content
stringlengths 39
9.28k
| sha1
stringlengths 40
40
| id
int64 8
710k
|
---|---|---|
import time
import logging
def getSeconds(time_str):
"""
Convert a string of the form '%d-%H:%M:%S', '%H:%M:%S' or '%M:%S'
to seconds.
"""
if not time_str:
return 0
# sometimes the timestamp includs a fractional second part
time_str = time_str.split('.')[0]
if '-' in time_str:
days, time_str = time_str.split('-')
st = time.strptime(time_str, '%H:%M:%S')
sec = int(days)*86400+st.tm_hour*3600+st.tm_min*60+st.tm_sec
else:
try:
st = time.strptime(time_str, '%H:%M:%S')
sec = st.tm_hour*3600+st.tm_min*60+st.tm_sec
except ValueError:
try:
st = time.strptime(time_str, '%M:%S')
sec = st.tm_min*60+st.tm_sec
except ValueError:
logging.error('String: %s does not match time format.' % time_str)
return -1
return sec | 3e1c55d9c91d9955d05dbd250a25b8814f75ca50 | 459,054 |
import math
def floor(base):
"""Get the floor of a number"""
return math.floor(float(base)) | 8b00ffccf30765f55ff024b35de364c617b4b20c | 4,568 |
def get_cookie(self, name, default=False):
"""Gets the value of the cookie with the given name,else default."""
if name in self.request.cookies:
return self.request.cookies[name]
return default | 0831ec3c42433bdb10261a6fa0a71f239866c0d1 | 666,966 |
def bh2u(x: bytes) -> str:
"""
str with hex representation of a bytes-like object
>>> x = bytes((1, 2, 10))
>>> bh2u(x)
'01020A'
"""
return x.hex() | 8ab7bf9b536d13a1944e014ea83a4302917c2306 | 699,763 |
def predict_class(annotator, fsid, alpha):
"""
Returns the candidates using a given alpha and fsid
:param annotator:
:param fsid:
:param alpha:
:return:
"""
annotator.compute_f(alpha)
candidates = annotator.get_top_k(fsid=fsid)
return candidates | c7ee725709e9b1fea6a7f5d383cb616f3f77dc9c | 279,096 |
def get_model_defaults(cls):
"""
This function receives a model class and returns the default values
for the class in the form of a dict.
If the default value is a function, the function will be executed. This is meant for simple functions such as datetime and uuid.
Args:
cls: (obj) : A Model class.
Returns:
defaults: (dict) : A dictionary of the default values.
"""
tmp = {}
for key in cls.__dict__.keys():
col = cls.__dict__[key]
if hasattr(col, "expression"):
if col.expression.default is not None:
arg = col.expression.default.arg
if callable(arg):
tmp[key] = arg(cls.db)
else:
tmp[key] = arg
return tmp | 93c29af27446c558b165159cee4bb41bbb3cad4d | 4,508 |
def get_active_profile(content, key):
"""
Gets the active profile for the given key in the content's config object, or NONE_PROFILE
"""
try:
if content.config.has_option(key, 'profile'):
return content.config.get(key, 'profile')
else:
return 'None'
except:
return 'None' | b26491381fcd22003316ce9d1c2eb0577d89d715 | 692,879 |
def is_int(s):
"""Returns True if all non-null values are integers.
Useful for determining if the df column (pd.Series) is
float just to hold missing values.
"""
notnull = s.notnull()
is_integer = s.apply(lambda x: (x % 1 == 0.0))
return (notnull == is_integer).all() | eb52b4de24790cd4923a9cab8c36d7d5a151d141 | 540,830 |
import re
def filter_remove_sw_test_status_log_prefix(line):
"""
Remove the logging prefix produced by the sw_test_status DV component.
"""
# Example of a full prefix to be matched:
# 1629002: (../src/lowrisc_dv_sw_test_status_0/sw_test_status_if.sv:42) [TOP.top_earlgrey_verilator.u_sw_test_status_if]
pattern = r'\d+: \(.+/sw_test_status_if\.sv:\d+\) \[TOP\..+\] '
if isinstance(line, bytes):
return re.sub(bytes(pattern, encoding='utf-8'), b'', line)
else:
return re.sub(pattern, '', line) | c9eba618032f0368b7581f781d2e990404ab7578 | 208,088 |
def find_non_whitespace(string, i=0):
"""
Return index of first non-whitespace character in string starting at index
i. Returns -1 if there are None.
"""
for j in range(i, len(string)):
if not string[j].isspace():
return j
else:
return -1 | 99883cc377446b3758bafe92c69cf06a5e206769 | 182,917 |
def patch_method_in(cls):
"""
To use:
from <somewhere> import <someclass>
@monkey.patch_method(<someclass>)
def <newmethod>(self, args):
return <whatever>
This adds <newmethod> to <someclass>
"""
def decorator(func):
setattr(cls, func.__name__, func)
return func
return decorator | 2719ffb888d00e112b69e753cb8539aa29ea1bf5 | 225,743 |
import textwrap
def split_doc(txt):
"""Split a docstring into a first line + rest blurb"""
short, rest = txt.split("\n", 1)
short = short.strip()
rest = textwrap.dedent(rest.rstrip())
return short, rest | 89bdf288ec24cc1d1569fb21f06a4a790087f65b | 479,683 |
def encode3(s):
"""
convert string => bytes
for compatibility python 2/3
"""
if type(s)==str:
return s.encode('UTF-8')
return s | fa6ed03dccf1ed6ea8dbcbee6ca88f1500e50ec9 | 225,400 |
def get_optime_tokumx(mc):
""" Get optime of primary in the replica set.
"""
rs_status = mc['admin'].command({'replSetGetStatus': 1})
members = rs_status.get('members')
if members:
for member in members:
role = member.get('stateStr')
if role == 'PRIMARY':
optime = member.get('optimeDate')
return optime
return None | 98d9b10c69d33700a55ecec0731b41f9b9659876 | 246,479 |
def CheckSvnProperty(input_api, output_api, prop, expected, affected_files):
"""Checks that affected_files files have prop=expected."""
if input_api.change.scm != 'svn':
return []
bad = filter(lambda f: f.Property(prop) != expected, affected_files)
if bad:
if input_api.is_committing:
res_type = output_api.PresubmitError
else:
res_type = output_api.PresubmitNotifyResult
message = 'Run the command: svn pset %s %s \\' % (prop, expected)
return [res_type(message, items=bad)]
return [] | dc177961ea57e8d306ca1f348d73dc6d3bf9ec68 | 454,677 |
def accuracy(output, target, top_k=(1,)):
"""Calculate classification accuracy between output and target.
:param output: output of classification network
:type output: pytorch tensor
:param target: ground truth from dataset
:type target: pytorch tensor
:param top_k: top k of metric, k is an interger
:type top_k: tuple of interger
:return: results of top k
:rtype: list
"""
max_k = max(top_k)
batch_size = target.size(0)
_, pred = output.topk(max_k, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in top_k:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res | 68b7c48e5bd832a637e7a06353c48ffa09b449cd | 2,140 |
def parse_tabbed_table(txt):
"""Parse a tab-separated table into list of dicts.
Expect first row to be column names.
Very primitive.
"""
txt = txt.replace("\r\n", "\n")
fields = None
data = []
for ln in txt.split("\n"):
if not ln:
continue
if not fields:
fields = ln.split("\t")
continue
cols = ln.split("\t")
if len(cols) != len(fields):
continue
row = dict(zip(fields, cols))
data.append(row)
return data | 81bfbeeef8019b0540b715973616672a819cf316 | 149,781 |
def parse_raw_headers(raw_headers: str) -> dict:
"""
Parses the given headers string and returns the corresponding
headers dictionary. Useful when working with developer tools in
the browser
"""
headers = {}
for header in raw_headers.strip().split('\n'):
key, value = header.split(': ')
headers[key] = value
return headers | 8246069502803f10d1148405bc2e384b6bb1a277 | 452,581 |
def normalize_snappy(s):
"""Normalization function that performs SNAPPY normalization (hyphen to underscore)."""
return s.replace("-", "_") | 442684d6deb8ed3d3c2a71d6dbc7e2be42648905 | 399,678 |
def remove_dot_git(url_with_dot_git):
"""
Removes trailing .git in repo name or url
:param url_with_dot_git:
:return:
"""
url = url_with_dot_git.split('.git')[0]
return url | 4e9932d6268ba8dbd41afc42443c2a791ac396bd | 601,443 |
import math
def calculate_border_dimensions(width, height):
"""
For a given width and height of the game grid, this method calculates the dimensions of the border surrounding the cell.
The magic numbers correspond to the proportions of the 2048 border in the actual game.
:param width: The width of the grid
:param height: The height of the grid
:return: height and width of the grid border
"""
return int(math.ceil((15.0 / 500) * height)), int(math.ceil((15.0 / 500) * width)) | 3eff19eb379caa2e8a936f56728af4af85aada99 | 525,534 |
def calculate_frip(nreads, noverlaps):
""" calculate FRiP score from nreads and noverlaps """
return( float(noverlaps) / nreads ) | dd57c99f2744a7b891270afe169a7bac459f9e64 | 133,615 |
def t02_SimpleGetPutNoState(C, pks, crypto, server):
"""Verifies that clients maintain no state about keys stored."""
score = 0
alice = C("alice")
alice2 = C("alice")
alice.upload("a", "b")
score += alice2.download("a") == "b"
server.kv = {}
alice = C("alice")
alice2 = C("alice")
alice2.upload("a", "b")
score += alice.download("a") == "b"
server.kv = {}
alice = C("alice")
alice.upload("a", "b")
alice2 = C("alice")
score += alice2.download("a") == "b"
return float(score) / 3.0 | 9a1db38e34bedbab15a84cc474de5774bac6b31a | 217,554 |
def split_corpus(data, train_amount, test_length=None):
""" Split the sentences into train and test sets. If test_length
is None, then the split is:
train = the first 'train_length' number of sentences.
test = the rest.
If test_length is given, the split is:
train = the first 'train_length' number of sentences.
test = the last 'test_length' number of sentences.
NOTE: train_amount + test_length must be less than the total number of
sentences.
"""
if 0 <= train_amount <= 1:
train_length = int(len(data) * train_amount)
else:
train_length = train_amount # number of sentences in training set
train = data[:train_length]
if test_length is None:
test = data[train_length :]
else: # test_length is number of testing sentences
if train_length + test_length > len(data):
raise ValueError("The corpus is not long enough to have that much training & testing data.")
test = data[len(data)-test_length : ]
return train, test | 1819a275425cf175d0d2a0b38442a1844ff20a5b | 282,798 |
def trim_txt(txt, limit=10000):
"""Trim a str if it is over n characters.
Args:
txt (:obj:`str`):
String to trim.
limit (:obj:`int`, optional):
Number of characters to trim txt to.
Defaults to: 10000.
Returns:
:obj:`str`
"""
trim_line = "\n... trimmed over {limit} characters".format(limit=limit)
txt = txt[:limit] + trim_line if len(txt) > limit else txt
return txt | 197dd9da07d8a5a42a33246431f50b6bae25b6bf | 60,873 |
import io
def readmodifierrules(filename):
"""Read a file containing heuristic rules for marking modifiers.
Example line: ``S *-MOD``, which means that for an S
constituent, any child with the MOD function tag is a modifier.
A default rule can be specified by using * as the first label, which
always matches (in addition to another matching rule, if any).
If none of the rules matches, a non-terminal is assumed to be a complement.
"""
modifierrules = {}
with io.open(filename, encoding='utf8') as inp:
for line in inp:
line = line.strip().upper()
if line and not line.startswith("%"):
label, modifiers = line.split(None, 1)
if label in modifierrules:
raise ValueError('duplicate rule for %r (each label'
' should occur at most once in the file)' % label)
modifierrules[label] = modifiers.split()
return modifierrules | a27420c682a1c8095fe0bd9b63ddcb8b63c9bf74 | 37,019 |
from pathlib import Path
import shutil
def get_cmd_path(cmd: str) -> Path:
"""Return file path of the command."""
start_script = shutil.which(cmd)
if not start_script:
raise AssertionError(f"The `{cmd}` not found on PATH")
return Path(start_script) | bb0441d05628fcdb7f57dc966fcea4cead17958e | 168,292 |
import typing
def _get_exceptions(specification: dict) -> typing.Dict[str, dict]:
"""
Assemble a mapping of client exceptions raised by the methods.
These are extracted from the specified service specification where the values are
the shape mappings for those exceptions as specified in the service specification.
:param specification:
Botocore service specification from which to extract exception
information.
:return:
Dictionary of exception names and their corresponding shapes
set on the client.exceptions object.
"""
errors = {
error["shape"]
for item in specification["operations"].values()
for error in (item.get("errors") or [])
}
return {e: specification["shapes"][e] for e in errors} | 8f2ead181b513c276bc7bae8fb369f6d793d279c | 235,271 |
def find(sexp, *names):
"""Return the first node in `sexp` whose name is in `names`"""
for child in sexp:
if child[0] in names:
return child | 35e581faa028447fcea1106da5877a4955147760 | 684,243 |
import time
import math
def retry(tries, delay=1, backoff=2, exception=Exception):
"""
A retry decorator with exponential backoff.
Retries a function or method if Exception occurred
Args:
tries: number of times to retry, set to 0 to disable retry
delay: initial delay in seconds(can be float, eg 0.01 as 10ms),
if the first run failed, it would sleep 'delay' second and try again
backoff: must be greater than 1,
further failure would sleep delay *= backoff second
"""
if backoff <= 1:
raise ValueError("backoff must be greater than 1")
tries = math.floor(tries)
if tries < 0:
raise ValueError("tries must be 0 or greater")
if delay <= 0:
raise ValueError("delay must be greater than 0")
def decorator(func):
def wrapper(*args, **kwargs):
_tries, _delay = tries, delay
_tries += 1 # ensure we call func at least once
while _tries > 0:
try:
ret = func(*args, **kwargs)
return ret
except exception as e:
_tries -= 1
# retried enough and still fail? raise orignal exception
if _tries == 0:
raise
time.sleep(_delay)
# wait longer after each failure
_delay *= backoff
return wrapper
return decorator | 0bd38f62d0a296daf5269b079db4d6124fcecbd5 | 521,129 |
def scan_0d_mesh(cdl_scanner):
"""Return a scan representing a 0d (nodes only) mesh."""
test_cdl = """
netcdf data_C4 {
dimensions:
num_node = 8 ;
variables:
double sample_data(num_node) ;
sample_data:long_name = "sample_data" ;
sample_data:location = "node" ;
sample_data:mesh = "topology" ;
double node_lat(num_node) ;
node_lat:standard_name = "latitude" ;
node_lat:long_name = "latitude of 2D mesh nodes." ;
node_lat:units = "degrees_north" ;
double node_lon(num_node) ;
node_lon:standard_name = "longitude" ;
node_lon:long_name = "longitude of 2D mesh nodes." ;
node_lon:units = "degrees_east" ;
int topology ;
topology:cf_role = "mesh_topology" ;
topology:topology_dimension = 0L ;
topology:node_coordinates = "node_lat node_lon" ;
topology:long_name = "Topology data of 0D unstructured mesh" ;
// global attributes:
:Conventions = "UGRID-1.0" ;
}
"""
return cdl_scanner.scan(test_cdl) | aa10d42a64ffaead7c212adca1238ff5e9a005ae | 327,967 |
def list_to_pg_array(elem):
"""Convert the passed list to PostgreSQL array
represented as a string.
Args:
elem (list): List that needs to be converted.
Returns:
elem (str): String representation of PostgreSQL array.
"""
elem = str(elem).strip('[]')
elem = '{' + elem + '}'
return elem | a06ed810a29a0c2aa26ab3615352bad2c2bab19c | 596,908 |
def get_unique_or_none(klass, *args, **kwargs):
""" Returns a unique instance of `klass` or None """
try:
return klass.objects.get(*args, **kwargs)
except klass.DoesNotExist:
return None
except klass.MultipleObjectsReturned:
return None
return None | 7e935821c2e139d2cb864ef92d969d1e37f40f28 | 161,714 |
def find_last_digit(k):
"""Determines the last digit in a base 10 integer."""
return k%10 | f18d1bca686fa4ca092a840e7728058da7d7990a | 120,909 |
def select_countries(df,
select_years=[str(x) for x in range(2005, 2019)],
threshold=12, values='value'):
"""
Extract a list of countries that has sufficient data for the selected years.
Args:
df: (DataFrame) Created by "extract_data".
select_years: (list) Years (str) to be included in analysis.
threshold: (int) Threshold for dropping rows with missing values as
implemented in the pandas .dropna() method.
values: (str or list) Name of column that will be used for values in the
pandas .pivot() method.
Returns:
pandas Series.
"""
# Filter for only relevant years
df = df[df.year.isin(select_years)]
# Find countries with sufficient data for select years
df['missing'] = df['value'].isna()
country_missing = df.groupby('country')['missing'].sum()
countries = country_missing[country_missing <= 12].index.tolist()
return countries | 932b30f1df5ecc81a5389b71dc55730b585f7f24 | 55,391 |
def _collect_partitioned_variable(name, all_vars):
"""Returns list of `tf.Variable` that comprise the partitioned variable."""
if name + "/part_0" in all_vars:
var = []
i = 0
while name + "/part_%d" % i in all_vars:
var.append(all_vars[name + "/part_%d" % i])
i += 1
return var
return None | 784c845c8d54823c34376c1b81f6bc5b3082aead | 145,298 |
def isize(n):
"""Get a readable size from a number of bytes."""
if n >= 1024 ** 3:
return "%.2f GB" % (n / 1024.0 ** 3)
elif n >= 1024 ** 2:
return "%.2f MB" % (n / 1024.0 ** 2)
elif n >= 1024:
return "%.2f KB" % (n / 1024.0)
else:
return "%d B" % n | f1a792bf0e2fb78d5f418a06fccfa2ab21dfe84f | 129,844 |
def default_log_prior_function(x, *args):
"""A uniform improper prior."""
return 0.0 | 8e855d6d577a2c16a12b5f365b97194af08bb534 | 280,402 |
import re
def noprotocol(fullUrl):
"""
Strips protocol off URL for nice display/hotlink text.
Example: https://www.someDomain.com/some/path/here/
Return: {string} URL with no protocol (ex: www.someDomain.com/some/path/here/)
"""
returnData = re.sub(r"https?://", "", fullUrl)
returnData = re.sub(r"/$", "", returnData)
return returnData | cd7fa2b14c5b904b7363726db1f21dd491b02f8f | 278,773 |
import base64
def add_external_fig(figloc: str, style: str = "") -> str:
"""Add external figure to HTML
Parameters
----------
figloc : str
Relative figure location
style: str
Div style
Returns
-------
str
HTML code for figure
"""
try:
with open(figloc, "rb") as image_file:
img = base64.b64encode(image_file.read()).decode()
return f'<img src="data:image/{figloc.split(".")[1]};base64,{img}"style="{style}">'
except Exception:
return "" | 32f1e5b6615ef8f4680415aaf4b81ea8f0444b68 | 505,500 |
def _NoTimeout(state):
"""False iff the command timed out."""
rcode, out = state
return rcode == 0 or not ('TimeoutError' in out or 'timed out' in out) | b5812be217dd3c795a332464f50fb678c3be81d6 | 264,783 |
def make_snapshots(frame, ignore):
"""Extract a subset of atoms from a given frame."""
snapshot = {
'header': 'Removed.',
'box': frame['box'],
'residunr': [],
'residuname': [],
'atomname': [],
'atomnr': [],
'x': [],
'y': [],
'z': [],
}
for key in ('residunr', 'residuname', 'atomname', 'atomnr', 'x', 'y', 'z'):
for i, item in enumerate(frame[key]):
if i not in ignore:
snapshot[key].append(item)
return snapshot | e2356bdad3c8fe7633d598ea6e49825e90daf671 | 646,593 |
def deepupdate(original, update):
"""
Recursively update a dict.
Subdict's won't be overwritten but also updated.
"""
for key, value in original.iteritems():
if key not in update:
update[key] = value
elif isinstance(value, dict):
deepupdate(value, update[key])
return update | 7cfac18c53a28a14cd88e820ba9a69b92faf8a93 | 537,855 |
def plural(n):
"""Utility function to optionally pluralize words based on the value of n.
"""
if n == 1:
return ''
else:
return 's' | bfd70987f63ee6e5ab5c58c5b0a61bdff8385785 | 606,513 |
def points_to_list(points):
"""Make array of dictionaries as a list.
Args:
points: array of dictionaries - [{'x': x_coord, 'y': y_coord}].
Returns:
list: points as a list.
"""
points_list = []
for point in points:
points_list.append([int(point['x']), int(point['y'])])
return points_list | 51aa26c90c9cfceb00facab46aa3f067905ff795 | 429,640 |
def rearrange_pandasdf_columns(df):
"""
Takes a pandas Dataframe with columns 'DateTime' and 'WorkerIndex' amongst others and places them at the front
:param df: The pandas Dataframe
:return: The column rearranged df
"""
new_columns = ['DateTime', 'WorkerIndex']
for c in df.columns:
if c != 'DateTime' and c != 'WorkerIndex':
new_columns.append(c)
return df[new_columns] | 799f65fa8cdc0285e285865d9ed1823d0f802321 | 646,657 |
import json
def load_json(file_path):
"""
Load data from json file.
>>> result = load_json("./JsonAccessorDoctest.json")
>>> result
{'Fuji': {'Id': 30, 'server': ['JP', 'CN']}}
>>> len(result['Fuji']['server'])
2
"""
with open(file_path, 'r', encoding='utf8') as json_data:
return json.loads(json_data.read()) | fdb28da3129fbdf8c171ddd035483177fd176a6a | 605,952 |
import re
def MakeAlphaNum( str ):
"""Return a version of the argument string, in which all non-alphanumeric chars have been replaced
by underscores.
"""
return re.sub( '\W+', '_', str ) | d0eb0b4e4d7be0e592fa5517fa088dc10c1d455e | 59,902 |
def reaction_splitter(reaction):
"""
Args:
reaction (str) - reaction with correct spacing and correct reaction arrow `=>`
Returns (list):
List of compounds in the reaction
Example:
>>>reaction_splitter("c6h12o6 + 6o2 => 6h2o + 6co2")
['c6h12o6', '6o2', '6h2o', '6co2']
"""
reaction = reaction.replace(" => ", " + ")
compounds = reaction.split(" + ")
return [compound.strip() for compound in compounds] | cd20e8a3e0f15b236d49834b864513f7bbdb99e5 | 656,888 |
from typing import Union
import math
def _float_to_json(value) -> Union[None, str, float]:
"""Coerce 'value' to an JSON-compatible representation."""
if value is None:
return None
if isinstance(value, str):
value = float(value)
return str(value) if (math.isnan(value) or math.isinf(value)) else float(value) | b1ef0c7af5754d56435ac2f7b8116f03dd4502d9 | 110,504 |
import signal
def CMDdevserver(parser, args):
"""Runs the app locally via dev_appserver.py."""
parser.allow_positional_args = True
parser.disable_interspersed_args()
parser.add_option(
'-o', '--open', action='store_true',
help='Listen to all interfaces (less secure)')
app, options, args = parser.parse_args(args)
# Let dev_appserver.py handle Ctrl+C interrupts.
signal.signal(signal.SIGINT, signal.SIG_IGN)
return app.run_dev_appserver(args, options.open) | 514de999ca52d6ef43581f328444686b7b53435e | 602,068 |
import re
def include_symbol(tablename, schema=None):
"""Exclude some tables from consideration by alembic's 'autogenerate'.
"""
# Exclude `*_alembic_version` tables
if re.match(r'.*_alembic_version$', tablename):
return False
# If the tablename didn't match any exclusion cases, return True
return True | cb097a4b6a19c11bccc6dfc780a53431c505f36b | 73,727 |
import re
def like(matchlist: list, array: list, andop=False):
"""Returns a list of matches in the given array by doing a comparison of each object with the values given to the matchlist parameter.
Examples:
>>> subdir_list = ['get_random.py',
... 'day6_15_payload-by-port.py',
... 'worksheet_get_exif.py',
... 'worksheet_get_random.py',
... 'day6_19_browser-snob.py',
... 'day6_12_letterpassword.py',
... 'day6_21_exif-tag.py',
... 'day6_17_subprocess_ssh.py',
... 'day6_16._just_use_split.py']
>>> like('day', subdir_list)\n
['day6_15_payload-by-port.py', 'day6_19_browser-snob.py', 'day6_12_letterpassword.py', 'day6_21_exif-tag.py', 'day6_17_subprocess_ssh.py', 'day6_16._just_use_split.py']
>>> like(['get','exif'], subdir_list)\n
['get_random.py', 'worksheet_get_exif.py', 'worksheet_get_random.py', 'day6_21_exif-tag.py']
>>> like(['get','exif'], subdir_list, andop=True)\n
['worksheet_get_exif.py']
Args:
matchlist (list): Submit one or many substrings to match against
array (list): This is the list that we want to filter
andop (bool, optional): This will determine if the matchlist criteria is an "And Operation" or an "Or Operation. Defaults to False (which is the "Or Operation"). Only applies when multiple arguments are used for the "matchlist" parameter
Returns:
list: Returns a list of matches
References:
https://stackoverflow.com/questions/469913/regular-expressions-is-there-an-and-operator
https://stackoverflow.com/questions/3041320/regex-and-operator
https://stackoverflow.com/questions/717644/regular-expression-that-doesnt-contain-certain-string
"""
if isinstance(matchlist, str):
# matchlist is a single string object
thecompile = re.compile(rf"^(?=.*{matchlist}).*$")
result_list = [x for x in array if re.findall(thecompile, x)]
return result_list
else:
if andop:
# We will be doing an "AND" match or an "And" "Operation"
match_string = r"(?=.*?" + r".*?)(?=.*?".join(matchlist) + r".*?)"
# e.g. for the above... ['6_19','6_21','6_24'] turns to: '(?=.*?6_19.*?)(?=.*?6_21.*?)(?=.*?6_24.*?)'
thecompile = re.compile(rf"^{match_string}.*$")
# equivalent to: '^(?=.*?6_19.*?)(?=.*?6_21.*?)(?=.*?6_24.*?).*$'
result_list = [x for x in array if re.findall(thecompile, x)]
return result_list
else:
# We will be doing an "OR" match
match_string = r"(?=.*" + r"|.*".join(matchlist) + ")"
# e.g. for the above... ['6_19','6_21','6_24'] turns to: '(?=.*6_19|.*6_21|.*6_24)'
thecompile = re.compile(rf"^{match_string}.*$")
# equivalent to: '^(?=.*6_19|.*6_21|.*6_24).*$'
result_list = [x for x in array if re.findall(thecompile, x)]
return result_list | b7cf450cdd06bd8e0e3bc6d35c3a6f8ba0cfa457 | 680,465 |
def identify_var_units(label):
"""
This function parses the x-label or y-label to figure out the
variable name and unit if possible.
Parameters
----------
label : str
The label of x- or y-axis.
Returns
-------
var : str
The name of the variable.
unit :str
The units of the variable.
"""
if label is not None:
if "(" in label:
if "$" in label.split("(")[1]:
unit = " ".join(label.split("$")[1].split("$")[0].split(" ")[:-1])
else:
unit = " " + label.split("(")[1].split(")")[0]
var = " ".join(label.split("(")[:-1]).lower()
if var[-1] == " ":
var = " ".join(var.split(" ")[:-1]).lower()
else:
unit = ""
var = label.lower()
else:
unit = ""
var = None
if label == "X-axis":
var = "x"
if label == "Y-axis":
var = "y"
return var, unit | 438d9168366d17ebb50457f23d415e17ac4f0307 | 212,362 |
def input_string(message):
"""Asks a question and captures the string output."""
return str(input(message + ': ')).strip() | f9fbc75c63c3fe21a2a79824d4c86a6aef7b4eac | 161,477 |
def _successful(response):
""" Returns whether a response was considered successful. If no body is
available or the 'meta' dict in the response envelope doesn't contain a
'code' value, checks the HTTP response code instead.
:param requests.Response response: a response object
:returns: (boolean) True if successful
"""
code = response.status_code
try:
code = response.json()['meta']['code']
except Exception:
pass
return code in (200, 201, 202) | e086073f6dc43b7df4e4211250f649f1c86d58cf | 107,531 |
def get_words(line):
"""Break a line into a list of words.
Use a comma as a separator.
Strip leading and trailing whitespace.
"""
return [word.strip() for word in line.split(',')] | 1ef882b1863d8ed4e1768b250bc8167fdfa086d4 | 541,135 |
def load_key(key_file):
"""
Loads the key
:param key_file: Location of the key
:return: the key
"""
return open(key_file, "rb").read() | 64d8aa2f2920b812930628b94db072d77a2b5b86 | 285,096 |
from typing import Optional
from typing import List
from typing import Any
from typing import Dict
import pickle
def make_signature(args: Optional[List[Any]] = None, kwargs: Optional[Dict[str, Any]] = None):
"""
make_signature
==============
Turns *args and **kwargs into a hash. Used to make unique cache keys from
function arguments.
"""
sig = tuple()
if args:
sig += tuple(args)
if kwargs:
sig += tuple(kwargs.items())
return hash(pickle.dumps(sig)) | 335c59a79d56d950a27cfd0c1591e68e5cb4ae3d | 515,139 |
def extract_sequence_accessions_from_seed(seed_file):
"""
Parses a seed MSA and extracts all sequence
accessions in the form of a dictionary
seed_file: An Rfam seed alignment
return: A dictionary of seed accessions
"""
accessions = {}
fp = open(seed_file, 'r')
for line in fp:
line = line.strip()
if len(line) > 1 and line[0] != '#' and line != '':
line = line.split(' ')
accession = line[0].partition('/')[0]
if accession != '':
accessions[accession] = ""
fp.close()
return accessions | 24cb304921dd1fc1d36c7e283b558fbc5cc55bda | 379,052 |
def get_public_ip(setup_info, interface_type):
"""
return public IP based on test case interface_type
:param setup_info: setup info fixture
:param interface_type: type of interface
:return: public IP
"""
return setup_info[interface_type]['public_ip'] | 86a06a30125b361940ddb9c584a04bc3437827b7 | 297,877 |
def flatten(obj, ltypes=(list, tuple)):
"""Flatten a nested variable, by default only list/tuple combinations.
Source: Mike C Fletcher's flatten http://www.bit.ly/2ULLMnm
"""
ltype = type(obj)
obj = list(obj)
i = 0
while i < len(obj):
while isinstance(obj[i], ltypes) and not (
isinstance(obj[i], str) and len(obj[i]) == 1
):
if not obj[i]:
obj.pop(i)
i -= 1
break
else:
obj[i : i + 1] = obj[i]
i += 1
return ltype(obj) | 29d4ebb5fea56dce12f0cefe9daf741959ca571a | 603,239 |
def to_list(inp):
""" Convert to list """
if not isinstance(inp, (list, tuple)):
return [inp]
return list(inp) | 55350d48bd578252213710fd4c5e672db8ba1f8e | 24,439 |
def tabq_learn(agent, env, env_state, history, args):
"""Learning loop for TabularQAgent."""
state, reward, done, info = env_state
t = history["t"]
# Act
action = agent.act_explore(state)
successor, reward, done, info = env.step(action)
# Learn
if args.cheat:
reward = info["hidden_reward"]
# In case the agent is drunk, use the actual action they took
try:
action = info["extra_observations"]["actual_actions"]
except KeyError:
pass
agent.learn(state, action, reward, successor)
# Modify exploration
eps = agent.update_epsilon()
history["writer"].add_scalar("Train/epsilon", eps, t)
return (successor, reward, done, info), history | 5e3494766a90482e05d2a981c6190ff3ff6a8c83 | 217,686 |
def update_nested_dict(main_dict, new_dict):
"""Update nested dict (only level of nesting) with new values.
Unlike dict.update, this assumes that the values of the parent dict are
dicts, so you shouldn't replace the nested dict if it already exists.
Instead you should update the sub-dict.
"""
# update named styles specified by user
for name, rc_dict in new_dict.iteritems():
if name in main_dict:
main_dict[name].update(rc_dict)
else:
main_dict[name] = rc_dict
return main_dict | 0926d814b2f650c4c2cdc9aebfc69ee580bd0bf9 | 441,754 |
def get_name_ARPS_simulation(degree, simulation):
"""Get short name of ARPS files"""
[topo_or_wind, N, dx, xi, sigma, ext] = simulation.split('_')
name = str(degree) + 'degree' + '_' + xi + '_' + ext
return (name) | 4e8cad9a63ee5df0cea6b30fd5bb92dc01a03a84 | 450,286 |
import re
def sum_of_integers_in_string(s: str) -> int:
""" This function calculates the sum of the integers inside a string """
return sum([int(i) for i in re.findall(r'\d+', s)]) | 159572608e8a6c48a6a877a4ac7f915e94eab2b8 | 676,427 |
def GetFileExtension(file_str):
"""Gets last atom at end of string as extension if
no extension whole string is returned
@param file_str: path or file name to get extension from
"""
return file_str.split('.')[-1] | afc5d39a1f6e734eb9cc78fba582d2e9a356a896 | 468,555 |
def removesuffix(in_str: str, suffix: str) -> str:
"""removes suffix from a string."""
# suffix='' should not call self[:-0].
if suffix and in_str.endswith(suffix):
return in_str[:-len(suffix)]
return in_str[:] | 12307730566c3f5b0228989b7a3a75c93039a30c | 594,640 |
def _add_hash(source):
"""Add a leading hash '#' at the beginning of every line in the source."""
source = '\n'.join('# ' + line.rstrip()
for line in source.splitlines())
return source | f5d558d8ed29fa145d88b08ee40351949e112546 | 556,827 |
def set_perms(tarinfo):
"""
Set permissions for a file going into a tar
:param tarinfo: the tarinfo for the file
:return: the modified tarinfo object
"""
if tarinfo.isfile():
if tarinfo.name.endswith('.sh'):
mode = '774'
else:
mode = '664'
else:
mode = '775'
tarinfo.mode = int(mode, 8) # octal to decimal
return tarinfo | c219b7c95df5f57ddf0cb064f4940211414e0a47 | 76,693 |
def _msearch_success(response):
"""Return true if all requests in a multi search request succeeded
Parameters
----------
response : requests.models.Response
Returns
-------
bool
"""
parsed = response.json()
if 'responses' not in parsed:
return False
for result in parsed['responses']:
if result['status'] != 200:
return False
return True | acdac4408464120fdeb7f20a06f07aac6ca3809f | 699,010 |
def suffix_str(model, snr):
""" Name id for output files """
fixed_str = ''.join([{True: 'T', False: 'F'}[i] for i in model.fixed])
out_suffix = '{}_snr{:n}'.format(fixed_str, snr)
return out_suffix | 21e67a22f3748a8372dc10b73b4adc9b3b19b1eb | 313,629 |
def df2geojson(df, lat='latitude', long='longitude', remove_coords_properties=True):
"""
Convert um dataframe, com colunas de latitude e longitude, em um objeto geojson de pontos
https://notebook.community/gnestor/jupyter-renderers/notebooks/nteract/pandas-to-geojson
# Usage
feature_collection = dataframe2geojson(df, lat='latitude_dd', long='longitude_dd', remove_coords_properties=False)
with open('file.geojson', 'w', encoding='utf-8') as f:
json.dump(feature_collection, f, ensure_ascii=False)
:param df:
:param lat: Nome da coluna no dataframe que tem os dados de latitude
:param long: Nome da coluna no dataframe que tem os dados de longitude
:param remove_coords_properties:
:return:
"""
print('Estudar:\nhttps://geopandas.org/en/stable/docs/reference/api/geopandas.points_from_xy.html')
# Create a new python dict to contain our geojson data, using geojson format
geojson = {'type': 'FeatureCollection', 'features': []}
# Loop through each row in the dataframe and convert each row to geojson format
for _, row in df.iterrows():
# Create a feature template to fill in
feature = {
'type': 'Feature',
'properties': {},
'geometry': {
'type': 'Point',
'coordinates': [],
}
}
# Fill in the coordinates
feature['geometry']['coordinates'] = [row[long], row[lat]]
# for each column, get the value and add it as a new feature property
properties = list(df.columns)
if remove_coords_properties:
properties.remove(lat)
properties.remove(long)
for prop in properties:
feature['properties'][prop] = row[prop]
# Add this feature (aka, converted dataframe row) to the list of features inside our dict
geojson['features'].append(feature)
return geojson | cb4ffc75e84f0a201ff10ba60ec4b82ab1c8e683 | 635,372 |
def _region2searchspace(region_point, search_space_resolution):
"""Convert region point to a cube's coordinate in the search space.
Assume that the search space's origin is at the region coordinate frame's
origin. The `search_space_resolution` has unit m/cell."""
return (int(round(region_point[0] / search_space_resolution)),
int(round(region_point[1] / search_space_resolution)),
int(round(region_point[2] / search_space_resolution))) | 33620a75526cf962f456d22bf4bd5611c57a7e96 | 351,411 |
def get_data_by_name(obj, name):
"""Get data by name within indicators or strategies
Parameters
----------
obj: Indicator or Strategy instance
name: str
data mame
Returns
DataFeed
"""
tgt_data = None
for data in obj.datas:
if data._name == name:
tgt_data = data
break
if tgt_data is None:
raise Exception(f'You should define data named {name}')
else:
return tgt_data | 562fb28b4647e30c4fc456e6be393ea690a997b8 | 475,137 |
def pdh_signal(
ff,
power,
gamma,
finesse,
FSR,
fpole
):
"""Laser frequency Pound-Drever-Hall signal response to a cavity in W/Hz.
"""
pdh = 2 * power * gamma * finesse / FSR / (1 + 1j * ff / fpole)
return pdh | 4843079dba3bc6706c4431a7ca41250199e84141 | 333,532 |
def check_freq(dict_to_check, text_list):
"""
Checks each given word's freqency in a list of posting strings.
Params:
words: (dict) a dict of word strings to check frequency for, format:
{'languages': ['Python', 'R'..],
'big data': ['AWS', 'Azure'...],
..}
text_list: (list) a list of posting strings to search in
Returns:
freq: (dict) frequency counts
"""
freq = {}
# Join the text together and convert words to lowercase
text = ' '.join(text_list).lower()
for category, skill_list in dict_to_check.items():
# Initialize each category as a dictionary
freq[category] = {}
for skill in skill_list:
if len(skill) == 1: # pad single letter skills such as "R" with spaces
skill_name = ' ' + skill.lower() + ' '
else:
skill_name = skill.lower()
freq[category][skill] = text.count(skill_name)
return freq | c36813b876ff62b26c5caecd58dcafdd0bfc6ded | 32,014 |
def format_serialized(serialized):
"""Formats the serialized logical form to reduce the number of tokens.
The intent and slot labels are lower-cased and broken into words.
Example: "[IN:SET_ALARM" --> "[IN set alarm ="
The close brackets are also merged with the preceding token to avoid an extra
space token after tokenization.
Args:
serialized: Serialized logical form string
Returns:
formatted logical form string.
"""
lf_toks = []
for tok in serialized.split():
if tok == "]":
lf_toks.append(tok)
elif tok[0] == "[":
prefix, suffix = tok[1:].split(":")
lf_toks.append(" [" + prefix)
lf_toks.append(" " + suffix.lower().replace("_", " "))
lf_toks.append(" =")
else:
lf_toks.append(" " + tok)
return "".join(lf_toks).strip() | a92fb4ca403a19730a595d2108e6b561e48f98d9 | 510,283 |
def _NextNondeletedLine(file_lines, line_number):
"""Returns the line number of the next not-deleted line, or None."""
for line_number in range(line_number + 1, len(file_lines)):
if not file_lines[line_number].deleted:
return line_number
return None | 99b163a5c6aac8db82df9fe3472da895820f8b81 | 369,066 |
def _has_medwall(model):
"""Check if structure has medial wall, which is when the model count is
equal to the number of vertices. Always false for non surface models
"""
if ((model['type'] == 'CIFTI_MODEL_TYPE_SURFACE') and
(model['count'] == model['n_indices'])):
return True
else:
return False | 7973ace19285aa28d636b08b787c492a0130ad1e | 405,107 |
def paths_same_disk(photos_path:str, export_path:str)->bool:
"""
Checks if the provided input path and the export path are "located" on the same disk.
:param photos_path: path to photos
:type photos_path: str
:param export_path: path to the directory where the photo folder structure will be created
:type export_path: str
|
"""
return True if photos_path[0].lower() == export_path[0].lower() else False | 07476953bbaec5ad0045b064ea5ce09e246ebca1 | 681,135 |
def format_coords(df, col_to_convert, col_new_name):
"""
Takes col_to_convert and creates a list of a set of strings that
contain coordinates in an integer form.
Parameters
----------
df : df
pd.DataFrame that contains Neotoma information.
col_to_convert : string
Name of column of df. This column has latitude and longitude
coordinates
col_new_name : string
Name of new column of df.
Returns
-------
df: pd.DataFrame
pd.DataFrame with new column `col_new_name` which contains a list of
unique positive integer coordinates.
"""
df[col_new_name] = df[col_to_convert]\
.apply(lambda x: [int(abs(i)) for i in x])\
.apply(lambda x: [str(i) for i in x])\
.replace('-', '', regex=True)\
.apply(lambda x: list(set(x)))
return df | 2c1c8591bdc968066603021bb4504fe17341edfd | 618,126 |
from typing import List
def solution(board: List[List[int]]) -> int:
"""
μ
λ ₯λ 2μ°¨μ λ°°μ΄μμ κ°μ₯ ν° 1λ‘ λ μ μ¬κ°νμ ꡬνλΌ
Args:
board (List[List[int]]): κ°κ°μ μμκ° 1μ΄λ 0μΌλ‘ λμ΄ μλ 2μ°¨μ λ°°μ΄
Returns:
int: κ°μ₯ ν° μ μ¬κ°νμ λμ΄
"""
row, calumn = len(board), len(board[0])
global_max = 0
for i in range(row):
for j in range(calumn):
if not (i and j):
global_max = board[i][j] if board[i][j] > global_max else global_max
continue
if board[i][j]:
near = [board[i - 1][j - 1], board[i - 1][j], board[i][j - 1]]
board[i][j] = min(near) + 1
global_max = board[i][j] if board[i][j] > global_max else global_max
return global_max * global_max | a34b7decafc1dc79bce566335e4edba7900e7744 | 24,592 |
def vect3_length_sqrd(v):
"""
Squared length of a 3d vector.
v (3-tuple): 3d vector
return (float): squared length
"""
return v[0] ** 2 + v[1] ** 2 + v[2] ** 2 | 1192808dfc5c52a5d57b9856d8b0a6e5067bfd8d | 494,458 |
import re
def get_string_between(text, before, after):
"""
Get the string between two strings.
"""
pattern = "%s(.*)%s" % (before, after)
result = re.search(pattern, text)
if not result:
return None
return result.group(1) | 024eae6ed3d386ec3b3f79d0ca0c608da5c18d72 | 502,485 |
def new_value(start, end, frac):
"""Get value at a fraction of an interval
Args:
start (number): Start of interval
end (number): End of interval
frac (number): Fraction of interval
Returns:
number: Value at a fraction of an interval
"""
return (end - start) * frac + start | 796e894322b5d090d854a7629f8dcd9755fcc6c7 | 389,158 |
def read_dysplasia_mappings(mappings):
"""
Read dysplasia mappings stored within file
Params:
mappings (str): path to dysplasia mappings file
Returns: a dict of {trigger: grade} representing mappings for each use-case
"""
with open(mappings, 'r') as file:
lines = file.readlines()
mappings = {'colon': {}, 'cervix': {}, 'celiac': {}, 'lung': {}}
for line in lines:
trigger, grade, use_cases = line.strip().split('\t')
use_cases = use_cases.split(',')
for use_case in use_cases:
mappings[use_case][trigger] = grade.split(',')
return mappings | a0801f1014176fa258f4cd8718617ebb3f4c7d19 | 210,865 |
def strip_position(pos):
"""
Stripes position from +- and blankspaces.
"""
pos = str(pos)
return pos.strip(' +-').replace(' ', '') | 1097bf545d58cea0ef526683cf020be7678aa029 | 668,590 |
def authority(agent_authorities, other_agent, scale):
"""
All authorities of the agent get the scale's maximum, while all others get the minimum to trust value.
:param agent_authorities: The list of agents to be seen as authority by the current agent.
:type agent_authorities: list
:param other_agent: The other agent for which the trust relationship is calculated. (end of relationship)
:type other_agent: str
:param scale: The Scale object to be used by the agent.
:type scale: Scale
:return: Returns authority trust value.
:rtype: float or int
"""
if other_agent in agent_authorities:
return scale.maximum_value()
else:
return scale.minimum_to_trust_others() | 708b61d03948db4b9d7fcc0914da83d94c8c414e | 478,357 |
import re
def replace_fullwidth_alpha_numeral_to_halfwidth(text: str):
"""
Replace full-width alpha-numeral characters to half-width characters.
Args:
text (str): Text to replace.
Returns:
str: Replaced text.
"""
return re.sub(r'[οΌ‘-οΌΊο½-ο½οΌ-οΌ]', lambda mathobj: chr(ord(mathobj.group(0)) - 0xFEE0), text) | acf0d45e63a6595955c3da1d9f70424ea95c8d95 | 670,815 |
from typing import Union
def is_false(val: Union[str, int]) -> bool:
"""Decide if `val` is false.
Arguments:
val: Value to check.
Returns:
True or False.
"""
value = str(val).strip().upper()
if value in ("0", "FALSE", "F", "N", "NO", "NONE", ""):
return True
return False | b2b532bbd56bfd1b7cf724da35792044c00f2dc0 | 527,020 |
def kgtk_empty_to_null(x):
"""If 'x' is the empty string, map it onto NULL, otherwise return 'x' unmodified.
"""
if x == '':
return None
else:
return x | ce345332733bb963e3bb362700b7a7c152db55c0 | 390,489 |
import struct
def signed_int_to_unsigned_hex(signed_int: int) -> str:
"""Converts a signed int value to a 64-bit hex string.
Examples:
1662740067609015813 => '17133d482ba4f605'
-5270423489115668655 => 'b6dbb1c2b362bf51'
:param signed_int: an int to convert
:returns: unsigned hex string
"""
hex_string = hex(struct.unpack('Q', struct.pack('q', signed_int))[0])[2:]
if hex_string.endswith('L'):
return hex_string[:-1]
return hex_string | 3ac1e3dfbeeb88b07d48fdaa05085209378b4440 | 497,435 |
def extract_comment(line):
"""
Extract comment string from `# This is comment`γ
"""
if not line.startswith("#"):
raise ValueError
index = 0
for char in line:
if char == "#":
index += 1
else:
return line[index:].strip() | eea712516ca61b567edd5381f05263e3db7fcdf4 | 365,412 |
def fillNaToCustom(data):
"""Iterates through NA values and changes them to Typ
Parameters:
dataset (pd.Dataset): Both datasets
Returns:
pd.Dataset: Dataset with any NA values in the columns listed changed to Typ
"""
data["Functional"] = data["Functional"].fillna("Typ")
return data | a7cc65503297a5b9bf740ed0ec41d643b59ea1f8 | 568,889 |
from datetime import datetime
def strftime(time):
""" Return a string representing the date and time as expressed in the RFC 3339 date-time format.
https://tools.ietf.org/html/rfc3339"""
text = datetime.strftime(time, "%Y-%m-%dT%H:%M:%S%z")
return text[:22] + ":" + text[22:] | bed55ed66a2bdf61939141adb6e4e1086733c305 | 181,714 |
def toChunk(data):
"""
Convert string to a chunk.
@returns: a tuple of strings representing the chunked encoding of data
"""
return ("%x\r\n" % len(data), data, "\r\n") | d11b043e631b30755ac5bc796edc9edf9edf24f5 | 44,363 |
def even_or_odd(x=0): # if not specified, x should take value 0.
"""Find whether a number x is even or odd."""
if x % 2 == 0: #The conditional if
return "%d is Even!" % x
return "%d is Odd!" % x | dca3e91eac2498aea5f21375bd90381c2ff42022 | 326,123 |
def convert_masking(sentences):
"""Converts hash masking to internal [MASK] tokens"""
converted_sentences = []
for sent in sentences:
sent = list(sent)
for i, c in enumerate(sent):
if c == "#":
sent[i] = "[MASK]"
converted_sentences.append("".join(sent))
return converted_sentences | 2ae095b06694d8f592159f5f5eee6491fe479d23 | 627,572 |
Subsets and Splits