markdown
stringlengths
0
1.02M
code
stringlengths
0
832k
output
stringlengths
0
1.02M
license
stringlengths
3
36
path
stringlengths
6
265
repo_name
stringlengths
6
127
Создадим простейшую сеть с новыми слоями: Convolutional - `nn.Conv2d` MaxPool - `nn.MaxPool2d`
nn_model = nn.Sequential( nn.Conv2d(3, 64, 3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(4), nn.Conv2d(64, 64, 3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(4), Flattener(), nn.Linear(64*2*2, 10), ) nn_model.type(torch.cuda.FloatTensor) nn_model.to(device) loss = nn.CrossEntropyLoss().type(torch.cuda.FloatTensor) optimizer = optim.SGD(nn_model.parameters(), lr=1e-1, weight_decay=1e-4)
_____no_output_____
MIT
assignments/assignment3/PyTorch_CNN.ipynb
pavel2805/my_dlcoarse_ai
Восстановите функцию `compute_accuracy` из прошлого задания. Единственное отличие в новом - она должна передать данные на GPU прежде чем прогонять через модель. Сделайте это так же, как это делает функция `train_model`
def train_model(model, train_loader, val_loader, loss, optimizer, num_epochs): loss_history = [] train_history = [] val_history = [] for epoch in range(num_epochs): model.train() # Enter train mode loss_accum = 0 correct_samples = 0 total_samples = 0 for i_step, (x, y) in enumerate(train_loader): x_gpu = x.to(device) y_gpu = y.to(device) prediction = model(x_gpu) loss_value = loss(prediction, y_gpu) optimizer.zero_grad() loss_value.backward() optimizer.step() _, indices = torch.max(prediction, 1) correct_samples += torch.sum(indices == y_gpu) total_samples += y.shape[0] loss_accum += loss_value ave_loss = loss_accum / i_step train_accuracy = float(correct_samples) / total_samples val_accuracy = compute_accuracy(model, val_loader) loss_history.append(float(ave_loss)) train_history.append(train_accuracy) val_history.append(val_accuracy) print("Average loss: %f, Train accuracy: %f, Val accuracy: %f" % (ave_loss, train_accuracy, val_accuracy)) return loss_history, train_history, val_history def compute_accuracy(model, loader): """ Computes accuracy on the dataset wrapped in a loader Returns: accuracy as a float value between 0 and 1 """ model.eval() # Evaluation mode # TODO: Copy implementation from previous assignment # Don't forget to move the data to device before running it through the model! raise Exception("Not implemented") loss_history, train_history, val_history = train_model(nn_model, train_loader, val_loader, loss, optimizer, 5)
_____no_output_____
MIT
assignments/assignment3/PyTorch_CNN.ipynb
pavel2805/my_dlcoarse_ai
Аугментация данных (Data augmentation)В работе с изображениями одним из особенно важных методов является аугментация данных - то есть, генерация дополнительных данных для тренировки на основе изначальных. Таким образом, мы получаем возможность "увеличить" набор данных для тренировки, что ведет к лучшей работе сети.Важно, чтобы аугментированные данные были похожи на те, которые могут встретиться в реальной жизни, иначе польза от аугментаций уменьшается и может ухудшить работу сети.С PyTorch идут несколько таких алгоритмов, называемых `transforms`. Более подробно про них можно прочитать тут -https://pytorch.org/tutorials/beginner/data_loading_tutorial.htmltransformsНиже мы используем следующие алгоритмы генерации:- ColorJitter - случайное изменение цвета- RandomHorizontalFlip - горизонтальное отражение с вероятностью 50%- RandomVerticalFlip - вертикальное отражение с вероятностью 50%- RandomRotation - случайный поворот
tfs = transforms.Compose([ transforms.ColorJitter(hue=.50, saturation=.50), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.RandomRotation(50, resample=PIL.Image.BILINEAR), transforms.ToTensor(), transforms.Normalize(mean=[0.43,0.44,0.47], std=[0.20,0.20,0.20]) ]) # Create augmented train dataset data_aug_train = dset.SVHN('./', transform=tfs ) train_aug_loader = torch.utils.data.DataLoader(data_aug_train, batch_size=batch_size, sampler=train_sampler)
_____no_output_____
MIT
assignments/assignment3/PyTorch_CNN.ipynb
pavel2805/my_dlcoarse_ai
Визуализируем результаты агментации (вообще, смотреть на сгенерированные данные всегда очень полезно).
# TODO: Visualize some augmented images! # hint: you can create new datasets and loaders to accomplish this # Based on the visualizations, should we keep all the augmentations? tfs = transforms.Compose([ transforms.ColorJitter(hue=.20, saturation=.20), transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.RandomRotation(10, resample=PIL.Image.BILINEAR), ]) data_aug_vis = dset.SVHN('./', transform=tfs ) plt.figure(figsize=(30, 3)) for i, (x, y) in enumerate(data_aug_vis): if i == 10: break plt.subplot(1, 10, i+1) plt.grid(False) plt.imshow(x) plt.axis('off')
_____no_output_____
MIT
assignments/assignment3/PyTorch_CNN.ipynb
pavel2805/my_dlcoarse_ai
Все ли агментации одинаково полезны на этом наборе данных? Могут ли быть среди них те, которые собьют модель с толку?Выберите из них только корректные
# TODO: tfs = transforms.Compose([ # TODO: Add good augmentations transforms.ToTensor(), transforms.Normalize(mean=[0.43,0.44,0.47], std=[0.20,0.20,0.20]) ]) # TODO create new instances of loaders with the augmentations you chose train_aug_loader = None # Finally, let's train with augmentations! # Note we shouldn't use augmentations on validation loss_history, train_history, val_history = train_model(nn_model, train_aug_loader, val_loader, loss, optimizer, 5)
_____no_output_____
MIT
assignments/assignment3/PyTorch_CNN.ipynb
pavel2805/my_dlcoarse_ai
LeNetПопробуем имплементировать классическую архитектуру сверточной нейронной сети, предложенную Яном ЛеКуном в 1998 году. В свое время она достигла впечатляющих результатов на MNIST, посмотрим как она справится с SVHN?Она описана в статье ["Gradient Based Learning Applied to Document Recognition"](http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf), попробуйте прочитать ключевые части и имплементировать предложенную архитетуру на PyTorch.Реализовывать слои и функцию ошибки LeNet, которых нет в PyTorch, **не нужно** - просто возьмите их размеры и переведите в уже известные нам Convolutional, Pooling и Fully Connected layers.Если в статье не очень понятно, можно просто погуглить LeNet и разобраться в деталях :)
# TODO: Implement LeNet-like architecture for SVHN task lenet_model = nn.Sequential( ) lenet_model.type(torch.cuda.FloatTensor) lenet_model.to(device) loss = nn.CrossEntropyLoss().type(torch.cuda.FloatTensor) optimizer = optim.SGD(lenet_model.parameters(), lr=1e-1, weight_decay=1e-4) # Let's train it! loss_history, train_history, val_history = train_model(lenet_model, train_aug_loader, val_loader, loss, optimizer, 10)
_____no_output_____
MIT
assignments/assignment3/PyTorch_CNN.ipynb
pavel2805/my_dlcoarse_ai
Подбор гиперпараметров
# The key hyperparameters we're going to tune are learning speed, annealing rate and regularization # We also encourage you to try different optimizers as well Hyperparams = namedtuple("Hyperparams", ['learning_rate', 'anneal_epochs', 'reg']) RunResult = namedtuple("RunResult", ['model', 'train_history', 'val_history', 'final_val_accuracy']) learning_rates = [1e0, 1e-1, 1e-2, 1e-3, 1e-4] anneal_coeff = 0.2 anneal_epochs = [1, 5, 10, 15, 20, 50] reg = [1e-3, 1e-4, 1e-5, 1e-7] batch_size = 64 epoch_num = 10 # Record all the runs here # Key should be Hyperparams and values should be RunResult run_record = {} # Use grid search or random search and record all runs in run_record dictionnary # Important: perform search in logarithmic space! # TODO: Your code here! best_val_accuracy = None best_hyperparams = None best_run = None for hyperparams, run_result in run_record.items(): if best_val_accuracy is None or best_val_accuracy < run_result.final_val_accuracy: best_val_accuracy = run_result.final_val_accuracy best_hyperparams = hyperparams best_run = run_result print("Best validation accuracy: %4.2f, best hyperparams: %s" % (best_val_accuracy, best_hyperparams))
_____no_output_____
MIT
assignments/assignment3/PyTorch_CNN.ipynb
pavel2805/my_dlcoarse_ai
Свободное упражнение - догоним и перегоним LeNet!Попробуйте найти архитектуру и настройки тренировки, чтобы выступить лучше наших бейзлайнов.Что можно и нужно попробовать:- BatchNormalization (для convolution layers он в PyTorch называется [batchnorm2d](https://pytorch.org/docs/stable/nn.htmlbatchnorm2d))- Изменить количество слоев и их толщину- Изменять количество эпох тренировки- Попробовать и другие агментации
best_model = None
_____no_output_____
MIT
assignments/assignment3/PyTorch_CNN.ipynb
pavel2805/my_dlcoarse_ai
Финальный аккорд - проверим лучшую модель на test setВ качестве разнообразия - напишите код для прогона модели на test set вы.В результате вы должны натренировать модель, которая покажет более **90%** точности на test set. Как водится, лучший результат в группе получит дополнительные баллы!
# TODO Write the code to compute accuracy on test set final_test_accuracy = 0.0 print("Final test accuracy - ", final_test_accuracy)
_____no_output_____
MIT
assignments/assignment3/PyTorch_CNN.ipynb
pavel2805/my_dlcoarse_ai
baxterのmap求める
import sympy as sy from sympy import sin, cos, pi, sqrt import math #from math import pi q = sy.Matrix(sy.MatrixSymbol('q', 7, 1)) L, h, H, L0, L1, L2, L3, L4, L5, L6, R = sy.symbols('L, h, H, L0, L1, L2, L3, L4, L5, L6, R') # L = 278e-3 # h = 64e-3 # H = 1104e-3 # L0 = 270.35e-3 # L1 = 69e-3 # L2 = 364.35e-3 # L3 = 69e-3 # L4 = 374.29e-3 # L5 = 10e-3 # L6 = 368.3e-3 def HTM(alpha, a, d, theta): return sy.Matrix([ [cos(theta), -sin(theta), 0, a], [sin(theta)*cos(alpha), cos(theta)*cos(alpha), -sin(alpha), -d*sin(alpha)], [sin(theta)*sin(alpha), cos(theta)*sin(alpha), cos(alpha), d*cos(alpha)], [0, 0, 0, 1], ]) DHparams = ( (0, 0, 0, q[0, 0]), (-pi/2, L1, 0, q[1, 0]+pi/2), (pi/2, 0, L2, q[2, 0]), (-pi/2, L3, 0, q[3, 0]), (pi/2, 0, L4, q[4, 0]), (-pi/2, L5, 0, q[5, 0]), (pi/2, 0, 0, q[6, 0]), ) T_RL_W0 = sy.Matrix([ [-sqrt(2)/2, sqrt(2)/2, 0, -L,], [-sqrt(2)/2, -sqrt(2)/2, 0, -h,], [0, 0, 1, H,], [0, 0, 0, 1,], ]) T_0_RL = sy.Matrix([ [1, 0, 0, 0,], [0, 1, 0, 0,], [0, 0, 1, L0,], [0, 0, 0, 1,], ]) Ts = [HTM(*dhparam) for dhparam in DHparams] T_GR_7 = sy.Matrix([ [1, 0, 0, 0,], [0, 1, 0, 0,], [0, 0, 1, L6,], [0, 0, 0, 1,], ]) ### 変換前一覧 ### T_all = [T_RL_W0, T_0_RL] T_all += Ts T_all.append(T_GR_7) ### 変換後 ### for i, T in enumerate(T_all): if i == 0: T_abs = [T] else: T_abs.append(T_abs[i-1] @ T) os = [T[0:3, 3:4] for T in T_abs] Rxs = [T[0:3, 0:1] for T in T_abs] Rys = [T[0:3, 1:2] for T in T_abs] Rzs = [T[0:3, 2:3] for T in T_abs] Jos = [o.jacobian(q) for o in os] JRxs = [r.jacobian(q) for r in Rxs] JRys = [r.jacobian(q) for r in Rys] JRzs = [r.jacobian(q) for r in Rzs] t = sy.Symbol("t") q1 = sy.Function("q1") q2 = sy.Function("q2") q3 = sy.Function("q3") q4 = sy.Function("q4") q5 = sy.Function("q5") q6 = sy.Function("q6") q7 = sy.Function("q7") dq = sy.Matrix(sy.MatrixSymbol('dq', 7, 1)) T_abs_ = [] for T in T_abs: T_ = T.subs([ (q[0,0], q1(t)), (q[1,0], q2(t)), (q[2,0], q3(t)), (q[3,0], q4(t)), (q[4,0], q5(t)), (q[5,0], q6(t)), (q[6,0], q7(t)), ]) T_abs_.append(T_) os_ = [T[0:3, 3:4] for T in T_abs_] Rxs_ = [T[0:3, 0:1] for T in T_abs_] Rys_ = [T[0:3, 1:2] for T in T_abs_] Rzs_ = [T[0:3, 2:3] for T in T_abs_] q_ = sy.Matrix([ [q1(t)], [q2(t)], [q3(t)], [q4(t)], [q5(t)], [q6(t)], [q7(t)], ]) Jos_ = [o.jacobian(q_) for o in os_] JRxs_ = [r.jacobian(q_) for r in Rxs_] JRys_ = [r.jacobian(q_) for r in Rys_] JRzs_ = [r.jacobian(q_) for r in Rzs_] Jos_dot_ = [sy.diff(J, t) for J in Jos_] JRxs_dot_ = [sy.diff(J, t) for J in JRxs_] JRys_dot_ = [sy.diff(J, t) for J in JRys_] JRzs_dot_ = [sy.diff(J, t) for J in JRzs_] Jos_dot = [] JRxs_dot = [] JRys_dot = [] JRzs_dot = [] for Js, newJs in zip((Jos_dot_, JRxs_dot_, JRys_dot_, JRzs_dot_), (Jos_dot, JRxs_dot, JRys_dot, JRzs_dot)): for J in Js: newJs.append(J.subs([ (sy.Derivative(q1(t),t), dq[0, 0]), (sy.Derivative(q2(t),t), dq[1, 0]), (sy.Derivative(q3(t),t), dq[2, 0]), (sy.Derivative(q4(t),t), dq[3, 0]), (sy.Derivative(q5(t),t), dq[4, 0]), (sy.Derivative(q6(t),t), dq[5, 0]), (sy.Derivative(q7(t),t), dq[6, 0]), (q1(t), q[0, 0]), (q2(t), q[1, 0]), (q3(t), q[2, 0]), (q4(t), q[3, 0]), (q5(t), q[4, 0]), (q6(t), q[5, 0]), (q7(t), q[6, 0]), ])) os = [sy.expand(e) for e in os] Rxs = [sy.expand(e) for e in Rxs] Rys = [sy.expand(e) for e in Rys] Rzs = [sy.expand(e) for e in Rzs] Jos = [sy.expand(e) for e in Jos] JRxs = [sy.expand(e) for e in JRxs] JRys = [sy.expand(e) for e in JRys] JRzs = [sy.expand(e) for e in JRzs] Jos_dot = [sy.expand(e) for e in Jos_dot] JRxs_dot = [sy.expand(e) for e in JRxs_dot] JRys_dot = [sy.expand(e) for e in JRys_dot] JRzs_dot = [sy.expand(e) for e in JRzs_dot] expr_all = [os, Rxs, Rys, Rzs, Jos, JRxs, JRys, JRzs, Jos_dot, JRxs_dot, JRys_dot, JRzs_dot] names = ["W0", "BR"] + [str(i) for i in range(7)] + ["ee"] expr_name = [ ["o_" + n for n in names], ["rx_" + n for n in names], ["ry_" + n for n in names], ["rz_" + n for n in names], ["jo_" + n for n in names], ["jrx_" + n for n in names], ["jry_" + n for n in names], ["jrz_" + n for n in names], ["jo_" + n + "_dot" for n in names], ["jrx_" + n + "_dot" for n in names], ["jry_" + n + "_dot" for n in names], ["jrz_" + n + "_dot" for n in names], ] from sympy.printing import cxxcode from sympy.utilities.codegen import codegen import os as OS original = "cpp_" done = "cpp" OS.makedirs(original, exist_ok=True) OS.makedirs(done, exist_ok=True) def gen_cpp_code(expr, name): code_txt = cxxcode(expr, assign_to="out", standard="c++17") with open(name+".cpp", "w") as f: f.write(code_txt) def gen_c(expr, name, dir=""): [(c_name, c_code), (h_name, c_header)] = codegen( name_expr=(name, expr), language="C", project= name + "project", to_files=False ) f = open(dir+c_name, 'w') f.write(c_code) f.close() f = open(dir+h_name, 'w') f.write(c_header) f.close() return c_code, c_header names = ["W0", "BR"] + [str(i) for i in range(7)] + ["ee"] with open(original+"/htm.cpp", "w") as fc, open(original+"/htm.hpp", "w") as fh: for i, o in enumerate(os): c, h = gen_c(o, name="o_"+names[i]) fc.write(c) fh.write(h) for i, o in enumerate(Rxs): c, h = gen_c(o, name="rx_"+names[i]) fc.write(c) fh.write(h) for i, o in enumerate(Rys): c, h = gen_c(o, name="ry_"+names[i]) fc.write(c) fh.write(h) for i, o in enumerate(Rzs): c, h = gen_c(o, name="rz_"+names[i]) fc.write(c) fh.write(h) with open(original+"/Jos.cpp", "w") as fc, open(original+"/Jos.hpp", "w") as fh: for i, o in enumerate(Jos): c, h = gen_c(o, name="jo_"+names[i]) fc.write(c) fh.write(h) with open(original+"/JRxs.cpp", "w") as fc, open(original+"/JRxs.hpp", "w") as fh: for i, o in enumerate(JRxs): c, h = gen_c(o, name="jrx_"+names[i]) fc.write(c) fh.write(h) with open(original+"/JRys.cpp", "w") as fc, open(original+"/JRys.hpp", "w") as fh: for i, o in enumerate(JRzs): c, h = gen_c(o, name="jry_"+names[i]) fc.write(c) fh.write(h) with open(original+"/JRzs.cpp", "w") as fc, open(original+"/JRzs.hpp", "w") as fh: for i, o in enumerate(JRzs): c, h = gen_c(o, name="jrz_"+names[i]) fc.write(c) fh.write(h) with open(original+"/Jo_dots.cpp", "w") as fc, open(original+"/Jo_dots.hpp", "w") as fh: for i, o in enumerate(Jos_dot): c, h = gen_c(o, name="jo_"+names[i]+"_dot") fc.write(c) fh.write(h) with open(original+"/JRx_dots.cpp", "w") as fc, open(original+"/JRx_dots.hpp", "w") as fh: for i, o in enumerate(JRxs_dot): c, h = gen_c(o, name="jrx_"+names[i]+"_dot") fc.write(c) fh.write(h) with open(original+"/JRy_dots.cpp", "w") as fc, open(original+"/JRy_dots.hpp", "w") as fh: for i, o in enumerate(JRzs_dot): c, h = gen_c(o, name="jry_"+names[i]+"_dot") fc.write(c) fh.write(h) with open(original+"/JRz_dots.cpp", "w") as fc, open(original+"/JRz_dots.hpp", "w") as fh: for i, o in enumerate(JRzs_dot): c, h = gen_c(o, name="jrz_"+names[i]+"_dot") fc.write(c) fh.write(h) ### これが本物 ### from sympy.printing import cxxcode from sympy.utilities.codegen import codegen import os as OS original = "cpp_original" done = "cpp_done" OS.makedirs(original, exist_ok=True) OS.makedirs(original+"/include", exist_ok=True) OS.makedirs(original+"/src", exist_ok=True) def gen_cpp_code(expr, name, dir): [(c_name, c_code), (h_name, c_header)] = codegen( name_expr=(name, expr), language="C", project= name + "_BY_SYMPY_", to_files=False ) f = open(dir+"/src/"+name+".cpp", 'w') f.write(c_code) f.close() f = open(dir+"/include/"+h_name.replace(".h", "")+".hpp", 'w') f.write(c_header) f.close() for exprs, names in zip(expr_all, expr_name): for expr, name in zip(exprs, names): gen_cpp_code(expr, name, original) com = "#ifndef BAXTER_HPP\n" \ + "#define BAXTER_HPP\n" \ + "#include<eigen3/Eigen/Core>\n" \ + "namespace baxter\n" \ + "{\n" \ + " using Eigen::VectorXd;\n" \ + " using Eigen::MatrixXd;\n" \ + " static const double L = 278e-3;\n" \ + " static const double h = 64e-3;\n" \ + " static const double H = 1104e-3;\n" \ + " static const double L0 = 270.35e-3;\n" \ + " static const double L1 = 69e-3;\n" \ + " static const double L2 = 364.35e-3;\n" \ + " static const double L3 = 69e-3;\n" \ + " static const double L4 = 374.29e-3;\n" \ + " static const double L5 = 10e-3;\n" \ + " static const double L6 = 368.3e-3;\n" for ns in expr_name[0:4]: for n in ns: com += (" void " + n + "(const VectorXd& q, VectorXd& out);\n") for ns in expr_name[4:8]: for n in ns: com += (" void " + n + "(const VectorXd& q, MatrixXd& out);\n") for ns in expr_name[8:12]: for n in ns: com += (" void " + n + "(const VectorXd& q, const VectorXd& q_dot, MatrixXd& out);\n") com += "};\n#endif" ### 変換 ### import re done = "cpp_done" OS.makedirs(done, exist_ok=True) OS.makedirs(done+"/include", exist_ok=True) OS.makedirs(done+"/src", exist_ok=True) pat = r'out_(.+?)\[' pat2 = r'out_(.+?)\)' pat3 = r'\((.+?)\) {' pat4 = r'#(.+?).h\"' sout = ["out[" + str(i) + "]" for i in range(21)] sout_2 = ["out(0,0)","out(0,1)","out(0,2)","out(0,3)","out(0,4)","out(0,5)","out(0,6)","out(1,0)","out(1,1)","out(1,2)","out(1,3)","out(1,4)","out(1,5)","out(1,6)","out(2,0)","out(2,1)","out(2,2)","out(2,3)","out(2,4)","out(2,5)","out(2,6)"] with open("cpp_done/include/baxter.hpp", "w") as f: f.write(com) def common_trans(line): r = re.findall(pat, line) r2 = re.findall(pat2, line) if len(r) != 0: line = line.replace("out_" + r[0], "out") if len(r2) != 0: line = line.replace("out_" + r2[0], "out") line = line.replace("q[0]", "q(0)") line = line.replace("q[1]", "q(1)") line = line.replace("q[2]", "q(2)") line = line.replace("q[3]", "q(3)") line = line.replace("q[4]", "q(4)") line = line.replace("q[5]", "q(5)") line = line.replace("q[6]", "q(6)") # line = line.replace("double L, ", "") # line = line.replace("double h, ", "") # line = line.replace("double H, ", "") # line = line.replace("double L0, ", "") # line = line.replace("double L1, ", "") # line = line.replace("double L2, ", "") # line = line.replace("double L3, ", "") # line = line.replace("double L4, ", "") # line = line.replace("double L5, ", "") # line = line.replace("double L6, ", "") r3 = re.findall(pat3, line) if "j" not in name: if len(r3) != 0: print("("+r3[0]+")") #line = line.replace("("+r3[0]+") {", "(const VectorXd& q, VectorXd& out) {") line = line.replace("("+r3[0]+") {", "(const VectorXd& q, double L, double h, double H, double L0, double L1, double L2, double L3, double L4, double L5, double L6, VectorXd& out) {") line = line.replace("double *out", "VectorXd& out") line = line.replace("out[0]", "out(0)") line = line.replace("out[1]", "out(1)") line = line.replace("out[2]", "out(2)") else: if "dot" in name: if len(r3) != 0: line = line.replace(r3[0], "const VectorXd& q, const VectorXd& dq, double L, double h, double H, double L0, double L1, double L2, double L3, double L4, double L5, double L6, MatrixXd& out") else: if len(r3) != 0: print(name) line = line.replace(r3[0], "const VectorXd& q, double L, double h, double H, double L0, double L1, double L2, double L3, double L4, double L5, double L6, MatrixXd& out") line = line.replace("double *out", "MatrixXd& out") for s, t in zip(sout, sout_2): line = line.replace(s, t) return line def trans_cpp(name): origin = "cpp_original/src/" + name + ".cpp" done = "cpp_done/src/" + name + ".cpp" with open(origin, "r") as f, open(done, "w") as g: file_data = f.readlines() for line in file_data: line = line.replace('#include <math.h>', '#include <cmath>\nusing std::cos;\nusing std::sin;\nusing std::sqrt;\n') #line = line.replace("#include \"", "#include \"../../include/baxter/") #line = line.replace(".h\"", ".hpp\"\n#include \"../../include/baxter/common.hpp\"\n") r4 = re.findall(pat4, line) if len(r4) != 0: line = line.replace("#"+r4[0]+".h\"", "#include \"../include/baxter.hpp\"\n") line = line.replace("void ", "void baxter::") line = line.replace("double *q", "const VectorXd& q").replace("double *dq", "const VectorXd& dq") line = common_trans(line) g.write(line) # def trans_hpp(name): # origin = "cpp_original/include/" + name + ".hpp" # done = "cpp_done/include/" + name + ".hpp" # with open(origin, "r") as f, open(done, "w") as g: # file_data = f.readlines() # for line in file_data: # line = line.replace("void ", "#include<eigen3/Eigen/Core>\nnamespace baxter\n{\nusing Eigen::VectorXd;\nusing Eigen::MatrixXd;\nvoid ").replace(");", ");\n}\n") # line = line.replace("double *q", "const VectorXd& q").replace("double *dq", "const VectorXd& dq") # line = common_trans(line) # g.write(line) for names in expr_name: for name in names: trans_cpp(name) #trans_hpp(name) hoho = "void baxter::o_W0(VectorXd& out) {" # pythonコード生成(クラス) from sympy.printing.numpy import NumPyPrinter names = ["W0", "BR"] + [str(i) for i in range(7)] + ["ee"] common_w = "import numpy as np\nfrom math import cos as c\nfrom math import sin as s\nfrom math import tan as t\nfrom math import sqrt as sq\nfrom base import Base\n" with open("src_py_/htm.py", "w") as f: f.write(common_w + "class HTM(Base):\n") for name, z in zip(names, os): numpy_word = " def o_" + name + "(self, q):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") for name, z in zip(names, Rxs): numpy_word = " def rx_" + name + "(self, q):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") for name, z in zip(names, Rys): numpy_word = " def ry_" + name + "(self, q):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") for name, z in zip(names, Rzs): numpy_word = " def rz_" + name + "(self, q):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/Jos.py", "w") as f: f.write(common_w + "class Jo(Base):\n") for name, z in zip(names, Jos): numpy_word = " def jo_" + name + "(self, q):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/JRxs.py", "w") as f: f.write(common_w + "class JRx(Base):\n") for name, z in zip(names, JRxs): numpy_word = " def jrx_" + name + "(self, q):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/JRys.py", "w") as f: f.write(common_w + "class JRy(Base):\n") for name, z in zip(names, JRys): numpy_word = " def jry_" + name + "(self, q):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/JRzs.py", "w") as f: f.write(common_w + "class JRz(Base):\n") for name, z in zip(names, JRzs): numpy_word = " def jrz_" + name + "(self, q):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/Jo_dots.py", "w") as f: f.write(common_w + "class Jo_dot(Base):\n") for name, z in zip(names, Jos_dot): numpy_word = " def jo_" + name + "_dot(self, q, dq):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/JRx_dots.py", "w") as f: f.write(common_w + "class JRx_dot(Base):\n") for name, z in zip(names, JRxs_dot): numpy_word = " def jrx_" + name + "_dot(self, q, dq):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/JRy_dots.py", "w") as f: f.write(common_w + "class JRy_dot(Base):\n") for name, z in zip(names, JRys): numpy_word = " def jry_" + name + "_dot(self, q, dq):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/JRz_dots.py", "w") as f: f.write(common_w + "class JRz_dot(Base):\n") for name, z in zip(names, JRzs): numpy_word = " def jrz_" + name + "_dot(self, q, dq):\n return " f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") def translate_hoge(original, done): with open(original, "r") as f, open(done, "w") as g: file_data = f.readlines() for line in file_data: line = line.replace('numpy', 'np').replace('1/2', '0.5').replace('(0.5)', '0.5') line = line.replace('np.cos', 'c').replace('np.sin', 's').replace('np.sqrt', 'sq') #line = line.replace('L', 'self.L').replace('h', 'self.h').replace('H', 'self.H') line = line.replace('import np as np', 'import numpy as np') line = line.replace('matself.h', 'math') g.write(line) translate_hoge("src_py_/htm.py", "src_py/htm.py") translate_hoge("src_py_/Jos.py", "src_py/Jos.py") translate_hoge("src_py_/JRxs.py", "src_py/JRxs.py") translate_hoge("src_py_/JRys.py", "src_py/JRys.py") translate_hoge("src_py_/JRzs.py", "src_py/JRzs.py") translate_hoge("src_py_/Jo_dots.py", "src_py/Jo_dots.py") translate_hoge("src_py_/JRx_dots.py", "src_py/JRx_dots.py") translate_hoge("src_py_/JRy_dots.py", "src_py/JRy_dots.py") translate_hoge("src_py_/JRz_dots.py", "src_py/JRz_dots.py") from sympy.printing.numpy import NumPyPrinter names = ["W0", "BR"] + [str(i) for i in range(7)] + ["ee"] common_w = "import numpy as np\nfrom math import cos as c\nfrom math import sin as s\nfrom math import tan as ta\nfrom math import sqrt as sq\n" numba_word_q = "@njit(\"f8[:, :](f8[:, :])\")\n" numba_word_q_dq = "@njit(\"f8[:, :](f8[:, :], f8[:, :])\")\n" with open("src_py_/htm.py", "w") as f: f.write(common_w) for name, z in zip(names, os): numpy_word = "def o_" + name + "(q):\n return " #f.write(numba_word_q) f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") for name, z in zip(names, Rxs): numpy_word = "def rx_" + name + "(q):\n return " #f.write(numba_word_q) f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") for name, z in zip(names, Rys): numpy_word = "def ry_" + name + "(q):\n return " #f.write(numba_word_q) f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") for name, z in zip(names, Rzs): numpy_word = "def rz_" + name + "(q):\n return " #f.write(numba_word_q) f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/Jos.py", "w") as f: f.write(common_w) for name, z in zip(names, Jos): numpy_word = "def jo_" + name + "(q):\n return " #f.write(numba_word_q) f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/JRxs.py", "w") as f: f.write(common_w) for name, z in zip(names, JRxs): numpy_word = "def jrx_" + name + "(q):\n return " #f.write(numba_word_q) f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/JRys.py", "w") as f: f.write(common_w) for name, z in zip(names, JRys): numpy_word = "def jry_" + name + "(q):\n return " #f.write(numba_word_q) f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/JRzs.py", "w") as f: f.write(common_w) for name, z in zip(names, JRzs): numpy_word = "def jrz_" + name + "(q):\n return " #f.write(numba_word_q) f.write(numpy_word) f.write(NumPyPrinter().doprint(z)) f.write("\n") with open("src_py_/Jo_dots.py", "w") as f: f.write(common_w) for name, z in zip(names, Jos_dot): numpy_word = "def jo_" + name + "_dot(q, dq):\n return " #f.write(numba_word_q_dq) f.write(numpy_word) f.write(NumPyPrinter().doprint(sy.simplify(z))) f.write("\n") with open("src_py_/JRx_dots.py", "w") as f: f.write(common_w) for name, z in zip(names, JRxs_dot): numpy_word = "def jrx_" + name + "_dot(q, dq):\n return " #f.write(numba_word_q_dq) f.write(numpy_word) f.write(NumPyPrinter().doprint(sy.simplify(z))) f.write("\n") with open("src_py_/JRy_dots.py", "w") as f: f.write(common_w) for name, z in zip(names, JRys): numpy_word = "def jry_" + name + "_dot(q, dq):\n return " #f.write(numba_word_q_dq) f.write(numpy_word) f.write(NumPyPrinter().doprint(sy.simplify(z))) f.write("\n") with open("src_py_/JRz_dots.py", "w") as f: f.write(common_w) for name, z in zip(names, JRzs): numpy_word = "def jrz_" + name + "_dot(q, dq):\n return " #f.write(numba_word_q_dq) f.write(numpy_word) f.write(NumPyPrinter().doprint(sy.simplify(z))) f.write("\n") def translate_hoge(original, done): with open(original, "r") as f, open(done, "w") as g: file_data = f.readlines() for line in file_data: line = line.replace('numpy', 'np').replace('1/2', '0.5').replace('(0.5)', '0.5') line = line.replace('np.cos', 'c').replace('np.sin', 's').replace('np.sqrt', 'sq') # line = line.replace(']])', ']], dtype=np.float64)') # line = line.replace('[0, 0, 0, 0, 0, 0, 0]', '[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]') # line = line.replace('[0]', '[0.0]').replace(' 0]],', ' 0.0]],').replace('[1]', '[1.0]').replace('[[0,', '[[0.0,').replace('0.0, 0],', '0.0, 0.0],') line = line.replace('import np as np', 'import numpy as np') g.write(line) translate_hoge("src_py_/htm.py", "src_py_no_class/htm.py") translate_hoge("src_py_/Jos.py", "src_py_no_class/Jos.py") translate_hoge("src_py_/JRxs.py", "src_py_no_class/JRxs.py") translate_hoge("src_py_/JRys.py", "src_py_no_class/JRys.py") translate_hoge("src_py_/JRzs.py", "src_py_no_class/JRzs.py") translate_hoge("src_py_/Jo_dots.py", "src_py_no_class/Jo_dots.py") translate_hoge("src_py_/JRx_dots.py", "src_py_no_class/JRx_dots.py") translate_hoge("src_py_/JRy_dots.py", "src_py_no_class/JRy_dots.py") translate_hoge("src_py_/JRz_dots.py", "src_py_no_class/JRz_dots.py")
_____no_output_____
MIT
misc/baxter/derivation.ipynb
YoshimitsuMatsutaIe/rmp_test
Collapse all 2-cells
all_X,collapses,all_losses,total_loss,all_signals,phispsis= dmt.sequence_optimal_up_collapses(X=X,kX=kX,dimq=1,signal=s1,steps=120) colX=all_X[-1] colS=all_signals[-1] s0 = ['black']*len(X[0])#np.zeros(len(simplices[0])) f_X=all_X[-1] f_s=all_signals[-1] fig = plt.figure(figsize=(6,7)) ax = fig.add_subplot(111) dmtvis.plot_nodes(s0, points,ax, zorder=3,s=30) dmtvis.plot_edges(f_s.copy(),points,f_X, ax, zorder=2,linewidths=2) dmtvis.plot_triangles_plain('lavenderblush',points,f_X, ax, zorder=1) cbar=plt.colorbar(ax.collections[0], ax=ax,orientation="horizontal") cbar.set_ticklabels(np.around(np.append(np.arange(f_s.min(),f_s.max(),(f_s.max())/5),f_s.max()),decimals=1)) ax.set_xticks([]) ax.set_yticks([]) print([f_s.min(),f_s.max()]) plt.savefig('./figures/ex_coll_2.pdf') plt.show() s0 = ['black']*len(X[0])#np.zeros(len(simplices[0])) s2 =np.random.uniform(size=len(X[2])) sr=phispsis fig = plt.figure(figsize=(6,7)) ax = fig.add_subplot(111) dmtvis.plot_nodes(s0, points,ax, zorder=3,s=30) dmtvis.plot_edges(sr.copy(),points,X, ax, zorder=2,linewidths=2) dmtvis.plot_triangles_plain('lavenderblush',points,X, ax, zorder=1) cbar=plt.colorbar(ax.collections[0], ax=ax,orientation="horizontal") cbar.set_ticklabels(np.around(np.append(np.arange(sr.min(),sr.max(),(sr.max())/5),sr.max()),decimals=1)) #cbar.set_ticklabels(np.arange(s1.max() ,s1.min(),6)) print([sr.min(),sr.max()]) ax.set_xticks([]) ax.set_yticks([]) plt.savefig('./figures/ex_coll_3.pdf') plt.show() s0 = ['black']*len(X[0])#np.zeros(len(simplices[0])) s2 =np.random.uniform(size=len(X[2])) sl=np.abs(s1-phispsis) fig = plt.figure(figsize=(6,7)) ax = fig.add_subplot(111) dmtvis.plot_nodes(s0, points,ax, zorder=3,s=30) dmtvis.plot_edges(sl.copy(),points,X, ax, zorder=2,linewidths=2) dmtvis.plot_triangles_plain('lavenderblush',points,X, ax, zorder=1) cbar=plt.colorbar(ax.collections[0], ax=ax,orientation="horizontal") #cbar.set_ticklabels([]) a=np.around(np.append(np.arange(sl.min(),sl.max(),(sl.max())/5),sl.max()),decimals=1) cbar.set_ticklabels(a) print([sl.min(),sl.max()]) ax.set_xticks([]) ax.set_yticks([]) plt.savefig('./figures/ex_coll_4.pdf') plt.show() dmtvis.plot_hodge_decomp(X,s1,kX,phispsis,trange=30,type_collapse='up') plt.savefig('./figures/hodge_new.pdf')
_____no_output_____
MIT
total-collapsing.ipynb
stefaniaebli/dmt-signal-processing
Randomly collapse 2-cells
all_X_rand,collapses_rand,all_losses_rand,total_loss_rand,all_signals_rand,phispsis_rand= dmt.sequence_optimal_up_collapses(X=X,kX=kX,dimq=1,signal=s1,steps=244,random=True) colX_rand=all_X_rand[-1] colS_rand=all_signals_rand[-1] dmtvis.plot_hodge_decomp(X,s1,kX,phispsis_rand,trange=30,type_collapse='up') plt.savefig('./figures/hodge_multiple_random_collapses_uniform.pdf')
_____no_output_____
MIT
total-collapsing.ipynb
stefaniaebli/dmt-signal-processing
Comparing losses
def CI_plot_y(data, conf = .95): from scipy.stats import sem, t n = np.array(data).shape[0] std_err = sem(data,axis = 0) h = std_err * t.ppf((1 + .95) / 2, n - 1) return h typ=['normal','uniform','height','center'] steps=np.arange(244) s=[1,50,100,150,200,240] for j in typ: l=np.load('./data/data_optimal_{}_sim0.npy'.format(j))[:,0,:] rl=np.load('./data/data_random_{}_sim0.npy'.format(j))[:,0,:] #l1=np.load('./data/data_optimal_sim0.npy'.format(j))[:,0,:] #rl1=np.load('./data/data_random_sim{0.npy'.format(j))[:,0,:] fig = plt.figure(figsize=(7,5)) m = np.array(l).mean(axis=0) h = CI_plot_y(np.array(l)) plt.plot(steps,m,label="Optimal pairing") plt.fill_between(steps,m-h,m+h,alpha=.5,zorder=0) m = np.array(rl).mean(axis=0) h = CI_plot_y(np.array(rl)) plt.plot(steps,m,c='green',label="Random pairing") plt.fill_between(steps,m-h,m+h,alpha=.3,zorder=0,color='green') plt.xticks(s) #plt.savefig('./figures/topo_error.pdf') plt.xlabel("Number of iterations") plt.ylabel("Topological reconstruction loss") #plt.title("Signal on the 1-cells: {}".format(j)) plt.legend(loc='upper left') plt.savefig('./figures/topological_loss_{}.pdf'.format(j)) plt.show()
_____no_output_____
MIT
total-collapsing.ipynb
stefaniaebli/dmt-signal-processing
Object Detection Data Set (Pikachu)There are no small data sets, like MNIST or Fashion-MNIST, in the object detection field. In order to quickly test models, we are going to assemble a small data set. First, we generate 1000 Pikachu images of different angles and sizes using an open source 3D Pikachu model. Then, we collect a series of background images and place a Pikachu image at a random position on each image. We use the [im2rec tool](https://github.com/apache/incubator-mxnet/blob/master/tools/im2rec.py) provided by MXNet to convert the images to binary RecordIO format[1]. This format can reduce the storage overhead of the data set on the disk and improve the reading efficiency. If you want to learn more about how to read images, refer to the documentation for the [GluonCV Toolkit](https://gluon-cv.mxnet.io/). Download the Data SetThe Pikachu data set in RecordIO format can be downloaded directly from the Internet. The operation for downloading the data set is defined in the function `_download_pikachu`.
%matplotlib inline import d2l from mxnet import gluon, image import os # Save to the d2l package. def download_pikachu(data_dir): root_url = ('https://apache-mxnet.s3-accelerate.amazonaws.com/' 'gluon/dataset/pikachu/') dataset = {'train.rec': 'e6bcb6ffba1ac04ff8a9b1115e650af56ee969c8', 'train.idx': 'dcf7318b2602c06428b9988470c731621716c393', 'val.rec': 'd6c33f799b4d058e82f2cb5bd9a976f69d72d520'} for k, v in dataset.items(): gluon.utils.download( root_url + k, os.path.join(data_dir, k), sha1_hash=v)
_____no_output_____
MIT
d2l-en/chapter_computer-vision/object-detection-dataset.ipynb
mru4913/Dive-into-Deep-Learning
Read the Data SetWe are going to read the object detection data set by creating the instance `ImageDetIter`. The "Det" in the name refers to Detection. We will read the training data set in random order. Since the format of the data set is RecordIO, we need the image index file `'train.idx'` to read random mini-batches. In addition, for each image of the training set, we will use random cropping and require the cropped image to cover at least 95% of each object. Since the cropping is random, this requirement is not always satisfied. We preset the maximum number of random cropping attempts to 200. If none of them meets the requirement, the image will not be cropped. To ensure the certainty of the output, we will not randomly crop the images in the test data set. We also do not need to read the test data set in random order.
# Save to the d2l package. def load_data_pikachu(batch_size, edge_size=256): """Load the pikachu dataset""" data_dir = '../data/pikachu' download_pikachu(data_dir) train_iter = image.ImageDetIter( path_imgrec=os.path.join(data_dir, 'train.rec'), path_imgidx=os.path.join(data_dir, 'train.idx'), batch_size=batch_size, data_shape=(3, edge_size, edge_size), # The shape of the output image shuffle=True, # Read the data set in random order rand_crop=1, # The probability of random cropping is 1 min_object_covered=0.95, max_attempts=200) val_iter = image.ImageDetIter( path_imgrec=os.path.join(data_dir, 'val.rec'), batch_size=batch_size, data_shape=(3, edge_size, edge_size), shuffle=False) return train_iter, val_iter
_____no_output_____
MIT
d2l-en/chapter_computer-vision/object-detection-dataset.ipynb
mru4913/Dive-into-Deep-Learning
Below, we read a mini-batch and print the shape of the image and label. The shape of the image is the same as in the previous experiment (batch size, number of channels, height, width). The shape of the label is (batch size, $m$, 5), where $m$ is equal to the maximum number of bounding boxes contained in a single image in the data set. Although computation for the mini-batch is very efficient, it requires each image to contain the same number of bounding boxes so that they can be placed in the same batch. Since each image may have a different number of bounding boxes, we can add illegal bounding boxes to images that have less than $m$ bounding boxes until each image contains $m$ bounding boxes. Thus, we can read a mini-batch of images each time. The label of each bounding box in the image is represented by an array of length 5. The first element in the array is the category of the object contained in the bounding box. When the value is -1, the bounding box is an illegal bounding box for filling purpose. The remaining four elements of the array represent the $x, y$ axis coordinates of the upper-left corner of the bounding box and the $x, y$ axis coordinates of the lower-right corner of the bounding box (the value range is between 0 and 1). The Pikachu data set here has only one bounding box per image, so $m=1$.
batch_size, edge_size = 32, 256 train_iter, _ = load_data_pikachu(batch_size, edge_size) batch = train_iter.next() batch.data[0].shape, batch.label[0].shape
_____no_output_____
MIT
d2l-en/chapter_computer-vision/object-detection-dataset.ipynb
mru4913/Dive-into-Deep-Learning
Graphic DataWe have ten images with bounding boxes on them. We can see that the angle, size, and position of Pikachu are different in each image. Of course, this is a simple man-made data set. In actual practice, the data is usually much more complicated.
imgs = (batch.data[0][0:10].transpose((0, 2, 3, 1))) / 255 axes = d2l.show_images(imgs, 2, 5, scale=2) for ax, label in zip(axes, batch.label[0][0:10]): d2l.show_bboxes(ax, [label[0][1:5] * edge_size], colors=['w'])
_____no_output_____
MIT
d2l-en/chapter_computer-vision/object-detection-dataset.ipynb
mru4913/Dive-into-Deep-Learning
The Goal of this Notebook is to predict Future Sales given historical data (daily granularity). This is a part of the kaggle competition "Predict Future Sales": https://www.kaggle.com/c/competitive-data-science-predict-future-sales/data Where more information about the problem, dataset and other solutions can be found.For my own usage, this is a part of the Capstone Project as part of the Udacity Machine Learning Engineer Nanodegree program and so am running this on AWS Sagemaker, with a conda_pytorch_36 shell.Author: Steven Vuong. Most recent update: 25/05/2020
# mount gdrive from google.colab import drive drive.mount('/gdrive') # cd to dir % cd '../gdrive/My Drive/self_teach/udacity_ml_eng_nanodegree' # Import Libraries import pandas as pd import numpy as np import warnings from sklearn.preprocessing import LabelEncoder # Visualisation Libraries import seaborn as sns import matplotlib.pyplot as plt # Styling Preferences %matplotlib inline sns.set(style="darkgrid") pd.set_option('display.float_format', lambda x: '%.2f' % x) warnings.filterwarnings("ignore")
/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Before we begin, Thanks to the following notebooks who I gained some ideas from in feature engineering/visualisations (and took code snippets from). I would suggest having a look at their notebooks and work also, and if you like it, give them a thumbs up on Kaggle to support their work :)):- https://www.kaggle.com/dlarionov/feature-engineering-xgboost- https://www.kaggle.com/kyakovlev/1st-place-solution-part-1-hands-on-data- https://www.kaggle.com/dimitreoliveira/model-stacking-feature-engineering-and-eda
# Load in dataset (cast float64 -> float32 and int32 -> int16 to save memory) items = pd.read_csv('./data/competition_files/items.csv', dtype={'item_name': 'str', 'item_id': 'int16', 'item_category_id': 'int16'} ) shops = pd.read_csv('./data/competition_files/shops.csv', dtype={'shop_name': 'str', 'shop_id': 'int16'} ) categories = pd.read_csv('./data/competition_files/item_categories.csv', dtype={'item_category_name': 'str', 'item_category_id': 'int16'} ) train = pd.read_csv('./data/competition_files/sales_train.csv', dtype={ 'date': 'str', 'date_block_num': 'int16', 'shop_id': 'int16', 'item_id': 'int16', 'item_price': 'float32', 'item_cnt_day': 'int16'} ) # set index to ID to avoid dropping it later test = pd.read_csv('./data/competition_files/test.csv', dtype={'ID': 'int16', 'shop_id': 'int16', 'item_id': 'int16'} ).set_index('ID') # Cast train date from string to datetime data type train.date = train.date.str.replace(".", "/") train.date = pd.to_datetime(train.date)
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Join the different data sets; merge onto train df
train = train.join( items, on='item_id', rsuffix='_').join( shops, on='shop_id', rsuffix='_').join( categories, on='item_category_id', rsuffix='_').drop( ['item_id_', 'shop_id_', 'item_category_id_'], axis=1 )
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Probe the train data, it appears that there are no nan data, or missing data, which is quite good.
print("----------Top-5- Record----------") print(train.head(5)) print("-----------Information-----------") print(train.info()) print("-----------Data Types-----------") print(train.dtypes) print("----------Missing value-----------") print(train.isnull().sum()) print("----------Null value-----------") print(train.isna().sum()) print("----------Shape of Data----------") print("Number of rows = {}, Number of columns = {}".format(len(train), len(train.columns))) print("----------Data Description----------") print(train.describe()) # look at time period of data print('Min date from train set: %s' % train['date'].min().date()) print('Max date from train set: %s' % train['date'].max().date())
Min date from train set: 2013-01-01 Max date from train set: 2015-12-10
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Data is from 1st January 2013 to 10th Decemer 2015, as we expect So it turns out that a lot of data in the training set for columns "shop_id" and "item_id" does not appear in the test set. This could be perhaps because the item is no longer on sale as time goes on or shops have closed down or moved addresses. As we want to predict data in the test set, we will focus on only using "shop_id" and "item_id" that appears in the test set. These rows may contain information so could be worth keeping as an extra column (commented out) indicating whether or not the train_id or shop_id is in the test set. Unfortunately however, we are tight on memory and so will not be doing that in this notebook.To make this more future proof where the "shop_id" and "item_id" might change over time (in a production environment, let's say), one may want to consider a data pipeline to constantly train and update our model with the latest information regarding shop_id and item_id's etc..
test_shop_ids = test['shop_id'].unique() test_item_ids = test['item_id'].unique() # Only shops that exist in test set. corrlate_train = train[train['shop_id'].isin(test_shop_ids)] # Only items that exist in test set. correlate_train = corrlate_train[corrlate_train['item_id'].isin(test_item_ids)] print('Initial data set size :', train.shape[0]) print('Data set size after matching crossovers between train and test:', correlate_train.shape[0]) # Make separate column to indicate whether or not the train_id and shop_id is in test # train['is_in_test'] = train.index.isin(correlate_train.index) # train.head() # Reduce train set to just match ones in test set regarding train_id and shop_id train = correlate_train len(train)
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
It appears we have 5 duplicated rows, let's look into these
print('Number of duplicates:', len(train[train.duplicated()]))
Number of duplicates: 5
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
The Itetm ID's are all the same, as well as the price for a number of them; other columns such as date, date_block_num look different. So this appears not to be a mistake. As there are only 5 duplicated rows, we will leave these in for now and deal with these later.
train[train.duplicated()]
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Plot the train data; look for outliers. It seems like there are a few with item price > 100000 and with item count per day > 1000. We will remove these from our training set.
plt.figure(figsize=(10,4)) plt.xlim(-100, 3000) sns.boxplot(x=train.item_cnt_day) plt.figure(figsize=(10,4)) plt.xlim(train.item_price.min(), train.item_price.max()*1.1) sns.boxplot(x=train.item_price) train = train[train.item_price<100000] train = train[train.item_cnt_day<1000] plt.figure(figsize=(10,4)) plt.xlim(-100, 3000) sns.boxplot(x=train.item_cnt_day) plt.figure(figsize=(10,4)) plt.xlim(train.item_price.min(), train.item_price.max()*1.1) sns.boxplot(x=train.item_price) plt.show()
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Looking better after having removed outliers. Fill any item_price < 0 with the median item price median.
# Calculate the item price median median = train.item_price.median() print("Item Price Median = {}".format(median)) train.loc[train.item_price<0, 'item_price'] = median # Double there are no item price rows < 0 train.loc[train.item_price<0, 'item_price']
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Count number of rows with item_cnt_day < 0; seems too many to be anomalous and could be an important feature. We will leave this in our dataset.
len(train.loc[train.item_cnt_day<0, 'item_cnt_day'])
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Some shops are duplicates of each other (according to name), we will fix these in our train and test set.
# Якутск Орджоникидзе, 56 train.loc[train.shop_id == 0, 'shop_id'] = 57 test.loc[test.shop_id == 0, 'shop_id'] = 57 # Якутск ТЦ "Центральный" train.loc[train.shop_id == 1, 'shop_id'] = 58 test.loc[test.shop_id == 1, 'shop_id'] = 58 # Жуковский ул. Чкалова 39м² train.loc[train.shop_id == 10, 'shop_id'] = 11 test.loc[test.shop_id == 10, 'shop_id'] = 11
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Process "Shop_name" column -> shop name begins with city name.
# Fix erroneous shop name title train.loc[train.shop_name == 'Сергиев Посад ТЦ "7Я"', 'shop_name'] = 'СергиевПосад ТЦ "7Я"' # Create a column for city train['city'] = train['shop_name'].str.split(' ').map(lambda x: x[0]) train.head() # Fix a city name (typo) train.loc[train.city == '!Якутск', 'city'] = 'Якутск' # Encode the city name into a code column train['city_code'] = LabelEncoder().fit_transform(train['city']) train.head()
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Each category name contains type and subtype in its name. Treat this similarly as to how we treated shop name, split into separate columns and encode into labels (one hot encoding).
# Create separate column with split category name train['split_category_name'] = train['item_category_name'].str.split('-') train.head() # Make column for category type and encode train['item_category_type'] = train['split_category_name'].map(lambda x : x[0].strip()) train['item_category_type_code'] = LabelEncoder().fit_transform(train['item_category_type']) train.head() # Do the same for subtype, make column wiht name if nan then set to the type train['item_category_subtype'] = train['split_category_name'].map( lambda x: x[1].strip() if len(x) > 1 else x[0].strip() ) # Make separate encoded column train['item_category_subtype_code'] = LabelEncoder().fit_transform(train['item_category_subtype']) train.head()
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
We can now drop the following columns, having captured and encoded the necessary information from them:- shop_name- item_category_name- split_category_name- item_category_type- item_category_subtype
train = train.drop(['shop_name', 'item_category_name', 'split_category_name', 'item_category_type', 'item_category_subtype', ], axis = 1) train.head()
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Looking at item name, perhaps we can reduce the number of unique types, as there are too many at the moment which our model might struggle with, so we will try to categorise some of these by just taking the first part of an item name and encoding this.
print("Number of unique Item names = {}".format(len(train.item_name.unique()))) # Split item name, extracting first word of the string train['item_name_split'] = train['item_name'].str.split(' ').map(lambda x : x[0].strip()) train.head() print("Number of unique Item First Words = {}".format(len(train['item_name_split'].unique())))
Number of unique Item First Words = 1590
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
This seems substantial enough, so we will encode this once again into another column.
train['item_name_code'] = LabelEncoder().fit_transform(train['item_name_split']) train.head()
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
And now we can drop the following columns:- item_name- item_name_split- city (forgot to drop in last round)
train = train.drop(['item_name', 'item_name_split', 'city' ], axis = 1) train.head()
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
So the features above are the ones so far deemed as useful and thus are kept on. We will group by month into dataframe; then by the other columns and then aggregate the item price and count, determining the mean average and sum per month.
print(len(train)) # Group by month (date_block_num) # Could do more complex, just want something very basic to aggregate train_by_month = train.sort_values('date').groupby([ 'date_block_num', 'item_category_type_code', 'item_category_subtype_code', 'item_name_code', 'city_code', 'shop_id', 'item_category_id', 'item_id', # Keep simple; will just use the above columns ], as_index=False) train_by_month.size() # everything is organised by date block num, great! train_by_month.head().head() train_by_month.head() # Aggregate item price and item count train_by_month = train_by_month.agg({'item_price':['sum', 'mean'], 'item_cnt_day':['sum', 'mean','count']}) train_by_month.head() # See how many rows we now have len(train_by_month) # Sanity check on number of months train_by_month.date_block_num.unique() # Rename columns train_by_month.columns = ['date_block_num', 'item_category_type_code', 'item_category_subtype_code', 'item_name_code', 'city_code', 'shop_id', 'item_category_id', 'item_id', 'sum_item_price', 'mean_item_price', 'sum_item_count', 'mean_item_count', 'transactions'] train_by_month.head()
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
As we have to apply predictions to the test set, we must ensure all possible combinations of "shop_id" and "item_id" are covered. To do this, we will loop through all possible combinations in our test set and append to an empty dataframe. Then we will merge that empty dataframe to our main dataframe and fill in missing na values with 0.
# Get all unique shop id's and item id's shop_ids = test['shop_id'].unique() item_ids = test['item_id'].unique() # Initialise empty df empty_df = [] # Loop through months and append to dataframe for i in range(34): for item in item_ids: for shop in shop_ids: empty_df.append([i, shop, item]) # Turn into dataframe empty_df = pd.DataFrame(empty_df, columns=['date_block_num','shop_id','item_id']) # Merge monthly train set with the complete set (missing records will be filled with 0). train_by_month = pd.merge(train_by_month, empty_df, on=['date_block_num','shop_id','item_id'], how='outer') len(train_by_month) # Double check we have no na records train_by_month.isna().sum()
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
The fact we have so many na is quiet concerning. Perhaps many more item_id or shop_id values were added in the most recent month (test data) that is not included in the training data. Whilst there may be better ways of dealing with this, we will be fill the missing na records with 0 and progress.
# Filll missing records with na train_by_month.fillna(0, inplace=True) train_by_month.isna().sum() train_by_month.describe()
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
In this first feature-engineering notebook, we have inspected the data, removed outliers and identified features (as well as engineer others) we would like to use for further feature engineering to train our model with. As our feature-engineering steps are quite numerous, we will split it up into separate notebooks, more to come in part-2.
# Save this as a csv train_by_month.to_csv('./data/output/processed_data_pt1.csv', index=False, header=True)
_____no_output_____
MIT
jupyter_notebooks/feature_engineering_pt1.ipynb
StevenVuong/Udacity-ML-Engineer-Nanodegree-Capstone-Project
Задание 1.2 - Линейный классификатор (Linear classifier)В этом задании мы реализуем другую модель машинного обучения - линейный классификатор. Линейный классификатор подбирает для каждого класса веса, на которые нужно умножить значение каждого признака и потом сложить вместе.Тот класс, у которого эта сумма больше, и является предсказанием модели.В этом задании вы:- потренируетесь считать градиенты различных многомерных функций- реализуете подсчет градиентов через линейную модель и функцию потерь softmax- реализуете процесс тренировки линейного классификатора- подберете параметры тренировки на практикеНа всякий случай, еще раз ссылка на туториал по numpy: http://cs231n.github.io/python-numpy-tutorial/
import numpy as np import matplotlib.pyplot as plt %matplotlib inline %load_ext autoreload %autoreload 2 from dataset import load_svhn, random_split_train_val from gradient_check_solution import check_gradient from metrics_solution import multiclass_accuracy import linear_classifer_solution as linear_classifer
_____no_output_____
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
Как всегда, первым делом загружаем данныеМы будем использовать все тот же SVHN.
def prepare_for_linear_classifier(train_X, test_X): train_flat = train_X.reshape(train_X.shape[0], -1).astype(np.float) / 255.0 test_flat = test_X.reshape(test_X.shape[0], -1).astype(np.float) / 255.0 # Subtract mean mean_image = np.mean(train_flat, axis = 0) train_flat -= mean_image test_flat -= mean_image # Add another channel with ones as a bias term train_flat_with_ones = np.hstack([train_flat, np.ones((train_X.shape[0], 1))]) test_flat_with_ones = np.hstack([test_flat, np.ones((test_X.shape[0], 1))]) return train_flat_with_ones, test_flat_with_ones train_X, train_y, test_X, test_y = load_svhn("data", max_train=10000, max_test=1000) train_X, test_X = prepare_for_linear_classifier(train_X, test_X) # Split train into train and val train_X, train_y, val_X, val_y = random_split_train_val(train_X, train_y, num_val = 1000)
_____no_output_____
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
Играемся с градиентами!В этом курсе мы будем писать много функций, которые вычисляют градиенты аналитическим методом.Необходимым инструментом во время реализации кода, вычисляющего градиенты, является функция его проверки. Эта функция вычисляет градиент численным методом и сверяет результат с градиентом, вычисленным аналитическим методом.Мы начнем с того, чтобы реализовать вычисление численного градиента (numeric gradient) в этой функции.Вычислите градиент с помощью численной производной для каждой координаты. Для вычисления производной используйте так называемую two-point formula (https://en.wikipedia.org/wiki/Numerical_differentiation):![image](https://wikimedia.org/api/rest_v1/media/math/render/svg/22fc2c0a66c63560a349604f8b6b39221566236d)
# TODO: Implement gradient check function def sqr(x): return x*x, 2*x check_gradient(sqr, np.array([3.0])) def array_sum(x): assert x.shape == (2,), x.shape return np.sum(x), np.ones_like(x) check_gradient(array_sum, np.array([3.0, 2.0])) def array_2d_sum(x): assert x.shape == (2,2) return np.sum(x), np.ones_like(x) check_gradient(array_2d_sum, np.array([[3.0, 2.0], [1.0, 0.0]]))
Gradient check passed! Gradient check passed! Gradient check passed!
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
Теперь реализуем функцию softmax, которая получает на вход оценки для каждого класса и преобразует их в вероятности от 0 до 1:![image](https://wikimedia.org/api/rest_v1/media/math/render/svg/e348290cf48ddbb6e9a6ef4e39363568b67c09d3)**Важно:** Практический аспект вычисления этой функции заключается в том, что в ней учавствует вычисление экспоненты от потенциально очень больших чисел - это может привести к очень большим значениям в числителе и знаменателе за пределами диапазона float.К счастью, у этой проблемы есть простое решение -- перед вычислением softmax вычесть из всех оценок максимальное значение среди всех оценок:```predictions -= np.max(predictions)```(подробнее здесь - http://cs231n.github.io/linear-classify/softmax, секция `Practical issues: Numeric stability`)
# TODO Implement softmax and cross-entropy for single sample probs = linear_classifer.softmax(np.array([-10, 0, 10])) # Make sure it works for big numbers too! probs = linear_classifer.softmax(np.array([1000, 0, 0])) assert np.isclose(probs[0], 1.0)
_____no_output_____
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
Кроме этого, мы реализуем cross-entropy loss, которую мы будем использовать как функцию ошибки (error function).В общем виде cross-entropy определена следующим образом:![image](https://wikimedia.org/api/rest_v1/media/math/render/svg/0cb6da032ab424eefdca0884cd4113fe578f4293)где x - все классы, p(x) - истинная вероятность принадлежности сэмпла классу x, а q(x) - вероятность принадлежности классу x, предсказанная моделью. В нашем случае сэмпл принадлежит только одному классу, индекс которого передается функции. Для него p(x) равна 1, а для остальных классов - 0. Это позволяет реализовать функцию проще!
probs = linear_classifer.softmax(np.array([-5, 0, 5])) linear_classifer.cross_entropy_loss(probs, 1)
_____no_output_____
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
После того как мы реализовали сами функции, мы можем реализовать градиент.Оказывается, что вычисление градиента становится гораздо проще, если объединить эти функции в одну, которая сначала вычисляет вероятности через softmax, а потом использует их для вычисления функции ошибки через cross-entropy loss.Эта функция `softmax_with_cross_entropy` будет возвращает и значение ошибки, и градиент по входным параметрам. Мы проверим корректность реализации с помощью `check_gradient`.
# TODO Implement combined function or softmax and cross entropy and produces gradient loss, grad = linear_classifer.softmax_with_cross_entropy(np.array([1, 0, 0]), 1) check_gradient(lambda x: linear_classifer.softmax_with_cross_entropy(x, 1), np.array([1, 0, 0], np.float))
Gradient check passed!
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
В качестве метода тренировки мы будем использовать стохастический градиентный спуск (stochastic gradient descent или SGD), который работает с батчами сэмплов. Поэтому все наши фукнции будут получать не один пример, а батч, то есть входом будет не вектор из `num_classes` оценок, а матрица размерности `batch_size, num_classes`. Индекс примера в батче всегда будет первым измерением.Следующий шаг - переписать наши функции так, чтобы они поддерживали батчи.Финальное значение функции ошибки должно остаться числом, и оно равно среднему значению ошибки среди всех примеров в батче.
# TODO Extend combined function so it can receive a 2d array with batch of samples # Test batch_size = 1 batch_size = 1 predictions = np.zeros((batch_size, 3)) target_index = np.ones(batch_size, np.int) check_gradient(lambda x: linear_classifer.softmax_with_cross_entropy(x, target_index), predictions) # Test batch_size = 3 batch_size = 3 predictions = np.zeros((batch_size, 3)) target_index = np.ones(batch_size, np.int) check_gradient(lambda x: linear_classifer.softmax_with_cross_entropy(x, target_index), predictions)
Gradient check passed! Gradient check passed!
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
Наконец, реализуем сам линейный классификатор!softmax и cross-entropy получают на вход оценки, которые выдает линейный классификатор.Он делает это очень просто: для каждого класса есть набор весов, на которые надо умножить пиксели картинки и сложить. Получившееся число и является оценкой класса, идущей на вход softmax.Таким образом, линейный классификатор можно представить как умножение вектора с пикселями на матрицу W размера `num_features, num_classes`. Такой подход легко расширяется на случай батча векторов с пикселями X размера `batch_size, num_features`:`predictions = X * W`, где `*` - матричное умножение.Реализуйте функцию подсчета линейного классификатора и градиентов по весам `linear_softmax` в файле `linear_classifer.py`
# TODO Implement linear_softmax function that uses softmax with cross-entropy for linear classifier batch_size = 2 num_classes = 2 num_features = 3 np.random.seed(42) W = np.random.randint(-1, 3, size=(num_features, num_classes)).astype(np.float) X = np.random.randint(-1, 3, size=(batch_size, num_features)).astype(np.float) target_index = np.ones(batch_size, dtype=np.int) loss, dW = linear_classifer.linear_softmax(X, W, target_index) check_gradient(lambda w: linear_classifer.linear_softmax(X, w, target_index), W)
Gradient check passed!
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
И теперь регуляризацияМы будем использовать L2 regularization для весов как часть общей функции ошибки.Напомним, L2 regularization определяется какl2_reg_loss = regularization_strength * sumij W[i, j]2Реализуйте функцию для его вычисления и вычисления соотвествующих градиентов.
# TODO Implement l2_regularization function that implements loss for L2 regularization linear_classifer.l2_regularization(W, 0.01) check_gradient(lambda w: linear_classifer.l2_regularization(w, 0.01), W)
Gradient check passed!
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
Тренировка! Градиенты в порядке, реализуем процесс тренировки!
# TODO: Implement LinearSoftmaxClassifier.fit function classifier = linear_classifer.LinearSoftmaxClassifier() loss_history = classifier.fit(train_X, train_y, epochs=30, learning_rate=1e-3, batch_size=300, reg=1e1) # let's look at the loss history! plt.plot(loss_history); # Let's check how it performs on validation set pred = classifier.predict(val_X) accuracy = multiclass_accuracy(pred, val_y) print("Accuracy: ", accuracy) # Now, let's train more and see if it performs better classifier.fit(train_X, train_y, epochs=100, learning_rate=1e-3, batch_size=300, reg=1e1) pred = classifier.predict(val_X) accuracy = multiclass_accuracy(pred, val_y) print("Accuracy after training for 100 epochs: ", accuracy)
Accuracy: 0.145 Epoch 0, loss: 2.301971 Epoch 1, loss: 2.301977 Epoch 2, loss: 2.301983 Epoch 3, loss: 2.301990 Epoch 4, loss: 2.301970 Epoch 5, loss: 2.301979 Epoch 6, loss: 2.301968 Epoch 7, loss: 2.301989 Epoch 8, loss: 2.301976 Epoch 9, loss: 2.301980 Epoch 10, loss: 2.301986 Epoch 11, loss: 2.301982 Epoch 12, loss: 2.301993 Epoch 13, loss: 2.301974 Epoch 14, loss: 2.301999 Epoch 15, loss: 2.301972 Epoch 16, loss: 2.301976 Epoch 17, loss: 2.301989 Epoch 18, loss: 2.301968 Epoch 19, loss: 2.301983 Epoch 20, loss: 2.301982 Epoch 21, loss: 2.301983 Epoch 22, loss: 2.301975 Epoch 23, loss: 2.301981 Epoch 24, loss: 2.301990 Epoch 25, loss: 2.301996 Epoch 26, loss: 2.301979 Epoch 27, loss: 2.301980 Epoch 28, loss: 2.301974 Epoch 29, loss: 2.301978 Epoch 30, loss: 2.301972 Epoch 31, loss: 2.301977 Epoch 32, loss: 2.301991 Epoch 33, loss: 2.301983 Epoch 34, loss: 2.301986 Epoch 35, loss: 2.301970 Epoch 36, loss: 2.301983 Epoch 37, loss: 2.302006 Epoch 38, loss: 2.301975 Epoch 39, loss: 2.301975 Epoch 40, loss: 2.301974 Epoch 41, loss: 2.301977 Epoch 42, loss: 2.301963 Epoch 43, loss: 2.301973 Epoch 44, loss: 2.301981 Epoch 45, loss: 2.301978 Epoch 46, loss: 2.301970 Epoch 47, loss: 2.301976 Epoch 48, loss: 2.301974 Epoch 49, loss: 2.301988 Epoch 50, loss: 2.301970 Epoch 51, loss: 2.302000 Epoch 52, loss: 2.301989 Epoch 53, loss: 2.301979 Epoch 54, loss: 2.301973 Epoch 55, loss: 2.301989 Epoch 56, loss: 2.301984 Epoch 57, loss: 2.301964 Epoch 58, loss: 2.301977 Epoch 59, loss: 2.301970 Epoch 60, loss: 2.301976 Epoch 61, loss: 2.301992 Epoch 62, loss: 2.301982 Epoch 63, loss: 2.301992 Epoch 64, loss: 2.301977 Epoch 65, loss: 2.301983 Epoch 66, loss: 2.301959 Epoch 67, loss: 2.301976 Epoch 68, loss: 2.301975 Epoch 69, loss: 2.301986 Epoch 70, loss: 2.301995 Epoch 71, loss: 2.301974 Epoch 72, loss: 2.301960 Epoch 73, loss: 2.301993 Epoch 74, loss: 2.301976 Epoch 75, loss: 2.301969 Epoch 76, loss: 2.301978 Epoch 77, loss: 2.301972 Epoch 78, loss: 2.301979 Epoch 79, loss: 2.301968 Epoch 80, loss: 2.301962 Epoch 81, loss: 2.301983 Epoch 82, loss: 2.301975 Epoch 83, loss: 2.301961 Epoch 84, loss: 2.301973 Epoch 85, loss: 2.301976 Epoch 86, loss: 2.301993 Epoch 87, loss: 2.301971 Epoch 88, loss: 2.301970 Epoch 89, loss: 2.301989 Epoch 90, loss: 2.301989 Epoch 91, loss: 2.301989 Epoch 92, loss: 2.301978 Epoch 93, loss: 2.301983 Epoch 94, loss: 2.301976 Epoch 95, loss: 2.301968 Epoch 96, loss: 2.301969 Epoch 97, loss: 2.301986 Epoch 98, loss: 2.301984 Epoch 99, loss: 2.301975 Accuracy after training for 100 epochs: 0.15
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
Как и раньше, используем кросс-валидацию для подбора гиперпараметтов.В этот раз, чтобы тренировка занимала разумное время, мы будем использовать только одно разделение на тренировочные (training) и проверочные (validation) данные.Теперь нам нужно подобрать не один, а два гиперпараметра! Не ограничивайте себя изначальными значениями в коде. Добейтесь точности более чем **20%** на проверочных данных (validation data).
import itertools num_epochs = 200 batch_size = 300 learning_rates = [1e-3, 1e-4, 1e-5] reg_strengths = [1e-4, 1e-5, 1e-6] best_classifier = None best_val_accuracy = -float("inf") # TODO use validation set to find the best hyperparameters # hint: for best results, you might need to try more values for learning rate and regularization strength # than provided initially for learning_rate, reg_strength in itertools.product(learning_rates, reg_strengths): classifier = linear_classifer.LinearSoftmaxClassifier() classifier.fit(train_X, train_y, verbose=False, epochs=num_epochs, batch_size=batch_size, learning_rate=learning_rate, reg=reg_strength) pred = classifier.predict(val_X) accuracy = multiclass_accuracy(pred, val_y) if accuracy > best_val_accuracy: best_classifier = classifier best_val_accuracy = accuracy print('best validation accuracy achieved: %f' % best_val_accuracy)
best validation accuracy achieved: 0.215000
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
Какой же точности мы добились на тестовых данных?
test_pred = best_classifier.predict(test_X) test_accuracy = multiclass_accuracy(test_pred, test_y) print('Linear softmax classifier test set accuracy: %f' % (test_accuracy, ))
_____no_output_____
MIT
assignments/assignment1/Linear classifier_solution.ipynb
tbb/dlcourse_ai
Is the SED Correct?In the circle test, the SFH is totatlly bonkers. We just can not get the correct SFH back out with MCMC. Is the MCMC getting a good fit?
import numpy as np import matplotlib.pyplot as plt wavelengths = [3551, 4686, 6166, 7480, 8932] # for u, g, r, i, z filters filters = ['u', 'g', 'r', 'i', 'z']
_____no_output_____
MIT
figures/Check-SED.ipynb
benjaminrose/SNIa-Local-Environments
Input TextSo from:logzsol | dust2| $\tau$| tStart| sfTrans| sfSlope--------|------|----|-------|--------|----------0.5| 0.1| 0.5| 1.5| 9.0| -1.0we getu| g| r| i| z-|--|--|--|--45.36|43.76|42.99|42.67|42.39This SED gets 25 magnitues subtracted from (`c` paramter in fit) it get it to a resonable magnitude. FSPS only calcualtes for 1 solar mass, so this factor is a scaling factor that is related to the total solar mass observed. Fit 1 First we did our normal fit. The oddest part was that `logzsol` wanted the smallest value possible. This was most odd because the prior is a Gaussian centered at -0.5 (this happens to be the input value) with a width of 0.5 dex. I also have a low cut off, just cause, of -2.5. This fit gives us logzsol | dust2| $\tau$| tStart| sfTrans| sfSlope | c--------|------|----|-------|--------|----|------2.5| 0.01| 7.17| 7.94| 10.40| -5.24| -23.48and and SED of u| g| r| i| z-|--|--|--|--43.31|42.06|41.76|41.67|41.62 Fit 2I changed the low cut off, in part becasue nothing else seemed to effect the metalicity paramter fit. With it now set at no lower then -1.0 the fit gives us:logzsol | dust2| $\tau$| tStart| sfTrans| sfSlope | c--------|------|----|-------|--------|----|------1.0| 0.25| 5.67| 1.94| 4.93| 1.64| -22.85and and SED of u| g| r| i| z-|--|--|--|--42.28|41.43|41.23|41.01|40.99 Fit 3Finally I "fixed" the metalicity to the known value of -0.5, because these previouse fits just still did not want to get things correct. This fit gives us:logzsol | dust2| $\tau$| tStart| sfTrans| sfSlope | c--------|------|----|-------|--------|----|------0.51| 0.32| 8.17| 8.42| 10.76| 4.72| -22.17and and SED of u| g| r| i| z-|--|--|--|--41.53|40.70|40.55|40.33|40.30**None** of these are correct.
input_sed = np.array([45.36, 43.76, 42.99, 42.67, 42.39]) input_c = -25 fit1_sed = np.array([43.31, 42.06, 41.76, 41.67, 41.62]) fit1_c = -23.48 fit2_sed = np.array([42.28, 41.43, 41.23, 41.01, 40.99]) fit2_c = -22.85 fit3_sed = np.array([41.53, 40.70, 40.55, 40.33, 40.30]) fit3_c = -22.1 plt.figure('fit test') fig, ax = plt.subplots(1,1) ax.plot(wavelengths, input_sed+input_c, label='Input Values') # ax.plot(wavelengths, [20.36, 18.76, 17.99, 17.67, 17.39]) # the in text file numbers. ax.plot(wavelengths, fit1_sed+fit1_c, label='Full Fit') ax.plot(wavelengths, fit2_sed+fit2_c, label='Smaller $\log(Z_{sol})$ range') ax.plot(wavelengths, fit3_sed+fit3_c, label='Fixed $\log(Z_{sol})$') plt.gca().invert_yaxis() ax.set_xticks(wavelengths) ax.set_xticklabels(filters) ax.set_xlabel('SDSS Filters') ax.set_ylabel('Magnitude [mag]') plt.legend() # plt.savefig('2017-08-09- not getting correct sed.pdf') plt.show()
_____no_output_____
MIT
figures/Check-SED.ipynb
benjaminrose/SNIa-Local-Environments
Check Newer ResutlsOn 2017-08-24 I re-ran the whole analaysis method and it got a closer answer on the circle test (particually with the log(Z_sol)) but it was not perfect. Here I want to compare the SED outputed results.
fit0824_sed = np.array([42.29, 41.43, 41.21, 40.98, 40.93]) fit0824_c = -25.70 plt.figure('newer fit test') fig, ax = plt.subplots(1,1) ax.plot(wavelengths, input_sed+input_c, label='Input Values') # ax.plot(wavelengths, [20.36, 18.76, 17.99, 17.67, 17.39]) # the in text file numbers. ax.plot(wavelengths, fit1_sed+fit1_c, label='Old Full Fit') ax.plot(wavelengths, fit0824_sed+fit0824_c, label='08-24 Fit') plt.gca().invert_yaxis() ax.set_xticks(wavelengths) ax.set_xticklabels(filters) ax.set_xlabel('SDSS Filters') ax.set_ylabel('Magnitude [mag]') plt.legend() plt.savefig('2017-09-05 not getting correct sed.pdf') plt.show()
_____no_output_____
MIT
figures/Check-SED.ipynb
benjaminrose/SNIa-Local-Environments
**Summary Of Findings**:It was found that wildfire frequency across the United State has been increasing in the past decade. Although fire and fire damage was generally localized to mostly the west coast in the past, fire frequency has been gradually increasing in states east of it in the continental US; in 2021, midwestern states have had fire counts similar to those found in West Coast states in 2014 and 2015. Although fire frequency has been increasing, the overall area of land affected by wildfires has remained within a similar range for the past 20 years. It was also found that the number of recorded fires, did not necessarily correlate with the area affected for each states. While the degree of fire coverage has remained relatively consistent, the distribution of burned area across the United States has changed over the years. In the early 2000s, the majority of wildfire area was almost entirely localized to Alaska and the West coast; by 2021, the majority of the US had seen more than minimal fire coverage. Throughout the past decade, hot spots on on the continental US have remained relatively consistent; the west coast will probably continue to be considered hot spots, and some may become prominent in the Midwest. Regardless of hot spots, fire activity has generally increased across the United States.
!apt-get install openjdk-8-jdk-headless -qq > /dev/null !wget https://dlcdn.apache.org/spark/spark-3.2.0/spark-3.2.0-bin-hadoop3.2.tgz
--2021-12-14 04:34:01-- https://dlcdn.apache.org/spark/spark-3.2.0/spark-3.2.0-bin-hadoop3.2.tgz Resolving dlcdn.apache.org (dlcdn.apache.org)... 151.101.2.132, 2a04:4e42::644 Connecting to dlcdn.apache.org (dlcdn.apache.org)|151.101.2.132|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 300965906 (287M) [application/x-gzip] Saving to: ‘spark-3.2.0-bin-hadoop3.2.tgz’ spark-3.2.0-bin-had 100%[===================>] 287.02M 180MB/s in 1.6s 2021-12-14 04:34:03 (180 MB/s) - ‘spark-3.2.0-bin-hadoop3.2.tgz’ saved [300965906/300965906]
MIT
006_bd_proj_dennis.ipynb
sh5864/bigdata-proj
!tar xvzf spark-3.2.0-bin-hadoop3.2.tgz !ls /content/spark-3.2.0-bin-hadoop3.2 # Set the ‘environment’ path import os #os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" os.environ["SPARK_HOME"] = "/content/spark-3.2.0-bin-hadoop3.2" !pip install -q findspark import findspark findspark.init() from pyspark.sql import SparkSession from pyspark.sql.functions import * from pyspark.sql.types import * from pyspark.sql.window import Window import pandas as pd import matplotlib.pyplot as plt spark = SparkSession.builder\ .master("local[*]")\ .appName("final-project")\ .getOrCreate() sc = spark.sparkContext sc.setLogLevel("ERROR") sc #The wildfire location database locatData = spark.read.option("header",True) \ .option("inferSchema", True) \ .csv("WFIGS_-_Wildland_Fire_Locations_Full_History.csv")
_____no_output_____
MIT
006_bd_proj_dennis.ipynb
sh5864/bigdata-proj
Fire Frequency By Year
#Fires not considered "wildfire" are first filtered out #locTime will be used to focus on the frequency of wildfires per state #POOState - Location of wildfire at time of discovery #FireDiscoveryDateTime - Date when the fire was discovered. locatData = locatData.filter(locatData["IncidentTypeCategory"] == "WF") locTime = locatData.select(substring(locatData["POOState"],0,6).alias("State Occurred"), substring(locatData['FireDiscoveryDateTime'],0,4).alias("Year")) #Unusable rows are filtered out. locTime = locTime.filter((locTime["year"].isNotNull())& (locTime["State Occurred"].isNotNull()))\
_____no_output_____
MIT
006_bd_proj_dennis.ipynb
sh5864/bigdata-proj
A significant difference between the wildfire frequency was found between 2013 and 2014; it is assumed the years before 2014 had incomplete data.
locTime.groupBy("Year").count().orderBy("year").show()
+----+-----+ |Year|count| +----+-----+ |2003| 1| |2004| 1| |2008| 1| |2009| 1| |2010| 2| |2014|12634| |2015|19633| |2016|19798| |2017|25114| |2018|22627| |2019|25451| |2020|33348| |2021|34488| +----+-----+
MIT
006_bd_proj_dennis.ipynb
sh5864/bigdata-proj
Number of Fires across the US per state
#To gain insights into the US results, areas outside the US are filtered out. locTime = locTime.filter(locTime["Year"] > 2013) locTime = locTime.filter(locTime["State Occurred"].contains("US")) locTime = locTime.withColumn("State Occurred",substring(locTime["State Occurred"],4,6)) locTime.show() totalFiresPerState = locTime.groupBy("State Occurred").count() import plotly.express as px import pandas as pd fig = px.choropleth(totalFiresPerState.toPandas(), locations='State Occurred',locationmode = "USA-states",color = "count", scope='usa') fig.update_layout( width=800, height=600) fig.show()
_____no_output_____
MIT
006_bd_proj_dennis.ipynb
sh5864/bigdata-proj
Findings:From the figure above, it can be seen that fires in the last decade have most occurred in the western portion of the United States, and have been mostly prevalent on the west coast as well as Montana and Arizona. Number of Fires Per Year Per State
firePerState = locTime.filter(locTime["year"].isNotNull())\ .groupBy("year",'State Occurred').count().orderBy("Year") firePerState.show() import plotly.express as px import pandas as pd fig = px.choropleth(firePerState.toPandas(), locations='State Occurred',locationmode = "USA-states",color = "count",range_color = [0,5000], animation_frame="year", animation_group="State Occurred",scope='usa') fig.update_layout( width=800, height=600) fig.show()
_____no_output_____
MIT
006_bd_proj_dennis.ipynb
sh5864/bigdata-proj
**Findings** : From the above, figure, we see a general rise in wildfire occurences over the years. The west coast has consistently had the highest number of fires over the years. Originally the majority of fires had been originating in the west coast, but states east of it have steadily seen increasing occurences.In 2021, midwestern states such as North Dakota and Minnesota have had fire counts similar to those of western states in 2014 and 2015. It should be noted that data for 2021 is incomplete, so there may still be a gradual increase in fire count over the year. Acres Burned In Historical Data Across the US
#Primarily tracks historical fire Perimeters from 2000-2018 oldPerimData = spark.read.option("header",True) \ .option("inferSchema", True) \ .csv("Historic_GeoMAC_Perimeters_Combined_2000-2018.csv") #Meaningful data is cleaned and selected oldPerimTime = oldPerimData.select((oldPerimData["state"]).alias("State Occurred"), oldPerimData["gisacres"].alias("area(acres)"), oldPerimData['fireyear'].alias("year")) oldPerimTime = oldPerimTime.filter(oldPerimTime["year"].isNotNull()) oldPerimTime = oldPerimTime.filter(oldPerimTime["year"].cast("int").isNotNull()) oldOverall = oldPerimTime.groupBy("year").agg(sum('area(acres)').alias("area (acres)")).orderBy("year") #The Data in this csv primarily tracks the area of each recorded fire; data is mostly available for 2020 and 2021. perimData = spark.read.option("header",True) \ .option("inferSchema", True) \ .csv("WFIGS_-_Wildland_Fire_Perimeters_Full_History.csv") #Data similar to columns found in oldPerimTime is cleaned and selected here. recentTime = perimData.select(substring(perimData["irwin_POOState"],4,6).alias("State Occurred"), perimData["poly_Acres_AutoCalc"].alias("area(acres)"), substring(perimData['irwin_ContainmentDateTime'],0,4).alias("year")) recentTime = recentTime.filter(recentTime["year"].isNotNull()) recentOverall = recentTime.groupBy("year").agg(sum('area(acres)').alias("area (acres)")).orderBy("year") recentOverall = recentOverall.filter((recentOverall["year"] == 2020) | (recentOverall["year"] == 2021)) recentOverall.show() combinedOverall = oldOverall.union(recentOverall) yearMonth = combinedOverall.select("year").rdd.flatMap(lambda x: x).collect() areaDamage = combinedOverall.select("area (acres)").rdd.flatMap(lambda x: x).collect() ticks = [0,5,10,15,20] plt.plot(yearMonth,areaDamage) plt.xticks(ticks) plt.xlabel("Year") plt.ylabel("Area Affected (acres)") plt.title("Wildfire Damage from 2000-2021")
_____no_output_____
MIT
006_bd_proj_dennis.ipynb
sh5864/bigdata-proj
**Findings**: In the above figure, it is found that the total area damaged by wildfires has been inconsistent throughout the past two decades; while fires are increasing in frequency, the area affected does not necessarily increase. Total Area Burned Per State
damagePerState = oldPerimTime.union(recentTime) damagePerStateOverall= damagePerState.groupBy("State Occurred").agg(sum('area(acres)').alias("total area burned (acres)")) import plotly.express as px import pandas as pd fig = px.choropleth(damagePerStateOverall.toPandas(), locations='State Occurred',locationmode = "USA-states",color = "total area burned (acres)", scope='usa') fig.update_layout( width=800, height=600) fig.show()
_____no_output_____
MIT
006_bd_proj_dennis.ipynb
sh5864/bigdata-proj
**Findings**: The above map shows that the most significant damage was found on the west coast; this is similar and supports the findings found in the occurences map. Some States that had a high number of fire occurences such as Texas have not seen proportional quantities of acres burned. In contrast to its low number of reported fires over the years, Alaska has the most significant fire damage found of any state. Area Burned Per State Per Month
damagePerStateYearly= damagePerState.groupBy("year","State Occurred").agg(sum('area(acres)').alias("total area burned (acres)")).orderBy("year") import plotly.express as px import pandas as pd fig = px.choropleth(damagePerStateYearly.toPandas(), locations='State Occurred',locationmode = "USA-states",color = "total area burned (acres)", range_color = [0,1000000],animation_frame="year", animation_group="State Occurred",scope='usa') fig.update_layout( width=800, height=600) fig.show()
_____no_output_____
MIT
006_bd_proj_dennis.ipynb
sh5864/bigdata-proj
Write a pandas dataframe to disk as gunzip compressed csv- df.to_csv('dfsavename.csv.gz', compression='gzip') Read from disk- df = pd.read_csv('dfsavename.csv.gz', compression='gzip') Magic useful- %%timeit for the whole cell- %timeit for the specific line- %%latex to render the cell as a block of latex- %prun and %%prun
DATASET_PATH = '/media/rs/0E06CD1706CD0127/Kapok/WSDM/' HDF_FILENAME = DATASET_PATH + 'music_info.h5' HDF_TRAIN_FEATURE_FILENAME = DATASET_PATH + 'music_train_feature_part.h5' HDF_TEST_FEATURE_FILENAME = DATASET_PATH + 'music_test_feature_part.h5' def set_logging(logger_name, logger_file_name): log = logging.getLogger(logger_name) log.setLevel(logging.DEBUG) # create formatter and add it to the handlers print_formatter = logging.Formatter('%(message)s') file_formatter = logging.Formatter('%(asctime)s - %(name)s_%(levelname)s: %(message)s') # create file handler which logs even debug messages fh = logging.FileHandler(logger_file_name, mode='w') fh.setLevel(logging.DEBUG) fh.setFormatter(file_formatter) log.addHandler(fh) # both output to console and file consoleHandler = logging.StreamHandler() consoleHandler.setFormatter(print_formatter) log.addHandler(consoleHandler) return log log = set_logging('MUSIC', DATASET_PATH + 'music_test_xgboost.log') log.info('here is an info message.') store_data = pd.HDFStore(HDF_FILENAME) log.info(store_data['all_train_withextra'].head()) def clip_by_percent(hist, num_percent): return hist[(hist >= hist[int( len(hist.index) * num_percent )]) == True] def clip_by_value(hist, value): return hist[(hist >= value) == True] def create_bag_of_words(input_df, percent, column_name): input_hist = input_df[column_name].value_counts(sort=True, ascending=False) input_select = clip_by_percent(input_hist, percent).index log.info('{} item are selected.'.format(len(input_select))) # the total number of the other items total_others = np.sum(input_hist) - np.sum(input_hist[input_select]) # all hist values are log transformed accouting the popularity clip_hist_with_log = defaultdict(lambda: np.log(total_others)) for k,v in dict(np.log(input_hist[input_select])).items(): clip_hist_with_log[k] = v # print(input_hist[input_select]) # print(dict(np.log(input_hist[input_select]))) input_map = defaultdict(lambda: column_name + ' ' + 'others') for input_item in input_select: input_map[input_item] = column_name + ' ' + input_item # item name in input_map are "column_name + ' ' + input_item" # item name in clip_hist_with_log are "input_item" return input_map, clip_hist_with_log # 181 ms ± 420 µs def word_bag_encode(input_data, column, word_map, word_hist): col_index = input_data.columns.get_loc(column) + 1 count_list = [0 for _ in range(len(word_map))] count_dict = dict(zip(list(word_map.keys()), count_list)) count_dict['others'] = 0 new_columns = [column + ' ' + s for s in count_dict.keys()] all_df = pd.DataFrame(data = None, columns = new_columns) delay_rate = 0.8 # must be less than 1 for cur_row in input_data.itertuples(): if isinstance(cur_row[col_index], str): df = pd.DataFrame([list(count_dict.values())], columns=new_columns) splited_list = re.split(r'[|/]+',cur_row[col_index]) list_len = len(splited_list) # the weight of each position of the array, are decayed by the ratio delay_rate, and their sum are 1 # so according to the geometric series summation formula, the iniatial weight are caculate as follow initial_weight = (1-delay_rate)/(1 - np.power(delay_rate, list_len)) for index, s in enumerate(splited_list): word_stripped = s.strip(' \"\t\s\n') df[word_map.get(word_stripped, column + ' others')] += initial_weight / (word_hist.get(word_stripped, word_hist['others'])) #word_hist[word_stripped] # defaultdict will auto insert missing key #df[word_map[word_stripped]] += initial_weight / (word_hist.get(word_stripped, word_hist['others'])) #word_hist[word_stripped] initial_weight *= delay_rate all_df = all_df.append(df, ignore_index=True) # NAN fix else: all_df = all_df.append(pd.DataFrame([[0] * len(new_columns)], columns=new_columns), ignore_index=True) return all_df # 7.09 ms ± 43.2 µs def word_bag_encode_apply(input_data, column, word_map, word_hist): new_columns = [column + ' ' + s for s in word_map.keys()] new_columns.append(column + ' ' + 'others') delay_rate = 0.8 # must be less than 1 def encode_routine(str_value): series_dict = dict(zip(new_columns, [0.] * len(new_columns))) if isinstance(str_value, str): splited_list = re.split(r'[|/]+',str_value) list_len = len(splited_list) # the weight of each position of the array, are decayed by the ratio delay_rate, and their sum are 1 # so according to the geometric series summation formula, the iniatial weight are caculate as follow initial_weight = (1-delay_rate)/(1 - np.power(delay_rate, list_len)) for index, s in enumerate(splited_list): word_stripped = s.strip(' \"\t\s\n') series_dict[word_map.get(word_stripped, column + ' others')] += initial_weight / (word_hist.get(word_stripped, word_hist['others'])) #word_hist[word_stripped] initial_weight *= delay_rate return pd.Series(series_dict) return input_data[column].apply(lambda s: encode_routine(s)) # 171 µs ± 693 ns def word_bag_encode_numpy(input_data, column, word_map, word_hist): new_columns = [s for s in word_map.keys()] new_columns.append('others') delay_rate = 0.8 # must be less than 1 num_columns = len(new_columns) str_indice_dict = dict(zip(new_columns, list(range(num_columns)))) def encode_routine(str_value): temp_hist = np.zeros(num_columns, dtype=float) if isinstance(str_value, str): splited_list = re.split(r'[|/]+',str_value) list_len = len(splited_list) # the weight of each position of the array, are decayed by the ratio delay_rate, and their sum are 1 # so according to the geometric series summation formula, the iniatial weight are caculate as follow initial_weight = (1-delay_rate)/(1 - np.power(delay_rate, list_len)) for index, s in enumerate(splited_list): word_stripped = s.strip(' \"\t\s\n') temp_hist[str_indice_dict.get(word_stripped, num_columns-1)] += initial_weight / (word_hist.get(word_stripped, word_hist['others'])) #word_hist[word_stripped] initial_weight *= delay_rate return temp_hist # actually we cannot use vectorize #vf = np.vectorize(encode_routine) #def fromiter(x): #return np.fromiter((f(xi) for xi in x), x.dtype) numpy_str = np.array(input_data[column].values, dtype=object) #return np.array(map(encode_routine, numpy_str)) #return np.fromiter((encode_routine(xi) for xi in numpy_str), numpy_str.dtype, count=len(numpy_str)) return np.array([encode_routine(xi) for xi in numpy_str]), [column + ' ' + s for s in new_columns] def feature_encoder_impl(source_data, column_name, map_dict, hist_dict): feature_array, head_name = word_bag_encode_numpy(source_data, column_name, map_dict, hist_dict) return pd.DataFrame(data = feature_array, columns = head_name) def feature_encoder(filename_to_store, music_info_data, key_to_encode, batch_size): total_num_examples = len(music_info_data[key_to_encode].index) num_steps = int(total_num_examples / batch_size) + 1 cur_step = 0 next_step = 0 composer_map, composer_hist = create_bag_of_words(music_info_data['all_composer'], 0.001, 'composer') artist_name_map, artist_name_hist = create_bag_of_words(music_info_data['all_artist_name'], 0.001, 'artist_name') lyricist_map, lyricist_hist = create_bag_of_words(music_info_data['all_lyricist'], 0.002, 'lyricist') h5store = pd.HDFStore(filename_to_store, mode='w', complib='zlib', complevel=1) for _step in range(num_steps): start_time = time.time() cur_batch_size = _step + 1 == num_steps and total_num_examples - cur_step or batch_size next_step = cur_step + cur_batch_size cur_batch_data = store_data[key_to_encode][cur_step:next_step] composer_feature = feature_encoder_impl(cur_batch_data, 'composer', composer_map, composer_hist) artist_name_feature = feature_encoder_impl(cur_batch_data, 'artist_name', artist_name_map, artist_name_hist) lyricist_feature = feature_encoder_impl(cur_batch_data, 'lyricist', lyricist_map, lyricist_hist) cur_batch_data.drop('composer', axis=1, inplace=True) cur_batch_data.drop('artist_name', axis=1, inplace=True) cur_batch_data.drop('lyricist', axis=1, inplace=True) #print(pd.concat([cur_batch_data, composer_feature, artist_name_feature, lyricist_feature], join='inner', axis=1, copy=True)) #break table_to_save = pd.concat([composer_feature, artist_name_feature, lyricist_feature], join='inner', axis=1, copy=True) #print(dict(zip(table_to_save.columns, [150]*len(table_to_save.columns)))) #break # if _step == 0: # h5store.append(key_to_encode, table_to_save, min_itemsize=dict(zip(table_to_save.columns, [150]*len(table_to_save.columns)))) # else: h5store.append(key_to_encode, table_to_save) #break time_elapsed = time.time() - start_time if _step % 5 == 0: log.info('cur step: {} of {}, from {} to {}, {:5.3f}sec/batch.'.format(_step, num_steps, cur_step, next_step, time_elapsed)) # print(composer_feature) # print(artist_name_feature) # print(lyricist_feature) # break cur_step = next_step log.info(datetime.now().strftime('%Y-%m-%d %H:%M:%S')) feature_encoder(HDF_TRAIN_FEATURE_FILENAME, store_data, 'all_train_withextra', 102400) feature_encoder(HDF_TEST_FEATURE_FILENAME, store_data, 'all_test_withextra', 102400) store_data.close() log.info(datetime.now().strftime('%Y-%m-%d %H:%M:%S')) h5store = pd.HDFStore(HDF_TRAIN_FEATURE_FILENAME, complib='zlib', complevel=1) %%timeit print(h5store.select('all_train_withextra','index>0 & index<10000')) h5store.close()
_____no_output_____
MIT
MusicRecommendation/.ipynb_checkpoints/TestHDFTables-checkpoint.ipynb
HiKapok/KaggleCompetitions
The lidar system, data (1 of 2 datasets)========================================Generate a chart of the data recorded by the lidar system
import numpy as np import matplotlib.pyplot as plt waveform_1 = np.load('waveform_1.npy') t = np.arange(len(waveform_1)) fig, ax = plt.subplots(figsize=(8, 6)) plt.plot(t, waveform_1) plt.xlabel('Time [ns]') plt.ylabel('Amplitude [bins]') plt.show()
_____no_output_____
CC-BY-4.0
_downloads/plot_optimize_lidar_data.ipynb
scipy-lectures/scipy-lectures.github.com
Copyright 2020 The TensorFlow Authors.
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
Creating Keras Models with TFL Layers View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook OverviewYou can use TFL Keras layers to construct Keras models with monotonicity and other shape constraints. This example builds and trains a calibrated lattice model for the UCI heart dataset using TFL layers.In a calibrated lattice model, each feature is transformed by a `tfl.layers.PWLCalibration` or a `tfl.layers.CategoricalCalibration` layer and the results are nonlinearly fused using a `tfl.layers.Lattice`. Setup Installing TF Lattice package:
#@test {"skip": true} !pip install tensorflow-lattice pydot
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
Importing required packages:
import tensorflow as tf import logging import numpy as np import pandas as pd import sys import tensorflow_lattice as tfl from tensorflow import feature_column as fc logging.disable(sys.maxsize)
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
Downloading the UCI Statlog (Heart) dataset:
# UCI Statlog (Heart) dataset. csv_file = tf.keras.utils.get_file( 'heart.csv', 'http://storage.googleapis.com/download.tensorflow.org/data/heart.csv') training_data_df = pd.read_csv(csv_file).sample( frac=1.0, random_state=41).reset_index(drop=True) training_data_df.head()
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
Setting the default values used for training in this guide:
LEARNING_RATE = 0.1 BATCH_SIZE = 128 NUM_EPOCHS = 100
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
Sequential Keras ModelThis example creates a Sequential Keras model and only uses TFL layers.Lattice layers expect `input[i]` to be within `[0, lattice_sizes[i] - 1.0]`, so we need to define the lattice sizes ahead of the calibration layers so we can properly specify output range of the calibration layers.
# Lattice layer expects input[i] to be within [0, lattice_sizes[i] - 1.0], so lattice_sizes = [3, 2, 2, 2, 2, 2, 2]
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
We use a `tfl.layers.ParallelCombination` layer to group together calibration layers which have to be executed in parallel in order to be able to create a Sequential model.
combined_calibrators = tfl.layers.ParallelCombination()
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
We create a calibration layer for each feature and add it to the parallel combination layer. For numeric features we use `tfl.layers.PWLCalibration`, and for categorical features we use `tfl.layers.CategoricalCalibration`.
# ############### age ############### calibrator = tfl.layers.PWLCalibration( # Every PWLCalibration layer must have keypoints of piecewise linear # function specified. Easiest way to specify them is to uniformly cover # entire input range by using numpy.linspace(). input_keypoints=np.linspace( training_data_df['age'].min(), training_data_df['age'].max(), num=5), # You need to ensure that input keypoints have same dtype as layer input. # You can do it by setting dtype here or by providing keypoints in such # format which will be converted to desired tf.dtype by default. dtype=tf.float32, # Output range must correspond to expected lattice input range. output_min=0.0, output_max=lattice_sizes[0] - 1.0, ) combined_calibrators.append(calibrator) # ############### sex ############### # For boolean features simply specify CategoricalCalibration layer with 2 # buckets. calibrator = tfl.layers.CategoricalCalibration( num_buckets=2, output_min=0.0, output_max=lattice_sizes[1] - 1.0, # Initializes all outputs to (output_min + output_max) / 2.0. kernel_initializer='constant') combined_calibrators.append(calibrator) # ############### cp ############### calibrator = tfl.layers.PWLCalibration( # Here instead of specifying dtype of layer we convert keypoints into # np.float32. input_keypoints=np.linspace(1, 4, num=4, dtype=np.float32), output_min=0.0, output_max=lattice_sizes[2] - 1.0, monotonicity='increasing', # You can specify TFL regularizers as a tuple ('regularizer name', l1, l2). kernel_regularizer=('hessian', 0.0, 1e-4)) combined_calibrators.append(calibrator) # ############### trestbps ############### calibrator = tfl.layers.PWLCalibration( # Alternatively, you might want to use quantiles as keypoints instead of # uniform keypoints input_keypoints=np.quantile(training_data_df['trestbps'], np.linspace(0.0, 1.0, num=5)), dtype=tf.float32, # Together with quantile keypoints you might want to initialize piecewise # linear function to have 'equal_slopes' in order for output of layer # after initialization to preserve original distribution. kernel_initializer='equal_slopes', output_min=0.0, output_max=lattice_sizes[3] - 1.0, # You might consider clamping extreme inputs of the calibrator to output # bounds. clamp_min=True, clamp_max=True, monotonicity='increasing') combined_calibrators.append(calibrator) # ############### chol ############### calibrator = tfl.layers.PWLCalibration( # Explicit input keypoint initialization. input_keypoints=[126.0, 210.0, 247.0, 286.0, 564.0], dtype=tf.float32, output_min=0.0, output_max=lattice_sizes[4] - 1.0, # Monotonicity of calibrator can be decreasing. Note that corresponding # lattice dimension must have INCREASING monotonicity regardless of # monotonicity direction of calibrator. monotonicity='decreasing', # Convexity together with decreasing monotonicity result in diminishing # return constraint. convexity='convex', # You can specify list of regularizers. You are not limited to TFL # regularizrs. Feel free to use any :) kernel_regularizer=[('laplacian', 0.0, 1e-4), tf.keras.regularizers.l1_l2(l1=0.001)]) combined_calibrators.append(calibrator) # ############### fbs ############### calibrator = tfl.layers.CategoricalCalibration( num_buckets=2, output_min=0.0, output_max=lattice_sizes[5] - 1.0, # For categorical calibration layer monotonicity is specified for pairs # of indices of categories. Output for first category in pair will be # smaller than output for second category. # # Don't forget to set monotonicity of corresponding dimension of Lattice # layer to '1'. monotonicities=[(0, 1)], # This initializer is identical to default one('uniform'), but has fixed # seed in order to simplify experimentation. kernel_initializer=tf.keras.initializers.RandomUniform( minval=0.0, maxval=lattice_sizes[5] - 1.0, seed=1)) combined_calibrators.append(calibrator) # ############### restecg ############### calibrator = tfl.layers.CategoricalCalibration( num_buckets=3, output_min=0.0, output_max=lattice_sizes[6] - 1.0, # Categorical monotonicity can be partial order. monotonicities=[(0, 1), (0, 2)], # Categorical calibration layer supports standard Keras regularizers. kernel_regularizer=tf.keras.regularizers.l1_l2(l1=0.001), kernel_initializer='constant') combined_calibrators.append(calibrator)
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
We then create a lattice layer to nonlinearly fuse the outputs of the calibrators.Note that we need to specify the monotonicity of the lattice to be increasing for required dimensions. The composition with the direction of the monotonicity in the calibration will result in the correct end-to-end direction of monotonicity. This includes partial monotonicity of CategoricalCalibration layer.
lattice = tfl.layers.Lattice( lattice_sizes=lattice_sizes, monotonicities=[ 'increasing', 'none', 'increasing', 'increasing', 'increasing', 'increasing', 'increasing' ], output_min=0.0, output_max=1.0)
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
We can then create a sequential model using the combined calibrators and lattice layers.
model = tf.keras.models.Sequential() model.add(combined_calibrators) model.add(lattice)
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
Training works the same as any other keras model.
features = training_data_df[[ 'age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg' ]].values.astype(np.float32) target = training_data_df[['target']].values.astype(np.float32) model.compile( loss=tf.keras.losses.mean_squared_error, optimizer=tf.keras.optimizers.Adagrad(learning_rate=LEARNING_RATE)) model.fit( features, target, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS, validation_split=0.2, shuffle=False, verbose=0) model.evaluate(features, target)
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
Functional Keras ModelThis example uses a functional API for Keras model construction.As mentioned in the previous section, lattice layers expect `input[i]` to be within `[0, lattice_sizes[i] - 1.0]`, so we need to define the lattice sizes ahead of the calibration layers so we can properly specify output range of the calibration layers.
# We are going to have 2-d embedding as one of lattice inputs. lattice_sizes = [3, 2, 2, 3, 3, 2, 2]
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
For each feature, we need to create an input layer followed by a calibration layer. For numeric features we use `tfl.layers.PWLCalibration` and for categorical features we use `tfl.layers.CategoricalCalibration`.
model_inputs = [] lattice_inputs = [] # ############### age ############### age_input = tf.keras.layers.Input(shape=[1], name='age') model_inputs.append(age_input) age_calibrator = tfl.layers.PWLCalibration( # Every PWLCalibration layer must have keypoints of piecewise linear # function specified. Easiest way to specify them is to uniformly cover # entire input range by using numpy.linspace(). input_keypoints=np.linspace( training_data_df['age'].min(), training_data_df['age'].max(), num=5), # You need to ensure that input keypoints have same dtype as layer input. # You can do it by setting dtype here or by providing keypoints in such # format which will be converted to desired tf.dtype by default. dtype=tf.float32, # Output range must correspond to expected lattice input range. output_min=0.0, output_max=lattice_sizes[0] - 1.0, monotonicity='increasing', name='age_calib', )( age_input) lattice_inputs.append(age_calibrator) # ############### sex ############### # For boolean features simply specify CategoricalCalibration layer with 2 # buckets. sex_input = tf.keras.layers.Input(shape=[1], name='sex') model_inputs.append(sex_input) sex_calibrator = tfl.layers.CategoricalCalibration( num_buckets=2, output_min=0.0, output_max=lattice_sizes[1] - 1.0, # Initializes all outputs to (output_min + output_max) / 2.0. kernel_initializer='constant', name='sex_calib', )( sex_input) lattice_inputs.append(sex_calibrator) # ############### cp ############### cp_input = tf.keras.layers.Input(shape=[1], name='cp') model_inputs.append(cp_input) cp_calibrator = tfl.layers.PWLCalibration( # Here instead of specifying dtype of layer we convert keypoints into # np.float32. input_keypoints=np.linspace(1, 4, num=4, dtype=np.float32), output_min=0.0, output_max=lattice_sizes[2] - 1.0, monotonicity='increasing', # You can specify TFL regularizers as tuple ('regularizer name', l1, l2). kernel_regularizer=('hessian', 0.0, 1e-4), name='cp_calib', )( cp_input) lattice_inputs.append(cp_calibrator) # ############### trestbps ############### trestbps_input = tf.keras.layers.Input(shape=[1], name='trestbps') model_inputs.append(trestbps_input) trestbps_calibrator = tfl.layers.PWLCalibration( # Alternatively, you might want to use quantiles as keypoints instead of # uniform keypoints input_keypoints=np.quantile(training_data_df['trestbps'], np.linspace(0.0, 1.0, num=5)), dtype=tf.float32, # Together with quantile keypoints you might want to initialize piecewise # linear function to have 'equal_slopes' in order for output of layer # after initialization to preserve original distribution. kernel_initializer='equal_slopes', output_min=0.0, output_max=lattice_sizes[3] - 1.0, # You might consider clamping extreme inputs of the calibrator to output # bounds. clamp_min=True, clamp_max=True, monotonicity='increasing', name='trestbps_calib', )( trestbps_input) lattice_inputs.append(trestbps_calibrator) # ############### chol ############### chol_input = tf.keras.layers.Input(shape=[1], name='chol') model_inputs.append(chol_input) chol_calibrator = tfl.layers.PWLCalibration( # Explicit input keypoint initialization. input_keypoints=[126.0, 210.0, 247.0, 286.0, 564.0], output_min=0.0, output_max=lattice_sizes[4] - 1.0, # Monotonicity of calibrator can be decreasing. Note that corresponding # lattice dimension must have INCREASING monotonicity regardless of # monotonicity direction of calibrator. monotonicity='decreasing', # Convexity together with decreasing monotonicity result in diminishing # return constraint. convexity='convex', # You can specify list of regularizers. You are not limited to TFL # regularizrs. Feel free to use any :) kernel_regularizer=[('laplacian', 0.0, 1e-4), tf.keras.regularizers.l1_l2(l1=0.001)], name='chol_calib', )( chol_input) lattice_inputs.append(chol_calibrator) # ############### fbs ############### fbs_input = tf.keras.layers.Input(shape=[1], name='fbs') model_inputs.append(fbs_input) fbs_calibrator = tfl.layers.CategoricalCalibration( num_buckets=2, output_min=0.0, output_max=lattice_sizes[5] - 1.0, # For categorical calibration layer monotonicity is specified for pairs # of indices of categories. Output for first category in pair will be # smaller than output for second category. # # Don't forget to set monotonicity of corresponding dimension of Lattice # layer to '1'. monotonicities=[(0, 1)], # This initializer is identical to default one ('uniform'), but has fixed # seed in order to simplify experimentation. kernel_initializer=tf.keras.initializers.RandomUniform( minval=0.0, maxval=lattice_sizes[5] - 1.0, seed=1), name='fbs_calib', )( fbs_input) lattice_inputs.append(fbs_calibrator) # ############### restecg ############### restecg_input = tf.keras.layers.Input(shape=[1], name='restecg') model_inputs.append(restecg_input) restecg_calibrator = tfl.layers.CategoricalCalibration( num_buckets=3, output_min=0.0, output_max=lattice_sizes[6] - 1.0, # Categorical monotonicity can be partial order. monotonicities=[(0, 1), (0, 2)], # Categorical calibration layer supports standard Keras regularizers. kernel_regularizer=tf.keras.regularizers.l1_l2(l1=0.001), kernel_initializer='constant', name='restecg_calib', )( restecg_input) lattice_inputs.append(restecg_calibrator)
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
We then create a lattice layer to nonlinearly fuse the outputs of the calibrators.Note that we need to specify the monotonicity of the lattice to be increasing for required dimensions. The composition with the direction of the monotonicity in the calibration will result in the correct end-to-end direction of monotonicity. This includes partial monotonicity of `tfl.layers.CategoricalCalibration` layer.
lattice = tfl.layers.Lattice( lattice_sizes=lattice_sizes, monotonicities=[ 'increasing', 'none', 'increasing', 'increasing', 'increasing', 'increasing', 'increasing' ], output_min=0.0, output_max=1.0, name='lattice', )( lattice_inputs)
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
To add more flexibility to the model, we add an output calibration layer.
model_output = tfl.layers.PWLCalibration( input_keypoints=np.linspace(0.0, 1.0, 5), name='output_calib', )( lattice)
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
We can now create a model using the inputs and outputs.
model = tf.keras.models.Model( inputs=model_inputs, outputs=model_output) tf.keras.utils.plot_model(model, rankdir='LR')
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
Training works the same as any other keras model. Note that, with our setup, input features are passed as separate tensors.
feature_names = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg'] features = np.split( training_data_df[feature_names].values.astype(np.float32), indices_or_sections=len(feature_names), axis=1) target = training_data_df[['target']].values.astype(np.float32) model.compile( loss=tf.keras.losses.mean_squared_error, optimizer=tf.keras.optimizers.Adagrad(LEARNING_RATE)) model.fit( features, target, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS, validation_split=0.2, shuffle=False, verbose=0) model.evaluate(features, target)
_____no_output_____
Apache-2.0
docs/tutorials/keras_layers.ipynb
sarvex/lattice-1
Common Regression class
class Regression: def __init__(self, learning_rate, iteration, regularization): """ :param learning_rate: A samll value needed for gradient decent, default value id 0.1. :param iteration: Number of training iteration, default value is 10,000. """ self.m = None self.n = None self.w = None self.b = None self.regularization = regularization # will be the l1/l2 regularization class according to the regression model. self.lr = learning_rate self.it = iteration def cost_function(self, y, y_pred): """ :param y: Original target value. :param y_pred: predicted target value. """ return (1 / (2*self.m)) * np.sum(np.square(y_pred - y)) + self.regularization(self.w) def hypothesis(self, weights, bias, X): """ :param weights: parameter value weight. :param X: Training samples. """ return np.dot(X, weights) #+ bias def train(self, X, y): """ :param X: training data feature values ---> N Dimentional vector. :param y: training data target value -----> 1 Dimentional array. """ # Insert constant ones for bias weights. X = np.insert(X, 0, 1, axis=1) # Target value should be in the shape of (n, 1) not (n, ). # So, this will check that and change the shape to (n, 1), if not. try: y.shape[1] except IndexError as e: # we need to change it to the 1 D array, not a list. print("ERROR: Target array should be a one dimentional array not a list" "----> here the target value not in the shape of (n,1). \nShape ({shape_y_0},1) and {shape_y} not match" .format(shape_y_0 = y.shape[0] , shape_y = y.shape)) return # m is the number of training samples. self.m = X.shape[0] # n is the number of features. self.n = X.shape[1] # Set the initial weight. self.w = np.zeros((self.n , 1)) # bias. self.b = 0 for it in range(1, self.it+1): # 1. Find the predicted value through the hypothesis. # 2. Find the Cost function value. # 3. Find the derivation of weights. # 4. Apply Gradient Decent. y_pred = self.hypothesis(self.w, self.b, X) #print("iteration",it) #print("y predict value",y_pred) cost = self.cost_function(y, y_pred) #print("Cost function",cost) # fin the derivative. dw = (1/self.m) * np.dot(X.T, (y_pred - y)) + self.regularization.derivation(self.w) #print("weights derivation",dw) #db = -(2 / self.m) * np.sum((y_pred - y)) # change the weight parameter. self.w = self.w - self.lr * dw #print("updated weights",self.w) #self.b = self.b - self.lr * db if it % 10 == 0: print("The Cost function for the iteration {}----->{} :)".format(it, cost)) def predict(self, test_X): """ :param test_X: feature values to predict. """ # Insert constant ones for bias weights. test_X = np.insert(test_X, 0, 1, axis=1) y_pred = self.hypothesis(self.w, self.b, test_X) return y_pred
_____no_output_____
MIT
MachineLearning/supervised_machine_learning/Polinamial_and_PlynomialRidge_Regression.ipynb
pavi-ninjaac/Machine_Learing_sratch
Data Creation
# Define the traning data. X, y = make_regression(n_samples=50000, n_features=8) # Chnage the shape of the target to 1 dimentional array. y = y[:, np.newaxis] print("="*100) print("Number of training data samples-----> {}".format(X.shape[0])) print("Number of training features --------> {}".format(X.shape[1])) print("Shape of the target value ----------> {}".format(y.shape)) # display the data. data = pd.DataFrame(X) data.head() # display the data. data_y = pd.DataFrame(y) data_y.head()
_____no_output_____
MIT
MachineLearning/supervised_machine_learning/Polinamial_and_PlynomialRidge_Regression.ipynb
pavi-ninjaac/Machine_Learing_sratch
Polynomial Regression from Scratch
def PolynomialFeature(X, degree): """ It is type of feature engineering ---> adding some more features based on the exisiting features by squaring or cubing. :param X: data need to be converted. :param degree: int- The degree of the polynomial that the features X will be transformed to. """ n_samples, n_features = X.shape # get the index combinations. combination = [combinations_with_replacement(range(n_features), i) for i in range(0, degree + 1)] combination_index = [index for obj in combination for index in obj] # generate a empty array with new shape. new_n_features = len(combination_index) X_new = np.empty((n_samples, new_n_features)) for i, com_index in enumerate(combination_index): X_new[:, i] = np.prod(X[:, com_index], axis=1) return X_new # Used for Polynomial Ridge regression. class l2_regularization: """Regularization used for Ridge Regression""" def __init__(self, lamda): self.lamda = lamda def __call__(self, weights): "This will be retuned when we call this class." return self.lamda * np.sum(np.square(weights)) def derivation(self, weights): "Derivation of the regulariozation function." return self.lamda * 2 * (weights) class PolynamialRegression(Regression): """ Polynomail Regression is also a type of non-linear regression with no regularization. Before fitting the linear regression, the dependant variable is tranformed to some polynomail degree. This is basincally transforming linear data to have some nonliniarity. """ def __init__(self, learning_rate, iteration, degree): """ :param learning_rate: [range from 0 to infinity] the stpe distance used while doing gradiant decent. :param iteration: int - Number of iteration to do. :param degree: int - The degree of the polynomial that the feature transformed to. """ self.degree = degree # No regularization here. So, making the regularization methods to return 0. self.regularization = lambda x: 0 self.regularization.derivation = lambda x: 0 super().__init__(learning_rate, iteration, self.regularization) def train(self, X, y): """ :param X: training data feature values ---> N Dimentional vector. :param y: training data target value -----> 1 Dimentional array. """ # change the data to X_poly = PolynomialFeature(X, degree=self.degree) return super().train(X_poly, y) def predict(self, test_X): """ :param test_X: feature values to predict. """ test_X_poly = PolynomialFeature(test_X, degree=self.degree) return super().predict(test_X_poly) #define the parameters param = { "degree" : 2, "learning_rate" : 0.1, "iteration" : 100, } print("="*100) polynomial_reg = PolynamialRegression(**param) # Train the model. polynomial_reg.train(X, y) # Predict the values. y_pred = polynomial_reg.predict(X) #Root mean square error. score = r2_score(y, y_pred) print("The r2_score of the trained model", score)
==================================================================================================== The Cost function for the iteration 10----->2524.546198902789 :) The Cost function for the iteration 20----->313.8199639696676 :) The Cost function for the iteration 30----->39.17839267886082 :) The Cost function for the iteration 40----->4.916567388701627 :) The Cost function for the iteration 50----->0.6225340983364702 :) The Cost function for the iteration 60----->0.08070495018731812 :) The Cost function for the iteration 70----->0.011282742313695108 :) The Cost function for the iteration 80----->0.0019608909310563647 :) The Cost function for the iteration 90----->0.0005118599780978334 :) The Cost function for the iteration 100----->0.00019559828225020284 :) The r2_score of the trained model 0.9999999891242503
MIT
MachineLearning/supervised_machine_learning/Polinamial_and_PlynomialRidge_Regression.ipynb
pavi-ninjaac/Machine_Learing_sratch
Polynomial Regression using scikit-learn for comparision
from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score # data is already defined, going to use the same data for comparision. print("="*100) print("Number of training data samples-----> {}".format(X.shape[0])) print("Number of training features --------> {}".format(X.shape[1])) linear_reg_sklearn = LinearRegression() poly = PolynomialFeatures(degree = 2) X_new = poly.fit_transform(X) linear_reg_sklearn.fit(X, y) # predict the value y_pred_sklearn = linear_reg_sklearn.predict(X) score = r2_score(y, y_pred_sklearn) print("="*100) print("R2 score of the model is {}".format(score))
==================================================================================================== R2 score of the model is 1.0
MIT
MachineLearning/supervised_machine_learning/Polinamial_and_PlynomialRidge_Regression.ipynb
pavi-ninjaac/Machine_Learing_sratch
Polynomial Ridge Regression from scratch
class PolynamialRidgeRegression(Regression): """ Polynomail Ridge Regression is basically polynomial regression with l2 regularization. """ def __init__(self, learning_rate, iteration, degree, lamda): """ :param learning_rate: [range from 0 to infinity] the stpe distance used while doing gradiant decent. :param iteration: int - Number of iteration to do. :param degree: int - The degree of the polynomial that the feature transformed to. """ self.degree = degree # No regularization here. So, making the regularization methods to return 0. self.regularization = l2_regularization(lamda) super().__init__(learning_rate, iteration, self.regularization) def train(self, X, y): """ :param X: training data feature values ---> N Dimentional vector. :param y: training data target value -----> 1 Dimentional array. """ # change the data to X_poly = PolynomialFeature(X, degree=self.degree) return super().train(X_poly, y) def predict(self, test_X): """ :param test_X: feature values to predict. """ test_X_poly = PolynomialFeature(test_X, degree=self.degree) return super().predict(test_X_poly) #define the parameters param = { "lamda": 0.1, "degree" : 2, "learning_rate" : 0.1, "iteration" : 100, } print("="*100) polynomial_reg = PolynamialRidgeRegression(**param) # Train the model. polynomial_reg.train(X, y) # Predict the values. y_pred = polynomial_reg.predict(X) #Root mean square error. score = r2_score(y, y_pred) print("The r2_score of the trained model", score)
==================================================================================================== The Cost function for the iteration 10----->4178.872832133191 :) The Cost function for the iteration 20----->2887.989505020741 :) The Cost function for the iteration 30----->2785.6247039737964 :) The Cost function for the iteration 40----->2777.471815365709 :) The Cost function for the iteration 50----->2776.819294060092 :) The Cost function for the iteration 60----->2776.7666829082946 :) The Cost function for the iteration 70----->2776.7623662294877 :) The Cost function for the iteration 80----->2776.761991761519 :) The Cost function for the iteration 90----->2776.761953080877 :) The Cost function for the iteration 100----->2776.761947221511 :) The r2_score of the trained model 0.9718297887794873
MIT
MachineLearning/supervised_machine_learning/Polinamial_and_PlynomialRidge_Regression.ipynb
pavi-ninjaac/Machine_Learing_sratch
Lists from: [HackerRank](https://www.hackerrank.com/challenges/python-lists/problem) - (easy)Consider a list (list = []). You can perform the following commands:insert `i`, `e`: Insert integer at position. print(): Print the list. remove `e`: Delete the first occurrence of integer. append `e`: Insert integer at the end of the list. sort: Sort the list. pop: Pop the last element from the list. reverse: Reverse the list. Initialize your list and read in the value of followed by lines of commands where each command will be of the types listed above. Iterate through each command in order and perform the corresponding operation on your list.**Input Format**The first line contains an integer, n, denoting the number of commands.Each line of the subsequent lines contains one of the commands described above.**Constraints** The elements added to the list must be integers.**Output Format** For each command of type print, print the list on a new line.**Sample Input**```12insert 0 5insert 1 10insert 0 6printremove 6append 9append 1sortprintpopreverseprint```**Sample Output**```[6, 5, 10][1, 5, 9, 10][9, 5, 1]```
N = int(input()) ls = [] for i in range(N): n = input() a = n.split() cmd = a[0] if cmd == "insert": ls.insert(int(a[1]), int(a[2])) elif cmd == "remove": ls.remove(int(a[1])) elif cmd == "append": ls.append(int(a[1])) elif cmd == "sort": ls.sort() elif cmd == "pop": ls.pop() elif cmd == "reverse": ls.reverse() elif cmd == "print": print(ls) n = int(input()) ls = [] for _ in range(n): s = input().split() cmd = s[0] args = s[1:] if cmd !="print": cmd += "("+ ",".join(args) +")" eval("ls."+cmd) else: print(ls)
12 insert 0 5 insert 1 10 insert 0 6 print [6, 5, 10] remove 6 append 9 append 1 sort print [1, 5, 9, 10] pop reverse print [9, 5, 1]
MIT
9_coding quizzes/05_list_HackerRank.ipynb
lucaseo/TIL
Copyright 2018 The AdaNet Authors.
#@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
_____no_output_____
MIT
frameworks/tensorflow/adanet_objective.ipynb
jiankaiwang/sophia.ml
The AdaNet objective Run in Google Colab View source on GitHub One of key contributions from *AdaNet: Adaptive Structural Learning of NeuralNetworks* [[Cortes et al., ICML 2017](https://arxiv.org/abs/1607.01097)] isdefining an algorithm that aims to directly minimize the DeepBoostgeneralization bound from *Deep Boosting*[[Cortes et al., ICML 2014](http://proceedings.mlr.press/v32/cortesb14.pdf)]when applied to neural networks. This algorithm, called **AdaNet**, adaptivelygrows a neural network as an ensemble of subnetworks that minimizes the AdaNetobjective (a.k.a. AdaNet loss):$$F(w) = \frac{1}{m} \sum_{i=1}^{m} \Phi \left(\sum_{j=1}^{N}w_jh_j(x_i), y_i \right) + \sum_{j=1}^{N} \left(\lambda r(h_j) + \beta \right) |w_j| $$where $w$ is the set of mixture weights, one per subnetwork $h$,$\Phi$ is a surrogate loss function such as logistic loss or MSE, $r$ is afunction for measuring a subnetwork's complexity, and $\lambda$ and $\beta$are hyperparameters. Mixture weightsSo what are mixture weights? When forming an ensemble $f$ of subnetworks $h$,we need to somehow combine the their predictions. This is done by multiplyingthe outputs of subnetwork $h_i$ with mixture weight $w_i$, and summing theresults:$$f(x) = \sum_{j=1}^{N}w_jh_j(x)$$In practice, most commonly used set of mixture weight is **uniform averageweighting**:$$f(x) = \frac{1}{N}\sum_{j=1}^{N}h_j(x)$$However, we can also solve a convex optimization problem to learn the mixtureweights that minimize the loss function $\Phi$:$$F(w) = \frac{1}{m} \sum_{i=1}^{m} \Phi \left(\sum_{j=1}^{N}w_jh_j(x_i), y_i \right)$$This is the first term in the AdaNet objective. The second term applies L1regularization to the mixture weights:$$\sum_{j=1}^{N} \left(\lambda r(h_j) + \beta \right) |w_j|$$When $\lambda > 0$ this penalty serves to prevent the optimization fromassigning too much weight to more complex subnetworks according to thecomplexity measure function $r$. How AdaNet uses the objectiveThis objective function serves two purposes:1. To **learn to scale/transform the outputs of each subnetwork $h$** as part of the ensemble.2. To **select the best candidate subnetwork $h$** at each AdaNet iteration to include in the ensemble.Effectively, when learning mixture weights $w$, AdaNet solves a convexcombination of the outputs of the frozen subnetworks $h$. For $\lambda >0$,AdaNet penalizes more complex subnetworks with greater L1 regularization ontheir mixture weight, and will be less likely to select more complex subnetworksto add to the ensemble at each iteration.In this tutorial, in you will observe the benefits of using AdaNet to learn theensemble's mixture weights and to perform candidate selection.
from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import adanet import tensorflow as tf # The random seed to use. RANDOM_SEED = 42
_____no_output_____
MIT
frameworks/tensorflow/adanet_objective.ipynb
jiankaiwang/sophia.ml
Boston Housing datasetIn this example, we will solve a regression task known as the [Boston Housing dataset](https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html) to predict the price of suburban houses in Boston, MA in the 1970s. There are 13 numerical features, the labels are in thousands of dollars, and there are only 506 examples. Download the dataConveniently, the data is available via Keras:
(x_train, y_train), (x_test, y_test) = ( tf.keras.datasets.boston_housing.load_data()) print(x_test.shape) print(x_test[0]) print(y_test.shape) print(y_test[0])
(102, 13) [ 18.0846 0. 18.1 0. 0.679 6.434 100. 1.8347 24. 666. 20.2 27.25 29.05 ] (102,) 7.2
MIT
frameworks/tensorflow/adanet_objective.ipynb
jiankaiwang/sophia.ml
Supply the data in TensorFlowOur first task is to supply the data in TensorFlow. Using thetf.estimator.Estimator convention, we will define a function that returns aninput_fn which returns feature and label Tensors.We will also use the tf.data.Dataset API to feed the data into our models.Also, as a preprocessing step, we will apply `tf.log1p` to log-scale thefeatures and labels for improved numerical stability during training. To recoverthe model's predictions in the correct scale, you can apply `tf.math.expm1` to theprediction.
FEATURES_KEY = "x" def input_fn(partition, training, batch_size): """Generate an input function for the Estimator.""" def _input_fn(): if partition == "train": dataset = tf.data.Dataset.from_tensor_slices(({ FEATURES_KEY: tf.log1p(x_train) }, tf.log1p(y_train))) else: dataset = tf.data.Dataset.from_tensor_slices(({ FEATURES_KEY: tf.log1p(x_test) }, tf.log1p(y_test))) # We call repeat after shuffling, rather than before, to prevent separate # epochs from blending together. if training: dataset = dataset.shuffle(10 * batch_size, seed=RANDOM_SEED).repeat() dataset = dataset.batch(batch_size) iterator = dataset.make_one_shot_iterator() features, labels = iterator.get_next() return features, labels return _input_fn
_____no_output_____
MIT
frameworks/tensorflow/adanet_objective.ipynb
jiankaiwang/sophia.ml
Define the subnetwork generatorLet's define a subnetwork generator similar to the one in[[Cortes et al., ICML 2017](https://arxiv.org/abs/1607.01097)] and in`simple_dnn.py` which creates two candidate fully-connected neural networks ateach iteration with the same width, but one an additional hidden layer. To makeour generator *adaptive*, each subnetwork will have at least the same numberof hidden layers as the most recently added subnetwork to the`previous_ensemble`.We define the complexity measure function $r$ to be $r(h) = \sqrt{d(h)}$, where$d$ is the number of hidden layers in the neural network $h$, to approximate theRademacher bounds from[[Golowich et. al, 2017](https://arxiv.org/abs/1712.06541)]. So subnetworkswith more hidden layers, and therefore more capacity, will have more heavilyregularized mixture weights.
_NUM_LAYERS_KEY = "num_layers" class _SimpleDNNBuilder(adanet.subnetwork.Builder): """Builds a DNN subnetwork for AdaNet.""" def __init__(self, optimizer, layer_size, num_layers, learn_mixture_weights, seed): """Initializes a `_DNNBuilder`. Args: optimizer: An `Optimizer` instance for training both the subnetwork and the mixture weights. layer_size: The number of nodes to output at each hidden layer. num_layers: The number of hidden layers. learn_mixture_weights: Whether to solve a learning problem to find the best mixture weights, or use their default value according to the mixture weight type. When `False`, the subnetworks will return a no_op for the mixture weight train op. seed: A random seed. Returns: An instance of `_SimpleDNNBuilder`. """ self._optimizer = optimizer self._layer_size = layer_size self._num_layers = num_layers self._learn_mixture_weights = learn_mixture_weights self._seed = seed def build_subnetwork(self, features, logits_dimension, training, iteration_step, summary, previous_ensemble=None): """See `adanet.subnetwork.Builder`.""" input_layer = tf.to_float(features[FEATURES_KEY]) kernel_initializer = tf.glorot_uniform_initializer(seed=self._seed) last_layer = input_layer for _ in range(self._num_layers): last_layer = tf.layers.dense( last_layer, units=self._layer_size, activation=tf.nn.relu, kernel_initializer=kernel_initializer) logits = tf.layers.dense( last_layer, units=logits_dimension, kernel_initializer=kernel_initializer) persisted_tensors = {_NUM_LAYERS_KEY: tf.constant(self._num_layers)} return adanet.Subnetwork( last_layer=last_layer, logits=logits, complexity=self._measure_complexity(), persisted_tensors=persisted_tensors) def _measure_complexity(self): """Approximates Rademacher complexity as the square-root of the depth.""" return tf.sqrt(tf.to_float(self._num_layers)) def build_subnetwork_train_op(self, subnetwork, loss, var_list, labels, iteration_step, summary, previous_ensemble): """See `adanet.subnetwork.Builder`.""" return self._optimizer.minimize(loss=loss, var_list=var_list) def build_mixture_weights_train_op(self, loss, var_list, logits, labels, iteration_step, summary): """See `adanet.subnetwork.Builder`.""" if not self._learn_mixture_weights: return tf.no_op() return self._optimizer.minimize(loss=loss, var_list=var_list) @property def name(self): """See `adanet.subnetwork.Builder`.""" if self._num_layers == 0: # A DNN with no hidden layers is a linear model. return "linear" return "{}_layer_dnn".format(self._num_layers) class SimpleDNNGenerator(adanet.subnetwork.Generator): """Generates a two DNN subnetworks at each iteration. The first DNN has an identical shape to the most recently added subnetwork in `previous_ensemble`. The second has the same shape plus one more dense layer on top. This is similar to the adaptive network presented in Figure 2 of [Cortes et al. ICML 2017](https://arxiv.org/abs/1607.01097), without the connections to hidden layers of networks from previous iterations. """ def __init__(self, optimizer, layer_size=32, learn_mixture_weights=False, seed=None): """Initializes a DNN `Generator`. Args: optimizer: An `Optimizer` instance for training both the subnetwork and the mixture weights. layer_size: Number of nodes in each hidden layer of the subnetwork candidates. Note that this parameter is ignored in a DNN with no hidden layers. learn_mixture_weights: Whether to solve a learning problem to find the best mixture weights, or use their default value according to the mixture weight type. When `False`, the subnetworks will return a no_op for the mixture weight train op. seed: A random seed. Returns: An instance of `Generator`. """ self._seed = seed self._dnn_builder_fn = functools.partial( _SimpleDNNBuilder, optimizer=optimizer, layer_size=layer_size, learn_mixture_weights=learn_mixture_weights) def generate_candidates(self, previous_ensemble, iteration_number, previous_ensemble_reports, all_reports): """See `adanet.subnetwork.Generator`.""" num_layers = 0 seed = self._seed if previous_ensemble: num_layers = tf.contrib.util.constant_value( previous_ensemble.weighted_subnetworks[ -1].subnetwork.persisted_tensors[_NUM_LAYERS_KEY]) if seed is not None: seed += iteration_number return [ self._dnn_builder_fn(num_layers=num_layers, seed=seed), self._dnn_builder_fn(num_layers=num_layers + 1, seed=seed), ]
_____no_output_____
MIT
frameworks/tensorflow/adanet_objective.ipynb
jiankaiwang/sophia.ml
Train and evaluateNext we create an `adanet.Estimator` using the `SimpleDNNGenerator` we just defined.In this section we will show the effects of two hyperparamters: **learning mixture weights** and **complexity regularization**.On the righthand side you will be able to play with the hyperparameters of this model. Until you reach the end of this section, we ask that you not change them. At first we will not learn the mixture weights, using their default initial value. Here they will be scalars initialized to $1/N$ where $N$ is the number of subnetworks in the ensemble, effectively creating a **uniform average ensemble**.
#@title AdaNet parameters LEARNING_RATE = 0.001 #@param {type:"number"} TRAIN_STEPS = 100000 #@param {type:"integer"} BATCH_SIZE = 32 #@param {type:"integer"} LEARN_MIXTURE_WEIGHTS = False #@param {type:"boolean"} ADANET_LAMBDA = 0 #@param {type:"number"} BOOSTING_ITERATIONS = 5 #@param {type:"integer"} def train_and_evaluate(learn_mixture_weights=LEARN_MIXTURE_WEIGHTS, adanet_lambda=ADANET_LAMBDA): """Trains an `adanet.Estimator` to predict housing prices.""" estimator = adanet.Estimator( # Since we are predicting housing prices, we'll use a regression # head that optimizes for MSE. head=tf.contrib.estimator.regression_head( loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE), # Define the generator, which defines our search space of subnetworks # to train as candidates to add to the final AdaNet model. subnetwork_generator=SimpleDNNGenerator( optimizer=tf.train.RMSPropOptimizer(learning_rate=LEARNING_RATE), learn_mixture_weights=learn_mixture_weights, seed=RANDOM_SEED), # Lambda is a the strength of complexity regularization. A larger # value will penalize more complex subnetworks. adanet_lambda=adanet_lambda, # The number of train steps per iteration. max_iteration_steps=TRAIN_STEPS // BOOSTING_ITERATIONS, # The evaluator will evaluate the model on the full training set to # compute the overall AdaNet loss (train loss + complexity # regularization) to select the best candidate to include in the # final AdaNet model. evaluator=adanet.Evaluator( input_fn=input_fn("train", training=False, batch_size=BATCH_SIZE)), # Configuration for Estimators. config=tf.estimator.RunConfig( save_checkpoints_steps=50000, save_summary_steps=50000, tf_random_seed=RANDOM_SEED)) # Train and evaluate using using the tf.estimator tooling. train_spec = tf.estimator.TrainSpec( input_fn=input_fn("train", training=True, batch_size=BATCH_SIZE), max_steps=TRAIN_STEPS) eval_spec = tf.estimator.EvalSpec( input_fn=input_fn("test", training=False, batch_size=BATCH_SIZE), steps=None) return tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec) def ensemble_architecture(result): """Extracts the ensemble architecture from evaluation results.""" architecture = result["architecture/adanet/ensembles"] # The architecture is a serialized Summary proto for TensorBoard. summary_proto = tf.summary.Summary.FromString(architecture) return summary_proto.value[0].tensor.string_val[0] results, _ = train_and_evaluate() print("Loss:", results["average_loss"]) print("Architecture:", ensemble_architecture(results))
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmplcezpthw INFO:tensorflow:Using config: {'_save_checkpoints_secs': None, '_experimental_distribute': None, '_service': None, '_task_id': 0, '_is_chief': True, '_master': '', '_evaluation_master': '', '_train_distribute': None, '_model_dir': '/tmp/tmplcezpthw', '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f8074e7df28>, '_keep_checkpoint_every_n_hours': 10000, '_global_id_in_cluster': 0, '_keep_checkpoint_max': 5, '_save_checkpoints_steps': 50000, '_tf_random_seed': 42, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_protocol': None, '_device_fn': None, '_save_summary_steps': 50000, '_num_ps_replicas': 0, '_eval_distribute': None, '_num_worker_replicas': 1, '_log_step_count_steps': 100, '_task_type': 'worker'} INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 50000 or save_checkpoints_secs None. INFO:tensorflow:Beginning training AdaNet iteration 0 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmplcezpthw/model.ckpt. INFO:tensorflow:loss = 21.773132, step = 1 INFO:tensorflow:global_step/sec: 211.077 INFO:tensorflow:loss = 0.647101, step = 101 (0.478 sec) INFO:tensorflow:global_step/sec: 429.504 INFO:tensorflow:loss = 0.58654255, step = 201 (0.230 sec) INFO:tensorflow:global_step/sec: 423.494 INFO:tensorflow:loss = 0.07683477, step = 301 (0.236 sec) INFO:tensorflow:global_step/sec: 432.097 INFO:tensorflow:loss = 0.08281773, step = 401 (0.232 sec) INFO:tensorflow:global_step/sec: 413.752 INFO:tensorflow:loss = 0.08148783, step = 501 (0.242 sec) INFO:tensorflow:global_step/sec: 459.975 INFO:tensorflow:loss = 0.056522056, step = 601 (0.219 sec) INFO:tensorflow:global_step/sec: 458.298 INFO:tensorflow:loss = 0.025881834, step = 701 (0.215 sec) INFO:tensorflow:global_step/sec: 419.078 INFO:tensorflow:loss = 0.030095303, step = 801 (0.242 sec) INFO:tensorflow:global_step/sec: 455.713 INFO:tensorflow:loss = 0.03755439, step = 901 (0.220 sec) INFO:tensorflow:global_step/sec: 444.218 INFO:tensorflow:loss = 0.06690022, step = 1001 (0.225 sec) INFO:tensorflow:global_step/sec: 451.699 INFO:tensorflow:loss = 0.03615122, step = 1101 (0.222 sec) INFO:tensorflow:global_step/sec: 457.472 INFO:tensorflow:loss = 0.050185308, step = 1201 (0.218 sec) INFO:tensorflow:global_step/sec: 462.55 INFO:tensorflow:loss = 0.099214725, step = 1301 (0.216 sec) INFO:tensorflow:global_step/sec: 436.246 INFO:tensorflow:loss = 0.026417175, step = 1401 (0.227 sec) INFO:tensorflow:global_step/sec: 432.357 INFO:tensorflow:loss = 0.02078271, step = 1501 (0.231 sec) INFO:tensorflow:global_step/sec: 407.845 INFO:tensorflow:loss = 0.03165562, step = 1601 (0.245 sec) INFO:tensorflow:global_step/sec: 409.88 INFO:tensorflow:loss = 0.041417733, step = 1701 (0.244 sec) INFO:tensorflow:global_step/sec: 447.158 INFO:tensorflow:loss = 0.035114042, step = 1801 (0.226 sec) INFO:tensorflow:global_step/sec: 460.335 INFO:tensorflow:loss = 0.044721745, step = 1901 (0.218 sec) INFO:tensorflow:global_step/sec: 442.593 INFO:tensorflow:loss = 0.029930545, step = 2001 (0.223 sec) INFO:tensorflow:global_step/sec: 459.624 INFO:tensorflow:loss = 0.04725883, step = 2101 (0.218 sec) INFO:tensorflow:global_step/sec: 462.613 INFO:tensorflow:loss = 0.024880452, step = 2201 (0.218 sec) INFO:tensorflow:global_step/sec: 462.628 INFO:tensorflow:loss = 0.024809994, step = 2301 (0.216 sec) INFO:tensorflow:global_step/sec: 442.364 INFO:tensorflow:loss = 0.022308666, step = 2401 (0.227 sec) INFO:tensorflow:global_step/sec: 434.897 INFO:tensorflow:loss = 0.04762791, step = 2501 (0.227 sec) INFO:tensorflow:global_step/sec: 473.857 INFO:tensorflow:loss = 0.03194421, step = 2601 (0.210 sec) INFO:tensorflow:global_step/sec: 461.601 INFO:tensorflow:loss = 0.033454657, step = 2701 (0.219 sec) INFO:tensorflow:global_step/sec: 459.118 INFO:tensorflow:loss = 0.014480978, step = 2801 (0.218 sec) INFO:tensorflow:global_step/sec: 445.164 INFO:tensorflow:loss = 0.031083336, step = 2901 (0.222 sec) INFO:tensorflow:global_step/sec: 447.55 INFO:tensorflow:loss = 0.026340332, step = 3001 (0.226 sec) INFO:tensorflow:global_step/sec: 463.595 INFO:tensorflow:loss = 0.02651683, step = 3101 (0.213 sec) INFO:tensorflow:global_step/sec: 468.642 INFO:tensorflow:loss = 0.027183883, step = 3201 (0.214 sec) INFO:tensorflow:global_step/sec: 463.448 INFO:tensorflow:loss = 0.035816483, step = 3301 (0.218 sec) INFO:tensorflow:global_step/sec: 462.425 INFO:tensorflow:loss = 0.02551706, step = 3401 (0.214 sec) INFO:tensorflow:global_step/sec: 457.828 INFO:tensorflow:loss = 0.049349364, step = 3501 (0.219 sec) INFO:tensorflow:global_step/sec: 463.545 INFO:tensorflow:loss = 0.024015253, step = 3601 (0.216 sec) INFO:tensorflow:global_step/sec: 463.739 INFO:tensorflow:loss = 0.017241174, step = 3701 (0.216 sec) INFO:tensorflow:global_step/sec: 469.595 INFO:tensorflow:loss = 0.020121489, step = 3801 (0.212 sec) INFO:tensorflow:global_step/sec: 468.923 INFO:tensorflow:loss = 0.021484237, step = 3901 (0.214 sec) INFO:tensorflow:global_step/sec: 453.121 INFO:tensorflow:loss = 0.037488014, step = 4001 (0.221 sec) INFO:tensorflow:global_step/sec: 438.323 INFO:tensorflow:loss = 0.040071916, step = 4101 (0.228 sec) INFO:tensorflow:global_step/sec: 410.215 INFO:tensorflow:loss = 0.021272995, step = 4201 (0.244 sec) INFO:tensorflow:global_step/sec: 457.032 INFO:tensorflow:loss = 0.03338682, step = 4301 (0.219 sec) INFO:tensorflow:global_step/sec: 429.693 INFO:tensorflow:loss = 0.036143243, step = 4401 (0.232 sec) INFO:tensorflow:global_step/sec: 432.626 INFO:tensorflow:loss = 0.039583378, step = 4501 (0.234 sec) INFO:tensorflow:global_step/sec: 427.591 INFO:tensorflow:loss = 0.036702216, step = 4601 (0.235 sec) INFO:tensorflow:global_step/sec: 427.303 INFO:tensorflow:loss = 0.05008479, step = 4701 (0.231 sec) INFO:tensorflow:global_step/sec: 453.169 INFO:tensorflow:loss = 0.0439879, step = 4801 (0.220 sec) INFO:tensorflow:global_step/sec: 462.178 INFO:tensorflow:loss = 0.023454221, step = 4901 (0.217 sec) INFO:tensorflow:global_step/sec: 468.888 INFO:tensorflow:loss = 0.014781383, step = 5001 (0.213 sec) INFO:tensorflow:global_step/sec: 463.829 INFO:tensorflow:loss = 0.020877432, step = 5101 (0.217 sec) INFO:tensorflow:global_step/sec: 465.293 INFO:tensorflow:loss = 0.028106665, step = 5201 (0.212 sec) INFO:tensorflow:global_step/sec: 447 INFO:tensorflow:loss = 0.044017084, step = 5301 (0.227 sec) INFO:tensorflow:global_step/sec: 442.253 INFO:tensorflow:loss = 0.015634855, step = 5401 (0.223 sec) INFO:tensorflow:global_step/sec: 468.506 INFO:tensorflow:loss = 0.017649759, step = 5501 (0.214 sec) INFO:tensorflow:global_step/sec: 425.122 INFO:tensorflow:loss = 0.026881203, step = 5601 (0.235 sec) INFO:tensorflow:global_step/sec: 392.981 INFO:tensorflow:loss = 0.02515915, step = 5701 (0.255 sec) INFO:tensorflow:global_step/sec: 422.847 INFO:tensorflow:loss = 0.03226296, step = 5801 (0.236 sec) INFO:tensorflow:global_step/sec: 372.411 INFO:tensorflow:loss = 0.014366373, step = 5901 (0.269 sec) INFO:tensorflow:global_step/sec: 333.939 INFO:tensorflow:loss = 0.020684633, step = 6001 (0.303 sec) INFO:tensorflow:global_step/sec: 330.503 INFO:tensorflow:loss = 0.035918076, step = 6101 (0.299 sec) INFO:tensorflow:global_step/sec: 357.144 INFO:tensorflow:loss = 0.052825905, step = 6201 (0.279 sec) INFO:tensorflow:global_step/sec: 355.8 INFO:tensorflow:loss = 0.026814178, step = 6301 (0.283 sec) INFO:tensorflow:global_step/sec: 412.615 INFO:tensorflow:loss = 0.03537807, step = 6401 (0.243 sec) INFO:tensorflow:global_step/sec: 331.551 INFO:tensorflow:loss = 0.041909292, step = 6501 (0.302 sec) INFO:tensorflow:global_step/sec: 321.808 INFO:tensorflow:loss = 0.025281452, step = 6601 (0.311 sec)
MIT
frameworks/tensorflow/adanet_objective.ipynb
jiankaiwang/sophia.ml
These hyperparameters preduce a model that achieves **0.0348** MSE on the testset. Notice that the ensemble is composed of 5 subnetworks, each one a hiddenlayer deeper than the previous. The most complex subnetwork is made of 5 hiddenlayers.Since `SimpleDNNGenerator` produces subnetworks of varying complexity, and ourmodel gives each one an equal weight, AdaNet selected the subnetwork that mostlowered the ensemble's training loss at each iteration, likely the one with themost hidden layers, since it has the most capacity, and we aren't penalizingmore complex subnetworks (yet).Next, instead of assigning equal weight to each subnetwork, let's learn themixture weights as a convex optimization problem using SGD:
#@test {"skip": true} results, _ = train_and_evaluate(learn_mixture_weights=True) print("Loss:", results["average_loss"]) print("Uniform average loss:", results["average_loss/adanet/uniform_average_ensemble"]) print("Architecture:", ensemble_architecture(results))
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpsbdccn23 INFO:tensorflow:Using config: {'_save_checkpoints_secs': None, '_experimental_distribute': None, '_service': None, '_task_id': 0, '_is_chief': True, '_master': '', '_evaluation_master': '', '_train_distribute': None, '_model_dir': '/tmp/tmpsbdccn23', '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f8029968a90>, '_keep_checkpoint_every_n_hours': 10000, '_global_id_in_cluster': 0, '_keep_checkpoint_max': 5, '_save_checkpoints_steps': 50000, '_tf_random_seed': 42, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_protocol': None, '_device_fn': None, '_save_summary_steps': 50000, '_num_ps_replicas': 0, '_eval_distribute': None, '_num_worker_replicas': 1, '_log_step_count_steps': 100, '_task_type': 'worker'} INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 50000 or save_checkpoints_secs None. INFO:tensorflow:Beginning training AdaNet iteration 0 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpsbdccn23/model.ckpt. INFO:tensorflow:loss = 21.773132, step = 1 INFO:tensorflow:global_step/sec: 151.659 INFO:tensorflow:loss = 0.6285208, step = 101 (0.661 sec) INFO:tensorflow:global_step/sec: 377.914 INFO:tensorflow:loss = 0.568697, step = 201 (0.264 sec) INFO:tensorflow:global_step/sec: 317.447 INFO:tensorflow:loss = 0.07774219, step = 301 (0.318 sec) INFO:tensorflow:global_step/sec: 298.158 INFO:tensorflow:loss = 0.08270247, step = 401 (0.332 sec) INFO:tensorflow:global_step/sec: 421.096 INFO:tensorflow:loss = 0.08153409, step = 501 (0.237 sec) INFO:tensorflow:global_step/sec: 414.588 INFO:tensorflow:loss = 0.05655239, step = 601 (0.241 sec) INFO:tensorflow:global_step/sec: 341.393 INFO:tensorflow:loss = 0.025883064, step = 701 (0.293 sec) INFO:tensorflow:global_step/sec: 366.02 INFO:tensorflow:loss = 0.030127691, step = 801 (0.275 sec) INFO:tensorflow:global_step/sec: 427.488 INFO:tensorflow:loss = 0.03756215, step = 901 (0.232 sec) INFO:tensorflow:global_step/sec: 353.863 INFO:tensorflow:loss = 0.06788642, step = 1001 (0.285 sec) INFO:tensorflow:global_step/sec: 322.318 INFO:tensorflow:loss = 0.036306262, step = 1101 (0.310 sec) INFO:tensorflow:global_step/sec: 413.289 INFO:tensorflow:loss = 0.05074877, step = 1201 (0.240 sec) INFO:tensorflow:global_step/sec: 321.58 INFO:tensorflow:loss = 0.10058461, step = 1301 (0.311 sec) INFO:tensorflow:global_step/sec: 300.699 INFO:tensorflow:loss = 0.026643617, step = 1401 (0.334 sec) INFO:tensorflow:global_step/sec: 318.013 INFO:tensorflow:loss = 0.020885482, step = 1501 (0.313 sec) INFO:tensorflow:global_step/sec: 323.705 INFO:tensorflow:loss = 0.03239681, step = 1601 (0.315 sec) INFO:tensorflow:global_step/sec: 328.631 INFO:tensorflow:loss = 0.04160305, step = 1701 (0.298 sec) INFO:tensorflow:global_step/sec: 397.201 INFO:tensorflow:loss = 0.0352926, step = 1801 (0.251 sec) INFO:tensorflow:global_step/sec: 342.005 INFO:tensorflow:loss = 0.044745784, step = 1901 (0.296 sec) INFO:tensorflow:global_step/sec: 425.216 INFO:tensorflow:loss = 0.02993768, step = 2001 (0.233 sec) INFO:tensorflow:global_step/sec: 425.851 INFO:tensorflow:loss = 0.047246575, step = 2101 (0.234 sec) INFO:tensorflow:global_step/sec: 290.003 INFO:tensorflow:loss = 0.024866767, step = 2201 (0.346 sec) INFO:tensorflow:global_step/sec: 306.232 INFO:tensorflow:loss = 0.025053538, step = 2301 (0.332 sec) INFO:tensorflow:global_step/sec: 319.194 INFO:tensorflow:loss = 0.022536863, step = 2401 (0.315 sec) INFO:tensorflow:global_step/sec: 327.319 INFO:tensorflow:loss = 0.04780043, step = 2501 (0.299 sec) INFO:tensorflow:global_step/sec: 330.195 INFO:tensorflow:loss = 0.032027524, step = 2601 (0.302 sec) INFO:tensorflow:global_step/sec: 424.554 INFO:tensorflow:loss = 0.033754565, step = 2701 (0.237 sec) INFO:tensorflow:global_step/sec: 415.456 INFO:tensorflow:loss = 0.014495807, step = 2801 (0.243 sec) INFO:tensorflow:global_step/sec: 378.815 INFO:tensorflow:loss = 0.031205792, step = 2901 (0.259 sec) INFO:tensorflow:global_step/sec: 435.675 INFO:tensorflow:loss = 0.026793242, step = 3001 (0.233 sec) INFO:tensorflow:global_step/sec: 445.07 INFO:tensorflow:loss = 0.02696861, step = 3101 (0.222 sec) INFO:tensorflow:global_step/sec: 411.002 INFO:tensorflow:loss = 0.027100282, step = 3201 (0.243 sec) INFO:tensorflow:global_step/sec: 452.535 INFO:tensorflow:loss = 0.03591666, step = 3301 (0.221 sec) INFO:tensorflow:global_step/sec: 390.136 INFO:tensorflow:loss = 0.025515229, step = 3401 (0.257 sec) INFO:tensorflow:global_step/sec: 403.819 INFO:tensorflow:loss = 0.049373504, step = 3501 (0.247 sec) INFO:tensorflow:global_step/sec: 441.761 INFO:tensorflow:loss = 0.024171133, step = 3601 (0.230 sec) INFO:tensorflow:global_step/sec: 438.165 INFO:tensorflow:loss = 0.017237274, step = 3701 (0.228 sec) INFO:tensorflow:global_step/sec: 442.471 INFO:tensorflow:loss = 0.020128746, step = 3801 (0.224 sec) INFO:tensorflow:global_step/sec: 443.692 INFO:tensorflow:loss = 0.021598278, step = 3901 (0.225 sec) INFO:tensorflow:global_step/sec: 433.398 INFO:tensorflow:loss = 0.03772788, step = 4001 (0.230 sec) INFO:tensorflow:global_step/sec: 453.543 INFO:tensorflow:loss = 0.040997066, step = 4101 (0.220 sec) INFO:tensorflow:global_step/sec: 447.837 INFO:tensorflow:loss = 0.021314848, step = 4201 (0.223 sec) INFO:tensorflow:global_step/sec: 449.319 INFO:tensorflow:loss = 0.03397343, step = 4301 (0.222 sec) INFO:tensorflow:global_step/sec: 291.817 INFO:tensorflow:loss = 0.03742571, step = 4401 (0.343 sec) INFO:tensorflow:global_step/sec: 349.156 INFO:tensorflow:loss = 0.04003142, step = 4501 (0.287 sec) INFO:tensorflow:global_step/sec: 444.919 INFO:tensorflow:loss = 0.037306767, step = 4601 (0.224 sec) INFO:tensorflow:global_step/sec: 324.799 INFO:tensorflow:loss = 0.050043724, step = 4701 (0.308 sec) INFO:tensorflow:global_step/sec: 399.035 INFO:tensorflow:loss = 0.04509888, step = 4801 (0.250 sec) INFO:tensorflow:global_step/sec: 342.386 INFO:tensorflow:loss = 0.023579072, step = 4901 (0.293 sec) INFO:tensorflow:global_step/sec: 435.009 INFO:tensorflow:loss = 0.014783351, step = 5001 (0.230 sec) INFO:tensorflow:global_step/sec: 465.426 INFO:tensorflow:loss = 0.021115372, step = 5101 (0.214 sec) INFO:tensorflow:global_step/sec: 379.114 INFO:tensorflow:loss = 0.02869285, step = 5201 (0.263 sec) INFO:tensorflow:global_step/sec: 446.474 INFO:tensorflow:loss = 0.044227358, step = 5301 (0.224 sec) INFO:tensorflow:global_step/sec: 442.508 INFO:tensorflow:loss = 0.015665509, step = 5401 (0.229 sec) INFO:tensorflow:global_step/sec: 439.36 INFO:tensorflow:loss = 0.017735064, step = 5501 (0.225 sec) INFO:tensorflow:global_step/sec: 452.882 INFO:tensorflow:loss = 0.026888551, step = 5601 (0.220 sec) INFO:tensorflow:global_step/sec: 450.627 INFO:tensorflow:loss = 0.025225505, step = 5701 (0.224 sec) INFO:tensorflow:global_step/sec: 455.843 INFO:tensorflow:loss = 0.032536294, step = 5801 (0.218 sec) INFO:tensorflow:global_step/sec: 453.967 INFO:tensorflow:loss = 0.014429852, step = 5901 (0.220 sec) INFO:tensorflow:global_step/sec: 446.021 INFO:tensorflow:loss = 0.020685814, step = 6001 (0.226 sec) INFO:tensorflow:global_step/sec: 447.631 INFO:tensorflow:loss = 0.035909995, step = 6101 (0.221 sec) INFO:tensorflow:global_step/sec: 454.564 INFO:tensorflow:loss = 0.053759962, step = 6201 (0.220 sec) INFO:tensorflow:global_step/sec: 385.801 INFO:tensorflow:loss = 0.02680358, step = 6301 (0.263 sec) INFO:tensorflow:global_step/sec: 380.766 INFO:tensorflow:loss = 0.035358958, step = 6401 (0.262 sec) INFO:tensorflow:global_step/sec: 384.454 INFO:tensorflow:loss = 0.04194645, step = 6501 (0.262 sec) INFO:tensorflow:global_step/sec: 324.174 INFO:tensorflow:loss = 0.025395717, step = 6601 (0.309 sec)
MIT
frameworks/tensorflow/adanet_objective.ipynb
jiankaiwang/sophia.ml
Learning the mixture weights produces a model with **0.0449** MSE, a bit worsethan the uniform average model, which the `adanet.Estimator` always compute as abaseline. The mixture weights were learned without regularization, so theylikely overfit to the training set.Observe that AdaNet learned the same ensemble composition as the previous run.Without complexity regularization, AdaNet will favor more complex subnetworks,which may have worse generalization despite improving the empirical error.Finally, let's apply some **complexity regularization** by using $\lambda > 0$.Since this will penalize more complex subnetworks, AdaNet will select thecandidate subnetwork that most improves the objective for its marginalcomplexity:
#@test {"skip": true} results, _ = train_and_evaluate(learn_mixture_weights=True, adanet_lambda=.015) print("Loss:", results["average_loss"]) print("Uniform average loss:", results["average_loss/adanet/uniform_average_ensemble"]) print("Architecture:", ensemble_architecture(results))
WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpyxwongpm INFO:tensorflow:Using config: {'_save_checkpoints_secs': None, '_experimental_distribute': None, '_service': None, '_task_id': 0, '_is_chief': True, '_master': '', '_evaluation_master': '', '_train_distribute': None, '_model_dir': '/tmp/tmpyxwongpm', '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7f802a6f6668>, '_keep_checkpoint_every_n_hours': 10000, '_global_id_in_cluster': 0, '_keep_checkpoint_max': 5, '_save_checkpoints_steps': 50000, '_tf_random_seed': 42, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_protocol': None, '_device_fn': None, '_save_summary_steps': 50000, '_num_ps_replicas': 0, '_eval_distribute': None, '_num_worker_replicas': 1, '_log_step_count_steps': 100, '_task_type': 'worker'} INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 50000 or save_checkpoints_secs None. INFO:tensorflow:Beginning training AdaNet iteration 0 INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpyxwongpm/model.ckpt. INFO:tensorflow:loss = 21.773132, step = 1 INFO:tensorflow:global_step/sec: 140.958 INFO:tensorflow:loss = 0.62784123, step = 101 (0.711 sec) INFO:tensorflow:global_step/sec: 316.671 INFO:tensorflow:loss = 0.56678665, step = 201 (0.315 sec) INFO:tensorflow:global_step/sec: 300.513 INFO:tensorflow:loss = 0.078039765, step = 301 (0.333 sec) INFO:tensorflow:global_step/sec: 299.365 INFO:tensorflow:loss = 0.086782694, step = 401 (0.334 sec) INFO:tensorflow:global_step/sec: 305.519 INFO:tensorflow:loss = 0.08137445, step = 501 (0.327 sec) INFO:tensorflow:global_step/sec: 310.289 INFO:tensorflow:loss = 0.056509923, step = 601 (0.325 sec) INFO:tensorflow:global_step/sec: 319.378 INFO:tensorflow:loss = 0.025883604, step = 701 (0.313 sec) INFO:tensorflow:global_step/sec: 216.501 INFO:tensorflow:loss = 0.030180356, step = 801 (0.462 sec) INFO:tensorflow:global_step/sec: 232.224 INFO:tensorflow:loss = 0.037590638, step = 901 (0.429 sec) INFO:tensorflow:global_step/sec: 249.671 INFO:tensorflow:loss = 0.06694432, step = 1001 (0.405 sec) INFO:tensorflow:global_step/sec: 237.714 INFO:tensorflow:loss = 0.038478173, step = 1101 (0.416 sec) INFO:tensorflow:global_step/sec: 321.145 INFO:tensorflow:loss = 0.04998316, step = 1201 (0.311 sec) INFO:tensorflow:global_step/sec: 242.151 INFO:tensorflow:loss = 0.09006661, step = 1301 (0.417 sec) INFO:tensorflow:global_step/sec: 308.934 INFO:tensorflow:loss = 0.026879994, step = 1401 (0.319 sec) INFO:tensorflow:global_step/sec: 255.401 INFO:tensorflow:loss = 0.021093277, step = 1501 (0.393 sec) INFO:tensorflow:global_step/sec: 332.521 INFO:tensorflow:loss = 0.03607753, step = 1601 (0.300 sec) INFO:tensorflow:global_step/sec: 312.926 INFO:tensorflow:loss = 0.03416162, step = 1701 (0.322 sec) INFO:tensorflow:global_step/sec: 211.064 INFO:tensorflow:loss = 0.04626117, step = 1801 (0.471 sec) INFO:tensorflow:global_step/sec: 281.592 INFO:tensorflow:loss = 0.07378492, step = 1901 (0.356 sec) INFO:tensorflow:global_step/sec: 282.328 INFO:tensorflow:loss = 0.049188316, step = 2001 (0.354 sec) INFO:tensorflow:global_step/sec: 308.875 INFO:tensorflow:loss = 0.078179166, step = 2101 (0.323 sec) INFO:tensorflow:global_step/sec: 334.139 INFO:tensorflow:loss = 0.03029899, step = 2201 (0.299 sec) INFO:tensorflow:global_step/sec: 294.106 INFO:tensorflow:loss = 0.024719719, step = 2301 (0.341 sec) INFO:tensorflow:global_step/sec: 332.18 INFO:tensorflow:loss = 0.024992699, step = 2401 (0.301 sec) INFO:tensorflow:global_step/sec: 374.081 INFO:tensorflow:loss = 0.04709203, step = 2501 (0.268 sec) INFO:tensorflow:global_step/sec: 368.409 INFO:tensorflow:loss = 0.047214545, step = 2601 (0.270 sec) INFO:tensorflow:global_step/sec: 364.516 INFO:tensorflow:loss = 0.038211394, step = 2701 (0.274 sec) INFO:tensorflow:global_step/sec: 345.828 INFO:tensorflow:loss = 0.03274207, step = 2801 (0.294 sec) INFO:tensorflow:global_step/sec: 357.417 INFO:tensorflow:loss = 0.04549656, step = 2901 (0.279 sec) INFO:tensorflow:global_step/sec: 352.133 INFO:tensorflow:loss = 0.035480063, step = 3001 (0.285 sec) INFO:tensorflow:global_step/sec: 344.663 INFO:tensorflow:loss = 0.024679933, step = 3101 (0.286 sec) INFO:tensorflow:global_step/sec: 382.242 INFO:tensorflow:loss = 0.041259166, step = 3201 (0.261 sec) INFO:tensorflow:global_step/sec: 352.471 INFO:tensorflow:loss = 0.04356738, step = 3301 (0.284 sec) INFO:tensorflow:global_step/sec: 384.285 INFO:tensorflow:loss = 0.034602944, step = 3401 (0.259 sec) INFO:tensorflow:global_step/sec: 364.285 INFO:tensorflow:loss = 0.069668576, step = 3501 (0.275 sec) INFO:tensorflow:global_step/sec: 371.728 INFO:tensorflow:loss = 0.034798123, step = 3601 (0.273 sec) INFO:tensorflow:global_step/sec: 354.306 INFO:tensorflow:loss = 0.021452527, step = 3701 (0.285 sec) INFO:tensorflow:global_step/sec: 350.869 INFO:tensorflow:loss = 0.02612273, step = 3801 (0.283 sec) INFO:tensorflow:global_step/sec: 335.128 INFO:tensorflow:loss = 0.031272262, step = 3901 (0.299 sec) INFO:tensorflow:global_step/sec: 342.451 INFO:tensorflow:loss = 0.05301467, step = 4001 (0.286 sec) INFO:tensorflow:global_step/sec: 341.576 INFO:tensorflow:loss = 0.02896322, step = 4101 (0.293 sec) INFO:tensorflow:global_step/sec: 366.845 INFO:tensorflow:loss = 0.022142775, step = 4201 (0.277 sec) INFO:tensorflow:global_step/sec: 342.606 INFO:tensorflow:loss = 0.02221645, step = 4301 (0.291 sec) INFO:tensorflow:global_step/sec: 306.676 INFO:tensorflow:loss = 0.027055696, step = 4401 (0.323 sec) INFO:tensorflow:global_step/sec: 291.316 INFO:tensorflow:loss = 0.050597515, step = 4501 (0.347 sec) INFO:tensorflow:global_step/sec: 353.302 INFO:tensorflow:loss = 0.02597157, step = 4601 (0.283 sec) INFO:tensorflow:global_step/sec: 326.918 INFO:tensorflow:loss = 0.079174936, step = 4701 (0.303 sec) INFO:tensorflow:global_step/sec: 356.635 INFO:tensorflow:loss = 0.034027025, step = 4801 (0.280 sec) INFO:tensorflow:global_step/sec: 353.448 INFO:tensorflow:loss = 0.033307478, step = 4901 (0.283 sec) INFO:tensorflow:global_step/sec: 384.233 INFO:tensorflow:loss = 0.02684283, step = 5001 (0.261 sec) INFO:tensorflow:global_step/sec: 343.57 INFO:tensorflow:loss = 0.039310887, step = 5101 (0.295 sec) INFO:tensorflow:global_step/sec: 358.382 INFO:tensorflow:loss = 0.030656522, step = 5201 (0.277 sec) INFO:tensorflow:global_step/sec: 346.319 INFO:tensorflow:loss = 0.078128755, step = 5301 (0.286 sec) INFO:tensorflow:global_step/sec: 321.706 INFO:tensorflow:loss = 0.021291938, step = 5401 (0.315 sec) INFO:tensorflow:global_step/sec: 319.996 INFO:tensorflow:loss = 0.032513306, step = 5501 (0.308 sec) INFO:tensorflow:global_step/sec: 342.397 INFO:tensorflow:loss = 0.028400544, step = 5601 (0.293 sec) INFO:tensorflow:global_step/sec: 317.27 INFO:tensorflow:loss = 0.034857225, step = 5701 (0.321 sec) INFO:tensorflow:global_step/sec: 316.78 INFO:tensorflow:loss = 0.037171274, step = 5801 (0.314 sec) INFO:tensorflow:global_step/sec: 338.394 INFO:tensorflow:loss = 0.017138816, step = 5901 (0.290 sec) INFO:tensorflow:global_step/sec: 329.102 INFO:tensorflow:loss = 0.030491471, step = 6001 (0.312 sec) INFO:tensorflow:global_step/sec: 349.063 INFO:tensorflow:loss = 0.048120163, step = 6101 (0.279 sec) INFO:tensorflow:global_step/sec: 339.279 INFO:tensorflow:loss = 0.044583093, step = 6201 (0.295 sec) INFO:tensorflow:global_step/sec: 339.525 INFO:tensorflow:loss = 0.04749337, step = 6301 (0.295 sec) INFO:tensorflow:global_step/sec: 334.616 INFO:tensorflow:loss = 0.07128422, step = 6401 (0.304 sec) INFO:tensorflow:global_step/sec: 331.25 INFO:tensorflow:loss = 0.05821591, step = 6501 (0.296 sec) INFO:tensorflow:global_step/sec: 335.526 INFO:tensorflow:loss = 0.019353827, step = 6601 (0.298 sec)
MIT
frameworks/tensorflow/adanet_objective.ipynb
jiankaiwang/sophia.ml
load test data and loc_map
test = np.load("checkpt/test_data.npy") loc_map = np.load("checkpt/test_loc_map.npy") test_label = np.loadtxt("checkpt/test_label.txt") test_label.shape
_____no_output_____
CC-BY-4.0
CNN/Heatmap_demo.ipynb
ucl-exoplanets/DI-Project
read checkpoint
model = load_model("checkpt/ckt/checkpt_0.h5") model.summary() pred = model.predict(test)
_____no_output_____
CC-BY-4.0
CNN/Heatmap_demo.ipynb
ucl-exoplanets/DI-Project
get True Positive
## .argmax(axis =1 ) will return the biggest value of the two as 1, and the other as 0. i.e. [0.6 ,0.9] will give [0,1] ## this is a good format as our test_label is organised in [0,1] or [1,0] format. TP = np.where(pred.argmax(axis=1) == test_label.argmax(axis=1)) ## I will suggest to access the confidence of the predication. Usually we want 0.9 at least def return_heatmap(model, org_img, normalise=True): ## CAM code implementation ## we need to extract the last conv layer, and that depends on your architecture. test_img = model.output[:, 1] last_conv_layer = model.get_layer('conv2d_6') grads = K.gradients(test_img, last_conv_layer.output)[0] pooled_grads = K.mean(grads, axis=(0, 1, 2)) message = K.print_tensor(pooled_grads, message='pool_grad = ') iterate = K.function([model.input, K.learning_phase()], [message, last_conv_layer.output[0]]) pooled_grads_value, conv_layer_output_value = iterate([org_img.reshape(-1, 64, 64, 1), 0]) for i in range(conv_layer_output_value.shape[2]): conv_layer_output_value[:, :, i] *= pooled_grads_value[i] heatmap = np.mean(conv_layer_output_value, axis=-1) if normalise: heatmap = np.maximum(heatmap, 0) heatmap /= np.max(heatmap) return heatmap def plot_heatmap(heatmap, loc_map): fig = plt.figure(figsize=(16, 8)) grid = ImageGrid(fig, 111, # as in plt.subplot(111) nrows_ncols=(1, 2), axes_pad=0.15, share_all=True, ) # Add data to image grid im = grid[0].imshow(heatmap) im = grid[1].imshow(loc_map) plt.show()
_____no_output_____
CC-BY-4.0
CNN/Heatmap_demo.ipynb
ucl-exoplanets/DI-Project
Calculate and plot heatmap
num = -1 heatmap = return_heatmap(model, test[num]) plot_heatmap(heatmap, loc_map[num])
_____no_output_____
CC-BY-4.0
CNN/Heatmap_demo.ipynb
ucl-exoplanets/DI-Project
构造数据集
def create_data(): datasets = [['青年', '否', '否', '一般', '否'], ['青年', '否', '否', '好', '否'], ['青年', '是', '否', '好', '是'], ['青年', '是', '是', '一般', '是'], ['青年', '否', '否', '一般', '否'], ['中年', '否', '否', '一般', '否'], ['中年', '否', '否', '好', '否'], ['中年', '是', '是', '好', '是'], ['中年', '否', '是', '非常好', '是'], ['中年', '否', '是', '非常好', '是'], ['老年', '否', '是', '非常好', '是'], ['老年', '否', '是', '好', '是'], ['老年', '是', '否', '好', '是'], ['老年', '是', '否', '非常好', '是'], ['老年', '否', '否', '一般', '否'], ] labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别'] # 返回数据集和每个维度的名称 return datasets, labels dataset,columns = create_data() X,y = np.array(dataset)[:,:-1],np.array(dataset)[:,-1] X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=1) pd.DataFrame(datasets, columns=labels)
_____no_output_____
MIT
DecisionTree/MyDecisionTree.ipynb
QYHcrossover/ML-numpy