29601 (0.188 sec) INFO:tensorflow:global_step/sec: 528.46 INFO:tensorflow:loss = 0.012712158, step = 29701 (0.189 sec) INFO:tensorflow:global_step/sec: 533.815 INFO:tensorflow:loss = 0.023402063, step = 29801 (0.187 sec) INFO:tensorflow:global_step/sec: 515.953 INFO:tensorflow:loss = 0.023870125, step = 29901 (0.194 sec) INFO:tensorflow:global_step/sec: 541.187 INFO:tensorflow:loss = 0.024826566, step = 30001 (0.185 sec) INFO:tensorflow:global_step/sec: 532.612 INFO:tensorflow:loss = 0.024468493, step = 30101 (0.188 sec) INFO:tensorflow:global_step/sec: 551.481 INFO:tensorflow:loss = 0.044891607, step = 30201 (0.182 sec) INFO:tensorflow:global_step/sec: 543.957 INFO:tensorflow:loss = 0.04333415, step = 30301 (0.183 sec) INFO:tensorflow:global_step/sec: 529.897 INFO:tensorflow:loss = 0.017114978, step = 30401 (0.189 sec) INFO:tensorflow:global_step/sec: 542.597 INFO:tensorflow:loss = 0.042604566, step = 30501 (0.184 sec) INFO:tensorflow:global_step/sec: 551.079 INFO:tensorflow:loss = 0.021167897, step = 30601 (0.184 sec) INFO:tensorflow:global_step/sec: 541.58 INFO:tensorflow:loss = 0.01646223, step = 30701 (0.182 sec) INFO:tensorflow:global_step/sec: 507.97 INFO:tensorflow:loss = 0.023372637, step = 30801 (0.197 sec) INFO:tensorflow:global_step/sec: 523.725 INFO:tensorflow:loss = 0.026064549, step = 30901 (0.191 sec) INFO:tensorflow:global_step/sec: 531.465 INFO:tensorflow:loss = 0.013219604, step = 31001 (0.188 sec) INFO:tensorflow:global_step/sec: 543.215 INFO:tensorflow:loss = 0.030059274, step = 31101 (0.184 sec) INFO:tensorflow:global_step/sec: 539.645 INFO:tensorflow:loss = 0.023715459, step = 31201 (0.185 sec) INFO:tensorflow:global_step/sec: 532.388 INFO:tensorflow:loss = 0.043849677, step = 31301 (0.188 sec) INFO:tensorflow:global_step/sec: 548.486 INFO:tensorflow:loss = 0.023017507, step = 31401 (0.184 sec) INFO:tensorflow:global_step/sec: 504.562 INFO:tensorflow:loss = 0.040082093, step = 31501 (0.196 sec) INFO:tensorflow:global_step/sec: 528.385 INFO:tensorflow:loss = 0.023561921, step = 31601 (0.189 sec) INFO:tensorflow:global_step/sec: 520.587 INFO:tensorflow:loss = 0.022855878, step = 31701 (0.192 sec) INFO:tensorflow:global_step/sec: 514.814 INFO:tensorflow:loss = 0.01623566, step = 31801 (0.194 sec) INFO:tensorflow:global_step/sec: 481.042 INFO:tensorflow:loss = 0.04121801, step = 31901 (0.208 sec) INFO:tensorflow:global_step/sec: 523.59 INFO:tensorflow:loss = 0.027685797, step = 32001 (0.191 sec) INFO:tensorflow:global_step/sec: 529.395 INFO:tensorflow:loss = 0.009713226, step = 32101 (0.189 sec) INFO:tensorflow:global_step/sec: 472.961 INFO:tensorflow:loss = 0.012999925, step = 32201 (0.211 sec) INFO:tensorflow:global_step/sec: 496.044 INFO:tensorflow:loss = 0.02126931, step = 32301 (0.202 sec) INFO:tensorflow:global_step/sec: 493.262 INFO:tensorflow:loss = 0.032282937, step = 32401 (0.203 sec) INFO:tensorflow:global_step/sec: 536.067 INFO:tensorflow:loss = 0.025438417, step = 32501 (0.188 sec) INFO:tensorflow:global_step/sec: 500.025 INFO:tensorflow:loss = 0.032477073, step = 32601 (0.199 sec) INFO:tensorflow:global_step/sec: 519.818 INFO:tensorflow:loss = 0.020108623, step = 32701 (0.192 sec) INFO:tensorflow:global_step/sec: 527.104 INFO:tensorflow:loss = 0.02968867, step = 32801 (0.190 sec) INFO:tensorflow:global_step/sec: 548.089 INFO:tensorflow:loss = 0.03175928, step = 32901 (0.182 sec) INFO:tensorflow:global_step/sec: 504.806 INFO:tensorflow:loss = 0.034673132, step = 33001 (0.198 sec) INFO:tensorflow:global_step/sec: 529.375 INFO:tensorflow:loss = 0.027451565, step = 33101 (0.189 sec) INFO:tensorflow:global_step/sec: 532.09 INFO:tensorflow:loss = 0.018435553, step = 33201 (0.188 sec) INFO:tensorflow:global_step/sec: 507.854 INFO:tensorflow:loss = 0.02186241, step = 33301 (0.197 sec) INFO:tensorflow:global_step/sec: 532.481 INFO:tensorflow:loss = 0.028581627, step = 33401 (0.188 sec) INFO:tensorflow:global_step/sec: 536.19 INFO:tensorflow:loss = 0.034122914, step = 33501 (0.186 sec) INFO:tensorflow:global_step/sec: 541.111 INFO:tensorflow:loss = 0.012513552, step = 33601 (0.185 sec) INFO:tensorflow:global_step/sec: 515.727 INFO:tensorflow:loss = 0.01912247, step = 33701 (0.194 sec) INFO:tensorflow:global_step/sec: 535.961 INFO:tensorflow:loss = 0.054644194, step = 33801 (0.187 sec) INFO:tensorflow:global_step/sec: 463.751 INFO:tensorflow:loss = 0.015859207, step = 33901 (0.215 sec) INFO:tensorflow:global_step/sec: 519.512 INFO:tensorflow:loss = 0.018914541, step = 34001 (0.192 sec) INFO:tensorflow:global_step/sec: 525.71 INFO:tensorflow:loss = 0.025463093, step = 34101 (0.190 sec) INFO:tensorflow:global_step/sec: 530.929 INFO:tensorflow:loss = 0.026399424, step = 34201 (0.188 sec) INFO:tensorflow:global_step/sec: 547.223 INFO:tensorflow:loss = 0.036557145, step = 34301 (0.183 sec) INFO:tensorflow:global_step/sec: 531.649 INFO:tensorflow:loss = 0.016763993, step = 34401 (0.188 sec) INFO:tensorflow:global_step/sec: 520.27 INFO:tensorflow:loss = 0.025890842, step = 34501 (0.192 sec) INFO:tensorflow:global_step/sec: 523.376 INFO:tensorflow:loss = 0.033754352, step = 34601 (0.191 sec) INFO:tensorflow:global_step/sec: 522.111 INFO:tensorflow:loss = 0.028789936, step = 34701 (0.191 sec) INFO:tensorflow:global_step/sec: 502.536 INFO:tensorflow:loss = 0.036325447, step = 34801 (0.199 sec) INFO:tensorflow:global_step/sec: 522.865 INFO:tensorflow:loss = 0.05625145, step = 34901 (0.191 sec) INFO:tensorflow:global_step/sec: 500.97 INFO:tensorflow:loss = 0.034521013, step = 35001 (0.201 sec) INFO:tensorflow:global_step/sec: 520.735 INFO:tensorflow:loss = 0.0150056705, step = 35101 (0.190 sec) INFO:tensorflow:global_step/sec: 534.722 INFO:tensorflow:loss = 0.020731103, step = 35201 (0.187 sec) INFO:tensorflow:global_step/sec: 529.112 INFO:tensorflow:loss = 0.026185703, step = 35301 (0.189 sec) INFO:tensorflow:global_step/sec: 529.947 INFO:tensorflow:loss = 0.014758859, step = 35401 (0.189 sec) INFO:tensorflow:global_step/sec: 514.263 INFO:tensorflow:loss = 0.037995845, step = 35501 (0.194 sec) INFO:tensorflow:global_step/sec: 516.201 INFO:tensorflow:loss = 0.041229367, step = 35601 (0.194 sec) INFO:tensorflow:global_step/sec: 528.712 INFO:tensorflow:loss = 0.050575472, step = 35701 (0.189 sec) INFO:tensorflow:global_step/sec: 521.548 INFO:tensorflow:loss = 0.041070037, step = 35801 (0.192 sec) INFO:tensorflow:global_step/sec: 461.603 INFO:tensorflow:loss = 0.031438783, step = 35901 (0.216 sec) INFO:tensorflow:global_step/sec: 514.287 INFO:tensorflow:loss = 0.03783085, step = 36001 (0.195 sec) INFO:tensorflow:global_step/sec: 461.018 INFO:tensorflow:loss = 0.030223355, step = 36101 (0.217 sec) INFO:tensorflow:global_step/sec: 491.196 INFO:tensorflow:loss = 0.013579338, step = 36201 (0.204 sec) INFO:tensorflow:global_step/sec: 534.359 INFO:tensorflow:loss = 0.025656413, step = 36301 (0.187 sec) INFO:tensorflow:global_step/sec: 527.051 INFO:tensorflow:loss = 0.0447367, step = 36401 (0.190 sec) INFO:tensorflow:global_step/sec: 525.867 INFO:tensorflow:loss = 0.03292373, step = 36501 (0.190 sec) INFO:tensorflow:global_step/sec: 528.422 INFO:tensorflow:loss = 0.022560276, step = 36601 (0.190 sec) INFO:tensorflow:global_step/sec: 501.263 INFO:tensorflow:loss = 0.029914442, step = 36701 (0.201 sec) INFO:tensorflow:global_step/sec: 534.25 INFO:tensorflow:loss = 0.025595265, step = 36801 (0.186 sec) INFO:tensorflow:global_step/sec: 512.091 INFO:tensorflow:loss = 0.019214138, step = 36901 (0.195 sec) INFO:tensorflow:global_step/sec: 519.424 INFO:tensorflow:loss = 0.029903362, step = 37001 (0.192 sec) INFO:tensorflow:global_step/sec: 505.132 INFO:tensorflow:loss = 0.03370553, step = 37101 (0.198 sec) INFO:tensorflow:global_step/sec: 490.146 INFO:tensorflow:loss = 0.012709979, step = 37201 (0.204 sec) INFO:tensorflow:global_step/sec: 526.05 INFO:tensorflow:loss = 0.03051424, step = 37301 (0.190 sec) INFO:tensorflow:global_step/sec: 531.841 INFO:tensorflow:loss = 0.026626717, step = 37401 (0.188 sec) INFO:tensorflow:global_step/sec: 519.588 INFO:tensorflow:loss = 0.032916978, step = 37501 (0.192 sec) INFO:tensorflow:global_step/sec: 517.663 INFO:tensorflow:loss = 0.035041273, step = 37601 (0.193 sec) INFO:tensorflow:global_step/sec: 505.776 INFO:tensorflow:loss = 0.028301798, step = 37701 (0.198 sec) INFO:tensorflow:global_step/sec: 533.214 INFO:tensorflow:loss = 0.025922457, step = 37801 (0.188 sec) INFO:tensorflow:global_step/sec: 508.577 INFO:tensorflow:loss = 0.020458834, step = 37901 (0.196 sec) INFO:tensorflow:global_step/sec: 531.459 INFO:tensorflow:loss = 0.039606288, step = 38001 (0.188 sec) INFO:tensorflow:global_step/sec: 506.014 INFO:tensorflow:loss = 0.021974199, step = 38101 (0.198 sec) INFO:tensorflow:global_step/sec: 533.624 INFO:tensorflow:loss = 0.025154984, step = 38201 (0.187 sec) INFO:tensorflow:global_step/sec: 492.373 INFO:tensorflow:loss = 0.027581938, step = 38301 (0.203 sec) INFO:tensorflow:global_step/sec: 533.955 INFO:tensorflow:loss = 0.04229299, step = 38401 (0.188 sec) INFO:tensorflow:global_step/sec: 526.862 INFO:tensorflow:loss = 0.029815745, step = 38501 (0.189 sec) INFO:tensorflow:global_step/sec: 537.21 INFO:tensorflow:loss = 0.02210619, step = 38601 (0.186 sec) INFO:tensorflow:global_step/sec: 534.931 INFO:tensorflow:loss = 0.031400964, step = 38701 (0.187 sec) INFO:tensorflow:global_step/sec: 520.161 INFO:tensorflow:loss = 0.021041807, step = 38801 (0.192 sec) INFO:tensorflow:global_step/sec: 504.541 INFO:tensorflow:loss = 0.036891684, step = 38901 (0.198 sec) INFO:tensorflow:global_step/sec: 524.874 INFO:tensorflow:loss = 0.017958721, step = 39001 (0.191 sec) INFO:tensorflow:global_step/sec: 520.248 INFO:tensorflow:loss = 0.039710287, step = 39101 (0.192 sec) INFO:tensorflow:global_step/sec: 504.559 INFO:tensorflow:loss = 0.03919609, step = 39201 (0.198 sec) INFO:tensorflow:global_step/sec: 518.409 INFO:tensorflow:loss = 0.015263615, step = 39301 (0.193 sec) INFO:tensorflow:global_step/sec: 513.087 INFO:tensorflow:loss = 0.021182708, step = 39401 (0.195 sec) INFO:tensorflow:global_step/sec: 529.391 INFO:tensorflow:loss = 0.018177632, step = 39501 (0.189 sec) INFO:tensorflow:global_step/sec: 529.892 INFO:tensorflow:loss = 0.01564832, step = 39601 (0.189 sec) INFO:tensorflow:global_step/sec: 511.341 INFO:tensorflow:loss = 0.019479267, step = 39701 (0.196 sec) INFO:tensorflow:global_step/sec: 535.86 INFO:tensorflow:loss = 0.020116728, step = 39801 (0.187 sec) INFO:tensorflow:global_step/sec: 498.708 INFO:tensorflow:loss = 0.027168905, step = 39901 (0.201 sec) INFO:tensorflow:Saving checkpoints for 40000 into /tmp/tmpU33rCk/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-0.txt: ['0:linear']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:35:16 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/model.ckpt-40000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't0_linear' dict for global step 40000: architecture/adanet/ensembles = W 9adanet/iteration_0/ensemble_t0_linear/architecture/adanetBB | linear |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.049419947, average_loss/adanet/subnetwork = 0.049421377, average_loss/adanet/uniform_average_ensemble = 0.049421377, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.0625109, loss/adanet/subnetwork = 0.062442042, loss/adanet/uniform_average_ensemble = 0.062442042, prediction/mean/adanet/adanet_weighted_ensemble = 3.1072564, prediction/mean/adanet/subnetwork = 3.105895, prediction/mean/adanet/uniform_average_ensemble = 3.105895 INFO:tensorflow:Saving candidate 't1_linear' dict for global step 40000: architecture/adanet/ensembles = ` 9adanet/iteration_1/ensemble_t1_linear/architecture/adanetBB| linear | linear |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.04959257, average_loss/adanet/subnetwork = 0.051883172, average_loss/adanet/uniform_average_ensemble = 0.05056643, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.062364295, loss/adanet/subnetwork = 0.06333193, loss/adanet/uniform_average_ensemble = 0.0627961, prediction/mean/adanet/adanet_weighted_ensemble = 3.103125, prediction/mean/adanet/subnetwork = 3.103565, prediction/mean/adanet/uniform_average_ensemble = 3.1047301 INFO:tensorflow:Saving candidate 't1_1_layer_dnn' dict for global step 40000: architecture/adanet/ensembles = j >adanet/iteration_1/ensemble_t1_1_layer_dnn/architecture/adanetBB| linear | 1_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.04422355, average_loss/adanet/subnetwork = 0.044653624, average_loss/adanet/uniform_average_ensemble = 0.043328855, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.060774922, loss/adanet/subnetwork = 0.06800773, loss/adanet/uniform_average_ensemble = 0.061006997, prediction/mean/adanet/adanet_weighted_ensemble = 3.1278303, prediction/mean/adanet/subnetwork = 3.1593368, prediction/mean/adanet/uniform_average_ensemble = 3.1326156 INFO:tensorflow:Finished evaluation at 2018-12-13-19:35:19 INFO:tensorflow:Saving dict for global step 40000: average_loss = 0.04422355, average_loss/adanet/adanet_weighted_ensemble = 0.04422355, average_loss/adanet/subnetwork = 0.044653624, average_loss/adanet/uniform_average_ensemble = 0.043328855, global_step = 40000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.060774922, loss/adanet/adanet_weighted_ensemble = 0.060774922, loss/adanet/subnetwork = 0.06800773, loss/adanet/uniform_average_ensemble = 0.061006997, prediction/mean = 3.1278303, prediction/mean/adanet/adanet_weighted_ensemble = 3.1278303, prediction/mean/adanet/subnetwork = 3.1593368, prediction/mean/adanet/uniform_average_ensemble = 3.1326156 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 40000: /tmp/tmpU33rCk/model.ckpt-40000 INFO:tensorflow:Loss for final step: 0.039504506. INFO:tensorflow:Finished training Adanet iteration 1 INFO:tensorflow:Beginning bookkeeping phase for iteration 1 INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-0.txt: ['0:linear']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building iteration 1 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 1 INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/model.ckpt-40000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t0_linear = 0.035082, adanet_loss/t1_linear = 0.035048, adanet_loss/t1_1_layer_dnn = 0.031544 INFO:tensorflow:Finished ensemble evaluation for iteration 1 INFO:tensorflow:'t1_1_layer_dnn' at index 2 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-1.txt: ['0:linear', '1:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpU33rCk/model.ckpt-40000',) INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_linear/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_linear/adanet/iteration_1/candidate_t0_linear/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_1_layer_dnn/adanet/iteration_1/candidate_t1_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_linear/adanet/iteration_1/candidate_t0_linear/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet/iteration_0/candidate_t0_linear/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet/iteration_0/candidate_t0_linear/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_1_layer_dnn/adanet/iteration_1/candidate_t1_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 2 to /tmp/tmpU33rCk/model.ckpt-40000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 1 INFO:tensorflow:Beginning training AdaNet iteration 2 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-1.txt: ['0:linear', '1:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/increment.ckpt-2 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 40000 into /tmp/tmpU33rCk/model.ckpt. INFO:tensorflow:loss = 0.026201203, step = 40001 INFO:tensorflow:global_step/sec: 94.3463 INFO:tensorflow:loss = 0.026093123, step = 40101 (1.061 sec) INFO:tensorflow:global_step/sec: 517.928 INFO:tensorflow:loss = 0.028024156, step = 40201 (0.193 sec) INFO:tensorflow:global_step/sec: 486.175 INFO:tensorflow:loss = 0.025919124, step = 40301 (0.206 sec) INFO:tensorflow:global_step/sec: 514.963 INFO:tensorflow:loss = 0.03824448, step = 40401 (0.194 sec) INFO:tensorflow:global_step/sec: 497.851 INFO:tensorflow:loss = 0.021180643, step = 40501 (0.201 sec) INFO:tensorflow:global_step/sec: 505.048 INFO:tensorflow:loss = 0.02561801, step = 40601 (0.198 sec) INFO:tensorflow:global_step/sec: 493.109 INFO:tensorflow:loss = 0.013173097, step = 40701 (0.203 sec) INFO:tensorflow:global_step/sec: 494.829 INFO:tensorflow:loss = 0.013205946, step = 40801 (0.202 sec) INFO:tensorflow:global_step/sec: 474.102 INFO:tensorflow:loss = 0.021362148, step = 40901 (0.211 sec) INFO:tensorflow:global_step/sec: 493.635 INFO:tensorflow:loss = 0.025423564, step = 41001 (0.203 sec) INFO:tensorflow:global_step/sec: 494.193 INFO:tensorflow:loss = 0.0243335, step = 41101 (0.203 sec) INFO:tensorflow:global_step/sec: 459.692 INFO:tensorflow:loss = 0.022402506, step = 41201 (0.217 sec) INFO:tensorflow:global_step/sec: 502.384 INFO:tensorflow:loss = 0.056009114, step = 41301 (0.199 sec) INFO:tensorflow:global_step/sec: 502.717 INFO:tensorflow:loss = 0.011265494, step = 41401 (0.199 sec) INFO:tensorflow:global_step/sec: 493.873 INFO:tensorflow:loss = 0.013360662, step = 41501 (0.203 sec) INFO:tensorflow:global_step/sec: 495.582 INFO:tensorflow:loss = 0.018083222, step = 41601 (0.202 sec) INFO:tensorflow:global_step/sec: 494.103 INFO:tensorflow:loss = 0.027759094, step = 41701 (0.203 sec) INFO:tensorflow:global_step/sec: 476.501 INFO:tensorflow:loss = 0.021066925, step = 41801 (0.210 sec) INFO:tensorflow:global_step/sec: 489.445 INFO:tensorflow:loss = 0.03532522, step = 41901 (0.205 sec) INFO:tensorflow:global_step/sec: 474.552 INFO:tensorflow:loss = 0.024856593, step = 42001 (0.210 sec) INFO:tensorflow:global_step/sec: 474.226 INFO:tensorflow:loss = 0.039143093, step = 42101 (0.211 sec) INFO:tensorflow:global_step/sec: 473.887 INFO:tensorflow:loss = 0.020432828, step = 42201 (0.211 sec) INFO:tensorflow:global_step/sec: 504.587 INFO:tensorflow:loss = 0.016078953, step = 42301 (0.198 sec) INFO:tensorflow:global_step/sec: 543.227 INFO:tensorflow:loss = 0.01749191, step = 42401 (0.184 sec) INFO:tensorflow:global_step/sec: 513.405 INFO:tensorflow:loss = 0.030648103, step = 42501 (0.195 sec) INFO:tensorflow:global_step/sec: 497.01 INFO:tensorflow:loss = 0.023955716, step = 42601 (0.201 sec) INFO:tensorflow:global_step/sec: 491.169 INFO:tensorflow:loss = 0.02257087, step = 42701 (0.204 sec) INFO:tensorflow:global_step/sec: 505.155 INFO:tensorflow:loss = 0.012919056, step = 42801 (0.198 sec) INFO:tensorflow:global_step/sec: 507.949 INFO:tensorflow:loss = 0.02518668, step = 42901 (0.197 sec) INFO:tensorflow:global_step/sec: 512.492 INFO:tensorflow:loss = 0.016773593, step = 43001 (0.195 sec) INFO:tensorflow:global_step/sec: 480.144 INFO:tensorflow:loss = 0.010921106, step = 43101 (0.208 sec) INFO:tensorflow:global_step/sec: 459.276 INFO:tensorflow:loss = 0.020361234, step = 43201 (0.218 sec) INFO:tensorflow:global_step/sec: 509.892 INFO:tensorflow:loss = 0.02932311, step = 43301 (0.196 sec) INFO:tensorflow:global_step/sec: 532.62 INFO:tensorflow:loss = 0.018495196, step = 43401 (0.188 sec) INFO:tensorflow:global_step/sec: 497.785 INFO:tensorflow:loss = 0.046665255, step = 43501 (0.201 sec) INFO:tensorflow:global_step/sec: 466.057 INFO:tensorflow:loss = 0.01727711, step = 43601 (0.214 sec) INFO:tensorflow:global_step/sec: 489.098 INFO:tensorflow:loss = 0.015068072, step = 43701 (0.205 sec) INFO:tensorflow:global_step/sec: 502.207 INFO:tensorflow:loss = 0.016884852, step = 43801 (0.199 sec) INFO:tensorflow:global_step/sec: 480.13 INFO:tensorflow:loss = 0.016389422, step = 43901 (0.208 sec) INFO:tensorflow:global_step/sec: 511.187 INFO:tensorflow:loss = 0.031890914, step = 44001 (0.195 sec) INFO:tensorflow:global_step/sec: 495.717 INFO:tensorflow:loss = 0.018032018, step = 44101 (0.202 sec) INFO:tensorflow:global_step/sec: 503.54 INFO:tensorflow:loss = 0.012677894, step = 44201 (0.199 sec) INFO:tensorflow:global_step/sec: 472.958 INFO:tensorflow:loss = 0.0093172705, step = 44301 (0.211 sec) INFO:tensorflow:global_step/sec: 498.149 INFO:tensorflow:loss = 0.013411153, step = 44401 (0.201 sec) INFO:tensorflow:global_step/sec: 501.806 INFO:tensorflow:loss = 0.024332076, step = 44501 (0.200 sec) INFO:tensorflow:global_step/sec: 496.596 INFO:tensorflow:loss = 0.017249683, step = 44601 (0.201 sec) INFO:tensorflow:global_step/sec: 509.783 INFO:tensorflow:loss = 0.04461584, step = 44701 (0.196 sec) INFO:tensorflow:global_step/sec: 516.438 INFO:tensorflow:loss = 0.017492075, step = 44801 (0.194 sec) INFO:tensorflow:global_step/sec: 502.894 INFO:tensorflow:loss = 0.01984074, step = 44901 (0.199 sec) INFO:tensorflow:global_step/sec: 505.094 INFO:tensorflow:loss = 0.013942476, step = 45001 (0.198 sec) INFO:tensorflow:global_step/sec: 460.284 INFO:tensorflow:loss = 0.014163842, step = 45101 (0.217 sec) INFO:tensorflow:global_step/sec: 492.434 INFO:tensorflow:loss = 0.013226744, step = 45201 (0.203 sec) INFO:tensorflow:global_step/sec: 511.428 INFO:tensorflow:loss = 0.04130336, step = 45301 (0.197 sec) INFO:tensorflow:global_step/sec: 512.321 INFO:tensorflow:loss = 0.012158102, step = 45401 (0.194 sec) INFO:tensorflow:global_step/sec: 516.734 INFO:tensorflow:loss = 0.013963826, step = 45501 (0.193 sec) INFO:tensorflow:global_step/sec: 491.527 INFO:tensorflow:loss = 0.02029209, step = 45601 (0.204 sec) INFO:tensorflow:global_step/sec: 492.858 INFO:tensorflow:loss = 0.019698065, step = 45701 (0.203 sec) INFO:tensorflow:global_step/sec: 496.645 INFO:tensorflow:loss = 0.01769293, step = 45801 (0.202 sec) INFO:tensorflow:global_step/sec: 517.042 INFO:tensorflow:loss = 0.007403482, step = 45901 (0.196 sec) INFO:tensorflow:global_step/sec: 500.964 INFO:tensorflow:loss = 0.019337641, step = 46001 (0.197 sec) INFO:tensorflow:global_step/sec: 483.474 INFO:tensorflow:loss = 0.02821711, step = 46101 (0.211 sec) INFO:tensorflow:global_step/sec: 469.759 INFO:tensorflow:loss = 0.024295965, step = 46201 (0.208 sec) INFO:tensorflow:global_step/sec: 494.364 INFO:tensorflow:loss = 0.02877579, step = 46301 (0.202 sec) INFO:tensorflow:global_step/sec: 499.813 INFO:tensorflow:loss = 0.039782353, step = 46401 (0.201 sec) INFO:tensorflow:global_step/sec: 496.103 INFO:tensorflow:loss = 0.034643028, step = 46501 (0.201 sec) INFO:tensorflow:global_step/sec: 481.73 INFO:tensorflow:loss = 0.015971491, step = 46601 (0.208 sec) INFO:tensorflow:global_step/sec: 505.902 INFO:tensorflow:loss = 0.021011092, step = 46701 (0.198 sec) INFO:tensorflow:global_step/sec: 506.729 INFO:tensorflow:loss = 0.017140727, step = 46801 (0.197 sec) INFO:tensorflow:global_step/sec: 506.888 INFO:tensorflow:loss = 0.009389237, step = 46901 (0.197 sec) INFO:tensorflow:global_step/sec: 519.805 INFO:tensorflow:loss = 0.019067764, step = 47001 (0.193 sec) INFO:tensorflow:global_step/sec: 493.09 INFO:tensorflow:loss = 0.015567752, step = 47101 (0.203 sec) INFO:tensorflow:global_step/sec: 506.221 INFO:tensorflow:loss = 0.013121355, step = 47201 (0.198 sec) INFO:tensorflow:global_step/sec: 499.072 INFO:tensorflow:loss = 0.046016246, step = 47301 (0.200 sec) INFO:tensorflow:global_step/sec: 505.661 INFO:tensorflow:loss = 0.019536706, step = 47401 (0.198 sec) INFO:tensorflow:global_step/sec: 508.04 INFO:tensorflow:loss = 0.02697355, step = 47501 (0.197 sec) INFO:tensorflow:global_step/sec: 517.448 INFO:tensorflow:loss = 0.010725226, step = 47601 (0.193 sec) INFO:tensorflow:global_step/sec: 490.887 INFO:tensorflow:loss = 0.021514438, step = 47701 (0.204 sec) INFO:tensorflow:global_step/sec: 518.17 INFO:tensorflow:loss = 0.022160714, step = 47801 (0.193 sec) INFO:tensorflow:global_step/sec: 501.077 INFO:tensorflow:loss = 0.018412659, step = 47901 (0.200 sec) INFO:tensorflow:global_step/sec: 485.5 INFO:tensorflow:loss = 0.022296796, step = 48001 (0.206 sec) INFO:tensorflow:global_step/sec: 484.48 INFO:tensorflow:loss = 0.01848094, step = 48101 (0.206 sec) INFO:tensorflow:global_step/sec: 512.928 INFO:tensorflow:loss = 0.024373533, step = 48201 (0.195 sec) INFO:tensorflow:global_step/sec: 512.942 INFO:tensorflow:loss = 0.020244522, step = 48301 (0.195 sec) INFO:tensorflow:global_step/sec: 500.353 INFO:tensorflow:loss = 0.025015071, step = 48401 (0.200 sec) INFO:tensorflow:global_step/sec: 480.439 INFO:tensorflow:loss = 0.017704632, step = 48501 (0.208 sec) INFO:tensorflow:global_step/sec: 499.134 INFO:tensorflow:loss = 0.0310724, step = 48601 (0.200 sec) INFO:tensorflow:global_step/sec: 505.395 INFO:tensorflow:loss = 0.015678111, step = 48701 (0.198 sec) INFO:tensorflow:global_step/sec: 513.569 INFO:tensorflow:loss = 0.027031465, step = 48801 (0.195 sec) INFO:tensorflow:global_step/sec: 522.084 INFO:tensorflow:loss = 0.049662534, step = 48901 (0.191 sec) INFO:tensorflow:global_step/sec: 542.724 INFO:tensorflow:loss = 0.03728403, step = 49001 (0.184 sec) INFO:tensorflow:global_step/sec: 530.346 INFO:tensorflow:loss = 0.01770171, step = 49101 (0.188 sec) INFO:tensorflow:global_step/sec: 514.716 INFO:tensorflow:loss = 0.034034938, step = 49201 (0.194 sec) INFO:tensorflow:global_step/sec: 538.694 INFO:tensorflow:loss = 0.013658211, step = 49301 (0.186 sec) INFO:tensorflow:global_step/sec: 470.289 INFO:tensorflow:loss = 0.009852439, step = 49401 (0.212 sec) INFO:tensorflow:global_step/sec: 525.87 INFO:tensorflow:loss = 0.03901407, step = 49501 (0.191 sec) INFO:tensorflow:global_step/sec: 533.812 INFO:tensorflow:loss = 0.026856896, step = 49601 (0.187 sec) INFO:tensorflow:global_step/sec: 540.295 INFO:tensorflow:loss = 0.0098221265, step = 49701 (0.185 sec) INFO:tensorflow:global_step/sec: 536.965 INFO:tensorflow:loss = 0.015300882, step = 49801 (0.186 sec) INFO:tensorflow:global_step/sec: 554.379 INFO:tensorflow:loss = 0.019169495, step = 49901 (0.181 sec) INFO:tensorflow:global_step/sec: 549.297 INFO:tensorflow:loss = 0.018853413, step = 50001 (0.182 sec) INFO:tensorflow:global_step/sec: 502.666 INFO:tensorflow:loss = 0.01621972, step = 50101 (0.199 sec) INFO:tensorflow:global_step/sec: 483.985 INFO:tensorflow:loss = 0.033054538, step = 50201 (0.207 sec) INFO:tensorflow:global_step/sec: 495.562 INFO:tensorflow:loss = 0.030761674, step = 50301 (0.202 sec) INFO:tensorflow:global_step/sec: 488.227 INFO:tensorflow:loss = 0.014127126, step = 50401 (0.205 sec) INFO:tensorflow:global_step/sec: 490.479 INFO:tensorflow:loss = 0.029032012, step = 50501 (0.204 sec) INFO:tensorflow:global_step/sec: 507.174 INFO:tensorflow:loss = 0.014329145, step = 50601 (0.197 sec) INFO:tensorflow:global_step/sec: 507.349 INFO:tensorflow:loss = 0.0122189475, step = 50701 (0.197 sec) INFO:tensorflow:global_step/sec: 508.601 INFO:tensorflow:loss = 0.020003706, step = 50801 (0.197 sec) INFO:tensorflow:global_step/sec: 443.143 INFO:tensorflow:loss = 0.021329232, step = 50901 (0.226 sec) INFO:tensorflow:global_step/sec: 492.393 INFO:tensorflow:loss = 0.011084755, step = 51001 (0.203 sec) INFO:tensorflow:global_step/sec: 503.862 INFO:tensorflow:loss = 0.020886954, step = 51101 (0.199 sec) INFO:tensorflow:global_step/sec: 484.046 INFO:tensorflow:loss = 0.014100042, step = 51201 (0.206 sec) INFO:tensorflow:global_step/sec: 509.65 INFO:tensorflow:loss = 0.033354472, step = 51301 (0.196 sec) INFO:tensorflow:global_step/sec: 474.379 INFO:tensorflow:loss = 0.012741237, step = 51401 (0.211 sec) INFO:tensorflow:global_step/sec: 508.574 INFO:tensorflow:loss = 0.028030533, step = 51501 (0.196 sec) INFO:tensorflow:global_step/sec: 492.434 INFO:tensorflow:loss = 0.014998768, step = 51601 (0.203 sec) INFO:tensorflow:global_step/sec: 528.388 INFO:tensorflow:loss = 0.018847875, step = 51701 (0.189 sec) INFO:tensorflow:global_step/sec: 492.216 INFO:tensorflow:loss = 0.011595423, step = 51801 (0.203 sec) INFO:tensorflow:global_step/sec: 497.01 INFO:tensorflow:loss = 0.032381095, step = 51901 (0.201 sec) INFO:tensorflow:global_step/sec: 504.928 INFO:tensorflow:loss = 0.01812671, step = 52001 (0.198 sec) INFO:tensorflow:global_step/sec: 507.748 INFO:tensorflow:loss = 0.0061560385, step = 52101 (0.198 sec) INFO:tensorflow:global_step/sec: 487.123 INFO:tensorflow:loss = 0.00929126, step = 52201 (0.205 sec) INFO:tensorflow:global_step/sec: 499.678 INFO:tensorflow:loss = 0.015358845, step = 52301 (0.200 sec) INFO:tensorflow:global_step/sec: 497.857 INFO:tensorflow:loss = 0.019701846, step = 52401 (0.201 sec) INFO:tensorflow:global_step/sec: 436.382 INFO:tensorflow:loss = 0.0198103, step = 52501 (0.229 sec) INFO:tensorflow:global_step/sec: 501.562 INFO:tensorflow:loss = 0.021213373, step = 52601 (0.199 sec) INFO:tensorflow:global_step/sec: 497.27 INFO:tensorflow:loss = 0.017814554, step = 52701 (0.201 sec) INFO:tensorflow:global_step/sec: 505.935 INFO:tensorflow:loss = 0.019039704, step = 52801 (0.200 sec) INFO:tensorflow:global_step/sec: 503.393 INFO:tensorflow:loss = 0.020968016, step = 52901 (0.196 sec) INFO:tensorflow:global_step/sec: 495.847 INFO:tensorflow:loss = 0.022189653, step = 53001 (0.203 sec) INFO:tensorflow:global_step/sec: 501.645 INFO:tensorflow:loss = 0.017653076, step = 53101 (0.199 sec) INFO:tensorflow:global_step/sec: 477.282 INFO:tensorflow:loss = 0.011738155, step = 53201 (0.209 sec) INFO:tensorflow:global_step/sec: 482.635 INFO:tensorflow:loss = 0.014724601, step = 53301 (0.208 sec) INFO:tensorflow:global_step/sec: 508.28 INFO:tensorflow:loss = 0.02052265, step = 53401 (0.196 sec) INFO:tensorflow:global_step/sec: 499.753 INFO:tensorflow:loss = 0.023918442, step = 53501 (0.203 sec) INFO:tensorflow:global_step/sec: 496.679 INFO:tensorflow:loss = 0.010252239, step = 53601 (0.198 sec) INFO:tensorflow:global_step/sec: 503.409 INFO:tensorflow:loss = 0.008929467, step = 53701 (0.199 sec) INFO:tensorflow:global_step/sec: 475.606 INFO:tensorflow:loss = 0.040997267, step = 53801 (0.210 sec) INFO:tensorflow:global_step/sec: 518.551 INFO:tensorflow:loss = 0.013261792, step = 53901 (0.193 sec) INFO:tensorflow:global_step/sec: 509.053 INFO:tensorflow:loss = 0.012389019, step = 54001 (0.196 sec) INFO:tensorflow:global_step/sec: 480.34 INFO:tensorflow:loss = 0.018130174, step = 54101 (0.208 sec) INFO:tensorflow:global_step/sec: 489.512 INFO:tensorflow:loss = 0.017982107, step = 54201 (0.204 sec) INFO:tensorflow:global_step/sec: 488.031 INFO:tensorflow:loss = 0.023231579, step = 54301 (0.205 sec) INFO:tensorflow:global_step/sec: 487.318 INFO:tensorflow:loss = 0.011146922, step = 54401 (0.205 sec) INFO:tensorflow:global_step/sec: 493.966 INFO:tensorflow:loss = 0.018431053, step = 54501 (0.203 sec) INFO:tensorflow:global_step/sec: 490.831 INFO:tensorflow:loss = 0.022118004, step = 54601 (0.204 sec) INFO:tensorflow:global_step/sec: 478.098 INFO:tensorflow:loss = 0.02027971, step = 54701 (0.209 sec) INFO:tensorflow:global_step/sec: 478.781 INFO:tensorflow:loss = 0.026722562, step = 54801 (0.209 sec) INFO:tensorflow:global_step/sec: 513.745 INFO:tensorflow:loss = 0.034568045, step = 54901 (0.195 sec) INFO:tensorflow:global_step/sec: 515.188 INFO:tensorflow:loss = 0.027017085, step = 55001 (0.194 sec) INFO:tensorflow:global_step/sec: 518.355 INFO:tensorflow:loss = 0.0109851975, step = 55101 (0.193 sec) INFO:tensorflow:global_step/sec: 486.289 INFO:tensorflow:loss = 0.016032044, step = 55201 (0.206 sec) INFO:tensorflow:global_step/sec: 483.545 INFO:tensorflow:loss = 0.021624327, step = 55301 (0.207 sec) INFO:tensorflow:global_step/sec: 475.885 INFO:tensorflow:loss = 0.009764336, step = 55401 (0.210 sec) INFO:tensorflow:global_step/sec: 496.645 INFO:tensorflow:loss = 0.023222383, step = 55501 (0.201 sec) INFO:tensorflow:global_step/sec: 486.084 INFO:tensorflow:loss = 0.027035816, step = 55601 (0.206 sec) INFO:tensorflow:global_step/sec: 472.016 INFO:tensorflow:loss = 0.03277654, step = 55701 (0.212 sec) INFO:tensorflow:global_step/sec: 495.236 INFO:tensorflow:loss = 0.027625782, step = 55801 (0.202 sec) INFO:tensorflow:global_step/sec: 491.458 INFO:tensorflow:loss = 0.018734397, step = 55901 (0.204 sec) INFO:tensorflow:global_step/sec: 509.349 INFO:tensorflow:loss = 0.023520954, step = 56001 (0.196 sec) INFO:tensorflow:global_step/sec: 510.329 INFO:tensorflow:loss = 0.01779148, step = 56101 (0.196 sec) INFO:tensorflow:global_step/sec: 486.133 INFO:tensorflow:loss = 0.01003485, step = 56201 (0.205 sec) INFO:tensorflow:global_step/sec: 510.092 INFO:tensorflow:loss = 0.01855145, step = 56301 (0.196 sec) INFO:tensorflow:global_step/sec: 512.403 INFO:tensorflow:loss = 0.026615448, step = 56401 (0.195 sec) INFO:tensorflow:global_step/sec: 503.733 INFO:tensorflow:loss = 0.020081764, step = 56501 (0.199 sec) INFO:tensorflow:global_step/sec: 486.393 INFO:tensorflow:loss = 0.01606249, step = 56601 (0.206 sec) INFO:tensorflow:global_step/sec: 468.049 INFO:tensorflow:loss = 0.017364534, step = 56701 (0.214 sec) INFO:tensorflow:global_step/sec: 496.162 INFO:tensorflow:loss = 0.016276356, step = 56801 (0.201 sec) INFO:tensorflow:global_step/sec: 499.616 INFO:tensorflow:loss = 0.012617761, step = 56901 (0.201 sec) INFO:tensorflow:global_step/sec: 509.315 INFO:tensorflow:loss = 0.020060506, step = 57001 (0.195 sec) INFO:tensorflow:global_step/sec: 512.602 INFO:tensorflow:loss = 0.021613391, step = 57101 (0.195 sec) INFO:tensorflow:global_step/sec: 467.97 INFO:tensorflow:loss = 0.009548314, step = 57201 (0.214 sec) INFO:tensorflow:global_step/sec: 482.016 INFO:tensorflow:loss = 0.018750113, step = 57301 (0.208 sec) INFO:tensorflow:global_step/sec: 490.028 INFO:tensorflow:loss = 0.017790722, step = 57401 (0.204 sec) INFO:tensorflow:global_step/sec: 497.622 INFO:tensorflow:loss = 0.020575833, step = 57501 (0.204 sec) INFO:tensorflow:global_step/sec: 472.974 INFO:tensorflow:loss = 0.019994969, step = 57601 (0.208 sec) INFO:tensorflow:global_step/sec: 497.001 INFO:tensorflow:loss = 0.021272149, step = 57701 (0.202 sec) INFO:tensorflow:global_step/sec: 501.628 INFO:tensorflow:loss = 0.016894206, step = 57801 (0.199 sec) INFO:tensorflow:global_step/sec: 505.454 INFO:tensorflow:loss = 0.015374835, step = 57901 (0.198 sec) INFO:tensorflow:global_step/sec: 502.993 INFO:tensorflow:loss = 0.023162495, step = 58001 (0.199 sec) INFO:tensorflow:global_step/sec: 503.758 INFO:tensorflow:loss = 0.0150122605, step = 58101 (0.199 sec) INFO:tensorflow:global_step/sec: 456.351 INFO:tensorflow:loss = 0.018541595, step = 58201 (0.219 sec) INFO:tensorflow:global_step/sec: 493.559 INFO:tensorflow:loss = 0.019901603, step = 58301 (0.203 sec) INFO:tensorflow:global_step/sec: 485.557 INFO:tensorflow:loss = 0.029426899, step = 58401 (0.206 sec) INFO:tensorflow:global_step/sec: 487.159 INFO:tensorflow:loss = 0.019241655, step = 58501 (0.205 sec) INFO:tensorflow:global_step/sec: 494.266 INFO:tensorflow:loss = 0.016469326, step = 58601 (0.202 sec) INFO:tensorflow:global_step/sec: 519.923 INFO:tensorflow:loss = 0.021836523, step = 58701 (0.192 sec) INFO:tensorflow:global_step/sec: 506.186 INFO:tensorflow:loss = 0.014409851, step = 58801 (0.198 sec) INFO:tensorflow:global_step/sec: 500.854 INFO:tensorflow:loss = 0.023873296, step = 58901 (0.203 sec) INFO:tensorflow:global_step/sec: 474.735 INFO:tensorflow:loss = 0.011066675, step = 59001 (0.207 sec) INFO:tensorflow:global_step/sec: 462.548 INFO:tensorflow:loss = 0.025976984, step = 59101 (0.216 sec) INFO:tensorflow:global_step/sec: 495.194 INFO:tensorflow:loss = 0.022162579, step = 59201 (0.202 sec) INFO:tensorflow:global_step/sec: 503.867 INFO:tensorflow:loss = 0.011563149, step = 59301 (0.199 sec) INFO:tensorflow:global_step/sec: 518.912 INFO:tensorflow:loss = 0.015920684, step = 59401 (0.192 sec) INFO:tensorflow:global_step/sec: 509.084 INFO:tensorflow:loss = 0.0122279115, step = 59501 (0.197 sec) INFO:tensorflow:global_step/sec: 486.934 INFO:tensorflow:loss = 0.01201019, step = 59601 (0.206 sec) INFO:tensorflow:global_step/sec: 492.735 INFO:tensorflow:loss = 0.012843441, step = 59701 (0.207 sec) INFO:tensorflow:global_step/sec: 476.856 INFO:tensorflow:loss = 0.014685018, step = 59801 (0.206 sec) INFO:tensorflow:global_step/sec: 493.486 INFO:tensorflow:loss = 0.02178935, step = 59901 (0.202 sec) INFO:tensorflow:Saving checkpoints for 60000 into /tmp/tmpU33rCk/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-1.txt: ['0:linear', '1:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:36:21 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/model.ckpt-60000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't1_1_layer_dnn' dict for global step 60000: architecture/adanet/ensembles = j >adanet/iteration_1/ensemble_t1_1_layer_dnn/architecture/adanetBB| linear | 1_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.04422355, average_loss/adanet/subnetwork = 0.044653624, average_loss/adanet/uniform_average_ensemble = 0.043328855, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.060774922, loss/adanet/subnetwork = 0.06800773, loss/adanet/uniform_average_ensemble = 0.061006997, prediction/mean/adanet/adanet_weighted_ensemble = 3.1278303, prediction/mean/adanet/subnetwork = 3.1593368, prediction/mean/adanet/uniform_average_ensemble = 3.1326156 INFO:tensorflow:Saving candidate 't2_1_layer_dnn' dict for global step 60000: architecture/adanet/ensembles = x >adanet/iteration_2/ensemble_t2_1_layer_dnn/architecture/adanetB,B&| linear | 1_layer_dnn | 1_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.04198682, average_loss/adanet/subnetwork = 0.0445389, average_loss/adanet/uniform_average_ensemble = 0.042342477, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.0576995, loss/adanet/subnetwork = 0.06806376, loss/adanet/uniform_average_ensemble = 0.061814114, prediction/mean/adanet/adanet_weighted_ensemble = 3.0984364, prediction/mean/adanet/subnetwork = 3.1642232, prediction/mean/adanet/uniform_average_ensemble = 3.143152 INFO:tensorflow:Saving candidate 't2_2_layer_dnn' dict for global step 60000: architecture/adanet/ensembles = x >adanet/iteration_2/ensemble_t2_2_layer_dnn/architecture/adanetB,B&| linear | 1_layer_dnn | 2_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03654939, average_loss/adanet/subnetwork = 0.032713592, average_loss/adanet/uniform_average_ensemble = 0.036697652, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.05076569, loss/adanet/subnetwork = 0.043944843, loss/adanet/uniform_average_ensemble = 0.052397445, prediction/mean/adanet/adanet_weighted_ensemble = 3.1145082, prediction/mean/adanet/subnetwork = 3.1556947, prediction/mean/adanet/uniform_average_ensemble = 3.140309 INFO:tensorflow:Finished evaluation at 2018-12-13-19:36:24 INFO:tensorflow:Saving dict for global step 60000: average_loss = 0.03654939, average_loss/adanet/adanet_weighted_ensemble = 0.03654939, average_loss/adanet/subnetwork = 0.032713592, average_loss/adanet/uniform_average_ensemble = 0.036697652, global_step = 60000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.05076569, loss/adanet/adanet_weighted_ensemble = 0.05076569, loss/adanet/subnetwork = 0.043944843, loss/adanet/uniform_average_ensemble = 0.052397445, prediction/mean = 3.1145082, prediction/mean/adanet/adanet_weighted_ensemble = 3.1145082, prediction/mean/adanet/subnetwork = 3.1556947, prediction/mean/adanet/uniform_average_ensemble = 3.140309 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 60000: /tmp/tmpU33rCk/model.ckpt-60000 INFO:tensorflow:Loss for final step: 0.023291564. INFO:tensorflow:Finished training Adanet iteration 2 INFO:tensorflow:Beginning bookkeeping phase for iteration 2 INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-1.txt: ['0:linear', '1:1_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building iteration 2 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 2 INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/model.ckpt-60000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t1_1_layer_dnn = 0.031544, adanet_loss/t2_1_layer_dnn = 0.029996, adanet_loss/t2_2_layer_dnn = 0.027457 INFO:tensorflow:Finished ensemble evaluation for iteration 2 INFO:tensorflow:'t2_2_layer_dnn' at index 2 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-2.txt: ['0:linear', '1:1_layer_dnn', '2:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpU33rCk/model.ckpt-60000',) INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_linear/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_linear/adanet/iteration_1/candidate_t0_linear/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_1_layer_dnn/adanet/iteration_2/candidate_t1_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_1_layer_dnn/adanet/iteration_1/candidate_t1_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_1_layer_dnn/adanet/iteration_2/candidate_t1_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_2_layer_dnn/adanet/iteration_2/candidate_t2_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_2_layer_dnn/adanet/iteration_2/candidate_t2_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_linear/adanet/iteration_1/candidate_t0_linear/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet/iteration_0/candidate_t0_linear/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet/iteration_0/candidate_t0_linear/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_1_layer_dnn/adanet/iteration_1/candidate_t1_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 3 to /tmp/tmpU33rCk/model.ckpt-60000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 2 INFO:tensorflow:Beginning training AdaNet iteration 3 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-2.txt: ['0:linear', '1:1_layer_dnn', '2:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/increment.ckpt-3 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 60000 into /tmp/tmpU33rCk/model.ckpt. INFO:tensorflow:loss = 0.01849521, step = 60001 INFO:tensorflow:global_step/sec: 78.0646 INFO:tensorflow:loss = 0.018221313, step = 60101 (1.282 sec) INFO:tensorflow:global_step/sec: 434.75 INFO:tensorflow:loss = 0.01849538, step = 60201 (0.230 sec) INFO:tensorflow:global_step/sec: 446.038 INFO:tensorflow:loss = 0.016187005, step = 60301 (0.224 sec) INFO:tensorflow:global_step/sec: 436.706 INFO:tensorflow:loss = 0.02324728, step = 60401 (0.229 sec) INFO:tensorflow:global_step/sec: 428.09 INFO:tensorflow:loss = 0.012834492, step = 60501 (0.233 sec) INFO:tensorflow:global_step/sec: 433.341 INFO:tensorflow:loss = 0.015347466, step = 60601 (0.236 sec) INFO:tensorflow:global_step/sec: 399.925 INFO:tensorflow:loss = 0.009656646, step = 60701 (0.245 sec) INFO:tensorflow:global_step/sec: 424.715 INFO:tensorflow:loss = 0.0098030735, step = 60801 (0.235 sec) INFO:tensorflow:global_step/sec: 423.418 INFO:tensorflow:loss = 0.015358811, step = 60901 (0.236 sec) INFO:tensorflow:global_step/sec: 427.33 INFO:tensorflow:loss = 0.017170426, step = 61001 (0.234 sec) INFO:tensorflow:global_step/sec: 440.126 INFO:tensorflow:loss = 0.01597068, step = 61101 (0.227 sec) INFO:tensorflow:global_step/sec: 429.895 INFO:tensorflow:loss = 0.015691243, step = 61201 (0.233 sec) INFO:tensorflow:global_step/sec: 446.663 INFO:tensorflow:loss = 0.032044083, step = 61301 (0.224 sec) INFO:tensorflow:global_step/sec: 458.96 INFO:tensorflow:loss = 0.0077379774, step = 61401 (0.218 sec) INFO:tensorflow:global_step/sec: 418.322 INFO:tensorflow:loss = 0.008269019, step = 61501 (0.239 sec) INFO:tensorflow:global_step/sec: 438.034 INFO:tensorflow:loss = 0.0090968115, step = 61601 (0.228 sec) INFO:tensorflow:global_step/sec: 450.816 INFO:tensorflow:loss = 0.017395135, step = 61701 (0.222 sec) INFO:tensorflow:global_step/sec: 426.758 INFO:tensorflow:loss = 0.0142538585, step = 61801 (0.234 sec) INFO:tensorflow:global_step/sec: 433.994 INFO:tensorflow:loss = 0.021575892, step = 61901 (0.230 sec) INFO:tensorflow:global_step/sec: 421.07 INFO:tensorflow:loss = 0.014129536, step = 62001 (0.237 sec) INFO:tensorflow:global_step/sec: 437.777 INFO:tensorflow:loss = 0.026330313, step = 62101 (0.229 sec) INFO:tensorflow:global_step/sec: 419.702 INFO:tensorflow:loss = 0.0139617715, step = 62201 (0.238 sec) INFO:tensorflow:global_step/sec: 432.636 INFO:tensorflow:loss = 0.009793356, step = 62301 (0.231 sec) INFO:tensorflow:global_step/sec: 431.287 INFO:tensorflow:loss = 0.010544407, step = 62401 (0.232 sec) INFO:tensorflow:global_step/sec: 457.463 INFO:tensorflow:loss = 0.019151235, step = 62501 (0.219 sec) INFO:tensorflow:global_step/sec: 459.025 INFO:tensorflow:loss = 0.01287616, step = 62601 (0.218 sec) INFO:tensorflow:global_step/sec: 449.174 INFO:tensorflow:loss = 0.014950998, step = 62701 (0.223 sec) INFO:tensorflow:global_step/sec: 433.467 INFO:tensorflow:loss = 0.007641917, step = 62801 (0.231 sec) INFO:tensorflow:global_step/sec: 443.762 INFO:tensorflow:loss = 0.013454292, step = 62901 (0.225 sec) INFO:tensorflow:global_step/sec: 441.784 INFO:tensorflow:loss = 0.01109894, step = 63001 (0.227 sec) INFO:tensorflow:global_step/sec: 420.142 INFO:tensorflow:loss = 0.008401312, step = 63101 (0.238 sec) INFO:tensorflow:global_step/sec: 455.998 INFO:tensorflow:loss = 0.015624371, step = 63201 (0.219 sec) INFO:tensorflow:global_step/sec: 438.82 INFO:tensorflow:loss = 0.019629583, step = 63301 (0.228 sec) INFO:tensorflow:global_step/sec: 435.159 INFO:tensorflow:loss = 0.012380507, step = 63401 (0.230 sec) INFO:tensorflow:global_step/sec: 423.594 INFO:tensorflow:loss = 0.027570924, step = 63501 (0.236 sec) INFO:tensorflow:global_step/sec: 442.672 INFO:tensorflow:loss = 0.010853866, step = 63601 (0.226 sec) INFO:tensorflow:global_step/sec: 405.876 INFO:tensorflow:loss = 0.011129044, step = 63701 (0.247 sec) INFO:tensorflow:global_step/sec: 436.927 INFO:tensorflow:loss = 0.009922019, step = 63801 (0.229 sec) INFO:tensorflow:global_step/sec: 447.684 INFO:tensorflow:loss = 0.00835341, step = 63901 (0.224 sec) INFO:tensorflow:global_step/sec: 423.123 INFO:tensorflow:loss = 0.017287806, step = 64001 (0.241 sec) INFO:tensorflow:global_step/sec: 433.067 INFO:tensorflow:loss = 0.010719417, step = 64101 (0.226 sec) INFO:tensorflow:global_step/sec: 445.943 INFO:tensorflow:loss = 0.0088530835, step = 64201 (0.224 sec) INFO:tensorflow:global_step/sec: 441.675 INFO:tensorflow:loss = 0.007045265, step = 64301 (0.226 sec) INFO:tensorflow:global_step/sec: 435.802 INFO:tensorflow:loss = 0.010601383, step = 64401 (0.229 sec) INFO:tensorflow:global_step/sec: 442.292 INFO:tensorflow:loss = 0.014272485, step = 64501 (0.226 sec) INFO:tensorflow:global_step/sec: 446.148 INFO:tensorflow:loss = 0.011902935, step = 64601 (0.224 sec) INFO:tensorflow:global_step/sec: 386.881 INFO:tensorflow:loss = 0.021894043, step = 64701 (0.258 sec) INFO:tensorflow:global_step/sec: 434.687 INFO:tensorflow:loss = 0.011304423, step = 64801 (0.230 sec) INFO:tensorflow:global_step/sec: 447.015 INFO:tensorflow:loss = 0.011946198, step = 64901 (0.224 sec) INFO:tensorflow:global_step/sec: 430.878 INFO:tensorflow:loss = 0.0061903694, step = 65001 (0.232 sec) INFO:tensorflow:global_step/sec: 443.07 INFO:tensorflow:loss = 0.009150965, step = 65101 (0.226 sec) INFO:tensorflow:global_step/sec: 443.768 INFO:tensorflow:loss = 0.009455716, step = 65201 (0.225 sec) INFO:tensorflow:global_step/sec: 438.064 INFO:tensorflow:loss = 0.022442203, step = 65301 (0.228 sec) INFO:tensorflow:global_step/sec: 453.221 INFO:tensorflow:loss = 0.0081521, step = 65401 (0.221 sec) INFO:tensorflow:global_step/sec: 438.333 INFO:tensorflow:loss = 0.009311147, step = 65501 (0.228 sec) INFO:tensorflow:global_step/sec: 449.745 INFO:tensorflow:loss = 0.013529962, step = 65601 (0.222 sec) INFO:tensorflow:global_step/sec: 449.759 INFO:tensorflow:loss = 0.010945886, step = 65701 (0.222 sec) INFO:tensorflow:global_step/sec: 467.687 INFO:tensorflow:loss = 0.012356184, step = 65801 (0.214 sec) INFO:tensorflow:global_step/sec: 439.224 INFO:tensorflow:loss = 0.00745131, step = 65901 (0.227 sec) INFO:tensorflow:global_step/sec: 450.264 INFO:tensorflow:loss = 0.013327674, step = 66001 (0.222 sec) INFO:tensorflow:global_step/sec: 391.416 INFO:tensorflow:loss = 0.016667463, step = 66101 (0.256 sec) INFO:tensorflow:global_step/sec: 452.796 INFO:tensorflow:loss = 0.016279226, step = 66201 (0.221 sec) INFO:tensorflow:global_step/sec: 435.819 INFO:tensorflow:loss = 0.013686002, step = 66301 (0.230 sec) INFO:tensorflow:global_step/sec: 464.829 INFO:tensorflow:loss = 0.019556196, step = 66401 (0.215 sec) INFO:tensorflow:global_step/sec: 456.261 INFO:tensorflow:loss = 0.019318718, step = 66501 (0.219 sec) INFO:tensorflow:global_step/sec: 455.689 INFO:tensorflow:loss = 0.009969889, step = 66601 (0.220 sec) INFO:tensorflow:global_step/sec: 469.437 INFO:tensorflow:loss = 0.015530272, step = 66701 (0.212 sec) INFO:tensorflow:global_step/sec: 448.356 INFO:tensorflow:loss = 0.009502322, step = 66801 (0.223 sec) INFO:tensorflow:global_step/sec: 473.653 INFO:tensorflow:loss = 0.005345877, step = 66901 (0.212 sec) INFO:tensorflow:global_step/sec: 458.18 INFO:tensorflow:loss = 0.011250553, step = 67001 (0.218 sec) INFO:tensorflow:global_step/sec: 459.257 INFO:tensorflow:loss = 0.00852987, step = 67101 (0.218 sec) INFO:tensorflow:global_step/sec: 436.399 INFO:tensorflow:loss = 0.010775156, step = 67201 (0.229 sec) INFO:tensorflow:global_step/sec: 436.717 INFO:tensorflow:loss = 0.025048286, step = 67301 (0.229 sec) INFO:tensorflow:global_step/sec: 462.479 INFO:tensorflow:loss = 0.013347473, step = 67401 (0.216 sec) INFO:tensorflow:global_step/sec: 430.719 INFO:tensorflow:loss = 0.013946894, step = 67501 (0.232 sec) INFO:tensorflow:global_step/sec: 447.986 INFO:tensorflow:loss = 0.008865064, step = 67601 (0.223 sec) INFO:tensorflow:global_step/sec: 438.656 INFO:tensorflow:loss = 0.014698386, step = 67701 (0.228 sec) INFO:tensorflow:global_step/sec: 424.978 INFO:tensorflow:loss = 0.0154539235, step = 67801 (0.235 sec) INFO:tensorflow:global_step/sec: 430.234 INFO:tensorflow:loss = 0.011255688, step = 67901 (0.233 sec) INFO:tensorflow:global_step/sec: 430.048 INFO:tensorflow:loss = 0.015850207, step = 68001 (0.232 sec) INFO:tensorflow:global_step/sec: 415.735 INFO:tensorflow:loss = 0.013518164, step = 68101 (0.241 sec) INFO:tensorflow:global_step/sec: 422.744 INFO:tensorflow:loss = 0.014690641, step = 68201 (0.236 sec) INFO:tensorflow:global_step/sec: 442.805 INFO:tensorflow:loss = 0.016613279, step = 68301 (0.226 sec) INFO:tensorflow:global_step/sec: 440.044 INFO:tensorflow:loss = 0.014170462, step = 68401 (0.227 sec) INFO:tensorflow:global_step/sec: 472.751 INFO:tensorflow:loss = 0.013066348, step = 68501 (0.211 sec) INFO:tensorflow:global_step/sec: 461.455 INFO:tensorflow:loss = 0.016186215, step = 68601 (0.217 sec) INFO:tensorflow:global_step/sec: 469.914 INFO:tensorflow:loss = 0.012064418, step = 68701 (0.213 sec) INFO:tensorflow:global_step/sec: 488.141 INFO:tensorflow:loss = 0.019498233, step = 68801 (0.206 sec) INFO:tensorflow:global_step/sec: 455.88 INFO:tensorflow:loss = 0.029157348, step = 68901 (0.221 sec) INFO:tensorflow:global_step/sec: 410.979 INFO:tensorflow:loss = 0.025464673, step = 69001 (0.241 sec) INFO:tensorflow:global_step/sec: 447.237 INFO:tensorflow:loss = 0.012853953, step = 69101 (0.224 sec) INFO:tensorflow:global_step/sec: 445.46 INFO:tensorflow:loss = 0.01971712, step = 69201 (0.224 sec) INFO:tensorflow:global_step/sec: 455.365 INFO:tensorflow:loss = 0.00933605, step = 69301 (0.219 sec) INFO:tensorflow:global_step/sec: 449.188 INFO:tensorflow:loss = 0.008620865, step = 69401 (0.223 sec) INFO:tensorflow:global_step/sec: 432.865 INFO:tensorflow:loss = 0.02142889, step = 69501 (0.231 sec) INFO:tensorflow:global_step/sec: 422.422 INFO:tensorflow:loss = 0.013078446, step = 69601 (0.237 sec) INFO:tensorflow:global_step/sec: 415.236 INFO:tensorflow:loss = 0.007206355, step = 69701 (0.241 sec) INFO:tensorflow:global_step/sec: 410.206 INFO:tensorflow:loss = 0.011162484, step = 69801 (0.244 sec) INFO:tensorflow:global_step/sec: 424.856 INFO:tensorflow:loss = 0.014292128, step = 69901 (0.235 sec) INFO:tensorflow:global_step/sec: 451.229 INFO:tensorflow:loss = 0.0128045315, step = 70001 (0.221 sec) INFO:tensorflow:global_step/sec: 441.995 INFO:tensorflow:loss = 0.009628586, step = 70101 (0.226 sec) INFO:tensorflow:global_step/sec: 459.095 INFO:tensorflow:loss = 0.017084569, step = 70201 (0.218 sec) INFO:tensorflow:global_step/sec: 449.281 INFO:tensorflow:loss = 0.020728739, step = 70301 (0.223 sec) INFO:tensorflow:global_step/sec: 458.651 INFO:tensorflow:loss = 0.008801332, step = 70401 (0.218 sec) INFO:tensorflow:global_step/sec: 460.891 INFO:tensorflow:loss = 0.017882807, step = 70501 (0.217 sec) INFO:tensorflow:global_step/sec: 436.792 INFO:tensorflow:loss = 0.01087595, step = 70601 (0.229 sec) INFO:tensorflow:global_step/sec: 418.973 INFO:tensorflow:loss = 0.008092202, step = 70701 (0.239 sec) INFO:tensorflow:global_step/sec: 432.683 INFO:tensorflow:loss = 0.014348139, step = 70801 (0.231 sec) INFO:tensorflow:global_step/sec: 438.743 INFO:tensorflow:loss = 0.015363082, step = 70901 (0.228 sec) INFO:tensorflow:global_step/sec: 425.628 INFO:tensorflow:loss = 0.0074509815, step = 71001 (0.235 sec) INFO:tensorflow:global_step/sec: 445.878 INFO:tensorflow:loss = 0.016008766, step = 71101 (0.224 sec) INFO:tensorflow:global_step/sec: 427.319 INFO:tensorflow:loss = 0.008940533, step = 71201 (0.234 sec) INFO:tensorflow:global_step/sec: 446.644 INFO:tensorflow:loss = 0.018691873, step = 71301 (0.224 sec) INFO:tensorflow:global_step/sec: 433.29 INFO:tensorflow:loss = 0.009328838, step = 71401 (0.231 sec) INFO:tensorflow:global_step/sec: 414.273 INFO:tensorflow:loss = 0.020122949, step = 71501 (0.242 sec) INFO:tensorflow:global_step/sec: 416.212 INFO:tensorflow:loss = 0.0081863925, step = 71601 (0.240 sec) INFO:tensorflow:global_step/sec: 440.94 INFO:tensorflow:loss = 0.015287314, step = 71701 (0.227 sec) INFO:tensorflow:global_step/sec: 443.737 INFO:tensorflow:loss = 0.008990615, step = 71801 (0.225 sec) INFO:tensorflow:global_step/sec: 441.201 INFO:tensorflow:loss = 0.014130508, step = 71901 (0.227 sec) INFO:tensorflow:global_step/sec: 444.709 INFO:tensorflow:loss = 0.012323266, step = 72001 (0.225 sec) INFO:tensorflow:global_step/sec: 429.538 INFO:tensorflow:loss = 0.0058762175, step = 72101 (0.232 sec) INFO:tensorflow:global_step/sec: 441.439 INFO:tensorflow:loss = 0.0059047127, step = 72201 (0.230 sec) INFO:tensorflow:global_step/sec: 430.715 INFO:tensorflow:loss = 0.011101288, step = 72301 (0.229 sec) INFO:tensorflow:global_step/sec: 460.779 INFO:tensorflow:loss = 0.012443201, step = 72401 (0.217 sec) INFO:tensorflow:global_step/sec: 435.449 INFO:tensorflow:loss = 0.013553011, step = 72501 (0.230 sec) INFO:tensorflow:global_step/sec: 464.572 INFO:tensorflow:loss = 0.01359203, step = 72601 (0.215 sec) INFO:tensorflow:global_step/sec: 443.478 INFO:tensorflow:loss = 0.015503101, step = 72701 (0.226 sec) INFO:tensorflow:global_step/sec: 450.28 INFO:tensorflow:loss = 0.015577295, step = 72801 (0.222 sec) INFO:tensorflow:global_step/sec: 441.036 INFO:tensorflow:loss = 0.013324114, step = 72901 (0.226 sec) INFO:tensorflow:global_step/sec: 415.557 INFO:tensorflow:loss = 0.018878024, step = 73001 (0.241 sec) INFO:tensorflow:global_step/sec: 432.534 INFO:tensorflow:loss = 0.012767976, step = 73101 (0.231 sec) INFO:tensorflow:global_step/sec: 422.767 INFO:tensorflow:loss = 0.008253518, step = 73201 (0.237 sec) INFO:tensorflow:global_step/sec: 420.863 INFO:tensorflow:loss = 0.009813534, step = 73301 (0.237 sec) INFO:tensorflow:global_step/sec: 425.775 INFO:tensorflow:loss = 0.014758039, step = 73401 (0.235 sec) INFO:tensorflow:global_step/sec: 451.745 INFO:tensorflow:loss = 0.013327519, step = 73501 (0.221 sec) INFO:tensorflow:global_step/sec: 453.684 INFO:tensorflow:loss = 0.008495433, step = 73601 (0.221 sec) INFO:tensorflow:global_step/sec: 458.686 INFO:tensorflow:loss = 0.008404325, step = 73701 (0.218 sec) INFO:tensorflow:global_step/sec: 456.944 INFO:tensorflow:loss = 0.020715604, step = 73801 (0.219 sec) INFO:tensorflow:global_step/sec: 443.062 INFO:tensorflow:loss = 0.008773352, step = 73901 (0.226 sec) INFO:tensorflow:global_step/sec: 445.772 INFO:tensorflow:loss = 0.006708255, step = 74001 (0.224 sec) INFO:tensorflow:global_step/sec: 436.992 INFO:tensorflow:loss = 0.014570928, step = 74101 (0.229 sec) INFO:tensorflow:global_step/sec: 427.314 INFO:tensorflow:loss = 0.013555666, step = 74201 (0.234 sec) INFO:tensorflow:global_step/sec: 426.323 INFO:tensorflow:loss = 0.015543242, step = 74301 (0.235 sec) INFO:tensorflow:global_step/sec: 430.522 INFO:tensorflow:loss = 0.009950759, step = 74401 (0.232 sec) INFO:tensorflow:global_step/sec: 458.121 INFO:tensorflow:loss = 0.011727323, step = 74501 (0.218 sec) INFO:tensorflow:global_step/sec: 448.499 INFO:tensorflow:loss = 0.013463419, step = 74601 (0.223 sec) INFO:tensorflow:global_step/sec: 449.675 INFO:tensorflow:loss = 0.014221058, step = 74701 (0.222 sec) INFO:tensorflow:global_step/sec: 456.559 INFO:tensorflow:loss = 0.021520961, step = 74801 (0.219 sec) INFO:tensorflow:global_step/sec: 442.399 INFO:tensorflow:loss = 0.019705988, step = 74901 (0.226 sec) INFO:tensorflow:global_step/sec: 452.213 INFO:tensorflow:loss = 0.02249371, step = 75001 (0.221 sec) INFO:tensorflow:global_step/sec: 429.673 INFO:tensorflow:loss = 0.0074728457, step = 75101 (0.232 sec) INFO:tensorflow:global_step/sec: 424.708 INFO:tensorflow:loss = 0.0101506235, step = 75201 (0.235 sec) INFO:tensorflow:global_step/sec: 423.449 INFO:tensorflow:loss = 0.017612845, step = 75301 (0.236 sec) INFO:tensorflow:global_step/sec: 446.245 INFO:tensorflow:loss = 0.008105265, step = 75401 (0.224 sec) INFO:tensorflow:global_step/sec: 476.808 INFO:tensorflow:loss = 0.018446082, step = 75501 (0.210 sec) INFO:tensorflow:global_step/sec: 480.908 INFO:tensorflow:loss = 0.017977942, step = 75601 (0.208 sec) INFO:tensorflow:global_step/sec: 426.707 INFO:tensorflow:loss = 0.015822789, step = 75701 (0.235 sec) INFO:tensorflow:global_step/sec: 456.861 INFO:tensorflow:loss = 0.022029698, step = 75801 (0.219 sec) INFO:tensorflow:global_step/sec: 454.081 INFO:tensorflow:loss = 0.013807894, step = 75901 (0.221 sec) INFO:tensorflow:global_step/sec: 440.413 INFO:tensorflow:loss = 0.016518306, step = 76001 (0.227 sec) INFO:tensorflow:global_step/sec: 425.114 INFO:tensorflow:loss = 0.012706269, step = 76101 (0.235 sec) INFO:tensorflow:global_step/sec: 450.359 INFO:tensorflow:loss = 0.007131013, step = 76201 (0.222 sec) INFO:tensorflow:global_step/sec: 453.875 INFO:tensorflow:loss = 0.0075605772, step = 76301 (0.220 sec) INFO:tensorflow:global_step/sec: 448.744 INFO:tensorflow:loss = 0.015425386, step = 76401 (0.223 sec) INFO:tensorflow:global_step/sec: 423.08 INFO:tensorflow:loss = 0.011027876, step = 76501 (0.236 sec) INFO:tensorflow:global_step/sec: 440.678 INFO:tensorflow:loss = 0.010813015, step = 76601 (0.227 sec) INFO:tensorflow:global_step/sec: 425.418 INFO:tensorflow:loss = 0.01431744, step = 76701 (0.235 sec) INFO:tensorflow:global_step/sec: 439.504 INFO:tensorflow:loss = 0.015267668, step = 76801 (0.228 sec) INFO:tensorflow:global_step/sec: 459.278 INFO:tensorflow:loss = 0.006063135, step = 76901 (0.218 sec) INFO:tensorflow:global_step/sec: 443.638 INFO:tensorflow:loss = 0.015281367, step = 77001 (0.226 sec) INFO:tensorflow:global_step/sec: 471.045 INFO:tensorflow:loss = 0.019066438, step = 77101 (0.212 sec) INFO:tensorflow:global_step/sec: 448.344 INFO:tensorflow:loss = 0.007818027, step = 77201 (0.223 sec) INFO:tensorflow:global_step/sec: 422.428 INFO:tensorflow:loss = 0.015884731, step = 77301 (0.237 sec) INFO:tensorflow:global_step/sec: 437.945 INFO:tensorflow:loss = 0.010117618, step = 77401 (0.228 sec) INFO:tensorflow:global_step/sec: 462.714 INFO:tensorflow:loss = 0.01640339, step = 77501 (0.216 sec) INFO:tensorflow:global_step/sec: 441.64 INFO:tensorflow:loss = 0.015515845, step = 77601 (0.226 sec) INFO:tensorflow:global_step/sec: 452.919 INFO:tensorflow:loss = 0.0094986195, step = 77701 (0.221 sec) INFO:tensorflow:global_step/sec: 437.642 INFO:tensorflow:loss = 0.01584887, step = 77801 (0.228 sec) INFO:tensorflow:global_step/sec: 439.325 INFO:tensorflow:loss = 0.011430892, step = 77901 (0.228 sec) INFO:tensorflow:global_step/sec: 444.182 INFO:tensorflow:loss = 0.0141262, step = 78001 (0.226 sec) INFO:tensorflow:global_step/sec: 448.982 INFO:tensorflow:loss = 0.012604534, step = 78101 (0.221 sec) INFO:tensorflow:global_step/sec: 459.633 INFO:tensorflow:loss = 0.013469087, step = 78201 (0.218 sec) INFO:tensorflow:global_step/sec: 444.693 INFO:tensorflow:loss = 0.018378606, step = 78301 (0.225 sec) INFO:tensorflow:global_step/sec: 456.617 INFO:tensorflow:loss = 0.02119773, step = 78401 (0.219 sec) INFO:tensorflow:global_step/sec: 443.707 INFO:tensorflow:loss = 0.010857796, step = 78501 (0.225 sec) INFO:tensorflow:global_step/sec: 436.517 INFO:tensorflow:loss = 0.012341502, step = 78601 (0.229 sec) INFO:tensorflow:global_step/sec: 451.939 INFO:tensorflow:loss = 0.013480957, step = 78701 (0.225 sec) INFO:tensorflow:global_step/sec: 450.995 INFO:tensorflow:loss = 0.014637279, step = 78801 (0.217 sec) INFO:tensorflow:global_step/sec: 393.986 INFO:tensorflow:loss = 0.022157174, step = 78901 (0.254 sec) INFO:tensorflow:global_step/sec: 442.333 INFO:tensorflow:loss = 0.009894935, step = 79001 (0.226 sec) INFO:tensorflow:global_step/sec: 452.319 INFO:tensorflow:loss = 0.01841922, step = 79101 (0.221 sec) INFO:tensorflow:global_step/sec: 461.667 INFO:tensorflow:loss = 0.016005103, step = 79201 (0.216 sec) INFO:tensorflow:global_step/sec: 451.48 INFO:tensorflow:loss = 0.008755811, step = 79301 (0.222 sec) INFO:tensorflow:global_step/sec: 458.436 INFO:tensorflow:loss = 0.011758109, step = 79401 (0.218 sec) INFO:tensorflow:global_step/sec: 435.212 INFO:tensorflow:loss = 0.0098045, step = 79501 (0.230 sec) INFO:tensorflow:global_step/sec: 425.878 INFO:tensorflow:loss = 0.007837824, step = 79601 (0.235 sec) INFO:tensorflow:global_step/sec: 439.844 INFO:tensorflow:loss = 0.007720313, step = 79701 (0.227 sec) INFO:tensorflow:global_step/sec: 449.251 INFO:tensorflow:loss = 0.011834578, step = 79801 (0.223 sec) INFO:tensorflow:global_step/sec: 433.121 INFO:tensorflow:loss = 0.018032994, step = 79901 (0.231 sec) INFO:tensorflow:Saving checkpoints for 80000 into /tmp/tmpU33rCk/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-2.txt: ['0:linear', '1:1_layer_dnn', '2:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:37:39 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/model.ckpt-80000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't2_2_layer_dnn' dict for global step 80000: architecture/adanet/ensembles = x >adanet/iteration_2/ensemble_t2_2_layer_dnn/architecture/adanetB,B&| linear | 1_layer_dnn | 2_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03654939, average_loss/adanet/subnetwork = 0.032713592, average_loss/adanet/uniform_average_ensemble = 0.036697656, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.05076569, loss/adanet/subnetwork = 0.043944843, loss/adanet/uniform_average_ensemble = 0.052397452, prediction/mean/adanet/adanet_weighted_ensemble = 3.1145082, prediction/mean/adanet/subnetwork = 3.1556947, prediction/mean/adanet/uniform_average_ensemble = 3.140309 INFO:tensorflow:Saving candidate 't3_2_layer_dnn' dict for global step 80000: architecture/adanet/ensembles = � >adanet/iteration_3/ensemble_t3_2_layer_dnn/architecture/adanetB:B4| linear | 1_layer_dnn | 2_layer_dnn | 2_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.032998268, average_loss/adanet/subnetwork = 0.04255607, average_loss/adanet/uniform_average_ensemble = 0.036970153, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.042651616, loss/adanet/subnetwork = 0.059904583, loss/adanet/uniform_average_ensemble = 0.05318597, prediction/mean/adanet/adanet_weighted_ensemble = 3.0920377, prediction/mean/adanet/subnetwork = 3.1531146, prediction/mean/adanet/uniform_average_ensemble = 3.1435103 INFO:tensorflow:Saving candidate 't3_3_layer_dnn' dict for global step 80000: architecture/adanet/ensembles = � >adanet/iteration_3/ensemble_t3_3_layer_dnn/architecture/adanetB:B4| linear | 1_layer_dnn | 2_layer_dnn | 3_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03303379, average_loss/adanet/subnetwork = 0.03740776, average_loss/adanet/uniform_average_ensemble = 0.035802316, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.042533625, loss/adanet/subnetwork = 0.055050053, loss/adanet/uniform_average_ensemble = 0.051954698, prediction/mean/adanet/adanet_weighted_ensemble = 3.0902042, prediction/mean/adanet/subnetwork = 3.1547055, prediction/mean/adanet/uniform_average_ensemble = 3.143908 INFO:tensorflow:Finished evaluation at 2018-12-13-19:37:43 INFO:tensorflow:Saving dict for global step 80000: average_loss = 0.032998268, average_loss/adanet/adanet_weighted_ensemble = 0.032998268, average_loss/adanet/subnetwork = 0.04255607, average_loss/adanet/uniform_average_ensemble = 0.036970153, global_step = 80000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.042651616, loss/adanet/adanet_weighted_ensemble = 0.042651616, loss/adanet/subnetwork = 0.059904583, loss/adanet/uniform_average_ensemble = 0.05318597, prediction/mean = 3.0920377, prediction/mean/adanet/adanet_weighted_ensemble = 3.0920377, prediction/mean/adanet/subnetwork = 3.1531146, prediction/mean/adanet/uniform_average_ensemble = 3.1435103 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 80000: /tmp/tmpU33rCk/model.ckpt-80000 INFO:tensorflow:Loss for final step: 0.0128020905. INFO:tensorflow:Finished training Adanet iteration 3 INFO:tensorflow:Beginning bookkeeping phase for iteration 3 INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-2.txt: ['0:linear', '1:1_layer_dnn', '2:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building iteration 3 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Starting ensemble evaluation for iteration 3 INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/model.ckpt-80000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Encountered end of input after 14 evaluations INFO:tensorflow:Computed ensemble metrics: adanet_loss/t2_2_layer_dnn = 0.027457, adanet_loss/t3_2_layer_dnn = 0.025281, adanet_loss/t3_3_layer_dnn = 0.025353 INFO:tensorflow:Finished ensemble evaluation for iteration 3 INFO:tensorflow:'t3_2_layer_dnn' at index 1 is moving onto the next iteration INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-3.txt: ['0:linear', '1:1_layer_dnn', '2:2_layer_dnn', '3:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 3 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Warm-starting from: (u'/tmp/tmpU33rCk/model.ckpt-80000',) INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t2_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_linear/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_linear/adanet/iteration_1/candidate_t0_linear/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_2_layer_dnn/weighted_subnetwork_3/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense_1/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_2_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_1_layer_dnn/adanet/iteration_2/candidate_t1_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t3_2_layer_dnn/adanet/iteration_3/candidate_t3_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: global_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_1_layer_dnn/adanet/iteration_1/candidate_t1_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t2_2_layer_dnn/adanet/iteration_3/candidate_t2_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t2_2_layer_dnn/adanet/iteration_3/candidate_t2_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_2_layer_dnn/weighted_subnetwork_3/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_2_layer_dnn/weighted_subnetwork_2/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t1_1_layer_dnn/adanet/iteration_2/candidate_t1_1_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_2_layer_dnn/adanet/iteration_2/candidate_t2_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_2_layer_dnn/weighted_subnetwork_3/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_1_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/ensemble_t2_2_layer_dnn/weighted_subnetwork_2/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_2_layer_dnn/weighted_subnetwork_3/subnetwork/dense_1/kernel; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/ensemble_t0_linear/weighted_subnetwork_0/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/candidate_t2_2_layer_dnn/adanet/iteration_2/candidate_t2_2_layer_dnn/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/ensemble_t1_1_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_2_layer_dnn/weighted_subnetwork_3/subnetwork/dense/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t0_linear/adanet/iteration_1/candidate_t0_linear/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_2_layer_dnn/weighted_subnetwork_3/subnetwork/dense_2/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t3_2_layer_dnn/adanet_loss; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_2/step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet/iteration_0/candidate_t0_linear/adanet_loss/local_step; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_2_layer_dnn/bias; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_2_layer_dnn/weighted_subnetwork_1/logits/mixture_weight; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/candidate_t3_2_layer_dnn/adanet/iteration_3/candidate_t3_2_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/candidate_t0_linear/adanet/iteration_0/candidate_t0_linear/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_1/candidate_t1_1_layer_dnn/adanet/iteration_1/candidate_t1_1_layer_dnn/adanet_loss/biased; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_0/train_op/is_over/is_over_var_fn/is_over_var; prev_var_name: Unchanged INFO:tensorflow:Warm-starting variable: adanet/iteration_3/ensemble_t3_2_layer_dnn/weighted_subnetwork_3/subnetwork/dense/kernel; prev_var_name: Unchanged INFO:tensorflow:Building iteration 4 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Overwriting checkpoint with new graph for iteration 4 to /tmp/tmpU33rCk/model.ckpt-80000 WARNING:tensorflow:`tf.train.start_queue_runners()` was called when no queue runners were defined. You can safely remove the call to this deprecated function. INFO:tensorflow:Finished bookkeeping phase for iteration 3 INFO:tensorflow:Beginning training AdaNet iteration 4 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-3.txt: ['0:linear', '1:1_layer_dnn', '2:2_layer_dnn', '3:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 3 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building iteration 4 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/increment.ckpt-4 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 80000 into /tmp/tmpU33rCk/model.ckpt. INFO:tensorflow:loss = 0.014136677, step = 80001 INFO:tensorflow:global_step/sec: 77.9609 INFO:tensorflow:loss = 0.015122209, step = 80101 (1.284 sec) INFO:tensorflow:global_step/sec: 451.808 INFO:tensorflow:loss = 0.015705626, step = 80201 (0.221 sec) INFO:tensorflow:global_step/sec: 434.951 INFO:tensorflow:loss = 0.010678144, step = 80301 (0.230 sec) INFO:tensorflow:global_step/sec: 461.659 INFO:tensorflow:loss = 0.015691724, step = 80401 (0.217 sec) INFO:tensorflow:global_step/sec: 462.839 INFO:tensorflow:loss = 0.010645296, step = 80501 (0.216 sec) INFO:tensorflow:global_step/sec: 441.256 INFO:tensorflow:loss = 0.013091616, step = 80601 (0.227 sec) INFO:tensorflow:global_step/sec: 453.622 INFO:tensorflow:loss = 0.009302431, step = 80701 (0.221 sec) INFO:tensorflow:global_step/sec: 469.065 INFO:tensorflow:loss = 0.008277564, step = 80801 (0.213 sec) INFO:tensorflow:global_step/sec: 462.342 INFO:tensorflow:loss = 0.014173703, step = 80901 (0.216 sec) INFO:tensorflow:global_step/sec: 420.955 INFO:tensorflow:loss = 0.013234565, step = 81001 (0.238 sec) INFO:tensorflow:global_step/sec: 456.046 INFO:tensorflow:loss = 0.012928063, step = 81101 (0.219 sec) INFO:tensorflow:global_step/sec: 468.575 INFO:tensorflow:loss = 0.012574772, step = 81201 (0.213 sec) INFO:tensorflow:global_step/sec: 473.682 INFO:tensorflow:loss = 0.021084582, step = 81301 (0.211 sec) INFO:tensorflow:global_step/sec: 459.173 INFO:tensorflow:loss = 0.005883986, step = 81401 (0.221 sec) INFO:tensorflow:global_step/sec: 425.724 INFO:tensorflow:loss = 0.007256987, step = 81501 (0.232 sec) INFO:tensorflow:global_step/sec: 447.471 INFO:tensorflow:loss = 0.0073771467, step = 81601 (0.224 sec) INFO:tensorflow:global_step/sec: 457.456 INFO:tensorflow:loss = 0.015889518, step = 81701 (0.218 sec) INFO:tensorflow:global_step/sec: 462.518 INFO:tensorflow:loss = 0.013416372, step = 81801 (0.216 sec) INFO:tensorflow:global_step/sec: 449.76 INFO:tensorflow:loss = 0.017629668, step = 81901 (0.223 sec) INFO:tensorflow:global_step/sec: 481.047 INFO:tensorflow:loss = 0.011713915, step = 82001 (0.208 sec) INFO:tensorflow:global_step/sec: 439.288 INFO:tensorflow:loss = 0.025065506, step = 82101 (0.228 sec) INFO:tensorflow:global_step/sec: 440.24 INFO:tensorflow:loss = 0.012257604, step = 82201 (0.227 sec) INFO:tensorflow:global_step/sec: 441.714 INFO:tensorflow:loss = 0.010574514, step = 82301 (0.226 sec) INFO:tensorflow:global_step/sec: 423.429 INFO:tensorflow:loss = 0.0075078337, step = 82401 (0.236 sec) INFO:tensorflow:global_step/sec: 455.264 INFO:tensorflow:loss = 0.017724512, step = 82501 (0.220 sec) INFO:tensorflow:global_step/sec: 450.382 INFO:tensorflow:loss = 0.010300313, step = 82601 (0.223 sec) INFO:tensorflow:global_step/sec: 462.242 INFO:tensorflow:loss = 0.013061122, step = 82701 (0.215 sec) INFO:tensorflow:global_step/sec: 419.783 INFO:tensorflow:loss = 0.0063341027, step = 82801 (0.239 sec) INFO:tensorflow:global_step/sec: 472.581 INFO:tensorflow:loss = 0.010990601, step = 82901 (0.212 sec) INFO:tensorflow:global_step/sec: 459.12 INFO:tensorflow:loss = 0.010513057, step = 83001 (0.218 sec) INFO:tensorflow:global_step/sec: 449.043 INFO:tensorflow:loss = 0.008344499, step = 83101 (0.223 sec) INFO:tensorflow:global_step/sec: 464.005 INFO:tensorflow:loss = 0.013460088, step = 83201 (0.216 sec) INFO:tensorflow:global_step/sec: 440.236 INFO:tensorflow:loss = 0.017516607, step = 83301 (0.227 sec) INFO:tensorflow:global_step/sec: 428.445 INFO:tensorflow:loss = 0.011353311, step = 83401 (0.233 sec) INFO:tensorflow:global_step/sec: 430.719 INFO:tensorflow:loss = 0.022538329, step = 83501 (0.232 sec) INFO:tensorflow:global_step/sec: 420.897 INFO:tensorflow:loss = 0.01015048, step = 83601 (0.239 sec) INFO:tensorflow:global_step/sec: 417.578 INFO:tensorflow:loss = 0.011027567, step = 83701 (0.238 sec) INFO:tensorflow:global_step/sec: 463.111 INFO:tensorflow:loss = 0.010554891, step = 83801 (0.216 sec) INFO:tensorflow:global_step/sec: 450.576 INFO:tensorflow:loss = 0.007900743, step = 83901 (0.222 sec) INFO:tensorflow:global_step/sec: 428.422 INFO:tensorflow:loss = 0.014897767, step = 84001 (0.233 sec) INFO:tensorflow:global_step/sec: 439.346 INFO:tensorflow:loss = 0.009408601, step = 84101 (0.228 sec) INFO:tensorflow:global_step/sec: 444.235 INFO:tensorflow:loss = 0.008032159, step = 84201 (0.225 sec) INFO:tensorflow:global_step/sec: 438.337 INFO:tensorflow:loss = 0.008454685, step = 84301 (0.228 sec) INFO:tensorflow:global_step/sec: 455.77 INFO:tensorflow:loss = 0.011003688, step = 84401 (0.219 sec) INFO:tensorflow:global_step/sec: 444.004 INFO:tensorflow:loss = 0.013846547, step = 84501 (0.225 sec) INFO:tensorflow:global_step/sec: 436.481 INFO:tensorflow:loss = 0.010676222, step = 84601 (0.229 sec) INFO:tensorflow:global_step/sec: 402.87 INFO:tensorflow:loss = 0.017072398, step = 84701 (0.248 sec) INFO:tensorflow:global_step/sec: 448.384 INFO:tensorflow:loss = 0.010719553, step = 84801 (0.223 sec) INFO:tensorflow:global_step/sec: 439.064 INFO:tensorflow:loss = 0.009729135, step = 84901 (0.228 sec) INFO:tensorflow:global_step/sec: 435.66 INFO:tensorflow:loss = 0.006030474, step = 85001 (0.231 sec) INFO:tensorflow:global_step/sec: 436.809 INFO:tensorflow:loss = 0.009715864, step = 85101 (0.228 sec) INFO:tensorflow:global_step/sec: 446.726 INFO:tensorflow:loss = 0.009305755, step = 85201 (0.224 sec) INFO:tensorflow:global_step/sec: 449.258 INFO:tensorflow:loss = 0.019405285, step = 85301 (0.222 sec) INFO:tensorflow:global_step/sec: 451.154 INFO:tensorflow:loss = 0.0075550172, step = 85401 (0.221 sec) INFO:tensorflow:global_step/sec: 452.212 INFO:tensorflow:loss = 0.008454868, step = 85501 (0.221 sec) INFO:tensorflow:global_step/sec: 452.172 INFO:tensorflow:loss = 0.012098787, step = 85601 (0.221 sec) INFO:tensorflow:global_step/sec: 460.197 INFO:tensorflow:loss = 0.0095618665, step = 85701 (0.218 sec) INFO:tensorflow:global_step/sec: 466.368 INFO:tensorflow:loss = 0.011730649, step = 85801 (0.217 sec) INFO:tensorflow:global_step/sec: 446.422 INFO:tensorflow:loss = 0.008406863, step = 85901 (0.221 sec) INFO:tensorflow:global_step/sec: 448.849 INFO:tensorflow:loss = 0.0119697945, step = 86001 (0.223 sec) INFO:tensorflow:global_step/sec: 460.757 INFO:tensorflow:loss = 0.014302246, step = 86101 (0.217 sec) INFO:tensorflow:global_step/sec: 470.994 INFO:tensorflow:loss = 0.015576258, step = 86201 (0.212 sec) INFO:tensorflow:global_step/sec: 445.234 INFO:tensorflow:loss = 0.011510307, step = 86301 (0.224 sec) INFO:tensorflow:global_step/sec: 450.989 INFO:tensorflow:loss = 0.01647891, step = 86401 (0.222 sec) INFO:tensorflow:global_step/sec: 444.609 INFO:tensorflow:loss = 0.016444352, step = 86501 (0.225 sec) INFO:tensorflow:global_step/sec: 454.372 INFO:tensorflow:loss = 0.008846531, step = 86601 (0.220 sec) INFO:tensorflow:global_step/sec: 430.758 INFO:tensorflow:loss = 0.014944243, step = 86701 (0.232 sec) INFO:tensorflow:global_step/sec: 443.06 INFO:tensorflow:loss = 0.008478226, step = 86801 (0.226 sec) INFO:tensorflow:global_step/sec: 441.166 INFO:tensorflow:loss = 0.0050248858, step = 86901 (0.227 sec) INFO:tensorflow:global_step/sec: 454.17 INFO:tensorflow:loss = 0.009933718, step = 87001 (0.220 sec) INFO:tensorflow:global_step/sec: 471.807 INFO:tensorflow:loss = 0.0082551595, step = 87101 (0.212 sec) INFO:tensorflow:global_step/sec: 433.777 INFO:tensorflow:loss = 0.010494467, step = 87201 (0.230 sec) INFO:tensorflow:global_step/sec: 461.14 INFO:tensorflow:loss = 0.022204366, step = 87301 (0.217 sec) INFO:tensorflow:global_step/sec: 453.998 INFO:tensorflow:loss = 0.012253256, step = 87401 (0.220 sec) INFO:tensorflow:global_step/sec: 449.906 INFO:tensorflow:loss = 0.009702304, step = 87501 (0.222 sec) INFO:tensorflow:global_step/sec: 466.059 INFO:tensorflow:loss = 0.008399001, step = 87601 (0.214 sec) INFO:tensorflow:global_step/sec: 448.841 INFO:tensorflow:loss = 0.013183773, step = 87701 (0.223 sec) INFO:tensorflow:global_step/sec: 443.141 INFO:tensorflow:loss = 0.014775414, step = 87801 (0.225 sec) INFO:tensorflow:global_step/sec: 455.605 INFO:tensorflow:loss = 0.011448814, step = 87901 (0.220 sec) INFO:tensorflow:global_step/sec: 458.751 INFO:tensorflow:loss = 0.01537032, step = 88001 (0.218 sec) INFO:tensorflow:global_step/sec: 433.114 INFO:tensorflow:loss = 0.013136765, step = 88101 (0.231 sec) INFO:tensorflow:global_step/sec: 442.852 INFO:tensorflow:loss = 0.011595482, step = 88201 (0.226 sec) INFO:tensorflow:global_step/sec: 447.175 INFO:tensorflow:loss = 0.016556742, step = 88301 (0.223 sec) INFO:tensorflow:global_step/sec: 457.731 INFO:tensorflow:loss = 0.011796527, step = 88401 (0.219 sec) INFO:tensorflow:global_step/sec: 410.62 INFO:tensorflow:loss = 0.012523681, step = 88501 (0.243 sec) INFO:tensorflow:global_step/sec: 434.751 INFO:tensorflow:loss = 0.01411977, step = 88601 (0.230 sec) INFO:tensorflow:global_step/sec: 381.455 INFO:tensorflow:loss = 0.0113926735, step = 88701 (0.262 sec) INFO:tensorflow:global_step/sec: 448.654 INFO:tensorflow:loss = 0.017263845, step = 88801 (0.224 sec) INFO:tensorflow:global_step/sec: 437.656 INFO:tensorflow:loss = 0.025984153, step = 88901 (0.227 sec) INFO:tensorflow:global_step/sec: 449.834 INFO:tensorflow:loss = 0.02464103, step = 89001 (0.223 sec) INFO:tensorflow:global_step/sec: 439.578 INFO:tensorflow:loss = 0.012718895, step = 89101 (0.228 sec) INFO:tensorflow:global_step/sec: 426.661 INFO:tensorflow:loss = 0.0182172, step = 89201 (0.234 sec) INFO:tensorflow:global_step/sec: 442.445 INFO:tensorflow:loss = 0.008782396, step = 89301 (0.226 sec) INFO:tensorflow:global_step/sec: 475.035 INFO:tensorflow:loss = 0.0088181235, step = 89401 (0.210 sec) INFO:tensorflow:global_step/sec: 480.443 INFO:tensorflow:loss = 0.018133877, step = 89501 (0.208 sec) INFO:tensorflow:global_step/sec: 455.201 INFO:tensorflow:loss = 0.011905391, step = 89601 (0.219 sec) INFO:tensorflow:global_step/sec: 454.552 INFO:tensorflow:loss = 0.0065887887, step = 89701 (0.221 sec) INFO:tensorflow:global_step/sec: 425.365 INFO:tensorflow:loss = 0.011348927, step = 89801 (0.234 sec) INFO:tensorflow:global_step/sec: 411.294 INFO:tensorflow:loss = 0.012839792, step = 89901 (0.243 sec) INFO:tensorflow:global_step/sec: 460.798 INFO:tensorflow:loss = 0.012055074, step = 90001 (0.217 sec) INFO:tensorflow:global_step/sec: 469.61 INFO:tensorflow:loss = 0.008177744, step = 90101 (0.213 sec) INFO:tensorflow:global_step/sec: 460.314 INFO:tensorflow:loss = 0.014987953, step = 90201 (0.217 sec) INFO:tensorflow:global_step/sec: 445.744 INFO:tensorflow:loss = 0.017924502, step = 90301 (0.225 sec) INFO:tensorflow:global_step/sec: 432.185 INFO:tensorflow:loss = 0.008074999, step = 90401 (0.231 sec) INFO:tensorflow:global_step/sec: 448.499 INFO:tensorflow:loss = 0.01378642, step = 90501 (0.223 sec) INFO:tensorflow:global_step/sec: 427.086 INFO:tensorflow:loss = 0.010721653, step = 90601 (0.234 sec) INFO:tensorflow:global_step/sec: 472.221 INFO:tensorflow:loss = 0.007824122, step = 90701 (0.212 sec) INFO:tensorflow:global_step/sec: 412.81 INFO:tensorflow:loss = 0.013612587, step = 90801 (0.242 sec) INFO:tensorflow:global_step/sec: 473.129 INFO:tensorflow:loss = 0.01438295, step = 90901 (0.211 sec) INFO:tensorflow:global_step/sec: 442.149 INFO:tensorflow:loss = 0.007160752, step = 91001 (0.226 sec) INFO:tensorflow:global_step/sec: 429.513 INFO:tensorflow:loss = 0.015613945, step = 91101 (0.233 sec) INFO:tensorflow:global_step/sec: 430.081 INFO:tensorflow:loss = 0.00888732, step = 91201 (0.233 sec) INFO:tensorflow:global_step/sec: 433.804 INFO:tensorflow:loss = 0.01613437, step = 91301 (0.230 sec) INFO:tensorflow:global_step/sec: 444.669 INFO:tensorflow:loss = 0.008494921, step = 91401 (0.225 sec) INFO:tensorflow:global_step/sec: 440.277 INFO:tensorflow:loss = 0.018028438, step = 91501 (0.227 sec) INFO:tensorflow:global_step/sec: 417.406 INFO:tensorflow:loss = 0.006696405, step = 91601 (0.240 sec) INFO:tensorflow:global_step/sec: 430.287 INFO:tensorflow:loss = 0.014338403, step = 91701 (0.232 sec) INFO:tensorflow:global_step/sec: 470.94 INFO:tensorflow:loss = 0.008885477, step = 91801 (0.212 sec) INFO:tensorflow:global_step/sec: 459.27 INFO:tensorflow:loss = 0.013566902, step = 91901 (0.218 sec) INFO:tensorflow:global_step/sec: 448.312 INFO:tensorflow:loss = 0.011971151, step = 92001 (0.223 sec) INFO:tensorflow:global_step/sec: 450.095 INFO:tensorflow:loss = 0.0060772435, step = 92101 (0.222 sec) INFO:tensorflow:global_step/sec: 434.944 INFO:tensorflow:loss = 0.0059761694, step = 92201 (0.230 sec) INFO:tensorflow:global_step/sec: 463.82 INFO:tensorflow:loss = 0.010871683, step = 92301 (0.216 sec) INFO:tensorflow:global_step/sec: 459.717 INFO:tensorflow:loss = 0.011779211, step = 92401 (0.217 sec) INFO:tensorflow:global_step/sec: 424.343 INFO:tensorflow:loss = 0.011967138, step = 92501 (0.235 sec) INFO:tensorflow:global_step/sec: 461.653 INFO:tensorflow:loss = 0.0106203705, step = 92601 (0.217 sec) INFO:tensorflow:global_step/sec: 459.715 INFO:tensorflow:loss = 0.013204046, step = 92701 (0.217 sec) INFO:tensorflow:global_step/sec: 470.377 INFO:tensorflow:loss = 0.014740882, step = 92801 (0.213 sec) INFO:tensorflow:global_step/sec: 455.658 INFO:tensorflow:loss = 0.01317253, step = 92901 (0.219 sec) INFO:tensorflow:global_step/sec: 454.727 INFO:tensorflow:loss = 0.018995635, step = 93001 (0.220 sec) INFO:tensorflow:global_step/sec: 446.527 INFO:tensorflow:loss = 0.011236705, step = 93101 (0.224 sec) INFO:tensorflow:global_step/sec: 465.532 INFO:tensorflow:loss = 0.0078997, step = 93201 (0.215 sec) INFO:tensorflow:global_step/sec: 465.212 INFO:tensorflow:loss = 0.009754804, step = 93301 (0.215 sec) INFO:tensorflow:global_step/sec: 436.752 INFO:tensorflow:loss = 0.013066869, step = 93401 (0.229 sec) INFO:tensorflow:global_step/sec: 453.834 INFO:tensorflow:loss = 0.011819014, step = 93501 (0.220 sec) INFO:tensorflow:global_step/sec: 463.021 INFO:tensorflow:loss = 0.007798925, step = 93601 (0.216 sec) INFO:tensorflow:global_step/sec: 446.748 INFO:tensorflow:loss = 0.00755817, step = 93701 (0.224 sec) INFO:tensorflow:global_step/sec: 453.097 INFO:tensorflow:loss = 0.01941024, step = 93801 (0.221 sec) INFO:tensorflow:global_step/sec: 455.564 INFO:tensorflow:loss = 0.008340649, step = 93901 (0.219 sec) INFO:tensorflow:global_step/sec: 435.821 INFO:tensorflow:loss = 0.00634618, step = 94001 (0.230 sec) INFO:tensorflow:global_step/sec: 442.063 INFO:tensorflow:loss = 0.01474265, step = 94101 (0.226 sec) INFO:tensorflow:global_step/sec: 455.137 INFO:tensorflow:loss = 0.0123366965, step = 94201 (0.219 sec) INFO:tensorflow:global_step/sec: 435.127 INFO:tensorflow:loss = 0.013045967, step = 94301 (0.230 sec) INFO:tensorflow:global_step/sec: 455.067 INFO:tensorflow:loss = 0.00995292, step = 94401 (0.220 sec) INFO:tensorflow:global_step/sec: 450.729 INFO:tensorflow:loss = 0.008934388, step = 94501 (0.222 sec) INFO:tensorflow:global_step/sec: 443.44 INFO:tensorflow:loss = 0.01303645, step = 94601 (0.226 sec) INFO:tensorflow:global_step/sec: 448.682 INFO:tensorflow:loss = 0.012838178, step = 94701 (0.223 sec) INFO:tensorflow:global_step/sec: 463.964 INFO:tensorflow:loss = 0.020047497, step = 94801 (0.215 sec) INFO:tensorflow:global_step/sec: 445.844 INFO:tensorflow:loss = 0.018084995, step = 94901 (0.224 sec) INFO:tensorflow:global_step/sec: 437.066 INFO:tensorflow:loss = 0.020988055, step = 95001 (0.229 sec) INFO:tensorflow:global_step/sec: 451.559 INFO:tensorflow:loss = 0.0076173977, step = 95101 (0.222 sec) INFO:tensorflow:global_step/sec: 437.771 INFO:tensorflow:loss = 0.010435652, step = 95201 (0.229 sec) INFO:tensorflow:global_step/sec: 452.663 INFO:tensorflow:loss = 0.01778499, step = 95301 (0.220 sec) INFO:tensorflow:global_step/sec: 438.928 INFO:tensorflow:loss = 0.00816166, step = 95401 (0.228 sec) INFO:tensorflow:global_step/sec: 446.8 INFO:tensorflow:loss = 0.017459739, step = 95501 (0.224 sec) INFO:tensorflow:global_step/sec: 432.417 INFO:tensorflow:loss = 0.013792496, step = 95601 (0.231 sec) INFO:tensorflow:global_step/sec: 450.963 INFO:tensorflow:loss = 0.0145329265, step = 95701 (0.222 sec) INFO:tensorflow:global_step/sec: 435.927 INFO:tensorflow:loss = 0.020655911, step = 95801 (0.230 sec) INFO:tensorflow:global_step/sec: 462.24 INFO:tensorflow:loss = 0.013377575, step = 95901 (0.216 sec) INFO:tensorflow:global_step/sec: 444.692 INFO:tensorflow:loss = 0.014647892, step = 96001 (0.225 sec) INFO:tensorflow:global_step/sec: 432.998 INFO:tensorflow:loss = 0.011901893, step = 96101 (0.231 sec) INFO:tensorflow:global_step/sec: 436.192 INFO:tensorflow:loss = 0.0070857587, step = 96201 (0.229 sec) INFO:tensorflow:global_step/sec: 454.613 INFO:tensorflow:loss = 0.0070481785, step = 96301 (0.220 sec) INFO:tensorflow:global_step/sec: 462.447 INFO:tensorflow:loss = 0.014068865, step = 96401 (0.216 sec) INFO:tensorflow:global_step/sec: 463.401 INFO:tensorflow:loss = 0.009489993, step = 96501 (0.216 sec) INFO:tensorflow:global_step/sec: 442.954 INFO:tensorflow:loss = 0.009569755, step = 96601 (0.226 sec) INFO:tensorflow:global_step/sec: 460.514 INFO:tensorflow:loss = 0.011614005, step = 96701 (0.217 sec) INFO:tensorflow:global_step/sec: 451.355 INFO:tensorflow:loss = 0.013578262, step = 96801 (0.222 sec) INFO:tensorflow:global_step/sec: 455.554 INFO:tensorflow:loss = 0.0053700837, step = 96901 (0.220 sec) INFO:tensorflow:global_step/sec: 441.355 INFO:tensorflow:loss = 0.01334461, step = 97001 (0.226 sec) INFO:tensorflow:global_step/sec: 452.378 INFO:tensorflow:loss = 0.0177409, step = 97101 (0.221 sec) INFO:tensorflow:global_step/sec: 447.299 INFO:tensorflow:loss = 0.006775462, step = 97201 (0.224 sec) INFO:tensorflow:global_step/sec: 459.251 INFO:tensorflow:loss = 0.013195847, step = 97301 (0.218 sec) INFO:tensorflow:global_step/sec: 457.995 INFO:tensorflow:loss = 0.009728897, step = 97401 (0.218 sec) INFO:tensorflow:global_step/sec: 455.546 INFO:tensorflow:loss = 0.014908279, step = 97501 (0.220 sec) INFO:tensorflow:global_step/sec: 455.737 INFO:tensorflow:loss = 0.01381776, step = 97601 (0.219 sec) INFO:tensorflow:global_step/sec: 450.554 INFO:tensorflow:loss = 0.009535696, step = 97701 (0.222 sec) INFO:tensorflow:global_step/sec: 458.461 INFO:tensorflow:loss = 0.015514374, step = 97801 (0.218 sec) INFO:tensorflow:global_step/sec: 423.27 INFO:tensorflow:loss = 0.011712936, step = 97901 (0.236 sec) INFO:tensorflow:global_step/sec: 420.42 INFO:tensorflow:loss = 0.013672416, step = 98001 (0.238 sec) INFO:tensorflow:global_step/sec: 435.023 INFO:tensorflow:loss = 0.012360635, step = 98101 (0.230 sec) INFO:tensorflow:global_step/sec: 441.184 INFO:tensorflow:loss = 0.012664949, step = 98201 (0.227 sec) INFO:tensorflow:global_step/sec: 441.965 INFO:tensorflow:loss = 0.015917204, step = 98301 (0.226 sec) INFO:tensorflow:global_step/sec: 436.022 INFO:tensorflow:loss = 0.020906836, step = 98401 (0.234 sec) INFO:tensorflow:global_step/sec: 413.842 INFO:tensorflow:loss = 0.010173284, step = 98501 (0.237 sec) INFO:tensorflow:global_step/sec: 452.2 INFO:tensorflow:loss = 0.012074901, step = 98601 (0.221 sec) INFO:tensorflow:global_step/sec: 454.932 INFO:tensorflow:loss = 0.011731269, step = 98701 (0.220 sec) INFO:tensorflow:global_step/sec: 446.592 INFO:tensorflow:loss = 0.013173582, step = 98801 (0.224 sec) INFO:tensorflow:global_step/sec: 447.219 INFO:tensorflow:loss = 0.020451186, step = 98901 (0.223 sec) INFO:tensorflow:global_step/sec: 457.725 INFO:tensorflow:loss = 0.009836784, step = 99001 (0.219 sec) INFO:tensorflow:global_step/sec: 447.492 INFO:tensorflow:loss = 0.018442167, step = 99101 (0.224 sec) INFO:tensorflow:global_step/sec: 456.811 INFO:tensorflow:loss = 0.014100221, step = 99201 (0.219 sec) INFO:tensorflow:global_step/sec: 440.711 INFO:tensorflow:loss = 0.0076775113, step = 99301 (0.227 sec) INFO:tensorflow:global_step/sec: 462.599 INFO:tensorflow:loss = 0.011209414, step = 99401 (0.217 sec) INFO:tensorflow:global_step/sec: 438.489 INFO:tensorflow:loss = 0.008704329, step = 99501 (0.228 sec) INFO:tensorflow:global_step/sec: 436.411 INFO:tensorflow:loss = 0.0077988785, step = 99601 (0.229 sec) INFO:tensorflow:global_step/sec: 411.029 INFO:tensorflow:loss = 0.0077135414, step = 99701 (0.243 sec) INFO:tensorflow:global_step/sec: 427.106 INFO:tensorflow:loss = 0.011483322, step = 99801 (0.234 sec) INFO:tensorflow:global_step/sec: 439.47 INFO:tensorflow:loss = 0.016574938, step = 99901 (0.228 sec) INFO:tensorflow:Saving checkpoints for 100000 into /tmp/tmpU33rCk/model.ckpt. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Importing architecture from /tmp/tmpU33rCk/architecture-3.txt: ['0:linear', '1:1_layer_dnn', '2:2_layer_dnn', '3:2_layer_dnn']. INFO:tensorflow:Rebuilding iteration 0 INFO:tensorflow:Building subnetwork 'linear' INFO:tensorflow:Rebuilding iteration 1 INFO:tensorflow:Building subnetwork '1_layer_dnn' INFO:tensorflow:Rebuilding iteration 2 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Rebuilding iteration 3 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building iteration 4 INFO:tensorflow:Building subnetwork '2_layer_dnn' INFO:tensorflow:Building subnetwork '3_layer_dnn' INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2018-12-13-19:39:03 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpU33rCk/model.ckpt-100000 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving candidate 't3_2_layer_dnn' dict for global step 100000: architecture/adanet/ensembles = � >adanet/iteration_3/ensemble_t3_2_layer_dnn/architecture/adanetB:B4| linear | 1_layer_dnn | 2_layer_dnn | 2_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.032998268, average_loss/adanet/subnetwork = 0.04255607, average_loss/adanet/uniform_average_ensemble = 0.036970153, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.042651616, loss/adanet/subnetwork = 0.059904583, loss/adanet/uniform_average_ensemble = 0.05318597, prediction/mean/adanet/adanet_weighted_ensemble = 3.0920377, prediction/mean/adanet/subnetwork = 3.1531146, prediction/mean/adanet/uniform_average_ensemble = 3.1435103 INFO:tensorflow:Saving candidate 't4_2_layer_dnn' dict for global step 100000: architecture/adanet/ensembles = � >adanet/iteration_4/ensemble_t4_2_layer_dnn/architecture/adanetBHBB| linear | 1_layer_dnn | 2_layer_dnn | 2_layer_dnn | 2_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.03505087, average_loss/adanet/subnetwork = 0.03415539, average_loss/adanet/uniform_average_ensemble = 0.03567381, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.04599317, loss/adanet/subnetwork = 0.0469665, loss/adanet/uniform_average_ensemble = 0.05124563, prediction/mean/adanet/adanet_weighted_ensemble = 3.093939, prediction/mean/adanet/subnetwork = 3.1460986, prediction/mean/adanet/uniform_average_ensemble = 3.144028 INFO:tensorflow:Saving candidate 't4_3_layer_dnn' dict for global step 100000: architecture/adanet/ensembles = � >adanet/iteration_4/ensemble_t4_3_layer_dnn/architecture/adanetBHBB| linear | 1_layer_dnn | 2_layer_dnn | 2_layer_dnn | 3_layer_dnn |J  text, average_loss/adanet/adanet_weighted_ensemble = 0.035222616, average_loss/adanet/subnetwork = 0.038082376, average_loss/adanet/uniform_average_ensemble = 0.036011517, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss/adanet/adanet_weighted_ensemble = 0.04607369, loss/adanet/subnetwork = 0.054222643, loss/adanet/uniform_average_ensemble = 0.051993247, prediction/mean/adanet/adanet_weighted_ensemble = 3.0921233, prediction/mean/adanet/subnetwork = 3.171357, prediction/mean/adanet/uniform_average_ensemble = 3.1490798 INFO:tensorflow:Finished evaluation at 2018-12-13-19:39:09 INFO:tensorflow:Saving dict for global step 100000: average_loss = 0.035222616, average_loss/adanet/adanet_weighted_ensemble = 0.035222616, average_loss/adanet/subnetwork = 0.038082376, average_loss/adanet/uniform_average_ensemble = 0.036011517, global_step = 100000, label/mean = 3.1049454, label/mean/adanet/adanet_weighted_ensemble = 3.1049454, label/mean/adanet/subnetwork = 3.1049454, label/mean/adanet/uniform_average_ensemble = 3.1049454, loss = 0.04607369, loss/adanet/adanet_weighted_ensemble = 0.04607369, loss/adanet/subnetwork = 0.054222643, loss/adanet/uniform_average_ensemble = 0.051993247, prediction/mean = 3.0921233, prediction/mean/adanet/adanet_weighted_ensemble = 3.0921233, prediction/mean/adanet/subnetwork = 3.171357, prediction/mean/adanet/uniform_average_ensemble = 3.1490798 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 100000: /tmp/tmpU33rCk/model.ckpt-100000 INFO:tensorflow:Loss for final step: 0.011420857. INFO:tensorflow:Finished training Adanet iteration 4 Loss: 0.035222616 Uniform average loss: 0.036011517 Architecture: | linear | 1_layer_dnn | 2_layer_dnn | 2_layer_dnn | 3_layer_dnn |
Apache-2.0
adanet/examples/tutorials/adanet_objective.ipynb
sararob/adanet
Remote control Jetbot using Virtual gamepad======
# This cell should only run once. import os # set the current working directory. This is required by isaac. os.chdir("../..") os.getcwd() simulation =True from packages.pyalice import Application, Message, Codelet # Creates an empty Isaac application app = Application(name="jetbot_application")
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
The Robot Engine Bridge enables communication between Omniverse and the Isaac SDK. When a REB application is created, a simulation-side Isaac SDK application is started, allowing messages to be sent to, or published from, the REB Components. The simulation Subgraph is loaded into our Isaac application, allowing the exchange of messages between our application and the REB Components present in the Omniverse model over TCP. Thus, by loading in the simulation subgraph and using the Camera and Differential Base components, our Isaac application can receive the image stream from Omniverse’s Viewport and can transmit commands to be effectuated in simulation.
if simulation: # Loads the simulation_tcp subgraph into the Isaac application, adding all nodes, components, # edges, and configurations app.load(filename="apps/jetbot/simulation_tcp.subgraph.json", prefix="simulation") # Gets a reference to the interface node of the subgraph having a prefix of "simulation" simulation_node = app.nodes["simulation.interface"]
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
The Robot Remote Control component can send commands to the Differential Base to control the Jetbot model. Therefore, we add a node to which a component of type RobotRemoteControl is added. Nodes can be thought of as a container to group related components in an Isaac application. As the RobotRemoteControl component will be used to generate commands in the form of the desired state of a Segway, an edge is added between the “Segway_cmd” channel of the RobotRemoteControl component and the “base_command” channel of the simulation subgraph. This allows the REB Differential Base in Omniverse to receive the desired Segway states and move the Jetbot model in accordance with the received command.
if simulation: # Creating a new node in the Isaac application named "robot_remote" robot_remote_node = app.add("robot_remote") # Loads the navigation module, allowing components requiring this module to be added to the application app.load_module("navigation") # Add the RobotRemoteControl and FailsafeHeartbeat components to the robot_remote node robot_remote_control_component = robot_remote_node.add(name="RobotRemoteControl", ctype=app.registry.isaac.navigation.RobotRemoteControl) failsafe_component = robot_remote_node.add(name="FailsafeHeartbeat", ctype=app.registry.isaac.alice.FailsafeHeartbeat) # Set component configuration parameters robot_remote_control_component.config["tick_period"] = "10ms" failsafe_component.config["heartbeat_name"] = "deadman_switch" failsafe_component.config["failsafe_name"] = "robot_failsafe" failsafe_component.config["interval"] = 0.25 # Makes dataflow connection between "segway_cmd" channel of RobotRemoteControl component, and the # "base_command" channel of the REB Differental Base in simulation app.connect(robot_remote_control_component, "segway_cmd", simulation_node["input"], "base_command")
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
To generate a corresponding command, the Robot Remote Control component must receive either JoystickStateProto messages from its "js_state" channel, or messages consisting of a linear and angular velocity over its "ctrl" channel. Here, we add the virtual gamepad subgraph which can be used to generate "JoystickStateProto" messages required by the Robot Remote Control component. Therefore, we establish the necessary connection.
if simulation: # Loads the virtual_gamepad subgraph into the application app.load(filename="apps/jetbot/virtual_gamepad.subgraph.json", prefix="virtual_gamepad") # Finds a reference to the component named "interface", located in the subgraph node of the virtual gamepad # subgraph. The component named "interface" is of type Subgraph, meaning all messages coming to or from the # virtual gamepad subgraph will pass through the channels of the subgraph component. virtual_gamepad_interface = app.nodes["virtual_gamepad.subgraph"]["interface"] # Pass messages generated by virtual gamepad to RobotRemoteControl component. app.connect(virtual_gamepad_interface, "joystick", robot_remote_control_component, "js_state")
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
The virtual gamepad widget in Sight allows us to use the WASD keys of the keyboard to steer the Jetbot in simulation, thus making the connection between Isaac and Omniverse more concrete. Prior to starting the Isaac application, the REB application is created by opening the jetbot.usd file in Omniverse, navigating to the Robot Engine Bridge extension and clicking "create application", followed by pressing the "Play" button. The Isaac application can now be started by executing the following piece of code.
app.start()
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
Open Sight by going to (Your-IP-Address):3000 in your browser (or localhost:3000 if the Isaac SDK is running on your local machine), and control the Jetbot in simulation with the Virtual Gamepad as shown below.
app.stop()
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
Running Inference in Simulation ======Please note the following section requires a training environment built in simulation and a model trained.With the simulation environment and a trained model (the .etlt file generated by following the Object Detection with DetectNetv2 pipeline), we can run inference using data streamed from simulation using the detectnet subgraph. The subgraph receives ImageViewer proto messages from its "image" channel, performs inference on the received images, and transmits a Detections2Proto message containing the bounding box position, label, and confidence for each of the detections. Upon loading the subgraph, configuration parameters are adjusted according to how training was conducted using the object detection pipeline.
app.load(filename="packages/detect_net/apps/detect_net_inference.subgraph.json", prefix="detect_net") # Setting configuration parameters of components used in the detect-net subgraph to allow the trained # model to be used, and training parameters specified. inference_component = app.nodes["detect_net.tensor_r_t_inference"]["isaac.ml.TensorRTInference"] inference_component.config.model_file_path = "external/jetbot_ball_detection_resnet_model/jetbot_ball_detection_resnet18.etlt" inference_component.config.etlt_password = "nvidia" decoder_component = app.nodes["detect_net.detection_decoder"]["isaac.detect_net.DetectNetDecoder"] decoder_component.config.labels = ["sphere"] # Changing Detectnet Subgraph to accommodate Omniverse viewport (720 x 1280) and # dimensions used to train model if simulation: inference_component.config["input_tensor_info"] = [ { "operation_name": "input_1", "channel": "image", "dims": [3, 368, 640], "uff_input_order": "channels_last" } ] decoder_component.config["output_scale"] = [720, 1280] encoder_component = app.nodes["detect_net.tensor_encoder"]["isaac.ml.ColorCameraEncoderCuda"] encoder_component.config["rows"] = 368
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
With the subgraph loaded and configuration parameters set, we can relay Omniverse's viewport stream, captured by the REB Camera, to the detectnet subgraph, allowing inference to be performed on simulation data.
detect_net_interface = app.nodes["detect_net.subgraph"]["interface"] if simulation: # Allows image stream from Omniverse to flow to detect-net app.connect(simulation_node["output"], "color", detect_net_interface, "image") app.start()
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
Upon opening the jetbot_inference.usd file in Omniverse, creating the Robot Engine Bridge application, and starting both the simulation and he Isaac application, the performance of the detection model can be verified.
app.stop()
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
Jetbot Autonomously Following Objects in Simulation======Now that objects are being correctly detected in simulation, we need to implement the control logic to move the Jetbot model such that it keeps the desired object both just in front of it and horizontally centered. To accomplish this, we first define a couple helper functions to parse detections2proto messages, determine the pixel coordinates of the center of a bounding box, determine the area (in pixels) of a bounding box, and find the detection of a specified label whose bounding box center is closest to the target location. Bounding box area will later be used to estimate how close or far a detected object is from the Jetbot.
import numpy as np import json def get_parsed_detections(detections_msg): """Parses and reformats Detections2Proto messages""" detections_msg_json = detections_msg.json zipped = zip(detections_msg_json['predictions'], detections_msg_json['boundingBoxes']) zipped_list = list(zipped) detections = {} for k, sublist in enumerate(zipped_list): for sub_sublist in sublist: # If key already present; append to the existing dict. if (k in detections): detections[k] = {**detections[k],**sub_sublist} # If key not present insert the first attribute of the detected object. else: detections[k] = {**sub_sublist} return detections def norm(vec, target): """Computes the length of the 2D vector""" return np.sqrt((vec[0]-target[0])**2 + (vec[1]-target[1])**2) def get_detection_center(detection): """Computes the center x, y coordinates of the object x = rows of image; y = cols of image """ center_x = (detection['min']['x'] + detection['max']['x']) / 2.0 - 0.5 center_y = (detection['min']['y'] + detection['max']['y']) / 2.0 - 0.5 return (center_x, center_y) def get_detection_area(detection): """Computes the area (in pixels) of a detection""" detection_width = detection['max']['x'] - detection['min']['x'] detection_height = detection['max']['y'] - detection['min']['y'] detection_area = detection_width * detection_height return detection_area def find_closest_matching_detection(detections_dict, target, label): """Finds the closest detection to target pixel location in detections_dict, having the specified label""" closest_matching_detection = None closest_matching_detection_dist = np.inf for detection in detections_dict.values(): if detection["label"] == label: detection_center = get_detection_center(detection) detection_dist = norm(detection_center, target) if detection_dist < closest_matching_detection_dist: closest_matching_detection = detection closest_matching_detection_dist = detection_dist return closest_matching_detection
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
With the helper functions in place and detections being made in simulation, we can develop a Python Codelet to control the Jetbot, which will use detections messages to compute the desired motor commands of the Jetbot, and then publish messages containing these commands. Codelets are functionally equivalent to the built-in COMPONENTS provided by the Isaac SDK in the sense that they both send and receive messages, however, Codelets provide a way for us to create a custom component so we can execute user-defined code within our Isaac application. You can learn more about creating Codelets HERE. As the real Jetbot’s motors are controlled with Pulse Width Modulator (PWM) duty cycle commands, the created Codelet will generate messages containing commands of this type. Linear speed of the Jetbot is determined based on the area of the bounding box of a detected object; If the area of the detected object is too small, the Jetbot will move closer to the object, whereas if the area is too large, the Jetbot will back away. Similarly, angular speed is set based on the horizontal offset of the detection from the center of the Jetbot’s view. Finally, motor commands are calculated based on the linear and angular speed, and messages containing the commands are published.
# Generates PWM commands to follow desired object class JetbotControl(Codelet): def start(self): self.rx = self.isaac_proto_rx("Detections2Proto", "detections") self.tx = self.isaac_proto_tx("StateProto", "motor_command") # Ticks when new detections message is received self.tick_on_message(self.rx) def tick(self): # Receives a Detections2Proto message rx_message = self.rx.message # Reads configuration parameters set outside of Codelet label = self.config.label image_width = self.config.image_width image_height = self.config.image_height min_pwm = self.config.min_pwm # Smallest motor command required to move real Jetbot angular_gain = self.config.angular_gain target_coverage = self.config.target_coverage parsed_detections = get_parsed_detections(rx_message) image_horizontal_center = image_width / 2.0 image_vertical_center = image_height / 2.0 image_center = [image_vertical_center, image_horizontal_center] detection = find_closest_matching_detection(parsed_detections, image_center, label) if detection is None: # Do not move if there isn't a detection with matching label left_motor_command = 0.0 right_motor_command = 0.0 else: # Generate PWM commands to move towards detection by keeping the detection horizontally centered, # and the fraction of the image the bounding box covers equal to target_coverage # Compute areas image_area = image_width * image_height target_area = target_coverage * image_area detection_area = get_detection_area(detection) # Use areas to determine linear speed # min_pwm is used here to eliminate dead zones if detection_area < target_area: linear_speed = min_pwm + (1 - min_pwm)*(target_area - detection_area) / target_area else: linear_speed = -min_pwm + (1 - min_pwm)*(target_area - detection_area) / (image_area - target_area) # Use horizontal offset of detection from image center to determine angular speed detection_center = get_detection_center(detection) angular_speed = (image_horizontal_center - detection_center[1]) / image_horizontal_center # Computes motor commands based on desired linear and angular speeds, ensuring PWM commands are in Jetbot's # acceptable range of [-1, 1] min_motor_command = -1 max_motor_command = 1 left_motor_command = float(np.clip(linear_speed - angular_gain * angular_speed, min_motor_command, max_motor_command)) right_motor_command = float(np.clip(linear_speed + angular_gain * angular_speed, min_motor_command, max_motor_command)) # Initializes, populates, and transmits a StateProto message containing motor commands tx_message = self.tx.init() data = tx_message.proto.init('data', 2) data[0] = left_motor_command data[1] = right_motor_command self.tx.publish()
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
The created Codelet must be added to the Isaac application, just like a normal component. The configuration parameters are then set and an edge added between the Codelet and the detect-net subgraph so that the detections messages can be used to generate control commands.
# Create a new node, and add the JetbotControl Codelet to the node. controller_node = app.add("controller") jetbot_control_component = controller_node.add(JetbotControl) # Set the configuration parameters of the JetbotControl Codelet if simulation: jetbot_control_component.config.image_width = 1280 jetbot_control_component.config.image_height = 720 else: jetbot_control_component.config.image_width = 640 jetbot_control_component.config.image_height = 360 jetbot_control_component.config.label = "sphere" jetbot_control_component.config.target_coverage = 0.05 jetbot_control_component.config.angular_gain = 0.057 jetbot_control_component.config.min_pwm = 0.25 # Pass detections to JetbotControl Codelet app.connect(detect_net_interface, "detections", jetbot_control_component, "detections")
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
While the added Codelet can generate motor commands compatible with the real Jetbot, in simulation the Jetbot is controlled by sending Segway commands to the REB Differential Base. Segway commands can be generated by providing linear and angular velocities to the “ctrl” channel of the previously created RobotRemoteControl component. To convert PWM commands generated by our controller into the linear and angular commands needed, a relationship between motor commands sent to the Jetbot and the speed at which the real Jetbot travels must be established. The mapping between motor command and velocity was found by experimentally measuring the time taken for the real Jetbot to travel 3 meters.
def pwm_to_velocity(pwm_command, min_pwm_command): """Computes velocity (in [m/s]) of real Jetbot when both motors are set to "pwm_command" based on experimental data""" command_abs = np.abs(pwm_command) # min_pwm_command represents the interval of commands sent to the jetbot which do not cause movement: # [-min_pwm_command, min_pwm_command] if command_abs < min_pwm_command: velocity = 0 else: velocity = float(np.sign(pwm_command) * (2.0328 * command_abs - 0.0948)) return velocity
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
A second Codelet can now be created to adapt the PWM commands so that they are able to be used in simulation. With the help of our recently defined “pwm_to_velocity” function, the velocity of each wheel can be calculated. Then, using the dynamics equations of a differential base, linear and angular velocity can be calculated from the wheel velocities.
# Converts PWM commands into linear and angular velocities class SimulationAdapter(Codelet): def start(self): self.rx = self.isaac_proto_rx("StateProto", "motor_command") self.tx = self.isaac_proto_tx("StateProto", "velocity_command") self.tick_on_message(self.rx) def tick(self): rx_message = self.rx.message min_pwm_command = self.config.min_pwm_command simulation_linear_gain = self.config.simulation_linear_gain simulation_angular_gain = self.config.simulation_angular_gain data = rx_message.json['data'] left_motor_command = data[0] right_motor_command = data[1] left_wheel_velocity = pwm_to_velocity(left_motor_command, min_pwm_command) right_wheel_velocity = pwm_to_velocity(right_motor_command, min_pwm_command) # Distance between wheels of Jetbot [m] length = 0.1143 # Linear and angular velocity resulting from PWM command linear_velocity = (left_wheel_velocity + right_wheel_velocity) / 2.0 angular_velocity = (left_wheel_velocity - right_wheel_velocity) / length # Gains were found using a REB RigidBodySink and measuring velocity traveled in simulation, # versus linear and angular command sent to simulation. simulation_linear_command = simulation_linear_gain * linear_velocity simulation_angular_command = simulation_angular_gain * angular_velocity # Initializes, populates, and publishes commands containing linear and angular velocities tx_message = self.tx.init() data = tx_message.proto.init('data', 2) data[0] = simulation_linear_command data[1] = simulation_angular_command self.tx.publish()
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
With the Simulation Adapter Codelet defined, we may now add it to our Isaac application. An edge is added from the Jetbot Control Codelet to the Simulation Adapter, allowing the Adapter to receive PWM commands from the controller. Once the commands are converted into linear and angular velocities, they must be sent to the RobotRemoteControl component as previously discussed, so we need to add the corresponding edge.
if simulation: # Create a new node, and add the SimulationAdapter Codelet to the node. adapter_node = app.add("adapter") simulation_adapter_component = adapter_node.add(SimulationAdapter) # Set the configuration parameters of the SimulationAdapter Codelet simulation_adapter_component.config.min_pwm_command = 0.2 simulation_adapter_component.config.simulation_linear_gain = 0.27 simulation_adapter_component.config.simulation_angular_gain = -0.16 # Pass motor commands calculated by the JetbotControl Codelet to the SimulationAdapter Codelet app.connect(jetbot_control_component, "motor_command", simulation_adapter_component, "motor_command") # Pass linear and angular velocity commands from the SimulationAdapter Codelet to the RobotRemoteControl component. app.connect(simulation_adapter_component, "velocity_command", robot_remote_control_component, "ctrl")
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
Now we’re ready to autonomously follow a ball in simulation. Upon opening the jetbot_follow.usd file in Omniverse, create the Robot Engine Bridge application, and start the Isaac application by running the next cell.
app.start()
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
You'll notice that despite the Jetbot detecting objects, it isn't moving. The reason is that the Robot Remote Control component will only send commands while the deadman switch is pressed for safety reasons. But there aren't any safety concerns in simulation! Lets go ahead and disable that.
if simulation: robot_remote_control_component.config["disable_deadman_switch"] = True
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
You should now see your Jetbot following balls as they appear before it in simulation. Cool! Tweak the config parameters of the Wheel Velocity Control Generator Codelet to your likening, and let's finish bridging the gap between simulation and reality!
app.stop()
_____no_output_____
FSFAP
sdk/apps/jetbot/jetbot_notebook.ipynb
antonspivak/isaac_gps
PyTorch: 사용자 정의 nn Module-------------------------------하나의 은닉층(hidden layer)과 편향(bias)이 없는 완전히 연결된 ReLU 신경망을,유클리드 거리(Euclidean distance) 제곱을 최소화하는 식으로 x로부터 y를 예측하도록학습하겠습니다.이번에는 사용자 정의 Module의 서브클래스로 모델을 정의합니다. 기존 Module의 간단한구성보다 더 복잡한 모델을 원한다면, 이 방법으로 모델을 정의하면 됩니다.
import torch class TwoLayerNet(torch.nn.Module): def __init__(self, D_in, H, D_out): """ 생성자에서 2개의 nn.Linear 모듈을 생성하고, 멤버 변수로 지정합니다. """ super(TwoLayerNet, self).__init__() self.linear1 = torch.nn.Linear(D_in, H) self.linear2 = torch.nn.Linear(H, D_out) def forward(self, x): """ 순전파 함수에서는 입력 데이터의 Tensor를 받고 출력 데이터의 Tensor를 반환해야 합니다. Tensor 상의 임의의 연산자뿐만 아니라 생성자에서 정의한 Module도 사용할 수 있습니다. """ h_relu = self.linear1(x).clamp(min=0) y_pred = self.linear2(h_relu) return y_pred # N은 배치 크기이며, D_in은 입력의 차원입니다; # H는 은닉층의 차원이며, D_out은 출력 차원입니다. N, D_in, H, D_out = 64, 1000, 100, 10 # 입력과 출력을 저장하기 위해 무작위 값을 갖는 Tensor를 생성합니다. x = torch.randn(N, D_in) y = torch.randn(N, D_out) # 앞에서 정의한 클래스를 생성하여 모델을 구성합니다. model = TwoLayerNet(D_in, H, D_out) # 손실 함수와 Optimizer를 만듭니다. SGD 생성자에 model.parameters()를 호출하면 # 모델의 멤버인 2개의 nn.Linear 모듈의 학습 가능한 매개변수들이 포함됩니다. criterion = torch.nn.MSELoss(reduction='sum') optimizer = torch.optim.SGD(model.parameters(), lr=1e-4) for t in range(500): # 순전파 단계: 모델에 x를 전달하여 예상되는 y 값을 계산합니다. y_pred = model(x) # 손실을 계산하고 출력합니다. loss = criterion(y_pred, y) print(t, loss.item()) # 변화도를 0으로 만들고, 역전파 단계를 수행하고, 가중치를 갱신합니다. optimizer.zero_grad() loss.backward() optimizer.step()
_____no_output_____
BSD-3-Clause
docs/_downloads/ee69127c1eacbde4ff2e2aca2e46e8f0/two_layer_net_module.ipynb
jessemin/PyTorch-tutorials-kr
Read sample data
x_train = pd.read_csv('sample_training_data.csv') ft_predict = 'cur_pH' # specify which column to predict all_fts = x_train.columns model_fts = all_fts model_fts.drop(ft_predict)
_____no_output_____
MIT
example/runPairwiseRegression_example.ipynb
philips-labs/pairwise-regression
Run pairwise regression model
# train model z_dynamic_range = np.linspace(6.8,7.5,15) # specify the range and binning of key-covariate model = KeyCovariatePairwiseLR(alpha_blend=20, cov_steps=20, coeff_smooth_z=6, func_smooth_z='sigmoid') print(ft_predict) model.fit(x_train[all_fts], 'prev_pH', ft_predict, cov_range_z=z_dynamic_range, include_z_in_x=True) ypred_train = model.predict(x_train[all_fts]) model.plot_pairwise_interactions(n_plot_cols=3, scaleup=1.6) plt.tight_layout()
cur_pH prev_pH
MIT
example/runPairwiseRegression_example.ipynb
philips-labs/pairwise-regression
d-sandbox Connecting to JDBCApache Spark&trade; and Databricks&reg; allow you to connect to a number of data stores using JDBC. In this lesson you:* Read data from a JDBC connection * Parallelize your read operation to leverage distributed computation Audience* Primary Audience: Data Engineers* Additional Audiences: Data Scientists and Data Pipeline Engineers Prerequisites* Web browser: Please use a supported browser.* Concept (optional): DataFrames course from Databricks Academy <iframe src="//fast.wistia.net/embed/iframe/i07uvaoqgh?videoFoam=true"style="border:1px solid 1cb1c2;"allowtransparency="true" scrolling="no" class="wistia_embed"name="wistia_embed" allowfullscreen mozallowfullscreen webkitallowfullscreenoallowfullscreen msallowfullscreen width="640" height="360" > &nbsp;Watch full-screen. -sandbox Java Database ConnectivityJava Database Connectivity (JDBC) is an application programming interface (API) that defines database connections in Java environments. Spark is written in Scala, which runs on the Java Virtual Machine (JVM). This makes JDBC the preferred method for connecting to data whenever possible. Hadoop, Hive, and MySQL all run on Java and easily interface with Spark clusters.Databases are advanced technologies that benefit from decades of research and development. To leverage the inherent efficiencies of database engines, Spark uses an optimization called predicate pushdown. **Predicate pushdown uses the database itself to handle certain parts of a query (the predicates).** In mathematics and functional programming, a predicate is anything that returns a Boolean. In SQL terms, this often refers to the `WHERE` clause. Since the database is filtering data before it arrives on the Spark cluster, there's less data transfer across the network and fewer records for Spark to process. Spark's Catalyst Optimizer includes predicate pushdown communicated through the JDBC API, making JDBC an ideal data source for Spark workloads.In the road map for ETL, this is the **Extract and Validate** step: Recalling the Design PatternRecall the design pattern for connecting to data from the previous lesson: 1. Define the connection point.2. Define connection parameters such as access credentials.3. Add necessary options. After adhering to this, read data using `spark.read.options(, ).()`. The JDBC connection uses this same formula with added complexity over what was covered in the lesson. <iframe src="//fast.wistia.net/embed/iframe/2clbjyxese?videoFoam=true"style="border:1px solid 1cb1c2;"allowtransparency="true" scrolling="no" class="wistia_embed"name="wistia_embed" allowfullscreen mozallowfullscreen webkitallowfullscreenoallowfullscreen msallowfullscreen width="640" height="360" > &nbsp;Watch full-screen. ![Spark Logo Tiny](https://files.training.databricks.com/images/105/logo_spark_tiny.png) Classroom-Setup & Classroom-CleanupFor each lesson to execute correctly, please make sure to run the **`Classroom-Setup`** cell at the start of each lesson (see the next cell) and the **`Classroom-Cleanup`** cell at the end of each lesson.
%run "./Includes/Classroom-Setup"
_____no_output_____
MIT
ETL-I/ETL1 04 - Connecting to JDBC.ipynb
vshiv667/Data-Engineering
-sandboxRun the cell below to confirm you are using the right driver. Each notebook has a default language that appears in upper corner of the screen next to the notebook name, and you can easily switch between languages in a notebook. To change languages, start your cell with `%python`, `%scala`, `%sql`, or `%r`.
%scala // run this regardless of language type Class.forName("org.postgresql.Driver")
_____no_output_____
MIT
ETL-I/ETL1 04 - Connecting to JDBC.ipynb
vshiv667/Data-Engineering
Define your database connection criteria. In this case, you need the hostname, port, and database name. Access the database `training` via port `5432` of a Postgres server sitting at the endpoint `server1.databricks.training`.Combine the connection criteria into a URL.
jdbcHostname = "server1.databricks.training" jdbcPort = 5432 jdbcDatabase = "training" jdbcUrl = f"jdbc:postgresql://{jdbcHostname}:{jdbcPort}/{jdbcDatabase}"
_____no_output_____
MIT
ETL-I/ETL1 04 - Connecting to JDBC.ipynb
vshiv667/Data-Engineering
Create a connection properties object with the username and password for the database.
connectionProps = { "user": "readonly", "password": "readonly" }
_____no_output_____
MIT
ETL-I/ETL1 04 - Connecting to JDBC.ipynb
vshiv667/Data-Engineering
Read from the database by passing the URL, table name, and connection properties into `spark.read.jdbc()`.
tableName = "training.people_1m" peopleDF = spark.read.jdbc(url=jdbcUrl, table=tableName, properties=connectionProps) display(peopleDF)
_____no_output_____
MIT
ETL-I/ETL1 04 - Connecting to JDBC.ipynb
vshiv667/Data-Engineering
Exercise 1: Parallelizing JDBC ConnectionsThe command above was executed as a serial read through a single connection to the database. This works well for small data sets; at scale, parallel reads are necessary for optimal performance.See the [Managing Parallelism](https://docs.databricks.com/spark/latest/data-sources/sql-databases.htmlmanaging-parallelism) section of the Databricks documentation. -sandbox Step 1: Find the Range of Values in the DataParallel JDBC reads entail assigning a range of values for a given partition to read from. The first step of this divide-and-conquer approach is to find bounds of the data.Calculate the range of values in the `id` column of `peopleDF`. Save the minimum to `dfMin` and the maximum to `dfMax`. **This should be the number itself rather than a DataFrame that contains the number.** Use `.first()` to get a Scala or Python object.&nbsp;**Hint:** See the `min()` and `max()` functions in Python `pyspark.sql.functions` or Scala `org.apache.spark.sql.functions`.
dfMin=peopleDF.select("id").rdd.min()[0] dfMax=peopleDF.select("id").rdd.max()[0] # TEST - Run this cell to test your solution dbTest("ET1-P-04-01-01", 1, dfMin) dbTest("ET1-P-04-01-02", 1000000, dfMax) print("Tests passed!")
_____no_output_____
MIT
ETL-I/ETL1 04 - Connecting to JDBC.ipynb
vshiv667/Data-Engineering
-sandbox Step 2: Define the Connection Parameters.Referencing the documentation, define the connection parameters for this read.Use 8 partitions.Assign the results to `peopleDFParallel`. Setting the column for your parallel read introduces unexpected behavior due to a bug in Spark. To make sure Spark uses the capitalization of your column, use `'"id"'` for your column. Monitor the issue here.
peopleDFParallel = spark.read.jdbc(url=jdbcUrl, table="training.people_1m", column='"id"', lowerBound=1, upperBound=100000, numPartitions=8,properties=connectionProps) display(peopleDFParallel) # TEST - Run this cell to test your solution dbTest("ET1-P-04-02-01", 8, peopleDFParallel.rdd.getNumPartitions()) print("Tests passed!")
_____no_output_____
MIT
ETL-I/ETL1 04 - Connecting to JDBC.ipynb
vshiv667/Data-Engineering
Step 3: Compare the Serial and Parallel ReadsCompare the two reads with the `%timeit` function. Display the number of partitions in each DataFrame by running the following:
print("Partitions:", peopleDF.rdd.getNumPartitions()) print("Partitions:", peopleDFParallel.rdd.getNumPartitions())
_____no_output_____
MIT
ETL-I/ETL1 04 - Connecting to JDBC.ipynb
vshiv667/Data-Engineering
Invoke `%timeit` followed by calling a `.describe()`, which computes summary statistics, on both `peopleDF` and `peopleDFParallel`.
%timeit peopleDF.describe() %timeit peopleDFParallel.describe()
_____no_output_____
MIT
ETL-I/ETL1 04 - Connecting to JDBC.ipynb
vshiv667/Data-Engineering
What is the difference between serial and parallel reads? Note that your results vary drastically depending on the cluster and number of partitions you use
#Parallel reads are faster by 3.5 secs on average over 7 runs
_____no_output_____
MIT
ETL-I/ETL1 04 - Connecting to JDBC.ipynb
vshiv667/Data-Engineering
Review**Question:** What is JDBC? **Answer:** JDBC stands for Java Database Connectivity, and is a Java API for connecting to databases such as MySQL, Hive, and other data stores.**Question:** How does Spark read from a JDBC connection by default? **Answer:** With a serial read. With additional specifications, Spark conducts a faster, parallel read. Parallel reads take full advantage of Spark's distributed architecture.**Question:** What is the general design pattern for connecting to your data? **Answer:** The general design patter is as follows:0. Define the connection point0. Define connection parameters such as access credentials0. Add necessary options such as for headers or parallelization ![Spark Logo Tiny](https://files.training.databricks.com/images/105/logo_spark_tiny.png) Classroom-CleanupRun the **`Classroom-Cleanup`** cell below to remove any artifacts created by this lesson.
%run "./Includes/Classroom-Cleanup"
_____no_output_____
MIT
ETL-I/ETL1 04 - Connecting to JDBC.ipynb
vshiv667/Data-Engineering
AI for Earth System Science Hackathon 2020 HOLODEC Machine Learning Challenge ProblemMatt Hayman, Aaron Bansemer, David John Gagne, Gabrielle Gantos, Gunther Wallach, Natasha Flyer IntroductionThe properties of the water and ice particles in clouds are critical to many aspects of weather and climate. The size, shape, and concentration of ice particles control the radiative properties of cirrus clouds. The spatial distribution of water droplets in warm clouds may influence the formation of drizzle and rain. The interactions among droplets, ice particles, and aerosols impact precipitation, lightning, atmospheric chemistry, and more. Measurements of natural cloud particles are often taken aboard research aircraft with instruments mounted on the wings. One of the newer technologies used for these instruments is inline holographic imaging, which has the important advantage of being able to instantaneously record all of the particles inside a small volume of air. Using this technology, the Holographic Detector for Clouds (HOLODEC) has been developed by the university community and NCAR to improve our cloud measurement capabilities.A hologram captures electro-magnatic field amplitude and phase (or wavefront) incident on a detector. In contrast, standard imaging captures only the amplitude of the electric field. Unlike a standard image, holograms can be computationally refocused on any object within the capture volume using standard wave propagation calculations. The figure below shows an example of an inline hologram (large image) with five out of focus particles. The five smaller images show the reconstruction from each particle by computationally propagating the electro-magnetic field back to the depth position of each particle. HOLODEC is an airborne holographic cloud imager capable of capturing particle size distributions in a single shot, so a measured particle size distribution is localized to a specific part of the cloud (not accumulated over a long path length). By capturing a hologram, each particle can be imaged irrespective of its location in the sample volume, and its size and position can be accurately captured.While holographic imaging provides unparalleled information about cloud particles, processing the raw holograms is also computationally expensive. Lacking prior knowledge of the particle position in depth, a typical HOLODEC hologram is reconstructed at 1000 planes (or depths) using standard diffraction calculations. At each plane, a particle’s image sharpness is evaluated and the particle size and position is determined only at a plane where it is in focus. In addition to the computational cost, the processing requires human intervention to recognize when a “particle” is really just artifacts of interfering scattered fields.The objective of this project is to develop a machine learning solution to process HOLODEC data that is more computationally efficient than the first-principles based processor. An important factor in processing hologram data is that the scattered field from a particle spreads out as it propagates. The image below shows the scattered field from a 50 µm particle at distances in increments of 0.1 mm from the particle (0 to 0.7 mm). As the scattered field expands, it’s power is also distributed over a larger area.![holodec 3d](holodec_images/image1.png)For simplicity, this project deals with simulated holographic data where particle shapes are limited to spheres. Two datasets are provided. The first dataset contains only one particle per hologram. If you are successful in processing the first dataset, or you wish to immediately focus on a more challenging case, you can work on the second dataset that contains three particles per hologram. Software RequirementsThis notebook requires Python >= 3.7. The following libraries are required:* numpy* scipy* matplotlib* xarray* pandas* scikit-learn* tensorflow >= 2.1* netcdf4* h5netcdf* tqdm* s3fs* zarr
!pip install numpy scipy matplotlib xarray pandas scikit-learn tensorflow netcdf4 h5netcdf tqdm s3fs zarr # if working on google colab, uncomment and enable save to google drive # ! pip install -U -q PyDrive # from google.colab import drive # drive.mount('/content/gdrive')
_____no_output_____
MIT
notebooks/holodec.ipynb
carlosenciso/ai4ess-hackathon-2020
DataThe datasets consist of synthetically-generated holograms of cloud droplets. Each dataset is in zarr format, and contains a series of hologram images as well as the properties of each particle in the image. The zarr variable names and properties are as follows:| Variable Name | Description | Dimensions | Units/Range|| ------------- | :----:|:----------- |:------|| image | Stack of single-color images. Each image is 600x400 pixels, ranging from 0-255 in intensity. | nHolograms, 600, 400 | 0 to 255 (grayscale image) || x | X-position of each particle in the dataset. The origin is at the center of the hologram image. | nParticles (can vary) | -888 to 888 micrometers || y | Y-position of each particle in the dataset. The origin is at the center of the hologram image. | nParticles (can vary) | -592 to 592 micrometers || z | Z-position of each particle in the dataset. The origin is at the focal plane of the instrument (all particles are unfocused). | nParticles (can vary) | 14000 to 158000 micrometers || d | Diameter of each simulated droplet | nParticles (can vary) | 20 to 70 micrometers || hid | Hologram ID specifies which hologram this particle is contained in. For example, if hid=1, the corresponding x, y, z, and d variables are found in the first hologram. | nParticles (can vary) | 1 to nHolograms || Dx (global attribute) | Resolution of each pixel, == 2.96 micrometers. Use if you wish to convert x/y position to pixel number | | |There are two datasets for this project, a single-particle dataset and a three-particle dataset. The single-particle dataset only contains one particle per hologram (nHolograms = nParticles). There are 50,000 holograms in the training dataset that correspond to 50,000 particles.The three-particle dataset contains three particles per hologram. This dataset also contains 50,000 holograms but 150,000 particles. Be sure to use the hid variable to figure out which hologram a particle is contained in.The ultimate goal of this project is to be able to find particles in the holograms and determine their x, y, z, and d values. This process is straightforward for finding a single particle, but finding multiple particles and their properties is much more challenging. A simpler objective that could also assist in speeding up the HOLODEC processing is calculating the relative distribution of particle mass in the z-direction from the holograms, which is a combination of information from z and d. Potential Input Variables| Variable Name | Units | Description | Relevance || ------------- | :----:|:----------- | :--------:|| hologram | arbitrary | 8 bit (0-255) amplitude captured by CCD | standard input data for processing | Output Variables| Variable Name | Units | Description || ------------- | :----:|:----------- || x | µm | particle horizontal position || y | µm | particle vertical position || z | µm | particle position in depth (along the direction of propagation) || d | µm | particle diameter || hid | arbitrary | hologram ID by particle| Training SetThe single-particle training dataset is in the zarr format described above, with 15,000 holograms and 15,000 corresponding particles.The three-particle training dataset contains 15,000 holograms and 45,000 particles. Validation SetThe single-particle validation dataset is in the zarr format described above, with 5,000 holograms and 5,000 corresponding particles.The three-particle validation dataset contains 5,000 holograms and 15,000 particles. Test SetThe single-particle test dataset is in the zarr format described above, with 5,000 holograms and 5,000 corresponding particles.The three-particle test dataset contains 5,000 holograms and 15,000 particles. Data TransformsThe input images only need to be normalized between 0 and 1 by dividing by 255.
# Module imports import argparse import random import os from os.path import join, exists import sys import s3fs import yaml import zarr import xarray as xr import numpy as np import pandas as pd from datetime import datetime import matplotlib.pyplot as plt %matplotlib inline from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler, RobustScaler from sklearn.metrics import mean_absolute_error, max_error import tensorflow as tf from tensorflow.keras.layers import Input, Conv2D, Dense, Flatten, MaxPool2D from tensorflow.keras.models import Model, save_model from tensorflow.keras.optimizers import Adam, SGD seed = 328942 np.random.seed(seed) random.seed(seed) tf.random.set_seed(seed) # Limit GPU memory usage gpus = tf.config.get_visible_devices("GPU") for device in gpus: print(device) tf.config.experimental.set_memory_growth(device, True) # define some datset helper functions num_particles_dict = { 1 : '1particle', 3 : '3particle', 'multi': 'multiparticle'} split_dict = { 'train' : 'training', 'test' : 'test', 'valid': 'validation'} def dataset_name(num_particles, split, file_extension='zarr'): """ Return the dataset filename given user inputs Args: num_particles: (int or str) Number of particles per hologram (1, 3, or 'multi') split: (str) Dataset split of either 'train', 'valid', or 'test' file_extension: (str) Dataset file extension Returns: dataset: (str) Dataset name """ valid = [1,3,'multi'] if num_particles not in valid: raise ValueError("results: num_particles must be one of %r." % valid) num_particles = num_particles_dict[num_particles] valid = ['train','test','valid'] if split not in valid: raise ValueError("results: split must be one of %r." % valid) split = split_dict[split] return f'synthetic_holograms_{num_particles}_{split}_small.{file_extension}' def open_zarr(path_data, num_particles, split): """ Open a HOLODEC Zarr file hosted on AWS Args: path_data: (str) Path to directory containing datset num_particles: (int or str) Number of particles per hologram (1, 3, or 'multi') split: (str) Dataset split of either 'train', 'valid', or 'test' Returns: dataset: (xarray Dataset) Opened dataset """ path_data = os.path.join(path_data, dataset_name(num_particles, split)) fs = s3fs.S3FileSystem(anon=True, default_fill_cache=False) store = s3fs.S3Map(root=path_data, s3=fs, check=False) dataset = xr.open_zarr(store=store) return dataset def scale_images(images, scaler_vals=None): """ Takes in array of images and scales pixel values between 0 and 1 Args: images: (np array) Array of images scaler_vals: (dict) Image scaler 'max' and 'min' values Returns: images_scaled: (np array) Scaled array of images with pixel values between 0 and 1 scaler_vals: (dict) Image scaler 'max' and 'min' values """ if scaler_vals is None: scaler_vals = {} scaler_vals["min"] = images.min() scaler_vals["max"] = images.max() images_scaled = (images.astype(np.float32) - scaler_vals["min"]) / (scaler_vals["max"] - scaler_vals["min"]) return images_scaled, scaler_vals def load_scaled_datasets(path_data, num_particles, output_cols, slice_idx, split='train', scaler_vals=None): """ Given a path to training or validation datset, the number of particles per hologram, and output columns, returns scaled inputs and raw outputs. Args: path_data: (str) Path to directory containing training and validation datsets num_particles: (int or str) Number of particles per hologram (1, 3, or 'multi') output_cols: (list of strings) List of feature columns to be used Returns: inputs_scaled: (np array) Input data scaled between 0 and 1 outputs: (df) Output data specified by output_cols scaler_vals: (dict) list of training/validation/test files """ if split == 'valid': slice_idx = int(slice_idx/3) print("Slicing data into inputs/outputs") ds = open_zarr(path_data, num_particles, split) inputs = ds["image"].values[:slice_idx] outputs = ds[output_cols].to_dataframe().loc[:slice_idx-1,:] ds.close() print(f"\t- outputs.shape: {outputs.shape}") print("Scaling input data") if split == 'train': inputs_scaled, scaler_vals = scale_images(inputs) else: slice_idx = int(slice_idx/3) inputs_scaled, _ = scale_images(inputs, scaler_vals) inputs_scaled = np.expand_dims(inputs_scaled, -1) print(f"\t- inputs_scaled.shape: {inputs_scaled.shape}") return inputs_scaled, outputs, scaler_vals # data definitions path_data = "ncar-aiml-data-commons/holodec/" num_particles = 3 output_cols = ["hid", "x", "y", "z", "d"] num_z_bins = 20 slice_idx = 15000 # load and normalize data (this takes approximately 2 minutes) train_inputs_scaled,\ train_outputs,\ scaler_vals = load_scaled_datasets(path_data, num_particles, output_cols, slice_idx) valid_inputs_scaled,\ valid_outputs, _ = load_scaled_datasets(path_data, num_particles, output_cols, slice_idx, split='valid', scaler_vals=scaler_vals) # Plot a single hologram with the particles overlaid def plot_hologram(h, outputs): """ Given a hologram number, plot hologram and particle point Args: h: (int) hologram number Returns: print of pseudocolor plot of hologram and hologram particles """ x_vals = np.linspace(-888, 888, train_inputs_scaled[h, :, :, 0].shape[0]) y_vals = np.linspace(-592, 592, train_inputs_scaled[h, :, :, 0].shape[1]) plt.figure(figsize=(12, 8)) plt.pcolormesh(x_vals, y_vals, train_inputs_scaled[h, :, :, 0].T, cmap="RdBu_r") h_particles = np.where(outputs["hid"] == h + 1)[0] for h_particle in h_particles: plt.scatter(outputs.loc[h_particle, "x"], outputs.loc[h_particle, "y"], outputs.loc[h_particle, "d"] ** 2, outputs.loc[h_particle, "z"], vmin=outputs["z"].min(), vmax=outputs["z"].max(), cmap="cool") plt.annotate(f"d: {outputs.loc[h_particle,'d']:.1f} µm", (outputs.loc[h_particle, "x"], outputs.loc[h_particle, "y"])) plt.xlabel("horizontal particle position (µm)", fontsize=16) plt.ylabel("vertical particle position (µm)", fontsize=16) plt.title("Hologram and particle positions plotted in four dimensions", fontsize=20, pad=20) plt.colorbar().set_label(label="z-axis particle position (µm)", size=16) h = 300 plot_hologram(h, train_outputs)
_____no_output_____
MIT
notebooks/holodec.ipynb
carlosenciso/ai4ess-hackathon-2020
Baseline Machine Learning ModelA baseline model for solving this problem uses a ConvNET architecture implemented in Keras. The first three convolution layers consist of 5 x 5 pixel kernels with rectified linear unit (relu) activation followed by a 4 x 4 pixel max pool layer. The first convolution layer has 8 channels, the second contains 16 channels, and the third contains 32 channels. The output of the third convolution layer is flattened and fed into a dense layer with 64 neurons and relu activation. Finally the output layer consists of the relative mass in 20 bins. The model is trained using a mean absolute error and categorical cross-entropy loss function.Training time: 20 epochs in ~2.5 minutes
class Conv2DNeuralNetwork(object): """ A Conv2D Neural Network Model that can support arbitrary numbers of layers. Attributes: filters: List of number of filters in each Conv2D layer kernel_sizes: List of kernel sizes in each Conv2D layer conv2d_activation: Type of activation function for conv2d layers pool_sizes: List of Max Pool sizes dense_sizes: Sizes of dense layers dense_activation: Type of activation function for dense layers output_activation: Type of activation function for output layer lr: Optimizer learning rate optimizer: Name of optimizer or optimizer object. adam_beta_1: Exponential decay rate for the first moment estimates adam_beta_2: Exponential decay rate for the first moment estimates sgd_momentum: Stochastic Gradient Descent momentum decay: Optimizer decay loss: Name of loss function or loss object batch_size: Number of examples per batch epochs: Number of epochs to train verbose: Level of detail to provide during training model: Keras Model object """ def __init__(self, filters=(8,), kernel_sizes=(5,), conv2d_activation="relu", pool_sizes=(4,), dense_sizes=(64,), dense_activation="relu", output_activation="softmax", lr=0.001, optimizer="adam", adam_beta_1=0.9, adam_beta_2=0.999, sgd_momentum=0.9, decay=0, loss="mse", batch_size=32, epochs=2, verbose=0): self.filters = filters self.kernel_sizes = [tuple((v,v)) for v in kernel_sizes] self.conv2d_activation = conv2d_activation self.pool_sizes = [tuple((v,v)) for v in pool_sizes] self.dense_sizes = dense_sizes self.dense_activation = dense_activation self.output_activation = output_activation self.lr = lr self.optimizer = optimizer self.optimizer_obj = None self.adam_beta_1 = adam_beta_1 self.adam_beta_2 = adam_beta_2 self.sgd_momentum = sgd_momentum self.decay = decay self.loss = loss self.batch_size = batch_size self.epochs = epochs self.verbose = verbose self.model = None def build_neural_network(self, input_shape, output_shape): """Create Keras neural network model and compile it.""" conv_input = Input(shape=(input_shape), name="input") nn_model = conv_input for h in range(len(self.filters)): nn_model = Conv2D(self.filters[h], self.kernel_sizes[h], padding="same", activation=self.conv2d_activation, name=f"conv2D_{h:02d}")(nn_model) nn_model = MaxPool2D(self.pool_sizes[h], name=f"maxpool2D_{h:02d}")(nn_model) nn_model = Flatten()(nn_model) for h in range(len(self.dense_sizes)): nn_model = Dense(self.dense_sizes[h], activation=self.dense_activation, name=f"dense_{h:02d}")(nn_model) nn_model = Dense(output_shape, activation=self.output_activation, name=f"dense_output")(nn_model) self.model = Model(conv_input, nn_model) if self.optimizer == "adam": self.optimizer_obj = Adam(lr=self.lr, beta_1=self.adam_beta_1, beta_2=self.adam_beta_2, decay=self.decay) elif self.optimizer == "sgd": self.optimizer_obj = SGD(lr=self.lr, momentum=self.sgd_momentum, decay=self.decay) self.model.compile(optimizer=self.optimizer, loss=self.loss) self.model.summary() def fit(self, x, y, xv, yv): if len(y.shape) == 1: output_shape = 1 else: output_shape = y.shape[1] input_shape = x.shape[1:] self.build_neural_network(input_shape, output_shape) self.model.fit(x, y, batch_size=self.batch_size, epochs=self.epochs, verbose=self.verbose, validation_data=(xv, yv)) return self.model.history.history def predict(self, x): y_out = self.model.predict(x, batch_size=self.batch_size) return y_out def predict_proba(self, x): y_prob = self.model.predict(x, batch_size=self.batch_size) return y_prob
_____no_output_____
MIT
notebooks/holodec.ipynb
carlosenciso/ai4ess-hackathon-2020
Z Relative Particle Mass ModelThis neural network is tasked to predict the distribution of particle mass in the z-plane of the instrument. The relative mass is calculated by calculating the volume of each sphere based on the area and dividing by the total mass of all particles. The advantage of this target is that it behaves like a probability density function and sums to 1, and it is agnostic to the number of particles in the image.
def calc_z_relative_mass(outputs, holograms, num_z_bins=20, z_bins=None): """ Calculate z-relative mass from particle data. Args: outputs: (np array) Output data previously specified by output_cols holograms: (int) Number of holograms num_z_bins: (int) Number of bins for z_bins linspace z_bins: (np array) Bin linspace along the z-axis Returns: z_mass: (np array) Particle mass distribution by hologram z_bins: (np array) Bin linspace along the z-axis """ if z_bins is None: z_bins = np.linspace(outputs["z"].min()- 100, outputs["z"].max() + 100, num_z_bins) print(z_bins) else: num_z_bins = z_bins.size z_mass = np.zeros((holograms, num_z_bins), dtype=np.float32) for i in range(outputs.shape[0]): z_pos = np.searchsorted(z_bins, outputs.loc[i, "z"], side="right") - 1 mass = 4 / 3 * np.pi * (outputs.loc[i, "d"])**3 z_mass[int(outputs.loc[i, "hid"]) - 1, z_pos] += mass z_mass /= np.expand_dims(z_mass.sum(axis=1), -1) print(f"z_mass.shape: {z_mass.shape}\nz_bins.shape: {z_bins.shape}") return z_mass, z_bins z_bins = np.linspace(np.minimum(train_outputs["z"].min(), valid_outputs["z"].min()), np.maximum(train_outputs["z"].max(), valid_outputs["z"].max()), num_z_bins) train_z_mass, _ = calc_z_relative_mass(train_outputs, len(train_outputs["hid"].unique()), z_bins=z_bins) valid_z_mass, _ = calc_z_relative_mass(valid_outputs, len(valid_outputs["hid"].unique()), z_bins=z_bins) train_inputs_scaled = train_inputs_scaled[0::3] valid_inputs_scaled = valid_inputs_scaled[0::3]
_____no_output_____
MIT
notebooks/holodec.ipynb
carlosenciso/ai4ess-hackathon-2020
Three particle, z-mass model definition
# conv2d_network definitions for 3 particle z mass solution IN_COLAB = 'google.colab' in sys.modules if IN_COLAB: path_out = "/content/gdrive/My Drive/micro_models/3particle_base" else: path_out = "./holodec_models/3particle_base/" if not exists(path_out): os.makedirs(path_out) model_name = "cnn" filters = [16, 24, 32] kernel_sizes = [5, 5, 5] conv2d_activation = "relu" pool_sizes = [4, 4, 4] dense_sizes = [64, 32] dense_activation = "elu" lr = 0.0003 decay = 0.1 optimizer = "adam" loss = "categorical_crossentropy" batch_size = 128 epochs = 40 verbose = 1 seed = 328942 np.random.seed(seed) random.seed(seed) tf.random.set_seed(seed) # 3 particle z mass model build, compile, fit, and predict three_start = datetime.now() with tf.device('/device:GPU:0'): mod = Conv2DNeuralNetwork(filters=filters, kernel_sizes=kernel_sizes, conv2d_activation=conv2d_activation, pool_sizes=pool_sizes, dense_sizes=dense_sizes, dense_activation=dense_activation, lr=lr, optimizer=optimizer, decay=decay, loss=loss, batch_size=batch_size, epochs=epochs, verbose=verbose) hist = mod.fit(train_inputs_scaled, train_z_mass, valid_inputs_scaled, valid_z_mass) train_z_mass_pred = mod.predict(train_inputs_scaled) valid_z_mass_pred = mod.predict(valid_inputs_scaled) print(f"Running model took {datetime.now() - three_start} time") # visualize loss history plt.plot(hist['loss']) plt.plot(hist['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['training', 'validation'], loc='upper left') plt.show() # save the model print("Saving the model") mod.model.save(join(path_out, model_name +".h5")) # clear your tf session without needing to re-load and re-scale data del mod tf.keras.backend.clear_session()
_____no_output_____
MIT
notebooks/holodec.ipynb
carlosenciso/ai4ess-hackathon-2020
Three Particle MetricsHow well do individual predictions (red) match with the actual particle locations (blue)?
valid_index = 11 bin_size = z_bins[1] - z_bins[0] plt.figure(figsize=(10, 6)) plt.bar(z_bins / 1000, valid_z_mass_pred[valid_index], bin_size / 1000, color='red', label="Predicted") plt.bar(z_bins / 1000, valid_z_mass[valid_index], bin_size / 1000, edgecolor='blue', facecolor="none", lw=3, label="True") plt.ylim(0, 1) plt.xlabel("z-axis particle position (mm)", fontsize=16) plt.ylabel("relative mass", fontsize=16) plt.legend(loc="best")
_____no_output_____
MIT
notebooks/holodec.ipynb
carlosenciso/ai4ess-hackathon-2020
If the model was completely unbiased, then mean relative mass in each bin should be nearly the same across all validation examples. In this case we see that the CNN preferentially predicts that the mass is closer to the camera, likely due to a combination of particles closer to the camera blocking those farther away along with more distant particles influencing the entire image. Since the CNN assumes image properties are more localized, it will struggle to detect the particles that are farther away.
plt.bar(z_bins / 1000, valid_z_mass_pred.mean(axis=0), (z_bins[1] - z_bins[0]) / 1000, color='red') plt.bar(z_bins / 1000, valid_z_mass.mean(axis=0), (z_bins[1]-z_bins[0]) / 1000, edgecolor='blue', facecolor="none", lw=3) plt.xlabel("z location (mm)", fontsize=16) plt.ylabel("Mean Relative Mass", fontsize=16) def ranked_probability_score(y_true, y_pred): return np.mean((np.cumsum(y_true, axis=1) - np.cumsum(y_pred, axis=1)) ** 2) / (y_true.shape[1] -1) rps_nn = ranked_probability_score(valid_z_mass, valid_z_mass_pred) rps_climo = ranked_probability_score(valid_z_mass, np.ones(valid_z_mass_pred.shape) / valid_z_mass_pred.shape[1]) print(rps_nn, rps_climo) rpss = 1 - rps_nn / rps_climo print(f"RPSS: {rpss:0.3f}")
_____no_output_____
MIT
notebooks/holodec.ipynb
carlosenciso/ai4ess-hackathon-2020
One Particle ModelAn easier problem is predicting the location and properties of synthetic single particles.
# data definitions path_data = "ncar-aiml-data-commons/holodec/" num_particles = 1 output_cols_one = ["x", "y", "z", "d"] scaler_one = MinMaxScaler() slice_idx = 15000 # load and normalize data (this takes approximately 2 minutes) train_inputs_scaled_one,\ train_outputs_one,\ scaler_vals_one = load_scaled_datasets(path_data, num_particles, output_cols_one, slice_idx) valid_inputs_scaled_one,\ valid_outputs_one, _ = load_scaled_datasets(path_data, num_particles, output_cols_one, slice_idx, split='valid', scaler_vals=scaler_vals_one) # extra transform step for output_cols_one in lieu of z mass train_outputs_scaled_one = scaler_one.fit_transform(train_outputs_one[output_cols_one]) valid_outputs_scaled_one = scaler_one.transform(valid_outputs_one[output_cols_one]) # conv2d_network definitions for 1 particle 4D solution IN_COLAB = 'google.colab' in sys.modules if IN_COLAB: path_out = "/content/gdrive/My Drive/micro_models/1particle_base" else: path_out = "./holodec_models/1particle_base/" if not exists(path_out): os.makedirs(path_out) model_name = "cnn" filters = [16, 24, 32] kernel_sizes = [5, 5, 5] conv2d_activation = "relu" pool_sizes = [4, 4, 4] dense_sizes = [64, 32] dense_activation = "relu" lr = 0.0001 optimizer = "adam" loss = "mae" batch_size = 128 epochs = 20 verbose = 1 if not exists(path_out): os.makedirs(path_out) # 1 particle 4D model build, compile, fit, and predict one_start = datetime.now() with tf.device('/device:GPU:0'): mod = Conv2DNeuralNetwork(filters=filters, kernel_sizes=kernel_sizes, conv2d_activation=conv2d_activation, pool_sizes=pool_sizes, dense_sizes=dense_sizes, dense_activation=dense_activation, lr=lr, optimizer=optimizer, loss=loss, batch_size=batch_size, epochs=epochs, verbose=verbose) mod.fit(train_inputs_scaled_one, train_outputs_scaled_one, valid_inputs_scaled_one, valid_outputs_scaled_one) train_preds_scaled_one = pd.DataFrame(mod.predict(train_inputs_scaled_one), columns=output_cols_one) valid_preds_scaled_one = pd.DataFrame(mod.predict(valid_inputs_scaled_one), columns=output_cols_one) print(f"Running model took {datetime.now() - one_start} time") # inverse transform of scaled predictions train_preds_one = pd.DataFrame(scaler_one.inverse_transform(train_preds_scaled_one.values), columns=output_cols_one) valid_preds_one = pd.DataFrame(scaler_one.inverse_transform(valid_preds_scaled_one.values), columns=output_cols_one)
_____no_output_____
MIT
notebooks/holodec.ipynb
carlosenciso/ai4ess-hackathon-2020
One Particle MetricsAn ideal solution to HOLODEC processing would leverage all the advantages of the instrument (unparalleled particle position and size accuracy) but reduce the drawbacks (processing time). For this reason, the major components of the model assessment should include:Mean absolute error in predictions for single-particle dataset:| Variable Name | Error || ------------- |:----------- || x | 290 µm || y | 170 µm || z | 53,271 µm || d | 16 µm |
# calculate error by output_cols_one valid_maes_one = np.zeros(len(output_cols_one)) max_errors_one = np.zeros(len(output_cols_one)) for o, output_col in enumerate(output_cols_one): valid_maes_one[o] = mean_absolute_error(valid_outputs_one[output_col], valid_preds_one[output_col]) max_errors_one[o] = max_error(valid_outputs_one[output_col], valid_preds_one[output_col]) print(f"{output_col} MAE: {valid_maes_one[o]:,.0f} µm \t\t Max Error: {max_errors_one[o]:,.0f} µm")
_____no_output_____
MIT
notebooks/holodec.ipynb
carlosenciso/ai4ess-hackathon-2020
Hackathon Challenges Monday* Load the data* Create an exploratory visualization of the data* Test two different transformation and scaling methods* Test one dimensionality reduction method* Train a linear model* Train a decision tree ensemble method of your choice
# Monday's code goes here
_____no_output_____
MIT
notebooks/holodec.ipynb
carlosenciso/ai4ess-hackathon-2020
Tuesday* Train a densely connected neural network* Train a convolutional or recurrent neural network (depends on problem)* Experiment with different architectures
# Tuesday's code goes here
_____no_output_____
MIT
notebooks/holodec.ipynb
carlosenciso/ai4ess-hackathon-2020