content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def addv3s(vec, scalar):
"""add scalar to elements of 3-vector"""
return (vec[0]+scalar, vec[1]+scalar, vec[2]+scalar) | bd14f04079af113a4e9e900457b50b60f7fc7d00 | 502,121 |
def get_rod(da_peak_values, da_peak_times, da_eos_values, da_eos_times):
"""
Takes four xarray DataArrays containing the peak season values (either pos or
mos) and times (day of year), and end of season (eos) values and times (day
of year). The rate of decrease (rod) is calculated as the ratio of the difference
in peak and eos for vege values and time (day of year) per pixel.
Parameters
----------
da_peak_values: xarray DataArray
An xarray DataArray type with an x and y dimension (no time). Each pixel is the
vege value detected at either the peak (pos) or middle (mos) of season.
da_peak_times: xarray DataArray
An xarray DataArray type with an x and y dimension (no time). Each pixel is the
time (day of year) value detected at either the peak (pos) or middle (mos) of
season.
da_eos_values: xarray DataArray
An xarray DataArray type with an x and y dimension (no time). Each pixel is the
vege value detected at end of season (eos).
da_eos_times: xarray DataArray
An xarray DataArray type with an x and y dimension (no time). Each pixel is the
time (day of year) detected at end of season (eos).
Returns
-------
da_roi_values : xarray DataArray
An xarray DataArray type with an x and y dimension (no time). Each pixel is the
rate of decrease value detected between the eos and peak values/times across the
timeseries at each pixel. The values in rod represents rate of vege decline.
"""
# notify user
print('Beginning calculation of rate of decrease (rod) values (times not possible).')
# get abs ratio between the difference in peak and eos values and times
print('> Calculating rate of decrease (rod) values.')
da_rod_values = abs((da_eos_values - da_peak_values) / (da_eos_times - da_peak_times))
# convert type
da_rod_values = da_rod_values.astype('float32')
# rename vars
da_rod_values = da_rod_values.rename('rod_values')
# notify user
print('> Success!\n')
return da_rod_values | 78e5b4e6119f193a59127cb8c3e6c36245c37bed | 426,597 |
def line_count(file):
"""Utility function for getting number of lines in a text file."""
count = 0
with open(file, encoding="utf-8") as f:
for _ in f:
count += 1
return count | e6ee52e5458b9a4c354b3a0f498613392a00b54d | 607,592 |
def unique_elements(values):
"""List the unique elements of a list."""
return list(set(values)) | d272d49f5d93326c6a79cfc49b4650acf4d85332 | 240,261 |
import warnings
def _bin_phydim(dr, dim_name, bin_bound, bin_center, stacked_dim_name):
"""Binning over a physical dimension, weighted by area. Internal function
for taking zonal or meridonal average.
Parameters
----------
dr : xarray DataArray
Must contain (tile,y,x) as dimensions.
Can have arbitrary additional dimensions.
dim_name : str
support 'lat' or 'lon'
bin_bound : 1D array (in degree)
The boundaries of bins in longitude or latitude
bin_center : 1D array (in degree)
The center of bins in longitude or latitude
stacked_dim_name : str
Will be 'stacked_tile_y_x' if dimension names are (tile,y,x)
Returns
-------
dr_binned : xarray DataArray
"""
# use multi-dimensional groupby, with 1D bins
group = dr.groupby_bins(dim_name, bin_bound, labels=bin_center)
# select the algorithm depending on the existence of 'area'
if 'area' in dr:
# take weighted average
# a MapReduce algorithm that minimizes the "Reduction" operations
# that's the fastest way I can find for taking weighted average
# It is 10x faster than the algorithm on xarray online docs:
# http://xarray.pydata.org/en/stable/examples/monthly-means.html
def mean_weighted_by_area(dr):
weights = dr['area']/dr['area'].sum()
dr_mean = (dr*weights).sum(dim=stacked_dim_name)
return dr_mean
dr_binned = group.apply(mean_weighted_by_area)
else:
# simply take unweighted average
warnings.warn("Use uniform weights because the input DataArray "
"does not have area as a coordinate variable. "
"The result could be inaccurate because "
"Cubed-sphere box size varies."
)
dr_binned = group.mean(dim=stacked_dim_name)
return dr_binned | 43a8c2aa101ec97953820bc4230cf2a6b8b47baa | 394,398 |
def abs_to_rel_xpath(xpath, new_root):
"""
Convert a given xpath to be relative from a tag appearing in the
original xpath.
:param xpath: str of the xpath to convert
:param new_root: str of the tag from which the new xpath should be relative
:returns: str of the relative xpath
"""
if new_root in xpath:
xpath = xpath + '/'
xpath_to_root = '/'.join(xpath.split(new_root + '/')[:-1]) + new_root
xpath = xpath.replace(xpath_to_root, '.')
xpath = xpath.rstrip('/')
else:
raise ValueError(f'New root element {new_root} does not appear in xpath {xpath}')
return xpath | 4b23e49e58ec854f758744bc625546642394e3ba | 214,967 |
import time
def slowadd(a,b):
"""Add two numbers, poorly."""
time.sleep(1)
return a + b | b6a440b9054f1808a9656b3badc3905519e5565a | 437,695 |
import copy
def _instances_by_namespace(data):
"""Rebuild instance data so we can look it up by namespace.
Note that the `representation` is added into the instance's
data with a `representation` key.
Args:
data (dict): scene build data
Returns:
dict
"""
result = {}
# Add new assets
for representation_id, instances in data.items():
# Ensure we leave the source data unaltered
instances = copy.deepcopy(instances)
for instance in instances:
instance['representation'] = representation_id
result[instance['namespace']] = instance
return result | 094fdb39011688cf7b7c5e6e3608f46c615c4de6 | 391,375 |
def get_all_coords_in_image(length_x, length_y):
"""
Get a list of all possible coordinates, based on two numbers representing a rectangular grid
:param length_x: horizontal size of field
:param length_y: vertical size of field
:returns: list of all coordinate pairs in a field of size length_x x length_y
:raises TypeError: none
"""
if length_x and length_y:
new_coord_list = []
for spot_y in range(length_y):
for spot_x in range(length_x):
new_coord_list.append((spot_x, spot_y))
# print(new_coord_list)
return new_coord_list
else:
return False | 8ee98706cf38e53f7519cfa75df800713e8bc02e | 547,538 |
def clean_antibody_name(name):
"""Get clean antibody name from FASTA identifier
- Remove chain type suffix such as "_VH" or "_VL"
"""
for suffix in ['_VH', '_VL', '_HC', '_LC']:
if name.endswith(suffix):
name = name[:-len(suffix)]
return name | 2a9fbf186a419bca52c8222b09689ca8bd17a9c2 | 124,080 |
import json
def read_json(json_path: str):
"""Read a json file
:param json_path: path to json file
:return: json content
"""
with open(json_path) as f:
return json.load(f) | 19449679799ccfcec2e5f6fcaecf1f9ca8d10785 | 95,832 |
def n_triples( g, n=None ):
""" Prints the number of triples in graph g """
if n is None:
print(( ' Triples: '+str(len(g)) ))
else:
print(( ' Triples: +'+str(len(g)-n) ))
return len(g) | 42cd1bb9e5e737a01900ca272c3a46ee7eedceed | 563,727 |
def get_valid_colors() -> list:
""" Returns list of valid colors (BGR) for markers and frames """
colors = [
(0, 0, 200),
(0, 200, 0),
(200, 0, 0),
(200, 130, 0),
(200, 0, 200),
(0, 200, 200),
]
return colors | 860a378e38b54a8b897ce4228035a35e5170d056 | 554,474 |
def strip_name_amount(arg: str):
"""
Strip the name and the last position integer
Args:
arg: string
Returns:
string and integer with the default value 1
"""
strings = arg.split()
try:
first = ' '.join(strings[:-1])
second = int(strings[-1])
except (ValueError, IndexError):
first = ' '.join(strings)
second = 1
return first, second | 034ca8c780b9e837f6c3c5f2a1bf0d58dbc77e9b | 87,050 |
def tensor2scalar(x):
"""Convert torch.Tensor to a scalar value.
Args:
x (torch.Tensor):
Returns:
scaler
"""
if isinstance(x, float):
return x
return x.cpu().detach().item() | 37052da89febc677aa93559e4aa167751ea65792 | 168,363 |
def create_default_config(schema):
"""Create a configuration dictionary from a schema dictionary.
The schema defines the valid configuration keys and their default
values. Each element of ``schema`` should be a tuple/list
containing (default value,docstring,type) or a dict containing a
nested schema."""
o = {}
for key, item in schema.items():
if isinstance(item, dict):
o[key] = create_default_config(item)
elif isinstance(item, tuple):
value, comment, item_type = item
if isinstance(item_type, tuple):
item_type = item_type[0]
if value is None and (item_type == list or item_type == dict):
value = item_type()
if key in o:
raise KeyError('Duplicate key in schema.')
o[key] = value
else:
raise TypeError('Unrecognized type for schema dict element: %s %s' %
(key, type(item)))
return o | 06f51a864cf25c9c4028d8355095173a27732da2 | 606,818 |
def event_asset_object_factory(event_id, asset_id):
"""Cook up a fake eventasset json object from given ids."""
eventasset = {
'event_id': event_id,
'asset_id': asset_id
}
return eventasset | 547ee889edece073ee7d34b8926add327121a1a1 | 197,352 |
def JoinDisjointDicts(dict_a, dict_b):
"""Joins dictionaries with no conflicting keys.
Enforces the constraint that the two key sets must be disjoint, and then
merges the two dictionaries in a new dictionary that is returned to the
caller.
@type dict_a: dict
@param dict_a: the first dictionary
@type dict_b: dict
@param dict_b: the second dictionary
@rtype: dict
@return: a new dictionary containing all the key/value pairs contained in the
two dictionaries.
"""
assert not (set(dict_a) & set(dict_b)), ("Duplicate keys found while joining"
" %s and %s" % (dict_a, dict_b))
result = dict_a.copy()
result.update(dict_b)
return result | d42600de9646b8eda5f94cce5961754eb72daa2d | 678,742 |
def inverse(phi, e):
"""
Use the Bezout law to calculate the inverse of e to the modulus of phi.
:param phi:
:param e:
:return: an integer d st. d*e = 1 (mod phi)
"""
s, t, sn, tn, r = 1, 0, 0, 1, 1
while r != 0:
q = phi // e
r = phi - q * e
st, tt = sn * (-q) + s, tn * (-q) + t
s, t = sn, tn
sn, tn = st, tt
phi = e
e = r
return t | a77ff16c5aa9c3ce2d76e6427fd0e399b08b8d7f | 522,307 |
def exc_repr(e):
"""
Return a string representation of an exception together with the excepion
name.
"""
return "{}: {}".format(type(e).__name__, str(e)) | 16c1bdf4ec2cdab6681faced2205331a247d9f56 | 532,535 |
def elevation_change(elevation):
"""
:param elevation: A list of elevation points (floating point format)
Description:
Calculates and returns the differences in elevation between two points. This is completed for all sequential pairs in a list.
Returns deltaElev which is a listing of elevation changes. This has a length of len(elevation) -1
"""
deltaElev =[]
for i in range (0, len(elevation)-1):
deltaElev.append((elevation[i+1]-elevation[i]))
return deltaElev | fad93636979098f492355da595a4972579ee95b5 | 571,391 |
import math
def roundUp(number):
""" Round up an integer to the nearest power of then of the same degree.
Exempel: 35 -> 40, 540 -> 600, 1250 -> 2000, etc """
nearest = math.pow(10,len(str(number))-1)
return int(math.ceil(number / nearest) * nearest) | 94405e4e40e05a33b1d3e48efdf9574355b53ea3 | 284,983 |
def find_perimeter(height: int, width: int) -> int:
"""Find the perimeter of a rectangle."""
return (height + width) * 2 | 75913101034c873743aefb53540d5c0884d162f1 | 22,441 |
def err_func(chromosome, dataset, rbfn):
"""Calculate the error function for each chromosome.
This function is specially designed to be pickable for multiprocessing.
Args:
chromosome (list of floats): The chromosome which is the parameters of
RBFN model.
dataset (list of TrainingData): The training dataset.
rbfn (RBFN): The RBFN model which must be deep copied for different
parameters in output calculation.
Returns:
float: The result of fitting function.
"""
rbfn.load_model(chromosome)
res = sum(abs(d.o - rbfn.output(d.i, antinorm=True)) for d in dataset)
return res / len(dataset) | 680bba374836ff9da0614e193cdf5d14e6ccf1c6 | 167,004 |
from typing import Iterable
from typing import Any
def filter_array(iterable: Iterable[Any], *types) -> Iterable[Any]:
"""Return the iterable with only the select types inside.
Parameters
----------
iterable : Iterable[Any]
The iterable to filter.
types: tuple
The types to filter for.
Returns
-------
list
The filtered iterable.
"""
return list(filter(lambda x: type(x) in types, iterable)) | 71a9b6736507be2cc235768e8114e95bb66c867d | 157,982 |
from typing import Any
import tempfile
def _write_temp_file(data: Any) -> tempfile._TemporaryFileWrapper: # type: ignore
"""
Writes a named temporary file with the given data.
Returns:
[TemporaryFileWrapper] -- a file handle to the created temp file
"""
tmp = tempfile.NamedTemporaryFile(delete=False)
tmp.write(data)
tmp.close()
return tmp | a47d75b016e94eb2f296c5999826f37b1a8ddaf6 | 346,200 |
import torch
def batch_svd(A):
"""Wrapper around torch.svd that works when the input is a batch of matrices."""
U_list = []
S_list = []
V_list = []
for i in range(A.shape[0]):
U, S, V = torch.svd(A[i])
U_list.append(U)
S_list.append(S)
V_list.append(V)
U = torch.stack(U_list, dim=0)
S = torch.stack(S_list, dim=0)
V = torch.stack(V_list, dim=0)
return U, S, V | 650472f2616a65c0bd0774dc4aa527b82292d163 | 480,589 |
def select_backbone(node):
"""
Returns True if `node` is in a protein backbone.
"""
return node.get('atomname') == 'BB' | d4924ce67b251bb39b7df5097d0e0175c24ff7cf | 365,953 |
def sqlfstr(s: str):
"""
Returns the string <s> as string format used for SQL parameter input.
:param s: String to reformat.
:return: str
"""
return s.replace('"', '""') | 70382cb58c5fa4433619d938076a57cf408af9f3 | 494,271 |
def _same_cluster(site_a, site_b, clusters):
"""
Check if sites are in the same cluster
"""
a_index = [site_a in cluster for cluster in clusters].index(True)
b_index = [site_b in cluster for cluster in clusters].index(True)
return a_index == b_index | 5f47b68148e4c7209989971a80ff4cb1d6718161 | 597,999 |
def required(sfx=''):
""" Load the requirements from the requirements.txt file"""
with open(f"requirements{sfx}.txt") as f:
return [ln.strip() for ln in f.readlines() if not ln.startswith('-') and not ln.startswith('#') and ln.strip() != ''] | 2a6ad70acc1012f0cf7dea21e7752819e0230323 | 431,796 |
import hashlib
def calculate_identicon(user_id: str) -> str:
"""
Calculate an identicon hash string based on a user name.
:param user_id: the user name
:return: an identicon string
"""
return hashlib.sha256(user_id.encode()).hexdigest() | e22e817da8a38ab289e4c623f8cbcba370317223 | 26,685 |
def _endpoint_from_view_func(view_func):
"""Internal helper that returns the default endpoint for a given
function. This always is the function name.
"""
assert view_func is not None, 'expected view func if endpoint ' \
'is not provided.'
return view_func.__name__ | abba226b1279fc3b14fb22e2ea52980ac63f5f8a | 341,040 |
def score_by_accuracy(truth, predictions, cutoff=0.5, binder_weight=0.5):
"""
Score a set of predictions by their accuracy.
Parameters
----------
cutoff : float
the value separating 'binders' predictions and 'nonbinder' predictions
(defaults to 0.5) - Predictions are considered accurate if they land on
the same side of the cutoff value as the truth.
binder_weight : float
the fraction that the binder score contributes to the overall score -
The prediction accuracy for binders and nonbinders is considered
separately and then combined according to this weight.
Returns
-------
float
a score between 0 and 1
"""
correctness = [(t > cutoff) == (p > cutoff)
for (t, p) in zip(truth, predictions)]
def score_for_truth(truth_value):
filtered = [
c for (c, t) in zip(correctness, truth) if t == truth_value
]
return sum(1 for c in filtered if c) / len(filtered) if filtered else 0
return score_for_truth(1) * binder_weight + score_for_truth(0) * (
1 - binder_weight) | 39f19eb0adedf9e754012e9efa7c924b6d3b3bcf | 205,533 |
def get_completed_only(mxml_df):
"""
Filter only completed activities
"""
complete = mxml_df[mxml_df.EventType == "complete"].rename({
"Timestamp": "Timestamp_Complete"
}, axis=1).set_index(["TraceId", "WorkflowModelElement"])
return complete.drop(["Originator", "EventType"], errors='ignore', axis=1).reset_index() | 8da852d6cbd1bb915581a53d05501b495e50faaf | 628,560 |
import csv
def csv_readline_to_list(csv_file):
"""
Read the CSV content by line.
Example:
csv content:
|name|age|
| a |21 |
| b |22 |
| c |23 |
| d |24 |
| e |25 |
ret = csv_readline_to_list("d/demo.csv")
Return:
[['name', 'age'], ['a', '21'], ['b', '22'], ['c', '34'], ['d', '24'], ['e', '25']]
"""
try:
with open(csv_file, 'r', encoding="utf-8") as csv_fp:
reader = csv.reader(csv_fp)
rows = [row for row in reader]
except UnicodeDecodeError:
with open(csv_file, 'r', encoding="gbk") as csv_fp:
reader = csv.reader(csv_fp)
rows = [row for row in reader]
except IOError as ex:
raise Exception(ex)
return rows | 7e6359df416174eb501868845edfbbcb5fe00e57 | 661,598 |
from typing import List
def intersects(list1: List[object], list2: List[object]) -> bool:
"""
Returns True if two lists of objects intersect.
:param list1: the first list.
:param list2: the second list.
:return: True iff. they intersect.
"""
for e1 in list1:
if e1 in list2:
return True
return False | bdc7dfd81e646f5242cb756781a0673d7e122ab3 | 423,631 |
def first_not_none_param(params, default):
"""
Given a list of `params`, use the first param in the list that is
not None. If all are None, fall back to `default`.
"""
for param in params:
if param is not None:
return param
return default | c219e5b3606683dbc84ee6fe1124833304e6fa9b | 621,217 |
import re
def __extract_url_from_text(plain_text):
"""
Extract the first occurence URL in a plain text
"""
if plain_text:
results = re.findall(r'(https?://[^\s]+)', plain_text)
if results and len(results) > 0:
return results[0]
else:
return ""
else:
return "" | b128bdd86aa6648cf64e6c43d05f6897983ca164 | 226,490 |
def melt(
frame,
id_vars=None,
value_vars=None,
var_name=None,
value_name="value",
col_level=None,
ignore_index: bool = True,
): # noqa: PR01, RT01, D200
"""
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
"""
return frame.melt(
id_vars=id_vars,
value_vars=value_vars,
var_name=var_name,
value_name=value_name,
col_level=col_level,
ignore_index=ignore_index,
) | fed5581a8c0fde4fef8a178cffb8545b0d928108 | 549,619 |
def vol_format(x):
"""
Formats stock volume number to millions of shares.
Params:
x (numeric, like int or float)): the number to be formatted
Example:
vol_format(10000000)
vol_format(3390000)
"""
return "{:.1f}M".format(x/1000000) | 8da20a24c6c6373f271e6f0e94cf8205cb576cfc | 118,852 |
def is_binary_palindrome(num):
"""Return True if num is binary palindromic."""
num = bin(num)
num = num[2:]
return num == num[::-1] | 7af06b050063fc5b4c2fcfd576f2603a8487067d | 195,678 |
def get_file_type(file_name: str) -> str:
"""
Returns "test" if file_name contains the string "test" else returns "Production".
"""
result = "Production"
if ("test" in file_name or "Test" in file_name):
return "Test"
return result | 376ffc276d1bbd7548a34f60c39e9f079927c4ad | 336,486 |
def match_indices(shortened_list, primary_list):
"""
Returns the 'primary_list's indices that correspond to the matching
values in the 'shortened_list'. Assumes all values are unique.
(For use in the External CTE monitor, matches are between RA and Decs
and for a given source we can assume uniqueness.)
Parameters:
shortened_list : list of anything
A shortened 'primary_list' of whose values you want the
'primary_list's indices. Assumes all values are unique.
primary_list : list of anything
The original list of which the 'shortened_list' is a subset.
Assumes all values are unique.
Returns:
matched_indices : list of ints
The 'primary_list's indices that correspond to the matching
values in the 'shortened_list'.
Outputs:
nothing
"""
matched_indices = [i for i,x in enumerate(primary_list) if x in shortened_list]
return matched_indices | 899a04ba5fa68ed2485b158d54ea5558a9a507e1 | 507,510 |
import requests
from bs4 import BeautifulSoup
def request_page_data_soup(page_url):
"""
Method that uses the library requests and BeautifulSoup to get data from page at given page_url.
:param string page_url: given page url.
:return BeautifulSoup: returns BeautifulSoup object with data from collected page.
"""
page = requests.get(page_url)
page_soup = BeautifulSoup(page.content, 'html.parser', multi_valued_attributes=None)
return page_soup | 4818a8f5b9849500bc540a76a9886c681d95e4f0 | 213,575 |
def create_model(model_name, gpu=False):
"""
Creates model object from the model_name.
:param model_name: (str) the name of the model (corresponding exactly to the name of the class).
:param gpu: (bool) if True a gpu is used.
:return: (Module) the model object
"""
try:
model = eval(model_name)()
except NameError:
raise NotImplementedError(
'The model wanted %s has not been implemented.' % model_name)
if gpu:
model.cuda()
else:
model.cpu()
return model | b2692929fa34facf0a7add35161cd0133ebbd8e3 | 122,195 |
def fetch_sessions(job_config, data_bucket, data_dir, course, fetch_holdout_session_only = False, fetch_all_sessions = False):
"""
Fetch course sessions in data_bucket/data_dir. By default, fetches only training sessions (not holdout session).
:param job_config: MorfJobConfig object.
:param data_bucket: name of bucket containing data; s3 should have read/copy access to this bucket.
:param data_dir: path to directory in data_bucket that contains course-level directories of raw data.
:param course: string; name of course (should match course-level directory name in s3 directory tree).
:param fetch_holdout_session_only: logical; return only holdout (final) session.
:param fetch_all_sessions: logical; return all sessions (training and holdout).
:return: list of session numbers as strings.
"""
assert (not (fetch_holdout_session_only & fetch_all_sessions)), "choose one - fetch holdout sessions or fetch all sessions"
s3 = job_config.initialize_s3()
if not data_dir.endswith("/"):
data_dir = data_dir + "/"
course_bucket_objects = s3.list_objects(Bucket=data_bucket, Prefix="".join([data_dir, course, "/"]), Delimiter="/")
sessions = [item.get("Prefix").split("/")[2] for item in course_bucket_objects.get("CommonPrefixes")]
sessions = sorted(sessions, key = lambda x: x[-3:]) # handles session numbers like "2012-001" by keeping leading digits before "-" but only sorts on last 3 digits
if fetch_all_sessions: # return complete list of sessions
result = sessions
else:
holdout_session = sessions.pop(-1)
if fetch_holdout_session_only == True:
result = [holdout_session] # return only holdout session, but as a list, so type is consistent
else:
result = sessions # return list of sessions without holdout session
return tuple(result) | e1fb2cb74f466b1b886d019ea1c6d4f15a6617cd | 165,961 |
import torch
def _collate_fn_tensor(x):
""" Collate function for tensors.
Parameters
----------
x : `List` of `torch.Tensor`
Tensors to be stacked.
Returns
-------
x : `torch.Tensor`
Output tensor.
"""
return torch.stack(x) | 418aefa9e5057624489a0e8e874c40ca403cb7d1 | 128,449 |
def check_input_stream_count(expected_number_of_streams):
"""
Decorator for Tool._execute that checks the number of input streams
:param expected_number_of_streams: The expected number of streams
:return: the decorator
"""
def stream_count_decorator(func):
def func_wrapper(*args, **kwargs):
self = args[0]
sources = kwargs['sources'] if 'sources' in kwargs else args[1]
if expected_number_of_streams == 0:
if sources:
raise ValueError("No input streams expected")
else:
given_number_of_streams = len(sources) if sources else 0
if given_number_of_streams != expected_number_of_streams:
raise ValueError("{} tool takes {} stream(s) as input ({} given)".format(
self.__class__.__name__, expected_number_of_streams, given_number_of_streams))
return func(*args, **kwargs)
return func_wrapper
return stream_count_decorator | 96dfdc8f85d70dee1ac44f01f95dd07eb3725261 | 20,508 |
import re
def _clean(text):
""" Cleans the text: Lowercasing, trimming, removing non-alphanumeric"""
return " ".join(re.findall(r'\w+', text, flags=re.UNICODE)).lower() | ff3496a0fcae32ed1ecb7ceb106bbe60c1da25ea | 652,016 |
def str2num (text:str)->float:
""" Convert string to number.
Keyword arguments:
text -- number in string format
Output:
number -- number converted
"""
assert text.isnumeric(),"Error: The string can not be converted to a number"
number = float(text)
return number | 22db18949633092f12e1cafc7470f07e821fd4a4 | 642,032 |
def parse_error(bad_token):
"""Returns an error message and the token causing it
"""
return {"error": f"parsing error, invalid token [{bad_token}] found"} | 035875fd3949425c14f67ac98246fad263b1593c | 560,977 |
def create_dicts_by_chain(keys_chain: list):
"""
Create nested dicts by keys chain
>>> create_dicts_by_chain(['some', 'keys'])
{'some': {'keys': {}}}
"""
result = {}
current_dict = result
for key in keys_chain:
current_dict[key] = {}
current_dict = current_dict[key]
return result | 03ab93fbe62a59e539fd150ab1277c4377fd6739 | 663,590 |
def is_threatening(x1: int, y1: int, x2: int, y2: int) -> bool:
"""
Check if the positions are threatening each other.
Examples
--------
>>> is_threatening(0, 1, 1, 0)
True
"""
same_row = x1 == x2
same_col = y1 == y2
delta1 = min(x1, y1)
major_coords1 = (x1 - delta1, y1 - delta1)
delta2 = min(x2, y2)
major_coords2 = (x2 - delta2, y2 - delta2)
same_diagonal_major = major_coords1 == major_coords2
delta1 = x1
delta2 = x2
minor_coords1 = (x1 - delta1, y1 + delta1)
minor_coords2 = (x2 - delta2, y2 + delta2)
same_diagonal_minor = minor_coords1 == minor_coords2
same_diagonal = same_diagonal_major or same_diagonal_minor
return same_row or same_col or same_diagonal | 90779ad3268aeb5eeb1962ac3623904694f5d4bb | 127,707 |
import csv
def load_environment_data(filename):
"""
Loads the environment boundaries and obstacles from a text file
:param filename: path and name to the file with robot state information
:return: lists of tuples of coordinates for the environment boundaries and obstacles
"""
environment_bounds = list()
obstacles = list()
with open(filename, 'r', encoding='utf8') as fin:
reader = csv.reader(fin, skipinitialspace=True, delimiter=',')
raw_bounds = next(reader)
while raw_bounds:
x_coordinate = int(raw_bounds.pop(0))
y_coordinate = int(raw_bounds.pop(0))
coordinate = (x_coordinate, y_coordinate)
environment_bounds.append(coordinate)
for raw_obstacle in reader:
temporary_obstacle = list()
while raw_obstacle:
x_coordinate = float(raw_obstacle.pop(0))
y_coordinate = float(raw_obstacle.pop(0))
coordinate = (x_coordinate, y_coordinate)
temporary_obstacle.append(coordinate)
obstacles.append(temporary_obstacle)
return environment_bounds, obstacles | aae82786b2c2a274cb52f9b025442eaa889d61e1 | 152,636 |
import json
def load_int_key_json2dict(f):
"""Read JSON file to dict, converting keys to int."""
d = {}
with open(f, 'r', encoding='UTF-8') as json_file:
d = {int(k): v for k, v in json.load(json_file).items()}
return d | b37a9e045b677eeb62a6a91f94d7e2143d30683f | 156,584 |
import torch
def local_response_normalization(x, eps=1e-8):
"""
Implements the variant of LRN used in ProGAN https://arxiv.org/pdf/1710.10196.pdf
:param eps: Epsilon is a small number added to the divisor to avoid division by zero
:param x: Output of convolutional layer (or any other tensor with channels on axis 1)
:return: Normalized x
"""
divisor = (torch.pow(x, 2).mean(dim=1, keepdim=True) + eps).sqrt()
b = x/divisor
return b | 5d2fc78a9d3360a7e97b1c256965069d2422f392 | 387,401 |
import inspect
def get_arg_spec(function, follow_wrapped=False) -> inspect.FullArgSpec:
"""
Get the arg spec for a function.
:param function: A function.
:param follow_wrapped: Follow `__wrapped__`, defaults to False.
:return: A :class:`inspect.FullArgSpec`
"""
if follow_wrapped:
function = inspect.unwrap(function)
return inspect.getfullargspec(function) | e3e397ddbcfc341c0e02c06d693fa04ea65e6cb5 | 119,378 |
def getShiftedString(s, leftShifts, rightShifts):
"""
Generate the string after the following operations
1. Left Circle Shift
2. Right Circle Shift
:type s: string
:type leftShifts: int
:type rightShifts: int
Examples:
>>> getShiftedString("abc",1,0)
'bca'
>>> getShiftedString("abc",1,7)
'abc'
"""
# Limit Huge Shifts
sLen = len(s)
leftShifts = leftShifts % sLen
rightShifts = rightShifts % sLen
# Generate Left shifted string
leftS = s[leftShifts:] + s[:leftShifts]
# Generate Right shifted string
rightS = leftS[-rightShifts:] + leftS[0:-rightShifts]
return rightS | 151e5d622d1677c672bd084c9e6e6ec2f61f3d32 | 440,631 |
def fill(character, data_qubits):
"""
Apply a specific gate to all data qubits
Args:
character: The QASM gate to apply
data_qubits: The number of data qubits
Returns: Valid QASM to append to the program
"""
# create a list of the qubit indices that need the gate applied
indices = ",".join(map(str, range(data_qubits)))
return "{} q[{}]\n".format(character, indices) | fbdfd994e7511f7f8ff4a0a1adb21f1a5742b5b3 | 560,411 |
def unpack_score(score, **kwargs):
"""
Pulls specific model score out of score json.
If perspective can't score text, 0 is used.
Args:
score(dict): complete score json for a tweet
kwargs: name of the model to unpack score
Returns:
model_score: integer that represents percentage score for a given model
"""
model_name = kwargs.get('model_name')
if 'attributeScores' in score:
model_score = round(
score['attributeScores'][model_name]['summaryScore']['value'] * 100)
else:
model_score = 0
return model_score | ef550019b1000687deee0274bab876973c07207c | 452,457 |
def _cmp_dispatcher(other_method_name):
"""
Dispatch comparisons to a method of the *other* object.
Returns a new *rich comparison* method which dispatches calls to
the method `other_method_name` of the *other* object. If there is
no such method in the object, ``False`` is returned.
This is part of the implementation of a double dispatch pattern.
"""
def dispatched_cmp(self, other):
try:
other_method = getattr(other, other_method_name)
except AttributeError:
return False
return other_method(self)
return dispatched_cmp | 925cfea1c328365d2a91f92b2c3fecebc06ce7a5 | 334,547 |
def close_to_obstacle(state):
"""
Return true or false depending if we're within
a certain distance of an obstacle.
"""
cutoff_dist = 0.5
closest_obstacle = min(state[0])
if (closest_obstacle < cutoff_dist):
return True
return False | 1fb7abfcd58d4d228c37cec5acfbd6d6882cbd93 | 205,138 |
def convert_band(old_band):
"""
Convert an old band string into a new string.
NOTE: Only exists to support old data formats.
"""
if old_band:
old_band = old_band.strip() # Strip off superfluous white space
if old_band == 'A':
return 'SHORT'
elif old_band == 'B':
return 'MEDIUM'
elif old_band == 'C':
return 'LONG'
else:
# For any other value, return the same string
return old_band | c36c55daceb91ed201e45e9b4cce7cd7b8c8d085 | 246,794 |
def xor( a, b ):
"""Compute the boolean xor of two values"""
return bool( a ) != bool( b ) | 6679f67a939fb0f18c40085fc9ef1d478082c670 | 403,170 |
def get_strains(output_file):
"""
Returns a dictionary that maps cell id to strain.
Takes Biocellion output as the input file.
"""
strain_map = {}
with open(output_file, 'r') as f:
for line in f:
if line.startswith("Cell:"):
tokens = line.split(',')
cell = int(tokens[0].split(':')[1])
strain = int(tokens[1].split(':')[1])
strain_map[cell] = strain
return strain_map | a4ce24cd0f4cb213ee42e611f178b1415a5506be | 682,758 |
from typing import Any
def merge_dict(*dicts: dict[str, Any]) -> dict[str, list[str]]:
"""
Merge dicts and return a dictionary mapping key to list of values.
Order of the values corresponds to the order of the original dicts.
"""
ret: dict[str, list[str]] = {}
for dict_ in dicts:
for key, val in dict_.items():
ret.setdefault(key, []).append(val)
return ret | 3b0fca7160915610a39777237ac794fce0734d3f | 329,269 |
import re
def clean_name(name: str) -> str:
"""
Bring the name into a standard format by replacing multiple spaces and characters
specific for German language
"""
result = re.sub(r"\s+", " ", name)
return (
result.replace("ß", "ss")
.lower()
.replace("ä", "ae")
.replace("ü", "ue")
.replace("ö", "oe")
) | 8cb8ba45fcec1dcc0e04ccfcd4263ae3e82e9fb5 | 28,370 |
def recursive_update(original_dict: dict, new_dict: dict) -> dict:
"""Recursively update original_dict with new_dict"""
for new_key, new_value in new_dict.items():
if isinstance(new_value, dict):
original_dict[new_key] = recursive_update(
original_dict.get(new_key, {}), new_value
)
else:
original_dict[new_key] = new_value
return original_dict | 5c85e5fc14571fdffb88f4c4822b7e369b790bfa | 693,328 |
def vertical_unfold(A):
"""
For a 3D tensor A(a,i,b), we unfold like: A(ia,b)
"""
S = A.shape
return A.permute(1, 0, 2).reshape(S[0] * S[1], S[2]) | 30e469715fb79e42420e344f91cac0b9ab791497 | 327,817 |
def check_response(resp_dict):
"""Analyzes the dictionary response from an API call, 'resp_dict';
if the response indicates an error, raise an appropriate Exception,
otherwise return 'resp_dict'.
"""
if resp_dict['status'] == 'success':
return resp_dict
elif resp_dict['status'] == 'fail':
raise ValueError(f"Bad Argument: {resp_dict['data']}")
else:
raise RuntimeError(f"Error at server: {resp_dict['message']}") | ad63f0fa3064ab3edb00a18848c92dbcfc91d2aa | 224,286 |
def chop(seq, size):
"""Chop a sequence into chunks of the given size."""
chunk = lambda ii: seq[ii:ii + size]
return map(chunk,range(0, len(seq), size)) | 958e6523fba9ec8097c242fbe8f7c419c1dce8b8 | 183,807 |
def Rmax_Q11(Vmax):
""" Estimation of the radius of maximum wind according to the formula proposed
by Quiring et al. (2011); Vmax and Rmax are in nautical miles.
Expression herein converted in km"""
Vm= Vmax * 0.5399568
Rmax = ((49.67 - 0.24 * Vm)) * 1.852
return Rmax | e320acfd64abc9e7ae30ca70979cf057239bae09 | 699,855 |
def get_words_by_start_time(transcript):
"""Merges punctuation with standard words since they don't have a start time,
returns them in a handy map of start_time to word and confidence
Args:
transcript: Amazon Transcript JSON
Returns:
(dict): a map of start_time to word and confidence
"""
merged_words = {}
items = transcript["results"]["items"]
for i, item in enumerate(items):
# Only save pronunciations... may not be necessary, or may need other types
if item["type"] == "pronunciation":
word = item["alternatives"][0]["content"]
confidence = item["alternatives"][0]["confidence"]
# If the next item in the transcript is a punctuation, merge with the current word
if i < len(items) - 1 and items[i + 1]["type"] == "punctuation":
word += items[i + 1]["alternatives"][0]["content"]
# Add the word to the map at start time
merged_words[item["start_time"]] = {
"content": word,
"confidence": confidence,
}
return merged_words | 20e779944bcbde8b7281cd5f807ad6cdb6660332 | 121,117 |
def concat_key_values(dicts, keys, new_key, join_string):
"""
Concatenate multiple dict fields into a new field
"""
print("concat keys {}".format(keys))
for d in dicts:
concat = []
for key in keys:
if not key in d:
continue
concat.append(str(d[key]))
d[new_key] = join_string.join(concat)
return dicts | 434cd6792fe8e963f888c64d5b4f199cf9b302e9 | 411,999 |
def write_out_file(contents, filename, mode='w'):
"""Write contents to outfile directly.
Default mode is truncate/create new file; pass mode='a' if append to existing.
"""
try:
with open(filename, mode) as f:
f.write(contents)
except Exception as e:
print(f'Error: {e}')
return None
else:
return filename | 0b86e0dbb480fe8c11c1fb446831d7221d9d0dc5 | 407,915 |
def create_search_url(base_url, keyword_list):
"""Create Google search URL for a keyword from keyword_list
Args:
keyword_list (list): list of strings that contain the search keywords
base_url (str): Google's base search url
Returns:
list: Google search url like https://www.google.com/search?q=pizza
"""
search_kw = [kw.replace(" ", "+") for kw in keyword_list] # replace space with '+'
search_query = [base_url + sq for sq in search_kw]
return search_query | f50b4c3545bf7f2efcf5a7640c4fe8bc98f031df | 524,015 |
def split_field(split_on):
"""Returns a function that splits input text, based on given parameter."""
def _splitter(text):
return map(str.strip, text.split(split_on))
return _splitter | de65043111af1de782074ff9b3e5619d28911208 | 508,025 |
def Npart(request):
"""
Fixture for returning the number of particles in a dataset.
Needed because indirect=True is used for loading the datasets.
"""
return request.param | 206de0a906dcabde28dd7611754a86c65b1211f5 | 144,272 |
def remove_url(tweet):
"""
Removes '<url>' tag from a tweet.
INPUT:
tweet: original tweet as a string
OUTPUT:
tweet with <url> tags removed
"""
return tweet.replace('<url>', '') | dc0a5696d2e21721004fee6e1de1a13be50a8bf3 | 303,208 |
def compute_avna(prediction, ground_truths):
"""Compute answer vs. no-answer accuracy."""
return float(bool(prediction) == bool(ground_truths)) | 9a19da6de0eab7b2993ef32f9d5754bd1c73eb04 | 448,295 |
import math
def calculate_tc(
max_flow_length, #units of meters
mean_slope, # percent slope
const_a=0.000325,
const_b=0.77,
const_c=-0.385
):
"""
calculate time of concentration (hourly)
Inputs:
- max_flow_length: maximum flow length of a catchment area, derived
from the DEM for the catchment area.
- mean_slope: average slope, from the DEM *for just the catchment area*. This must be
percent slope, provided as an integer (e.g., 23, not 0.23)
Outputs:
tc_hr: time of concentration (hourly)
"""
if not mean_slope:
mean_slope = 0.00001
return (
const_a
* math.pow(max_flow_length, const_b)
* math.pow((mean_slope / 100), const_c)
) | bf0976466441b65b836693b65982e7f2a238ce96 | 290,092 |
from datetime import datetime
def values(csv_row: dict, timestamp=None):
"""
Return a dictionary of the telemetry values from the row. If timestamp is
None, add current timestamp in seconds.
"""
if timestamp is None:
timestamp = datetime.now().timestamp()
def valid_key(key):
return key not in ('date', 'time')
return dict(((k, v) for k, v in csv_row.items() if valid_key(k)),
timestamp=timestamp) | f7f942ee8b626aad7fe088c07f89d4e746cf7635 | 208,133 |
def normalize_houndsfield(data_):
"""Normalizes houndsfield values ranging from -1024 to ~+4000 to (0, 1)"""
cpy = data_ + 1024
cpy /= 3000
return cpy | 74bd07b6e315de9c256f447b7b45387943660526 | 536,390 |
def _detects_peaks(ecg_integrated, sample_rate):
"""
Detects peaks from local maximum
----------
Parameters
----------
ecg_integrated : ndarray
Array that contains the samples of the integrated signal.
sample_rate : int
Sampling rate at which the acquisition took place.
Returns
-------
choosen_peaks : list
List of local maximums that pass the first stage of conditions needed to be considered as
a R peak.
possible_peaks : list
List with all the local maximums in the signal.
"""
# Minimum RR interval = 200 ms
min_rr = (sample_rate / 1000) * 200
# Computes all possible peaks and their amplitudes
possible_peaks = [i for i in range(0, len(ecg_integrated)-1)
if ecg_integrated[i-1] < ecg_integrated[i] and
ecg_integrated[i] > ecg_integrated[i+1]]
possible_amplitudes = [ecg_integrated[k] for k in possible_peaks]
chosen_peaks = []
# Starts with first peak
if not possible_peaks:
raise Exception("No Peaks Detected.")
peak_candidate_i = possible_peaks[0]
peak_candidate_amp = possible_amplitudes[0]
for peak_i, peak_amp in zip(possible_peaks, possible_amplitudes):
if peak_i - peak_candidate_i <= min_rr and peak_amp > peak_candidate_amp:
peak_candidate_i = peak_i
peak_candidate_amp = peak_amp
elif peak_i - peak_candidate_i > min_rr:
chosen_peaks += [peak_candidate_i - 6] # Delay of 6 samples
peak_candidate_i = peak_i
peak_candidate_amp = peak_amp
else:
pass
return chosen_peaks, possible_peaks | ab9dd461f65095f048942ab8b8c069c456ea4933 | 11,554 |
def mususpension(temperature, concentration):
"""Returns the dynamic viscosity of the suspension.
Regression using data from Petkov, G. D. (1996). See Appendix X.
#Inputs:
#temperature :Temperature of the medium in the PBR ; °C
#concentration :Biomass concentration ; g.L-1
#Outputs:
#visco : Dynamic viscosity of the suspension ; mPa.s
"""
# See regression for non excreting strains
visco = (1.507027 - 0.019466*temperature + 0.035762*concentration)
return visco | 30445aaa7ca6cbd7a3f732214b66971e1a930f20 | 403,313 |
def min_exval(v1, v2):
""" Return the smaller one between two extended values."""
if v1 <= v2:
return v1
return v2 | ab9e1e41211feaa5fcb824c5fce83097c80f31fa | 489,982 |
def undo_squash_to_unit_interval(x: float, constant: float) -> float:
"""Computes the input value of squash_to_unit_interval given the output."""
if constant <= 0:
raise ValueError('Squash constant must be greater than zero.')
if 0 > x >= 1:
raise ValueError('Undo squash can only be performed on a value in [0, 1).')
return (x * constant) / (1 - x) | e421e6ca05c2af1d323f855dc3e9d8fd430a1eb0 | 143,434 |
def _get_display_name(name, display_name):
"""Returns display_name from display_name and name."""
if display_name is None:
return name
return display_name | bb14d4f1719dbd1abe1543d48ab7a8cf8c9e9609 | 207,173 |
def hex_reverse(integer, size):
"""
Reverse a hex string, bf99 -> 99bf
"""
string = '{0:0{1}x}'.format(integer, size)
return ''.join([string[i-2:i] for i in range(len(string), 0, -2)]) | 822a7e1be806ac551288295533f2d86d4689f2a0 | 151,030 |
from typing import List
from typing import Dict
from typing import Any
def assert_typing(
input_text_word_predictions: List[Dict[str, Any]]
) -> List[Dict[str, str]]:
"""
this is only to ensure correct typing, it does not actually change anything
Args:
input_text_word_predictions: e.g. [
{"char_start": 0, "char_end": 7, "token": "example", "tag": "O"},
..
]
Returns:
input_text_word_predictions_str: e.g. [
{"char_start": "0", "char_end": "7", "token": "example", "tag": "O"},
..
]
"""
return [
{k: str(v) for k, v in input_text_word_prediction.items()}
for input_text_word_prediction in input_text_word_predictions
] | 0835bad510241eeb2ee1f69ac8abeca711ebbf53 | 2,323 |
def _category_and_fandom(soup):
"""
.. versionadded:: 0.3.0
Returns the FanFiction category and fandom from the soup.
* Category is one of nine possible categories from ``['Anime/Manga',
'Books', 'Cartoons', 'Comics', 'Games', 'Misc', 'Movies',
'Plays/Musicals', 'TV']``
* Fandom is the specific sub-category, whereas category may be
``Plays/Musicals``, the fandom could be ``RENT``, ``Wicked``, etc.
:param soup: Soup containing a page from FanFiction.Net
:type soup: bs4.BeautifulSoup class
:returns: Tuple where the first item is the category and the second item is
the fandom.
:rtype: tuple.
.. code-block:: python
from ffscraper.fanfic.story import __category_and_fandom
from bs4 import BeautifulSoup as bs
import requests
r = requests.get('https://www.fanfiction.net/s/123')
html = r.text
soup = bs(html, 'html.parser')
print(_category_and_fandom(soup))
.. code-block:: bash
('Plays/Musicals', 'Wicked')
"""
c_f = soup.find('div', {'id': 'pre_story_links'}).find_all('a', href=True)
return c_f[0].text, c_f[1].text | 807c4c3e3928726820f3075a9f896e3231b66814 | 237,142 |
def title_case(sentence):
"""
Converts enetered string into the title_case
Parameters
-----------
sentence : string
string to be converted into sentence case
Returns
-------
title_case_sentence : string
string in TITLE CASE
Example
-------
>>>title_case('ThiS iS a StRING')
This Is A String.
>>>
"""
# Check that input is a string
if not isinstance(sentence, str):
raise TypeError('Invalid input {} - Input must be of type string'.format(sentence))
# Error if empty StRING
if len(sentence) == 0:
raise ValueError('Cannot apply title case to empty string')
title_case_sentence = ""
list_of_words = sentence.split(' ')
for words in list_of_words:
words = words[0].upper() + words[1:].lower()
title_case_sentence = title_case_sentence + " " + words
return title_case_sentence.strip() | 8cef40ec1f14f78fa4211aaf896b9b2426a0682e | 665,133 |
def get_model_identifier(filename: str) -> str:
"""Returns model identifier."""
return filename.split("_")[-1][:-3] | 089dfa9f137ba3d95fc554d009a97e7ed6244fb9 | 384,056 |
def binary_or(a: int, b: int):
"""
Take in 2 integers, convert them to binary, and return a binary number that is the
result of a binary or operation on the integers provided.
>>> binary_or(25, 32)
'0b111001'
>>> binary_or(37, 50)
'0b110111'
>>> binary_or(21, 30)
'0b11111'
>>> binary_or(58, 73)
'0b1111011'
>>> binary_or(0, 255)
'0b11111111'
>>> binary_or(0, 256)
'0b100000000'
>>> binary_or(0, -1)
Traceback (most recent call last):
...
ValueError: the value of both input must be positive
>>> binary_or(0, 1.1)
Traceback (most recent call last):
...
TypeError: 'float' object cannot be interpreted as an integer
>>> binary_or("0", "1")
Traceback (most recent call last):
...
TypeError: '<' not supported between instances of 'str' and 'int'
"""
if a < 0 or b < 0:
raise ValueError("the value of both input must be positive")
a_binary = str(bin(a))[2:] # remove the leading "0b"
b_binary = str(bin(b))[2:]
max_len = max(len(a_binary), len(b_binary))
return "0b" + "".join(
str(int("1" in (char_a, char_b)))
for char_a, char_b in zip(a_binary.zfill(max_len), b_binary.zfill(max_len))
) | 514fa4a02b778dfa91c4097bb8916522339cda33 | 705,570 |
def c_equals(value_1, value_2):
"""The intrinsic conditional function Fn::Equals
Compares if two values are equal.
Returns true if the two values are equal or false if they aren't.
"""
return {'Fn::Equals': [value_1, value_2]} | 9ce9b066837e67c0a7c5f18796d294dd0b9a90e5 | 363,545 |
from typing import Union
from datetime import datetime
def parse_nanotimestamp(s: str) -> Union[int, float]:
"""Parse datetime string with nanoseconds
Args:
s (str): datetime string
Returns:
datetime: datetime object
"""
tz = ""
if s[-1] == "Z":
# Add explicit UTC timezone
tz = "Z+0000"
# Get milliseconds and convert it to unix timestamp
return datetime.strptime(s[0:23] + tz, "%Y-%m-%dT%H:%M:%S.%fZ%z").timestamp() | 5e472ac10a7948dba02ad12bba186ddb3796f927 | 311,459 |
def num_tags(tree, tag):
"""Returns the total number of tags in the tree of name tag
Example, count planets: num_tags(tree, 'planet')
:param tree: lxml etree
:param tag: string containing <tag> name.
:returns: integer representing number of tags found.
"""
return int(tree.xpath("count(.//" + tag + ")")) | 2ac01dbf99891f6ab966728fa20d60b2e3e1517d | 286,891 |
def isbatch(line):
"""
Batches are wrapped in BHS / BTS or have more than one
message
BHS = batch header segment
BTS = batch trailer segment
"""
return line and (
line.strip()[:3] == "BHS"
or (line.count("MSH") > 1 and line.strip()[:3] != "FHS")
) | 8aaab051ddd3b8e67f8da80ba2e055312c82f473 | 168,023 |
def find_aligned_codons(aln):
"""Returns the columns indices of the alignment that represent aligned
codons.
"""
# throw out codons with non mod 3 gaps
ind2 = []
for i in range(0, aln.alignlen(), 3):
bad = False
for key, val in aln.iteritems():
codon = val[i:i+3]
if "-" in codon and codon != "---":
bad = True
break
if not bad:
ind2.extend([i, i+1, i+2])
return ind2 | ff04f1db152a15d60112a792d25a4e521cca4470 | 415,948 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.