content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
def get_count_of_increased_sequent(measurements) -> int:
"""
Count how many sequent increases are in a list of measurements
Args:
measurements (List[int]): list of measurements
Returns:
int: number of sequent increases
"""
if len(measurements) < 2:
raise ValueError("List contains less than 2 values to compare")
count_of_increased_sequent = 0
for i in range(len(measurements)-1):
if int(measurements[i+1]) > int(measurements[i]):
count_of_increased_sequent += 1
return count_of_increased_sequent | 8f3cb2807a605036d1f2bf5d42693a90e1286372 | 590,527 |
import torch
def labels_and_weights(label_file_df):
"""
Get list of unique sample labels and weights of the samples using
the inverse of the count. Weights is a tensor to be compatible with
CrossEntropyLoss.
"""
labels_all = label_file_df.iloc[:,-1].astype(str).values.tolist()
labels_unique = set(labels_all)
labels = sorted(labels_unique)
labels_count = [labels_all.count(label) for label in labels]
weights = 1. / torch.tensor(labels_count, dtype=torch.float)
return labels, weights | 4406b2bb1db6fb2a0f42eeae0c4ac5a093906606 | 501,900 |
from collections import deque
from typing import Iterable
from typing import Deque
def array_shift(data: Iterable, shift: int) -> Deque:
"""
left(-) or right(+) shift of array
>>> arr = range(10)
>>> array_shift(arr, -3)
deque([3, 4, 5, 6, 7, 8, 9, 0, 1, 2])
>>> array_shift(arr, 3)
deque([7, 8, 9, 0, 1, 2, 3, 4, 5, 6])
"""
deq = deque(data)
deq.rotate(shift)
return deq | c14e115808592808bc9b0cf20fa8bc3d5ece7768 | 3,189 |
from typing import Tuple
import collections
def remove_common_characters(string1: str, string2: str) -> Tuple[str, str]:
"""Remove characters the two strings have in common.
Both strings must be of the same length and only cointain unique
characters. Characters in both ``string1`` and ``string2`` should
have both characters in the same order.
Args:
string1 (str): The string that will be checked against
``string2``.
string2 (str): The string that will be checked against
``string1``.
Returns:
Tuple[str, str]: The characters unique to ``string1`` and
``string2``, respectively.
Raises:
ValueError: If the length of ``string1`` does not equal that of
``string2``.
ValueError: If either ``string1`` or ``string2`` contain
duplicate characters.
"""
if len(string1) != len(string2):
raise ValueError(
"Both strings must be the same length."
f" ``string1`` is of length {len(string1)}"
f" and ``string2`` is of length {len(string2)}"
)
for i, string in enumerate((string1, string2)):
if len(string) != len(set(string)):
character_counts = collections.Counter(string)
duplicates = [
character
for character in character_counts
if 1 < character_counts[character]
]
duplicate_preview = ", ".join(duplicate for duplicate in duplicates[:5])
raise ValueError(
"Each string must contain only unique characters."
f" ``string{i + 1}`` contains duplicates of the"
f" following characters: {duplicate_preview},..."
)
cleaned_string1 = ""
cleaned_string2 = ""
for character1, character2 in zip(string1, string2):
if character1 != character2:
cleaned_string1 += character1
cleaned_string2 += character2
return cleaned_string1, cleaned_string2 | e6e442968004b26279c3963459723f1ec7c660bc | 487,421 |
def find_item(tgt_dict, key):
"""Recursively search dictionary for key and return value"""
if key in tgt_dict: return tgt_dict[key]
for k, v in tgt_dict.items():
if isinstance(v, dict):
item = find_item(v, key)
if item is not None:
return item | 0934f1daa3f2c94275e937fec84fe0cc3ec6de1f | 321,898 |
def normalized_current_date(datetime_col, min_date, max_date):
"""
Temporal feature indicating the position of the date of a record in the
entire time period under consideration, normalized to be between 0 and 1.
Args:
datetime_col: Datetime column.
min_date: minimum value of date.
max_date: maximum value of date.
Returns:
float: the position of the current date in the min_date:max_date range
"""
date = datetime_col.dt.date
current_date = (date - min_date).apply(lambda x: x.days)
if max_date != min_date:
current_date = current_date / (max_date - min_date).days
elif max_date == min_date:
current_date = 0
return current_date | 2947aa4de2aa5e98ec9c33c51fbda8716ff13e37 | 677,050 |
def compare_sub(got, expected):
""" Check if got subdomain of expected, throw exception if different. """
if not expected.is_subdomain(got):
raise Exception("expected subdomain of '%s', got '%s'" % (expected, got))
return True | d8a5cf41ce608fce226fef8a79d2900323ce51dd | 128,506 |
def prefix_multiline_str(prefix: str, multiline_str: str):
"""
:param prefix: string with which to prefix each line of multiline_str
:param multiline_str: a possibly multiline string
:return: prefix + (multiline_str with each \n replaced by \n + prefix)
>>> prefix_multiline_str("abc: ", None) # expect no output
>>> prefix_multiline_str("abc: ", "")
'abc: '
>>> prefix_multiline_str("abc: ", "xyz")
'abc: xyz'
>>> print(prefix_multiline_str("abc: ", "x\\ny\\nz"))
abc: x
abc: y
abc: z
"""
if multiline_str is None:
return None
if '\n' not in multiline_str:
return prefix + multiline_str
return prefix + multiline_str.replace('\n', '\n' + prefix) | e65a20be9b5540c58c58eb208e09654c62475cb7 | 169,362 |
def get_max_size(size):
""" Return a get_size method for the size given"""
def get_size():
return size
return get_size() | 479252a6c4f9326fc60e51158f13f3d36a9af556 | 242,607 |
def find_all(tofind, string):
"""Returns number of times a certain substring is found"""
found = [i for i in range(len(string)) if string.startswith(tofind, i)]
num_found = len(found)
return num_found | a02b12e6a7f6a579624407f8678027fd6c17d458 | 585,967 |
def PyDateTime_GET_MONTH(space, w_obj):
"""Return the month, as an int from 1 through 12.
"""
return space.int_w(space.getattr(w_obj, space.wrap("month"))) | 3b3aa912fa1bff950d9385a026bce5d5870d7f17 | 439,930 |
def get_intersection(u, v, node_presence):
"""
Get the intersection between the presence of u and v.
:param u: First Node
:param v: Second Node
:param node_presence: Node presence
:return: Interection
"""
intersec = []
for ut0, ut1 in zip(node_presence[u][::2], node_presence[u][1::2]):
for vt0, vt1 in zip(node_presence[v][::2], node_presence[v][1::2]):
if ut0 <= vt1 and vt0 <= ut1:
intersec += [max(ut0, vt0), min(vt1, ut1)]
return intersec | 95d368872af2c3b3abb88a773ff448149f526fb6 | 640,354 |
def _timestamp_to_string(timestamp):
"""Extracts the date from a pandas timestamp and convert to a string
:returns string of the format: '20190908' (for September 8th, 2019)
"""
date_dashes = str(timestamp.date()).replace('-', '')
return date_dashes | cec97899b65d81a03af21f17ad550f8a7cb17539 | 364,871 |
def is_reproducible(item):
"""Return True if the testcase is reproducible by checking the
one_time_crasher_flag."""
return not item.one_time_crasher_flag | eede7695563a6d459c717298b3eace02ef163b05 | 566,509 |
def get_number_features(dict_features):
"""Count the total number of features based on input parameters of each feature
Parameters
----------
dict_features : dict
Dictionary with features settings
Returns
-------
int
Feature vector size
"""
number_features = 0
for domain in dict_features:
for feat in dict_features[domain]:
if dict_features[domain][feat]["use"] == "no":
continue
n_feat = dict_features[domain][feat]["n_features"]
if isinstance(n_feat, int):
number_features += n_feat
else:
n_feat_param = dict_features[domain][feat]["parameters"][n_feat]
if isinstance(n_feat_param, int):
number_features += n_feat_param
else:
number_features += eval("len(" + n_feat_param + ")")
return number_features | 6f81c359cfee77896cb8e4334aa23cf977aaca5a | 20,991 |
def flip_bit(number: int, position: int):
"""
Flip the bit at position.
Details: perform bitwise xor for given number and X.
Where X is a number with all the bits – zeroes and bit on given
position – one.
>>> flip_bit(0b101, 1) # 0b111
7
>>> flip_bit(0b101, 0) # 0b100
4
"""
return number ^ (1 << position) | c68b1fe8a31b55fce27052d7c8affb06330e040f | 545,752 |
import math
def get_psnr(mse, max_value=255.0):
"""
Calculates PSNR value from given MSE value.
:param mse:
:param max_value:
:return:
"""
if mse is None or mse == float('Inf') or mse == 0:
psnr = 0
else:
psnr = 20 * math.log(max_value / math.sqrt(mse), 10)
return psnr | 5f1ff971bdf304a1b28286730c041a1ef117ac74 | 270,669 |
def getStringForVariables(variables, wordsize):
"""
Takes as input the variable name, number of variables and the wordsize
and constructs for instance a string of the form:
x00, x01, ..., x30: BITVECTOR(wordsize);
"""
command = ""
for var in variables:
command += var + ","
command = command[:-1]
command += ": BITVECTOR({0});".format(wordsize)
return command | 1710ec9d8f71a48849df2548d4ff936ff909a43c | 637,565 |
import ipaddress
def is_valid_ip_address(ip_address):
"""
Check that the string specified appears to be either a valid IPv4 or IPv6
address.
:param str ip_address: The ip address to validate.
:return: Whether the ip address appears to be valid or not.
:rtype: bool
"""
try:
ipaddress.ip_address(ip_address)
except ValueError:
return False
return True | 02bb504dd958a5c823485adb1281009db4a3f103 | 361,819 |
def find_matching_resource(preview_resource, delivery_entry, search_field):
"""Returns matching resource for a specific field.
:param preview_resource: Entry from the Preview API to match.
:param delivery_entry: Entry to search from, from the Delivery API.
:param search_field: Field in which to search in the delivery entry.
:return: Entry from the Delivery API or None.
"""
if not delivery_entry:
return None
for delivery_resource in delivery_entry.fields().get(search_field, []):
if preview_resource.id == delivery_resource.id and (
delivery_resource.type == 'Entry'
or delivery_resource.type == 'Asset'
):
return delivery_resource | 518297f18a2dcd37bb226f96bd51370d7ed3c7e3 | 20,872 |
def NullCondition(wf, context): # pylint: disable=invalid-name,unused-argument
"""Null condition"""
return True | 745bd7c1718cb989ea4235c5dc076e63d4e0b24e | 379,763 |
def get_wiki_arxiv_url(wiki_dump_url, href):
"""Return a full URL from the href of a .bz2 archive."""
return '{}/{}'.format(wiki_dump_url, href) | 88c9dc1f62eabfc676e6833640e5c6a4263c916c | 115,344 |
def sum_multiples(num1,num2,limit):
"""take two numbers and find the sum of their multiples from 1 to some upper limit. this DOES NOT double-count numbers which are multiples of BOTH num1 and num2."""
sum = 0
if num1 > limit and num2 > limit:
return sum
for i in range(1,(limit+1)):
if i % num1 == 0 or i % num2 == 0:
sum += i
return sum | 0966730d3ac650bf46914b6a5b76df62edd93a24 | 63,164 |
import re
def parse_config(content):
"""Parse configuration options into a dict.
Blank lines are ignored. Lines beginning with a hash mark (`#`) are comments, and ignored.
Valid lines are made of an option's name (a sequence of non-blanks), followed by a value.
The value starts with the first non-blank character after the option's name, and terminates at
the end of the line, or at the last sequence of blanks before the end of the line.
Option names are case-insensitive, and converted to lower-case.
Arguments:
content (str): The content of a configuration file to parse.
Returns:
dict: Parsed options.
"""
return {
match.group(1).lower(): match.group(2)
for match in (
re.match(r'^(\w+)\s+([^#]+\b)', line)
for line in content.splitlines()
) if match
} | 38ee22168b8b1400e6f2a33f937fa947238513c9 | 404,762 |
def GetFirstTokenInSameLine(token):
"""Returns the first token in the same line as token.
Args:
token: Any token in the line.
Returns:
The first token in the same line as token.
"""
while not token.IsFirstInLine():
token = token.previous
return token | 5e25a502a4e9039b3544c29768bdf3553eb70a61 | 194,567 |
import torch
def _tblr_pred_to_delta_xywh_pred(bbox_pred: torch.Tensor,
normalizer: torch.Tensor) -> torch.Tensor:
"""Transform tblr format bbox prediction to delta_xywh format for ncnn.
An internal function for transforming tblr format bbox prediction to
delta_xywh format. NCNN DetectionOutput layer needs delta_xywh format
bbox_pred as input.
Args:
bbox_pred (Tensor): The bbox prediction of tblr format, has shape
(N, num_det, 4).
normalizer (Tensor): The normalizer scale of bbox horizon and
vertical coordinates, has shape (2,).
Returns:
Tensor: The delta_xywh format bbox predictions.
"""
top = bbox_pred[:, :, 0:1]
bottom = bbox_pred[:, :, 1:2]
left = bbox_pred[:, :, 2:3]
right = bbox_pred[:, :, 3:4]
h = (top + bottom) * normalizer[0]
w = (left + right) * normalizer[1]
_dwh = torch.cat([w, h], dim=2)
assert torch.all(_dwh >= 0), 'wh must be positive before log.'
dwh = torch.log(_dwh)
return torch.cat([(right - left) / 2, (bottom - top) / 2, dwh], dim=2) | bdc924322f80b90f502f5a0aea9d1cfa057bc1bc | 636,401 |
def update_width(vehicle, width):
"""
Updates the width of the vehicle
:param vehicle: vehicle
:param width: new vehicle width
:type vehicle: VehicleProfile
:type width: int
:return: Updated vehicle
"""
return vehicle.update_width(width) | 0b66b4b3cbfb6a30a22360b7f920344b57e19f49 | 145,161 |
def to_tf_matrix(expression_matrix,
gene_names,
tf_names):
"""
:param expression_matrix: numpy matrix. Rows are observations and columns are genes.
:param gene_names: a list of gene names. Each entry corresponds to the expression_matrix column with same index.
:param tf_names: a list of transcription factor names. Should be a subset of gene_names.
:return: tuple of:
0: A numpy matrix representing the predictor matrix for the regressions.
1: The gene names corresponding to the columns in the predictor matrix.
"""
tuples = [(index, gene) for index, gene in enumerate(gene_names) if gene in tf_names]
tf_indices = [t[0] for t in tuples]
tf_matrix_names = [t[1] for t in tuples]
return expression_matrix[:, tf_indices], tf_matrix_names | ee2214af5dd96454155e58761d69d35a4cf281b8 | 93,810 |
def ind(seq):
"""
Returns the integer indices of a Python list where the list values are true.
tindex = Ngl.ind(plist)
plist -- A Python list, tuple, or one-dimensional NumPy array.
"""
inds = []
for i in range(len(seq)):
if (seq[i] != 0):
inds.append(i)
return(inds) | d8a9548c9b1a312f9789a4e9f3bdbe41507b4a69 | 408,562 |
import glob
def find_harnesses(output_path):
"""Returns a list of all harness files found in the given directory."""
return glob.glob(output_path + "/*harness.c") | b64f1ec757b6deb07b25c529e418903e9ba499ef | 265,705 |
from typing import Union
from typing import Mapping
from typing import Sequence
def recursive_contains(
obj: Union[Mapping, Sequence], *, keys: Sequence
) -> bool:
"""Checks whether the given keysequence is reachable in the ``obj``.
Args:
obj (Union[Mapping, Sequence]): The object to check recursively
keys (Sequence): The sequence of keys to check for
Returns:
bool: Whether the key sequence is reachable
"""
if len(keys) > 1:
# Check and continue recursion
if keys[0] in obj:
return recursive_contains(obj[keys[0]], keys=keys[1:])
# else: not available
return False
# else: reached the end of the recursion
return keys[0] in obj | 918ef387d0290ccba0faf846937f1689d07980ef | 139,748 |
import importlib
def load_backend(config):
"""
Returns the backend module from the given SocketShark configuration.
"""
backend_name = config.get('BACKEND', 'websockets')
backend_module = 'socketshark.backend.{}'.format(backend_name)
return importlib.import_module(backend_module) | d4bd3a55b5e63b1b5914cf3a8be69e57a8e4e33e | 286,242 |
import math
def _euclidean_dist(vector_a, vector_b):
"""
:param vector_a: A list of numbers.
:param vector_b: A list of numbers.
:returns: The euclidean distance between the two vectors.
"""
dist = 0
for (x, y) in zip(vector_a, vector_b):
dist += (x-y)*(x-y)
return math.sqrt(dist) | 4b5b5fb742c75dfeac244a463f08360cfadfb5b1 | 380,941 |
import re
def normalize_repeating_chars(text: str, *, chars: str, maxn: int = 1) -> str:
"""
Normalize repeating characters in ``text`` by truncating their number of consecutive
repetitions to ``maxn``.
Args:
text
chars: One or more characters whose consecutive repetitions are to be normalized,
e.g. "." or "?!".
maxn: Maximum number of consecutive repetitions of ``chars`` to which
longer repetitions will be truncated.
Returns:
str
"""
return re.sub(r"({}){{{},}}".format(re.escape(chars), maxn + 1), chars * maxn, text) | 0f7f53353feadc1efe52def4dd945f1bda86f3ae | 334,802 |
def scale_columns(prefix,first,last):
"""
Create a list of scale parameter column names with name prefixX with X
from first to last (inclusive)
"""
return [prefix+str(i) for i in range(first,last+1)] | b99411ff2c66147b0608c0870671ea6af68a25e8 | 611,668 |
import csv
def read_bodyplan(file):
"""Read body plan from csv file.
Args:
file: path to file containing a bodyplan
Returns:
A list of L layers representing the model structure with layer
keys: "layer", "n", "activation", "lreg", "regval", and "desc"
indicating the layer index, integer number of units in layer, a string
name of the activation function, the value (1 or 2) of the L-norm
regularization to employ, the float regularization constant, and a
string description of layer.
"""
#init bodyplan as empty list
bodyplan = []
with open(file, 'r') as csvfile:
reader = csv.reader(csvfile)
keys = list(next(reader)) #get headers
for line in reader:
layer = {}
layer["layer"] = int(line[keys.index("layer")])
layer["n"] = int(line[keys.index("n")])
layer["activation"] = str(line[keys.index("activation")])
if "regval" in keys:
layer["regval"] = float(line[keys.index("regval")])
else:
layer["regval"] = float(0) #default regularization parameter
if "lreg" in keys:
layer["lreg"] = int(line[keys.index("lreg")])
else:
layer["lreg"] = int(1) #default regularization is L1
if "desc" in keys:
layer["desc"] = str(line[keys.index("desc")])
else:
layer["desc"] = 'fully connected'
bodyplan.append(layer)
return bodyplan | 8de720133fd2e5f6c3b51451c937bf3a8671b52e | 199,838 |
def pkcs7_pad(inp, block_size):
"""
Using the PKCS#7 padding scheme, pad <inp> to be a multiple of
<block_size> bytes. Ruby's AES encryption pads with this scheme, but
pycrypto doesn't support it.
Implementation copied from pyaspora:
https://github.com/mjnovice/pyaspora/blob/master/pyaspora/diaspora/protocol.py#L209
"""
val = block_size - len(inp) % block_size
if val == 0:
return inp + (bytes([block_size]) * block_size)
else:
return inp + (bytes([val]) * val) | 5a5aae6f588e5e67dc30c85ab6a6afcdb9c728c0 | 25,083 |
def replace_nones(dict_or_list):
"""Update a dict or list in place to replace
'none' string values with Python None."""
def replace_none_in_value(value):
if isinstance(value, str) and value.lower() == "none":
return None
return value
items = dict_or_list.items() if isinstance(dict_or_list, dict) else enumerate(dict_or_list)
for accessor, value in items:
if isinstance(value, (dict, list)):
replace_nones(value)
else:
dict_or_list[accessor] = replace_none_in_value(value) | 318723616703761d7a4c683ac88c5923eff04e89 | 350,090 |
def ip2uint_str(ipv4_str):
"""Convert IPv4 string to 32-bit integer value"""
parts = ipv4_str.split('.')
if len(parts) != 4:
raise ValueError('Expected IPv4 address in form A.B.C.D, got {}'.
format(ipv4_str))
ip = [0]*4
for i, part in enumerate(parts):
try:
int_part = int(part)
except ValueError:
raise ValueError('Part {} of IPv4 address is not an integer'.
format(i))
if int_part < 0 or int_part > 255:
raise ValueError('Part {} of IPv4 address is not in range 0-255'.
format(i))
ip[i] = int_part
return (ip[0] << 24) + (ip[1] << 16) + (ip[2] << 8) + ip[3] | 0298b557d79817260d0682f55819116638a1504d | 248,354 |
def haskeys(d, *keys):
"""Returns True if all keys are present in a nested dict `d`."""
if len(keys) == 1:
return keys[0] in d
first = keys[0]
if first in d and isinstance(d[first], dict):
return haskeys(d[first], *keys[1:])
return False | 3ccb57778c050534528d1c136082a4a7b54dcc1f | 182,923 |
def check_true_false(variable):
"""
Checks if the string variable contains
"true" or "false" else raises error
Args:
variable: (str) input variable to be checked
"""
if variable == "true" or variable == "false":
return True
else:
raise TypeError | 27d933865fb9eebf2969a651faf5c2af504a8358 | 521,350 |
import hashlib
def make_password(service_provider_id, service_provider_password,
timestamp):
"""
Build a time-sensitive password for a request.
"""
return hashlib.md5(
service_provider_id +
service_provider_password +
timestamp).hexdigest() | eb68df2bdc5aac51f84341df085bf9320057eebb | 70,864 |
def dedupe_matching(matching):
"""
Remove duplicates node pairs from the output of networkx.algorithms.max_weight_matching since we don't care about order.
Args:
matching (dict): output from networkx.algorithms.max_weight_matching. key is "from" node, value is "to" node.
Returns:
list[2tuples]: list of node pairs from `matching` deduped (ignoring order).
"""
matched_pairs_w_dupes = [tuple(sorted([k, v])) for k, v in matching.items()]
return list(set(matched_pairs_w_dupes)) | e6cb6f53e164e234bf3781ecfd81799a68324f20 | 429,154 |
def combine_predictions_list(predictions_list, index_list=None):
"""Combine predictions in predictions_list[index_list].
By taking the mean of their get_combineable_predictions views.
E.g. for regression it is the actual
predictions, and for classification it is the probability array (which
should be calibrated if we want the best performance). Called both for
combining one submission on cv folds (a single model that is trained on
different folds) and several models on a single fold.
Called by
_get_bagging_score : which combines bags of the same model, trained on
different folds, on the heldout test set
_get_cv_bagging_score : which combines cv-bags of the same model, trained
on different folds, on the training set
get_next_best_single_fold : which does one step of the greedy forward
selection (of different models) on a single fold
_get_combined_predictions_single_fold : which does the full loop of greedy
forward selection (of different models), until improvement, on a single
fold
_get_combined_test_predictions_single_fold : which computes the combination
(constructed on the cv valid set) on the holdout test set, on a single
fold
_get_combined_test_predictions : which combines the foldwise combined
and foldwise best test predictions into a single megacombination
Parameters
----------
predictions_list : list of instances of Predictions
Each element of the list is an instance of Predictions of a given model
on the same data points.
index_list : None | list of integers
The subset of predictions to be combined. If None, the full set is
combined.
Returns
-------
combined_predictions : instance of Predictions
A predictions instance containing the combined (averaged) predictions.
"""
Predictions = type(predictions_list[0])
combined_predictions = Predictions.combine(predictions_list, index_list)
return combined_predictions | 90cbaf32bc3260fed2dd3460ecd2616312de5e85 | 149,041 |
from datetime import datetime
def timestamp() -> str:
""" Factory function returns an ISO formatted UTC timestamp. """
return datetime.utcnow().isoformat(timespec='seconds') | 03033289528b0aebf022ee5ad59fa96643f04bc9 | 130,295 |
def reverse_words(input_str: str) -> str:
"""
Reverses words in a given string
>>> sentence = "I love Python"
>>> reverse_words(sentence) == " ".join(sentence.split()[::-1])
True
>>> reverse_words(sentence)
'Python love I'
"""
return " ".join(reversed(input_str.split(" "))) | e8e5de0a89bfce165be481654774d960ee6de23a | 301,794 |
import struct
def ntohl(bs):
"""
Convert integer in 'n' from network-byte order to host-byte order.
"""
return struct.unpack('!I', bs)[0] | 308de3050ebe02589c5bfc98c3e4cc2a859a496c | 192,117 |
def checker(tree, spec, priority=0):
"""A decorator to install a check function:
@check(tree, "foo/bar")
def my_check():
...
will install my_check as a check under "foo" called "bar" in tree.
Optionally privide the priority as the third argument (default is
0).
"""
assert "/" in spec
(path, name) = spec.split("/")
return lambda f: tree.add(path, priority, name, f) | 3f6290419930cd35ae224a23813bcc1edebcc098 | 471,009 |
import random
import bisect
def generate_sector(size: int, object_weight: list) -> dict:
"""
Generates an Sector with Weighted Spawns
Args:
size: Int Representing the Size of the Sector (Size X Size)
object_weight: An Nested List with Object / Value Types
Examples:
generate_sector(6, [["*", 50], ["#", 10]]) would output an Map File where * is far more Common than #
Returns:
An Dict with Lists inside which Represent the Map Data per Row
"""
if size is 0:
raise ValueError("The Sector Size cant be 0")
size += 1
output = {}
placed_player = False
totals = []
running_total = 0
for w in object_weight:
running_total += w[1]
totals.append(running_total)
def next():
"""
Gets an Random Object from the Object - Weight List
"""
ran = random.random() * totals[-1]
i = bisect.bisect_right(totals, ran)
return object_weight[i][0]
for x in range(1, size):
row = []
for y in range(1, size):
object = next()
if placed_player is False and object is "@":
row.append(object)
placed_player = True
continue
elif placed_player is True and object is "@":
while object is "@":
object = next()
row.append(object)
output[x] = row
return output | 514195b66c707b2e0dd67ea47b57fe56c1d28a86 | 707,764 |
def counters(stats):
""" Count all_sentences all_questions all_questions_with_ans & all_corrects
:param stats: list(quintet)
:rtype int, int, int, int
:return: all_sentences, all_questions, all_questions_with_ans, all_corrects
"""
# Initialization of counters.
all_sentences = 0
all_questions = 0
all_questions_with_ans = 0
all_corrects = 0
# Parse stats and implement the addings.
for sentences_num, questions_num, questions_with_ans, corrects, acc in stats:
all_sentences += sentences_num
all_questions += questions_num
all_questions_with_ans += questions_with_ans
all_corrects += corrects
return all_sentences, all_questions, all_questions_with_ans, all_corrects | d6edc124e6254b11316a429c84664db1a223b352 | 688,946 |
def handle_red_or_blue_occurrence(numpy_grid, x_pos, y_pos):
"""
Function that handles the occurrence of finding a "red(2)" or "blue(1)" square in the input grid.
If a Blue square is found, processes the grid and adds an orange square in set positions around it
If a red square is found, processes the grid and adds a yellow square in set positions around it
:param numpy_grid: The input grid
:param x_pos: x position where the blue square was found
:param y_pos: y position where the blue square was found
:return: numpy_grid: containing correct output for single input grid
>>> test_input_grid = np.array([[0, 0, 0],[0, 1, 0],[0, 0, 0]])
>>> handle_red_or_blue_occurrence(test_input_grid, 1, 1)
array([[0, 7, 0],
[7, 1, 7],
[0, 7, 0]])
>>> test_input_grid = np.array([[0, 0, 0],[0, 2, 0],[0, 0, 0]])
>>> handle_red_or_blue_occurrence(test_input_grid, 1, 1)
array([[4, 0, 4],
[0, 2, 0],
[4, 0, 4]])
"""
if numpy_grid[x_pos, y_pos] == 1:
numpy_grid[x_pos - 1, y_pos] = 7
numpy_grid[x_pos + 1, y_pos] = 7
numpy_grid[x_pos, y_pos + 1] = 7
numpy_grid[x_pos, y_pos - 1] = 7
elif numpy_grid[x_pos, y_pos] == 2:
numpy_grid[x_pos - 1, y_pos - 1] = 4
numpy_grid[x_pos - 1, y_pos + 1] = 4
numpy_grid[x_pos + 1, y_pos - 1] = 4
numpy_grid[x_pos + 1, y_pos + 1] = 4
return numpy_grid | fc5cbf89604afd66aa6b00c87412259fdbf2c7e4 | 493,961 |
def semver(major_component, minor_component, patch_component):
"""Construct an SemVer-format version number.
Args:
major_component (int): The major component of the version number.
minor_component (int): The minor component of the version number.
patch_component (int): The patch component of the version number.
Returns:
str: A SemVer-format version number with the specified Major, Minor and Patch Components.
"""
return '.'.join([str(major_component), str(minor_component), str(patch_component)]) | 097e8a2fc721b93405d7cec35ab8ae8908d3dc8e | 242,365 |
from typing import Dict
def parse_match_result_data(text: str) -> Dict[str, str]:
""" 勝敗結果データ ("3 - 1\n試合終了" や "- 試合前" など) をゴール数と状態に分けて返す
フォーマットは、home_goal, away_goal, statusをキーとしたDict形式
"""
# 3-1 のようにスペースが無いテキストが来てもOKなように
text = text.replace('-', ' - ')
result_list = text.split()
if len(result_list) <= 3: # "- 試合前" スタイル
home_goal = ''
away_goal = ''
# result_list[0] は '-'
match_status = result_list[1]
else: # "3 - 1\n試合終了" スタイル
home_goal = result_list[0]
# result_list[2] は '-'
away_goal = result_list[2]
match_status = result_list[3]
return {'home_goal': home_goal, 'away_goal': away_goal, 'match_status': match_status} | 8493c6f1a1516192ad40fa358f997bc6c23eaf89 | 487,317 |
import pickle
def get_pickle_trajectory(path_to_file):
"""
Reads a trajectory as a `pickle` binary file.
:param: path_to_file str the location for the input file
:return: np.array An array of time points
:return: np.array An array of (raw) location points, without noise
:return: np.array An array of noisy locations
:return: [dict] A list of segment dicts
"""
if path_to_file[-4:] != '.pkl':
path_to_file += ".pkl"
trajectory = pickle.load( open(path_to_file, "rb") )
segments = trajectory['segments']
t_arr = trajectory['time_arr']
r_arr = trajectory['raw_locs_arr']
x_arr = trajectory['nse_locs_arr']
return t_arr, r_arr, x_arr, segments | 0e3f142cf43a170821a6c75dd6fd618462b7389a | 287,009 |
def readable(df):
"""Take a dataframe and remove all columns that end in the suffix '_id'.
The intended purpose of this function is to display a dataframe on the
console showing only the readable columns i.e. not the identifiers.
Parameters
----------
df : DataFrame
A pandas dataframe.
Returns
-------
out : DataFrame
A dataframe with the same structure as the input df with any columns
ending in the suffix '_id' removed.
"""
readable_cols = list(filter(lambda c: not c.endswith('_id'), df.columns))
return df[readable_cols] | a856cdca3e3940a173c70c64196553100397749d | 348,462 |
def colnum_zb_from_alphacol(alphacol: str) -> int:
"""
Reverses :func:`column_lettering`, generating a zero-based column index
from an alphabetical name (A to Z, AA to AZ, etc.).
"""
base = 26
zero_char = ord("A")
total = 0
reversed_chars = alphacol[::-1]
for pos, char in enumerate(reversed_chars):
digit_value = ord(char) - zero_char # e.g. 0 for A, 25 for Z
assert 0 <= digit_value < base
if pos > 0:
digit_value += 1
total += digit_value * pow(base, pos)
return total | 9b39289b0cacde8b519fa28fbd6b6ad9953af113 | 150,213 |
from typing import Tuple
import re
import warnings
def _parse_glibc_version(version_str: str) -> Tuple[int, int]:
"""Parse glibc version.
We use a regexp instead of str.split because we want to discard any
random junk that might come after the minor version -- this might happen
in patched/forked versions of glibc (e.g. Linaro's version of glibc
uses version strings like "2.20-2014.11"). See gh-3588.
"""
m = re.match(r"(?P<major>[0-9]+)\.(?P<minor>[0-9]+)", version_str)
if not m:
warnings.warn(
"Expected glibc version with 2 components major.minor,"
" got: %s" % version_str,
RuntimeWarning,
)
return -1, -1
return int(m.group("major")), int(m.group("minor")) | 547df79704865287060b07742a5a1fb0f589da3e | 652,453 |
def create_pids2idxs(data_source):
"""Creates a mapping between pids and indexes of images for that pid.
Returns:
2D List with pids => idx
"""
pid2imgs = {}
for idx, (img, target, _) in enumerate(data_source.imgs):
if target not in pid2imgs:
pid2imgs[target] = [idx]
else:
pid2imgs[target].append(idx)
return pid2imgs | 3bad529a87dfaf62e8ebcd9373c413fc0bdc8ca3 | 93,608 |
def _keys(duthost, db, key_pattern):
"""Run Redis command keys over db on duthost."""
command = "redis-cli --raw -n {db} keys '{key_pattern}'".format(db=db, key_pattern=key_pattern)
keys_result = duthost.shell(command)
if not keys_result["stdout"].strip():
raise ValueError("No keys match key pattern {}".format(key_pattern))
return [line.strip() for line in keys_result["stdout_lines"]] | 2431aed0bddc74fe2566cadf8c118d52711f540c | 276,716 |
def df_regex_filter(df, column, regex):
"""Filter dataframe based on regex matching for specified column"""
return df[df[column].str.contains(regex, regex=True, na=False)] | 601e4238f43e9200b5c22f7d4ca150bd4676459f | 548,272 |
def fuel_level(x, y, serial_number=0):
"""Calculate fuel level for the given coordinate(s)."""
rack_id = x + 10
return (((rack_id * y + serial_number) * rack_id) // 100) % 10 - 5 | 3b9e460df436cde9d2f5277b2b9d8f3cfea745f6 | 460,580 |
def _is_valid_swift_module_name(string):
"""Returns True if the string is a valid Swift module name."""
if not string:
return False
for char in string:
# Check that the character is in [a-zA-Z0-9_]
if not (char.isalnum() or char == "_"):
return False
return True | a188864120318c7015a40f2aa8065d851e171c3c | 408,529 |
def edge_frequency_dictionary(edges, freq = {}):
"""
Augments counters within graph G edges based on if they're contained within the edges list.
Parameters
----------
edges : list
list of edge tuples in the format (start node, end node, 0)
freq : dictionary
dictionary of frequencies, with edge tuples as keys in the
format (start node, end node, 0) and frequency as integer values
defaults to empty dictionary
Returns
-------
frequency : dictionary
dictionary of frequencies, with edge tuples as keys in the
format (start node, end node, 0) and frequency as integer values
"""
# iterate over edges, with each edge as a key
for key in edges:
if key in freq:
freq[key] += 1
else:
freq[key] = 1
return freq | f52de1afab57905e2bbdf2103f4de7c5a67dc32b | 327,928 |
def aggregate_str_content(array_of_elements):
"""
Takes an array of DOM elements with text and merges their text content
"""
u = ""
for h in array_of_elements:
u+=h.text
return u | 5eb619ab73d8d3b14614618e21766f14aed35817 | 203,685 |
def argmin(list_obj):
"""Returns the index of the min value in the list."""
min = None
best_idx = None
for idx, val in enumerate(list_obj):
if min is None or val < min:
min = val
best_idx = idx
return best_idx | 6b01fff02d9be5dc0bda6ad170f0b964b10373d9 | 625,388 |
def calculate_expected_duration(optimistic, nominal, pessimistic):
""" Calculate the expected duration of a task. """
return round((optimistic + (4 * nominal) + pessimistic) / 6, 1) | 31bf4aaf3afd582c9514e2b389bcbe5ccaec6959 | 474,499 |
def lte(value, arg):
"""Returns a boolean of whether the value is less than or equal to the
argument.
"""
return value <= int(arg) | 9e9848c3a1d0aae2dbe3bbfc29f1722b019e4143 | 568,329 |
def get_error(exception=None):
"""Gets errno from exception or returns one"""
return getattr(exception, "errno", 1) | 301bd618a7f9f0b4430e7d76cfe03f7ce1912f92 | 262,117 |
def get_contact_name(contact: dict) -> str:
"""Determine contact name from available first name, last naame, and email."""
contact_name = ""
if contact["first_name"]:
contact_name = f"{contact['first_name']} "
if contact["last_name"]:
contact_name += f"{contact['last_name']} "
if contact_name:
return f"{contact_name}({contact['email']})"
return contact["email"] | 14f4a3b25c370b327913fa7316abd1f452c380e0 | 131,083 |
def _find_neighborhoods_ids(input_list, neighborhoods_df):
"""
Read in a list of names of neighborhood names. Returns a list of
neighbhorhood ids
Args:
input_list: a list containing the names of the neighborhoods
in the treatment group.
neighborhoods_df: a dataframe containing neighborhood names
and object_id for each neighborhood.
Returns:
a list of neighborhood ids corresponding wiht the given names.
"""
id_list = []
for i, _ in enumerate(input_list):
id_list = id_list + \
[int(neighborhoods_df[neighborhoods_df['S_HOOD'] == input_list[i]]['OBJECTID'])]
return id_list | 71ec994ce2e4fe28ec20a1e5604eea4159f8c172 | 628,228 |
def dict_lookup(d, value):
"""
Template filter that looks up a value from a dict.
"""
return d.get(value) | 63c0b1aa4b2aef06d22613e05b07e0601407ac74 | 382,582 |
from bs4 import BeautifulSoup
def text_card_factory(title: str, content: str, image_link: str = ""):
"""
Factory for text cards (the normal cards seen).
Args:
title (str): Title for the text card.
content (str): The text content of the card, the meat of it. Automatically formats lines into a list.
image_link (str, optional): The image on the slide. Defaults to "".
Returns:
_type_: the Beautifulsoup text card tag.
"""
soup = BeautifulSoup()
card_tag = soup.new_tag("div")
title_tag = soup.new_tag("h1")
title_tag.string = title
fixed_content = "<ul>"
for line in content.splitlines():
fixed_content += "<li>" + line + "</li>"
fixed_content += "</ul>"
text_tag = BeautifulSoup(fixed_content, "html.parser")
card_tag = soup.new_tag("div")
card_tag.append(title_tag)
content_table_tag = soup.new_tag("table")
table_row = soup.new_tag("tr")
text_table_data = soup.new_tag("td")
text_table_data.append(text_tag)
table_row.append(text_table_data)
if image_link:
# so that it correctly shares space with the image
text_table_data["width"] = "50%"
image_tag = soup.new_tag(
"img", **{"class": "center", "src": image_link, "width": "50%"}
)
img_td = soup.new_tag("td")
img_td.append(image_tag)
table_row.append(img_td)
content_table_tag.append(table_row)
card_tag.append(content_table_tag)
return card_tag | ae45391fbd478b87adc0e905acbb3746f3e16fb1 | 316,852 |
def set_bit(v, index, x):
"""
Set the index:th bit of v to x, and return the new value.
Note that bit numbers (index) are from 0, with 0 being the least significant bit.
"""
mask = 1 << index
v &= ~mask
if x:
v |= mask
return v | a36ffc3039d8157ad8227f3ffaa5c026345378e4 | 486,680 |
from typing import Any
def is_true(expression: Any):
"""Returns true if the input expression evaluates to true"""
return expression is True | 114c369c21a9f1386c169a09333da7f6a9c065df | 436,783 |
def name_value_str_handler(name):
"""
Return a generic handler for plain string fields.
"""
def handler(value, **kwargs):
return {name: value}
return handler | 58c1805a9b081edef850661b7b30a49d044d1a2f | 696,137 |
def to_tuple_inputs(inputs):
"""Transforms inputs list to a tuple of inputs
Args:
inputs (list): list of inputs passed from input_steps and input_data
Returns:
tuple: tuple from the list of inputs
"""
return tuple(inputs) | 5b966a8c916417f5ed34d4d37f8eea74cd8f0a94 | 351,500 |
def bprop_add(x, y, dz):
"""Backpropagator for primitive `add`."""
return (dz, dz) | 7b7ca4b03ad39b4efc066fb8de431c5c53273627 | 247,227 |
def create_edge(_source, _target, _label='', _edge_type=''):
"""Creates an edge whose id is "source_target".
Parameters:
_source (str): source node @id
_target (str): target node @id
_label (str): label shown in graph
_edge_type (str): type of edge, influences shape on graph
"""
return {
'data': {
'id': f"{_source}__{_target}",
'_label': f"\n\u2060{_label}\n\u2060",
'name': _label,
'source': _source,
'target': _target,
'_edge_type': _edge_type
},
'classes': ''
} | ac43deb5c1f09584bbd396d5aafdd7cc83e09418 | 358,195 |
def count_divisible_digits(n, m):
"""
This function takes two integer numbers n and m as an arguments
and returns the number of digits in n that are divisible by m.
"""
if n < 0:
n = n * -1
if m == 0:
return 0
count = 0
while n != 0:
digit = n % 10
remainder = digit % m
if remainder == 0:
count += 1
n = n // 10
return count | d0b2f78f6e3f153d410eead163fffc095a3bf184 | 606,857 |
def IsKillStep(chessboard: list, mv: list) -> bool:
"""
chessboard: current chessboard info [[x, y, class], [], []...]
mv: AI move info, [x_src, y_src, x_dst, y_dst]
return:
BOOL: true if this step is kill step, false if normal step.
"""
for pc in chessboard:
if mv[2] == pc[0] and mv[3] == pc[1]:
return True
else:
continue
return False | fe509decb980cda84dcba7eb757002dea6c87af1 | 68,679 |
def get_moview_profit(movie_record):
""" Computes profit from movie, or returns None if not applicable """
if movie_record.gross is None or movie_record.budget is None:
return None
return movie_record.gross - movie_record.budget | 1cf59cf0db522a9ea622d6e77361006941a33941 | 292,737 |
def binary_search(lst, pattern, offset=0):
"""
二分查找
:param lst: 待查找序列(切片)
:param pattern: 查找元素
:param offset: 切片下标偏移量(即从列表的offset元素开始查找匹配)
:return:
"""
if not lst:
return -1
middle = len(lst) // 2
if pattern == lst[middle]:
return offset + middle
elif pattern > lst[middle]:
# 待查找元素大于序列中间值,递归待右侧序列查找
return binary_search(lst[middle + 1:], pattern, offset=offset+middle+1)
else:
return binary_search(lst[:middle], pattern, offset=offset) | 7189f2b946276626571ed4844a575d70301a2c79 | 489,683 |
def get_token_list(text):
"""Returns a list of tokens.
This function expects that the tokens in the text are separated by space
character(s). Example: "ca n't , touch". This is the case at least for the
public DiscoFuse and WikiSplit datasets.
Args:
text: String to be split into tokens.
"""
return text.split() | 01a917fae5923cdfd693548bb688695a917fab70 | 702,115 |
import inspect
def codeReturnsSomething(func):
"""
Checks whether a function/method appears to have a return statement that returns data. It simply examines the code for the function/method looking for a return call.
:param func: Function to check
:type func: function/method
:return: Whether the function/method
:rtype: bool
"""
sourceCode = inspect.getsource(func).split('\n')
for line in sourceCode:
tokens = line.strip().split()
if len(tokens) >= 2 and (tokens[0] == 'return' or tokens[0] == 'yield'):
return True
return False | 78be412b2f1214cfea8b01f4d12b99dccf5d2e7c | 299,739 |
def read_files(country, filename):
"""read in a database of cities from a specific country and write it to a list
of dictionaries"""
file1 = open(filename, "r")
country = []
line = "."
while(line != ""):
line = file1.readline()
if(line == ""):
break
line = line.strip("\ufeff")
splitline = line.split(",")
city = splitline[0]
province = splitline[1]
latitude = splitline[2]
longitude = splitline[3]
timezone = splitline[4].strip("\n")
entry = {}
entry["city"] = city
entry["province/state"] = province
entry["latitude"] = latitude
entry["longitude"] = longitude
entry["timezone"] = timezone
country.append(entry)
file1.close()
return country | 2a40884fcd56b252822466b5d51662a0d815b636 | 260,038 |
def infer_n_hypers(kernel):
"""Infer number of MCMC chains that should be used based on size of kernel"""
n_hypers = 3 * len(kernel)
if n_hypers % 2 == 1:
n_hypers += 1
return n_hypers | ae0e4a3cafbd8c052843585be8ea5c8209a3ee31 | 621,409 |
def Indent(spaces, line):
"""Indent a string."""
return ' ' * spaces + line | 89a97c55bcacacaef2ca2b9538546b9703972ee6 | 329,248 |
def collection_2_listed_string(elems):
"""
Given a Container (i.e. a Set, List, etc.) of strings,
returns an HTML string wherein each item has its own line, and all items are in alphabetical order.
This will be used to help format and contsruct the email text body (as an HTML)
in the build_email_msg function.
"""
# if the set is empty, output that no appointments are available
if not elems:
return 'None Available' + '<br>'
# Initialize emtpy string
string = ""
# Sorts the set (converts to a list)
sort = sorted(elems)
# Loop over each city in the set and append the city to the HTML string
for city in sort:
string += city + '<br>'
# Returns the HTML string of a list of cities
return string | e21297d716ce6eded7523894821bd270f227f239 | 478,026 |
def find_eyes(landmarks):
"""
Helper method to find all key-value pairs in a dict whose keys reference 'left_eye' and 'right_eye'
The dictionary should have string keys or it will return a None tuple
:param landmarks: Dictionary with String keys referencing left and right eyes
:return: a tuple of lists containing pixel locations of landmarks representing left_eye and right_eye
"""
left_eye = {}
right_eye = {}
for key in landmarks.keys():
if str(key).startswith("left_eye"):
left_eye[key] = landmarks[key]
elif key.startswith("right_eye"):
right_eye[key] = landmarks[key]
return left_eye, right_eye | d05dac4981a14ffa47c41f8b59249e777b006e6c | 257,306 |
def is_absolute_url(uri):
"""
We have URLs pointing to Creative Commons licenses, starting with 'cc:',
which for Linked Data purposes are absolute URLs because they'll be resolved
into full URLs.
>>> is_absolute_url('http://fr.wiktionary.org/wiki/mįkká’e_uxpáðe')
True
>>> is_absolute_url('/c/fr/nouveau')
False
"""
return uri.startswith('http') or uri.startswith('cc:') | ebc70627e10e80e7b5ca105d624d30b6d050736d | 243,659 |
def interaction_strength(idx: int, mol_map: dict, acceptor_exp: float) -> float:
"""Calculate interaction strength for atom with index `idx`."""
acceptor_strength = mol_map[idx]["sa"]
num_lp = mol_map[idx]["num_lp"]
if num_lp != 0:
return acceptor_strength * (num_lp ** acceptor_exp)
return 0.0 | 382b69e56002a24691fdc9e8b6943eeeeee7293a | 45,471 |
def normalize(tensor, eps=1e-5):
""" Normalize tensor to [0, 1] """
# eps=1e-5 is same as make_grid in torchvision.
minv, maxv = tensor.min(), tensor.max()
tensor = (tensor - minv) / (maxv - minv + eps)
return tensor | ea9f780fc5f16840dfa25f69003c9637d2d610a8 | 182,027 |
def constant_thresholds(graph, value):
"""Sets a constant threshold for every node of the graph."""
# Store threshold assignment in a dictionary
thresholds = dict()
# Add a constant attribute to each node
for node in graph.Nodes():
thresholds[node.GetId()] = value
return thresholds | f8f2706b0860d5ad839d28745ba8616532b183e5 | 410,474 |
def get_q_rtd_H(q_rq_H, A_HCZ, f_cT, f_cI):
"""定格暖房能力
Args:
q_rq_H(float): 単位面積当たりの必要暖房能力
A_HCZ(float): 暖冷房区画の床面積
f_cT(float): 外気温度補正係数
f_cI(float): 間歇運転能力補正係数
Returns:
float: 定格暖房能力
"""
return q_rq_H * A_HCZ * f_cT * f_cI | a7d7fb0e202a9f8b82364696bdf61f708cff826a | 271,921 |
def path_actions(node):
"""The sequence of actions to get to this node."""
if node is None:
return []
if node.parent is None:
return []
return path_actions(node.parent) + [node.action] | e6d5a9e2dbcc34aa1aa4407f5c2fefeee0326f25 | 581,121 |
def train_network(model, data, epochs, loss_function, optimizer, display_loss=True):
"""
Train a pytorch model.
Inputs:
model: torch model, e.g., MLPRegressor()
data: dict, contains at a minimum:
{"x_train": <torch.Tensor>,
"y_train": <torch.Tensor>,
"x_val": <torch.Tensor>,
"y_val": <torch.Tensor>}
epochs: int, number of training epochs
loss_function: torch loss function, e.g., torch.nn.MSELoss()
optimizer: torch optimizer, e.g., torch.optim.Adam()
display_loss: bool; If True, display the training/validation loss at
each epoch. Defaults to True.
Outputs:
model: trained torch model
"""
for _ in range(epochs):
y_pred = model.forward(data["x_train"])
loss = loss_function(y_pred, data["y_train"])
optimizer.zero_grad()
loss.backward()
optimizer.step()
# compute validation loss
y_pred_val = model(data["x_val"])
val_loss = loss_function(y_pred_val, data["y_val"])
if display_loss:
print("training/validation loss",
round(loss.item(), 3),
"/",
round(val_loss.item(), 3))
return model | 8352ea390a0ecb8fe5392a51bfe31755dc3da10a | 522,361 |
def list_clean(string):
""" transforms a comma seperated string to a list, stripping whitespaces
"HOME, WORK,pref" -> ['HOME', 'WORK', 'pref']
string: string of comma seperated elements
returns: list()
"""
string = string.split(',')
rstring = list()
for element in string:
rstring.append(element.strip(' '))
return rstring | 49c188387e7a8d5f1f4195a81aecd5d639e7a590 | 204,621 |
def var_replace(vars, value):
"""Replace all instances of ${x} in value with the value of vars['x']."""
if value is None:
return value
for var, rep in vars.items():
if isinstance(rep, str):
value = value.replace(f"${{{var}}}", rep)
return value | 176fefdbf92cbc28370c292bd582212adb0614ef | 482,828 |
def _ts_data_by_index(train_ids, test_ids, data):
""" Allow to get time series data by indexes of elements """
features = data.features[train_ids]
target = data.target[test_ids]
return features, target | 0379ca1f1d5f1df46771863aa241c3b57a86667f | 459,016 |
def check_max_errors(report_json):
"""checks whether the validation report indicates that validate hit its max error count and exited early"""
max_errors = int(report_json.get('parameters').get('maxErrors'))
errors_encountered = int(report_json.get('summary').get('totalErrors'))
return max_errors == errors_encountered | 1cc8ba1e92dd717e43860a8b0617dc4e6f75bcaf | 475,614 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.