content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def create_k_mer_set(seq, kmer_len, stride_len):
"""
Create set of k-mers from the sequence.
Parameters
----------
seq : string sequence to perform bottom-k sketch on
kmer_len : int the length of the k-mers of the sequence
stride_len : int the stride length in extracting k-mers from the sequence
Returns
-------
kmer_set : set of strings
The set of k-mers from the sequence
"""
kmer_set = set()
i = 0
while i + kmer_len < len(seq):
kmer = seq[i:i+kmer_len]
kmer_set.add(kmer)
i += stride_len
return kmer_set | 13d57788e47fbb83f3f5e661abbc12cb83546fe2 | 513,627 |
def _get_cmd_tree(subcmds):
"""Convert flat list of subcmd objects into hierarchical dictionary
{'command name': {'subcommand name 1': subcmd1, 'subcommand name 2': subcmd2}}"""
cmds = {}
for sub_cmd in subcmds:
cmd_dict = cmds.setdefault(sub_cmd.cmd, {})
cmd_dict[sub_cmd.name] = sub_cmd
return cmds | 76f44db545d298b94f9eb2323a5ade280b5f0380 | 40,490 |
def remove_dup_and_null(cell):
""" Remove duplicated coordinate sets and NULLs from a comma separated string """
## Split the cell by commas and convert it to a set, this removes duplicated elements
set_cell = set(cell.split(','))
## Keep NULLs if it's the only entry in a cell, else, remove NULLs
if "NULL" in set_cell and len(set_cell) > 1:
set_cell.remove("NULL")
## Join the set
if len(set_cell) > 1:
sorted_cell = sorted(set_cell, key=lambda x: int(x.split(":")[0]))
else:
sorted_cell = set_cell
new_cell = ",".join(sorted_cell)
return new_cell | 7331d7909f45561b0eae4a3ea389ddb62f121915 | 343,030 |
import inspect
async def to_awaitable(value):
"""Wraps a value in a coroutine.
If value is a future, it will await it. Otherwise it will simply return the value.
Useful when we have a mix of coroutines and regular functions.
>>> run_sync(await to_awaitable(5))
'5'
>>> run_sync(await to_awaitable(some_coroutine_that_returns_its_input(5)))
'5'
"""
if inspect.isawaitable(value):
return await value
return value | 79d531825a4439ffba715e16e431f2db701b6357 | 588,097 |
def expScale(initVal, exp):
"""
Applies an exponent exp to a value initVal and returns value.
Will work whether initVal is positive or negative or zero.
"""
val = initVal
if val > 0:
val = val ** exp
if val < 0:
val *= -1
val = val ** exp
val *= -1
return val | 5c897f394f28697c17121ebff71734b846f85bf0 | 56,029 |
def find_dialogue_event(dialogue_event_name, dialogue_event_defs):
""" Find a dialogue event by name in a list of dialogue event definitions.
:param dialogue_event_name: the name of the dialogue event to look for.
:param dialogue_event_defs: a list of dialogue event definitions.
:return: the dialogue_event_def with matching name, or None.
"""
for dialogue_event_def in dialogue_event_defs:
if dialogue_event_def.name == dialogue_event_name:
return dialogue_event_def
return None | 114ec4a2ee426d789ebcf76eb46756194e108d19 | 25,688 |
def bash_string(s):
"""Wrap a string in double quotes and escape things inside."""
s = s.replace('\\', '\\\\') # \ -> \\
s = s.replace('\"', '\\\"') # " -> \"
return '\"{}\"'.format(s) | 3283132517b5b0a857c2d46c265343d18b7c4b9c | 94,985 |
def FindNodeWithTag(node, tag):
"""Look through a node's children for a child node with a given tag.
Args:
root: The node to examine.
tag: The tag on a child node to look for.
Returns:
A child node with the given tag, or None.
"""
result = None
for n in node.getchildren():
if n.tag == tag:
assert not result
result = n
return result | 5ea0cb05a858edd1e5b44d0c3319d36ece9d5e2e | 376,897 |
def T_rec(T_hot, T_cold, y_factor):
"""Calculates receiver noise temperature via hot & cold temperatures and y factor."""
return (T_hot - y_factor * T_cold) / (y_factor - 1) | fc082e31368f957d978743ae4e3e3d2bf2440711 | 523,106 |
def get_floor(directions):
"""
Get the floor for Santa.
Parameters
----------
directions : str
A string of parentheses representing directions. An opening parenthesis,
(, means he should go up one floor, and a closing parenthesis, ), means
he should go down one floor.
Returns
-------
int
The floor to which Santa should go.
"""
floor = 0
for step in directions:
floor += {"(": 1, ")": -1}[step]
return floor | f6ab8d6d2fb134a71a5a1a06db14073327a5eb58 | 633,100 |
def top_n_correlated_features(data_df, sensitive_feature, n):
"""returns the n features most correlated to the sensitive feature"""
corr_df = data_df.corr()
sex_corrs = corr_df.reindex(corr_df[sensitive_feature].abs().sort_values(ascending=False).index)[sensitive_feature]
return sex_corrs.iloc[:n] | 6233785e623cccb8aaa1d3d9a66a37483d7bc1a5 | 70,481 |
def _split_list_by_function(l, func):
"""For each item in l, if func(l) is truthy, func(l) will be added to l1.
Otherwise, l will be added to l2.
"""
l1 = []
l2 = []
for item in l:
res = func(item)
if res:
l1.append(res)
else:
l2.append(item)
return l1, l2 | 3812a7b43cb103b746360943303441ae31122407 | 684,878 |
def find_line_starting_with_seq(the_list, seq, from_index=0, to_index=-1):
"""
Returns index of line in the document that starts with specified char sequence. Or -1 if sequence not found.
:param the_list: list of strings
:param seq: char sequence to find;
:param from_index: index in the list;
:param to_index: index in the list, open range; if is negative, the list will be searched till the end;
:return: index of the first occurrence of 'seq' in the list or -1 if not found
"""
if to_index < 0:
to_index = len(the_list)
if from_index > to_index:
from_index = to_index
for i in range(from_index, to_index):
if the_list[i].startswith(seq):
return i
return -1 | ce2407b8054056c802f4f0a567e5d85924496131 | 157,965 |
from typing import List
def _transform_body_for_vscode(body: str) -> List[str]:
"""snippetのbodyをvscode用に変換する.
改行区切りのlist, space4つをtabに変換.
:param body: string of a snippet body
:return body_for_vscode: vscode-snippet形式のbody
"""
body_list = body.split('\n')
body_for_vscode = [b.replace(' ', '\t') for b in body_list]
return body_for_vscode | 1261efcedb87848fdfd9fee3ebed36c956db0019 | 658,983 |
def format_period(seconds):
"""
Formats a period in seconds into a string
"""
if seconds == (24 * 60 * 60):
return "day"
elif seconds == (60 * 60):
return "hour"
elif seconds > (24 * 60 * 60):
return "%.1f days" % (seconds / 24. / 60. / 60.)
elif seconds > (60 * 60):
return "%.1f hours" % (seconds / 60. / 60.)
elif seconds > (60):
return "%.1f minutes" % (seconds / 60.)
else:
return "%.0f seconds" % seconds | 95cb62c4123c3469a890f765c473f3335131f646 | 326,530 |
def generate_music_info(tag_editor_context: dict) -> str:
"""Generate the details of the music based on the values in `tag_editor_context`
dictionary
**Keyword arguments:**
- tag_editor_context (dict) -- The context object of the user
**Returns:**
`str`
"""
ctx = tag_editor_context
return (
f"*🗣 Artist:* {ctx['artist'] if ctx['artist'] else '-'}\n"
f"*🎵 Title:* {ctx['title'] if ctx['title'] else '-'}\n"
f"*🎼 Album:* {ctx['album'] if ctx['album'] else '-'}\n"
f"*🎹 Genre:* {ctx['genre'] if ctx['genre'] else '-'}\n"
f"*📅 Year:* {ctx['year'] if ctx['year'] else '-'}\n"
f"*💿 Disk Number:* {ctx['disknumber'] if ctx['disknumber'] else '-'}\n"
f"*▶️ Track Number:* {ctx['tracknumber'] if ctx['tracknumber'] else '-'}\n"
"{}\n"
) | a7f221460b04f4082a16b03d4dc6eeef2a7e9740 | 259,609 |
import hashlib
def img_bin_to_sha256(img_bin):
"""Hash image binary data to sha1.
Args:
img_bin: binary string of image.
Returns:
sha1 of the image.
"""
img_sha2 = hashlib.sha256(img_bin).hexdigest()
return img_sha2 | 457a2fe4373fb5efd618482e10a671dfaf642fd0 | 267,686 |
def _pad(left, right, amount=17):
"""Left pad a key/val string."""
pad = ' ' * (amount - len(left))
return f"{left} {pad} {right}" | 768b2a481c2194e4a7bf2dbe942c4fbc636a9f0b | 407,750 |
def normalize_space(data):
"""Implements attribute value normalization
Returns data normalized according to the further processing rules
for attribute-value normalization:
"...by discarding any leading and trailing space (#x20)
characters, and by replacing sequences of space (#x20)
characters by a single space (#x20) character"
"""
result = []
scount = 2 # 0=no space; 1=add space; 2=don't add space
for c in data:
if c == ' ':
if scount == 0:
scount = 1
else:
if scount == 1:
result.append(' ')
result.append(c)
scount = 0
return ''.join(result) | e95b0178e54312c7ab329bc982f8add632709c3b | 654,283 |
def entuple(x,n=2):
"""
Make sure given value is a tuple. It is useful, for example, when you want to provide dimentions of an image either
as a tuple, or as an int - in which case you can use `(w,h) = entuple(x)`.
:param x: Either atomic value or a tuple. If the value is atomic, it is converted to a tuple of length `n`. It the value
is a tuple - it is inchanged
:param n: Number of elements in a tuple
:return: Tuple of a specified size
"""
if type(x) is tuple:
return x
elif type(x) is list:
return tuple(x)
else:
return tuple([x]*n) | c5e8ca94d552b746b45342b803dd267cd7c481f3 | 637,628 |
def split(test_name):
"""Split a fully-qualified test name.
Returns:
A tuple: (recipe name, simple test name)
"""
recipe, simple_test_name = test_name.split('.', 1)
return recipe, simple_test_name | 6b7031592db0e1ba6bf0c6d80f3f6060cc2fd547 | 179,906 |
def get_alt_svms(svms, classes, target_class):
"""
Find alternative SVMs (e.g., for target class 0, find the svms classifying 0 against 1, and 0 against 2).
Parameters
----------
svms : list
List of eTree.Element objects describing the different one-to-one support vector machines in the PMML.
classes : numpy.array
The classes to be predicted by the model.
target_class : str
The target class.
Returns
-------
alt_svms : list
List of eTree.Elements filtered to only include SVMs comparing the target class against alternate classes.
"""
# Noop for regression
if classes[0] is None:
return svms
alt_svms = [
svm for svm in svms
if svm.get('targetCategory') == str(target_class) or svm.get('alternateTargetCategory') == str(target_class)
]
# Sort svms based on target class order
alt_svms = [
next(svm for svm in alt_svms if svm.get('targetCategory') == str(c) or svm.get('alternateTargetCategory') == str(c))
for c in set(classes).difference({target_class})
]
return alt_svms | 62d0d8f093f20891b080605cbea1f9c2d08c10c8 | 69,702 |
def edges_to_adj_list(edges):
"""
Turns a list of edges in an adjecency list (implemented as a list).
Edges don't have to be doubled, will automatically be symmetric
Input:
- edges : a list of weighted edges (e.g. (0.7, 'A', 'B') for an
edge from node A to node B with weigth 0.7)
Output:
- adj_list : a dict of a set of weighted edges
"""
adj_list = {}
for w, i, j in edges:
for v in (i, j):
if v not in adj_list:
adj_list[v] = set([])
adj_list[i].add((w, j))
adj_list[j].add((w, i))
return adj_list | 0b309b3b78b8b7f7dd68a9d55a886181797a5c95 | 208,393 |
def strip_leading_blank_lines(text):
"""Return text with leading blank lines removed."""
split = text.splitlines()
found = 0
for index, line in enumerate(split):
if line.strip():
found = index
break
return '\n'.join(split[found:]) | f30dfdca8f3979d3c49e39e613b217b39a77df65 | 287,037 |
def is_field(token):
"""Checks if the token is a valid ogc type field
"""
return token in ["name", "description", "encodingType", "location", "properties", "metadata",
"definition", "phenomenonTime", "resultTime", "observedArea", "result", "id", "@iot.id",
"resultQuality", "validTime", "time", "parameters", "feature"] | 04cf3ac8777dd7a4605121eb02433d9f4c195d32 | 368,276 |
def compute_kappa_max(kappa_mean, opti_factor):
"""
Compute the supposed possible maximum value of kappa.
Inputs:
- kappa_mean: float
Mean of kappa
- opti_factor: float
Optimisation factor
Output:
- kappa_max: float
Supposed possible maximum value of kappa
"""
return opti_factor * kappa_mean | f22c8c7f23a3c220bcfdea01cd4ae2ce05d54f50 | 461,913 |
from typing import List
from typing import Tuple
def coords_to_query_string(coords:List[Tuple[float, float]], api_key:str) -> str:
"""
Converts a list of lat,lon tuples into the query format required
by Google Maps Elevation API.
Args:
coords: List of (lat,lon) tuples.
api_key: Api key for Google Elevation API
Returns:
Query string.
"""
prefix = "json?path=" if len(coords) > 1 else "json?locations="
path_string = ""
for lat, lon in coords:
path_string += f"{str(lat)},{str(lon)}|"
path_string = path_string[:-1]
sample_string = f"&samples={len(coords)}" if len(coords) > 1 else ""
key_string = f"&key={api_key}"
return prefix + path_string + sample_string + key_string | 240fdd875c32f81e4640a3051c4f96af23e1396c | 464,759 |
from typing import OrderedDict
def _read_index(stream):
"""Reads a dictionary of type String : uint"""
length = stream.read_uint()
data = OrderedDict()
for _ in range(length):
key = stream.read_string()
value = stream.read_uint()
data[key] = value
return data | 61c0e7b83fe64e7c8033e0c3db629b6dbb40e5a1 | 553,350 |
def get_structure(pdb_file, model=None, altloc="first", extra_fields=[],
include_bonds=False):
"""
Create an :class:`AtomArray` or :class:`AtomArrayStack` from a
:class:`PDBFile`.
This function is a thin wrapper around the :class:`PDBFile` method
:func:`get_structure()` for the sake of consistency with other
``structure.io`` subpackages.
Parameters
----------
pdb_file : PDBFile
The file object.
model : int, optional
If this parameter is given, the function will return an
:class:`AtomArray` from the atoms corresponding to the given
model number (starting at 1).
Negative values are used to index models starting from the last
model insted of the first model.
If this parameter is omitted, an :class:`AtomArrayStack`
containing all models will be returned, even if the structure
contains only one model.
altloc : {'first', 'occupancy', 'all'}
This parameter defines how *altloc* IDs are handled:
- ``'first'`` - Use atoms that have the first *altloc* ID
appearing in a residue.
- ``'occupancy'`` - Use atoms that have the *altloc* ID
with the highest occupancy for a residue.
- ``'all'`` - Use all atoms.
Note that this leads to duplicate atoms.
When this option is chosen, the ``altloc_id`` annotation
array is added to the returned structure.
extra_fields : list of str, optional
The strings in the list are optional annotation categories
that should be stored in the output array or stack.
These are valid values:
``'atom_id'``, ``'b_factor'``, ``'occupancy'`` and ``'charge'``.
include_bonds : bool, optional
If set to true, a :class:`BondList` will be created for the
resulting :class:`AtomArray` containing the bond information
from the file.
All bonds have :attr:`BondType.ANY`, since the PDB format
does not support bond orders.
Returns
-------
array : AtomArray or AtomArrayStack
The return type depends on the `model` parameter.
"""
return pdb_file.get_structure(model, altloc, extra_fields, include_bonds) | 3887837cb4116ec93e3bc7fef95f6afca2b59177 | 565,578 |
import secrets
def random_file_name(filename: str) -> str:
"""
Replace file name with a random string and preserving its extension.
Result would look like <random_string>.<extension>
:param filename: str
:return: str
"""
return f'{secrets.token_urlsafe(16)}.{filename.split(".")[-1]}' | 78d12aa08d55f0fba71427844830a71710ac1bf0 | 64,265 |
def data(context, data):
"""Replace the tag's content with the current data.
"""
return context.tag.clear()[data] | caa302cda6f2a8fecc3c453375d703f9438b5412 | 192,799 |
def make_seq_label_output(result, infer_input):
"""Transform model output into user-friendly contents.
:param result: 2-D list of strings. (model output)
:param infer_input: 2-D list of string (model input)
:return ret: list of list of tuples
[
[(word_11, label_11), (word_12, label_12), ...],
[(word_21, label_21), (word_22, label_22), ...],
...
]
"""
ret = []
for example_x, example_y in zip(infer_input, result):
ret.append([(x, y) for x, y in zip(example_x, example_y)])
return ret | 8490972b6f9ce4fbd1051c8b0db88e5b9578de9a | 345,140 |
import re
def GetEvalueFromAnnotation(line):#{{{
"""
Parsing E-value from the annotation line
"""
if line:
m=re.search('evalue *=[^, ]*',line)
if m:
evalue = m.group(0).split('=')[1]
try:
return float(evalue)
except (ValueError, TypeError):
return None
else:
return None
return None | c680c30dc8dc8d6a788424a515363b4ee62a65c0 | 436,364 |
import itertools
def flatten_dict(**kwargs):
""" Flatten a dict of lists into a list of dicts
For example
flatten_dict(lr=[1, 2], a=[10,3], b=dict(c=[2, 4], d=np.arange(1, 3)))
>>>
[{'lr': 1, 'a': 10, 'b': {'c': 2, 'd': 1}},
{'lr': 2, 'a': 3, 'b': {'c': 4, 'd': 2}}]
"""
ks, vs = [], []
for k, v in kwargs.items():
ks.append(k)
if isinstance(v, dict):
vs.append(flatten_dict(**v))
elif isinstance(v, (int, float)):
vs.append([v])
else:
vs.append(v)
result = []
for k, v in itertools.product([ks], zip(*vs)):
result.append(dict(zip(k, v)))
return result | 4a42dcf4fcceb74382541ec8e9412fa0e87635ff | 583,737 |
def int_to_big_endian(n: int, length: int) -> bytes:
"""
Represents integer in big endian byteorder.
:param n: integer
:param length: byte length
:return: big endian
"""
return n.to_bytes(length, "big") | ea16ab76dc68d0aef3f189aa0b53fdd99d42b8cf | 272,644 |
def lower_text(sentences):
"""Given a list of sentences, return the sentences where each
character is converted to lowercase."""
return [sentence.lower() for sentence in sentences] | 6fb6b9796f7523f577dfd4382f30059f9e6080de | 598,217 |
from typing import List
from typing import Pattern
import re
from typing import Optional
from typing import Match
def _remove_blank_lines(*, expression: str) -> str:
"""
Remove blank (break or spaces only) lines from expression string.
Parameters
----------
expression : str
Target expression string.
Returns
-------
expression : str
Expression string that removed blank lines.
"""
lines: List[str] = expression.splitlines()
result_lines: List[str] = []
pattern: Pattern = re.compile(pattern=r'^\s*$')
for line in lines:
match: Optional[Match] = pattern.match(string=line)
if match is not None:
continue
result_lines.append(line)
expression = '\n'.join(result_lines)
return expression | bd6976ea6b38907c93fb53d2b445dd482875ab65 | 628,958 |
def generate_missing_location_msg(filepath, errors):
"""Generate error message for missing location LookupError."""
msg = (
"Unused step implementation"
if filepath.endswith(".py")
else "Step implementation not found"
)
if len(errors) == 1:
msg += ". Also registered an error: {}".format(str(errors[0]))
elif errors:
msg += ". Also registered {} errors, " "use :BehaveErrors to see them.".format(
len(errors)
)
return msg | 7dcf958d10b33a8c2212918dafd5e33445d25549 | 283,644 |
from typing import OrderedDict
def _top_level_tags(form):
"""
Returns a OrderedDict of the top level tags found in the xml, in the
order they are found.
"""
to_return = OrderedDict()
element = form.get_xml_element()
if element is None:
return OrderedDict(sorted(form.form_data.items()))
for child in element:
# fix {namespace}tag format forced by ElementTree in certain cases (eg, <reg> instead of <n0:reg>)
key = child.tag.split('}')[1] if child.tag.startswith("{") else child.tag
if key == "Meta":
key = "meta"
to_return[key] = form.get_data('form/' + key)
return to_return | 26e2b3ac9e8aa0f28aa95fdafd8a8b9b8a0812ed | 56,561 |
def slice_along_axis(index, axis, ndim):
"""
Return a selector that takes a single-element slice (subtensor) of an nd-array
along a certain axis (at a given index).
The result would be an (n-1)-dimensional array. E.g. data[:, :, 5, :].
The advantage of this function over subscript syntax is that you can
specify the axis with a variable.
:param index:
:param axis:
:param ndim:
:return:
"""
return tuple([index if axis == i else None for i in range(0, ndim)]) | 99d393eaa0ded322e4fd3c458af86ef661fe70f3 | 262,690 |
def get_account_key_change_status(
self,
) -> dict:
"""Get current account key change status
.. list-table::
:header-rows: 1
* - Swagger Section
- Method
- Endpoint
* - spPortal
- GET
- /spPortal/account/key/changeStatus
:return: Returns dictionary of account key change status \n
* keyword **generateTimestamp** (`int`): Latest epoch time in
milliseconds when new account key was generated. ``Null`` if
account key has never been changed.
* keyword **committedToPortalTimestamp** (`int`): Latest epoch
time in milliseconds when old account key was delete from
Portal. ``Null`` if current account key change has not been
committed to Portal.
:rtype: dict
"""
return self._get("/spPortal/account/key/changeStatus") | 6ae1970364697b5b2fed14d9c6933f0703984c1a | 263,860 |
def _fmt_rank(val):
"""Returns value (between 0 and 1) formatted as a percentage."""
return '%.5f' % (100 * val) | cc9fe6ce15371fe0540112d7f24b82fdf8e29a2c | 365,980 |
def pstring(state, num):
"""Return a nice string give a state and its count.
Example:
>>> pstring(X(0,-1,1),4)
( 0, *, 1) : 4
"""
a,b,c = state
if b == -1:
b = " *"
return f"({a:2},{b:2},{c:2}) : {num:2}" | 3af8fe9b35d43dbca4f03b98c0f43721c6822203 | 685,749 |
import string
def isValidMapKey(key):
"""Returns ``True`` if the given string is a valid key for use as a colour
map or lookup table identifier, ``False`` otherwise. A valid key comprises
lower case letters, numbers, underscores and hyphens.
"""
valid = string.ascii_lowercase + string.digits + '_-'
return all(c in valid for c in key) | 2e9167c3351b6c80bcc12c129279c4048f511e24 | 22,670 |
def get_sample_nwb_metadata(experiment_id):
"""
Returns sample NWB metadata for testing purposes without needing an ElabFTW token.
:param experiment_id: Ignored - this function always returns the same sample metadata
:return: Sample NWB metadata
:rtype: dict
"""
# Output of get_nwb_metadata(156) with a valid elabftw token.
# Note: this needs to be updated when this output changes.
return {
"NWBFile": {
"session_description": "test fake experiment with json metadata",
"identifier": "20211001-8b6f100d66f4312d539c52620f79d6a503c1e2d1",
"session_start_time": "2021-10-01 11:13:47",
"experimenter": ["Liam Keegan"],
"institution": "Heidelberg University, Physiology and Pathophysiology",
"lab": "Medical Biophysics, Groh/Mease",
"virus": "AAVretr ChR2-tdTomato:\n * Virus in -80 storage: AAVrg-CAG-hChR2-tdTomato (AAV Retrograde)\n * Origin: Addgene\n * Comments: retrograde\n * Expression Quality: \n * product number: \nAAVretr Flpo:\n * Virus in -80 storage: AAVretr EF1a-Flpo\n * Origin: Addgene\n * Comments: retrograde Flip\n * Expression Quality: \n * product number: 55637-AAVrg\n",
},
"Subject": {
"sex": "unknown",
"weight": 0.002,
"genotype": "Nt1Cre-ChR2-EYFP",
"subject_id": "xy1",
"description": "test mouse",
"date_of_birth": "2000-01-01",
},
"Ecephys": {},
"Other": {
"OptogeneticStimulationSite": {
"device": "the device",
"location": "S1: primary somatosensory cortex",
"description": "laser stimulation",
"excitation_lambda": "473",
},
"SiliconProbe": {
"Probe identifier:": "1234356",
"ElectrodeGroup.name": "H5",
"ElectrodeGroup.description": "a test H5 probe",
},
},
} | d0611ce17cb0cc4276d745bc9b8dc2857756a991 | 257,936 |
def zero_pad_value(value: int) -> str:
"""
Zero pad the provided value and return string.
"""
return "0" + str(value) if value < 10 else str(value) | eb84dd7d41e3ef29b13b5c7a7137f6d02fc55477 | 199,220 |
def jsonrpc_error(id, code, message, data=None):
"""Create JSON-RPC error response"""
return {
'jsonrpc': '2.0',
'error': {
'code': code,
'message': message,
'data': data,
},
'id': id,
} | 3fb820eeefd7927f153b0ffd8f5e16e18cb13924 | 381,226 |
def format_labels(labels_dict):
"""
Format labels dictionary as 'key:value,key2:value'
"""
if labels_dict is None:
return ""
labels = []
for k, v in labels_dict.items():
labels.append("%s:%s" % (k, str(v)))
return ", ".join(labels) | fd8aa075752e54a3247a5d4c803882568ba774d8 | 387,194 |
import re
def CheckFileExt(FileName, FileExts):
"""Check file type based on the specified file extensions delimited by spaces.
Arguments:
FileName (str): Name of a file.
FileExts (str): Space delimited string containing valid file extensions.
Returns:
bool : True, FileName contains a valid file extension; Otherwise, False.
"""
for FileExt in FileExts.split():
if re.search(r"\.%s$" % FileExt, FileName, re.IGNORECASE):
return True
return False | 006a6f7de6d6f957bfac5fac0252b6062e4b5ad3 | 186,895 |
def pick_bpart(df, bpart):
"""
Create a sub dataset of particular body part.
:param df: dataframe to process
:param bpart: body part to extract
:return: trimmed dataframe
"""
if bpart == "all":
return df
return df[df["body_part"] == bpart].reset_index() | 00d3d80f0e8614d0ee14345cd5e881a1738372b3 | 620,302 |
def rename_columns(df, rename_dict):
"""Renames columns based on `rename_dict`
Args:
df (`pandas.DataFrame`): The dataframe to rename columns in
rename_dict (:type:`dict`): A dict in the format `{'old_name': 'new_name'}`
to use to rename the columns
Returns:
`pandas.DataFrame`: `df` with renamed columns
"""
return df.rename(columns=rename_dict) | 30ac3e5bb888897799d0d899fa186a48785ec54b | 66,606 |
def connect_to_ecs(env):
"""
Return boto connection to the ecs in the specified environment's region.
"""
rh = env.resource_handler.cast()
wrapper = rh.get_api_wrapper()
client = wrapper.get_boto3_client(
'ecs',
rh.serviceaccount,
rh.servicepasswd,
env.aws_region
)
return client | e4c0b7ad80c18fd6d2a90df6670ca9bfa6f1cbe3 | 703,150 |
from bs4 import BeautifulSoup
def get_tables_from_html_page(html_page):
"""Given an html page, return all html tables on the page and
their contents, i.e., all <td ..>, <tr ..>"""
#tables = (BeautifulSoup(html_page)).findChildren('table')
tables = (BeautifulSoup(html_page)).find_all('table')
return tables | 218a541c8beab9ae7b909a430d2a88bf1edad677 | 315,421 |
def upperLevelCredits (theDictionary):
"""Counts the number of upper-level undergraduate credits.
:param dict[str, int] theDictionary: The student's class information
with the class as the key and the number or credits as the value
:return: The number of credits
:rtype: int
"""
numCredits = 0
for i in theDictionary:
deptAndNum = i.split ()
if int (deptAndNum[1][:3]) in range(300, 500):
numCredits += theDictionary[i]
return numCredits | 06c27b35fb23ff517fb2397cd42fe5d879432e1d | 258,010 |
import re
def get_feat_shape(visual_archi, compress_type=None):
"""
Get feat shape depending on the training archi and compress type
"""
if visual_archi == "fasterrcnn":
# the RCNN model should be trained with min_size=224
feat_shape = (-1, 2048, 7, 7)
elif visual_archi == "maskrcnn":
# the RCNN model should be trained with min_size=800
feat_shape = (-1, 2048, 10, 10)
elif visual_archi == "resnet18":
feat_shape = (-1, 512, 7, 7)
else:
raise NotImplementedError("Unknown archi {}".format(visual_archi))
if compress_type is not None:
if not re.match(r"\d+x", compress_type):
raise NotImplementedError("Unknown compress type {}".format(compress_type))
compress_times = int(compress_type[:-1])
feat_shape = (
feat_shape[0],
feat_shape[1] // compress_times,
feat_shape[2],
feat_shape[3],
)
return feat_shape | 14a968924a1ee6be7f10de08578c19b8daadddd9 | 595,769 |
def _get_motion_string(n_frames, frame_time, frames):
""" Compose the motion part of a bvh file.
:param n_frames: Number of frames.
:type n_frames: int
:param frame_time: Time in seconds it takes to advance 1 frame.
:type frame_time: float
:param frames: The motion data for channels of all joints.
:type frames: numpy.ndarray
:return: Motion as string representation.
:rtype: str
"""
s = 'MOTION\n'
s += 'Frames: {}\n'.format(n_frames)
s += 'Frame Time: {}\n'.format(frame_time)
for frame in frames.astype(str):
s += ' '.join(frame)
s += '\n'
return s | c548bf8319001efeaaa3cdda42e4bc96c39fa1c0 | 424,174 |
def with_prefix(prefix, name):
"""Adds prefix to name."""
return "/".join((prefix, name)) | 03e82480cee3bb9cdf0b73c4e26a792c271e202d | 633,183 |
def german_weekday_name(date):
"""Return the german weekday name for a given date."""
days = [u'Montag', u'Dienstag', u'Mittwoch', u'Donnerstag', u'Freitag', u'Samstag', u'Sonntag']
return days[date.weekday()] | 7d2919c61438ec913abe38cccd924bb69f866655 | 1,089 |
def optional_square(number: int = 5) -> int: # noqa
"""
Square `number`.
The function from Modin.
Parameters
----------
number : int
Some number.
Notes
-----
The `optional_square` Modin function from modin/scripts/examples.py.
"""
return number ** 2 | eaf7cbce6397a577cb563aebb68721ba7c6f3442 | 425,024 |
def OwnerCcsInvolvedInFilterRules(rules):
"""Finds all user_ids in the given rules and returns them.
Args:
rules: a list of FilterRule PBs.
Returns:
A set of user_ids.
"""
user_ids = set()
for rule in rules:
if rule.default_owner_id:
user_ids.add(rule.default_owner_id)
user_ids.update(rule.add_cc_ids)
return user_ids | 01b26a9774b232d98b9777062052efa1c8acee69 | 154,326 |
import torch
def lagged_input(input, hist_len, hist_stride=1, time_stride=1, tensor_type=torch.float):
"""
Introduce lagged history input from time series.
:param torch.tensor input: input of shape (dimensions, timesteps)
:param int hist_len:
:param int hist_stride:
:param int time_stride:
:param dtype tensor_type:
:returns: lagged input tensor of shape (dimensions, time-H+1, history)
:rtype: torch.tensor
"""
in_unfold = input.unfold(-1, hist_len, time_stride)[:, :, ::hist_stride] # (dim, time, hist)
return in_unfold | db71a5d6a99dc109b21abe2e7afeb320151d3af3 | 262,289 |
def _sam_readline(sock):
"""
read a line from a sam control socket
"""
response = bytearray()
while True:
c = sock.recv(1)
if c:
if c == b'\n':
break
response += c
else:
break
return response.decode('ascii') | ac35ce3bdd6a4e28eba0b25adae5e53b8b794aa6 | 62,186 |
def update_ave_depth(leaf_depth_sum, set_of_leaves):
"""
Average tree depth update.
Inputs: - leaf_depth_sum: The sum of the depth values of all leaf nodes.
- set_of_leaves: A python set of leaf node ids.
Output: - ave_depth: The average depth of the tree.
"""
ave_depth = leaf_depth_sum/len(set_of_leaves)
return ave_depth | ceb19f3b92bbdf5a8c5d2cac0a9df8ad61fe7ebb | 481,920 |
def RGB_to_CMYK(r, g, b, gcr=1.0):
"""
take r,g,b float values (0.0 to 1.0),
invert to get c,m,y,
apply GCR (0.0 to 1.0, 0 means no GCR = CMY separation),
return c,m,y,k as integers (percent values)
GCR see http://en.wikipedia.org/wiki/Grey_component_replacement
"""
c, m, y = (1.0 - (float(x)/2) for x in (g+b, r+b, r+g))
k = min(c, m, y) * gcr
c, m, y = c-k, m-k, y-k
return [int(round(x*100)) for x in (c, m, y, k)] | 8144f6c0e324cc91556c802f04ba53dd4d172d1f | 343,108 |
def split_key_val_pairs(context, parameter, args): # pylint: disable=unused-argument
"""Split key-value pairs into a dictionary"""
return dict(arg.split("=") for arg in args) | 4c9431c06912f687118320a9f08a2edc4c7113b1 | 418,841 |
from typing import Any
import typing
def hint_is_specialized(hint: Any, target: Any) -> bool:
"""Checks if a type hint is a specialized version of target.
E.g., hint_is_specialized(ClassVar[int], ClassVar) is True.
isinstance will invoke type-checking, which this methods sidesteps.
Behavior is undefined for simple type hints that don't take a type
argument, like Any or a bare type.
"""
return typing.get_origin(hint) is target | b651fc05290de82ab5a5833d10ca68d6a96f2d7a | 701,984 |
def convert_size(free, total, mode):
"""
Takes free and total size and coverts them based on conversion mode
free - returns free
total - returns total
used - returns difference between total and free
pfree - returns free as percentage of total
pused - returns used as percentage of total
:param mode: one of SIZE_CONVERSION_MODES
"""
if total == 0:
return 0 # even if free is not 0, it is better to alert authorities
value = None
if mode == 'free':
value = free
elif mode == 'total':
value = total
elif mode == 'used':
value = total - free
elif mode == 'pfree':
value = (free / total) * 100
elif mode == 'pused':
used = (total - free)
value = (used / total) * 100
return value | 62ae759359758d511792412ee04b6b9a581a4fb7 | 102,934 |
def load_items_descriptions(data, items_name):
"""
Loading each items respective description.
Parameters:
data(dict): Nested dictionaries containing
all information of the game.
items_name(list): List of item names.
Returns:
items_descriptions(list): Returns list of item descriptions.
"""
item_descriptions = []
for name in items_name:
description = data['Items'][name]['Description']
item_descriptions.append(description)
return item_descriptions | 653caaf84a4cd64fcf81f857004a282f58074fdf | 452,588 |
import time
import torch
def record_ddp_fit_model_stats(trainer, model, use_cuda):
"""Helper to calculate wall clock time for fit + max allocated memory.
Args:
trainer: The trainer object.
model: The model to fit.
use_cuda: Whether to sync CUDA kernels.
Returns:
Max Memory if using GPUs, and total wall clock time.
"""
max_memory = None
time_start = time.perf_counter()
if use_cuda:
torch.cuda.reset_peak_memory_stats()
torch.cuda.synchronize()
trainer.fit(model)
if use_cuda:
torch.cuda.synchronize()
max_memory = torch.cuda.max_memory_allocated() / 2 ** 20
total_time = time.perf_counter() - time_start
return max_memory, total_time | fdb6d7bd2ce6cb3a38cf9ab491be541863d05fd6 | 115,703 |
import math
def two_divider(num):
"""Solution to exercise P-1.30.
Write a Python program that can take a positive integer greater than 2
as input and write out the number of times one must repeatedly divide
this number by 2 before getting a value less than 2.
"""
if not isinstance(num, int) or (num < 3):
raise ValueError
return int(math.log(num, 2)) | 2bc6cdf305d2ed423e9bab0a5011dbb8a6c9efd1 | 661,517 |
import yaml
def parse_yaml_file(path):
"""Parses a YAML file and returns a dictionary representation of it
:param path: Path to the YAML file
:return: A dictionary representation of the YAML file
"""
with open(path, 'r') as file:
loaded = yaml.load(file, Loader=yaml.FullLoader)
return loaded | a772e56a3ff3d7eac8a7e751f55f5ce2614ac167 | 476,005 |
def dydt(t, y, k, m, x_car):
"""First and second derivative of position as
function of time.
Args:
t: time
y: [x, v]
k: spring stiffness
m: brick mass
x_car: function giving car position as function of time
Returns:
[v(t), a(t)]
"""
dydt2 = -(k/m) * (y[0] - x_car(t))
return y[1], dydt2 | aab0a4787a268c860e929d644e5652f43197f413 | 492,151 |
def check_sink_place_presence(net):
"""
Check if there is a unique sink place with empty connections
Parameters
-------------
net
Petri net
Returns
-------------
place
Unique source place (or None otherwise)
"""
count_empty_output = 0
unique_sink = None
for place in net.places:
if len(place.out_arcs) == 0:
count_empty_output = count_empty_output + 1
unique_sink = place
if count_empty_output == 1:
return unique_sink
return None | 080c422c9619834e001006d698e41dbd0e00ce80 | 203,705 |
def convert_arabic_to_roman(arabic):
"""
Convert an arabic literal to a roman one. Limits to 39, which is a rough
estimate for a maximum for using roman notations in daily life.
..note::
Based on https://gist.github.com/riverrun/ac91218bb1678b857c12.
:param arabic: An arabic number, as string.
:returns: The corresponding roman one, as string.
"""
if int(arabic) > 39:
return arabic
to_roman = {
1: 'I', 2: 'II', 3: 'III', 4: 'IV', 5: 'V', 6: 'VI', 7: 'VII',
8: 'VIII', 9: 'IX', 10: 'X', 20: 'XX', 30: 'XXX'
}
roman_chars_list = []
count = 1
for digit in arabic[::-1]:
digit = int(digit)
if digit != 0:
roman_chars_list.append(to_roman[digit * count])
count *= 10
return ''.join(roman_chars_list[::-1]) | 6f786c75250fe4da7e7c540acc82a8fc100254a7 | 41,917 |
import requests
def get_languages(api_url):
"""
Return supported languages as a list of dictionaries.
Args:
api_url (str): API base url.
Returns:
List[dict]:
Supported languages as a list of dictionaries.
Each dictionary contains three keys, ``name``, ``code`` and
``longCode``::
{
"name":"English (GB)",
"code":"en",
"longCode":"en-GB"
}
"""
r = requests.get(api_url + "languages")
return r.json() | c36b6e914ad3f3ce35aa1fd166d37d2c25ed8527 | 586,837 |
from functools import reduce
def solve(n, ar):
"""
Given an integer array of size n, return the sum of all its elements.
"""
# We could explicitly iterate over each element the array, but in python,
# we can just use the reduce() function to sum up a list of numbers.
return reduce((lambda x, y: x + y), ar) | da80e675c3580eecf52cbcf92a774786f39a0ddf | 336,885 |
def closest_bin(q, bin_edges):
"""
Find closest bin to a q-value
:param float q: q-value
:param list bin_edges: list of bin edges
"""
for i in range(len(bin_edges)):
if q > bin_edges[i] and q <= bin_edges[i+1]:
return i
return None | 8e5208d25d795d4a67a5960ab39388567d69f1f3 | 241,008 |
import collections
def _test_spinn_config(d_embed, d_out, logdir=None, inference_sentences=None):
"""Generate a config tuple for testing.
Args:
d_embed: Embedding dimensions.
d_out: Model output dimensions.
logdir: Optional logdir.
inference_sentences: A 2-tuple of strings representing the sentences (with
binary parsing result), e.g.,
("( ( The dog ) ( ( is running ) . ) )", "( ( The dog ) ( moves . ) )").
Returns:
A config tuple.
"""
config_tuple = collections.namedtuple(
"Config", ["d_hidden", "d_proj", "d_tracker", "predict",
"embed_dropout", "mlp_dropout", "n_mlp_layers", "d_mlp",
"d_out", "projection", "lr", "batch_size", "epochs",
"force_cpu", "logdir", "log_every", "dev_every", "save_every",
"lr_decay_every", "lr_decay_by", "inference_premise",
"inference_hypothesis"])
inference_premise = inference_sentences[0] if inference_sentences else None
inference_hypothesis = inference_sentences[1] if inference_sentences else None
return config_tuple(
d_hidden=d_embed,
d_proj=d_embed * 2,
d_tracker=8,
predict=False,
embed_dropout=0.1,
mlp_dropout=0.1,
n_mlp_layers=2,
d_mlp=32,
d_out=d_out,
projection=True,
lr=2e-2,
batch_size=2,
epochs=20,
force_cpu=False,
logdir=logdir,
log_every=1,
dev_every=2,
save_every=2,
lr_decay_every=1,
lr_decay_by=0.75,
inference_premise=inference_premise,
inference_hypothesis=inference_hypothesis) | 7e6a2d005c2b758d534157748a0c948dfddb73de | 522,048 |
import torch
def xyxy_to_xywh(boxes: torch.Tensor):
"""Converts a set of boxes in [top_left_x, top_left_y, bottom_right_x, bottom_right_y] format to
[top_left_x, top_left_y, width, height] format"""
assert boxes.shape[-1] == 4
converted = boxes.clone()
converted[..., 2:] -= converted[..., :2]
return converted | 4854509eca2a75d8ea622dc7cf1fe748ad02bb99 | 596,804 |
def determine_cycle_edges(cycle_nodes):
"""Determine the edges of the nodes in the cycle."""
edges = []
for idx, elem in enumerate(cycle_nodes):
this_element = elem
next_element = cycle_nodes[(idx + 1) % len(cycle_nodes)]
edges.append((this_element, next_element))
return edges | 3f46339aaa6726329e6fb72521a178f67639627c | 507,409 |
import pickle
def read_pickle(filepath):
"""Read pickle file"""
infile = open(filepath,'rb')
data = pickle.load(infile)
infile.close()
return data | eb356661b5ca1f530da0f7623397cf6d8b4eb663 | 650,398 |
def calc_csi(precision, recall):
"""
Compute the critical success index
"""
precision[precision<1e-5] = 1e-3
recall[recall<1e-5] = 1e-3
csi = 1.0 / ((1/precision) + (1/recall) - 1.0)
return csi | 506d49943955c8a8f1ef02408dea498bec0ed560 | 522,647 |
def deal_text(text: str) -> str:
"""deal the text
Args:
text (str): text need to be deal
Returns:
str: dealed text
"""
text = " "+text
text = text.replace("。","。\n ")
text = text.replace("?","?\n ")
text = text.replace("!","!\n ")
text = text.replace(";",";\n ")
return text | 8f16e7cd2431dfc53503c877f9d4b5429f738323 | 709,933 |
from typing import Type
from enum import Enum
from typing import List
from typing import Tuple
def enum_to_choices(enum: Type[Enum]) -> List[Tuple]:
"""Convert enum to django choices."""
return [(item.name, str(item.value)) for item in enum] | 986002aebbe8405897d2cdea9ba28f28802fe856 | 302,012 |
def suite(*args, **kwargs):
"""Decorator to conditionally assign suites to individual test methods.
This decorator takes a variable number of positional suite arguments and two optional kwargs:
- conditional: if provided and does not evaluate to True, the suite will not be applied.
- reason: if provided, will be attached to the method for logging later.
Can be called multiple times on one method to assign individual conditions or reasons.
"""
def mark_test_with_suites(function):
conditions = kwargs.get('conditions')
reason = kwargs.get('reason')
if not hasattr(function, '_suites'):
function._suites = set()
if args and (conditions is None or bool(conditions) is True):
function._suites = set(function._suites) | set(args)
if reason:
if not hasattr(function, '_suite_reasons'):
function._suite_reasons = []
function._suite_reasons.append(reason)
return function
return mark_test_with_suites | 327f2ea00fd0bd61d7777127799f23744801d529 | 482,720 |
def nop(*args, **kwargs):
"""
Does no operation
Parameters
----------
args : ...
kwargs : ...
Returns
-------
None
"""
return None | 641fde1baadafdaff0993fae6c67e6b05005d803 | 368,143 |
def in_dict(key, dictionary):
"""
Inputs: key- the key to be checked for in the dictionary
dictionary- the dictionary the key will be searched in
Checks a dictionary to see if it contains a key. If it does, True is
returned; False is returned otherwise.
"""
keys = list(dictionary)
for each in keys:
if each == key:
return True
return False | ab9ab57e956107c2caa081ab6755589402d6ce8b | 237,833 |
def add_macros(macros):
""" add macros to compile string
Args:
macros (dict/list): preprocessor macros
Returns:
compile_str (str): macro string
"""
compile_str = ''
if type(macros) is dict:
for k,v in macros.items():
if v is None:
compile_str += f' /D{k}'
else:
compile_str += f' /D{k}={v}'
elif type(macros) is list:
for k in macros:
compile_str += f' /D{k}'
return compile_str | 7e4358ab16a409656b131155a94ce9f099e2544e | 292,736 |
def align_rows(rows, bbox):
"""
For every row, align the left and right boundaries to the final
table bounding box.
"""
try:
for row in rows:
row['bbox'][0] = bbox[0]
row['bbox'][2] = bbox[2]
except Exception as err:
print("Could not align rows: {}".format(err))
pass
return rows | 756957ec1554f8eb4847a439cba45429c46b9ac4 | 59,077 |
import csv
def _load_class_names(file_name):
"""Load the class names."""
# Open the TSV file and skip its header.
with open(file_name, "rt") as f:
csv_reader = csv.reader(f, delimiter="\t")
next(csv_reader)
# The class name is on the second column.
class_names = [row[1] for row in csv_reader]
return class_names | 39fcabb63793a4f378bc69d2daa0879d41ef7cab | 537,243 |
def unique_columns_list(nested_lists):
"""
Flatten the nested list (two levels) and leave unique elements.
Parameters
----------
nested_lists : list
A list which contains sublists.
Returns
-------
list
A list with unique elements from sublists.
"""
return list(set([item for sublist in nested_lists for item in sublist])) | dd84ce0c28a10b74cf2fe8f9b50411527f922d68 | 471,696 |
def max_value(d):
""" Takes a dictionary d and returns the maximum element value and its
corresponding key. Raises a TypeError if any of the values are not
comparable to each other.
>>> max_value({'a': 12, 3: 45})
(3, 45)
>>> max_value({}) is None
True
>>> max_value({33: 34, -1: 600, 'xyz': 2000.4})
('xyz', 2000.4)
>>> max_value({1: 'abc', 2: 'xyz', 3: 'ghijkl'})
(2, 'xyz')
>>> max_value({1:'a', 2:3}) # doctest:+ELLIPSIS
Traceback (most recent call last):
...
TypeError:...
"""
# Hint: d.values() is a sequence of all the values in dictionary d
# try using this along with built-in function max
if d == {}: # if empty, return None
return None
max_key = '' # initialize max_key as ''
max_val = max(d.values()) # set max_val to the max of all values in d
for key in d.keys(): # iterate over all keys in d
if d[key] >= max_val:
max_val = d[key] # set d[key] to max_val if it's the highest that's been iterated over
max_key = key # assign max_key when max_val is assigned
return (max_key, max_val) | 6469d2f35bd05f088bf7b101ef47f151e6fc3f02 | 175,956 |
import torch
def earth_mover_distance(input: torch.Tensor, target: torch.Tensor, r: float = 2):
"""
Batch Earth Mover's Distance implementation.
Args:
input: B x num_classes
target: B x num_classes
r: float, to penalize the Euclidean distance between the CDFs
Returns:
"""
N, num_classes = input.size()
input_cumsum = torch.cumsum(input, dim=-1)
target_cumsum = torch.cumsum(target, dim=-1)
diff = torch.abs(input_cumsum - target_cumsum) ** r
class_wise = (torch.sum(diff, dim=-1) / num_classes) ** (1. / r)
scalar_ret = torch.sum(class_wise) / N
return scalar_ret | 11bce97c9d654c54eece4a60065fd19a957d8e58 | 102,914 |
from typing import Dict
from typing import Any
def _make_pod_envconfig(relation_state: Dict[str, Any]) -> Dict[str, Any]:
"""Generate pod environment configuration.
Args:
relation_state(Dict[str, Any]): relation details.
Returns:
Dict[str, Any]: pod environment configuration.
"""
mysql_db = relation_state["db"]
endpoints = f"{mysql_db}-endpoints"
return {
# General configuration
"MYSQL_HOST": endpoints,
"MYSQL_USER": relation_state["user"],
"MYSQL_ROOT_PASSWORD": relation_state["pwd"],
} | 3cfe7f0a8c9baac05c8a91c664d0a31953815572 | 549,926 |
def remove_indent(lines):
""" Remove all indentation from the lines.
"""
return [line.lstrip() for line in lines] | d294364630888f19b59f5df5ed1dbfbaeb23a4ab | 500,630 |
import unicodedata
def normalize(tag):
"""Normalize a single tag: remove non valid chars, lower case all."""
tag_stripped = tag.strip()
value = unicodedata.normalize("NFKD", tag_stripped.lower())
value = value.encode('ascii', 'ignore').decode('utf-8')
return value | bad11bc517d971bf71e0a4cef9df5cc2a388f8cb | 81,217 |
def UnitStringIsValid(unit: str) -> bool:
"""Checks to make sure that a given string is in fact a recognized unit used
by the chromium perftests to report results.
Args:
unit (str): The unit string to be checked.
Returns:
bool: Whether or not it is a unit.
"""
accepted_units = [
"us/hop", "us/task", "ns/sample", "ms", "s", "count", "KB", "MB/s", "us"
]
return unit in accepted_units | c8ebfadce2096dcc1753e86691bac093cf654d83 | 306,961 |
def get_raffles_for_calendar_month(db, date, user_id, conf):
"""Get all of the entries for a calendar month
Args:
db (psycopg2.connection): db object
date (datetime.date): date object with the month
user_id (int): user id to look up entries for
conf (Config): config object
Returns:
psycopg2.cursor: returns all the raffles for the month
"""
cur = db.cursor()
cur.execute(f"SELECT e.id, e.date, e.notes, e.maker, e.result, e.mid FROM all_entries e WHERE e.user_id = {user_id} AND EXTRACT(MONTH from e.date) = {date.month} AND EXTRACT(YEAR from e.date) = {date.year} ORDER BY e.maker ASC, e.id DESC")
return cur | ff35af781cb27d984f695e094ab15134eeb3c8c4 | 548,365 |
import requests
import time
def get_data(url, max_retries=5, delay_between_retries=1):
"""
Fetch the data from http://www.mocky.io/v2/5e539b332e00007c002dacbe
and return it as a JSON object.
Args:
url (str): The url to be fetched.
max_retries (int): Number of retries.
delay_between_retries (int): Delay between retries in seconds.
Returns:
data (dict)
"""
for i in range(max_retries):
try:
raw = requests.get(url=url)
data = raw.json()
return data
except:
print("Exception occured on " + str(i+1) +" attempt to fetch data")
time.sleep(delay_between_retries)
raise ConnectionError | b278ee956ceb558740e7c467097613fd65080a1f | 85,513 |
def knight_amount(board_state, player):
"""
Returns amount of knights the player has
"""
board = board_state
knight_amt = 0
for row in board:
for column in row:
if player == 1 and column == "k":
knight_amt += 1
elif player == 0 and column == "K":
knight_amt += 1
return knight_amt | 4a2cad597ec0751fb6d4d751a177509576cba87d | 677,229 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.