content
stringlengths
39
9.28k
sha1
stringlengths
40
40
id
int64
8
710k
def remove_xenon(te_img, xe_img, te_iso, xe_iso, clamp_neg=True): """ Based on the abundances of the Xe and Te isotopes in question, and the Xe images, calculates the expected component the Te image that actually comes from Xe and subtracts it. By default the function assumes any pixels that become negative after subtraction contain no tellurium and so clamps them to 0. """ # Percentage abundance of different Xe isotopes xe_abundances = {'124': 0.095, '126': 0.089, '128': 1.910, '129': 26.401, '130': 4.071, '131': 21.232, '132': 26.909, '134': 10.436, '136': 8.857} """ Checks that the isotope requested is xenon contaminated. Returns the input array if not, and prints a warning. """ if str(te_iso)not in xe_abundances: print('{0} is not contaminated with Xe. Input image returned.'.format(str(te_iso))) return te_img ratio = xe_abundances[str(te_iso)] / xe_abundances[str(xe_iso)] scaled_xe = xe_img * ratio subtracted = te_img - scaled_xe # Clamp negative pixels to zero if clamp_neg if clamp_neg: subtracted[subtracted < 0] = 0 return subtracted
25c1f3d8d8f600290c1d41b520458dc6a00fc54a
19,965
import logging def get_logger(name: str) -> logging.Logger: """ Gets the appropriate logger for this backend name. """ return logging.getLogger('proxytest.' + name)
d0e0f9de13d9b603326b70a6acdbff7f3288b421
37,409
import importlib def get_function(function_path): """ find and import a function dynamically. Parameters ---------- function_path : string A string with the path to the function. The expected format is: - `<function>` - `<packages>.<module>.<function>` - `<packages>.<module>.<class>.<method>` """ try: return importlib.import_module(function_path) except ImportError: components = function_path.split('.') try: module = importlib.import_module('.'.join(components[:-1])) except ImportError: module = importlib.import_module('.'.join(components[:-2])) class_object = getattr(module, components[-2]) return getattr(class_object, components[-1]) else: return getattr(module, components[-1])
f58459a42f5eafa7fda0ca881cec74b49e7e623d
254,859
def all_relevant_registers_filled(registers, relevant_registers) : """ @param registers : a dictionary of each register content { 'register #': 'value' } @param relevant_registers : an ordered list of register indexes related to that method call @rtype : True if all the relevant_registers are filled, False if not """ answer = True for i in relevant_registers : # assert a False answer for null registers from the "move-result" instruction if not(i in registers) or (i in registers and len(registers[i]) < 1) : answer = False return answer
cba6d33b168749dd989bcf850f4cbcde01e43b3f
572,240
def _pretty_algorithm(opt): """ Return the algorithm name. """ if opt.algorithm == opt.algo_bit_by_bit: return 'bit-by-bit' elif opt.algorithm == opt.algo_bit_by_bit_fast: return 'bit-by-bit-fast' elif opt.algorithm == opt.algo_table_driven: return 'table-driven' else: return 'UNDEFINED'
d0b54bba3c28785edc9dbd7af8f420d68f25c865
476,769
def reverse_array(n): """ Reverse an array (or string). If it is string, you can also use the reverse() method. >>> reverse_array([1,2,3]) [3, 2, 1] This works for String too !! >>> reverse_array("abhishek") 'kehsihba' """ return n[::-1]
c7c30ebcc0d7a3364b3cea852524c6ab08dd6b96
542,201
def predict_sklearn_model(ts, model): """ Parameters: ts (pandas.DataFrame): time series values created by src.time_series_functions.create_windowing model (Sklearn Model): base model to predict ts Returns: numpy array: predicted values """ x = ts.drop(columns=['actual'], axis=1) return model.predict(x)
5da75b78ab1745a751aa1a3022faeedcd7d19202
170,285
def _read_band_number(file_path): """ :type file_path: Path :return: >>> _read_band_number(Path('reflectance_brdf_2.tif')) '2' >>> _read_band_number(Path('reflectance_terrain_7.tif')) '7' >>> p = Path('/tmp/something/LS8_OLITIRS_NBAR_P54_GALPGS01-002_112_079_20140126_B4.tif') >>> _read_band_number(p) '4' """ number = file_path.stem.split('_')[-1].lower() if number.startswith('b'): return number[1:] return number
e02594f32d87260231951df94bbe8e3d704ddc6b
691,794
def subsequent_pairs(l): """ Return subsequent pairs of values in a list <l>, i.e. [(x1, x2), (x2, x3), (x3, x4), .. (xn-1, xn)] for a list [x1 .. xn] """ return [(l[i-1], v) for i, v in enumerate(l) if i > 0]
c7fdb289e184723900dfb3c504b879728a95e11b
260,220
def dur_attributes_to_dur(d_half, d_semiqvr): """ Convert arrays of d_hlf and d_sqv to d. - See eq. (2) of the paper. """ def d_hlf_dur_sqv_to_d(d_hlf, d_sqv): return 8 * d_hlf + d_sqv d = d_hlf_dur_sqv_to_d(d_half, d_semiqvr) return d
aeea74f929ef94d94178444df66a30d0d017fd4e
6,117
from typing import Optional from typing import Callable import functools import warnings def deprecated_function( last_version: Optional[str] = None, msg: Optional[str] = None, stacklevel: int = 2, ) -> Callable: """A function or method decorator to show deprecation warning. Args: last_version: The Qiskit Experiment version that this function is removed. msg: Extra message, for example, to indicate alternative approach. stacklevel: Stacklevel of this warning. See Python Warnings documentation for details. Examples: .. code-block:: @deprecated_function(last_version="0.3", msg="Use new_function instead.") def old_function(*args, **kwargs): pass def new_function(*args, **kwargs): pass Returns: Deprecated function or method. """ def deprecated_wrapper(func: Callable): @functools.wraps(func) def _wrap(*args, **kwargs): namespace = func.__qualname__.split(".") if len(namespace) == 1: message = f"The function '{func.__name__}' has been deprecated and " else: cls_name, meth_name = namespace message = f"The method '{meth_name}' of '{cls_name}' class has been deprecated and " if last_version: message += f"will be removed after Qiskit Experiments {last_version}. " else: message += "will be removed in future release. " if msg: message += msg warnings.warn(message, DeprecationWarning, stacklevel=stacklevel) return func(*args, **kwargs) return _wrap return deprecated_wrapper
69ef02beddf1428892ec2323d6239ea3fe7cf621
133,629
import pkg_resources def pkg_resource_filename(path): """Return absolute filepath for the given input path. Args: path: str, filepath name. Returns str, absolute filepath name. """ path_vals = path.split('/') abs_filename = pkg_resources.resource_filename('.'.join(path_vals[:-1]), path_vals[-1]) return abs_filename
d76e3458ab6d86ebadc0a7e8fa78fd2d1899d6ec
439,098
import hashlib def make_hash(to_hash: str) -> str: """ Return a hash of to_hash. """ new_hash = hashlib.md5() new_hash.update(to_hash.encode("utf-8")) return str(new_hash.hexdigest())
7e800f7942df23256373c221428e5c24b65cabee
699,024
import builtins def _str_to_list(value, separator): """Convert a string to a list with sanitization.""" value_list = [item.strip() for item in value.split(separator)] value_list_sanitized = builtins.list(filter(None, value_list)) if len(value_list_sanitized) > 0: return value_list_sanitized else: raise ValueError('Invalid list variable.')
378037df213307a6a98b54c5c0a0d5a386a76375
317,341
def is_percent(val): """Checks that value is a percent. Args: val (str): number string to verify. Returns: bool: True if 0<=value<=100, False otherwise. """ return int(val) >= 0 and int(val) <= 100
fb24d89315dbf192d57afb30f02d02c400066221
244,338
def node_is_reachable(src_node, dst_node): """ Returns true if a node is unreachable from another node. :param src_node: The source node to check from reachability from. :param dst_node: The destination node to check for reachability to. :return: True only if dst is reachable from src. """ return 0 == src_node.account.ssh("nc -w 3 -z %s 22" % dst_node.account.hostname, allow_fail=True)
90fc2ccdfc293508661e62dcd39cd15ce0cb813a
140,615
def shorten(thelist, maxlen, shorten): """ If thelist has more elements than maxlen, remove elements to make it of size maxlen. The parameter shorten is a string which can be one of left, right, both or middle and specifies where to remove elements. :param thelist: the list to shorten :param maxlen: maximum length of the list :param shorten: one of left, right, both, middle, where to remove the elements :return: the shortened list """ if len(thelist) <= maxlen: return thelist if shorten == "right": return thelist[0:maxlen] elif shorten == "left": return thelist[-maxlen-1:-1] elif shorten == "both": excess = len(thelist) - maxlen; left = int(excess/2) right = excess - left return thelist[left:-right] elif shorten == "middle": excess = len(thelist) - maxlen; left = int(excess/2) right = excess - left return thelist[0:left]+thelist[-right:] else: raise Exception("Not a valid value for the shorten setting: {}".format(shorten))
72aa428b04b34737225717396946bce009be6bc1
654,623
import typing def compute_first_index(tour_nodes: typing.List[int]) -> typing.List[int]: """Compute first index in euler tour from euler tour on nodes. Args: tour_nodes (typing.List[int]): euler tour on nodes. Returns: typing.List[int]: first indices. Examples: >>> tour_nodes = [0, 1, 4, 1, 2, 1, 0, 3, 0] >>> compute_first_index(tour_nodes) [0, 1, 4, 7, 2] """ n = len(tour_nodes) + 1 >> 1 first_idx = [-1] * n for i, u in enumerate(tour_nodes): if first_idx[u] == -1: first_idx[u] = i return first_idx
349c6f76bddb98741bca50bac88a51066c5d3a79
353,056
def replace_font_name(font_name, replacement_dict): """ Replaces all keys with vals from replacement_dict in font_name. """ for key, val in replacement_dict.items(): font_name = font_name.replace(key, val) return font_name
8e8762aad82b8497fb71a9b4d28e3c23c79b314f
516,979
def polygon_extrema(polygon): """ Returns the longitude and latitude extrema from a geojson polygon. """ polygon_geometry = polygon.features[0].geometry.coordinates[0][0] min_lon = polygon_geometry[0][0] max_lon = polygon_geometry[0][0] min_lat = polygon_geometry[0][1] max_lat = polygon_geometry[0][1] for [lon, lat] in polygon_geometry: if min_lon > lon: min_lon = lon if max_lon < lon: max_lon = lon if min_lat > lat: min_lat = lat if max_lat < lat: max_lat = lat return (min_lon, max_lon, min_lat, max_lat)
d19ba548dfc2254b5cff16a546a053ec4d683338
330,733
def coerce_int_except(v, msg): """Convert to an int, throw an exception if it isn't""" try: return int(v) except: raise ValueError("Bad value: '{}'; {} ".format(v,msg) )
f0d615692594e3dde9fb4a81d33278bab6807386
319,202
def rem_num(num, lis): """ Removes all instances of a number 'num', from list lis. """ return [ele for ele in lis if ele != num]
c2fd18b49a70a01bf9d44da1b2aacf8d4e93cbe9
49,887
def transformName(name: str, isClass: bool = False): """Transforms a name as KSC transforms it for python language""" if isClass: def capitalizeFirstLetter(word): return word[0].upper() + word[1:] return "".join((capitalizeFirstLetter(p) for p in name.split("_"))) else: return name
225ef57546be69e3ea317f7375a1e52de3215cb2
461,011
import re def decamelize(s): """Decamelize the string ``s``. For example, ``MyBaseClass`` will be converted to ``my_base_class``. """ if not isinstance(s, str): raise TypeError('decamelize() requires a string argument') if not s: return '' return re.sub(r'([a-z])([A-Z])', r'\1_\2', s).lower()
fc30254742bcc79047dd6803d0d7b87c951a9f10
17,365
import csv def read_csv(input_file_path, verbose=False, delimiter=','): """ Function reads csv file and returns list of records :param input_file_path: path to csv file :param verbose: defines if verbose mode :param delimiter: fields separator in csv file :return: list of records """ result = [] with open(input_file_path) as csv_file: for row in csv.reader(csv_file, delimiter=delimiter): result.append(row) if verbose: print(result) return result
57597e820750b11382cd27e31135fa8b6f45153e
16,501
import json def categorize_dimensions(data_files): """ Categorize dimensions as cprops, spatial dimensions or time dimensions Args: data_files: list of the raw data json files Returns: an object: { spatial: map of spatial dimensions to the number of occurences, time: list of time dimensions, cprop: sorted list of {id: dimension code as string, num: number of occurences} } """ spatial_dim = {} time_dim = set() cprop_dim = {} for f in data_files: with open(f, "r+") as indicator_data: indicator_data = json.load(indicator_data).get("value", []) if len(indicator_data) == 0: continue for data in indicator_data: spatial_dim_type = data.get("SpatialDimType", "") spatial_dim_count = spatial_dim.get(spatial_dim_type, 0) spatial_dim[spatial_dim_type] = spatial_dim_count + 1 time_dim.add(data.get("TimeDimType", "")) dim1Type = data.get("Dim1Type", "") if not dim1Type: continue dim1Count = cprop_dim.get(dim1Type, 0) cprop_dim[dim1Type] = dim1Count + 1 dim2Type = data.get("Dim2Type", "") if not dim2Type: continue dim2Count = cprop_dim.get(dim2Type, 0) cprop_dim[dim2Type] = dim2Count + 1 dim3Type = data.get("Dim3Type", "") if not dim3Type: continue dim3Count = cprop_dim.get(dim3Type, 0) cprop_dim[dim3Type] = dim3Count + 1 cprop_list = [] for prop in cprop_dim: cprop_list.append({"id": prop, "num": cprop_dim.get(prop)}) sorted_cprop_list = sorted(cprop_list, key=lambda x: x.get("num"), reverse=True) result = { "spatial": spatial_dim, "time": list(time_dim), "cprop": sorted_cprop_list } return result
c150943e651cd9ecc3dd4613fd4401ee717aaecd
298,578
def update_dict_recursively(dictionary, key_path, value): """ update or insert values to a dictionary recursively. ``` >>> update_dict_recursively({}, ['a', 'b', 1, 2], 'this_value') {'a': {'b': {1: {2: 'this_value'}}}} ``` :param dict dictionary: the dictionary to be inserted into :param list key_path: the path for the insertion value :param value: value to be inserted :returns: a dictionary with the inserted value """ sub_dictionary = dictionary for key in key_path[:-1]: if key not in sub_dictionary: sub_dictionary[key] = {} sub_dictionary = sub_dictionary[key] sub_dictionary[key_path[-1]] = value return dictionary
a8e186fcf7099de5e47d2dd9db7eb416595aaa24
540,693
def mut_pair_num(table): """ A function that calculates the number of pairs of codons one mutation away from each other. Treats mutations with directionality. In general, the number of mutational pairs is equal to the number of codons in a table multiplied by the number of unique codons within one mutation. Let a = alphabet length (generally 4), L = codon length (generally 3) n = (a^L) * L(a-1) Parameters ---------- dict table: the codon table to analyze Returns ------- int mut_num: the number of distinct mutational pairs. """ # get list of all codons in table codon_list = list(table) # get alphabet size alphabet = set() for codon in codon_list: for nt in codon: alphabet.add(nt) a = len(alphabet) # get codon length L = len(codon_list[0]) # calculate mut_num and return return (a ** L) * L * (a - 1)
ce44087d295ac2cf0860c364dbf18b4f2de500b1
50,346
def _subsample( X, ind): """ like X[ind,:] but works in case X has size (n,) """ if X.ndim == 1: y = X[ind] elif X.ndim == 2: y = X[ind,:] else: raise ValueError("Expected 1D or 2D array") return y
6d9a3632fbe88acdf664fe919e93b14ac2933a86
633,635
def base_temp(tmp_path_factory): """ Created a place to store the tests outputs. Can be set using the command line --basetemp (WARNING: WILL DELETE ALL OF ITS CURRENT CONTENT) Parameters ---------- tmp_path_factory : fixture PyTest's build-in fixture. Returns ------- str : Path for the tests results for the current session """ return tmp_path_factory.mktemp("dragons-tests-")
0db95a8383dacd0de6878449de4ea7566b738374
297,078
def changeCourses(previousMessage, currentMessage): """ Determine if one of observed currency has changed.. :param previousMessage (str) : previous message for twitter :param currentMessage (str) : current message for twitter :return change (bool) : change currencies ? """ return bool(previousMessage!=currentMessage)
4d65e13cfa7b1e7cc73dff3670deebf02a41422b
531,129
def two_bit_flip(node): """Give all the nodes by flipping one or two bits of the binary number representation of a node.""" node_list = list(node) out = set() bit_length = len(node_list) for i in range(bit_length): for j in range(bit_length): new_node = node_list[:] if i != j: new_node[i] = ('1' if node[i] == '0' else '0') new_node[j] = ('1' if node[j] == '0' else '0') else: new_node[i] = ('1' if node[i] == '0' else '0') out.add(''.join(new_node)) return out
b2fd25eef42bf608146e29ac1aa4471305f7420b
528,229
from typing import List def base_determinant(matrix: List[List[int]]) -> int: """ Find determinant of a 2 x 2 matrix. """ if (len(matrix[0]), len(matrix)) != (2, 2): raise ValueError(f"Matrix mismatch: Not 2 x 2 matrix.") return (matrix[0][0] * matrix[1][1]) - (matrix[0][1] * matrix[1][0])
596dc8ab03d8fdf4e8ad1ec7e88c99b52cccd4fb
302,606
import random import string def generate_random_string(size: int=16) -> str: """ Generates a random string with 16 characters. Size value can be changed. :return: random string: str """ random_string = ''.join([random.choice(string.ascii_letters + string.digits) for n in range(size)]) return random_string
b1a44e128871af07ca8aefed2c096b19e5f1d08c
431,137
def get_zone_names(compute_api, project): """Obtains a list of zone names for a given project. Args: compute_api: The gcloud api instance. project: The project name. Returns: A list of zone names that are running """ result = compute_api.zones().list(project=project).execute() filtered_list = [ i for i in result["items"] if (i["status"] == "UP") and (i["kind"] == "compute#zone") ] return [i["name"] for i in filtered_list]
76683fa5d025d6948f0b3c8f2b65ee25365008ad
551,328
def qs(list_): """ Return a new list consisting of the elements of list_ in ascending order. @param list list_: list of comparables @rtype: list >>> qs([1, 5, 3, 2]) [1, 2, 3, 5] """ if len(list_) < 2: return list_[:] # list_ is sorted, so make a copy else: # return (everything smaller than pivot, sorted) + pivot # + (everything larger than pivot, sorted) pivot = list_[0] # could choose any pivot smaller_than_pivot = [v for v in list_ if v < pivot] larger_than_pivot = [v for v in list_[1:] if v >= pivot] return qs(smaller_than_pivot) + [pivot] + qs(larger_than_pivot)
e0bd6a52c5da953fe5639da401dae4601e685a3a
344,385
def requires_grad(ctx, name): """Checks if a named variable requires gradients.""" for g, n in zip(ctx.needs_input_grad, ctx.names): if n == name: return g return False
646c011fcbfaec872bcee436ed4d80143338e779
402,843
def _uvprime_to_CCT_Duv_parabolic(tmm1, tm, tmp1, dmm1, dm, dmp1, sign): """Ohno 2011 parabolic technique for computing CCT. Parameters ---------- tmm1 : `numpy.ndarray` "T sub m minus 1", the m+1th CCT value tm : `numpy.ndarray` "T sub m", the mth CCT value tmp1 : `numpy.ndarray` "T sub m plus 1", the m+1th CCT value dmm1 : `numpy.ndarray` "d sub m minus 1", the m-1th distance value dm : `numpy.ndarray` "d sub m", the mth distance value dmp1 : `numpy.ndarray` "d sub m plus 1", m+1th distance value sign : `int` either -1 or 1, indicating the sign of the solution Returns ------- `tuple` CCT, Duv values """ x = (tmm1 - tm) * (tmp1 - tmm1) * (tm - tmp1) a = (tmp1 * (dmm1 - dm) + tm * (dmp1 - dmm1) + tmm1 * (dm - dmp1)) * x ** -1 b = (-(tmp1 ** 2 * (dmm1 - dm) + tm ** 2 * (dmp1 - dmm1) + tmm1 ** 2 * (dm - dmp1)) * x ** -1) c = (-(dmp1 * (tmm1 - tm) * tm * tmm1 + dm * (tmp1 - tmm1) * tmp1 * tmm1 + dmm1 * (tm - tmp1) * tmp1 * tm) * x ** -1) CCT = -b / (2 * a) Duv = sign * (a * CCT ** 2 + b * CCT + c) return CCT, Duv
a48d9c30e8f959c4ce9ded3bc5910a40bb811e18
347,389
import hashlib def get_cache_key(*args, **kwargs): """ Get MD5 encoded cache key for given arguments. Note: We convert arguments and keyword arguments to their string form to build the cache key. So do not pass arguments that can't be converted to strings. Also, don't pass arguments that may not consistently be converted to the same string, like an unsorted dict. Here is the format of key before MD5 encryption `key1:value1__key2:value2` Example: >>> get_cache_key(site_domain="example.com", resource="catalogs") # Here is key format for above call # "site_domain:example.com__resource:catalogs" a54349175618ff1659dee0978e3149ca Arguments: *args: Positional arguments that need to be present in the cache key **kwargs: Key word arguments that need to be present in the cache key. Returns: An MD5 encoded key uniquely identified by the key word arguments. """ key = '__'.join(args) key += '__'.join([u'{}:{}'.format(k, v) for k, v in sorted(kwargs.items())]) return hashlib.md5(key.encode('utf-8')).hexdigest()
5053033e3c228dc522dce1aa316c617cc65e6d0b
155,432
import warnings def deprecated(message): """Decorator to mark a function as deprecated""" def deprecated_decorator(func): def deprecated_func(*args, **kwargs): warnings.warn( "{} is a deprecated function and will be removed in a " "future version of scirpy. {}".format(func.__name__, message), category=FutureWarning, stacklevel=2, ) return func(*args, **kwargs) return deprecated_func return deprecated_decorator
3e076bc7ad1edacc1f818bccf221f5f8d6d3eefc
224,186
def parse_color(color): """Take any css color definition and give back a tuple containing the r, g, b, a values along with a type which can be: #rgb, #rgba, #rrggbb, #rrggbbaa, rgb, rgba """ r = g = b = a = type = None if color.startswith('#'): color = color[1:] if len(color) == 3: type = '#rgb' color = color + 'f' if len(color) == 4: type = type or '#rgba' color = ''.join([c * 2 for c in color]) if len(color) == 6: type = type or '#rrggbb' color = color + 'ff' assert len(color) == 8 type = type or '#rrggbbaa' r, g, b, a = [ int(''.join(c), 16) for c in zip(color[::2], color[1::2])] a /= 255 elif color.startswith('rgb('): type = 'rgb' color = color[4:-1] r, g, b, a = [int(c) for c in color.split(',')] + [1] elif color.startswith('rgba('): type = 'rgba' color = color[5:-1] r, g, b, a = [int(c) for c in color.split(',')[:-1]] + [ float(color.split(',')[-1])] return r, g, b, a, type
f58331287e4ccc1f2459c1ffff4c0f3ec5f29d8b
659,269
import torch def flipud(tensor): """ Flips a given tensor along the first dimension (up to down) Parameters ---------- tensor a tensor at least two-dimensional Returns ------- Tensor the flipped tensor """ return torch.flip(tensor, dims=[0])
b0fd62172b0055d9539b554a8c967c058e46b397
707,531
def massString(mass): """ HELPER FUNCTION. Turns a float mass into a string with the correct units after (between mg and kg) Arguments: mass: [float] the mass to be converted Returns: mass_str: [string] the mass as a string with the proper units """ # make mass into str if mass < 1: mass *= 1000 if mass < 1: mass *= 1000 mass_str = str(eval("%.0e" % (mass))) + ' mg' else: mass_str = str(eval("%.0e" % (mass))) + ' g' else: mass_str = str(eval("%.0e" % (mass))) + ' kg' return mass_str
f8e45328538e690f971ee6d2c2709954b052a0c4
509,819
def flatten(lst): """Flattens a list of lists""" return [sub_elem for elem in lst for sub_elem in elem]
553118be917f03488a1a7e9443878ddde907042e
162,211
def get_text_in_quotes(string): """ Returns the text in double quotes from a given string, e.g. Which one of these is “the apple”? would return 'the apple' (without the single quotes) """ new_str = "" add_to_new_str = False for char in string: if add_to_new_str: new_str += char if char == '\"' or ord(char) in [8220, 8221]: # in and out quotes are different! # the "quotation marks used in duolingo aren't acutally quotation marks!" add_to_new_str = not(add_to_new_str) return new_str[:-1]
0980b633126696fd230e6cd85a1d8aa7711e5927
224,737
def slice_for_range(data, fromVal, toVal): """ Returns a slice indicating the region [fromVal, toVal] in a 1D ndarray data Example: >>> data = linspace(1, 50, 50) >>> s = slice_for_range(data, 4, 10) >>> data[s] array([ 4., 5., 6., 7., 8., 9., 10.]) """ if (data[-1] - data[0]) / (toVal - fromVal) < 0: # Order of fromVal and toVal is reversed temp = toVal toVal = fromVal fromVal = temp foundFromVal = False start = None stop = None if toVal > fromVal: # ascending order for idx, val in enumerate(data): if foundFromVal: if val > toVal: stop = idx break else: if val >= fromVal: start = idx foundFromVal = True else: # descending order for idx, val in enumerate(data): if foundFromVal: if val < toVal: stop = idx break else: if val <= fromVal: start = idx foundFromVal = True return slice(start, stop)
44cb009d01cb1bf4415aa867cd4cc9e2685e8d4c
631,529
from typing import Set from typing import Union from typing import List def canonicalize_resources(resources: Set[str]) -> Union[str, List[str]]: """Return the set of resources as either a single string or a sorted list of strings.""" if len(resources) == 1: return next(iter(resources)) return sorted(resources)
5ed51e192375b74159f9ee99fe6b1e13e6572474
312,180
import json def getmeta_ocred(fname, cfg): """ Get metadata info of fname. Args: fname (str): filename from which to get metadata. cfg (Config): configuration data. Return: dict: metadata info corresponding to fname. Raise: ValueError: metadata for fname not found. """ allmeta = json.load(open(cfg.get('ocred', 'metadata file'))) try: return allmeta[fname] except KeyError: raise ValueError('Error: metadata for document %s not found.' % fname)
e2ac3b34515e219bf26564572e943e06de852b23
605,685
def check_interface_capability(interface, capability): """Evaluate interface to determine if capability is present. :param interface: The interface object to check. :param capability: The value representing the capability that the caller wishes to check if present. :returns: True if capability found, otherwise False. """ return capability in getattr(interface, 'capabilities', [])
472b9c833de34d4edfb53d5ff5a362827ee9aa17
592,743
def array_to_list(np_array): """Transform a numpy array in a nested list.""" return [list(e) for e in np_array]
fbb7eb1b3848e95ca20dfc515fd4d287a228ae46
170,136
def int_or_none(val): """Attempt to parse an integer value, or None.""" if val is None: return val else: return int(val)
8d0a8edc56ce23b60ab9b5747d053026def1ee80
569,416
import pytz def getLocalTime(UTC_time): """ Transforms message time to local timezone :param UTC_time: message datetime in UTC timezone :return: local date and time """ local_tz = pytz.timezone('Asia/Jerusalem') local_datetime = UTC_time.replace(tzinfo=pytz.utc).astimezone(local_tz) datetime_list = str(local_datetime.date()).split('-') local_date = datetime_list[2] + '/' + datetime_list[1] + '/' + datetime_list[0] local_time = str(local_datetime.time()) return local_date, local_time
393b5fa3039e1a11f199c685e23f91f00043a800
201,148
def get_or_create_attr(obj, attr: str, fn): """ Sets the named attribute on the given object to the specified value if it doesn't exist, else it'll return the attribute setattr(obj, 'attr', fn) is equivalent to ``obj['attr'] = fn'' """ if not hasattr(obj, attr): setattr(obj, attr, fn) return getattr(obj, attr)
848b3c4075a34d9b3f3812411c1d1e9d70648781
247,716
def _is_simple_rig_root(dagNode): """Check if the dagNode is a simple rig ctl Args: dagNode (PyNode): Control to check Returns: bool: Return true if is simple rig """ return dagNode.hasAttr("is_simple_rig")
d3fc5e04c874c9778cd8a7cc1880e849517edee9
452,446
def scale_gradient(tensor, scale, clone_input=True): """Scales the gradient of `tensor` for the backward pass. Args: tensor (Tensor): a tensor which requires gradient. scale (float): a scalar factor to be multiplied to the gradient of `tensor`. clone_input (bool): If True, clone the input tensor before applying gradient scaling. This option is useful when there are multiple computational branches originated from `tensor` and we want to apply gradient scaling to part of them without impacting the rest. If False, apply gradient scaling to the input tensor directly. Returns: The (cloned) tensor with gradient scaling hook registered. """ if clone_input: output = tensor.clone() else: output = tensor output.register_hook(lambda grad: grad * scale) return output
9c969307980a19b29767af82ff001ed47c9f36d0
426,954
def build_select(table, to_select, where): """ Build an select request. Parameters ---------- table : str Table where query will be directed. to_set: iterable The list of columns to select. where: iterable The list of conditions to constrain the query. Returns ------- str Built query. """ sql_q = "SELECT " sql_q += ', '.join('{0}'.format(w) for w in to_select) sql_q += ' FROM \"' + table + '\"' if len(where) > 0: sql_q += ' WHERE ' sql_q += ' AND '.join('{0} = :{0}'.format(w) for w in where) return sql_q
be146e09de0373b614ec40b5a4f78b2289bb6c81
247,390
def bezier_line(P0, P1, P2, P3): """Cubic Bezier formula Returns: Function of parameter t (1d array) Reference https://en.wikipedia.org/wiki/Bezier_curve""" return lambda t: (1 - t)**3 * P0 + 3 * (1 - t)**2 * t * P1 + 3 * (1 - t) * t**2 * P2 + t**3 * P3
6c7cf18ab77eafd89434528cdd090391e8528bec
609,739
def select_with_processing(selector, cluster_sim): """A selection wrapper that uses the given operator to select from the union of the population and the currently processing individuals. """ def select(population): return selector(population + cluster_sim.processing) return select
76cf35e02dfe391ff3e2b6f552a36b87d2ce5cf9
675,143
import re def tidy_cols(my_csv): """ Tidies column names ie lower and replace spaces with underscores """ return [re.sub(" ", "_", col.lower()) for col in my_csv.columns]
31bfa773f8c8e064645ea613666c1329e1f23711
304,798
def get_mnsp_index(data) -> list: """Get MNSP index""" mnsps = (data.get('NEMSPDCaseFile').get('NemSpdInputs') .get('PeriodCollection').get('Period') .get('InterconnectorPeriodCollection') .get('InterconnectorPeriod')) return [i['@InterconnectorID'] for i in mnsps if i['@MNSP'] == '1']
4dc7e80d29124910c6aac18e02635ad3a3e1c31f
369,251
def check_policy_profile_exists_on_all_vsm(pprofiles, vsm_hosts): """Checks if policy profile is present on all VSM. :param pprofiles: all the port profile rows for a particular profile :param vsm_hosts: list of configured VSMs :returns: boolean """ return (len(pprofiles) == len(vsm_hosts) and len(set(pprofile['id'] for pprofile in pprofiles)) == 1)
beb6e4f31b3043d78fd57041c806e7cf3984d27f
238,420
def get_chunk(total, current, list): """ :param total: Total number of wanted chunks :param current: Current chunk position wanted :param list: List of data who will be chunked :return: The chunk """ length = len(list)//total start = current*length if current == total-1: return list[start:] return list[start:start+length]
11423312c1ed71bd5b04a3b05d8326d3887f8283
667,422
from contextlib import suppress import signal def to_signal(sig): """ Parses a signal number or named signal. >>> to_signal(15) <Signals.SIGTERM: 15> >>> to_signal("15") <Signals.SIGTERM: 15> >>> to_signal("SIGTERM") <Signals.SIGTERM: 15> >>> to_signal("TERM") <Signals.SIGTERM: 15> """ with suppress(TypeError, ValueError): return signal.Signals(int(sig)) with suppress(KeyError): return signal.Signals[str(sig)] with suppress(KeyError): return signal.Signals["SIG" + str(sig)] raise ValueError(f"not a signal: {sig}")
a71eb593b90acbe52017b5426a5903c730c7fa93
354,480
from typing import Sequence def pool_sum(pool: Sequence[int]) -> int: """Sum the dice in the pool.""" return sum(pool)
1c02faa63c6a327ede745171ff9a61fc19fcdf1e
133,300
def get_nonce_bytes(n): """BOLT 8 requires the nonce to be 12 bytes, 4 bytes leading zeroes and 8 bytes little endian encoded 64 bit integer. """ return b"\x00"*4 + n.to_bytes(8, 'little')
3c35dd968d2b92a38937a14a1cecf73a40bd16d2
662,632
from pathlib import Path def generate_support_matrix_jobs( cluster_file: Path, cluster_config: dict, cluster_info: dict, added_or_modified_files: set, upgrade_support_on_this_cluster: bool = False, upgrade_support_on_all_clusters: bool = False, ) -> list: """Generate a list of dictionaries describing which clusters need to undergo a helm upgrade of their support chart based on whether their associated support chart values files have been modified. To be parsed to GitHub Actions in order to generate jobs in a matrix. Args: cluster_file (path obj): The absolute path to the cluster.yaml file of a given cluster cluster_config (dict): The cluster-wide config for a given cluster in dictionary format cluster_info (dict): A template dictionary for defining matrix jobs prepopulated with some info. "cluster_name": The name of the given cluster; "provider": the cloud provider the given cluster runs on; "reason_for_redeploy": what has changed in the repository to prompt the support chart for this cluster to be redeployed. added_or_modified_files (set[str]): A set of all added or modified files provided in a GitHub Pull Requests upgrade_support_on_this_cluster (bool, optional): If True, generates jobs to update the support chart on the given cluster. This is triggered when the cluster.yaml file itself is modified. Defaults to False. upgrade_support_on_all_clusters (bool, optional): If True, generates jobs to update the support chart on all clusters. This is triggered when common config has been modified in the support helm chart. Defaults to False. Returns: list[dict]: A list of dictionaries. Each dictionary contains: the name of a cluster, the cloud provider that cluster runs on, a Boolean indicating if the support chart should be upgraded, and a reason why the support chart needs upgrading. """ cluster_info["reason_for_support_redeploy"] = cluster_info.pop( "reason_for_redeploy" ) # Empty list to store the matrix definitions in matrix_jobs = [] # Double-check that support is defined for this cluster. support_config = cluster_config.get("support", {}) if support_config: if upgrade_support_on_all_clusters or upgrade_support_on_this_cluster: # We know we're upgrading support on all clusters, so just add the cluster # name to the list of matrix jobs and move on matrix_job = cluster_info.copy() matrix_job["upgrade_support"] = "true" if upgrade_support_on_all_clusters: matrix_job[ "reason_for_support_redeploy" ] = "Support helm chart has been modified" matrix_jobs.append(matrix_job) else: # Have the related support values files for this cluster been modified? values_files = [ cluster_file.parent.joinpath(values_file) for values_file in support_config.get("helm_chart_values_files", {}) ] intersection = added_or_modified_files.intersection(values_files) if intersection: matrix_job = cluster_info.copy() matrix_job["upgrade_support"] = "true" matrix_job[ "reason_for_support_redeploy" ] = "Following helm chart values files were modified: " + ", ".join( [path.name for path in intersection] ) matrix_jobs.append(matrix_job) else: print(f"No support defined for cluster: {cluster_info['cluster_name']}") return matrix_jobs
9fcd7631075eb9144777c3a4218f6a123921d7c6
124,530
def documentation_link(chapter): # type: (str)->str """ Creates a link to the documentation. This method is useful for showing a link to the ZSL documentation in case of any misconfiguration, etc. :param chapter: Chapter name in to which the link points. Use underscores instead of spaces. :return: The absolute link to the documentation. """ return "http://zsl.readthedocs.io/en/latest/{0}.html".format(chapter)
3fa25188811b1fece777e95755e5ebdc5cb1a4b8
661,162
import json def read_dataformat(file): """ Reads a dataformat .json file and returns it as a dict. Parameters ---------- file : str Path to dataformat.json file. """ return json.load(open(file))
3676bb2e2e2bb61649183aae41dfbff63018f793
116,888
def norm_minmax(a): """ Normalize the data by setting the minimum at 0 and the maximum at 1. Parameters: =========== a: numpy.array Data to normalize """ return (a-a.min())/(a.max()-a.min())
33a65d151158c2930274d2a6bd655978196855c7
424,034
from typing import OrderedDict def _color_bool(series, color, bg_color): """Converts a boolean annotation column to colors.""" color_map = OrderedDict(zip([True, False], [color, bg_color])) mapped = series.map(color_map).fillna(bg_color) return mapped, color_map
7f6030eb3b312ede5564d24f47d7c7c5d9405b59
260,911
def build_scoring_matrix(alphabet, diag_score, off_diag_score, dash_score): """ Takes as input a set of characters alphabet and three scores diag_score, off_diag_score, and dash_score. The function returns a dictionary of dictionaries whose entries are indexed by pairs of characters in alphabet plus '-'. The score for any entry indexed by one or more dashes is dash_score. The score for the remaining diagonal entries is diag_score. Finally, the score for the remaining off-diagonal entries is off_diag_score """ alphabet.add('-') scoring_matri = {} for first_ltr in alphabet: temp = {} for sec_ltr in alphabet: if first_ltr == sec_ltr and first_ltr != '-': temp[sec_ltr] = diag_score elif first_ltr == '-' or sec_ltr == '-': temp[sec_ltr] = dash_score else: temp[sec_ltr] = off_diag_score scoring_matri[first_ltr] = temp return scoring_matri
703c3ef7fb6899a46a26d55dae740705b6953adb
705,146
def format_tasks(tasks): """Converts a list of tasks to a list of string representations. Args: tasks: A list of the tasks to convert. Returns: A list of string formatted tasks. """ return ['%d : %s (%s)' % (task.key.id(), task.description, ('done' if task.done else 'created %s' % task.created)) for task in tasks]
3fcf5b83714d61daf7c17d0f4d0c212d8114bd59
587,529
def multi_endpoint(mocker): """Create a multi network manager endpoint mock""" return [mocker.stub(), mocker.stub()]
a2c0d2ed563d09fdf0cf94e11af30571f4da22e8
114,904
from pathlib import Path from typing import List def fetch_scene_gifs(scene_path: Path) -> List[Path]: """Fetches each gif that has been rendered for a scene. Args: scene_path (Path): The path towards the scene. Returns: List[Path]: List of paths towards each gif. Paths are constructed like so: [project-path]/[scene-path]/gifs/[gif-name].gif """ gifs_path: Path = scene_path / Path("gifs") all_gifs: List[Path] = [] for file in gifs_path.iterdir(): # Assuming a user won't add a `.gif` file. if file.suffix == ".gif": all_gifs.append(file) return all_gifs
2c30f57bed62ee6db7b329d363584f0aec9d5ac4
446,959
def get_primes(n): """ Returns prime factors for an integer N :param n: integer to factor :return: list<integers> prime factors """ primefac = [] d = 2 while d*d <= n: while (n % d) == 0: primefac.append(d) # supposing you want multiple factors repeated n //= d d += 1 if n > 1: primefac.append(n) return primefac
464c8fd9d50fda5a04aceb993768416146120b6d
359,403
from typing import List def average(l: List[float]) -> float: """Average of a list of numbers""" n = len(l) if n == 0: return 0 return sum(l) / n
715d455608a5c55aa8699bfc6823aa8c96a1fdf3
79,591
def guess_shap(model): """guesses which SHAP explainer to use for a particular model, based on str(type(model)). Returns 'tree' for tree based models such as RandomForest and XGBoost that need shap.TreeExplainer, and 'linear' for linear models such as LinearRegression or Elasticnet that can use shap.LinearExplainer. Args: model: a fitted (sklearn-compatible) model Returns: str: {'tree', 'linear', None} """ tree_models = ['RandomForestClassifier', 'RandomForestRegressor', 'DecisionTreeClassifier', 'DecisionTreeRegressor', 'ExtraTreesClassifier', 'ExtraTreesRegressor', 'GradientBoostingClassifier', 'GradientBoostingRegressor', 'HistGradientBoostingClassifier', 'HistGradientBoostingRegressor', 'XGBClassifier', 'XGBRegressor', 'LGBMClassifier', 'LGBMRegressor', 'CatBoostClassifier', 'CatBoostRegressor', 'NGClassifier', 'NGBRegressor', 'GBTClassifier', ' GBTRegressor', 'IsolationForest' ] linear_models = ['LinearRegression', 'LogisticRegression', 'Ridge', 'Lasso', 'ElasticNet', 'SGDClassifier'] skorch_models = ['skorch.net.NeuralNet', 'skorch.regressor.NeuralNetRegressor', 'skorch.classifier.NeuralNetClassifier'] for tree_model in tree_models: if str(type(model)).endswith(tree_model + "'>"): return 'tree' for lin_model in linear_models: if str(type(model)).endswith(lin_model + "'>"): return 'linear' for skorch_model in skorch_models: if str(type(model)).endswith(skorch_model + "'>"): return 'skorch' return None
a1ea7e8c24b4a10610ef7b7193f1612c459befe3
249,600
import json def _load_config(config_file): """ Load the configuration file Args: config_file (str): Configuration file Returns: dict: Content of the configuration file """ with open(config_file, 'r') as fp: return json.load(fp)
921af497ed5b7d8d4eb3f55be46faf59f8fe36db
397,859
def expression_closure(field, operator, value): """ Creates and returns a function expression. Operator supports: < <= > >= != Example: >>> class Obj: >>> number = 5 >>> obj = Obj() >>> func_expression = expression_closure('number', '<', 10) >>> func_expression(obj) True >>> obj.number = 11 >>> func_expression(obj) False """ if operator == '>': return lambda obj: getattr(obj, field) > value elif operator == '<': return lambda obj: getattr(obj, field) < value elif operator == '>=': return lambda obj: getattr(obj, field) >= value elif operator == '<=': return lambda obj: getattr(obj, field) <= value elif operator == '!=': return lambda obj: getattr(obj, field) != value else: raise ValueError("Unknown operator %s" % operator)
3682cc566eff48eaa67e083aa4f42240541978f2
442,270
def blob_exists(storage_client, bucket_name, filename): """Checks if a file exists in the bucket.""" bucket = storage_client.get_bucket(bucket_name) blob = bucket.blob(filename) return (blob.exists())
4f5fa78328401930ce6399a5cea6cdcecc10a173
25,553
from typing import Tuple def square_box(box_size: float, image_size: Tuple[float, float]) -> Tuple[float, float]: """Calculate normalized square box shape. :param box_size: initial size :param image_size: image shape tuple :return: normalized square box shape """ return box_size / image_size[1], box_size / image_size[0]
fa1e39e94afcb0378149051c8d2fefa9a5816b7e
304,022
from typing import Tuple def count_bases(dna: str) -> Tuple[int, int, int, int]: """ Count each of the bases in DNA """ cnt_a, cnt_c, cnt_g, cnt_t = 0, 0, 0, 0 for base in dna: if base == 'A': cnt_a += 1 elif base == 'C': cnt_c += 1 elif base == 'G': cnt_g += 1 elif base == 'T': cnt_t += 1 return (cnt_a, cnt_c, cnt_g, cnt_t)
adb3bf95d0177cb3533cbdf2dcac9ba587205647
83,088
def order_df_columns_by_run(dataframe): """ Returns a dataframe with re-ordered columns such that second column up to column 'mean' are ordered by run number from low to high """ cols = dataframe.columns.tolist() stats_start_idx = cols.index("mean") to_sort = cols[:stats_start_idx] no_sort = cols[stats_start_idx:] to_sort.sort(key=lambda x: int(x.split(".")[0].split("_Run")[1])) new_cols = to_sort + no_sort return dataframe[new_cols]
8eb25d63613654864282bf52aa56d3da6c5c934f
215,768
import torch def bounded_scale_function(bounds): """ Sets up a scaling function that maps `(0,1)` to `(bounds[0], bounds[1])` and clips the values to remain in that range Args: bounds: tuple giving the parameter bounds """ return lambda x: torch.clamp(x, 0, 1)*(bounds[1]-bounds[0]) + bounds[0]
fab5d3c105ca6e4ffd094424337550191c41a52a
464,703
def get_role(roles, role_id=None, role_name=None): """Gets a role from its id or name.""" for role in roles: if role_id and role.id == int(role_id): return role if role_name and role.name == role_name: return role return None
162c0786c97adae91914a5d1c14a9ccfb3d54bc1
430,206
def string_to_dict(separated_string, separator=',') -> dict: """ Takes a string e.g: a,b,,,,c, ,d and converts to: {'a':'', 'b':'', 'c':'', 'd':''} """ output = {} if isinstance(separated_string, str) and len(separated_string) > 0: values = separated_string.split(separator) for value in values: stripped = value.strip() if len(stripped) > 0: output[stripped] = "" return output
ccf3c1aba3e15cec7d799a22608408dde19bd048
291,349
import time import logging def is_even(n: int) -> bool: """ Checks if the number 'n' is even or odd :param n: The number to check :return: Whether (True) or not (False) the number is even """ time.sleep(0.1) if n % 2 == 0: logging.info(f"{n} - is even") return True else: logging.info(f"{n} - is odd") return False
25fb81ad343aba92308fbb3c4f8878df786bb2fe
69,175
def percentile(N, P): """ Find the percentile of a list of values @parameter N - A list of values. N must be sorted. @parameter P - A float value from 0.0 to 1.0 @return - The percentile of the values. """ if len(N)==0: return 0.0 n = int(round(P * len(N) + 0.5)) return N[n-1]
4ef0e9baad1f008e28b821ee7c65177d50e5b8fd
631,082
from typing import Counter def anf_xor(form1,form2): """ (1^x)^(1^x^y) = 0^y >>> anf_xor([1,(1,)],[1,(1,),(2,)]) [0, (2,)] """ const = form1[0]^form2[0] xored = Counter(form1[1:])+Counter(form2[1:]) return [const] + [ i for i in xored if xored[i]&1]
a588788d1ff9930e2399d6215700b9e45558c0ef
492,100
def subtract(df, y, exclude=None): """Subtract array-like y from dataframe columns. """ if exclude is None: exclude = [] df_subtracted = df.apply( lambda x: x - y if x.name not in exclude else x ) return df_subtracted
448dc9a1d70ef3cdfce548b32ccfca2e42234cd7
439,450
import math def calculate_frustration(fun, derivative_fun): """ Frustration value based on the given function and its derivative. :param fun: the function to calculate the frustration :param derivative_fun: The derivative of the provided function. :return: """ return fun(0) / math.sqrt(2) / derivative_fun(0)
9841fbf64a8a8d2de17832eb101bf1043156394a
303,216
def quantize(rgb, quanta): """map a tuple (r,g,b) each between 0 and 255 to our discrete color buckets""" r,g,b = rgb r = max([q for q in quanta if q <= r]) g = max([q for q in quanta if q <= g]) b = max([q for q in quanta if q <= b]) return (r,g,b)
239eb2f7b72d3c1c5e72948dad6e18a0ed2312f2
218,600
def sanitize_string(input_string): """Removes unwanted characters from a string and returns the result """ return input_string.replace('"', '')
596bd7bf4810ce9ef2b96c6d6fead947bd4e22ec
27,116
def rbgToHex(*clr): """Given a color in rbg, convert it to hexadecimal color""" if len(clr) != 3 or max(clr) > 255 or min(clr) < 0: raise ValueError('invalid color') return '#' + ''.join([ hex(c)[2:].zfill(2) for c in clr ]).upper()
160da2269f274920fdeca77703592f74a650d10c
341,930
import string def remove_punctuation(word): """Removes all punctuation from word""" return word.translate(str.maketrans(dict.fromkeys(string.punctuation)))
a8f672ce3b95247578d76874c357f89a2a1f23bc
85,665
def _get_character_pairs(text): """Returns a defaultdict(int) of adjacent character pair counts. >>> _get_character_pairs('Test IS') {'IS': 1, 'TE': 1, 'ES': 1, 'ST': 1} >>> _get_character_pairs('Test 123') {'23': 1, '12': 1, 'TE': 1, 'ES': 1, 'ST': 1} >>> _get_character_pairs('Test TEST') {'TE': 2, 'ES': 2, 'ST': 2} >>> _get_character_pairs('ai a al a') {'AI': 1, 'AL': 1} >>> _get_character_pairs('12345') {'34': 1, '12': 1, '45': 1, '23': 1} >>> _get_character_pairs('A') {} >>> _get_character_pairs('A B') {} >>> _get_character_pairs(123) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "strikeamatch.py", line 31, in _get_character_pairs if not hasattr(text, "upper"): raise ValueError ValueError: Invalid argument """ if not hasattr(text, "upper"): raise ValueError("Invalid argument") results = dict() for word in text.upper().split(): for pair in [word[i]+word[i+1] for i in range(len(word)-1)]: if pair in results: results[pair] += 1 else: results[pair] = 1 return results
5abcf36cc25bc901d7a00b10c9f021f06a3878b3
405,736
def depend_on_proj_props(target, source, env): """ Emitter which adds a dependency for the project properties file """ #sys.stderr.write("depend_on_proj_props called\n") #sys.stderr.flush() return (target, source + [env['XISE_PY_PROPFILE']])
f0ea4c5aa0a6958e71dd051a6aff08cf9318d136
687,756
def gainbias(lmax, lmin, qcalmax, qcalmin): """Calculates gain and bias from max and min radiance""" gain = (lmax - lmin)/(qcalmax - qcalmin) bias = (qcalmax*lmin - qcalmin*lmax)/(qcalmax - qcalmin) return gain, bias
cd520b0b9342ce37d2076aae0e47d4e1716fc014
380,381
def _map_column_name(key_store, target_name): """Figure out the internal column name for a given target name If a column is used as the index of a table, its PyTables name is 'index' instead of the desired name. Handle that gracefully. """ try: index_name = key_store.attrs.info['index']['index_name'] except KeyError: index_name = '' if index_name == target_name: return 'index' else: return target_name
671b3e19b821036b3dac16064f757c53e99e5b48
137,558
def required_keys_avaiable(readme_dict): """ Check if the required key in the readme dictionary are available Required key are the ones I need for further processing. These are: * base_runs * username * email * info_block * sub_date * solver Parameters ---------- readme_dict : dict Dictionary to be tested for containing all required keys Returns ------- boolean True if all required keys are available, False otherwise. """ REQUIRED_KEYS = [ "main_name", "base_runs", "username", "email", "info_block", "sub_date", "solver" ] return all(req_key in readme_dict.keys() for req_key in REQUIRED_KEYS)
b54b50ac26e1a5c5135ceafabe96234ac5ff31ec
611,548