markdown
stringlengths 0
1.02M
| code
stringlengths 0
832k
| output
stringlengths 0
1.02M
| license
stringlengths 3
36
| path
stringlengths 6
265
| repo_name
stringlengths 6
127
|
---|---|---|---|---|---|
we will use idomain to define zones for pilot points as going in active areas of each layer. | idm = m.dis.idomain.array
plt.imshow(idm[2])
plt.colorbar()
idm[idm==-1]=0 # make pass through cells (e.g. idomain==-1) the same as inactive (e.g. idomain == 0)
for i in range(4):
plt.figure()
plt.imshow(idm[i])
plt.colorbar() | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
before setting up K, need to edit the zone files to only have nonzero values in active cells | kzonefile = '../processed_data/padded_L{}_K_Zone_50mGrid.dat'
zonearrs = {}
for i in range(m.dis.nlay.data):
kz = np.loadtxt(kzonefile.format(i)).astype(int)
kz[idm[i] != 1] = 0
zonearrs[i] = kz
for i in range(4):
plt.figure()
plt.imshow(zonearrs[i])
plt.colorbar()
# quick take a look at unique zones present in each layer
[np.unique(kz) for _,kz in zonearrs.items()]
## set up for K
for tag,bnd in pp_tags.items():
lb, ub, ultub = bnd
if tag == 'k':
arrfiles = sorted([f for f in os.listdir(template_ws) if f.startswith(tag) & ('k33' not in f)])
else:
arrfiles = sorted([f for f in os.listdir(template_ws) if f.startswith(tag)])
for arr_file in arrfiles:
currlay = int(re.findall('\d+',arr_file.replace('k33',''))[-1])
# pilot points
# set pilot point spacing: NB every 5 cells in the smaller-zone layers, and every 20 cells in others
if currlay in [1,2]:
pp_space = 5
else:
pp_space = 20
v = pyemu.utils.geostats.ExpVario(a=sr_model.delr[0]*3*pp_space,contribution=1.0)
gs = pyemu.utils.geostats.GeoStruct(variograms=v,nugget=0.0, transform='log')
print('pps for layer {} --- filename: {}: idomain_sum: {}'.format(currlay, arr_file, idm[currlay].sum()))
pf.add_parameters(filenames=arr_file, par_type='pilotpoints', pp_space=pp_space,
upper_bound=ub, lower_bound=lb, geostruct=gs,
par_name_base='{}_pp'.format(tag),alt_inst_str='',
zone_array=idm[currlay], pargp='pp_{}'.format(tag),
ult_ubound=ultub)
# zones
print('zones for layer {} --- filename: {}: idomain_sum: {}'.format(currlay, arr_file, idm[currlay].sum()))
pf.add_parameters(filenames=arr_file, par_type='zone',alt_inst_str='',
zone_array = zonearrs[currlay],lower_bound=lb,upper_bound=ub,
pargp='zn_{}'.format(tag), par_name_base='{}_{}'.format(tag,currlay),
ult_ubound=ultub)
# recharge as special case because no idomain for R
rtags= {'rch':[0.8,1.2, np.max(m.rch.recharge.array)*1.2]}
for tag,bnd in rtags.items():
lb, ub, ultub = bnd
if tag == 'k':
arrfiles = sorted([f for f in os.listdir(template_ws) if f.startswith(tag) & ('k33' not in f)])
else:
arrfiles = sorted([f for f in os.listdir(template_ws) if f.startswith(tag)])
for arr_file in arrfiles:
# pilot points
pf.add_parameters(filenames=arr_file, par_type='pilotpoints', pp_space=pp_space,
upper_bound=ub, lower_bound=lb, geostruct=gs,
par_name_base='{}_pp'.format(tag),
zone_array=idm[3],alt_inst_str='',
pargp='pp_{}'.format(tag),
ult_ubound=ultub)
# constant
pf.add_parameters(filenames=arr_file, par_type='constant',
upper_bound=ub-0.1, lower_bound=lb+0.1,
par_name_base='{}_const'.format(tag),
zone_array=idm[3],alt_inst_str='',
pargp='pp_{}'.format(tag),
ult_ubound=ultub)
| 2021-03-26 16:43:15.342865 starting: adding pilotpoints type multiplier style parameters for file(s) ['rch_000.dat']
2021-03-26 16:43:15.343727 starting: loading array ..\run_data\rch_000.dat
2021-03-26 16:43:15.704764 finished: loading array ..\run_data\rch_000.dat took: 0:00:00.361037
2021-03-26 16:43:15.705800 loaded array '..\neversink_mf6\rch_000.dat' of shape (680, 619)
2021-03-26 16:43:16.246920 starting: writing array-based template file '..\run_data\rch_pp_0_pilotpoints.csv.tpl'
2021-03-26 16:43:16.246920 starting: setting up pilot point parameters
2021-03-26 16:43:16.246920 No spatial reference (containing cell spacing) passed.
2021-03-26 16:43:16.246920 OK - using spatial reference in parent object.
2021-03-26 16:43:17.495149 470 pilot point parameters created
2021-03-26 16:43:17.496147 pilot point 'pargp':rch_pp_:0
2021-03-26 16:43:17.496147 finished: setting up pilot point parameters took: 0:00:01.249227
2021-03-26 16:43:17.692599 starting: writing array-based template file '..\run_data\rch_pp_0pp.dat.tpl'
2021-03-26 16:43:17.692599 saving zone array ..\run_data\rch_pp_0pp.dat.zone for tpl file ..\run_data\rch_pp_0pp.dat.tpl
2021-03-26 16:43:17.854377 finished: adding pilotpoints type multiplier style parameters for file(s) ['rch_000.dat'] took: 0:00:02.511512
2021-03-26 16:43:17.855375 starting: adding constant type multiplier style parameters for file(s) ['rch_000.dat']
2021-03-26 16:43:17.856372 starting: loading array ..\run_data\rch_000.dat
2021-03-26 16:43:18.242922 finished: loading array ..\run_data\rch_000.dat took: 0:00:00.386550
2021-03-26 16:43:18.242922 loaded array '..\neversink_mf6\rch_000.dat' of shape (680, 619)
2021-03-26 16:43:18.963246 starting: writing array-based template file '..\run_data\rch_const_0_constant.csv.tpl'
2021-03-26 16:43:18.963246 starting: writing template file ..\run_data\rch_const_0_constant.csv.tpl for ['rch_const_:0']
2021-03-26 16:43:18.990173 WARNING: get_xy() warning: position of i and j in index_cols not specified, assume (i,j) are final two entries in index_cols.
2021-03-26 16:43:21.603479 finished: writing template file ..\run_data\rch_const_0_constant.csv.tpl for ['rch_const_:0'] took: 0:00:02.640233
2021-03-26 16:43:21.603479 finished: writing array-based template file '..\run_data\rch_const_0_constant.csv.tpl' took: 0:00:02.640233
2021-03-26 16:43:21.603479 saving zone array ..\run_data\rch_const_0_constant.csv.zone for tpl file ..\run_data\rch_const_0_constant.csv.tpl
2021-03-26 16:43:22.372912 finished: adding constant type multiplier style parameters for file(s) ['rch_000.dat'] took: 0:00:04.517537
| CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
the `build_pst` method compiles all the parameters we've added and makes a `Pst` object | pst = pf.build_pst('tmp.pst') | noptmax:0, npar_adj:4172, nnz_obs:0
| CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
Make a TPL file for SFR and add it to the `pst` object | sfrfilename = 'neversink_packagedata.dat'
print('working on {}'.format(sfrfilename))
# read in and strip and split the input lines
insfr = [line.strip().split() for line in open(os.path.join(template_ws,sfrfilename), 'r').readlines() if '#' not in line]
headerlines = [line.strip() for line in open(os.path.join(template_ws,sfrfilename), 'r').readlines() if '#' in line]
# set up the template line strings by segment
tpl_char = ['~ sfrk_{} ~'.format(line[-1]) for line in insfr]
# stick the tpl text in the K column. NB -> gotta count from the end because of
# the possibility of NONE or i,j,k as indexing
for line,tpl in zip(insfr,tpl_char):
line[-6] = tpl
# revert back to a space delimited file
insfr = [' '.join(line) for line in insfr]
# write out the TPL file
with open(os.path.join(template_ws,'{}.tpl'.format(sfrfilename)), 'w') as ofp:
ofp.write('ptf ~\n')
[ofp.write('{}\n'.format(line)) for line in headerlines]
[ofp.write('{}\n'.format(line)) for line in insfr]
pst.add_parameters(os.path.join(template_ws,'{}.tpl'.format(sfrfilename)), pst_path='.')
parval1 = pyemu.pst_utils.try_read_input_file_with_tpl(os.path.join(template_ws,'{}.tpl'.format(sfrfilename)),
os.path.join(template_ws,sfrfilename))
pst.parameter_data.loc[pst.parameter_data.parnme.str.startswith('sfr'),'pargp'] = 'sfrk'
pst.parameter_data.loc[pst.parameter_data.parnme == 'sfrk_700039914'] | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
Add in the observations Assign meaningful observation values and prepare to run `noptmax=0` test run prior to reweighting | update_forward_run=True
run_local=True
update_all_obs = True | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
if `update_all_obs` is True, run the get_observations.py script to get a new INS file and reset all observations in the PEST object | if update_all_obs is True:
shutil.copy2('../scripts/get_observations.py',os.path.join(template_ws,'get_observations.py'))
shutil.copy2('../scripts/get_observations.py',os.path.join(sim_ws,'get_observations.py'))
os.system('python {} {} True'.format(os.path.join(sim_ws,'get_observations.py'), sim_ws))
[shutil.copy2(cf, os.path.join(template_ws, os.path.basename(cf)))
for cf in glob.glob(os.path.join(sim_ws, '*.ins'))]
[shutil.copy2(cf, os.path.join(template_ws, os.path.basename(cf)))
for cf in glob.glob(os.path.join(sim_ws, 'land_*.csv'))]
pst.observation_data.loc[:,:] = np.nan
pst.observation_data.dropna(inplace=True)
pst.add_observations(os.path.join(template_ws,'obs_mf6.dat.ins'), pst_path='.') | 526 obs added from instruction file ../run_data\.\obs_mf6.dat.ins
| CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
set the observation groups | obs = pst.observation_data
obs.obgnme = 'head'
obs.loc[obs.index.str.startswith('q_'), 'obgnme'] = 'flux'
obs.loc[obs.index.str.startswith('perc'), 'obgnme'] = 'budget'
obs.loc[obs.index.str.startswith('land'), 'obgnme'] = 'land_surface' | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
Set observation values | set_obs = True
if set_obs:
# read in sfr; make sfr obsnme/obsval dict to map to pst observation_data
sfr_df = pd.read_csv('../processed_data/NWIS_DV_STREAMSTATS_SITES.csv')
sfr_df['obsnme'] = 'q_' + sfr_df['site_id'].astype(str)
sfr_df['obsval'] = (sfr_df['Mean_Annual_Flow_cfs'] * sfr_df['Average_BFI_value']) * 2446.5755455 # convert from cfs to m^3/day
sfr_df[['obsnme', 'obsval']]
sfr_dict = pd.Series(sfr_df['obsval'].values,index=sfr_df['obsnme']).to_dict()
# read in nwis heads; make nwis head obsnme/obsval dict
nwis_gw_df = pd.read_csv('../processed_data/NWIS_GW_DV_data.csv')
nwis_gw_df['obsnme'] = 'h_' + nwis_gw_df['site_no'].astype(str)
nwis_gw_df['obsval'] = nwis_gw_df['gw_elev_m']
nwis_gw_dict = pd.Series(nwis_gw_df['obsval'].values,index=nwis_gw_df['obsnme']).to_dict()
# read in DEC heads; make DEC heads obsnme/obsval dict
DEC_gw_df = pd.read_csv('../processed_data/NY_DEC_GW_sites.csv')
DEC_gw_df['obsnme'] = ('h_' + DEC_gw_df['WellNO'].astype(str)).str.lower()
DEC_gw_df['obsval'] = DEC_gw_df['gw_elev_m']
DEC_gw_dict = pd.Series(DEC_gw_df['obsval'].values,index=DEC_gw_df['obsnme']).to_dict()
# map SFR values to observation_data
obs.loc[obs.obsnme.isin(sfr_dict.keys()), 'obsval'] = obs.obsnme.map(sfr_dict)
# map nwis heads to observation_data
obs.loc[obs.obsnme.isin(nwis_gw_dict.keys()), 'obsval'] = obs.obsnme.map(nwis_gw_dict)
# map DEC heads to SRF observation_data
obs.loc[obs.obsnme.isin(DEC_gw_dict.keys()), 'obsval'] = obs.obsnme.map(DEC_gw_dict)
# set up percent discrepancy as dummy value
obs.loc[obs.obgnme=='budget', 'obsval'] = -99999
# get the land surface obs
lsobs_df = pd.read_csv('../neversink_mf6/land_surf_obs-observations.csv', index_col=0)
obs.loc[obs.obgnme=='land_surface', 'obsval'] = lsobs_df.obsval | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
first cut at weights | # weights based on coefficient of variation of 3.33 and 10, respecively
obs.loc[obs.obsnme=='q_1436500', 'weight'] = 3.33/obs.loc[obs.obsnme=='q_1436500'].obsval
obs.loc[obs.obsnme=='q_1366650', 'weight'] = 10/obs.loc[obs.obsnme=='q_1366650'].obsval
# these initial weights assume that heads within 5m for measured heads or 10m for land-surface obs is acceptable
obs.loc[obs.obgnme=='head', 'weight'] = 1/5
obs.loc[obs.obgnme=='land_surface', 'weight'] = 1/10
obs.loc[obs.obgnme=='budget', 'weight'] = 0.0 | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
update some parameter bounds | pars = pst.parameter_data | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
K-zones set to not get too crazy high | # read in k value lookup table to df
# original table
k_df_original = pd.read_excel(
'../processed_data/Rondout_Neversink_GeologyLookupTable.xlsx',
sheet_name='Sheet2'
)
k_df_original.index = k_df_original.Lookup_Code
k_df = pd.read_excel(
'../processed_data/Rondout_Neversink_GeologyLookupTable_jhw.xlsx',
sheet_name='Sheet2'
)
k_df.index = k_df.Lookup_Code
print('Using mean K value')
k_df['Kh_ft_d_mean'] = (k_df['Kh_ft_d_lower'] + k_df['Kh_ft_d_upper']) / 2
k_df['Kh_m_d'] = k_df['Kh_ft_d_mean'] * 0.3048
k_df['Kh_m_d_lower'] = k_df['Kh_ft_d_lower'] * .3048
k_df['Kh_m_d_upper'] = k_df['Kh_ft_d_upper'] * .3048
k_df['K_upper_mult'] = k_df['Kh_m_d_upper'] / k_df['Kh_m_d']
k_df['K_lower_mult'] = k_df['Kh_m_d_lower'] / k_df['Kh_m_d']
k_df
k_mult_zones = [int(i.split(':')[-1]) for i in pars.loc[pars.parnme.str.startswith('multiplier_k')].index]
np.unique(k_mult_zones)
upper_mults = [k_df.loc[i].K_upper_mult for i in k_mult_zones]
lower_mults = [k_df.loc[i].K_lower_mult for i in k_mult_zones]
pars.loc[pars.parnme.str.startswith('multiplier_k'), 'parlbnd'] = lower_mults
pars.loc[pars.parnme.str.startswith('multiplier_k'), 'parubnd'] = upper_mults
| _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
pilot points set to mean upper and lower bounds diffs | mean_lower = k_df.K_lower_mult.mean()
mean_upper = k_df.K_upper_mult.mean()
mean_lower,mean_upper
pars.loc[pars.pargp.str.startswith('k'), 'parlbnd'] = mean_lower + 0.01
pars.loc[pars.pargp.str.startswith('k'), 'parubnd'] = mean_upper - 0.01
pars.loc[pars.pargp.str.startswith('sfrk'), 'parlbnd'] = 0.1
pars.loc[pars.pargp.str.startswith('sfrk'), 'parubnd'] = 10.0 | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
Set CHD parameters to 'fixed'. They will not be estimated, but are present to evaluate in global sensitivity analysis which means we will free them only for that purpose | pars.loc[pars.pargp=='chd', 'partrans'] = 'fixed' | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
`pyemu` can write out a summary file with summary of the parameterization - note that all parameters are multipliers | parsum = pst.write_par_summary_table('../figures/initial_parsum.xlsx', report_in_linear_space=True)
parsum | Warning: because log-transformed values being reported in linear space, stdev NOT reported
| CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
update the forward run to run | # note there are ways to do this within PstFrom but we were unaware of that when we set this up
# note also we are putting the model run and postprocessing lines just above if __name__ == "__main__" line
frunlines = open(os.path.join(template_ws, 'forward_run.py'), 'r').readlines()
if update_forward_run is True and './mf6' not in ' '.join([i.strip() for i in frunlines]):
print('updating forward_run.py')
with open(os.path.join(template_ws, 'forward_run.py'), 'w') as ofp:
for line in frunlines:
if '__main__' in line:
ofp.write(" os.system('./mf6')\n")
ofp.write(" os.system('python get_observations.py . false')\n")
ofp.write('{}\n'.format(line))
elif 'import os' in line:
ofp.write('import os, sys\n')
ofp.write("sys.path.append('../python_packages_static/')\n")
else:
ofp.write(line) | updating forward_run.py
| CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
set noptmax = 0 and a couple ++ options and write out PST file | pst.pestpp_options["ies_num_reals"] = 500
pst.pestpp_options["ies_bad_phi_sigma"] = 2
pst.pestpp_options["overdue_giveup_fac"] = 4
pst.pestpp_options["ies_save_rescov"] = True
pst.pestpp_options["ies_no_noise"] = True
pst.pestpp_options["ies_drop_conflicts"] = True
pst.pestpp_options["ies_pdc_sigma_distance"] = 2.0
pst.control_data.noptmax = 0 | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
write out the PST file | pst.write(os.path.join(template_ws,'prior_mc.pst')) | noptmax:0, npar_adj:4911, nnz_obs:525
| CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
copy over the entire pest directory to a separate folder identified by the `noptmax0_dir` variable. This is to keep the `emplate_ws` clean and allow for various testing to take place int he `noptmax0_dir` location | if os.path.exists(noptmax0_dir):
shutil.rmtree(noptmax0_dir)
shutil.copytree(template_ws, noptmax0_dir)
pst.write_obs_summary_table('../figures/obs_initial.xlsx') | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
If running on Windows, remove backslashes from `mult2model_info.csv` for running on linux cluster | if sys.platform == 'win32':
f = open(os.path.join(template_ws, 'mult2model_info.csv'), "r")
lines = f.readlines()
f.close()
output_lines = []
for line in lines:
output_lines.append(line.replace('\\', "/"))
f = open(os.path.join(template_ws, 'mult2model_info.csv'), "w")
f.write(''.join(output_lines))
f.close() | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
and the pest file | if sys.platform == 'win32':
f = open(os.path.join(template_ws, 'prior_mc.pst'), "r")
lines = f.readlines()
f.close()
output_lines = []
for line in lines:
output_lines.append(line.replace('\\', "/"))
f = open(os.path.join(template_ws, 'prior_mc.pst'), "w")
f.write(''.join(output_lines))
f.close() | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
and update the forward run command | if sys.platform == 'win32':
f = open(os.path.join(template_ws, 'forward_run.py'), "r")
lines = f.readlines()
f.close()
output_lines = []
for line in lines:
output_lines.append(line.replace('./mf6', "mf6"))
# fix in run_dir
f = open(os.path.join(template_ws, 'forward_run.py'), "w")
f.write(''.join(output_lines))
f.close()
# fix in noptmax_0_testing
f = open(os.path.join(noptmax0_dir, 'forward_run.py'), "w")
f.write(''.join(output_lines))
f.close() | _____no_output_____ | CC0-1.0 | notebooks_workflow_complete/0.0_PEST_parameterization.ipynb | usgs/neversink_workflow |
imports | import os
import sys
sys.path.append('../')
from glob import glob
import torch
import numpy as np
import pandas as pd | _____no_output_____ | Apache-2.0 | notebooks/3.1 gcn_twitter_quarterly_prediction.ipynb | syeehyn/spug |
get and split data | from spug.dataset import DatasetGenerator
data_root = '../data'
sotck_path = os.path.join(
data_root, 'raw', 'stock', 'raw.csv'
)
sec_path = os.path.join(
data_root, 'raw', 'sec'
)
output_path = os.path.join(
data_root, 'processed'
)
data_list = sorted(glob(
os.path.join(
data_root, 'raw', 'twitter', '*q*.npy'
)
))
dg = DatasetGenerator(
data_list = data_list,
stock_path=sotck_path,
sec_path=sec_path,
freq='quarter'
) | _____no_output_____ | Apache-2.0 | notebooks/3.1 gcn_twitter_quarterly_prediction.ipynb | syeehyn/spug |
model definition | from spug.model import GCN | _____no_output_____ | Apache-2.0 | notebooks/3.1 gcn_twitter_quarterly_prediction.ipynb | syeehyn/spug |
model training | import argparse
from torch_geometric_temporal.signal import temporal_signal_split
from spug.utils import Trainer
dataset = dg.process()
train_dataset, test_dataset = temporal_signal_split(dataset, train_ratio=0.8)
INPUT_SHAPE = next(iter(train_dataset)).x.shape[1]
model = GCN(input_size = INPUT_SHAPE, hidden_dims=64)
args = argparse.Namespace(
num_epochs = 500,
learning_rate = 1e-3,
device = "cpu",
val_size = .1,
verbose = False
)
trainer = Trainer(model, train_dataset, args, test_dataset)
model = trainer.train() | 100%|███████████████████████████████████████████████████████████████████████████| 500/500 [00:08<00:00, 56.69it/s] | Apache-2.0 | notebooks/3.1 gcn_twitter_quarterly_prediction.ipynb | syeehyn/spug |
Test `second_narrows_current` ModuleRender figure object produced by the `nowcast.figures.fvcom.second_narrows_current` module.Provides data for visual testing to confirm that refactoring has not adversely changed figure for web page.Set-up and function call replicates as nearly as possible what is done in the `nowcast.workers.make_plots` worker. Notebooks like this should be developed in a[Nowcast Figures Development Environment](https://salishsea-nowcast.readthedocs.io/en/latest/figures/fig_dev_env.html)so that all of the necessary dependency packages are installed.The development has to be done on a workstation that has the Vancouver Harbour & Fraser River FVCOM model results `/opp/` parition mounted. | import io
from pathlib import Path
import shlex
import subprocess
import arrow
import xarray
import yaml
from nowcast.figures import website_theme
from nowcast.figures.fvcom.publish import second_narrows_current
%matplotlib inline
# Supress arrow.get() parser warnings re: changes coming in v0.15.0
# See https://github.com/crsmithdev/arrow/issues/612
# We don't use date strings that aren't included in the supported date tokens set mentioned in issue #612
import warnings
from arrow.factory import ArrowParseWarning
warnings.simplefilter("ignore", ArrowParseWarning) | _____no_output_____ | Apache-2.0 | notebooks/figures/fvcom/publish/TestSecondNarrowsCurrent.ipynb | SalishSeaCast/SalishSeaNowcast |
The bits of `config/nowcast.yaml` that are required: | config = '''
vhfr fvcom runs:
stations dataset filename:
x2: vh_x2_station_timeseries.nc
r12: vh_r12_station_timeseries.nc
results archive:
nowcast x2: /opp/fvcom/nowcast-x2/
forecast x2: /opp/fvcom/forecast-x2/
nowcast r12: /opp/fvcom/nowcast-r12/
'''
config = yaml.safe_load(io.StringIO(config)) | _____no_output_____ | Apache-2.0 | notebooks/figures/fvcom/publish/TestSecondNarrowsCurrent.ipynb | SalishSeaCast/SalishSeaNowcast |
The bits that the `make_plots` worker must provide: Rename FVCOM dataset layer and leval variables because `xarray` won't acceptvariables and coordinates that have the same name. | def _rename_fvcom_vars(fvcom_dataset_path):
cmd = (
f'ncrename -O -v siglay,sigma_layer -v siglev,sigma_level '
f'{fvcom_dataset_path} /tmp/{fvcom_dataset_path.name}')
subprocess.check_output(shlex.split(cmd)) | _____no_output_____ | Apache-2.0 | notebooks/figures/fvcom/publish/TestSecondNarrowsCurrent.ipynb | SalishSeaCast/SalishSeaNowcast |
Nowcast `X2` Figure | run_date = arrow.get('2019-07-23')
model_config = "x2"
run_type = 'nowcast'
ddmmmyy = run_date.format('DDMMMYY').lower()
fvcom_stns_datasets = {}
if run_type == 'nowcast':
model_configs = ("x2", "r12") if model_config == "r12" else ("x2",)
for mdl_cfg in model_configs:
fvcom_stns_dataset_filename = config['vhfr fvcom runs']['stations dataset filename'][mdl_cfg]
results_dir = Path(
config['vhfr fvcom runs']['results archive'][f"{run_type} {mdl_cfg}"], ddmmmyy
)
fvcom_stns_dataset_path = results_dir / fvcom_stns_dataset_filename
_rename_fvcom_vars(fvcom_stns_dataset_path)
fvcom_stns_datasets[mdl_cfg] = xarray.open_dataset(f'/tmp/{fvcom_stns_dataset_path.name}')
else:
fvcom_stns_dataset_filename = config['vhfr fvcom runs']['stations dataset filename']["x2"]
nowcast_results_dir = Path(
config['vhfr fvcom runs']['results archive']['nowcast x2'], ddmmmyy
)
nowcast_dataset_path = (nowcast_results_dir/fvcom_stns_dataset_filename)
forecast_results_dir = Path(
config['vhfr fvcom runs']['results archive']['forecast x2'], ddmmmyy
)
forecast_dataset_path = (forecast_results_dir/fvcom_stns_dataset_filename)
fvcom_stns_dataset_path = Path("/tmp", fvcom_stns_dataset_filename)
cmd = (
f'ncrcat -O {nowcast_dataset_path} {forecast_dataset_path} '
f'-o {fvcom_stns_dataset_path}'
)
subprocess.check_output(shlex.split(cmd))
_rename_fvcom_vars(fvcom_stns_dataset_path)
fvcom_stns_datasets[model_config] = xarray.open_dataset(f'/tmp/{fvcom_stns_dataset_path.name}')
obs_dataset = xarray.open_dataset(
"https://salishsea.eos.ubc.ca/erddap/tabledap/ubcVFPA2ndNarrowsCurrent2sV1"
)
%%timeit -n1 -r1
from importlib import reload
reload(website_theme)
reload(second_narrows_current)
fig = second_narrows_current.make_figure(
'2nd Narrows', fvcom_stns_datasets, obs_dataset
) | 1.41 s ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
| Apache-2.0 | notebooks/figures/fvcom/publish/TestSecondNarrowsCurrent.ipynb | SalishSeaCast/SalishSeaNowcast |
Nowcast `R12` Figure | run_date = arrow.get('2019-07-23')
model_config = "r12"
run_type = 'nowcast'
ddmmmyy = run_date.format('DDMMMYY').lower()
fvcom_stns_datasets = {}
if run_type == 'nowcast':
model_configs = ("x2", "r12") if model_config == "r12" else ("x2",)
for mdl_cfg in model_configs:
fvcom_stns_dataset_filename = config['vhfr fvcom runs']['stations dataset filename'][mdl_cfg]
results_dir = Path(
config['vhfr fvcom runs']['results archive'][f"{run_type} {mdl_cfg}"], ddmmmyy
)
fvcom_stns_dataset_path = results_dir / fvcom_stns_dataset_filename
_rename_fvcom_vars(fvcom_stns_dataset_path)
fvcom_stns_datasets[mdl_cfg] = xarray.open_dataset(f'/tmp/{fvcom_stns_dataset_path.name}')
else:
fvcom_stns_dataset_filename = config['vhfr fvcom runs']['stations dataset filename']["x2"]
nowcast_results_dir = Path(
config['vhfr fvcom runs']['results archive']['nowcast x2'], ddmmmyy
)
nowcast_dataset_path = (nowcast_results_dir/fvcom_stns_dataset_filename)
forecast_results_dir = Path(
config['vhfr fvcom runs']['results archive']['forecast x2'], ddmmmyy
)
forecast_dataset_path = (forecast_results_dir/fvcom_stns_dataset_filename)
fvcom_stns_dataset_path = Path("/tmp", fvcom_stns_dataset_filename)
cmd = (
f'ncrcat -O {nowcast_dataset_path} {forecast_dataset_path} '
f'-o {fvcom_stns_dataset_path}'
)
subprocess.check_output(shlex.split(cmd))
_rename_fvcom_vars(fvcom_stns_dataset_path)
fvcom_stns_datasets[model_config] = xarray.open_dataset(f'/tmp/{fvcom_stns_dataset_path.name}')
obs_dataset = xarray.open_dataset(
"https://salishsea.eos.ubc.ca/erddap/tabledap/ubcVFPA2ndNarrowsCurrent2sV1"
)
%%timeit -n1 -r1
from importlib import reload
reload(website_theme)
reload(second_narrows_current)
fig = second_narrows_current.make_figure(
'2nd Narrows', fvcom_stns_datasets, obs_dataset
) | 522 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
| Apache-2.0 | notebooks/figures/fvcom/publish/TestSecondNarrowsCurrent.ipynb | SalishSeaCast/SalishSeaNowcast |
Forecast `X2` Figure | run_date = arrow.get('2019-07-23')
model_config = "x2"
run_type = 'forecast'
ddmmmyy = run_date.format('DDMMMYY').lower()
fvcom_stns_datasets = {}
if run_type == 'nowcast':
model_configs = ("x2", "r12") if model_config == "r12" else ("x2",)
for mdl_cfg in model_configs:
fvcom_stns_dataset_filename = config['vhfr fvcom runs']['stations dataset filename'][mdl_cfg]
results_dir = Path(
config['vhfr fvcom runs']['results archive'][f"{run_type} {mdl_cfg}"], ddmmmyy
)
fvcom_stns_dataset_path = results_dir / fvcom_stns_dataset_filename
_rename_fvcom_vars(fvcom_stns_dataset_path)
fvcom_stns_datasets[mdl_cfg] = xarray.open_dataset(f'/tmp/{fvcom_stns_dataset_path.name}')
else:
fvcom_stns_dataset_filename = config['vhfr fvcom runs']['stations dataset filename']["x2"]
nowcast_results_dir = Path(
config['vhfr fvcom runs']['results archive']['nowcast x2'], ddmmmyy
)
nowcast_dataset_path = (nowcast_results_dir/fvcom_stns_dataset_filename)
forecast_results_dir = Path(
config['vhfr fvcom runs']['results archive']['forecast x2'], ddmmmyy
)
forecast_dataset_path = (forecast_results_dir/fvcom_stns_dataset_filename)
fvcom_stns_dataset_path = Path("/tmp", fvcom_stns_dataset_filename)
cmd = (
f'ncrcat -O {nowcast_dataset_path} {forecast_dataset_path} '
f'-o {fvcom_stns_dataset_path}'
)
subprocess.check_output(shlex.split(cmd))
_rename_fvcom_vars(fvcom_stns_dataset_path)
fvcom_stns_datasets[model_config] = xarray.open_dataset(fvcom_stns_dataset_path)
obs_dataset = xarray.open_dataset(
"https://salishsea.eos.ubc.ca/erddap/tabledap/ubcVFPA2ndNarrowsCurrent2sV1"
)
%%timeit -n1 -r1
from importlib import reload
reload(second_narrows_current)
fig = second_narrows_current.make_figure(
'2nd Narrows', fvcom_stns_datasets, obs_dataset
) | 565 ms ± 0 ns per loop (mean ± std. dev. of 1 run, 1 loop each)
| Apache-2.0 | notebooks/figures/fvcom/publish/TestSecondNarrowsCurrent.ipynb | SalishSeaCast/SalishSeaNowcast |
Tensorflow Basics | _____no_output_____ | MIT | tensorflow_basics.ipynb | sanattaori/Tensorflow-basics |
|
Measurement GroupingSince current quantum hardware is limited to single-qubit projective measurement, only terms commuting within individual qubit's subspace can be measured together. These terms are said to be qubit-wise commuting (QWC). Thus, one can not measure the entire electronic Hamiltonian $\hat H$ at once, and instead needs to separate it into fragments. $$\hat H = \sum_n \hat H_n$$where each $\hat H_n$ is a QWC fragment. | from utility import * | _____no_output_____ | MIT | Project_2_VQE_Molecules/S4_Measurement.ipynb | HermanniH/CohortProject_2020_Week2 |
Here we use $H_2$ as an example for finding QWC fragments. Notice below that each fragment has the same terms on all qubits. To show differences between QWC and more advanced grouping, we didn't use the qubit-tappering techinique shown in step 2. | h2 = get_qubit_hamiltonian(mol='h2', geometry=1, basis='sto3g', qubit_transf='jw')
qwc_list = get_qwc_group(h2)
print('Fragments 1: \n{}\n'.format(qwc_list[4]))
print('Fragments 2:\n{}\n'.format(qwc_list[1]))
print('Number of fragments: {}'.format(len(qwc_list))) | Fragments 1:
0.13716572937099508 [Z0] +
0.15660062488237947 [Z0 Z1] +
0.10622904490856075 [Z0 Z2] +
0.15542669077992832 [Z0 Z3] +
0.13716572937099503 [Z1] +
0.15542669077992832 [Z1 Z2] +
0.10622904490856075 [Z1 Z3] +
-0.13036292057109117 [Z2] +
0.16326768673564346 [Z2 Z3] +
-0.13036292057109117 [Z3]
Fragments 2:
-0.04919764587136755 [X0 X1 Y2 Y3]
Number of fragments: 5
| MIT | Project_2_VQE_Molecules/S4_Measurement.ipynb | HermanniH/CohortProject_2020_Week2 |
By applying extra unitaries, one may rotate more terms of $\hat H$ into a QWC fragment. Recall that in digital quantum computing, the expectation value of $\hat H_n$ given a trial wavefunction $|\psi\rangle$ is $$ E_n =\ \langle\psi| \hat H_n | \psi\rangle$$Inserting unitary transformation $\hat U_n$ does not change the expectation value.$$ E_n =\ \langle\psi| \hat U_n^\dagger \hat U_n \hat H_n \hat U_n^\dagger \hat U_n |\psi\rangle$$ This nonetheless changes the trial wavefunction and the terms to be measured. $$ |\psi\rangle \rightarrow \hat U_n |\psi\rangle = |\phi\rangle$$$$ \hat H_n \rightarrow \hat U_n \hat H_n \hat U_n^\dagger = \hat A_n$$The transformation of $|\psi \rangle$ can be done on the quantum computer, and the transformation of $\hat H_n$ is possible on the classical computer. Now, although $\hat A_n$ needs to be a QWC fragment to be measurable on a quantum computer, $\hat H_n$ does not. Instead, if we restrict $\hat U_n$ to be a clifford operation, the terms in $\hat H$ need only mutually commute. Here, we obtain measurable parts of $H_2$ by partitioning its terms into mutually commuting fragments. | comm_groups = get_commuting_group(h2)
print('Number of mutually commuting fragments: {}'.format(len(comm_groups)))
print('The first commuting group')
print(comm_groups[1]) | Number of mutually commuting fragments: 2
The first commuting group
-0.32760818967480887 [] +
-0.04919764587136755 [X0 X1 Y2 Y3] +
0.04919764587136755 [X0 Y1 Y2 X3] +
0.04919764587136755 [Y0 X1 X2 Y3] +
-0.04919764587136755 [Y0 Y1 X2 X3] +
0.15660062488237947 [Z0 Z1] +
0.10622904490856075 [Z0 Z2] +
0.15542669077992832 [Z0 Z3] +
0.15542669077992832 [Z1 Z2] +
0.10622904490856075 [Z1 Z3] +
0.16326768673564346 [Z2 Z3]
| MIT | Project_2_VQE_Molecules/S4_Measurement.ipynb | HermanniH/CohortProject_2020_Week2 |
To see this fragment is indeed measurable, one can construct the corresponding unitary operator $\hat U_n$. | uqwc = get_qwc_unitary(comm_groups[1])
print('This is unitary, U * U^+ = I ')
print(uqwc * uqwc) | This is unitary, U * U^+ = I
(0.9999999999999996+0j) []
| MIT | Project_2_VQE_Molecules/S4_Measurement.ipynb | HermanniH/CohortProject_2020_Week2 |
Applying this unitary gives the qubit-wise commuting form of the first mutually commuting group | qwc = remove_complex(uqwc * comm_groups[1] * uqwc)
print(qwc) | -0.32760818967480876 [] +
0.1554266907799282 [X0] +
0.1566006248823793 [X0 X1] +
0.04919764587136754 [X0 X1 Z3] +
0.1062290449085607 [X0 X2] +
-0.04919764587136754 [X0 Z3] +
0.1062290449085607 [X1] +
0.1554266907799282 [X1 X2] +
-0.04919764587136754 [X1 X2 Z3] +
0.16326768673564332 [X2] +
0.04919764587136754 [X2 Z3]
| MIT | Project_2_VQE_Molecules/S4_Measurement.ipynb | HermanniH/CohortProject_2020_Week2 |
In addition, current quantum computer can measure only the $z$ operators. Thus, QWC fragments with $x$ or $y$ operators require extra single-qubit unitaries that rotate them into $z$. | uz = get_zform_unitary(qwc)
print("Checking whether U * U^+ is identity: {}".format(uz * uz))
allz = remove_complex(uz * qwc * uz)
print("\nThe all-z form of qwc fragment:\n{}".format(allz)) | Checking whether U * U^+ is identity: 0.9999999999999998 []
The all-z form of qwc fragment:
-0.3276081896748086 [] +
0.15542669077992813 [Z0] +
0.15660062488237922 [Z0 Z1] +
0.049197645871367504 [Z0 Z1 Z3] +
0.10622904490856065 [Z0 Z2] +
-0.049197645871367504 [Z0 Z3] +
0.10622904490856065 [Z1] +
0.15542669077992813 [Z1 Z2] +
-0.049197645871367504 [Z1 Z2 Z3] +
0.16326768673564326 [Z2] +
0.049197645871367504 [Z2 Z3]
| MIT | Project_2_VQE_Molecules/S4_Measurement.ipynb | HermanniH/CohortProject_2020_Week2 |
OverviewIn this notebook, I will compare predictions on the 2021 season from my final model against historical odds. Data for the historical odds was gathered from [Sportsbook Reviews Online](https://www.sportsbookreviewsonline.com/scoresoddsarchives/nhl/nhloddsarchives.htm). Per their website: Data is sourced from various online sportsbooks including 5dimes, BetOnline, Bookmaker, Heritage, Pinnacle Sports, Sportsbook.com as well as the Westgate Superbook in Las Vegas.I will look at 2 simple betting strategies to determine profitability:1. Bet 100 on every game where either the home or away team winning probability from my model is higher than the implied odds 2. Bet to win 100 on every game where either the home or away team winning probability from my model is higher than the implied odds Data Cleaning and Merging | import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pickle
sns.set_style("darkgrid")
sns.set_context("poster")
pd.set_option('display.max_columns', None)
odds = pd.read_excel('data/nhl odds 2021.xlsx')
odds.head()
team_conversion = { 'Anaheim': 'ANA',
'Arizona' :'ARI',
'Boston': 'BOS',
'Buffalo':'BUF',
'Calgary': 'CGY',
'Carolina': 'CAR',
'Chicago': 'CHI',
'Colorado': 'COL',
'Columbus': 'CBJ',
'Dallas': 'DAL',
'Detroit': 'DET',
'Edmonton': 'EDM',
'Florida': 'FLA',
'LosAngeles': 'L.A',
'Minnesota': 'MIN',
'Montreal': 'MTL',
'Nashville': 'NSH',
'NewJersey': 'N.J',
'NYIslanders': 'NYI',
'NYRangers': 'NYR',
'Ottawa': 'OTT',
'Philadelphia': 'PHI',
'Pittsburgh': 'PIT',
'SanJose': 'S.J',
'St.Louis': 'STL',
'TampaBay': 'T.B',
'Toronto': 'TOR',
'Vancouver': 'VAN',
'Vegas':'VGK',
'Washington': 'WSH',
'Winnipeg': 'WPG'}
#convert date to proper datestring and create team key
odds = odds.replace({'Team': team_conversion})
odds['Month'] = odds['Date'].apply(lambda x: '0'+str(x)[0])
odds['Day'] = odds['Date'].apply(lambda x: str(x)[1:])
odds['Year'] = 2021
odds['Datestring'] = odds[['Year','Month','Day']].astype(str).apply('-'.join, 1)
odds['Team_Key'] = odds['Team'].astype(str)+'_'+odds['Datestring'].astype(str)
#calculate implied odds
odds['Implied_odds'] = np.where(odds['Close'] < 0, (odds['Close']*-1)/((odds['Close']*-1)+100) , 100/(odds['Close']+100))
odds.head(5)
#import file with predictions
predictions = pd.read_csv('data/Predictions_2021b')
#merge my predictions with odd df
df = predictions.merge(odds.loc[:,['Team_Key', 'Implied_odds', 'Close']].add_prefix('home_'), how = 'left', left_on = 'Home_Team_Key', right_on = 'home_Team_Key').drop(columns = 'home_Team_Key')
df = df.merge(odds.loc[:,['Team_Key', 'Implied_odds', 'Close']].add_prefix('away_'), how = 'left', left_on = 'Away_Team_Key', right_on = 'away_Team_Key').drop(columns = 'away_Team_Key')
#odds info only contains info for games up to 5/4. These are the 15 missing games below.
df.isna().sum()
#drop missing games from df
df = df.dropna()
conditions = [df['Home Win Probability'] > df['home_Implied_odds'],
df['Away Win Probability'] > df['away_Implied_odds']
]
choices = ['Home',
'Away']
df['Bet'] = np.select(conditions, choices, default = 'No Bet')
df['Favorites'] = np.where(df['home_Implied_odds'] >df['away_Implied_odds'], 'Home', 'Away' )
conditions = [df['Bet'] == 'No Bet',
df['Bet'] == df['Favorites'],
df['Bet'] != df['Favorites']
]
choices = ['No Bet',
'Favorite',
'Underdog'
]
df['Bet_For'] = np.select(conditions, choices)
#calculate profit for 100$ per game strat
conditions = [((df['Bet'] == 'Home') & (df['Home_Team_Won'] == 1) & (df['home_Close'] <0)),
((df['Bet'] == 'Home') & (df['Home_Team_Won'] == 1) & (df['home_Close']>0)),
((df['Bet'] == 'Away') & (df['Home_Team_Won'] == 0) & (df['away_Close']<0)),
((df['Bet'] == 'Away') & (df['Home_Team_Won'] == 0) & (df['away_Close']>0)),
df['Bet'] == 'No Bet'
]
choices = [-100 * (100/df['home_Close']),
df['home_Close'],
-100 * (100/df['away_Close']),
df['away_Close'],
0]
df['Profit_Strat1'] = np.select(conditions, choices, default = -100)
#calculate profit for bet to win 100$ strat
conditions = [((df['Bet'] == 'Home') & (df['Home_Team_Won'] == 1) & (df['home_Close'] <0)),
((df['Bet'] == 'Home') & (df['Home_Team_Won'] == 1) & (df['home_Close']>0)),
((df['Bet'] == 'Home') & (df['Home_Team_Won'] == 0) & (df['home_Close']>0)),
((df['Bet'] == 'Home') & (df['Home_Team_Won'] == 0) & (df['home_Close']<0)),
((df['Bet'] == 'Away') & (df['Home_Team_Won'] == 0) & (df['away_Close']<0)),
((df['Bet'] == 'Away') & (df['Home_Team_Won'] == 0) & (df['away_Close']>0)),
((df['Bet'] == 'Away') & (df['Home_Team_Won'] == 1) & (df['away_Close']>0)),
((df['Bet'] == 'Away') & (df['Home_Team_Won'] == 1) & (df['away_Close']<0)),
df['Bet'] == 'No Bet'
]
choices = [100,
100,
(100/df['home_Close'])*-100,
df['home_Close'],
100,
100,
(100/df['away_Close'])*-100,
df['away_Close'],
0]
df['Profit_Strat2'] = np.select(conditions, choices)
#cost of bet to win 100$ strat
conditions = [((df['Bet'] == 'Home') & (df['home_Close']>0)),
((df['Bet'] == 'Home') & (df['home_Close']<0)),
((df['Bet'] == 'Away') & (df['away_Close']>0)),
((df['Bet'] == 'Away') & (df['away_Close']<0)),
df['Bet'] == 'No Bet'
]
choices = [(100/df['home_Close'])*100,
df['home_Close']*-1,
(100/df['away_Close'])*100,
df['away_Close']*-1,
0]
df['Cost_Strat2'] = np.select(conditions, choices)
#convert date to pandas datetime
df['date'] = pd.to_datetime(df['date'])
#calculate cumulative profit for poth strategies
df['Profit_Strat2_cumsum'] = df['Profit_Strat2'].cumsum()
df['Profit_Strat1_cumsum'] = df['Profit_Strat1'].cumsum()
df['Won_Bet'] = np.where(df['Profit_Strat2'] > 0, 1, 0)
df.head() | _____no_output_____ | CC0-1.0 | Evaluating Model Profitability.ipynb | gschwaeb/NHL_Game_Prediction |
--- EvaluationLet's check the log loss from the implied odds. My model's log loss on the 2021 season was 0.655534. So the book implied odds are still performing slightly better with a log loss of 0.6529 | from sklearn.metrics import log_loss, accuracy_score
io_list = []
for index, row in df.iterrows():
io_list.append([row['away_Implied_odds'], row['home_Implied_odds']])
log_loss(df['Home_Team_Won'], io_list) | _____no_output_____ | CC0-1.0 | Evaluating Model Profitability.ipynb | gschwaeb/NHL_Game_Prediction |
How many bets would be for home vs away vs no bet? My model is definitley favoring the home team. From the EDA notebook, The home team had won 56.0% in the 17-18 season, 53.7% in 18-19, 53.1% in 19-20 and only 52.7% in 20-21 season. THe 20-21 season having no fans may be affecting this outcome for the home team and may have hurt the model slightly for the 20-21 season. | df['Bet'].value_counts()
df['Bet'].value_counts(normalize = True) | _____no_output_____ | CC0-1.0 | Evaluating Model Profitability.ipynb | gschwaeb/NHL_Game_Prediction |
How many bets were for the favorite vs the underdrog? Interestingly the model liked underdogs more often. | df['Bet_For'].value_counts(normalize = 'True') | _____no_output_____ | CC0-1.0 | Evaluating Model Profitability.ipynb | gschwaeb/NHL_Game_Prediction |
The strategy of betting to win 100$ resulted in a per bet ROI of 2.04% | #ROI per bet
df['Profit_Strat2'].sum() / df['Cost_Strat2'].sum() | _____no_output_____ | CC0-1.0 | Evaluating Model Profitability.ipynb | gschwaeb/NHL_Game_Prediction |
Total profit for this strategy would have been $1,473.69 | #total profit
df['Profit_Strat2'].sum() | _____no_output_____ | CC0-1.0 | Evaluating Model Profitability.ipynb | gschwaeb/NHL_Game_Prediction |
The strategy was profitable initially and dipped down into the red for short period in mid March. You would have only needed an initial bankroll of 325 to implement this and then would have needed to re-up 244 later for total out of pocket costs of 569 | #initial bankroll needed
df[df['date'] == '2021-01-13']['Cost_Strat2'].sum()
df[df['Profit_Strat2_cumsum'] < 0] | _____no_output_____ | CC0-1.0 | Evaluating Model Profitability.ipynb | gschwaeb/NHL_Game_Prediction |
I would have won only 49.6% of bets, but since the marjority of bets were for the underdog, the lower costs benefited profitability. | df[df['Bet'] != 'No Bet']['Won_Bet'].value_counts(normalize = True) | _____no_output_____ | CC0-1.0 | Evaluating Model Profitability.ipynb | gschwaeb/NHL_Game_Prediction |
Strategy 1, bet 100$ every bettable game was slightly profitable. | fig, ax = plt.subplots(figsize = (16,12))
ax = sns.lineplot(x = df['date'], y = df['Profit_Strat1_cumsum'], color = 'green')
ax.set_title('Cumulative Profit', fontsize = 24)
ax.set_ylabel('Cumulative Profit', fontsize =16, )
ax.set_xlabel('Date', fontsize =16)
plt.xticks(rotation=45, fontsize = 16)
ax.axhline(0, linestyle = 'dashed', color = 'black')
ax.set_ylim(-2000,4000)
plt.show() | _____no_output_____ | CC0-1.0 | Evaluating Model Profitability.ipynb | gschwaeb/NHL_Game_Prediction |
Strategy 2, bet to win 100$ on every bettable game, was profitbale | fig, ax = plt.subplots(figsize = (16,12))
ax = sns.lineplot(x = df['date'], y = df['Profit_Strat2_cumsum'], color = 'green')
ax.set_title('Cumulative Profit', fontsize = 24)
ax.set_ylabel('Cumulative Profit', fontsize =18, )
ax.set_xlabel('Date', fontsize =18)
plt.xticks(rotation=45, fontsize = 18)
ax.axhline(0, linestyle = 'dashed', color = 'black')
ax.set_ylim(-1000,4000)
plt.show()
strat2 = pd.DataFrame(df.groupby('date').agg({'Profit_Strat2': 'sum'})).reset_index()
strat2['Cumulative Profit'] = strat2['Profit_Strat2'].cumsum()
strat2['date'] = pd.to_datetime(strat2['date'])
strat2.head()
fig, ax = plt.subplots(figsize = (16,12))
ax = sns.lineplot(x = strat2['date'], y = strat2['Profit_Strat2'], palette = 'Blues')
ax.set_title('Daily Profit', fontsize = 18)
ax.set_ylabel('Daily Profit', fontsize =12, )
ax.set_xlabel('Date', fontsize =12)
plt.xticks(rotation='vertical', fontsize = 12)
ax.axhline(0, color = 'black', linestyle = 'dashed')
ax.set_ylim(-900,900)
plt.show() | _____no_output_____ | CC0-1.0 | Evaluating Model Profitability.ipynb | gschwaeb/NHL_Game_Prediction |
探索电影数据集在这个项目中,你将尝试使用所学的知识,使用 `NumPy`、`Pandas`、`matplotlib`、`seaborn` 库中的函数,来对电影数据集进行探索。下载数据集:[TMDb电影数据](https://s3.cn-north-1.amazonaws.com.cn/static-documents/nd101/explore+dataset/tmdb-movies.csv) 数据集各列名称的含义:列名称idimdb_idpopularitybudgetrevenueoriginal_titlecasthomepagedirectortaglinekeywordsoverviewruntimegenresproduction_companiesrelease_datevote_countvote_averagerelease_yearbudget_adjrevenue_adj 含义编号IMDB 编号知名度预算票房名称主演网站导演宣传词关键词简介时常类别发行公司发行日期投票总数投票均值发行年份预算(调整后)票房(调整后) **请注意,你需要提交该报告导出的 `.html`、`.ipynb` 以及 `.py` 文件。** ------ 第一节 数据的导入与处理在这一部分,你需要编写代码,使用 Pandas 读取数据,并进行预处理。 **任务1.1:** 导入库以及数据1. 载入需要的库 `NumPy`、`Pandas`、`matplotlib`、`seaborn`。2. 利用 `Pandas` 库,读取 `tmdb-movies.csv` 中的数据,保存为 `movie_data`。提示:记得使用 notebook 中的魔法指令 `%matplotlib inline`,否则会导致你接下来无法打印出图像。 | # 各库导入
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb
# 数据读取
movie_data = pd.read_csv('./tmdb-movies.csv') | _____no_output_____ | MIT | P2_Explore_Movie_Dataset/Explore Movie Dataset.ipynb | CCCCCaO/My_AIPND_Projects |
---**任务1.2: ** 了解数据你会接触到各种各样的数据表,因此在读取之后,我们有必要通过一些简单的方法,来了解我们数据表是什么样子的。1. 获取数据表的行列,并打印。2. 使用 `.head()`、`.tail()`、`.sample()` 方法,观察、了解数据表的情况。3. 使用 `.dtypes` 属性,来查看各列数据的数据类型。4. 使用 `isnull()` 配合 `.any()` 等方法,来查看各列是否存在空值。5. 使用 `.describe()` 方法,看看数据表中数值型的数据是怎么分布的。 | print('1.电影数据集的行列数为:',movie_data.shape)
movie_data.head() # 2.1 电影数据集的前五行
movie_data.tail() # 2-2 电影数据集的末五行
movie_data.sample() # 2-3 随机抽取一个电影数据样本
movie_data.dtypes # 3 获取每列的数据类型
movie_data.isnull().any() # 4 检查各列是否有NaN值
movie_data['id'].describe() # 5-1 编号id列(int64)的描述性统计信息
movie_data['popularity'].describe() # 5-2 知名度popularity列(float64)
movie_data['budget'].describe() # 5-3 预算budget列 (int64)
movie_data['revenue'].describe() # 5-4 票房revenue列 (int64)
movie_data['runtime'].describe() # 5-5 时长runtime列(int64)
movie_data['vote_count'].describe() # 5-5 投票总数vote_count列(int64)
movie_data['vote_average'].describe() # 5-6 投票均值vote_average列(float64)
movie_data['release_year'].describe() # 5-7 发行年份release_year列(int64)
movie_data['budget_adj'].describe() # 5-8 预算(调整后)budget_adj列(float64)
movie_data['revenue_adj'].describe() # 5-9 票房(调整后)revenue_adj列(float64) | _____no_output_____ | MIT | P2_Explore_Movie_Dataset/Explore Movie Dataset.ipynb | CCCCCaO/My_AIPND_Projects |
---**任务1.3: ** 清理数据在真实的工作场景中,数据处理往往是最为费时费力的环节。但是幸运的是,我们提供给大家的 tmdb 数据集非常的「干净」,不需要大家做特别多的数据清洗以及处理工作。在这一步中,你的核心的工作主要是对数据表中的空值进行处理。你可以使用 `.fillna()` 来填补空值,当然也可以使用 `.dropna()` 来丢弃数据表中包含空值的某些行或者列。任务:使用适当的方法来清理空值,并将得到的数据保存。 | # 这里采用将NaN值都替换为0 并保存至movie_data_adj中
print("处理前NaN值有:", movie_data.isnull().sum().sum(),"个")
movie_data_adj = movie_data.fillna(0)
print("处理前NaN值有:", movie_data_adj.isnull().sum().sum(),"个") | 处理前NaN值有: 13434 个
处理前NaN值有: 0 个
| MIT | P2_Explore_Movie_Dataset/Explore Movie Dataset.ipynb | CCCCCaO/My_AIPND_Projects |
------ 第二节 根据指定要求读取数据相比 Excel 等数据分析软件,Pandas 的一大特长在于,能够轻松地基于复杂的逻辑选择合适的数据。因此,如何根据指定的要求,从数据表当获取适当的数据,是使用 Pandas 中非常重要的技能,也是本节重点考察大家的内容。 ---**任务2.1: ** 简单读取1. 读取数据表中名为 `id`、`popularity`、`budget`、`runtime`、`vote_average` 列的数据。2. 读取数据表中前1~20行以及48、49行的数据。3. 读取数据表中第50~60行的 `popularity` 那一列的数据。要求:每一个语句只能用一行代码实现。 | # 注:参考了笔记和https://blog.csdn.net/u011089523/article/details/60341016
# 2.1.1.读取某列数据
# 各列分别读取 df[['列名']]来访问
movie_data_id = movie_data[['id']]
movie_data_pop = movie_data[['popularity']]
movie_data_bud = movie_data[['budget']]
movie_data_rt = movie_data[['runtime']]
movie_data_vote_avg = movie_data[['vote_average']]
# 各列一起读取 df[['列名1','列名2'...列名的列表]]来访问
movie_data_sel = movie_data[['id', 'popularity', 'budget', 'runtime',
'vote_average']]
# 2.1.2 读取x行数据
# 读取前20行的两种方法 df.head(n) 或 df[m:n]
movie_data_rows_1to20_1 = movie_data.head(20)
movie_data_rows_1to20_2 = movie_data[0:20]
# 读取48,49行数据 注意索引从0开始 前闭后开
movie_data_rows_48to49 = movie_data[47:49] | _____no_output_____ | MIT | P2_Explore_Movie_Dataset/Explore Movie Dataset.ipynb | CCCCCaO/My_AIPND_Projects |
---**任务2.2: **逻辑读取(Logical Indexing)1. 读取数据表中 **`popularity` 大于5** 的所有数据。2. 读取数据表中 **`popularity` 大于5** 的所有数据且**发行年份在1996年之后**的所有数据。提示:Pandas 中的逻辑运算符如 `&`、`|`,分别代表`且`以及`或`。要求:请使用 Logical Indexing实现。 | # 参考了https://blog.csdn.net/GeekLeee/article/details/75268762
# 1.读取popularity>5的所有数据
movie_data_pop_morethan5 = movie_data.loc[movie_data['popularity']>5]
# 2.读取popularity>5 且 发行年份>1996的所有数据
movie_data_pop5p_rls1996p = movie_data.loc[(movie_data['popularity']>5)&(movie_data['release_year']>1996) ] | _____no_output_____ | MIT | P2_Explore_Movie_Dataset/Explore Movie Dataset.ipynb | CCCCCaO/My_AIPND_Projects |
---**任务2.3: **分组读取1. 对 `release_year` 进行分组,使用 [`.agg`](http://pandas.pydata.org/pandas-docs/version/0.22/generated/pandas.core.groupby.DataFrameGroupBy.agg.html) 获得 `revenue` 的均值。2. 对 `director` 进行分组,使用 [`.agg`](http://pandas.pydata.org/pandas-docs/version/0.22/generated/pandas.core.groupby.DataFrameGroupBy.agg.html) 获得 `popularity` 的均值,从高到低排列。要求:使用 `Groupby` 命令实现。 | data = movie_data
# 按release_year分组 获取revenue均值
revenue_mean_groupby_rlsyear = data.groupby(['release_year'])['revenue'].agg('mean')
# 按director分组 获取popularity均值
popularity_mean_groupby_director = data.groupby(['director'])['popularity'].agg('mean') | _____no_output_____ | MIT | P2_Explore_Movie_Dataset/Explore Movie Dataset.ipynb | CCCCCaO/My_AIPND_Projects |
------ 第三节 绘图与可视化接着你要尝试对你的数据进行图像的绘制以及可视化。这一节最重要的是,你能够选择合适的图像,对特定的可视化目标进行可视化。所谓可视化的目标,是你希望从可视化的过程中,观察到怎样的信息以及变化。例如,观察票房随着时间的变化、哪个导演最受欢迎等。可视化的目标可以使用的图像 表示某一属性数据的分布饼图、直方图、散点图 表示某一属性数据随着某一个变量变化条形图、折线图、热力图 比较多个属性的数据之间的关系散点图、小提琴图、堆积条形图、堆积折线图在这个部分,你需要根据题目中问题,选择适当的可视化图像进行绘制,并进行相应的分析。对于选做题,他们具有一定的难度,你可以尝试挑战一下~ **任务3.1:**对 `popularity` 最高的20名电影绘制其 `popularity` 值。 | base_color = sb.color_palette()[0] # 取第一个颜色
y_count = movie_data_adj['popularity'][:20]
"""
这块有些搞不懂如何去绘制? 应该用条形图合适还是用直方图合适 感觉二者都不合适
饼图不适合20个扇形 直方图和条形图似乎x和y有些问题 这里用条形图勉强绘制出 感觉不合适
另有一个问题即如何在sb.barplot中标注出某个条形图具体的数值 在countplot中可以有办法标注出频率
我猜测应该可以在barplot标注出数值,可是并没有相关资料或者示例....
有些疑惑,请求解答,谢谢!!!
"""
# 绘图
sb.barplot(x = y_count.index.values+1, y = y_count, color = base_color, orient = "v")
"""
可以从图表中得知:
热度第1(数值达32.98)和热度第2(数值达28.41)的电影其流行程度远超第3以及之后所有的电影,差距达到了一倍以上。
第3到第20的电影其热度相差不大 数值均在5-15范围之内 较为稳定
"""; | _____no_output_____ | MIT | P2_Explore_Movie_Dataset/Explore Movie Dataset.ipynb | CCCCCaO/My_AIPND_Projects |
---**任务3.2:**分析电影净利润(票房-成本)随着年份变化的情况,并简单进行分析。 | # 需要考虑净利润随时间变化的情况 所以选择 折线图 适宜
# 调整分箱边缘和中心点
xbin_edges = np.arange(1960, movie_data_adj['release_year'].max()+2,2)
xbin_centers = (xbin_edges + 0.25/2)[:-1]
# 计算每个分箱中的统计数值
data_xbins = pd.cut(movie_data_adj['release_year'], xbin_edges, right = False, include_lowest = True)
y_means = movie_data_adj['revenue_adj'].groupby(data_xbins).mean()-movie_data_adj['budget_adj'].groupby(data_xbins).mean()
y_sems = movie_data_adj['revenue_adj'].groupby(data_xbins).sem()-movie_data_adj['budget_adj'].groupby(data_xbins).sem()
# 绘图
plt.errorbar(x = xbin_centers, y = y_means, yerr = y_sems)
plt.xlabel('release year');
plt.ylabel('Net profit');
"""
可以从图中看出:
随着年份的变化(这里选取的是电影的发行年份作参考)
净利润本在1960-1970年段先下降后上升再下降,较不稳定;
而后在1970-1980年段达到了一个净利润的峰值,可见当时的电影市场火爆;
而后在1980之后,净利润整体呈逐年下降的趋势,趋于稳定,市场也逐渐成熟。
净利润的波动(即误差线)再1960-1980年间较大,考虑到电影市场刚刚兴起,符合实际;
在后来进入市场成熟期之后,1980年之后,波动较小,更加稳定。
PS:不太清楚如何写分析,应该从哪些角度入手,哪些东西该讲,哪些不用讲....
"""; | _____no_output_____ | MIT | P2_Explore_Movie_Dataset/Explore Movie Dataset.ipynb | CCCCCaO/My_AIPND_Projects |
This Notebook - Goals - FOR EDINA**What?:**- Standard classification method example/tutorial**Who?:**- Researchers in ML- Students in computer science- Teachers in ML/STEM**Why?:**- Demonstrate capability/simplicity of core scipy stack. - Demonstrate common ML concept known to learners and used by researchers.**Noteable features to exploit:**- use of pre-installed libraries: numpy, scikit-learn, matplotlib**How?:**- clear to understand - minimise assumed knowledge- clear visualisations - concise explanations- recognisable/familiar - use standard methods- Effective use of core libraries Classification - K nearest neighboursK nearest neighbours is a simple and effective way to deal with classification problems. This method classifies each sample based on the class of the points that are closest to it.This is a supervised learning method, meaning that data used contains information on some feature that the model should predict.This notebook shows the process of classifying handwritten digits. Import librariesOn Noteable, all the libaries required for this notebook are pre-installed, so they simply need to be imported: | import numpy as np
import sklearn.datasets as ds
import sklearn.model_selection as ms
from sklearn import decomposition
from sklearn import neighbors
from sklearn import metrics
import matplotlib.pyplot as plt
%matplotlib inline | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
Data - Handwritten DigitsIn terms of data, [scikit-learn](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html) has a loading function for some data regarding hand written digits. | # get the digits data from scikit into the notebook
digits = ds.load_digits() | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
The cell above loads the data as a [bunch object](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html), meaning that the data (in this case images of handwritten digits) and the target (the number that is written) can be split by accessing the attributes of the bunch object: | # store data and targets seperately
X = digits.data
y = digits.target
print("The data is of the shape", X.shape)
print("The target data is of the shape", y.shape) | The data is of the shape (1797, 64)
The target data is of the shape (1797,)
| BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
The individual samples in the X array each represent an image. In this representation, 64 numbers are used to represent a greyscale value on an 8\*8 square. The images can be examined by using pyplot's [matshow](https://matplotlib.org/3.3.0/api/_as_gen/matplotlib.pyplot.matshow.html) function.The next cell displays the 17th sample in the dataset as an 8\*8 image. | # create figure to display the 17th sample
fig = plt.matshow(digits.images[17], cmap=plt.cm.gray)
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False) | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
Suppose instead of viewing the 17th sample, we want to see the average of samples corresponding to a certain value.This can be done as follows (using 0 as an example):- All samples where the target value is 0 are located- The mean of these samples is taken- The resulting 64 long array is reshaped to be 8\*8 (for display)- The image is displayed | # take samples with target=0
izeros = np.where(y == 0)
# take average across samples, reshape to visualise
zeros = np.mean(X[izeros], axis=0).reshape(8,8)
# display
fig = plt.matshow(zeros, cmap=plt.cm.gray)
fig.axes.get_xaxis().set_visible(False)
fig.axes.get_yaxis().set_visible(False) | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
Fit and test the model Split the data Now that you have an understanding of the data, the model can be fitted.Fitting the model involves setting some of the data aside for testing, and allowing the model to "see" the target values corresponding to the training samples.Once the model has been fitted to the training data, the model will be tested on some data it has not seen before. The next cell uses [train_test_split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) to shuffle all data, then set some data aside for testing later. For this example, $\frac{1}{4}$ of the data will be set aside for testing, and the model will be trained on the remaining training set.As before, X corresponds to data samples, and y corresponds to labels. | # split data to train and test sets
X_train, X_test, y_train, y_test = \
ms.train_test_split(X, y, test_size=0.25, shuffle=True,
random_state=22) | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
The data can be examined - here you can see that 1347 samples have been put into the training set, and 450 have been set aside for testing. | # print shape of data
print("training samples:", X_train.shape)
print("testing samples :", X_test.shape)
print("training targets:", y_train.shape)
print("testing targets :", y_test.shape) | training samples: (1347, 64)
testing samples : (450, 64)
training targets: (1347,)
testing targets : (450,)
| BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
Using PCA to visualise dataBefore diving into classifying, it is useful to visualise the data.Since each sample has 64 dimensions, some dimensionality reduction is needed in order to visualise the samples as points on a 2D map.One of the easiest ways of visualising high dimensional data is by principal component analysis (PCA). This maps the 64 dimensional image data onto a lower dimension map (here we will map to 2D) so it can be easily viewed on a screen.In this case, the 2 most important "components" are maintained. | # create PCA model with 2 components
pca = decomposition.PCA(n_components=2) | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
The next step is to perform the PCA on the samples, and store the results. | # transform training data to 2 principal components
X_pca = pca.fit_transform(X_train)
# transform test data to 2 principal components
T_pca = pca.transform(X_test)
# check shape of result
print(X_pca.shape)
print(T_pca.shape) | (1347, 2)
(450, 2)
| BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
As you can see from the above cell, the X_pca and T_pca data is now represented by only 2 elements per sample. The number of samples has remained the same.Now that there is a 2D representation of the data, it can be plotted on a regular scatter graph. Since the labels corresponding to each point are stored in the y_train variable, the plot can be colour coded by target value!Different coloured dots have different target values. | # choose the colours for each digit
cmap_digits = plt.cm.tab10
# plot training data with labels
plt.figure(figsize = (9,6))
plt.scatter(X_pca[:,0], X_pca[:,1], s=7, c=y_train,
cmap=cmap_digits, alpha=0.7)
plt.title("Training data coloured by target value")
plt.colorbar(); | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
Create and fit the modelThe scikit-learn library allows fitting of a k-NN model just as with PCA above.First, create the classifier: | # create model
knn = neighbors.KNeighborsClassifier() | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
The next step fits the k-NN model using the training data. | # fit model to training data
knn.fit(X_train,y_train); | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
Test modelNow use the data that was set aside earlier - this stage involves getting the model to "guess" the samples (this time without seeing their target values).Once the model has predicted the sample's class, a score can be calculated by checking how many samples the model guessed correctly. | # predict test data
preds = knn.predict(X_test)
# test model on test data
score = round(knn.score(X_test,y_test)*100, 2)
print("Score on test data: " + str(score) + "%") | Score on test data: 98.44%
| BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
98.44% is a really high score, one that would not likely be seen on real life applications of the method.It can often be useful to visualise the results of your example. Below are plots showing:- The labels that the model predicted for the test data- The actual labels for the test data- The data points that were incorrectly labelledIn this case, the predicted and actual plots are very similar, so these plots are not very informative. In other cases, this kind of visualisation may reveal patterns for you to explore further. | # plot 3 axes
fig, axes = plt.subplots(2,2,figsize=(12,12))
# top left axis for predictions
axes[0,0].scatter(T_pca[:,0], T_pca[:,1], s=5,
c=preds, cmap=cmap_digits)
axes[0,0].set_title("Predicted labels")
# top right axis for actual targets
axes[0,1].scatter(T_pca[:,0], T_pca[:,1], s=5,
c=y_test, cmap=cmap_digits)
axes[0,1].set_title("Actual labels")
# bottom left axis coloured to show correct and incorrect
axes[1,0].scatter(T_pca[:,0], T_pca[:,1], s=5,
c=(preds==y_test))
axes[1,0].set_title("Incorrect labels")
# bottom right axis not used
axes[1,1].set_axis_off() | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
So which samples did the model get wrong?There were 7 samples that were misclassified. These can be displayed alongside their actual and predicted labels using the cell below: | # find the misclassified samples
misclass = np.where(preds!=y_test)[0]
# display misclassified samples
r, c = 1, len(misclass)
fig, axes = plt.subplots(r,c,figsize=(10,5))
for i in range(c):
ax = axes[i]
ax.matshow(X_test[misclass[i]].reshape(8,8),cmap=plt.cm.gray)
ax.set_axis_off()
act = y_test[misclass[i]]
pre = preds[misclass[i]]
strng = "actual: {a:.0f} \npredicted: {p:.0f}".format(a=act, p=pre)
ax.set_title(strng) | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
Additionally, a confusion matrix can be used to identify which samples are misclassified by the model. This can help you identify if their are samples that are commonly misidentified - for example you may identify that 8's are often mistook for 1's. | # confusion matrix
conf = metrics.confusion_matrix(y_test,preds)
# figure
f, ax = plt.subplots(figsize=(9,5))
im = ax.imshow(conf, cmap=plt.cm.RdBu)
# set labels as ticks on axes
ax.set_xticks(np.arange(10))
ax.set_yticks(np.arange(10))
ax.set_xticklabels(list(range(0,10)))
ax.set_yticklabels(list(range(0,10)))
ax.set_ylim(9.5,-0.5)
# axes labels
ax.set_ylabel("actual value")
ax.set_xlabel("predicted value")
ax.set_title("Digit classification confusion matrix")
# display
plt.colorbar(im).set_label(label="number of classifications") | _____no_output_____ | BSD-3-Clause | GeneralExemplars/MLExemplars/Classification_k_NN_Notebook.ipynb | jstix/Exemplars2020 |
The ``FloatInput`` widget allows selecting a floating point value using a spinbox. It behaves like a slider except that lower and upper bounds are optional and a specific value can be entered. Value can be changed using keyboard (up, down, page up, page down), mouse wheel and arrow buttons.For more information about listening to widget events and laying out widgets refer to the [widgets user guide](../../user_guide/Widgets.ipynb). Alternatively you can learn how to build GUIs by declaring parameters independently of any specific widgets in the [param user guide](../../user_guide/Param.ipynb). To express interactivity entirely using Javascript without the need for a Python server take a look at the [links user guide](../../user_guide/Param.ipynb). Parameters:For layout and styling related parameters see the [customization user guide](../../user_guide/Customization.ipynb). Core* **``value``** (float): The initial value of the spinner* **``value_throttled``** (float): The initial value of the spinner* **``step``** (float): The step added or subtracted to the current value on each click* **``start``** (float): Optional minimum allowable value* **``end``** (float): Optional maximum allowable value* **``format``** (str): Optional format to convert the float value in string, see : http://numbrojs.com/old-format.html* **``page_step_multiplier``** (int): Defines the multiplication factor applied to step when the page up and page down keys are pressed. Display* **``disabled``** (boolean): Whether the widget is editable* **``name``** (str): The title of the widget* **``placeholder``** (str): A placeholder string displayed when no value is entered___ | float_input = pn.widgets.FloatInput(name='FloatInput', value=5., step=1e-1, start=0, end=1000)
float_input | _____no_output_____ | BSD-3-Clause | examples/reference/widgets/FloatInput.ipynb | slamer59/panel |
``FloatInput.value`` returns a float value: | float_input.value | _____no_output_____ | BSD-3-Clause | examples/reference/widgets/FloatInput.ipynb | slamer59/panel |
ControlsThe `FloatSpinner` widget exposes a number of options which can be changed from both Python and Javascript. Try out the effect of these parameters interactively: | pn.Row(float_input.controls(jslink=True), float_input) | _____no_output_____ | BSD-3-Clause | examples/reference/widgets/FloatInput.ipynb | slamer59/panel |
Bahdanau Attention:label:`sec_seq2seq_attention`We studied the machine translationproblem in :numref:`sec_seq2seq`,where we designedan encoder-decoder architecture based on two RNNsfor sequence to sequence learning.Specifically,the RNN encoder transformsa variable-length sequenceinto a fixed-shape context variable,thenthe RNN decodergenerates the output (target) sequence token by tokenbased on the generated tokens and the context variable.However,even though not all the input (source) tokensare useful for decoding a certain token,the *same* context variablethat encodes the entire input sequenceis still used at each decoding step.In a separate but relatedchallenge of handwriting generation for a given text sequence,Graves designed a differentiable attention modelto align text characters with the much longer pen trace,where the alignment moves only in one direction :cite:`Graves.2013`.Inspired by the idea of learning to align,Bahdanau et al. proposed a differentiable attention modelwithout the severe unidirectional alignment limitation :cite:`Bahdanau.Cho.Bengio.2014`.When predicting a token,if not all the input tokens are relevant,the model aligns (or attends)only to parts of the input sequence that are relevant to the current prediction.This is achievedby treating the context variable as an output of attention pooling. ModelWhen describing Bahdanau attentionfor the RNN encoder-decoder below,we will follow the same notation in:numref:`sec_seq2seq`.The new attention-based modelis the same as thatin :numref:`sec_seq2seq`except thatthe context variable$\mathbf{c}$in :eqref:`eq_seq2seq_s_t`is replaced by$\mathbf{c}_{t'}$at any decoding time step $t'$.Suppose thatthere are $T$ tokens in the input sequence,the context variable at the decoding time step $t'$is the output of attention pooling:$$\mathbf{c}_{t'} = \sum_{t=1}^T \alpha(\mathbf{s}_{t' - 1}, \mathbf{h}_t) \mathbf{h}_t,$$where the decoder hidden state$\mathbf{s}_{t' - 1}$ at time step $t' - 1$is the query,and the encoder hidden states $\mathbf{h}_t$are both the keys and values,and the attention weight $\alpha$is computed as in:eqref:`eq_attn-scoring-alpha`using the additive attention scoring functiondefined by:eqref:`eq_additive-attn`.Slightly different from the vanilla RNN encoder-decoder architecture in :numref:`fig_seq2seq_details`,the same architecturewith Bahdanau attention is depicted in :numref:`fig_s2s_attention_details`.:label:`fig_s2s_attention_details` | from d2l import torch as d2l
import torch
from torch import nn | _____no_output_____ | MIT | d2l-en/pytorch/chapter_attention-mechanisms/bahdanau-attention.ipynb | gr8khan/d2lai |
Defining the Decoder with AttentionTo implement the RNN encoder-decoderwith Bahdanau attention,we only need to redefine the decoder.To visualize the learned attention weights more conveniently,the following `AttentionDecoder` classdefines the base interface for decoders with attention mechanisms. | #@save
class AttentionDecoder(d2l.Decoder):
"""The base attention-based decoder interface."""
def __init__(self, **kwargs):
super(AttentionDecoder, self).__init__(**kwargs)
@property
def attention_weights(self):
raise NotImplementedError | _____no_output_____ | MIT | d2l-en/pytorch/chapter_attention-mechanisms/bahdanau-attention.ipynb | gr8khan/d2lai |
Now let us implementthe RNN decoder with Bahdanau attentionin the following `Seq2SeqAttentionDecoder` class.The state of the decoderis initialized with i) the encoder final-layer hidden states at all the time steps (as keys and values of the attention);ii) the encoder all-layer hidden state at the final time step (to initialize the hidden state of the decoder);and iii) the encoder valid length (to exclude the padding tokens in attention pooling).At each decoding time step,the decoder final-layer hidden state at the previous time step is used as the query of the attention.As a result, both the attention outputand the input embedding are concatenatedas the input of the RNN decoder. | class Seq2SeqAttentionDecoder(AttentionDecoder):
def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
dropout=0, **kwargs):
super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)
self.attention = d2l.AdditiveAttention(
num_hiddens, num_hiddens, num_hiddens, dropout)
self.embedding = nn.Embedding(vocab_size, embed_size)
self.rnn = nn.GRU(
embed_size + num_hiddens, num_hiddens, num_layers,
dropout=dropout)
self.dense = nn.Linear(num_hiddens, vocab_size)
def init_state(self, enc_outputs, enc_valid_lens, *args):
# Shape of `outputs`: (`num_steps`, `batch_size`, `num_hiddens`).
# Shape of `hidden_state[0]`: (`num_layers`, `batch_size`,
# `num_hiddens`)
outputs, hidden_state = enc_outputs
return (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)
def forward(self, X, state):
# Shape of `enc_outputs`: (`batch_size`, `num_steps`, `num_hiddens`).
# Shape of `hidden_state[0]`: (`num_layers`, `batch_size`,
# `num_hiddens`)
enc_outputs, hidden_state, enc_valid_lens = state
# Shape of the output `X`: (`num_steps`, `batch_size`, `embed_size`)
X = self.embedding(X).permute(1, 0, 2)
outputs, self._attention_weights = [], []
for x in X:
# Shape of `query`: (`batch_size`, 1, `num_hiddens`)
query = torch.unsqueeze(hidden_state[-1], dim=1)
# Shape of `context`: (`batch_size`, 1, `num_hiddens`)
context = self.attention(
query, enc_outputs, enc_outputs, enc_valid_lens)
# Concatenate on the feature dimension
x = torch.cat((context, torch.unsqueeze(x, dim=1)), dim=-1)
# Reshape `x` as (1, `batch_size`, `embed_size` + `num_hiddens`)
out, hidden_state = self.rnn(x.permute(1, 0, 2), hidden_state)
outputs.append(out)
self._attention_weights.append(self.attention.attention_weights)
# After fully-connected layer transformation, shape of `outputs`:
# (`num_steps`, `batch_size`, `vocab_size`)
outputs = self.dense(torch.cat(outputs, dim=0))
return outputs.permute(1, 0, 2), [enc_outputs, hidden_state,
enc_valid_lens]
@property
def attention_weights(self):
return self._attention_weights | _____no_output_____ | MIT | d2l-en/pytorch/chapter_attention-mechanisms/bahdanau-attention.ipynb | gr8khan/d2lai |
In the following, we test the implemented decoder with Bahdanau attentionusing a minibatch of 4 sequence inputsof 7 time steps. | encoder = d2l.Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16,
num_layers=2)
encoder.eval()
decoder = Seq2SeqAttentionDecoder(vocab_size=10, embed_size=8, num_hiddens=16,
num_layers=2)
decoder.eval()
X = torch.zeros((4, 7), dtype=torch.long) # (`batch_size`, `num_steps`)
state = decoder.init_state(encoder(X), None)
output, state = decoder(X, state)
output.shape, len(state), state[0].shape, len(state[1]), state[1][0].shape | _____no_output_____ | MIT | d2l-en/pytorch/chapter_attention-mechanisms/bahdanau-attention.ipynb | gr8khan/d2lai |
TrainingSimilar to :numref:`sec_seq2seq_training`,here we specify hyperparemeters,instantiatean encoder and a decoder with Bahdanau attention,and train this model for machine translation.Due to the newly added attention mechanism,this training is much slower thanthat in :numref:`sec_seq2seq_training` without attention mechanisms. | embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 250, d2l.try_gpu()
train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = d2l.Seq2SeqEncoder(
len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
decoder = Seq2SeqAttentionDecoder(
len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
net = d2l.EncoderDecoder(encoder, decoder)
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device) | loss 0.020, 4902.7 tokens/sec on cuda:0
| MIT | d2l-en/pytorch/chapter_attention-mechanisms/bahdanau-attention.ipynb | gr8khan/d2lai |
After the model is trained,we use it to translate a few English sentencesinto French and compute their BLEU scores. | engs = ['go .', "i lost .", 'he\'s calm .', 'i\'m home .']
fras = ['va !', 'j\'ai perdu .', 'il est calme .', 'je suis chez moi .']
for eng, fra in zip(engs, fras):
translation, dec_attention_weight_seq = d2l.predict_seq2seq(
net, eng, src_vocab, tgt_vocab, num_steps, device, True)
print(f'{eng} => {translation}, ',
f'bleu {d2l.bleu(translation, fra, k=2):.3f}')
attention_weights = torch.cat(
[step[0][0][0] for step in dec_attention_weight_seq], 0).reshape(
(1, 1, -1, num_steps)) | _____no_output_____ | MIT | d2l-en/pytorch/chapter_attention-mechanisms/bahdanau-attention.ipynb | gr8khan/d2lai |
By visualizing the attention weightswhen translating the last English sentence,we can see that each query assigns non-uniform weightsover key-value pairs.It shows that at each decoding step,different parts of the input sequences are selectively aggregated in the attention pooling. | # Plus one to include the end-of-sequence token
d2l.show_heatmaps(
attention_weights[:, :, :, :len(engs[-1].split()) + 1].cpu(),
xlabel='Key posistions', ylabel='Query posistions') | _____no_output_____ | MIT | d2l-en/pytorch/chapter_attention-mechanisms/bahdanau-attention.ipynb | gr8khan/d2lai |
Assignement 3: CNN Exercise Load libraries | import pickle
import numpy as np
import pandas as pd
from keras.datasets import mnist
from keras.utils import to_categorical
from keras import layers
from keras import models
import matplotlib.pyplot as plt
from numpy.random import seed
from keras.utils import plot_model
import csv
import json
from keras.callbacks import EarlyStopping
| C:\ProgramData\Anaconda3\lib\site-packages\h5py\__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters
Using TensorFlow backend.
| Apache-2.0 | experiment.ipynb | JeyDi/Digits-ConvNeuralNet |
Load the dataset | #Load the dataset
try:
#Load the MNIST data
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
#Reshape and trasform the input
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float32') / 255
test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float32') / 255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
print("Data Loaded")
except:
print("Error Loading Data")
| Data Loaded
| Apache-2.0 | experiment.ipynb | JeyDi/Digits-ConvNeuralNet |
Create the network, train and evaluate | seed(42)
model = models.Sequential()
#Create the network
model.add(layers.Conv2D(16, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(16, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(16, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
#Create early stop callback
earlystop = EarlyStopping(monitor='loss', min_delta=0.0001, patience=5, \
verbose=1, mode='auto')
callbacks_list = [earlystop]
#Compile the model
model.compile(
optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
#Fit the model to the data
history = model.fit(
train_images,
train_labels,
epochs=10,
callbacks=callbacks_list,
batch_size=254,
validation_data=(test_images,test_labels))
print("\nTraining completed")
#Evaluate the test set
history_evaluation = model.evaluate(test_images, test_labels)
print("\nEvaluation completed")
| Train on 60000 samples, validate on 10000 samples
Epoch 1/10
60000/60000 [==============================] - 19s 322us/step - loss: 0.6149 - acc: 0.8169 - val_loss: 0.3241 - val_acc: 0.8938
Epoch 2/10
60000/60000 [==============================] - 22s 361us/step - loss: 0.2056 - acc: 0.9380 - val_loss: 0.1750 - val_acc: 0.9438
Epoch 3/10
60000/60000 [==============================] - 19s 314us/step - loss: 0.1427 - acc: 0.9563 - val_loss: 0.1713 - val_acc: 0.9451
Epoch 4/10
60000/60000 [==============================] - 18s 296us/step - loss: 0.1115 - acc: 0.9659 - val_loss: 0.1271 - val_acc: 0.9624
Epoch 5/10
60000/60000 [==============================] - 18s 292us/step - loss: 0.0933 - acc: 0.9715 - val_loss: 0.1065 - val_acc: 0.9670
Epoch 6/10
60000/60000 [==============================] - 18s 292us/step - loss: 0.0807 - acc: 0.9753 - val_loss: 0.1044 - val_acc: 0.9650
Epoch 7/10
60000/60000 [==============================] - 18s 293us/step - loss: 0.0723 - acc: 0.9777 - val_loss: 0.0735 - val_acc: 0.9772
Epoch 8/10
60000/60000 [==============================] - 18s 295us/step - loss: 0.0649 - acc: 0.9803 - val_loss: 0.0742 - val_acc: 0.9777
Epoch 9/10
60000/60000 [==============================] - 18s 292us/step - loss: 0.0597 - acc: 0.9815 - val_loss: 0.0579 - val_acc: 0.9813
Epoch 10/10
60000/60000 [==============================] - 18s 292us/step - loss: 0.0544 - acc: 0.9835 - val_loss: 0.0572 - val_acc: 0.9825
Training completed
10000/10000 [==============================] - 1s 124us/step
Evaluation completed
History
<keras.callbacks.History object at 0x00000179D8980160>
| Apache-2.0 | experiment.ipynb | JeyDi/Digits-ConvNeuralNet |
Visualize results | model.summary()
# Get training and test loss histories
training_loss = history.history['loss']
test_loss = history.history['val_loss']
# Get training and test accuracy histories
training_accuracy = history.history['acc']
test_accuracy = history.history['val_acc']
#print(history_evaluation)
print("Training Accuracy " + str(training_accuracy[-1]))
print("Training Loss: " + str(training_loss[-1]))
print("Test Accuracy: " + str(test_accuracy[-1]))
print("Test Loss: " + str(test_loss[-1]))
print("Model Parameters: " + str(model.count_params()))
# Plot the accuracy and cost summaries
f, (ax1, ax2) = plt.subplots(2, 1, sharex=False, figsize=(13,13))
# Create count of the number of epochs
epoch_count = range(1, len(training_loss) + 1)
# Visualize loss history
ax1.plot(epoch_count, training_loss, 'r--')
ax1.plot(epoch_count, test_loss, 'b-')
ax1.legend(['Training Loss', 'Test Loss'])
ax1.set_ylabel('Loss')
ax1.set_xlabel('Epoch')
# Create count of the number of epochs
epoch_count = range(1, len(training_accuracy) + 1)
# Visualize accuracy history
ax2.plot(epoch_count, training_accuracy, 'r--')
ax2.plot(epoch_count, test_accuracy, 'b-')
ax2.legend(['Training Accuracy', 'Test Accuracy'])
ax2.set_ylabel('Accuracy Score')
ax1.set_xlabel('Epoch')
plt.xlabel('Epoch')
plt.show();
| _________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_10 (Conv2D) (None, 26, 26, 16) 160
_________________________________________________________________
max_pooling2d_9 (MaxPooling2 (None, 13, 13, 16) 0
_________________________________________________________________
conv2d_11 (Conv2D) (None, 11, 11, 16) 2320
_________________________________________________________________
max_pooling2d_10 (MaxPooling (None, 5, 5, 16) 0
_________________________________________________________________
flatten_5 (Flatten) (None, 400) 0
_________________________________________________________________
dense_9 (Dense) (None, 16) 6416
_________________________________________________________________
dense_10 (Dense) (None, 10) 170
=================================================================
Total params: 9,066
Trainable params: 9,066
Non-trainable params: 0
_________________________________________________________________
Training Accuracy 0.9834500078916549
Training Loss: 0.05444586953427642
Test Accuracy: 0.9825000083446502
Test Loss: 0.05715448258873075
Model Parameters: 9066
| Apache-2.0 | experiment.ipynb | JeyDi/Digits-ConvNeuralNet |
TF-IDFJoining registry and license data using TF-IDF string matching algorithm | import mwdsbe
import mwdsbe.datasets.licenses as licenses
import schuylkill as skool
import time
registry = mwdsbe.load_registry() # geopandas df
license = licenses.CommercialActivityLicenses().download()
# clean data
ignore_words = ['inc', 'group', 'llc', 'corp', 'pc', 'incorporated', 'ltd', 'co', 'associates', 'services', 'company', 'enterprises', 'enterprise', 'service', 'corporation']
cleaned_registry = skool.clean_strings(registry, ['company_name', 'dba_name'], True, ignore_words)
cleaned_license = skool.clean_strings(license, ['company_name'], True, ignore_words)
print('Total number of cleaned registry:', len(cleaned_registry))
print('Total number of cleaned license:', len(cleaned_license)) | Total number of cleaned license: 203578
| MIT | mwdsbe/Notebooks/Matching Algorithms/TF-IDF/tf-idf.ipynb | BinnyDaBin/MWDSBE |
1. Score-cutoff 90 | t1 = time.time()
merged = (
skool.tf_idf_merge(cleaned_registry, cleaned_license, on="company_name", score_cutoff=90)
.pipe(skool.tf_idf_merge, cleaned_registry, cleaned_license, left_on="dba_name", right_on="company_name", score_cutoff=90)
)
t = time.time() - t1
print('Execution time:', t, 'sec')
matched = merged.dropna(subset=['company_name_y'])
print('Match:', len(matched), 'out of', len(cleaned_registry))
non_exact_match = matched[matched.match_probability < 0.999999]
non_exact_match = non_exact_match[['company_name_x', 'match_probability', 'company_name_y']]
print('Non-exact match above 90:', len(non_exact_match), 'out of', len(matched))
# non_exact_match.to_excel (r'C:\Users\dabinlee\Desktop\mwdsbe\data\tf-idf\tf-idf-90.xlsx', index = None, header=True) | _____no_output_____ | MIT | mwdsbe/Notebooks/Matching Algorithms/TF-IDF/tf-idf.ipynb | BinnyDaBin/MWDSBE |
2. Score-cutoff 85 | t1 = time.time()
merged = (
skool.tf_idf_merge(cleaned_registry, cleaned_license, on="company_name", score_cutoff=85)
.pipe(skool.tf_idf_merge, cleaned_registry, cleaned_license, left_on="dba_name", right_on="company_name", score_cutoff=85)
)
t = time.time() - t1
print('Execution time:', t, 'sec')
matched = merged.dropna(subset=['company_name_y'])
print('Match:', len(matched), 'out of', len(cleaned_registry))
match_to_check = matched[matched.match_probability < 0.9]
match_to_check = match_to_check[['company_name_x', 'match_probability', 'company_name_y']]
print('Match between 85 and 90:', len(match_to_check), 'out of', len(matched))
# match_to_check.to_excel (r'C:\Users\dabinlee\Desktop\mwdsbe\data\tf-idf\tf-idf-85.xlsx', index = None, header=True) | _____no_output_____ | MIT | mwdsbe/Notebooks/Matching Algorithms/TF-IDF/tf-idf.ipynb | BinnyDaBin/MWDSBE |
3. Score-cutoff 80 | t1 = time.time()
merged = (
skool.tf_idf_merge(cleaned_registry, cleaned_license, on="company_name", score_cutoff=80)
.pipe(skool.tf_idf_merge, cleaned_registry, cleaned_license, left_on="dba_name", right_on="company_name", score_cutoff=80)
)
t = time.time() - t1
print('Execution time:', t, 'sec')
matched = merged.dropna(subset=['company_name_y'])
print('Match:', len(matched), 'out of', len(cleaned_registry))
match_to_check = matched[matched.match_probability < 0.85]
match_to_check = match_to_check[['company_name_x', 'match_probability', 'company_name_y']]
print('Match between 80 and 85:', len(match_to_check), 'out of', len(matched))
# match_to_check.to_excel (r'C:\Users\dabinlee\Desktop\mwdsbe\data\tf-idf\tf-idf-80.xlsx', index = None, header=True) | _____no_output_____ | MIT | mwdsbe/Notebooks/Matching Algorithms/TF-IDF/tf-idf.ipynb | BinnyDaBin/MWDSBE |
4. Score-cutoff 75 | t1 = time.time()
merged = (
skool.tf_idf_merge(cleaned_registry, cleaned_license, on="company_name", score_cutoff=75)
.pipe(skool.tf_idf_merge, cleaned_registry, cleaned_license, left_on="dba_name", right_on="company_name", score_cutoff=75)
)
t = time.time() - t1
print('Execution time:', t, 'sec')
matched = merged.dropna(subset=['company_name_y'])
print('Match:', len(matched), 'out of', len(cleaned_registry))
match_to_check = matched[matched.match_probability < 0.8]
match_to_check = match_to_check[['company_name_x', 'match_probability', 'company_name_y']]
print('Match between 75 and 80:', len(match_to_check), 'out of', len(matched))
# match_to_check.to_excel (r'C:\Users\dabinlee\Desktop\mwdsbe\data\tf-idf\tf-idf-75.xlsx', index = None, header=True) | _____no_output_____ | MIT | mwdsbe/Notebooks/Matching Algorithms/TF-IDF/tf-idf.ipynb | BinnyDaBin/MWDSBE |
Run Data Bias Analysis with SageMaker Clarify (Pre-Training) Using SageMaker Processing Jobs | import boto3
import sagemaker
import pandas as pd
import numpy as np
sess = sagemaker.Session()
bucket = sess.default_bucket()
role = sagemaker.get_execution_role()
region = boto3.Session().region_name
sm = boto3.Session().client(service_name="sagemaker", region_name=region) | _____no_output_____ | Apache-2.0 | 00_quickstart/09_Run_Data_Bias_Analysis_ProcessingJob.ipynb | NRauschmayr/workshop |
Get Data from S3 | %store -r bias_data_s3_uri
print(bias_data_s3_uri)
!aws s3 cp $bias_data_s3_uri ./data-clarify
import pandas as pd
data = pd.read_csv("./data-clarify/amazon_reviews_us_giftcards_software_videogames.csv")
data.head() | _____no_output_____ | Apache-2.0 | 00_quickstart/09_Run_Data_Bias_Analysis_ProcessingJob.ipynb | NRauschmayr/workshop |
Analyze Unbalanced DataPlotting histograms for the distribution of the different features is a good way to visualize the data. | import seaborn as sns
sns.countplot(data=data, x="star_rating", hue="product_category") | _____no_output_____ | Apache-2.0 | 00_quickstart/09_Run_Data_Bias_Analysis_ProcessingJob.ipynb | NRauschmayr/workshop |
Calculate Bias Metrics on Unbalanced DataSageMaker Clarify helps you detect possible pre- and post-training biases using a variety of metrics. | from sagemaker import clarify
clarify_processor = clarify.SageMakerClarifyProcessor(
role=role, instance_count=1, instance_type="ml.c5.2xlarge", sagemaker_session=sess
) | _____no_output_____ | Apache-2.0 | 00_quickstart/09_Run_Data_Bias_Analysis_ProcessingJob.ipynb | NRauschmayr/workshop |
Pre-training BiasBias can be present in your data before any model training occurs. Inspecting your data for bias before training begins can help detect any data collection gaps, inform your feature engineering, and hep you understand what societal biases the data may reflect.Computing pre-training bias metrics does not require a trained model. Writing DataConfigA `DataConfig` object communicates some basic information about data I/O to Clarify. We specify where to find the input dataset, where to store the output, the target column (`label`), the header names, and the dataset type. | bias_report_output_path = "s3://{}/clarify".format(bucket)
bias_data_config = clarify.DataConfig(
s3_data_input_path=bias_data_s3_uri,
s3_output_path=bias_report_output_path,
label="star_rating",
headers=data.columns.to_list(),
dataset_type="text/csv",
) | _____no_output_____ | Apache-2.0 | 00_quickstart/09_Run_Data_Bias_Analysis_ProcessingJob.ipynb | NRauschmayr/workshop |
Configure `BiasConfig`SageMaker Clarify also needs the sensitive columns (`facets`) and the desirable outcomes (`label_values_or_threshold`).We specify this information in the `BiasConfig` API. Here that the positive outcome is either `star rating==5` or `star_rating==4` and `product_category` is the sensitive facet that we analyze in this run. | bias_config = clarify.BiasConfig(
label_values_or_threshold=[5, 4], facet_name="product_category", group_name="product_category"
) | _____no_output_____ | Apache-2.0 | 00_quickstart/09_Run_Data_Bias_Analysis_ProcessingJob.ipynb | NRauschmayr/workshop |
Detect Bias with a SageMaker Processing Job and Clarify | clarify_processor.run_pre_training_bias(
data_config=bias_data_config, data_bias_config=bias_config, methods="all", wait=False, logs=False
)
run_pre_training_bias_processing_job_name = clarify_processor.latest_job.job_name
run_pre_training_bias_processing_job_name
from IPython.core.display import display, HTML
display(
HTML(
'<b>Review <a target="blank" href="https://console.aws.amazon.com/sagemaker/home?region={}#/processing-jobs/{}">Processing Job</a></b>'.format(
region, run_pre_training_bias_processing_job_name
)
)
)
from IPython.core.display import display, HTML
display(
HTML(
'<b>Review <a target="blank" href="https://console.aws.amazon.com/cloudwatch/home?region={}#logStream:group=/aws/sagemaker/ProcessingJobs;prefix={};streamFilter=typeLogStreamPrefix">CloudWatch Logs</a> After About 5 Minutes</b>'.format(
region, run_pre_training_bias_processing_job_name
)
)
)
from IPython.core.display import display, HTML
display(
HTML(
'<b>Review <a target="blank" href="https://s3.console.aws.amazon.com/s3/buckets/{}/{}/?region={}&tab=overview">S3 Output Data</a> After The Processing Job Has Completed</b>'.format(
bucket, run_pre_training_bias_processing_job_name, region
)
)
)
running_processor = sagemaker.processing.ProcessingJob.from_processing_name(
processing_job_name=run_pre_training_bias_processing_job_name, sagemaker_session=sess
)
processing_job_description = running_processor.describe()
print(processing_job_description)
running_processor.wait(logs=False) | _____no_output_____ | Apache-2.0 | 00_quickstart/09_Run_Data_Bias_Analysis_ProcessingJob.ipynb | NRauschmayr/workshop |
Download Report From S3The class-imbalance metric should match the value calculated for the unbalanced dataset using the open source version above. | !aws s3 ls $bias_report_output_path/
!aws s3 cp --recursive $bias_report_output_path ./generated_bias_report/
from IPython.core.display import display, HTML
display(HTML('<b>Review <a target="blank" href="./generated_bias_report/report.html">Bias Report</a></b>')) | _____no_output_____ | Apache-2.0 | 00_quickstart/09_Run_Data_Bias_Analysis_ProcessingJob.ipynb | NRauschmayr/workshop |
Release Resources | %%html
<p><b>Shutting down your kernel for this notebook to release resources.</b></p>
<button class="sm-command-button" data-commandlinker-command="kernelmenu:shutdown" style="display:none;">Shutdown Kernel</button>
<script>
try {
els = document.getElementsByClassName("sm-command-button");
els[0].click();
}
catch(err) {
// NoOp
}
</script> | _____no_output_____ | Apache-2.0 | 00_quickstart/09_Run_Data_Bias_Analysis_ProcessingJob.ipynb | NRauschmayr/workshop |
Subsets and Splits