content
stringlengths
35
416k
sha1
stringlengths
40
40
id
int64
0
710k
def height(grid): """Gets the height of the grid (stored in row-major order).""" return len(grid)
b90bdb029518cfdaaa4bf93dd77b8996e646b322
706,125
import re def numericalSort(value): """ 複数ファイルの入力の際、ファイル名を昇順に並べる。 Input ------ value : 読み込みたいファイルへのパス Output ------ parts : ファイル中の数字 """ numbers = re.compile(r'(\d+)') parts = numbers.split(value) parts[1::2] = map(int, parts[1::2]) return parts
1fc8c748b37a89fe9ea3fb0283b5ec8012781028
706,127
def add_to_list(str_to_add, dns_names): """ This will add a string to the dns_names array if it does not exist. It will then return the index of the string within the Array """ if str_to_add not in dns_names: dns_names.append(str_to_add) return dns_names.index(str_to_add)
4720708778fccc7a16dc66ad52ec911a5acb1f94
706,128
import inspect def getNumArgs(obj): """Return the number of "normal" arguments a callable object takes.""" sig = inspect.signature(obj) return sum(1 for p in sig.parameters.values() if p.kind == inspect.Parameter.POSITIONAL_ONLY or p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD)
c2e9edef0b2d8c18a0f9e2af90a6a1573705d590
706,129
def read_text(file, num=False): """ Read from txt [file]. If [num], then data is numerical data and will need to convert each string to an int. """ with open(file,'r') as f: data = f.read().splitlines() if num: data = [int(i) for i in data] return data
f9b61d254b1c2188ae6be3b9260f94f0657bcd3a
706,130
import operator import re def output_onto(conll_tokens, markstart_dict, markend_dict, file_name): """ Outputs analysis results in OntoNotes .coref XML format :param conll_tokens: List of all processed ParsedToken objects in the document :param markstart_dict: Dictionary from markable starting token ids to Markable objects :param markend_dict: Dictionary from markable ending token ids to Markable objects :return: serialized XML """ output_string = '<DOC DOCNO="' + file_name + '">\n<TEXT PARTNO="000">\n' for out_tok in conll_tokens: if int(out_tok.id) in markstart_dict: for out_mark in sorted(markstart_dict[int(out_tok.id)], key=operator.attrgetter('end'), reverse=True): output_string += '<COREF ID="' + str(out_mark.group) + '" ENTITY="' + out_mark.entity + '" INFSTAT="' + out_mark.infstat if not out_mark.antecedent == "none": output_string += '" TYPE="' + out_mark.coref_type output_string += '">' if int(out_tok.id) > 0: output_string += re.sub("&","&amp;",out_tok.text) if ";" not in out_tok.text else out_tok.text if int(out_tok.id) in markend_dict: for out_mark in markend_dict[int(out_tok.id)]: output_string += "</COREF>" if int(out_tok.id) > 0: output_string += ' ' return output_string + "\n</TEXT>\n</DOC>\n"
f1a917e85735e9581326e60e3add94176e4f84cc
706,131
import logging def create_provider_router(neutron_client, project_id): """Create the provider router. :param neutron_client: Authenticated neutronclient :type neutron_client: neutronclient.Client object :param project_id: Project ID :type project_id: string :returns: Router object :rtype: dict """ routers = neutron_client.list_routers(name='provider-router') if len(routers['routers']) == 0: logging.info('Creating provider router for external network access') router_info = { 'router': { 'name': 'provider-router', 'tenant_id': project_id } } router = neutron_client.create_router(router_info)['router'] logging.info('New router created: %s', (router['id'])) else: logging.warning('Router provider-router already exists.') router = routers['routers'][0] return router
c9eb1de728d141d73c9f7b169df87c01829892f6
706,132
from typing import List import shlex def split(string: str) -> List[str]: """ Split string (which represents a command) into a list. This allows us to just copy/paste command prefixes without having to define a full list. """ return shlex.split(string)
360fceeba7d6280e27068f61d2420cfd9fbfbcc2
706,133
def top1_accuracy(pred, y): """Main evaluation metric.""" return sum(pred.argmax(axis=1) == y) / float(len(y))
d011b432c7c04331ff09d16ba8151c8c4f056ead
706,134
def standardize_ants_data(ants_data, subject_ID_col): """ Takes df from ANTs output and stadardizes column names for both left and right hemi """ ants_useful_cols = ['Structure Name'] ants_to_std_naming_dict = {} ants_to_std_naming_dict['Structure Name'] = subject_ID_col #'SubjID' for roi in ants_data.columns: prefix = None name_split = roi.split(' ') if name_split[0] == 'left': prefix = 'L' if name_split[0] == 'right': prefix = 'R' if prefix is not None: ants_useful_cols.append(roi) std_name = prefix + '_' + ''.join(name_split[1:]) ants_to_std_naming_dict[roi] = std_name ants_data_std = ants_data[ants_useful_cols].copy() ants_data_std = ants_data_std.rename(columns=ants_to_std_naming_dict) # Splitting SubjID column to ignore site name _, ants_data_std[subject_ID_col] = ants_data_std[subject_ID_col].str.rsplit('_', 1).str return ants_data_std
0f5216fd75244b0b9b60fdcdf05d63bfd02a2ed9
706,135
def removeElement_2(nums, val): """ Using one loop and two pointers Don't preserve order """ # Remove the elment from the list i = 0 j = len(nums) - 1 count = 0 while i < j: if nums[i] == val: while j > i and nums[j] == val: j -= 1 print('i:', i, 'j:', j) # swap elements temp = nums[i] nums[i] = nums[j] nums[j] = temp count += 1 print(nums) i += 1 if count == 0: j = j + 1 return j
e1a836514a09fc925a49b144880960b057dfff80
706,136
def worker_id(): """Return a predefined worker ID. Returns: int: The static work id """ return 123
8c8e9c570a2355a15fd9a4d1d03d0159a33ffba0
706,137
import functools import time def time_profile(func): """Time Profiled for optimisation Notes: * Do not use this in production """ @functools.wraps(func) def profile(*args, **kwargs): start = time.time() result = func(*args, **kwargs) print(f"{func.__name__} : {time.time() - start}") return result return profile
a4dde1d66f5987b4be1e9179da1570c252540363
706,138
import re def remove_useless_lines(text): """Removes lines that don't contain a word nor a number. Args: text (string): markdown text that is going to be processed. Returns: string: text once it is processed. """ # Useless lines useless_line_regex = re.compile(r'^[^\w\n]*$', re.MULTILINE | re.UNICODE) processed_text = useless_line_regex.sub(r'', text) return processed_text
fd33cdb243b6887d11846736f922bb4e1332d549
706,140
import string def remove_punctuation(list_of_string, item_to_keep=""): """ Remove punctuation from a list of strings. Parameters ---------- - list_of_string : a dataframe column or variable containing the text stored as a list of string sentences - item_to_keep : a string of punctuation signs you want to keep in text (e.g., '!?.,:;') """ # Update string of punctuation signs if len(item_to_keep) > 0: punctuation_list = "".join( c for c in string.punctuation if c not in item_to_keep ) else: punctuation_list = string.punctuation # Remove punctuation from each sentence transtable = str.maketrans("", "", punctuation_list) return [sent.translate(transtable) for sent in list_of_string]
cb9190bc160f8e725479b531afab383c6857ceac
706,141
def get_search_keywords(testcase): """Get search keywords for a testcase.""" crash_state_lines = testcase.crash_state.splitlines() # Use top 2 frames for searching. return crash_state_lines[:2]
15c1611aeff33f9d8bba843f076b31abfb4023ba
706,142
def make_protein_index(proteins): """Indexes proteins """ prot_index = {} skip = set(['sp', 'tr', 'gi', 'ref', '']) for i, p in enumerate(proteins): accs = p.accession.split('|') for acc in accs: if acc in skip: continue prot_index[acc] = i return prot_index
be54ca3a123fe13efbb8c694187dd34d944fd654
706,143
def python(cc): """Format the character for a Python string.""" codepoint = ord(cc) if 0x20 <= codepoint <= 0x7f: return cc if codepoint > 0xFFFF: return "\\U%08x" % codepoint return "\\u%04x" % codepoint
b0c2042c653043c0831a35ffc13d73850e29af2f
706,144
def reshape_signal_batch(signal): """Convert the signal into a standard batch shape for use with cochleagram.py functions. The first dimension is the batch dimension. Args: signal (array): The sound signal (waveform) in the time domain. Should be either a flattened array with shape (n_samples,), a row vector with shape (1, n_samples), a column vector with shape (n_samples, 1), or a 2D matrix of the form [batch, waveform]. Returns: array: **out_signal**: If the input `signal` has a valid shape, returns a 2D version of the signal with the first dimension as the batch dimension. Raises: ValueError: Raises an error of the input `signal` has invalid shape. """ if signal.ndim == 1: # signal is a flattened array out_signal = signal.reshape((1, -1)) elif signal.ndim == 2: # signal is a row or column vector if signal.shape[0] == 1: out_signal = signal elif signal.shape[1] == 1: out_signal = signal.reshape((1, -1)) else: # first dim is batch dim out_signal = signal else: raise ValueError('signal should be flat array, row or column vector, or a 2D matrix with dimensions [batch, waveform]; found %s' % signal.ndim) return out_signal
344ce1a9a695e99fa470a5d849afb40bc381c9df
706,145
def edges_are_same(a, b): """ Function to check if two tuple elements (src, tgt, val) correspond to the same directed edge (src, tgt). Args: tuple_elements : a = (src, val, val) and b = (src, val, val) Returns: True or False """ if a[0:2] == b[0:2]: return True else: return False
04c4d414402a57cafa0028d0ecd140bedd2539d7
706,146
def map_field_name_to_label(form): """Takes a form and creates label to field name map. :param django.forms.Form form: Instance of ``django.forms.Form``. :return dict: """ return dict([(field_name, field.label) for (field_name, field) in form.base_fields.items()])
dfc2779f498fb479553602a72d9520d398746302
706,147
import time def compute(n=26): """ Computes 2 to the power of n and returns elapsed time""" start = time.time() res = 0 for i in range(2**n): res += 1 end = time.time() dt = end - start print(f'Result {res} in {dt} seconds!') return dt
d816c587302830f0acd20a59905c8634fcf20b49
706,148
def _create_table(): """helper for crc calculation""" table = [] for i in range(256): k = i for _ in range(8): if k & 1: k = (k >> 1) ^ 0xEDB88320 else: k >>= 1 table.append(k) return table
830317e62dcfb7bca63f1186b46a2882e0bb399f
706,149
import re def parse_path_params(end_point_path): """Parse path parameters.""" numeric_item_types = ['Lnn', 'Zone', 'Port', 'Lin'] params = [] for partial_path in end_point_path.split('/'): if (not partial_path or partial_path[0] != '<' or partial_path[-1] != '>'): continue # remove all non alphanumeric characters param_name = re.sub('[^0-9a-zA-Z]+', '', partial_path.title()) if param_name in numeric_item_types: param_type = 'integer' else: param_type = 'string' params.append((param_name, param_type)) return params
895c3b3663c33a6883ba34d7bbfb20de1491910d
706,150
def read_pid_stat(pid="self"): """ Returns system process stat information. :param pid: The process ID. :returns: The system stat information. :rtype: dict """ with open("/proc/%s/stat" % (pid,), "rb") as f: stat = f.readline().split() return { "utime": int(stat[13]), "stime": int(stat[14]), "cutime": int(stat[15]), "cstime": int(stat[16]), }
5ec6b21b09372e71e6dcf8c60f418bcbc4beee64
706,151
import glob import os def get_terminal_map(): """Get a map of device-id -> path as a dict. Used by Process.terminal() """ ret = {} ls = glob.glob('/dev/tty*') + glob.glob('/dev/pts/*') for name in ls: assert name not in ret, name try: ret[os.stat(name).st_rdev] = name except FileNotFoundError: pass return ret
50a4f56e3e2db87a620ab97f485b776c6ac35b6c
706,152
def pow(x, n): """ pow(x, n) Power function. """ return x**n
09d62a68607bf0dab8b380a0c3ee58c6ed4497d6
706,153
def dot_product(u, v): """Computes dot product of two vectors u and v, each represented as a tuple or list of coordinates. Assume the two vectors are the same length.""" output = 0 for i in range(len(u)): output += (u[i]*v[i]) return output
6362776bef32870d3b380aecbb2037483e049092
706,154
def parse_variable_char(packed): """ Map a 6-bit packed char to ASCII """ packed_char = packed if packed_char == 0: return "" if 1 <= packed_char <= 10: return chr(ord('0') - 1 + packed_char) elif 11 <= packed_char <= 36: return chr(ord('A') - 11 + packed_char) elif 37 <= packed_char <= 62: return chr(ord('a') - 37 + packed_char) else: return "_"
e4ff95bca48ae97a22c20dda4fd82e082c32be27
706,155
def next_page(context): """ Get the next page for signup or login. The query string takes priority over the template variable and the default is an empty string. """ if "next" in context.request.GET: return context.request.GET["next"] if "next" in context.request.POST: return context.request.POST["next"] if "next" in context: return context["next"] return ""
6abc1c8ef260366e53f335a27ee42f0356c91b63
706,156
import numpy def make_train_test_sets(input_matrix, label_matrix, train_per_class): """Return ((training_inputs, training_labels), (testing_inputs, testing_labels)). Args: input_matrix: attributes matrix. Each row is sample, each column is attribute. label_matrix: labels matrix. Each row is sample, each column is label. train_per_class: Number of samples for each class in training set. """ training_inputs = [] training_labels = [] testing_inputs = [] testing_labels = [] label_counts = {} # Add each row to training or testing set depending on count of labels for input_, label in zip(input_matrix, label_matrix): key = tuple(label) try: count = label_counts[key] except KeyError: # First time seeing label, count is 0 count = 0 if count < train_per_class: # Still need more training samples for this label training_inputs.append(input_) training_labels.append(label) else: # We have enough training samples for this label, # add to testing set instead testing_inputs.append(input_) testing_labels.append(label) label_counts[key] = count + 1 if testing_inputs == []: raise ValueError('train_per_class too high, no testing set') return ((numpy.array(training_inputs), numpy.array(training_labels)), (numpy.array(testing_inputs), numpy.array(testing_labels)))
bd71f48ed9405a89dfa42b3cb6cfe45b064a6b4d
706,157
def pi_float(): """native float""" lasts, t, s, n, na, d, da = 0, 3.0, 3, 1, 0, 0, 24 while s != lasts: lasts = s n, na = n+na, na+8 d, da = d+da, da+32 t = (t * n) / d s += t return s
8a6a6a5942ddd61ecdf65b782bb2fc0f0519ddb5
706,158
from typing import Counter def top_diffs(spect: list, num_acids: int) -> list: """Finds at least num_acids top differences in [57, 200] Accepts ties :param spect: a cyclic spectrum to find differences in :type spect: list (of ints) :type keep: int :returns: the trimmed leaderboard :rtype: list (of lists (of ints)) """ # must be sorted & start with 0 spect.sort() if spect[0] != 0: spect.insert(0, 0) diffs = [spect[i] - spect[j] for i in range(1, len(spect)) for j in range(i - 1, -1, -1)] acids = [] last_count = 0 for mass, count in Counter(diffs).most_common(): # leave if over min AND not tying min if len(acids) >= num_acids and count < last_count: break # restricted weight for amino acid masses if 57 <= mass <= 200: acids.append(mass) last_count = count return acids
1ca2b08f6ecbf69b1ab2189b1cbbff9b4e1c2e8d
706,160
def add_placeholders(components): """Add placeholders for missing DATA/INSTANCE components""" headers = [s[:2] for s in components] for prefix in ("CD", "CR"): if prefix not in headers: components.append(prefix + ("C" * 11)) return components
303f1590042acc60aa753e5e317417de01fafafc
706,161
import hashlib def md5(s, raw_output=False): """Calculates the md5 hash of a given string""" res = hashlib.md5(s.encode()) if raw_output: return res.digest() return res.hexdigest()
238c2a6c6b06a046de86e514698c7ef5622f770b
706,162
def round_to_thirty(str_time): """STR_TIME is a time in the format HHMM. This function rounds down to the nearest half hour.""" minutes = int(str_time[2:]) if minutes//30 == 1: rounded = "30" else: rounded = "00" return str_time[0:2] + rounded
37e8473dbb6e91fc47a03491c421967db231d4d0
706,163
import os import shutil def mkdir(path, reset=False): """Checks if directory exists and if not, create one. Parameters ---------- reset: erase the content of the directory if exists Returns ------- the path """ if reset and os.path.exists(path): shutil.rmtree(path) try: os.makedirs(path) except FileExistsError: pass return path
64a868231cd3bd7199eef2ad19b2b7296e0c32fe
706,164
def remove_uoms(words): """ Remove uoms in the form of e.g. 1000m 1543m3 Parameters ---------- words: list of words to process Returns ------- A list of words where possible uom have been removed """ returnWords=[] for word in words: word=word.replace('.', '', 1) word=word.replace(',', '', 1) if word[0:len(word)-1].isnumeric()==False and word[0:len(word)-1].isdecimal()==False: #we do not have a match on e.g. 1543m if word[0:len(word)-2].isnumeric()==False and word[0:len(word)-2].isdecimal()==False: #we do not have a match on e.g. 1543m3 #add it returnWords.append(word) return returnWords
cdb2caf274a58b61c57ebe4fba167ec6275ddf6f
706,165
def format_value(v): """ Formats a value to be included in a string. @param v a string @return a string """ return ("'{0}'".format(v.replace("'", "\\'")) if isinstance(v, str) else "{0}".format(v))
8b8d5452ecf938b4e9e9956577f1a3f1102e49bc
706,166
def check_invalid(string,*invalids,defaults=True): """Checks if input string matches an invalid value""" # Checks string against inputted invalid values for v in invalids: if string == v: return True # Checks string against default invalid values, if defaults=True if defaults == True: default_invalids = ['INC','inc','incomplete','NaN','nan','N/A','n/a','missing'] for v in default_invalids: if string == v: return True # For valid strings return False
6e9e20beebe8e0b0baed680219fd93453d7f4ce3
706,167
def get_more_spec_pos(tokens): """Return frequencies for more specific POS""" # adverbs and preps, particles adverbs = [t for t in tokens if t.full_pos == 'ADV'] apprart = [t for t in tokens if t.full_pos == 'APPRART'] postpos = [t for t in tokens if t.full_pos == 'APPO'] circum_pos = [t for t in tokens if t.full_pos == 'APZR'] compare_conj = [t for t in tokens if t.full_pos == 'KOKOM'] # foreign words, interjections fremds = [t for t in tokens if t.full_pos == 'FM'] interj = [t for t in tokens if t.full_pos == 'ITJ'] # proper names and adjectives prop_name = [t for t in tokens if t.full_pos == 'NE'] adja = [t for t in tokens if t.full_pos.startswith('ADJA')] adjd = [t for t in tokens if t.full_pos.startswith('ADJA')] # pronouns dem_pro_s = [t for t in tokens if t.full_pos == 'PDS'] dem_pro_a = [t for t in tokens if t.full_pos == 'PDAT'] ind_pro_s = [t for t in tokens if t.full_pos == 'PIS'] ind_pro_a = [t for t in tokens if t.full_pos in ['PIAT','PIDAT']] pers_pron = [t for t in tokens if t.full_pos == 'PPER'] poss_s = [t for t in tokens if t.full_pos == 'PPOSS'] poss_a = [t for t in tokens if t.full_pos == 'PPOSAT'] refl_pron = [t for t in tokens if t.full_pos == 'PRF'] inter_pron = [t for t in tokens if t.full_pos == ['PWS','PWAT','PWAV']] all_prons = dem_pro_s+dem_pro_a+ind_pro_s+ind_pro_a+poss_s+poss_a+refl_pron+inter_pron # compartives, punctuation comp = [t for t in tokens if t.full_pos == 'TRUNC'] sent_int_interpunct = [t for t in tokens if t.full_pos == '$('] # pronom adverbs and others pro_adv = [t for t in tokens if t.full_pos == 'PROAV' and t.function == 'pp'] part_kvz = [t for t in tokens if t.full_pos == 'PTKVZ' and t.function == 'avz'] inf_with_zu = [t for t in tokens if t.full_pos == 'PTKVZ' and t.function == 'VVIZU'] for t in poss_s+poss_a: t.pos_color.append('Poss pronouns') for t in refl_pron: t.pos_color.append('Refl pronouns') return (len(adverbs), len(apprart), len(postpos), len(circum_pos), len(fremds), len(interj), \ len(prop_name), len(adja), len(adjd), len(dem_pro_s), len(dem_pro_a), len(dem_pro_s)+len(dem_pro_a), len(ind_pro_s), len(ind_pro_a), \ len(ind_pro_s)+len(ind_pro_a), len(pers_pron), len(poss_s), len(poss_a), len(poss_s)+len(poss_a), len(refl_pron), \ len(inter_pron), len(comp), len(sent_int_interpunct), len(pro_adv), len(part_kvz), len(compare_conj), \ len(inf_with_zu), len(all_prons))
5ea2ae19d61c84ca8750999aa14a14dd426fe6f7
706,168
from pathlib import Path def get_notebook_path(same_config_path, same_config_file_contents) -> str: """Returns absolute value of the pipeline path relative to current file execution""" return str(Path.joinpath(Path(same_config_path).parent, same_config_file_contents["notebook"]["path"]))
4b9f8952bdb7c2308fdfa290ec108d432b6b6a0b
706,169
def get_registry_image_tag(app_name: str, image_tag: str, registry: dict) -> str: """Returns the image name for a given organization, app and tag""" return f"{registry['organization']}/{app_name}:{image_tag}"
16c71f99ff3a3c2514c24cb417b93f3b88f7cf42
706,170
import os import shutil def save_wind_generated_waves_to_subdirectory(args): """ Copy the wave height and wave period to the outputs/ directory. Inputs: args['wave_height'][sector]: uri to "sector"'s wave height data args['wave_period'][sector]: uri to "sector"'s wave period data args['prefix']: prefix to be appended to the new filename Outputs: data_uri: dictionary containing the uri where the data is saved """ intermediate_directory = \ os.path.join(args['intermediate_directory'], args['subdirectory']) wave_height_list = args['wave_heights'] wave_period_list = args['wave_periods'] data_uri = {} for wave_height_uri in wave_height_list: shutil.copy(wave_height_uri, intermediate_directory) for wave_period_uri in wave_period_list: shutil.copy(wave_period_uri, intermediate_directory) return data_uri
5b203f5237ebd9ac3fbddcecc5b9c609677eb5ae
706,171
def get_output_names(hf): """ get_output_names(hf) Returns a list of the output variables names in the HDF5 file. Args: hf: An open HDF5 filehandle or a string containing the HDF5 filename to use. Returns: A sorted list of the output variable names in the HDF5 file. """ return sorted(map(str, hf['/output/data'].keys()))
6607197166c9a63d834398b188e996a811b081ce
706,172
def create_hostclass_snapshot_dict(snapshots): """ Create a dictionary of hostclass name to a list of snapshots for that hostclass :param list[Snapshot] snapshots: :return dict[str, list[Snapshot]]: """ snapshot_hostclass_dict = {} for snap in snapshots: # build a dict of hostclass+environment to a list of snapshots # use this dict for the --keep-num option to know how many snapshots are there for each hostclass if snap.tags and snap.tags.get('hostclass') and snap.tags.get('env'): key_name = snap.tags.get('hostclass') + '_' + snap.tags.get('env') hostclass_snapshots = snapshot_hostclass_dict.setdefault(key_name, []) hostclass_snapshots.append(snap) return snapshot_hostclass_dict
dd568eaeb76fee96a876b5a57d963cd2fc8f870e
706,173
import os import yaml def load_parameters(directory_name): """ Loads the .yml file parameters to a dictionary. """ root = os.getcwd() directory = os.path.join(root, directory_name) parameter_file_name = directory parameter_file = open(parameter_file_name, 'r') parameters = yaml.load(parameter_file, Loader=yaml.FullLoader) parameter_file.close() return parameters
793efa00af16851b78fd0f4277b24d03db76fe2c
706,174
from typing import List import random import math def rsafactor(d: int, e: int, N: int) -> List[int]: """ This function returns the factors of N, where p*q=N Return: [p, q] We call N the RSA modulus, e the encryption exponent, and d the decryption exponent. The pair (N, e) is the public key. As its name suggests, it is public and is used to encrypt messages. The pair (N, d) is the secret key or private key and is known only to the recipient of encrypted messages. >>> rsafactor(3, 16971, 25777) [149, 173] >>> rsafactor(7331, 11, 27233) [113, 241] >>> rsafactor(4021, 13, 17711) [89, 199] """ k = d * e - 1 p = 0 q = 0 while p == 0: g = random.randint(2, N - 1) t = k while True: if t % 2 == 0: t = t // 2 x = (g ** t) % N y = math.gcd(x - 1, N) if x > 1 and y > 1: p = y q = N // y break # find the correct factors else: break # t is not divisible by 2, break and choose another g return sorted([p, q])
21e655bc3f5b098da0d437a305baf89c70cebd56
706,175
import base64 def getFile(path): """ 指定一个文件的路径,放回该文件的信息。 :param path: 文件路径 :return: PHP-> base64 code """ code = """ @ini_set("display_errors","0"); @set_time_limit(0); @set_magic_quotes_runtime(0); $path = '%s'; $hanlder = fopen($path, 'rb'); $res = fread($hanlder, filesize($path)); fclose($hanlder); echo $res; """% path return base64.b64encode(code.encode("UTF-8")).decode("UTF-8")
e44e3f90e5febee54d2f5de48e35f0b83acf9842
706,176
def get_all_child_wmes(self): """ Returns a list of (attr, val) tuples representing all wmes rooted at this identifier val will either be an Identifier or a string, depending on its type """ wmes = [] for index in range(self.GetNumberChildren()): wme = self.GetChild(index) if wme.IsIdentifier(): wmes.append( (wme.GetAttribute(), wme.ConvertToIdentifier()) ) else: wmes.append( (wme.GetAttribute(), wme.GetValueAsString()) ) return wmes
fb66aef96ca5fd5a61a34a86052ab9014d5db8a4
706,177
import os def reduce_scan(row, params, **kwargs): """ Reduce scan-mode grism data .. warning:: This function is not yet implemented. It will raise an exception. Parameters ---------- row : abscal.common.exposure_data_table.AbscalDataTable Single-row table of the exposure to be extracted. params : dict Dictionary of parameters to use for the reduction arg_list : namespace Namespace of command-line arguments. Returns ------- row : abscal.common.exposure_data_table.AbscalDataTable Updated single-row table of the exposure """ raise NotImplementedError("Scan mode is not yet available.") default_values = get_defaults('abscal.common.args') base_defaults = default_values | get_defaults(kwargs.get('module_name', __name__)) verbose = arg_list.verbose show_plots = arg_list.plots bkg_flat_order = arg_list.bkg_flat_order file = os.path.join(row["path"], row["filename"]) with fits.open(file) as inf: image = inf['SCI'].data filter = row['filter'] xsize, ysize = image.shape[1], image.shape[0] err = inf['ERR'].data time = inf['TIME'].data dq = inf['DQ'].data return input_table
9a9e19f8a5a48d62181208562a4ecff526b41638
706,178
import os import sys import importlib def module(spec): """ Returns the module at :spec: @see Issue #2 :param spec: to load. :type spec: str """ cwd = os.getcwd() if cwd not in sys.path: sys.path.append(cwd) return importlib.import_module(spec)
33928f92dddeee5fa8822e2a592d9a957867b5d9
706,179
def has_three_or_more_vowels(string): """Check if string has three or more vowels.""" return sum(string.count(vowel) for vowel in 'aeiou') >= 3
8b0b683ebe51b18bdc5d6f200b41794a4cb3a510
706,180
import os def get_map_folderpath(detectionID): """ Make sure map directory exists and return folder location for maps to be saved to. """ homedir = os.path.dirname(os.path.abspath(__file__)) if not os.path.exists('map'): os.makedirs('map') detection_folder = 'map/'+str(detectionID) if not os.path.exists(detection_folder): os.makedirs(detection_folder) map_dirpath = os.path.join(homedir, detection_folder) return(map_dirpath)
3fd3f0bae5d8152b9b46f4f99dc79e14b5318e76
706,181
import pathlib def release_kind(): """ Determine which release to make based on the files in the changelog. """ # use min here as 'major' < 'minor' < 'patch' return min( 'major' if 'breaking' in file.name else 'minor' if 'change' in file.name else 'patch' for file in pathlib.Path('changelog.d').iterdir() )
115f75c1e0f1e8b02916db518e3983462d9bc19c
706,182
import re def edit_text_file(filepath: str, regex_search_string: str, replace_string: str): """ This function is used to replace text inside a file. :param filepath: the path where the file is located. :param regex_search_string: string used in the regular expression to find what has to be replaced. :param replace_string: the string which will replace all matches found using regex_search_string. :return: None :raise RuntimeError: if regex_search_string doesn't find any match. """ # open the file and read the content with open(filepath, "r") as f: text_file = f.read() # find all matches matches = re.finditer(regex_search_string, text_file) if matches is None: raise RuntimeError("No match has been found using the given regex_search_string!") # replace all matches with replace_string for match in matches: text_file = text_file.replace(match.group(0), replace_string) # overwrite the file with open(filepath, "w") as f: f.write(text_file) return None
e0f5945a96f755a9c289262c3d19552c0e1b40fd
706,183
def find_sums(sheet): """ Tallies the total assets and total liabilities for each person. RETURNS: Tuple of assets and liabilities. """ pos = 0 neg = 0 for row in sheet: if row[-1] > 0: pos += row[-1] else: neg += row[-1] return pos, neg
351e13d6915288268a56d8292c470fe354fa9842
706,184
def read_links(title): """ Reads the links from a file in directory link_data. Assumes the file exists, as well as the directory link_data Args: title: (Str) The title of the current wiki file to read Returns a list of all the links in the wiki article with the name title """ with open(f"link_data/{title}", "r") as f: read_data = f.read() return read_data.split("\n")[:-1]
50f128bcf4cd36bc783bc848ab2e6b6280973ea3
706,185
import numpy def writeFEvalsMaxSymbols(fevals, maxsymbols, isscientific=False): """Return the smallest string representation of a number. This method is only concerned with the maximum number of significant digits. Two alternatives: 1) modified scientific notation (without the trailing + and zero in the exponent) 2) float notation :returns: string representation of a number of function evaluations or ERT. """ #Compared to writeFEvals2? #Printf: # %[flags][width][.precision][length]specifier assert not numpy.isnan(fevals) if numpy.isinf(fevals): return r'$\infty$' #repr1 is the alternative scientific notation #repr2 is the full notation but with a number of significant digits given #by the variable precision. # modified scientific notation: #smallest representation of the decimal part #drop + and starting zeros of the exponent part repr1 = (('%.' + str(maxsymbols) + 'e') % fevals) size1 = len(repr1) tmp = repr1.split('e', 1) tmp2 = tmp[-1].lstrip('+-0') if float(tmp[-1]) < 0: tmp2 = '-' + tmp2 tmp[-1] = tmp2 remainingsymbols = max(maxsymbols - len(tmp2) - 2, 0) tmp[0] = (('%.' + str(remainingsymbols) + 'f') % float(tmp[0])) repr1 = 'e'.join(tmp) #len(repr1) <= maxsymbols is not always the case but should be most usual tmp = '%.0f' % fevals remainingsymbols = max(maxsymbols - len(tmp), 0) repr2 = (('%.' + str(remainingsymbols) + 'f') % fevals) tmp = repr2.split('.', 1) if len(tmp) > 1: tmp[-1] = tmp[-1].rstrip('0') repr2 = '.'.join(tmp) repr2 = repr2.rstrip('.') #set_trace() if len(repr1)-repr1.count('.') < len(repr2)-repr2.count('.') or isscientific: return repr1 #tmp1 = '%4.0f' % bestalgdata[-1] #tmp2 = ('%2.2g' % bestalgdata[-1]).split('e', 1) #if len(tmp2) > 1: # tmp2[-1] = tmp2[-1].lstrip('+0') # tmp2 = 'e'.join(tmp2) # tmp = tmp1 # if len(tmp1) >= len(tmp2): # tmp = tmp2 # curline.append(r'\multicolumn{2}{c|}{%s}' % tmp) return repr2
a5434c5f6e845473f2187b969e4fa42538a95633
706,186
def findConstell(cc): """ input is one character (from rinex satellite line) output is integer added to the satellite number 0 for GPS, 100 for Glonass, 200 for Galileo, 300 for everything else? author: kristine larson, GFZ, April 2017 """ if (cc == 'G' or cc == ' '): out = 0 elif (cc == 'R'): # glonass out = 100 elif (cc == 'E'): # galileo out = 200 else: out = 300 return out
d7a85fc5f7324acdb5277fd6db458523cd4ad4b8
706,188
def get_hyperparams(data, ind): """ Gets the hyperparameters for hyperparameter settings index ind data : dict The Python data dictionary generated from running main.py ind : int Gets the returns of the agent trained with this hyperparameter settings index Returns ------- dict The dictionary of hyperparameters """ return data["experiment_data"][ind]["agent_hyperparams"]
3734f4cf00564a1aa7c852091d366e6e42b6d55b
706,189
def blend0(d=0.0, u=1.0, s=1.0): """ blending function trapezoid d = delta x = xabs - xdr u = uncertainty radius of xabs estimate error s = tuning scale factor returns blend """ d = float(abs(d)) u = float(abs(u)) s = float(abs(s)) v = d - u #offset by radius if v >= s: #first so if s == 0 catches here so no divide by zero below b = 0.0 elif v <= 0.0: b = 1.0 else: # 0 < v < s b = 1.0 - (v / s) return b
d501db66c34f28421c1517dcd3052fa7b2ee8643
706,190
def check_win(mat): """ Returns either: False: Game not over. True: Game won, 2048 is found in mat """ if 2048 in mat: # If won, teriminal state is needed for RL agent return True # Terminal state else: return False
0824bc059cfa32b275c7b63f98d22e8a5b667e06
706,191
def mtl_to_json(mtl_text): """ Convert Landsat MTL file to dictionary of metadata values """ mtl = {} for line in mtl_text.split('\n'): meta = line.replace('\"', "").strip().split('=') if len(meta) > 1: key = meta[0].strip() item = meta[1].strip() if key != "GROUP" and key != "END_GROUP": mtl[key] = item return mtl
310be04e9fbf756e9cf5ead60e53aae974d2ed50
706,192
def endian_swap(word): """Given any string, swap bits and return the result. :rtype: str """ return "".join([word[i:i+2] for i in [6, 4, 2, 0]])
dfca46a012602150957a0830cf30cc6b6790df80
706,193
def str_to_col_grid_lists(s): """ Convert a string to selected columns and selected grid ranges. Parameters: s: (str) a string representing one solution. For instance, *3**9 means 2 out of 5 dimensions are selected; the second and the last columns are selected, and their corresponding grid ranges are 3 and 9. The function will return (1, 4) and (3, 9). Return: selected_cols (list): list of columns selected as indicated by the string. selected_ranges (list): list of grid ranges selected as indicated by the string. """ selected_cols, selected_ranges = [], [] for i in range(len(s)): if s[i] != "*": selected_cols.append(i) selected_ranges.append(int(s[i])) return selected_cols, selected_ranges
4f5c67afa0dc97070b08223acbe6764010fd213a
706,194
def _join_type_and_checksum(type_list, checksum_list): """ Join checksum and their correlated type together to the following format: "checksums": [{"type":"md5", "checksum":"abcdefg}, {"type":"sha256", "checksum":"abcd12345"}] """ checksums = [ { "type": c_type, "checksum": checksum, } for c_type, checksum in zip(type_list, checksum_list) ] return checksums
7f09ee72c6f51ad87d75a9b5e74ad8ef4776323f
706,195
import argparse def handle_kv_string(val): """This method is used as type field in --filter argument in ``buildtest buildspec find``. This method returns a dict of key,value pair where input is in format key1=val1,key2=val2,key3=val3 Args: val (str): Input string in ``key1=value1,key2=value2`` format that is processed into a dictionary type Returns: dict: A dict mapping of key=value pairs """ kv_dict = {} if "," in val: args = val.split(",") for kv in args: if "=" not in kv: raise argparse.ArgumentTypeError("Must specify k=v") key, value = kv.split("=")[0], kv.split("=")[1] kv_dict[key] = value return kv_dict if "=" not in val: raise argparse.ArgumentTypeError("Must specify in key=value format") key, value = val.split("=")[0], val.split("=")[1] kv_dict[key] = value return kv_dict
ccc51c26fe881660606c49a1b84a67a796f4083a
706,197
from typing import Dict from typing import Any def decode_jwt( jwt_string: str ) -> Dict[Any, Any]: """ Decodes the given JWT string without performing any verification. Args: jwt_string (str): A string of the JWT to decode. Returns: dict: A dictionary of the body of the JWT. """ return jwt.decode( # type: ignore jwt_string, algorithms = ['ES256K'], options={"verify_signature": False} )
39b3e14a3eb63723b2a8df21d5252ea937b0a41b
706,198
import os def get_file_without_path(file_name, with_extension=False): """ get the name of a file without its path """ base = os.path.basename(file_name) if not with_extension: base = os.path.splitext(base)[0] return base
f6cf8c8003fe24a2b5ed265c3497bc866d201fb2
706,199
def with_key(output_key_matcher): """Check does it have a key.""" return output_key_matcher
5bcb64550ce202f66ac43325fe8876249b45c52d
706,200
import torch from typing import List def hidden_state_embedding(hidden_states: torch.Tensor, layers: List[int], use_cls: bool, reduce_mean: bool = True) -> torch.Tensor: """ Extract embeddings from hidden attention state layers. Parameters ---------- hidden_states Attention hidden states in the transformer model. layers List of layers to use for the embedding. use_cls Whether to use the next sentence token (CLS) to extract the embeddings. reduce_mean Whether to take the mean of the output tensor. Returns ------- Tensor with embeddings. """ hs = [hidden_states[layer][:, 0:1, :] if use_cls else hidden_states[layer] for layer in layers] hs = torch.cat(hs, dim=1) # type: ignore y = hs.mean(dim=1) if reduce_mean else hs # type: ignore return y
f732e834f9c3437a4a7278aa6b9bfc54589b093b
706,201
def apparent_attenuation(og, fg): """Apparent attenuation """ return 100.0 * (float(og) - float(fg)) / float(og)
e22ce07229baa4eacb7388280630d6097e21f364
706,203
def dropsRowsWithMatchClassAndDeptRemainderIsZero(df, Col, RemainderInt, classToShrink): """ Takes as input a dataframe, a column, a remainder integer, and a class within the column. Returns the dataframe minus the rows that match the ClassToShrink in the Col and have a depth from the DEPT col with a remainder of zero. """ print("original lenght of dataframe = ", len(df)) df_new = df.drop(df[(df[Col] == classToShrink) & (df.index % 10 != 0)].index) print("length of new dataframe after dropping rows = ", len(df_new)) print("number of rows dropped = ", len(df) - len(df_new)) print("length of 0 class is :", len(df_new[df_new[Col] == classToShrink])) return df_new
f88ec5e8293d753defe0a6d31f083e52218011ba
706,204
def setlist(L): """ list[alpha] -> set[alpha] """ # E : set[alpha] E = set() # e : alpha for e in L: E.add(e) return E
7607d3d47ea5634773298afaea12d03759c0f1d4
706,205
def _p_value_color_format(pval): """Auxiliary function to set p-value color -- green or red.""" color = "green" if pval < 0.05 else "red" return "color: %s" % color
ae58986dd586a1e6cd6b6281ff444f18175d1d32
706,207
import copy def filter_parts(settings): """ Remove grouped components and glyphs that have been deleted or split. """ parts = [] temp = copy.copy(settings['glyphs']) for glyph in settings['glyphs']: name = glyph['class_name'] if name.startswith("_split") or name.startswith("_group") or name.startswith("_delete"): parts.append(glyph) temp.remove(glyph) settings['glyphs'] = temp # Remove from the training glyphs as well temp2 = copy.copy(settings['training_glyphs']) for glyph in settings['training_glyphs']: name = glyph['class_name'] if name.startswith("_split") or name.startswith("_group") or name.startswith("_delete"): temp2.remove(glyph) settings['training_glyphs'] = temp2 return parts
f8d6a59eeeb314619fd4c332e2594dee3543ee9c
706,208
def getAccentedVocal(vocal, acc_type="g"): """ It returns given vocal with grave or acute accent """ vocals = {'a': {'g': u'\xe0', 'a': u'\xe1'}, 'e': {'g': u'\xe8', 'a': u'\xe9'}, 'i': {'g': u'\xec', 'a': u'\xed'}, 'o': {'g': u'\xf2', 'a': u'\xf3'}, 'u': {'g': u'\xf9', 'a': u'\xfa'}} return vocals[vocal][acc_type]
cfec276dac32e6ff092eee4f1fc84b412c5c915c
706,209
def env_initialize(env, train_mode=True, brain_idx=0, idx=0, verbose=False): """ Setup environment and return info """ # get the default brain brain_name = env.brain_names[brain_idx] brain = env.brains[brain_name] # reset the environment env_info = env.reset(train_mode=train_mode)[brain_name] # examine the state space and action space state = env_info.vector_observations[idx] state_size = len(state) action_size = brain.vector_action_space_size if verbose: # number of agents in the environment print(f'Number of agents: {len(env_info.agents)}') print(f'Number of actions: {action_size}') print(f'States have length: {state_size}') print(f'States look like: {state}') return (brain, brain_name, state, action_size, state_size)
3c951a77009cca8c876c36965ec33781dd2c08dd
706,210
def _parse_tree_height(sent): """ Gets the height of the parse tree for a sentence. """ children = list(sent._.children) if not children: return 0 else: return max(_parse_tree_height(child) for child in children) + 1
d6de5c1078701eeeb370c917478d93e7653d7f4f
706,211
def find_available_pacs(pacs, pac_to_unstuck=None, pac_to_super=None, pac_to_normal=None): """ Finds the available pacs that are not assigned """ available_pacs = pacs['mine'] if pac_to_unstuck is not None: available_pacs = [x for x in available_pacs if x['id'] not in pac_to_unstuck.keys()] if pac_to_super is not None: available_pacs = [x for x in available_pacs if x['id'] not in pac_to_super.keys()] if pac_to_normal is not None: available_pacs = [x for x in available_pacs if x['id'] not in pac_to_normal.keys()] return available_pacs
4b6674fd87db2127d5fffa781431ccc9a9ff775a
706,212
def create_indices(dims): """Create lists of indices""" return [range(1,dim+1) for dim in dims]
1a83b59eb1ca2b24b9db3c9eec05db7335938cae
706,213
def indicator_selector(row, indicator, begin, end): """Return Tons of biomass loss.""" dasy = {} if indicator == 4: return row[2]['value'] for i in range(len(row)): if row[i]['indicator_id'] == indicator and row[i]['year'] >= int(begin) and row[i]['year'] <= int(end): dasy[str(row[i]['year'])] = row[i]['value'] return dasy
329411837633f4e28bea4b2b261b6f4149b92fb1
706,214
from datetime import datetime def format_cell(cell, datetime_fmt=None): """Format a cell.""" if datetime_fmt and isinstance(cell, datetime): return cell.strftime(datetime_fmt) return cell
8d3fb41bb3d7d3f3b341482e2d050d32092118bf
706,216
def _default_geo_type_precision(): """ default digits after decimal for geo types """ return 4
eef082c8a8b38f4ede7bfb5d631b2679041b650c
706,217
def find_range_with_sum(values : list[int], target : int) -> tuple[int, int]: """Given a list of positive integers, find a range which sums to a target value.""" i = j = acc = 0 while j < len(values): if acc == target: return i, j elif acc < target: acc += values[j] j += 1 else: acc -= values[i] i += 1 return -1, -1
d54f185c98c03f985724a29471ecb1e301c14df5
706,218
def destagger(var, stagger_dim, meta=False): """Return the variable on the unstaggered grid. This function destaggers the variable by taking the average of the values located on either side of the grid box. Args: var (:class:`xarray.DataArray` or :class:`numpy.ndarray`): A variable on a staggered grid. stagger_dim (:obj:`int`): The dimension index to destagger. Negative values can be used to choose dimensions referenced from the right hand side (-1 is the rightmost dimension). meta (:obj:`bool`, optional): Set to False to disable metadata and return :class:`numpy.ndarray` instead of :class:`xarray.DataArray`. Default is False. Returns: :class:`xarray.DataArray` or :class:`numpy.ndarray`: The destaggered variable. If xarray is enabled and the *meta* parameter is True, then the result will be a :class:`xarray.DataArray` object. Otherwise, the result will be a :class:`numpy.ndarray` object with no metadata. """ var_shape = var.shape num_dims = var.ndim stagger_dim_size = var_shape[stagger_dim] # Dynamically building the range slices to create the appropriate # number of ':'s in the array accessor lists. # For example, for a 3D array, the calculation would be # result = .5 * (var[:,:,0:stagger_dim_size-2] # + var[:,:,1:stagger_dim_size-1]) # for stagger_dim=2. So, full slices would be used for dims 0 and 1, but # dim 2 needs the special slice. full_slice = slice(None) slice1 = slice(0, stagger_dim_size - 1, 1) slice2 = slice(1, stagger_dim_size, 1) # default to full slices dim_ranges_1 = [full_slice] * num_dims dim_ranges_2 = [full_slice] * num_dims # for the stagger dim, insert the appropriate slice range dim_ranges_1[stagger_dim] = slice1 dim_ranges_2[stagger_dim] = slice2 result = .5*(var[tuple(dim_ranges_1)] + var[tuple(dim_ranges_2)]) return result
89bb08618fa8890001f72a43da06ee8b15b328be
706,219
from typing import List from typing import Tuple def calculateCentroid( pointCloud : List[Tuple[float, float, float]] ) -> Tuple[float, float, float]: """Calculate centroid of point cloud. Arguments -------------------------------------------------------------------------- pointCloud (float 3-tuple list) -- list of xyz coordinates. Returns -------------------------------------------------------------------------- centroid (float 3-tuple) -- centroid of points in point cloud. """ numPoints = len(pointCloud) x, y, z = [], [], [] for point in pointCloud: x.append(point[0]) y.append(point[1]) z.append(point[2]) x, y, z = sum(x) / numPoints, sum(y) / numPoints, sum(z) / numPoints return x, y, z
0e8d6d578a0a983fe1e68bff22c5cc613503ee76
706,220
def column_indexes(column_names, row_header): """項目位置の取得 Args: column_names (str): column name row_header (dict): row header info. Returns: [type]: [description] """ column_indexes = {} for idx in column_names: column_indexes[idx] = row_header.index(column_names[idx]) return column_indexes
4205e31e91cd64f833abd9ad87a02d91eebc8c61
706,221
def get_sql_query(table_name:str) -> str: """Fetch SQL query file for generation of dim or fact table(s)""" f = open(f'./models/sql/{table_name}.sql') f_sql_query = f.read() f.close() return f_sql_query
fc3308eae51b7d10667a50a0f4ee4e295bfea8d0
706,222
def fmt_bytesize(num: float, suffix: str = "B") -> str: """Change a number of bytes in a human readable format. Args: num: number to format suffix: (Default value = 'B') Returns: The value formatted in human readable format (e.g. KiB). """ for unit in ["", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi"]: if abs(num) < 1024.0: return "{:3.1f} {}{}".format(num, unit, suffix) num /= 1024.0 return "{:.1f} {}{}".format(num, "Yi", suffix)
09b36d229856004b6df108ab1ce4ef0a9c1e6289
706,223
def submit_search_query(query_string, query_limit, query_offset, class_resource): """ Submit a search query request to the RETS API """ search_result = class_resource.search( query='%s' % query_string, limit=query_limit, offset=query_offset) return search_result
f8c30c86f7ff7c33fc96b26b1491ddaa48710fbc
706,224
import subprocess import os import re def is_enabled(): """ Check if `ufw` is enabled :returns: True if ufw is enabled """ output = subprocess.check_output(['ufw', 'status'], universal_newlines=True, env={'LANG': 'en_US', 'PATH': os.environ['PATH']}) m = re.findall(r'^Status: active\n', output, re.M) return len(m) >= 1
fa922cdb87e35e1fc7cf77c5eba6a7da651ea070
706,225
import torch from typing import Tuple def get_median_and_stdev(arr: torch.Tensor) -> Tuple[float, float]: """Returns the median and standard deviation from a tensor.""" return torch.median(arr).item(), torch.std(arr).item()
d8fca5a97f00d14beecaa4b508442bc7a3637f86
706,226
import functools def return_arg_type(at_position): """ Wrap the return value with the result of `type(args[at_position])` """ def decorator(to_wrap): @functools.wraps(to_wrap) def wrapper(*args, **kwargs): result = to_wrap(*args, **kwargs) ReturnType = type(args[at_position]) return ReturnType(result) return wrapper return decorator
30bf4e4a46b0b64b6cb5752286a13c0e6f7618df
706,227
def extend(s, var, val): """Copy dict s and extend it by setting var to val; return copy.""" try: # Python 3.5 and later return eval('{**s, var: val}') except SyntaxError: # Python 3.4 s2 = s.copy() s2[var] = val return s2
919e7102bf7f8766d9ddb9ea61a07ddd020d1bb8
706,228
def generate_arn(service, arn_suffix, region=None): """Returns a formatted arn for AWS. Keyword arguments: service -- the AWS service arn_suffix -- the majority of the arn after the initial common data region -- the region (can be None for region free arns) """ arn_value = "arn" aws_value = "aws" region_qualified = region if region else "" return f"{arn_value}:{aws_value}:{service}:{region_qualified}:{arn_suffix}"
53dcf55c3fb15784770d1c2d62375d1e750469f8
706,229
def prod_list(lst): """returns the product of all numbers in a list""" if lst: res = 1 for num in lst: res *= num return res else: raise ValueError("List cannot be empty.")
8179e2906fb4b517d02972fd4647095d37caf6cd
706,230
from typing import Optional import subprocess import warnings def get_current_git_hash(raise_on_error: bool = False) -> Optional[str]: """ Return git hash of the latest commit Parameters ---------- raise_on_error: bool, optional If False (default), will return None, when it fails to obtain commit hash. If True, will raise, when it fails to obtain commit hash. Returns ------- Short hash of the current HEAD or None. """ try: git_hash = subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD']).decode('utf-8').strip() except subprocess.CalledProcessError: if raise_on_error: raise warnings.warn('Probably not in a git repo.') git_hash = None return git_hash
7a17dc7e0574b7f3da91f009714226f855723427
706,231
def check_shift(start_time, end_time, final_minute, starting_minute, record): """ Função que verifica o turno da chamada e calcula o valor da ligação :param start_time: :param end_time: :param final_minute: :param starting_minute: :return value: """ nem_start_time = start_time + (starting_minute / 60) nem_end_time = end_time + (final_minute / 60) call_time = (record['end'] - record['start']) // 60 if 6 < nem_start_time < 22: if 6 < nem_end_time < 22: # Portanto a ligação foi completada no periodo diurno value = 0.36 + call_time * 0.09 else: # Portanto a ligação iniciou no periodo diurno e terminou # no periodo noturno hour_max = 22 value = 0.36 + ((hour_max - nem_start_time) * 60) * 0.09 value = value + 0.36 else: if not 6 < nem_end_time < 22: # Portanto a ligação foi completada no periodo noturno value = 0.36 else: # Portanto a ligação iniciou no periodo noturno e terminou # no periodo diurno hour_min = 6 value = 0.36 + ((nem_end_time - hour_min) * 60) * 0.09 value = value + 0.36 return value
666883348347e8408b087ac63acd8608ff589a1c
706,232