markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
PinSage Code PinSage Layers | import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl
import dgl.nn.pytorch as dglnn
import dgl.function as fn
def disable_grad(module):
for param in module.parameters():
param.requires_grad = False
def _init_input_modules(g, ntype, textset, hidden_dims):
# We initialize the linear projections of each input feature ``x`` as
# follows:
# * If ``x`` is a scalar integral feature, we assume that ``x`` is a categorical
# feature, and assume the range of ``x`` is 0..max(x).
# * If ``x`` is a float one-dimensional feature, we assume that ``x`` is a
# numeric vector.
# * If ``x`` is a field of a textset, we process it as bag of words.
module_dict = nn.ModuleDict()
for column, data in g.nodes[ntype].data.items():
if column == dgl.NID:
continue
if data.dtype == torch.float32:
assert data.ndim == 2
m = nn.Linear(data.shape[1], hidden_dims)
nn.init.xavier_uniform_(m.weight)
nn.init.constant_(m.bias, 0)
module_dict[column] = m
elif data.dtype == torch.int64:
assert data.ndim == 1
m = nn.Embedding(
data.max() + 2, hidden_dims, padding_idx=-1)
nn.init.xavier_uniform_(m.weight)
module_dict[column] = m
if textset is not None:
for column, field in textset.fields.items():
if field.vocab.vectors:
module_dict[column] = BagOfWordsPretrained(field, hidden_dims)
else:
module_dict[column] = BagOfWords(field, hidden_dims)
return module_dict
class BagOfWordsPretrained(nn.Module):
def __init__(self, field, hidden_dims):
super().__init__()
input_dims = field.vocab.vectors.shape[1]
self.emb = nn.Embedding(
len(field.vocab.itos), input_dims,
padding_idx=field.vocab.stoi[field.pad_token])
self.emb.weight[:] = field.vocab.vectors
self.proj = nn.Linear(input_dims, hidden_dims)
nn.init.xavier_uniform_(self.proj.weight)
nn.init.constant_(self.proj.bias, 0)
disable_grad(self.emb)
def forward(self, x, length):
"""
x: (batch_size, max_length) LongTensor
length: (batch_size,) LongTensor
"""
x = self.emb(x).sum(1) / length.unsqueeze(1).float()
return self.proj(x)
class BagOfWords(nn.Module):
def __init__(self, field, hidden_dims):
super().__init__()
self.emb = nn.Embedding(
len(field.vocab.itos), hidden_dims,
padding_idx=field.vocab.stoi[field.pad_token])
nn.init.xavier_uniform_(self.emb.weight)
def forward(self, x, length):
return self.emb(x).sum(1) / length.unsqueeze(1).float()
class LinearProjector(nn.Module):
"""
Projects each input feature of the graph linearly and sums them up
"""
def __init__(self, full_graph, ntype, textset, hidden_dims):
super().__init__()
self.ntype = ntype
self.inputs = _init_input_modules(full_graph, ntype, textset, hidden_dims)
def forward(self, ndata):
projections = []
for feature, data in ndata.items():
if feature == dgl.NID or feature.endswith('__len'):
# This is an additional feature indicating the length of the ``feature``
# column; we shouldn't process this.
continue
module = self.inputs[feature]
if isinstance(module, (BagOfWords, BagOfWordsPretrained)):
# Textual feature; find the length and pass it to the textual module.
length = ndata[feature + '__len']
result = module(data, length)
else:
result = module(data)
projections.append(result)
return torch.stack(projections, 1).sum(1)
class WeightedSAGEConv(nn.Module):
def __init__(self, input_dims, hidden_dims, output_dims, act=F.relu):
super().__init__()
self.act = act
self.Q = nn.Linear(input_dims, hidden_dims)
self.W = nn.Linear(input_dims + hidden_dims, output_dims)
self.reset_parameters()
self.dropout = nn.Dropout(0.5)
def reset_parameters(self):
gain = nn.init.calculate_gain('relu')
nn.init.xavier_uniform_(self.Q.weight, gain=gain)
nn.init.xavier_uniform_(self.W.weight, gain=gain)
nn.init.constant_(self.Q.bias, 0)
nn.init.constant_(self.W.bias, 0)
def forward(self, g, h, weights):
"""
g : graph
h : node features
weights : scalar edge weights
"""
h_src, h_dst = h
with g.local_scope():
g.srcdata['n'] = self.act(self.Q(self.dropout(h_src)))
g.edata['w'] = weights.float()
g.update_all(fn.u_mul_e('n', 'w', 'm'), fn.sum('m', 'n'))
g.update_all(fn.copy_e('w', 'm'), fn.sum('m', 'ws'))
n = g.dstdata['n']
ws = g.dstdata['ws'].unsqueeze(1).clamp(min=1)
z = self.act(self.W(self.dropout(torch.cat([n / ws, h_dst], 1))))
z_norm = z.norm(2, 1, keepdim=True)
z_norm = torch.where(z_norm == 0, torch.tensor(1.).to(z_norm), z_norm)
z = z / z_norm
return z
class SAGENet(nn.Module):
def __init__(self, hidden_dims, n_layers):
"""
g : DGLHeteroGraph
The user-item interaction graph.
This is only for finding the range of categorical variables.
item_textsets : torchtext.data.Dataset
The textual features of each item node.
"""
super().__init__()
self.convs = nn.ModuleList()
for _ in range(n_layers):
self.convs.append(WeightedSAGEConv(hidden_dims, hidden_dims, hidden_dims))
def forward(self, blocks, h):
for layer, block in zip(self.convs, blocks):
h_dst = h[:block.number_of_nodes('DST/' + block.ntypes[0])]
h = layer(block, (h, h_dst), block.edata['weights'])
return h
class ItemToItemScorer(nn.Module):
def __init__(self, full_graph, ntype):
super().__init__()
n_nodes = full_graph.number_of_nodes(ntype)
self.bias = nn.Parameter(torch.zeros(n_nodes))
def _add_bias(self, edges):
bias_src = self.bias[edges.src[dgl.NID]]
bias_dst = self.bias[edges.dst[dgl.NID]]
return {'s': edges.data['s'] + bias_src + bias_dst}
def forward(self, item_item_graph, h):
"""
item_item_graph : graph consists of edges connecting the pairs
h : hidden state of every node
"""
with item_item_graph.local_scope():
item_item_graph.ndata['h'] = h
item_item_graph.apply_edges(fn.u_dot_v('h', 'h', 's'))
item_item_graph.apply_edges(self._add_bias)
pair_score = item_item_graph.edata['s']
return pair_score | _____no_output_____ | MIT | 2021/pinsage_movielens_robert_output_disabled.ipynb | harvard-visionlab/psy1406 |
PinSage Sampler | import numpy as np
import dgl
import torch
from torch.utils.data import IterableDataset, DataLoader
def compact_and_copy(frontier, seeds):
block = dgl.to_block(frontier, seeds)
for col, data in frontier.edata.items():
if col == dgl.EID:
continue
block.edata[col] = data[block.edata[dgl.EID]]
return block
class ItemToItemBatchSampler(IterableDataset):
def __init__(self, g, user_type, item_type, batch_size):
self.g = g
self.user_type = user_type
self.item_type = item_type
self.user_to_item_etype = list(g.metagraph()[user_type][item_type])[0]
self.item_to_user_etype = list(g.metagraph()[item_type][user_type])[0]
self.batch_size = batch_size
def __iter__(self):
while True:
heads = torch.randint(0, self.g.number_of_nodes(self.item_type), (self.batch_size,))
tails = dgl.sampling.random_walk(
self.g,
heads,
metapath=[self.item_to_user_etype, self.user_to_item_etype])[0][:, 2]
neg_tails = torch.randint(0, self.g.number_of_nodes(self.item_type), (self.batch_size,))
mask = (tails != -1)
yield heads[mask], tails[mask], neg_tails[mask]
class NeighborSampler(object):
def __init__(self, g, user_type, item_type, random_walk_length, random_walk_restart_prob,
num_random_walks, num_neighbors, num_layers):
self.g = g
self.user_type = user_type
self.item_type = item_type
self.user_to_item_etype = list(g.metagraph()[user_type][item_type])[0]
self.item_to_user_etype = list(g.metagraph()[item_type][user_type])[0]
self.samplers = [
dgl.sampling.PinSAGESampler(g, item_type, user_type, random_walk_length,
random_walk_restart_prob, num_random_walks, num_neighbors)
for _ in range(num_layers)]
def sample_blocks(self, seeds, heads=None, tails=None, neg_tails=None):
blocks = []
for sampler in self.samplers:
frontier = sampler(seeds)
if heads is not None:
eids = frontier.edge_ids(torch.cat([heads, heads]), torch.cat([tails, neg_tails]), return_uv=True)[2]
if len(eids) > 0:
old_frontier = frontier
frontier = dgl.remove_edges(old_frontier, eids)
#print(old_frontier)
#print(frontier)
#print(frontier.edata['weights'])
#frontier.edata['weights'] = old_frontier.edata['weights'][frontier.edata[dgl.EID]]
block = compact_and_copy(frontier, seeds)
seeds = block.srcdata[dgl.NID]
blocks.insert(0, block)
return blocks
def sample_from_item_pairs(self, heads, tails, neg_tails):
# Create a graph with positive connections only and another graph with negative
# connections only.
pos_graph = dgl.graph(
(heads, tails),
num_nodes=self.g.number_of_nodes(self.item_type))
neg_graph = dgl.graph(
(heads, neg_tails),
num_nodes=self.g.number_of_nodes(self.item_type))
pos_graph, neg_graph = dgl.compact_graphs([pos_graph, neg_graph])
seeds = pos_graph.ndata[dgl.NID]
blocks = self.sample_blocks(seeds, heads, tails, neg_tails)
return pos_graph, neg_graph, blocks
def assign_simple_node_features(ndata, g, ntype, assign_id=False):
"""
Copies data to the given block from the corresponding nodes in the original graph.
"""
for col in g.nodes[ntype].data.keys():
if not assign_id and col == dgl.NID:
continue
induced_nodes = ndata[dgl.NID]
ndata[col] = g.nodes[ntype].data[col][induced_nodes]
def assign_textual_node_features(ndata, textset, ntype):
"""
Assigns numericalized tokens from a torchtext dataset to given block.
The numericalized tokens would be stored in the block as node features
with the same name as ``field_name``.
The length would be stored as another node feature with name
``field_name + '__len'``.
block : DGLHeteroGraph
First element of the compacted blocks, with "dgl.NID" as the
corresponding node ID in the original graph, hence the index to the
text dataset.
The numericalized tokens (and lengths if available) would be stored
onto the blocks as new node features.
textset : torchtext.data.Dataset
A torchtext dataset whose number of examples is the same as that
of nodes in the original graph.
"""
node_ids = ndata[dgl.NID].numpy()
if textset is not None:
for field_name, field in textset.fields.items():
examples = [getattr(textset[i], field_name) for i in node_ids]
tokens, lengths = field.process(examples)
if not field.batch_first:
tokens = tokens.t()
ndata[field_name] = tokens
ndata[field_name + '__len'] = lengths
def assign_features_to_blocks(blocks, g, textset, ntype):
# For the first block (which is closest to the input), copy the features from
# the original graph as well as the texts.
assign_simple_node_features(blocks[0].srcdata, g, ntype)
assign_textual_node_features(blocks[0].srcdata, textset, ntype)
assign_simple_node_features(blocks[-1].dstdata, g, ntype)
assign_textual_node_features(blocks[-1].dstdata, textset, ntype)
class PinSAGECollator(object):
def __init__(self, sampler, g, ntype, textset):
self.sampler = sampler
self.ntype = ntype
self.g = g
self.textset = textset
def collate_train(self, batches):
heads, tails, neg_tails = batches[0]
# Construct multilayer neighborhood via PinSAGE...
pos_graph, neg_graph, blocks = self.sampler.sample_from_item_pairs(heads, tails, neg_tails)
assign_features_to_blocks(blocks, self.g, self.textset, self.ntype)
return pos_graph, neg_graph, blocks
def collate_test(self, samples):
batch = torch.LongTensor(samples)
blocks = self.sampler.sample_blocks(batch)
assign_features_to_blocks(blocks, self.g, self.textset, self.ntype)
return blocks | _____no_output_____ | MIT | 2021/pinsage_movielens_robert_output_disabled.ipynb | harvard-visionlab/psy1406 |
PinSage Evaluation | import numpy as np
import torch
import pickle
import dgl
import argparse
def prec(recommendations, ground_truth):
n_users, n_items = ground_truth.shape
K = recommendations.shape[1]
user_idx = np.repeat(np.arange(n_users), K)
item_idx = recommendations.flatten()
relevance = ground_truth[user_idx, item_idx].reshape((n_users, K))
hit = relevance.any(axis=1).mean()
return hit
class LatestNNRecommender(object):
def __init__(self, user_ntype, item_ntype, user_to_item_etype, timestamp, batch_size):
self.user_ntype = user_ntype
self.item_ntype = item_ntype
self.user_to_item_etype = user_to_item_etype
self.batch_size = batch_size
self.timestamp = timestamp
def recommend(self, full_graph, K, h_user, h_item):
"""
Return a (n_user, K) matrix of recommended items for each user
"""
graph_slice = full_graph.edge_type_subgraph([self.user_to_item_etype])
n_users = full_graph.number_of_nodes(self.user_ntype)
latest_interactions = dgl.sampling.select_topk(graph_slice, 1, self.timestamp, edge_dir='out')
user, latest_items = latest_interactions.all_edges(form='uv', order='srcdst')
# each user should have at least one "latest" interaction
assert torch.equal(user, torch.arange(n_users))
recommended_batches = []
user_batches = torch.arange(n_users).split(self.batch_size)
for user_batch in user_batches:
latest_item_batch = latest_items[user_batch].to(device=h_item.device)
dist = h_item[latest_item_batch] @ h_item.t()
# exclude items that are already interacted
for i, u in enumerate(user_batch.tolist()):
interacted_items = full_graph.successors(u, etype=self.user_to_item_etype)
dist[i, interacted_items] = -np.inf
recommended_batches.append(dist.topk(K, 1)[1])
recommendations = torch.cat(recommended_batches, 0)
return recommendations
def evaluate_nn(dataset, h_item, k, batch_size):
g = dataset['train-graph']
val_matrix = dataset['val-matrix'].tocsr()
test_matrix = dataset['test-matrix'].tocsr()
item_texts = dataset['item-texts']
user_ntype = dataset['user-type']
item_ntype = dataset['item-type']
user_to_item_etype = dataset['user-to-item-type']
timestamp = dataset['timestamp-edge-column']
rec_engine = LatestNNRecommender(
user_ntype, item_ntype, user_to_item_etype, timestamp, batch_size)
recommendations = rec_engine.recommend(g, k, None, h_item).cpu().numpy()
return prec(recommendations, val_matrix) | _____no_output_____ | MIT | 2021/pinsage_movielens_robert_output_disabled.ipynb | harvard-visionlab/psy1406 |
PinSage Training | import pickle
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchtext
import dgl
import tqdm
import madgrad
from fastprogress.fastprogress import master_bar, progress_bar
# import layers
# import sampler as sampler_module
# import evaluation
class PinSAGEModel(nn.Module):
def __init__(self, full_graph, ntype, textsets, hidden_dims, n_layers):
super().__init__()
self.proj = LinearProjector(full_graph, ntype, textsets, hidden_dims)
self.sage = SAGENet(hidden_dims, n_layers)
self.scorer = ItemToItemScorer(full_graph, ntype)
def forward(self, pos_graph, neg_graph, blocks):
h_item = self.get_repr(blocks)
pos_score = self.scorer(pos_graph, h_item)
neg_score = self.scorer(neg_graph, h_item)
return (neg_score - pos_score + 1).clamp(min=0)
def get_repr(self, blocks):
h_item = self.proj(blocks[0].srcdata)
h_item_dst = self.proj(blocks[-1].dstdata)
return h_item_dst + self.sage(blocks, h_item)
def train_pinsage_implicit(args):
# Load dataset
with open(args.dataset_path, 'rb') as f:
dataset = pickle.load(f)
g = dataset['train-graph']
val_matrix = dataset['val-matrix'].tocsr()
test_matrix = dataset['test-matrix'].tocsr()
item_texts = dataset['item-texts']
user_ntype = dataset['user-type']
item_ntype = dataset['item-type']
user_to_item_etype = dataset['user-to-item-type']
timestamp = dataset['timestamp-edge-column']
device = torch.device(args.device)
# Assign user and movie IDs and use them as features (to learn an individual
# trainable embedding for each entity)
g.nodes[user_ntype].data['id'] = torch.arange(g.number_of_nodes(user_ntype))
g.nodes[item_ntype].data['id'] = torch.arange(g.number_of_nodes(item_ntype))
# Prepare torchtext dataset and vocabulary
if args.add_title:
fields = {}
examples = []
for key, texts in item_texts.items():
fields[key] = torchtext.legacy.data.Field(include_lengths=True, lower=True, batch_first=True)
for i in range(g.number_of_nodes(item_ntype)):
example = torchtext.legacy.data.Example.fromlist(
[item_texts[key][i] for key in item_texts.keys()],
[(key, fields[key]) for key in item_texts.keys()])
examples.append(example)
textset = torchtext.legacy.data.Dataset(examples, fields)
for key, field in fields.items():
field.build_vocab(getattr(textset, key))
#field.build_vocab(getattr(textset, key), vectors='fasttext.simple.300d')
else:
textset = None
# Sampler
batch_sampler = ItemToItemBatchSampler(
g, user_ntype, item_ntype, args.batch_size)
neighbor_sampler = NeighborSampler(
g, user_ntype, item_ntype, args.random_walk_length,
args.random_walk_restart_prob, args.num_random_walks, args.num_neighbors,
args.num_layers)
collator = PinSAGECollator(neighbor_sampler, g, item_ntype, textset)
dataloader = DataLoader(
batch_sampler,
collate_fn=collator.collate_train,
num_workers=args.num_workers)
dataloader_test = DataLoader(
torch.arange(g.number_of_nodes(item_ntype)),
batch_size=args.batch_size,
collate_fn=collator.collate_test,
num_workers=args.num_workers)
dataloader_it = iter(dataloader)
# Model
model = PinSAGEModel(g, item_ntype, textset, args.hidden_dims, args.num_layers).to(device)
print(model)
# Optimizer
if args.opt == 'MADGRAD':
opt = madgrad.MADGRAD(model.parameters(), lr=args.lr)
else:
opt = torch.optim.__dict__[args.opt](model.parameters(), lr=args.lr)
print(opt)
# For each batch of head-tail-negative triplets...
mb = master_bar(range(args.num_epochs))
for epoch_id in mb:
model.train()
for batch_id in progress_bar(range(args.batches_per_epoch), parent=mb):
pos_graph, neg_graph, blocks = next(dataloader_it)
# Copy to GPU
for i in range(len(blocks)):
blocks[i] = blocks[i].to(device, non_blocking=True)
pos_graph = pos_graph.to(device, non_blocking=True)
neg_graph = neg_graph.to(device, non_blocking=True)
loss = model(pos_graph, neg_graph, blocks).mean()
opt.zero_grad()
loss.backward()
opt.step()
# Evaluate
model.eval()
with torch.no_grad():
item_batches = torch.arange(g.number_of_nodes(item_ntype)).split(args.batch_size)
h_item_batches = []
for blocks in dataloader_test:
for i in range(len(blocks)):
blocks[i] = blocks[i].to(device)
h_item_batches.append(model.get_repr(blocks))
h_item = torch.cat(h_item_batches, 0)
hit_rate = evaluate_nn(dataset, h_item, args.k, args.batch_size)
print(f"\nEpoch [{epoch_id:02d}]/[{args.num_epochs:02d}]: Hit@{args.k}: {hit_rate:2.3f}") | _____no_output_____ | MIT | 2021/pinsage_movielens_robert_output_disabled.ipynb | harvard-visionlab/psy1406 |
Check model with dataChoose different datasets to see how the model automatically adjusts to fit the data in the graph. | import torch
from types import SimpleNamespace
args = SimpleNamespace()
# args.dataset_path = '/content/data.pkl'
# args.dataset_path = '/content/ml_1m_plot_data.pkl'
# args.dataset_path = '/content/ml_1m_backdrop_swin.pkl'
# args.dataset_path = '/content/ml_1m_imdb_longest.pkl'
args.dataset_path = '/content/ml_1m_only_id.pkl'
args.random_walk_length = 2
args.random_walk_restart_prob = .5
args.num_random_walks = 1
args.num_neighbors = 3
args.num_layers = 2
args.hidden_dims = 16
args.batch_size = 32
args.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
args.num_epochs = 10
args.batches_per_epoch = 20000
args.num_workers = 2
args.lr = 3e-5
args.k = 10
args.opt = 'MADGRAD' # Adam, AdamW, MADGRAD
args.add_title = False
print(args)
# Load dataset
with open(args.dataset_path, 'rb') as f:
dataset = pickle.load(f)
g = dataset['train-graph']
val_matrix = dataset['val-matrix'].tocsr()
test_matrix = dataset['test-matrix'].tocsr()
item_texts = dataset['item-texts']
user_ntype = dataset['user-type']
item_ntype = dataset['item-type']
user_to_item_etype = dataset['user-to-item-type']
timestamp = dataset['timestamp-edge-column']
device = torch.device(args.device)
# Assign user and movie IDs and use them as features (to learn an individual
# trainable embedding for each entity)
g.nodes[user_ntype].data['id'] = torch.arange(g.number_of_nodes(user_ntype))
g.nodes[item_ntype].data['id'] = torch.arange(g.number_of_nodes(item_ntype))
# drop features
# del g.nodes['movie'].data['year']
# del g.nodes['movie'].data['genre']
# del g.nodes['movie'].data['plot']
# Prepare torchtext dataset and vocabulary
if args.add_title:
fields = {}
examples = []
for key, texts in item_texts.items():
fields[key] = torchtext.legacy.data.Field(include_lengths=True, lower=True, batch_first=True)
for i in range(g.number_of_nodes(item_ntype)):
example = torchtext.legacy.data.Example.fromlist(
[item_texts[key][i] for key in item_texts.keys()],
[(key, fields[key]) for key in item_texts.keys()])
examples.append(example)
textset = torchtext.legacy.data.Dataset(examples, fields)
for key, field in fields.items():
field.build_vocab(getattr(textset, key))
#field.build_vocab(getattr(textset, key), vectors='fasttext.simple.300d')
else:
textset = None
# Model
model = PinSAGEModel(g, item_ntype, textset, args.hidden_dims, args.num_layers).to(device)
print(model) | _____no_output_____ | MIT | 2021/pinsage_movielens_robert_output_disabled.ipynb | harvard-visionlab/psy1406 |
PinSage Train on Implicit Task template, don't use/edit this one, it's just for reference | from types import SimpleNamespace
args = SimpleNamespace()
args.dataset_path = '/content/data.pkl'
# args.dataset_path = '/content/ml_1m_only_id.pkl'
args.random_walk_length = 2
args.random_walk_restart_prob = .5
args.num_random_walks = 1
args.num_neighbors = 3
args.num_layers = 2
args.hidden_dims = 16
args.batch_size = 32
args.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
args.num_epochs = 10
args.batches_per_epoch = 20000
args.num_workers = 2
args.lr = 3e-5
args.k = 10
args.opt = 'MADGRAD' # Adam, AdamW, MADGRAD
args.add_title = True
print(args)
# baseline (movie id only): Epoch [09]/[10]: Hit@10: 0.042
# all movie data plus longest plot: Epoch [09]/[10]: Hit@10: 0.080
# without plot (MADGRAD): Epoch [09]/[10]: Hit@10: 0.081
# with plot (MADGRAD): Epoch [09]/[10]: Hit@10: 0.060
# with plot (ADAMW): Epoch [09]/[10]: Hit@10: 0.064
| _____no_output_____ | MIT | 2021/pinsage_movielens_robert_output_disabled.ipynb | harvard-visionlab/psy1406 |
baseline model, movie id only | from types import SimpleNamespace
args = SimpleNamespace()
args.dataset_path = '/content/ml_1m_only_id.pkl'
args.random_walk_length = 2
args.random_walk_restart_prob = .5
args.num_random_walks = 1
args.num_neighbors = 3
args.num_layers = 2
args.hidden_dims = 32 # 16
args.batch_size = 256 # 32
args.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
args.num_epochs = 10
args.batches_per_epoch = 20000
args.num_workers = 4
args.lr = 3e-5
args.k = 10
args.opt = 'MADGRAD' # Adam, AdamW, MADGRAD
args.add_title = False
print(args)
train_pinsage_implicit(args) | _____no_output_____ | MIT | 2021/pinsage_movielens_robert_output_disabled.ipynb | harvard-visionlab/psy1406 |
possible variationsYou can try different datasets (i.e., change the name of the data file being used to load the graph - the PinSage model automatically adapts to the data in the Graph):- [ ] ml_1m_only_id.pkl (this is our baseline)- [ ] ml_1m_imdb_plot.pkl(embedding of short plot descriptions)- [ ] ml_1m_imdb_full_plot.pkl (embedding of long plot descriptions)- [ ] ml_1m_imdb_synopsis.pkl (embedding of pages-long movie summaries)- [ ] ml_1m_imdb_longest.pkl (embedding of longest-available text, since many movies don't have a full synposis, we fall back to the full plot or short plot as needed)- [ ] ml_1m_poster_swin (movie poster embedding)- [ ] ml_1m_backdrop_swin (widescreen movie poster embedding)Or you can try different hyperparameters:- [ ] args.hidden_dims (number of dimensions used to encode node information)- [ ] args.num_layers (how many "hops" the PinSage random walk goes when building graphs)- [ ] args.num_random_walks (how many walks to take)- [ ] args.num_neighbors (how many neighbors to keep)You can make changes in the cell below and then run it to try a new model. If you run multiple variations, then just copy this code into a new cell for each variant, so you can use the cell output as a record. | from types import SimpleNamespace
# Edit the Dataset path
args = SimpleNamespace()
args.dataset_path = '/content/ml_1m_only_id.pkl'
args.random_walk_length = 2
args.random_walk_restart_prob = .5
args.num_random_walks = 1
args.num_neighbors = 3
args.num_layers = 2
args.hidden_dims = 32 # 16
args.batch_size = 256 # 32
args.device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
args.num_epochs = 10
args.batches_per_epoch = 20000
args.num_workers = 2
args.lr = 3e-5
args.k = 10
args.opt = 'MADGRAD' # Adam, AdamW, MADGRAD
args.add_title = False
print(args)
train_pinsage_implicit(args)
| _____no_output_____ | MIT | 2021/pinsage_movielens_robert_output_disabled.ipynb | harvard-visionlab/psy1406 |
Summary & ConclusionsBreifly write up a summary of what you did, what you found, and what you think it means.Then share this notebook (you're edited copy) with me ([email protected]) to submit your final project. | _____no_output_____ | MIT | 2021/pinsage_movielens_robert_output_disabled.ipynb | harvard-visionlab/psy1406 |
|
Geocodio tells you the likely accuracy of the lat/long it's provided with an accuracy score. Some of the scores do not have high accuracy scores, which is worth mentioning. For now, we'll see if any mapping errors actually occur. If they do, I'll go back and engineer a solution. | #We have 239 cities, so we want to make sure there's 239 rows.
df.shape | _____no_output_____ | Apache-2.0 | EDA.ipynb | mattymecks/nlchp-mapping-project |
Because I'm only missing five values, I'm going to manually find their lat/lon coordinates and then add them in. I'll do this here because I want them mapped in all future data. | # Manual updating of relevent values
new_data = [(40.0874759, -108.8048292, 'CO3', 'CO'), (39.446649, -106.03757, 'CO2', 'CO'),
(28.022243, -81.732857, 'FL9', 'FL'), (39.9689532, -82.9376804, 'OH3', 'OH'),
(39.103119, -84.512016, 'OH1', 'OH')]
indexes = (63, 85, 98, 172, 191)
for i in range(5):
df.loc[indexes[i],'Latitude'] = new_data[i][0]
df.loc[indexes[i], 'Longitude'] = new_data[i][1]
df.loc[indexes[i], 'Congressional District'] = new_data[i][2]
df.loc[indexes[i], 'State.1'] = new_data[i][3]
# Checking to see we've fixed all lat/lon problems
df.loc[df['Latitude'] == 0]
# Dropping unnecessary columns added by Geocodio for the sake of data tidiness
df = df.drop(columns = ['Number', 'Street', 'City.1', 'Source'])
df.head(1) | _____no_output_____ | Apache-2.0 | EDA.ipynb | mattymecks/nlchp-mapping-project |
Much better. The campaign wants to keep track of the status of the anti-panhandling statutes/ordinances in each city, and they want to be able to update those values to reflect varying degrees of success as the campaign goes on. I'm going to create a 'status' value for each city set it's default to "active." Then I'm going to map "status text" and "marker color" right onto the values. | # Adding in a "status" column
df['status'] = 0
# Creating a conditional column explaining ordinance status
d_text = {0: 'Ordinance Active - With No Response',
1: 'Ordinance Active - With Response Indicating No Immediate Repeal',
2: 'Ordinance Active - With Committment To Review',
3: 'Ordinance Halted - With Committment to Review',
4: 'Ordinance Repealed'}
df['statusText'] = df['status'].map(d_text)
# Setting point color conditionally based upon status
d_color = {0: 'rgb(255, 0, 0)',
1: 'rgb(255, 192, 203)',
2: 'rgb(255, 165, 0)',
3: 'rgb(255, 255, 0)',
4: 'rgb(127, 255, 0)'}
df['color'] = df['status'].map(d_color)
# print(df.dtypes)
df.head(3) | _____no_output_____ | Apache-2.0 | EDA.ipynb | mattymecks/nlchp-mapping-project |
Now I'm going to persist my changes. I'll make updates periodically, but I'll use a seperate notebook for that so that I don't have to continously repeat this project. | df.to_csv('cleaned_data.csv', mode ='w+') | _____no_output_____ | Apache-2.0 | EDA.ipynb | mattymecks/nlchp-mapping-project |
Overfitting demo Criando um conjunto de dados baseado em uma função senoidal | import math
import random
import numpy as np
import pandas as pd
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import RidgeCV
from sklearn.linear_model import Lasso
from matplotlib import pyplot as plt
%matplotlib inline | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Vamos considerar um conjunto de dados sintéticos de 30 pontos amostrados de uma função senoidal $y = \sin(4x)$: | def f(x):
return np.sin(np.multiply(4,x)) | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Abaixo criamos valores aleatéorios para $x$ no intervalo [0,1) | random.seed(98103)
n = 30 # quantidade de valores gerados
x = np.array([random.random() for _ in range(n)]) #em cada iteração gera um valor aleatório entre 0 e 1
x=np.sort(x) # ordena os valores em ordem crescente
#transforma o array em uma matrix com uma n linhas e 1 coluna (vetor coluna)
X = x[:,np.newaxis] | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Calcula $y$ como uma função de $x$. $y$ é chamada variável independente pois depende de $x$ | Y = f(x) | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Adiciona ruído Gaussiano aleatório à $y$ | random.seed(1)
#ruído é amostrado de uma distribuição normal com média 0 e desvio padrão 1/3
e = np.array([random.gauss(0,1.0/3.0) for i in range(n)])
Y = Y + e | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Funções auxiliares Função para plotar os dados (scatter plot) | def plot_data(X,Y):
plt.plot(X,Y,'k.')
plt.xlabel('X')
plt.ylabel('Y')
plt.axis([0,1,-1.5,2]) | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Função para imprimir coeficientes | def print_coefficients(model):
# Retorna o grau do polinômio
deg = len(model.steps[1][1].coef_)-1
# Obtém os parâmetros estimados
w = list(model.steps[1][1].coef_) #model.steps é usado pois o modelo é calculado usando make_pipile do scikit learn
# Numpy tem uma função para imprimir o polinômio mas os parâmetros precisam estar na ordem inversa
print ('Polinômio estimado para grau ' + str(deg) + ':')
w.reverse()
print (np.poly1d(w)+model.steps[1][1].intercept_) | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Função para calcular uma regressão polinomial para qualquer grau usando scikit learn. | def polynomial_regression(X,Y,deg):
model = make_pipeline(PolynomialFeatures(deg),LinearRegression())
model.fit(X,Y)
return model | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Função para plotar o modelo por meio de suas predições | def print_poly_predictions(X,Y, model):
plot_data(X,Y)
x_plot = np.array([i/200.0 for i in range(200)])
X_plot = x_plot[:,np.newaxis]
y_pred = model.predict(X_plot)
plt.plot(x_plot,y_pred,'g-')
plt.axis([0,1,-1.5,2])
def plot_residuals_vs_fit(X,Y, model):
# plot_data(X,Y)
# x_plot = np.array([i/200.0 for i in range(200)])
# X_plot = x_plot[:,np.newaxis]
y_pred = model.predict(X)
res = Y - y_pred
plt.plot(y_pred,res,'k.',color='blue',)
plt.axhline(y=0., color='r', linestyle='-')
plt.xlabel("predictions")
plt.ylabel("residuals") | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Função geradora | plot_data(X,Y)
x_plot = np.array([i/200.0 for i in range(200)])
y_plot = f(x_plot)
plt.plot(x_plot,y_plot,color='cornflowerblue',linewidth=2) | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Regressão polinomial de diferentes graus | model = polynomial_regression(X,Y,16)
print_poly_predictions(X,Y,model) | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Mostrando o modelo e coeficientes. | print_coefficients(model) | Polinômio estimado para grau 16:
16 15 14 13
3.337e+08 x - 2.226e+09 x + 6.62e+09 x - 1.156e+10 x
12 11 10 9 8
+ 1.309e+10 x - 1e+10 x + 5.14e+09 x - 1.657e+09 x + 2.258e+08 x
7 6 5 4 3
+ 6.694e+07 x - 4.734e+07 x + 1.393e+07 x - 2.548e+06 x + 3.018e+05 x
2
- 2.188e+04 x + 839.4 x - 12.01
| MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Regressão Ridge A regressão ridge se propõe a evitar o overfitting adicionando um custo ao RSS (dos mínimos quadrados) que depende da norma L2 dos coeficientes $\|w\|$ (ou seja da magnitude dos coeficientes). O resultado é a penalização de ajustes com coeficientes muito grandes. A força dessa penalidade é controlada por um parâmetro lambda (aqui chamado "L2_penalty"). Função para estimar a regressão ridge para qualquer grau de polinômio: | def polynomial_ridge_regression(X,Y, deg, l2_penalty):
model = make_pipeline(PolynomialFeatures(deg),Ridge(alpha=l2_penalty))
model.fit(X,Y)
return model | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Ridge com grau 16 usando uma penalidade *muito* pequena | model = polynomial_ridge_regression(X,Y,deg=16,l2_penalty=1e-14)
print_coefficients(model)
print_poly_predictions(X,Y,model) | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Ridge com grau 16 usando uma penalidade *muito* grande | model = polynomial_ridge_regression(X,Y, deg=16, l2_penalty=100)
print_coefficients(model)
print_poly_predictions(X,Y,model) | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Sequência de ajustes para uma sequência crescente de valores de lambda | for l2_penalty in [1e-10, 1e-8, 1e-6, 1e-3, 1, 1e1, 1e2]:
model = polynomial_ridge_regression(X,Y, deg=16, l2_penalty=l2_penalty)
print('lambda = %.2e' % l2_penalty)
print_coefficients(model)
print('\n')
plt.figure()
print_poly_predictions(X,Y,model)
plt.title('Ridge, lambda = %.2e' % l2_penalty) | lambda = 1.00e-10
Polinômio estimado para grau 16:
16 15 14 13 12 11 10
7567 x - 7803 x - 6900 x + 714.5 x + 6541 x + 5802 x - 498.1 x
9 8 7 6 5 4 3
- 6056 x - 4252 x + 3439 x + 4893 x - 4281 x + 769.9 x + 100.6 x
2
- 11.39 x - 4.716 x + 0.7859
lambda = 1.00e-08
Polinômio estimado para grau 16:
16 15 14 13 12 11
352.8 x - 246.4 x - 338.4 x - 129.4 x + 148.9 x + 296 x
10 9 8 7 6 5
+ 213.6 x - 38.58 x - 254.8 x - 218.5 x + 62.06 x + 244.8 x
4 3 2
+ 36.66 x - 223.2 x + 112.4 x - 17.86 x + 1.157
lambda = 1.00e-06
Polinômio estimado para grau 16:
16 15 14 13 12 11
-11.68 x - 1.907 x + 7.873 x + 14.24 x + 14.19 x + 6.382 x
10 9 8 7 6 5 4
- 7.42 x - 21.17 x - 25.09 x - 10.05 x + 21.99 x + 43.96 x + 6.021 x
3 2
- 81.62 x + 52.95 x - 9.752 x + 0.8831
lambda = 1.00e-03
Polinômio estimado para grau 16:
16 15 14 13 12
-0.1991 x - 0.03173 x + 0.1641 x + 0.3778 x + 0.5899 x
11 10 9 8 7 6
+ 0.7688 x + 0.8655 x + 0.8092 x + 0.5056 x - 0.1493 x - 1.21 x
5 4 3 2
- 2.509 x - 3.256 x - 1.494 x + 4.364 x - 0.3416 x + 0.4424
lambda = 1.00e+00
Polinômio estimado para grau 16:
16 15 14 13 12
-0.07194 x - 0.08353 x - 0.09695 x - 0.1125 x - 0.1303 x
11 10 9 8 7 6
- 0.1507 x - 0.1737 x - 0.1991 x - 0.2262 x - 0.253 x - 0.2758 x
5 4 3 2
- 0.2865 x - 0.2698 x - 0.197 x - 0.02395 x + 0.2536 x + 0.6222
lambda = 1.00e+01
Polinômio estimado para grau 16:
16 15 14 13 12
-0.03822 x - 0.04265 x - 0.04763 x - 0.05321 x - 0.05946 x
11 10 9 8 7
- 0.06643 x - 0.07416 x - 0.08262 x - 0.09173 x - 0.1012 x
6 5 4 3 2
- 0.1103 x - 0.1179 x - 0.1214 x - 0.1158 x - 0.09251 x - 0.0412 x + 0.6399
lambda = 1.00e+02
Polinômio estimado para grau 16:
16 15 14 13 12
-0.007084 x - 0.00789 x - 0.008794 x - 0.009809 x - 0.01095 x
11 10 9 8 7
- 0.01222 x - 0.01364 x - 0.01521 x - 0.01694 x - 0.01879 x
6 5 4 3 2
- 0.0207 x - 0.02253 x - 0.02397 x - 0.02439 x - 0.02253 x - 0.01594 x + 0.4948
| MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Usando validação cruzada para encontrar o melhor lembda para Regressão Ridge A função abaixo calcula os rmses (root mean squared error) para um certo modelo considerando todos os k folds (parâmetro cv na função cross_val_score do scikit learn). | from sklearn.model_selection import cross_val_score
def rmse_cv(model):
rmse = np.sqrt(-cross_val_score(model,X,Y,scoring="neg_mean_squared_error",cv=10))
return (rmse) | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Cria um modelo de regressão ridge | model_ridge = Ridge() | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Plota resultados (médias de rmse) para cada valor de alpha (ou lambda) | l2_penalties = [0.001,0.01,0.1,0.3,0.5,1,3,5,10,15,20,40,60,80,100]
cv_ridge = [rmse_cv(Ridge(alpha=l2_penalty)).mean()
for l2_penalty in l2_penalties]
cv_ridge = pd.Series(cv_ridge,index=l2_penalties)
cv_ridge.plot(title="Lambda vs Erro de Validação")
plt.xlabel("l2_penalty")
plt.ylabel("rmse")
best_l2_penalty=cv_ridge.argmin()
best_rmse = cv_ridge.min()
print (best_l2_penalty, best_rmse) #melhor valor de (alpha,rmse) encontrado
model = polynomial_ridge_regression(X,Y, deg=16, l2_penalty=best_l2_penalty)
print_coefficients(model)
print_poly_predictions(X,Y,model) | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Regressão Lasso A regressão Lasso, ao mesmo tempo, encolhe a magnitude dos coeficientes para evitar o overfitting e realiza implicitamente seleção de característcas igualando alguns atributos a zero (para lambdas, aqui chamados "L1_penalty", suficientemente grandes). Em particular, o Lasso adiciona ao RSS o custo $\|w\|$. Função que estima a regressão polinomial de qualquer grau com a regressão Lasso. | def polynomial_lasso_regression(X, Y, deg, l1_penalty):
model = make_pipeline(PolynomialFeatures(deg),Lasso(alpha=l1_penalty,max_iter=10000))
# X = data['X'][:,np.newaxis] #transformando em matrix para LinearRegression
model.fit(X,Y)
return model | _____no_output_____ | MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
Explore a solução lasso solution como uma função de diferentes fatores de penalidade Nos referimos ao fator de penalidade do lasso como "l1_penalty" | for l1_penalty in [0.0001, 0.001, 0.01, 0.1, 10]:
model = polynomial_lasso_regression(X, Y,deg=16, l1_penalty=l1_penalty)
print ('l1_penalty = %e' % l1_penalty)
w = list(model.steps[1][1].coef_)
print ('número de não zeros = %d' % np.count_nonzero(w))
print_coefficients(model)
print ('\n')
plt.figure()
print_poly_predictions(X,Y,model)
#plt.title('LASSO, lambda = %.2e, # nonzeros = %d' % l1_penalty, np.count_nonzero(w)) | l1_penalty = 1.000000e-04
número de não zeros = 5
Polinômio estimado para grau 16:
11 10 4 2
1.626 x + 1.074 x - 7.667 x + 4.545 x - 0.4504 x + 0.4478
l1_penalty = 1.000000e-03
número de não zeros = 3
Polinômio estimado para grau 16:
5 4
-0.181 x - 2.886 x + 1.373 x + 0.3354
l1_penalty = 1.000000e-02
número de não zeros = 2
Polinômio estimado para grau 16:
5
-1.96 x + 0.2618 x + 0.628
l1_penalty = 1.000000e-01
número de não zeros = 0
Polinômio estimado para grau 16:
0.4527
l1_penalty = 1.000000e+01
número de não zeros = 0
Polinômio estimado para grau 16:
0.4527
| MIT | regressao_linear/Overfitting_Demo_Ridge.ipynb | luizcz/aprendizado_maquina |
BTC - Gender BiasFinder | import pandas as pd
import numpy as np
import math
import time
base_dir = "../../data/biasfinder/gender/"
df = pd.read_csv(base_dir + "test.csv", header=None, sep="\t", names=["label", "mutant", "template", "original", "gender", "template_id"])
df.drop_duplicates()
def read_txt(fpath):
pred = []
file = open(fpath)
lines = file.readlines()
for l in lines :
pred.append(int(l))
file.close()
return pred
output_dir = "biasfinder/gender"
result_dir = "../../result/" + output_dir + "/"
path = result_dir + "results_data.txt"
pred = read_txt(path)
print(len(pred))
df["prediction"] = pred
df | _____no_output_____ | Apache-2.0 | codes/gender/BTC.ipynb | yangzhou6666/BiasHeal |
Use Groupby to Group the text by Template | gb = df.groupby("template_id")
gb.count()
len(gb.size())
df
id = 0
df.iloc[id]["mutant"]
df.iloc[id]["original"]
df.iloc[id]["template"] | _____no_output_____ | Apache-2.0 | codes/gender/BTC.ipynb | yangzhou6666/BiasHeal |
Get DF template only | df
dft = df.iloc[:,[2,3,5]]
dft = dft.drop_duplicates()
dft
# ## template
dft = dft.sort_values(by=["template_id"])
dft = dft.reset_index(drop=True)
dft
## mutant
df = df.reset_index(drop=True)
df
dft | _____no_output_____ | Apache-2.0 | codes/gender/BTC.ipynb | yangzhou6666/BiasHeal |
Get Number of Discordant Pairs for Each TemplateThere is a memory limitation that make us can't directly produce +- 240M pairs. Fortunately, the number of discordant pairs for each template can be calculate theoritically without crossing th data to get +- 240M pairs. This will solve the memory issue.For each template, we will give an example of the male mutant and female mutant for user study | gb = df.groupby("template_id")
gb.count() | _____no_output_____ | Apache-2.0 | codes/gender/BTC.ipynb | yangzhou6666/BiasHeal |
Data crossing | import time
start = time.time()
identifier = "gender"
mutant_example = []
mutant_prediction_stat = []
key = []
for i in range(len(gb.size())) :
# for i in range(10) :
data = gb.get_group(i)
dc = data.groupby(identifier)
me = {} # mutant example
mp = {} # mutant prediction
key = []
for k, v in dict(iter(dc)).items() :
key.append(k)
is_first_instance = True
pos_counter = 0 # positive counter
neg_counter = 0 # negative counter
for m, p in zip(v["mutant"].values, v["prediction"].values) :
if is_first_instance :
me[k] = m
is_first_instance = False
if int(p) == 1 :
pos_counter += 1
else :
neg_counter += 1
mp[k] = {"pos": pos_counter, "neg" : neg_counter}
mutant_example.append(me)
mutant_prediction_stat.append(mp)
end = time.time()
print("Execution time: ", end-start)
dft["mutant_example"] = mutant_example
dft["mutant_prediction_stat"] = mutant_prediction_stat
dft
key
btcs = []
pairs = []
for mp in dft["mutant_prediction_stat"].values :
if len(mp) > 0 :
btc = 0
pair = 0
already_processed = []
for k1 in key :
for k2 in key :
if k1 != k2 :
k = k1 + "-" + k2
if k1 > k2 :
k = k2 + "-" + k1
if k not in already_processed :
already_processed.append(k)
btc += ((mp[k1]["pos"] * mp[k2]["neg"]) + (mp[k1]["neg"] * mp[k2]["pos"]))
pair += (mp[k1]["pos"] + mp[k1]["neg"]) * (mp[k2]["pos"] + mp[k2]["neg"])
# double_counting_divider = len(key) * (len(key)-1)
# dp.append(int(_dp/double_counting_divider)) # we must divide the number with the number of key to reduce the double counting
btcs.append(btc)
pairs.append(pair)
else :
btcs.append(0)
pairs.append(0)
dft["btc"] = btcs
dft["possible_pair"] = pairs
dft | _____no_output_____ | Apache-2.0 | codes/gender/BTC.ipynb | yangzhou6666/BiasHeal |
Number of Bias-Uncovering Test Case | int(dft["btc"].sum()) | _____no_output_____ | Apache-2.0 | codes/gender/BTC.ipynb | yangzhou6666/BiasHeal |
BTC Rate | dft["btc"].sum() / dft["possible_pair"].sum() | _____no_output_____ | Apache-2.0 | codes/gender/BTC.ipynb | yangzhou6666/BiasHeal |
Get Data that Have number of BTC more than one | d = dft[dft["btc"] > 0]
d | _____no_output_____ | Apache-2.0 | codes/gender/BTC.ipynb | yangzhou6666/BiasHeal |
Sort Data based on the number of BTC | d = d.sort_values(["btc", "template"], ascending=False)
d = d.reset_index(drop=True)
d | _____no_output_____ | Apache-2.0 | codes/gender/BTC.ipynb | yangzhou6666/BiasHeal |
Get Data BTC for train and test | df
template_that_produce_btc = d["template_id"].tolist()
# template_that_produce_btc
start = time.time()
mutant_text_1 = []
mutant_text_2 = []
prediction_1 = []
prediction_2 = []
identifier_1 = []
identifier_2 = []
template = []
original = []
label = []
for i in template_that_produce_btc: # only processing from template that produce BTC
data = gb.get_group(i)
dc = data.groupby(identifier)
already_processed = []
for k1, v1 in dict(iter(dc)).items() :
for k2, v2 in dict(iter(dc)).items() :
if k1 != k2 :
key = k1 + "-" + k2
if k1 > k2 :
key = k2 + "-" + k1
if key not in already_processed :
already_processed.append(key)
for m_1, p_1, i_1, t, o, l in zip(v1["mutant"].values, v1["prediction"].values, v1[identifier].values, v1["template"].values, v1["original"].values, v1["label"].values) :
for m_2, p_2, i_2 in zip(v2["mutant"].values, v2["prediction"].values, v2[identifier].values) :
if p_1 != p_2 : # only add discordant pairs
mutant_text_1.append(m_1)
prediction_1.append(p_1)
identifier_1.append(i_1)
mutant_text_2.append(m_2)
prediction_2.append(p_2)
identifier_2.append(i_2)
template.append(t)
label.append(l)
original.append(o)
end = time.time()
print("Execution time: ", end-start)
btc = pd.DataFrame(data={"mutant_1" : mutant_text_1, "mutant_2" : mutant_text_2, "prediction_1": prediction_1, "prediction_2" : prediction_2, "identifier_1": identifier_1, "identifier_2" : identifier_2, "template": template, "original": original, "label": label})
btc
btc = btc.sample(frac=1, random_state=123)
texts = []
templates = []
labels = []
original = []
for index, rows in btc.iterrows():
original.append(rows["original"])
texts.append(rows["original"])
texts.append(rows["mutant_1"])
texts.append(rows["mutant_2"])
templates.append(rows["template"])
labels.append(rows["label"])
# texts
user_study = pd.DataFrame(data={"text":texts, "sentiment": None, "is_make_sense": None, "comment": None})
df_template = pd.DataFrame(data={"template":templates})
df_ori = pd.DataFrame(data={"label" :label, "original": original})
# df_ori.drop_duplicates().to_csv("btc_original.csv")
df_ori
user_study
df_template
user_study[:1200].to_csv("../../user_study/TSE/gender-unlabelled.csv")
# template.to_csv("template_gender.csv")
import os
base_dir = "../../data/btc/biasfinder/gender/"
if not os.path.exists(base_dir) :
os.makedirs(base_dir)
btc.to_csv(base_dir + "original.csv", index=None)
m1 = btc.iloc[:,[-1,0]]
m1 = m1.rename(columns={"mutant_1": "text"})
m2 = btc.iloc[:,[-1,1]]
m2 = m2.rename(columns={"mutant_2": "text"})
m1
data = pd.concat([m1, m2])
data
# data["text"] = data["text"].astype("category")
# data["text_id"] = data["text"].cat.codes
# data
import os
data_dir = base_dir + "full/"
if not os.path.exists(data_dir) :
os.makedirs(data_dir)
# train = unique_data
train = data.sample(frac=1, random_state=123)
train.to_csv(data_dir + "train.csv", index=None, header=None, sep="\t")
test = data
test.to_csv(data_dir+ "test.csv", index=None, header=None, sep="\t")
unique_data = data.drop_duplicates().reset_index(drop=True)
unique_data
unique_data[unique_data["label"] == 0]
import os
data_dir = base_dir + "unique/"
if not os.path.exists(data_dir) :
os.makedirs(data_dir)
# train = unique_data
train = unique_data.sample(frac=1, random_state=123)
train.to_csv(data_dir + "train.csv", index=None, header=None, sep="\t")
test = unique_data
test.to_csv(data_dir+ "test.csv", index=None, header=None, sep="\t")
len(train) | _____no_output_____ | Apache-2.0 | codes/gender/BTC.ipynb | yangzhou6666/BiasHeal |
Balanced Data for Training | df_0 = unique_data[unique_data["label"] == 0]
df_1 = unique_data[unique_data["label"] == 1]
print(len(df_0))
print(len(df_1))
df_1 = df_1.sample(len(df_0), replace=True)
df_oversampled = pd.concat([df_0, df_1], axis=0)
df_oversampled
data_dir = base_dir + "unique/balanced/"
if not os.path.exists(data_dir) :
os.makedirs(data_dir)
# train = unique_data
train = df_oversampled.sample(frac=1, random_state=123)
train.to_csv(data_dir + "train.csv", index=None, header=None, sep="\t") | _____no_output_____ | Apache-2.0 | codes/gender/BTC.ipynb | yangzhou6666/BiasHeal |
Live Human Pose Estimation with OpenVINOThis notebook demonstrates live pose estimation with OpenVINO. We use the OpenPose model [human-pose-estimation-0001](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/human-pose-estimation-0001) from [Open Model Zoo](https://github.com/openvinotoolkit/open_model_zoo/). At the bottom of this notebook, you will see live inference results from your webcam. You can also upload a video file.> NOTE: _To use the webcam, you must run this Jupyter notebook on a computer with a webcam. If you run on a server, the webcam will not work. However, you can still do inference on a video in the final step._ Imports | import sys
import collections
import os
import time
import cv2
import numpy as np
from IPython import display
from numpy.lib.stride_tricks import as_strided
from openvino import inference_engine as ie
from decoder import OpenPoseDecoder
sys.path.append("../utils")
import notebook_utils as utils | _____no_output_____ | Apache-2.0 | notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb | scalers-ai/openvino_notebooks |
The model Download the modelWe use `omz_downloader`, which is a command line tool from the `openvino-dev` package. `omz_downloader` automatically creates a directory structure and downloads the selected model.If you want to download another model, please change the model name and precision. *Note: This will require a different pose decoder*. | # directory where model will be downloaded
base_model_dir = "model"
# model name as named in Open Model Zoo
model_name = "human-pose-estimation-0001"
# selected precision (FP32, FP16, FP16-INT8)
precision = "FP16-INT8"
model_path = f"model/intel/{model_name}/{precision}/{model_name}.xml"
model_weights_path = f"model/intel/{model_name}/{precision}/{model_name}.bin"
if not os.path.exists(model_path):
download_command = f"omz_downloader " \
f"--name {model_name} " \
f"--precision {precision} " \
f"--output_dir {base_model_dir}"
! $download_command | _____no_output_____ | Apache-2.0 | notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb | scalers-ai/openvino_notebooks |
Load the modelDownloaded models are located in a fixed structure, which indicates vendor, model name and precision.Only a few lines of code are required to run the model. First, we create an Inference Engine object. Then we read the network architecture and model weights from the .bin and .xml files to load onto the desired device. | # initialize inference engine
ie_core = ie.IECore()
# read the network and corresponding weights from file
net = ie_core.read_network(model=model_path, weights=model_weights_path)
# load the model on the CPU (you can use GPU or MYRIAD as well)
exec_net = ie_core.load_network(net, "CPU")
# get input and output names of nodes
input_key = list(exec_net.input_info)[0]
output_keys = list(exec_net.outputs.keys())
# get input size
height, width = exec_net.input_info[input_key].tensor_desc.dims[2:] | _____no_output_____ | Apache-2.0 | notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb | scalers-ai/openvino_notebooks |
Input key is the name of the input node and output keys contain names of output nodes of the network. In the case of the OpenPose Model, we have one input and two outputs: pafs and keypoints heatmap. | input_key, output_keys | _____no_output_____ | Apache-2.0 | notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb | scalers-ai/openvino_notebooks |
Processing OpenPoseDecoderWe need a decoder to transform the raw results from the neural network into pose estimations. This magic happens inside Open Pose Decoder, which is provided in the [Open Model Zoo](https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/python/openvino/model_zoo/model_api/models/open_pose.py) and compatible with the `human-pose-estimation-0001` model.If you choose a model other than `human-pose-estimation-0001` you will need another decoder (e.g. AssociativeEmbeddingDecoder), which is available in the [demos section](https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/python/openvino/model_zoo/model_api/models/hpe_associative_embedding.py) of Open Model Zoo. | decoder = OpenPoseDecoder() | _____no_output_____ | Apache-2.0 | notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb | scalers-ai/openvino_notebooks |
Process ResultsA bunch of useful functions to transform results into poses.First, we will pool the heatmap. Since pooling is not available in numpy, we use a simple method to do it directly with numpy. Then, we use non-maximum suppression to get the keypoints from the heatmap. After that, we decode poses using the decoder. Since the input image is bigger than the network outputs, we need to multiply all pose coordinates by a scaling factor. | # 2d pooling in numpy (from: htt11ps://stackoverflow.com/a/54966908/1624463)
def pool2d(A, kernel_size, stride, padding, pool_mode="max"):
"""
2D Pooling
Parameters:
A: input 2D array
kernel_size: int, the size of the window
stride: int, the stride of the window
padding: int, implicit zero paddings on both sides of the input
pool_mode: string, 'max' or 'avg'
"""
# Padding
A = np.pad(A, padding, mode="constant")
# Window view of A
output_shape = (
(A.shape[0] - kernel_size) // stride + 1,
(A.shape[1] - kernel_size) // stride + 1,
)
kernel_size = (kernel_size, kernel_size)
A_w = as_strided(
A,
shape=output_shape + kernel_size,
strides=(stride * A.strides[0], stride * A.strides[1]) + A.strides
)
A_w = A_w.reshape(-1, *kernel_size)
# Return the result of pooling
if pool_mode == "max":
return A_w.max(axis=(1, 2)).reshape(output_shape)
elif pool_mode == "avg":
return A_w.mean(axis=(1, 2)).reshape(output_shape)
# non maximum suppression
def heatmap_nms(heatmaps, pooled_heatmaps):
return heatmaps * (heatmaps == pooled_heatmaps)
# get poses from results
def process_results(img, results):
pafs = results[output_keys[0]]
heatmaps = results[output_keys[1]]
# this processing comes from
# https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/python/models/open_pose.py
pooled_heatmaps = np.array(
[[pool2d(h, kernel_size=3, stride=1, padding=1, pool_mode="max") for h in heatmaps[0]]]
)
nms_heatmaps = heatmap_nms(heatmaps, pooled_heatmaps)
# decode poses
poses, scores = decoder(heatmaps, nms_heatmaps, pafs)
output_shape = exec_net.outputs[output_keys[0]].shape
output_scale = img.shape[1] / output_shape[3], img.shape[0] / output_shape[2]
# multiply coordinates by scaling factor
poses[:, :, :2] *= output_scale
return poses, scores | _____no_output_____ | Apache-2.0 | notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb | scalers-ai/openvino_notebooks |
Draw Pose OverlaysDraw pose overlays on the image to visualize estimated poses. Joints are drawn as circles and limbs are drawn as lines. The code is based on the [Human Pose Estimation Demo](https://github.com/openvinotoolkit/open_model_zoo/tree/master/demos/human_pose_estimation_demo/python) from Open Model Zoo. | colors = ((255, 0, 0), (255, 0, 255), (170, 0, 255), (255, 0, 85), (255, 0, 170), (85, 255, 0),
(255, 170, 0), (0, 255, 0), (255, 255, 0), (0, 255, 85), (170, 255, 0), (0, 85, 255),
(0, 255, 170), (0, 0, 255), (0, 255, 255), (85, 0, 255), (0, 170, 255))
default_skeleton = ((15, 13), (13, 11), (16, 14), (14, 12), (11, 12), (5, 11), (6, 12), (5, 6), (5, 7),
(6, 8), (7, 9), (8, 10), (1, 2), (0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6))
def draw_poses(img, poses, point_score_threshold, skeleton=default_skeleton):
if poses.size == 0:
return img
img_limbs = np.copy(img)
for pose in poses:
points = pose[:, :2].astype(np.int32)
points_scores = pose[:, 2]
# Draw joints.
for i, (p, v) in enumerate(zip(points, points_scores)):
if v > point_score_threshold:
cv2.circle(img, tuple(p), 1, colors[i], 2)
# Draw limbs.
for i, j in skeleton:
if points_scores[i] > point_score_threshold and points_scores[j] > point_score_threshold:
cv2.line(img_limbs, tuple(points[i]), tuple(points[j]), color=colors[j], thickness=4)
cv2.addWeighted(img, 0.4, img_limbs, 0.6, 0, dst=img)
return img | _____no_output_____ | Apache-2.0 | notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb | scalers-ai/openvino_notebooks |
Main Processing FunctionRun pose estimation on the specified source. Either a webcam or a video file. | # main processing function to run pose estimation
def run_pose_estimation(source=0, flip=False, use_popup=False, skip_first_frames=0):
player = None
try:
# create video player to play with target fps
player = utils.VideoPlayer(source, flip=flip, fps=30, skip_first_frames=skip_first_frames)
# start capturing
player.start()
if use_popup:
title = "Press ESC to Exit"
cv2.namedWindow(title, cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)
processing_times = collections.deque()
while True:
# grab the frame
frame = player.next()
if frame is None:
print("Source ended")
break
# if frame larger than full HD, reduce size to improve the performance
scale = 1280 / max(frame.shape)
if scale < 1:
frame = cv2.resize(frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)
# resize image and change dims to fit neural network input
# (see https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/human-pose-estimation-0001)
input_img = cv2.resize(frame, (width, height), interpolation=cv2.INTER_AREA)
# create batch of images (size = 1)
input_img = input_img.transpose(2, 0, 1)[np.newaxis, ...]
# measure processing time
start_time = time.time()
# get results
results = exec_net.infer(inputs={input_key: input_img})
stop_time = time.time()
# get poses from network results
poses, scores = process_results(frame, results)
# draw poses on a frame
frame = draw_poses(frame, poses, 0.1)
processing_times.append(stop_time - start_time)
# use processing times from last 200 frames
if len(processing_times) > 200:
processing_times.popleft()
_, f_width = frame.shape[:2]
# mean processing time [ms]
processing_time = np.mean(processing_times) * 1000
fps = 1000 / processing_time
cv2.putText(frame, f"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)", (20, 40),
cv2.FONT_HERSHEY_COMPLEX, f_width / 1000, (0, 0, 255), 1, cv2.LINE_AA)
# use this workaround if there is flickering
if use_popup:
cv2.imshow(title, frame)
key = cv2.waitKey(1)
# escape = 27
if key == 27:
break
else:
# encode numpy array to jpg
_, encoded_img = cv2.imencode(".jpg", frame, params=[cv2.IMWRITE_JPEG_QUALITY, 90])
# create IPython image
i = display.Image(data=encoded_img)
# display the image in this notebook
display.clear_output(wait=True)
display.display(i)
# ctrl-c
except KeyboardInterrupt:
print("Interrupted")
# any different error
except RuntimeError as e:
print(e)
finally:
if player is not None:
# stop capturing
player.stop()
if use_popup:
cv2.destroyAllWindows() | _____no_output_____ | Apache-2.0 | notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb | scalers-ai/openvino_notebooks |
Run Run Live Pose EstimationRun using a webcam as the video input. By default, the primary webcam is set with `source=0`. If you have multiple webcams, each one will be assigned a consecutive number starting at 0. Set `flip=True` when using a front-facing camera. Some web browsers, especially Mozilla Firefox, may cause flickering. If you experience flickering, set `use_popup=True`.*Note: To use this notebook with a webcam, you need to run the notebook on a computer with a webcam. If you run the notebook on a server (e.g. Binder), the webcam will not work.**Note: Popup mode may not work if you run this notebook on a remote computer (e.g. Binder).* | run_pose_estimation(source=0, flip=True, use_popup=False) | _____no_output_____ | Apache-2.0 | notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb | scalers-ai/openvino_notebooks |
Run Pose Estimation on a Video FileIf you don't have a webcam, you can still run this demo with a video file. Any format supported by OpenCV will work (see: https://docs.opencv.org/4.5.1/dd/d43/tutorial_py_video_display.html). You can skip first N frames to fast forward video. | video_file = "https://github.com/intel-iot-devkit/sample-videos/blob/master/store-aisle-detection.mp4?raw=true"
run_pose_estimation(video_file, flip=False, use_popup=False, skip_first_frames=500) | _____no_output_____ | Apache-2.0 | notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb | scalers-ai/openvino_notebooks |
Awesome basics that you can't live without when using Scitkit-learn | import sklearn | _____no_output_____ | MIT | notebooks/Untitled.ipynb | eleijonmarck/analytics-workflow-showcase |
All the methods within the scikit that you might want to explore and import when applicable | (sklearn.__dict__)['__all__'] | _____no_output_____ | MIT | notebooks/Untitled.ipynb | eleijonmarck/analytics-workflow-showcase |
2017 French presidential elections My aim was to highlight differences between Emmanuel Macron and Marine Le Pen, the two candidates who went to the second round of the 2017 French presidential elections.I have downloaded transcripts of the speeches that the two candidates performed from the 1st of January 2017 to the 1st of May 2017.In total:* Macron: 31 transcripts available out of 31 speeches* Le Pen: 25 transcrits available (transcripts: 21, subtitles: 4) out of 35 speeches.Sources:* Macron: https://en-marche.fr/articles/discours* Le Pen: http://www.frontnational.com/categorie/discours/  Create word cloudsWe can create word clouds to visualize the main words used by each candidate. | import os
import numpy as np
import nltk
from nltk.corpus import stopwords
import string
import re
import copy
from string import digits
## Load data
listFiles = os.listdir("~/Presidentielles2017/Data") | _____no_output_____ | MIT | 2017-French-presidential-elections.ipynb | AurelieDaviaud/2017-French-presidential-elections |
Preprocess the speeches First, have to preprocess the speeches to keep only important words. So we have to clean up irregularities (i.e. change to lowercase and remove punctuation) and to remove stop words. We have to prepare a list of French stopwords (as comprehensive as possible, by combining several existing lists of stopwords). | ## Prepare stop words
stopw = open("stopwords-fr1.txt", "r").read()
months = ["janvier", "février", "mars", "avril", "mai", "juin", "juillet", "août", "septembre", "octobre", "novembre", "décembre"]
n = re.compile('\n')
stopw = n.sub(' ', stopw)
stopw = nltk.word_tokenize(stopw)
stopw = stopw + stopwords.words('french') + months | _____no_output_____ | MIT | 2017-French-presidential-elections.ipynb | AurelieDaviaud/2017-French-presidential-elections |
Some transcripts of Le Pen's speeches are actually subtitles. So, we also have to remove the timestamp and any backest that usually include sound effect. Moreover, transcripts of Le Pen's and Macron's speeches do not have the same format. So we are going to use two different functions to process the documents. Function to preprocess subtitles and speeches of Le Pen(part of the function as been adapted from http://sapir.psych.wisc.edu/wiki/index.php/Extracting_and_analyzing_subtitles) | def cleanLP(str, subtitle=False):
timestamp = re.compile('^\d+\n?.*\n?', re.MULTILINE) # finds line numbers and the line after them (which usually houses timestamps)
brackets = re.compile('\[[^]]*\]\n?|\([^)]*\)\n?|<[^>]*>\n?|\{[^}]*\}\n?') # finds brackets and anything in between them (sound effects)
opensubs = re.compile('.*subtitles.*\n?|.*subs.*\n?', re.IGNORECASE) # finds the opensubtitles signature
urls = re.compile('www.*\s\n?|[^\s]*\. ?com\n?') # finds any urls
r = re.compile('\r') # gets rid of \r
n = re.compile('\n') # finds newlines
punctuation = re.compile("[^\w\s']") # finds punctuation
if subtitle:
str = timestamp.sub('', str)
str = brackets.sub('', str)
str = opensubs.sub('', str)
str = urls.sub('', str)
str = str.lower() # change to lowercase
str = r.sub('', str) # remove \r
str = n.sub(' ', str) # remove newlines
str = punctuation.sub(' ', str) # remove punctuation
str = str.replace("'", " ") # remove apostrophes
remove_digits = str.maketrans('', '', digits) # remove digits
str = str.translate(remove_digits)
tokens = nltk.word_tokenize(str) # tokenize (i.e create a list of words)
tokens = [w for w in tokens if not w in stopw]
return tokens | _____no_output_____ | MIT | 2017-French-presidential-elections.ipynb | AurelieDaviaud/2017-French-presidential-elections |
Function to preprocess speeches of Macron | def cleanMac(str):
brackets = re.compile('\[[^]]*\]\n?|\([^)]*\)\n?|<[^>]*>\n?|\{[^}]*\}\n?') # finds brackets and anything in between them (sound effects)
opensubs = re.compile('.*str.*\n?|.*subs.*\n?', re.IGNORECASE) # finds the opensubtitles signature
urls = re.compile('www.*\s\n?|[^\s]*\. ?com\n?') # finds any urls
r = re.compile('\r') # finds rid of \r
n = re.compile('\n') # finds newlines
punctuation = re.compile("[^\w\s']") # finds punctuation
str = '\n'.join(str.split('\n')[9:]) # remove 9th first lines
str = brackets.sub('', str)
str = opensubs.sub('', str)
str = urls.sub('', str)
str = str.replace("Seul le prononcé fait foi. page ", "") # remove words included in the footer and header of the transcript
str = str.replace("en-marche.fr", "")
str = str.replace("Discours d’Emmanuel Macron", "")
str = str.replace("Aller plus loin", "")
str = str.replace("Téléchargez la fiche avec les propositions >", "")
str = str.replace("bit.ly/fichesynthèse-santé ", "")
str = str.replace("Le replay >", "")
str = str.replace("EnMarche/videos/", "")
str = str.replace("facebook.com", "")
str = str.replace("Suivez Emmanuel Macron ", "")
str = str.replace("\x0c", "")
str = str.lower() # change to lowercase
str = r.sub('', str) # remove \r
str = n.sub(' ', str) # remove newlines
str = punctuation.sub(' ', str) # remove punctuation
str = str.replace("'", " ") # remove apostrophes
remove_digits = str.maketrans('', '', digits) # remove digits
str = str.translate(remove_digits)
tokens = nltk.word_tokenize(str) # tokenize (i.e create a list of words)
tokens = [w for w in tokens if not w in stopw]
return tokens | _____no_output_____ | MIT | 2017-French-presidential-elections.ipynb | AurelieDaviaud/2017-French-presidential-elections |
Preprocess the speeches | tokenMacTot = []
tokenLPTot = []
for file in listFiles:
str = open(file, "r").read()
if "MACRON" in file:
tokenMac = cleanMac(str)
tokenMacTot = tokenMacTot + tokenMac
if "Le Pen" in file:
if "Subtitle" in file:
tokenLP = cleanLP(str, subtitle=True)
tokenLPTot = tokenLPTot + tokenLP
else:
tokenLP = cleanLP(str, subtitle=False)
tokenLPTot = tokenLPTot + tokenLP | _____no_output_____ | MIT | 2017-French-presidential-elections.ipynb | AurelieDaviaud/2017-French-presidential-elections |
Store the tokens | tokens_mac_file = open('tokens_mac.txt', 'w')
for item in tokenMacTot:
tokens_mac_file.write("%s\n" % item)
tokens_LP_file = open('tokens_LP.txt', 'w')
for item in tokenLPTot:
tokens_LP_file.write("%s\n" % item) | _____no_output_____ | MIT | 2017-French-presidential-elections.ipynb | AurelieDaviaud/2017-French-presidential-elections |
Analyse the data Let's see whether the number of words used by each candidate is similar. | # Macron
tokenMacUni = set(tokenMacTot)
len(tokenMacUni)
# Le Pen
tokenLPUni = set(tokenLPTot)
len(tokenLPUni) | _____no_output_____ | MIT | 2017-French-presidential-elections.ipynb | AurelieDaviaud/2017-French-presidential-elections |
Macron seems to have a vocabulary that is a bit less varied than Le Pen. Count words Now, we have to compute the frequency of each word for each candidate to create the word clouds. | from collections import Counter
# Macron
n = re.compile('\n')
tokenMacTot = open("tokens_mac.txt", "r").read()
tokenMacTot = n.sub(' ', tokenMacTot)
tokenMacTot = nltk.word_tokenize(tokenMacTot)
mac = Counter(tokenMacTot)
mac_most = mac.most_common(n=100)
# Le Pen
tokenLPTot = open("tokens_LP.txt", "r").read()
tokenLPTot = n.sub(' ', tokenLPTot)
tokenLPTot = nltk.word_tokenize(tokenLPTot)
LP = Counter(tokenLPTot)
LP_most = LP.most_common(n=100) | _____no_output_____ | MIT | 2017-French-presidential-elections.ipynb | AurelieDaviaud/2017-French-presidential-elections |
Create word clouds | import wordcloud
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
from PIL import Image
import matplotlib.pyplot as plt
str_mac = open("tokens_mac.txt", "r").read()
str_lp = open("tokens_LP.txt", "r").read()
## Generate word clouds
mac = WordCloud(background_color="white", collocations= False, font_path='C:/Windows/Fonts/Verdana.ttf')
wordcloud_mac = mac.generate(str_mac)
lp = WordCloud(background_color="white", collocations= False, font_path='C:/Windows/Fonts/Verdana.ttf')
wordcloud_lp = lp.generate(str_lp)
## Show word clouds
plt.figure()
plt.imshow(wordcloud_mac, interpolation='bilinear')
plt.axis("off")
plt.title("Macron")
plt.show()
plt.figure()
plt.imshow(wordcloud_lp, interpolation='bilinear')
plt.axis("off")
plt.title("Le Pen")
plt.show() | _____no_output_____ | MIT | 2017-French-presidential-elections.ipynb | AurelieDaviaud/2017-French-presidential-elections |
The two candidates seem to use frequently the same words: France/français/française, Europe/européen/européenne, pays/nation/république, sécurité, monde, économie/économique, territoire... Well... that's not very surprising in a presidential election...This kind of word cloud may not be the best strategy to highlight their differences then. However, we can already highlight some differences. The words "Fillon" and "Macron" appear in the speeches of Le Pen whereas no name appears in the most frequent words used by Macron. Indeed, Le Pen is well known for always strongly criticize her opponants. We will delve further into these differences. But, first, let's make our word clouds a bit nicer. We can use the pictures of each candidate as masks for the word clouds. | ## Generate mask (load and format image) (NB: background must be transparent)
# Macron
mac_im = Image.open("F:/Boulot/00-DataScience/Portfolio/Presidentielles2017/macronNB.png")
mac_mask = Image.new("RGB", mac_im.size, (255,255,255))
mac_mask.paste(mac_im, mac_im)
mac_mask = np.array(mac_mask)
# Le Pen
lp_im = Image.open("F:/Boulot/00-DataScience/Portfolio/Presidentielles2017/lepenBleu.png")
lp_mask = Image.new("RGB", lp_im.size, (255,255,255))
lp_mask.paste(lp_im, lp_im)
lp_mask = np.array(lp_mask)
## Generate word clouds with mask
mac_mask = WordCloud(background_color="white", collocations= False, font_path='C:/Windows/Fonts/Verdana.ttf', mask=mac_mask)
wordcloud_mac_mask = mac_mask.generate(str_mac)
lp_mask = WordCloud(background_color="white", collocations= False, font_path='C:/Windows/Fonts/Verdana.ttf', mask=lp_mask)
wordcloud_lp_mask = lp_mask.generate(str_lp)
## Show word clouds
plt.figure()
plt.imshow(wordcloud_mac_mask, interpolation='bilinear')
plt.axis("off")
plt.title("Macron")
plt.show()
plt.figure()
plt.imshow(wordcloud_lp_mask, interpolation='bilinear')
plt.axis("off")
plt.title("Le Pen")
plt.show() | _____no_output_____ | MIT | 2017-French-presidential-elections.ipynb | AurelieDaviaud/2017-French-presidential-elections |
Now, let's see whether we can color the words using the colors of the French flag: blue, white and red. | import random
def BBR_color_func(word, font_size, position, orientation, random_state=None,
**kwargs):
return "%s" % random.choice(["hsl(240, 100%, 25%)", "hsl(0, 0%, 100%)", "hsl(0, 100%, 50%)"])
## Generate mask (load and format image) (NB: background must be transparent)
# Macron
mac_im = Image.open("F:/Boulot/00-DataScience/Portfolio/Presidentielles2017/macronNB.png")
mac_mask = Image.new("RGB", mac_im.size, (255,255,255))
mac_mask.paste(mac_im, mac_im)
mac_mask = np.array(mac_mask)
# Le Pen
lp_im = Image.open("F:/Boulot/00-DataScience/Portfolio/Presidentielles2017/lepenBleu.png")
lp_mask = Image.new("RGB", lp_im.size, (255,255,255))
lp_mask.paste(lp_im, lp_im)
lp_mask = np.array(lp_mask)
## Generate word clouds with mask and coloring from French flag
mac = WordCloud(background_color="black", color_func=BBR_color_func, random_state=3, relative_scaling=0.5, collocations= False, font_path='C:/Windows/Fonts/Verdana.ttf', mask=mac_mask)
wordcloud_mac = mac.generate(str_mac)
lp = WordCloud(background_color="black", color_func=BBR_color_func, random_state=3, relative_scaling=0.5, collocations= False, font_path='C:/Windows/Fonts/Verdana.ttf', mask=lp_mask)
wordcloud_lp = lp.generate(str_lp)
## Show word clouds
plt.figure()
plt.imshow(wordcloud_mac, interpolation='bilinear')
plt.axis("off")
plt.title("Macron")
plt.show()
plt.figure()
plt.imshow(wordcloud_lp, interpolation='bilinear')
plt.axis("off")
plt.title("Le Pen")
plt.show()
## Store to file
mac.to_file("~/macron_wc.png")
mac.to_file("macron_wcBBR.png")
lp.to_file("~/lepen_wc.png")
lp.to_file("lepen_wcBBR.png") | _____no_output_____ | MIT | 2017-French-presidential-elections.ipynb | AurelieDaviaud/2017-French-presidential-elections |
Task1 | from math import exp
INF = 10
EPS = 1e-8
ITERATIONS_NUM = 1000
class Differentiable:
def __init__(self, derivatives):
self.derivatives = derivatives
def __call__(self, x):
return self.derivatives[0](x)
def grad(self):
if (len(self.derivatives) == 1):
raise Exception("no derivatives were provided")
return Differentiable(self.derivatives[1:])
class Polynom:
def __init__(self, coefs):
self.coefs = coefs
self._degree = len(coefs) - 1
def __call__(self, x):
res = 0
for i, coef in enumerate(self.coefs):
res += (x ** i) * coef
return res
def get_degree(self):
return self._degree
def grad(self):
grad_coefs = [0] * self._degree
for i in range(1, self._degree + 1):
grad_coefs[i - 1] = self.coefs[i] * i
return Polynom(grad_coefs)
def bisec(p, l, r):
assert p(r) * p(l) < 0
sign = 1 if p(r) > 0 else -1
while (r - l > EPS):
m = (r + l) / 2
if (p(m) * sign > 0):
r = m
else:
l = m
return l
def newton(p):
x = 1
p_grad = p.grad()
for i in range(ITERATIONS_NUM):
x = x - p(x) / p_grad(x)
return x
def get_polynom(k, a):
coefs = [0] * (k + 1)
coefs[k] = 1
coefs[0] = -a
return Polynom(coefs)
p = get_polynom(2, 2)
print(f'bisec: {bisec(p, 0, INF)}')
print(f'newton: {newton(p)}') | bisec: 1.414213553071022
newton: 1.414213562373095
| MIT | beliakov-artem/HW1.ipynb | Malkovsky/co-mkn-hw-2021 |
Task2 | def get_roots(p):
if (p.get_degree() == 1):
return [-p.coefs[0] / p.coefs[1]]
a = [-INF]
a += get_roots(p.grad())
a.append(INF)
roots = []
for i in range(len(a) - 1):
roots.append(bisec(p, a[i], a[i + 1]))
return roots
def get_polynom_by_roots(roots):
coefs = [0] * (len(roots) + 1)
for mask in range(1 << len(roots)):
product = 1
bits = 0
for i in range(len(roots)):
if ((mask >> i) & 1):
product *= - roots[i]
bits += 1
coefs[len(roots) - bits] += product
return Polynom(coefs)
get_roots(get_polynom_by_roots([1, 2, 3, 4, 5])) | _____no_output_____ | MIT | beliakov-artem/HW1.ipynb | Malkovsky/co-mkn-hw-2021 |
Понятно, что этот код не работает в самой общей постановке задачи. Как минимум он всегда возвращает столько корней, какой степени полином. Он совершенно не работает в сценарии, когда у нас есть кратные корни. Да и у производной могут быть кратные корни, но мне очень не хотелось разбирать все эти случаи. Так что вот так. Task03 | def get_differentiable(a, b, c, d):
def f(x):
return exp(a * x) + exp(- b * x) + c * ((x - d) ** 2)
def f_grad(x):
return a * exp(a * x) - b * exp(- b * x) + 2 * c * (x - d)
def f_grad2(x):
return (a ** 2) * exp(a * x) + (b ** 2) * exp(- b * x) + 2 * c
return Differentiable([f, f_grad, f_grad2])
f = get_differentiable(1, 1, 1, 1)
def ternary_search(f):
l = -INF
r = INF
while(r - l > EPS):
m1 = l + ((r - l) / 3)
m2 = l + (2 * (r - l) / 3)
if (f(m1) > f(m2)):
l = m1
else:
r = m2
return l
print("bisec: ", bisec(f.grad(), -INF, INF))
print("newton: ", newton(f.grad()))ss
print("ternary: ", ternary_search(f)) | bisec: 0.49007306806743145
newton: 0.4900730684805478
ternary: 0.49007306428116904
| MIT | beliakov-artem/HW1.ipynb | Malkovsky/co-mkn-hw-2021 |
필요한 필수 새팅 작업 | !ls
!pip install -r drive/'My Drive'/'KoGPT2-FineTuning_pre'/requirements.txt
import os
import sys
sys.path.append('drive/My Drive/KoGPT2-FineTuning_pre')
logs_base_dir = "runs"
from jupyter_main_auto import main
ctx= 'cuda'
cachedir='~/kogpt2/'
load_path = './gdrive/My Drive/KoGPT2-FineTuning_pre/checkpoint/KoGPT2_checkpoint_640000.tar' # 이어서 학습시킬 모델 경로
save_path = './gdrive/My Drive/KoGPT2-FineTuning_pre/checkpoint/' # 학습한 모델을 저장시킬 경로
data_file_path = './gdrive/My Drive/KoGPT2-FineTuning_pre/dataset/dataset.csv' # 학습할 데이터셋 경로 | _____no_output_____ | Apache-2.0 | Colab.ipynb | andrewlaikhT/KoGPT2 |
모델 학습 시작 | # 저장 잘 되는지 테스트
drive.mount('/content/gdrive')
f = open(save_path+ 'KoGPT2_checkpoint_' + str(142) + '.tar', 'w')
f.write("가자")
f.close()
main(load_path = load_path, data_file_path = data_file_path, save_path = './gdrive/My Drive/KoGPT2-FineTuning_pre/checkpoint/', summary_url = './gdrive/My Drive/KoGPT2-FineTuning_pre/runs/2020-07-20/', text_size = 500, new = 1, batch_size = 1) | _____no_output_____ | Apache-2.0 | Colab.ipynb | andrewlaikhT/KoGPT2 |
Decision trees and random forests | import numpy as np
import pandas as pd
from sklearn import model_selection as ms, tree, ensemble
%matplotlib inline
WHITES_URL = 'http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-white.csv' | _____no_output_____ | CC-BY-4.0 | 12_decision_trees_and_random_forests/notebooks/02_solutions.ipynb | JoseHJBlanco/ga-data-science |
Read in the Wine Quality dataset. | whites = pd.read_csv(WHITES_URL, sep=';') | _____no_output_____ | CC-BY-4.0 | 12_decision_trees_and_random_forests/notebooks/02_solutions.ipynb | JoseHJBlanco/ga-data-science |
Train a decision tree for 'quality' limiting the depth to 3, and the minimum number of samples per leaf to 50. | X = whites.drop('quality', axis=1)
y = whites.quality
tree1 = tree.DecisionTreeRegressor(max_depth=2, min_samples_leaf=50)
tree1.fit(X, y) | _____no_output_____ | CC-BY-4.0 | 12_decision_trees_and_random_forests/notebooks/02_solutions.ipynb | JoseHJBlanco/ga-data-science |
Export the tree for plotting. | tree.export_graphviz(tree1, 'tree1.dot', feature_names=X.columns) | _____no_output_____ | CC-BY-4.0 | 12_decision_trees_and_random_forests/notebooks/02_solutions.ipynb | JoseHJBlanco/ga-data-science |
Define folds for cross-validation. | ten_fold_cv = ms.KFold(n_splits=10, shuffle=True) | _____no_output_____ | CC-BY-4.0 | 12_decision_trees_and_random_forests/notebooks/02_solutions.ipynb | JoseHJBlanco/ga-data-science |
Compute average MSE across folds. | mses = ms.cross_val_score(tree.DecisionTreeRegressor(max_depth=2, min_samples_leaf=50),
X, y, scoring='neg_mean_squared_error', cv=ten_fold_cv)
np.mean(-mses) | _____no_output_____ | CC-BY-4.0 | 12_decision_trees_and_random_forests/notebooks/02_solutions.ipynb | JoseHJBlanco/ga-data-science |
Train a random forest with 20 decision trees. | rf1 = ensemble.RandomForestRegressor(n_estimators=20)
rf1.fit(X, y) | _____no_output_____ | CC-BY-4.0 | 12_decision_trees_and_random_forests/notebooks/02_solutions.ipynb | JoseHJBlanco/ga-data-science |
Investigate importances of predictors. | rf1.feature_importances_ | _____no_output_____ | CC-BY-4.0 | 12_decision_trees_and_random_forests/notebooks/02_solutions.ipynb | JoseHJBlanco/ga-data-science |
Evaluate performance through cross-validation. | mses = ms.cross_val_score(ensemble.RandomForestRegressor(n_estimators=20),
X, y, scoring='neg_mean_squared_error', cv=ten_fold_cv)
np.mean(-mses) | _____no_output_____ | CC-BY-4.0 | 12_decision_trees_and_random_forests/notebooks/02_solutions.ipynb | JoseHJBlanco/ga-data-science |
What happens when you increase the number of trees to 50? | mses = ms.cross_val_score(ensemble.RandomForestRegressor(n_estimators=50),
X, y, scoring='neg_mean_squared_error', cv=ten_fold_cv)
np.mean(-mses) | _____no_output_____ | CC-BY-4.0 | 12_decision_trees_and_random_forests/notebooks/02_solutions.ipynb | JoseHJBlanco/ga-data-science |
NormalizationUse what you've learned to normalize case in the following text and remove punctuation! | text = "The first time you see The Second Renaissance it may look boring. Look at it at least twice and definitely watch part 2. It will change your view of the matrix. Are the human people the ones who started the war ? Is AI a bad thing ?"
print(text) | The first time you see The Second Renaissance it may look boring. Look at it at least twice and definitely watch part 2. It will change your view of the matrix. Are the human people the ones who started the war ? Is AI a bad thing ?
| MIT | Text Processing/normalization_practice.ipynb | maitreytalware/Natural-Language-Processing-Pipelines |
Case Normalization | # Convert to lowercase
text = text.lower()
print(text) | the first time you see the second renaissance it may look boring. look at it at least twice and definitely watch part 2. it will change your view of the matrix. are the human people the ones who started the war ? is ai a bad thing ?
| MIT | Text Processing/normalization_practice.ipynb | maitreytalware/Natural-Language-Processing-Pipelines |
Punctuation RemovalUse the `re` library to remove punctuation with a regular expression (regex). Feel free to refer back to the video or Google to get your regular expression. You can learn more about regex [here](https://docs.python.org/3/howto/regex.html). | # Remove punctuation characters
import re
text = re.sub(r"[^a-zA-Z0-9]"," ",text)
print(text) | the first time you see the second renaissance it may look boring look at it at least twice and definitely watch part 2 it will change your view of the matrix are the human people the ones who started the war is ai a bad thing
| MIT | Text Processing/normalization_practice.ipynb | maitreytalware/Natural-Language-Processing-Pipelines |
End of distribution Imputation ==> Feature-Engine What is Feature-EngineFeature-Engine is an open source python package that I created at the back of this course. - Feature-Engine includes all the feature engineering techniques described in the course- Feature-Engine works like to Scikit-learn, so it is easy to learn- Feature-Engine allows you to implement specific engineering steps to specific feature subsets- Feature-Engine can be integrated with the Scikit-learn pipeline allowing for smooth model building- **Feature-Engine allows you to design and store a feature engineering pipeline with bespoke procedures for different variable groups.**-------------------------------------------------------------------Feature-Engine can be installed via pip ==> pip install feature-engine- Make sure you have installed feature-engine before running this notebookFor more information visit:my website In this demoWe will use Feature-Engine to perform mean or median imputation using the Ames House Price Dataset.- To download the dataset visit the lecture **Datasets** in **Section 1** of the course. | import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# to split the datasets
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
# from feature-engine
from feature_engine import missing_data_imputers as mdi
# let's load the dataset with a selected group of variables
cols_to_use = [
'BsmtQual', 'FireplaceQu', 'LotFrontage', 'MasVnrArea', 'GarageYrBlt',
'SalePrice'
]
data = pd.read_csv('../houseprice.csv', usecols=cols_to_use)
data.head()
data.isnull().mean() | _____no_output_____ | BSD-3-Clause | notebooks/feature-engineering/Section-04-Missing-Data-Imputation/04.18-End-Tail-Imputation-Feature-Engine.ipynb | sophiabrandt/udemy-feature-engineering |
All the predictor variables contain missing data. | # let's separate into training and testing set
# first drop the target from the feature list
cols_to_use.remove('SalePrice')
X_train, X_test, y_train, y_test = train_test_split(data[cols_to_use],
data['SalePrice'],
test_size=0.3,
random_state=0)
X_train.shape, X_test.shape | _____no_output_____ | BSD-3-Clause | notebooks/feature-engineering/Section-04-Missing-Data-Imputation/04.18-End-Tail-Imputation-Feature-Engine.ipynb | sophiabrandt/udemy-feature-engineering |
Feature-Engine captures the numerical variables automatically | # we call the imputer from feature-engine
# we specify whether we want to find the values using
# the gaussian approximation or the inter-quantal range
# proximity rule.
# in addition we need to specify if we want the values placed at
# the left or right tail
imputer = mdi.EndTailImputer(distribution='gaussian', tail='right')
# we fit the imputer
imputer.fit(X_train)
# we see that the imputer found the numerical variables to
# impute with the end of distribution value
imputer.variables
# here we can see the values that will be used
# to replace NA for each variable
imputer.imputer_dict_
# and this is how those values were calculated
# which is how we learnt in the first notebooks of
# this section
X_train[imputer.variables].mean() + 3 * X_train[imputer.variables].std()
# feature-engine returns a dataframe
tmp = imputer.transform(X_train)
tmp.head()
# let's check that the numerical variables don't
# contain NA any more
tmp[imputer.variables].isnull().mean() | _____no_output_____ | BSD-3-Clause | notebooks/feature-engineering/Section-04-Missing-Data-Imputation/04.18-End-Tail-Imputation-Feature-Engine.ipynb | sophiabrandt/udemy-feature-engineering |
Feature-engine allows you to specify variable groups easily | # let's do it imputation but this time
# and let's do it over 2 of the 3 numerival variables
# let's also select the proximity rule on the left tail
imputer = mdi.EndTailImputer(distribution='skewed', tail='left',
variables=['LotFrontage', 'MasVnrArea'])
imputer.fit(X_train)
# now the imputer uses only the variables we indicated
imputer.variables
# and we can see the value assigned to each variable
imputer.imputer_dict_
# feature-engine returns a dataframe
tmp = imputer.transform(X_train)
# let's check null values are gone
tmp[imputer.variables].isnull().mean() | _____no_output_____ | BSD-3-Clause | notebooks/feature-engineering/Section-04-Missing-Data-Imputation/04.18-End-Tail-Imputation-Feature-Engine.ipynb | sophiabrandt/udemy-feature-engineering |
Feature-engine can be used with the Scikit-learn pipeline | # let's look at the distributions to determine the
# end tail value selection method
X_train.hist() | _____no_output_____ | BSD-3-Clause | notebooks/feature-engineering/Section-04-Missing-Data-Imputation/04.18-End-Tail-Imputation-Feature-Engine.ipynb | sophiabrandt/udemy-feature-engineering |
All variables are skewed. For this demo, I will use the proximity rule for GarageYrBlt and MasVnrArea, and the Gaussian approximation for LotFrontage. | pipe = Pipeline([
('imputer_skewed', mdi.EndTailImputer(distribution='skewed', tail='right',
variables=['GarageYrBlt', 'MasVnrArea'])),
('imputer_gaussian', mdi.EndTailImputer(distribution='gaussian', tail='right',
variables=['LotFrontage'])),
])
pipe.fit(X_train)
pipe.named_steps['imputer_skewed'].imputer_dict_
pipe.named_steps['imputer_gaussian'].imputer_dict_
# let's transform the data with the pipeline
tmp = pipe.transform(X_train)
# let's check null values are gone
tmp.isnull().mean() | _____no_output_____ | BSD-3-Clause | notebooks/feature-engineering/Section-04-Missing-Data-Imputation/04.18-End-Tail-Imputation-Feature-Engine.ipynb | sophiabrandt/udemy-feature-engineering |
[NumPyro](https://github.com/pyro-ppl/numpyro) is probabilistic programming language built on top of JAX. It is very similar to [Pyro](https://pyro.ai/), which is built on top of PyTorch, but [tends to be faster](https://stackoverflow.com/questions/61846620/numpyro-vs-pyro-why-is-former-100x-faster-and-when-should-i-use-the-latter). (Both Pyro flavors are usually also [faster than PyMc3](https://www.kaggle.com/s903124/numpyro-speed-benchmark).)This colab gives a brief introduction (WIP). Installation | # Standard Python libraries
from __future__ import absolute_import, division, print_function, unicode_literals
import os
import time
#import numpy as np
#np.set_printoptions(precision=3)
import glob
import matplotlib.pyplot as plt
import PIL
import imageio
from IPython import display
%matplotlib inline
import sklearn
import seaborn as sns;
sns.set(style="ticks", color_codes=True)
import pandas as pd
pd.set_option('precision', 2) # 2 decimal places
pd.set_option('display.max_rows', 20)
pd.set_option('display.max_columns', 30)
pd.set_option('display.width', 100) # wide windows
import jax
import jax.numpy as np
import numpy as onp # original numpy
print("jax version {}".format(jax.__version__))
print("jax backend {}".format(jax.lib.xla_bridge.get_backend().platform))
# https://github.com/pyro-ppl/numpyro
!pip install numpyro
# It seems that numpyro installs jaxlib for CPU
#https://github.com/pyro-ppl/numpyro/issues/531
import jax
import jax.numpy as np
import numpy as onp # original numpy
from jax import random
print("jax version {}".format(jax.__version__))
print("jax backend {}".format(jax.lib.xla_bridge.get_backend().platform)) | jax version 0.2.7
jax backend gpu
| MIT | notebooks/numpyro_intro.ipynb | khanshehjad/pyprobml |
Distributions | import numpyro
import numpyro.distributions as dist
from numpyro.diagnostics import hpdi
from numpyro.distributions.transforms import AffineTransform
from numpyro.infer import MCMC, NUTS, Predictive
rng_key = random.PRNGKey(0)
rng_key, rng_key_ = random.split(rng_key) | _____no_output_____ | MIT | notebooks/numpyro_intro.ipynb | khanshehjad/pyprobml |
1d Gaussian | # 2 independent 1d gaussians (ie 1 diagonal Gaussian)
mu = 1.5
sigma = 2
d = dist.Normal(mu, sigma)
dir(d)
rng_key, rng_key_ = random.split(rng_key)
nsamples = 1000
ys = d.sample(rng_key_, (nsamples,))
print(ys.shape)
mu_hat = np.mean(ys,0)
print(mu_hat)
sigma_hat = np.std(ys, 0)
print(sigma_hat) | (1000,)
1.5070927
2.0493808
| MIT | notebooks/numpyro_intro.ipynb | khanshehjad/pyprobml |
Multivariate Gaussian | mu = np.array([-1, 1])
sigma = np.array([1, 2])
Sigma = np.diag(sigma)
d2 = dist.MultivariateNormal(mu, Sigma)
#rng_key, rng_key_ = random.split(rng_key)
nsamples = 1000
ys = d2.sample(rng_key_, (nsamples,))
print(ys.shape)
mu_hat = np.mean(ys,0)
print(mu_hat)
Sigma_hat = np.cov(ys, rowvar=False) #jax.np.cov not implemented
print(Sigma_hat) | (1000, 2)
[-1.0127413 1.0091063]
[[ 0.9770031 -0.00533966]
[-0.00533966 1.9718108 ]]
| MIT | notebooks/numpyro_intro.ipynb | khanshehjad/pyprobml |
Shape semanticsNumpyro, [Pyro](https://pyro.ai/examples/tensor_shapes.html) and [TFP](https://www.tensorflow.org/probability/examples/Understanding_TensorFlow_Distributions_Shapes) all distinguish between 'event shape' and 'batch shape'.For a D-dimensional Gaussian, the event shape is (D,), and the batch shapewill be (), meaning we have a single instance of this distribution.If the covariance is diagonal, we can view this as D independent1d Gaussians, stored along the batch dimension; this will have event shape () but batch shape (2,). When we sample from a distribution, we also specify the sample_shape.Suppose we draw N samples from a single D-dim diagonal Gaussian,and N samples from D 1d Gaussians. These samples will have the same shape.However, the semantics of logprob differs.We illustrate this below. | d2 = dist.MultivariateNormal(mu, Sigma)
print(f'event shape {d2.event_shape}, batch shape {d2.batch_shape}')
nsamples = 3
ys2 = d2.sample(rng_key_, (nsamples,))
print('samples, shape {}'.format(ys2.shape))
print(ys2)
# 2 independent 1d gaussians (same as one 2d diagonal Gaussian)
d3 = dist.Normal(mu, np.diag(Sigma))
print(f'event shape {d3.event_shape}, batch shape {d3.batch_shape}')
ys3 = d3.sample(rng_key_, (nsamples,))
print('samples, shape {}'.format(ys3.shape))
print(ys3)
print(np.allclose(ys2, ys3))
y = ys2[0,:] # 2 numbers
print(d2.log_prob(y)) # log prob of a single 2d distribution on 2d input
print(d3.log_prob(y)) # log prob of two 1d distributions on 2d input
| -2.6185904
[-1.35307 -1.6120898]
| MIT | notebooks/numpyro_intro.ipynb | khanshehjad/pyprobml |
We can turn a set of independent distributions into a single productdistribution using the [Independent class](http://num.pyro.ai/en/stable/distributions.htmlindependent) | d4 = dist.Independent(d3, 1) # treat the first batch dimension as an event dimensions
print(d4.event_shape)
print(d4.batch_shape)
print(d4.log_prob(y)) | (2,)
()
-2.96516
| MIT | notebooks/numpyro_intro.ipynb | khanshehjad/pyprobml |
Posterior inference with MCMC Example: 1d Gaussian with unknown mean.We use the simple example from the [Pyro intro](https://pyro.ai/examples/intro_part_ii.htmlA-Simple-Example). The goal is to infer the weight $\theta$ of an object, given noisy measurements $y$. We assume the following model:$$\begin{align}\theta &\sim N(\mu=8.5, \tau^2=1.0)\\ y \sim &N(\theta, \sigma^2=0.75^2)\end{align}$$Where $\mu=8.5$ is the initial guess. By Bayes rule for Gaussians, we know that the exact posterior,given a single observation $y=9.5$, is given by$$\begin{align}\theta|y &\sim N(m, s^s) \\m &=\frac{\sigma^2 \mu + \tau^2 y}{\sigma^2 + \tau^2} = \frac{0.75^2 \times 8.5 + 1 \times 9.5}{0.75^2 + 1^2} = 9.14 \\s^2 &= \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2} = \frac{0.75^2 \times 1^2}{0.75^2 + 1^2}= 0.6^2\end{align}$$ | mu = 8.5; tau = 1.0; sigma = 0.75; y = 9.5
m = (sigma**2 * mu + tau**2 * y)/(sigma**2 + tau**2)
s2 = (sigma**2 * tau**2)/(sigma**2 + tau**2)
s = np.sqrt(s2)
print(m)
print(s)
def model(prior_mean, prior_sd, obs_sd, measurement=None):
theta = numpyro.sample("theta", dist.Normal(prior_mean, prior_sd))
return numpyro.sample("y", dist.Normal(theta, obs_sd), obs=measurement)
nuts_kernel = NUTS(model)
mcmc = MCMC(nuts_kernel, num_warmup=100, num_samples=1000)
mcmc.run(rng_key_, mu, tau, sigma, y)
mcmc.print_summary()
samples = mcmc.get_samples()
| _____no_output_____ | MIT | notebooks/numpyro_intro.ipynb | khanshehjad/pyprobml |
Interactive Example 1. Run GaMMA in terminal or use QuakeFlow APINote: Please only use the QuakeFlow API for debugging and testing on small datasets. Do not run large jobs using the QuakeFlow API. The computational cost can be high for us.```bashuvicorn --app-dir=gamma app:app --reload --port 8001``` | import requests
import json
import pandas as pd
import os
# GAMMA_API_URL = "http://127.0.0.1:8001"
GAMMA_API_URL = "http://gamma.quakeflow.com" | _____no_output_____ | MIT | docs/example_interactive.ipynb | wayneweiqiang/GMMA |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.