content
stringlengths
22
815k
id
int64
0
4.91M
def elgamal_keypair_from_secret(a: ElementModQ) -> Optional[ElGamalKeyPair]: """ Given an ElGamal secret key (typically, a random number in [2,Q)), returns an ElGamal keypair, consisting of the given secret key a and public key g^a. """ secret_key_int = a if secret_key_int < 2: log_error("ElGamal secret key needs to be in [2,Q).") return None return ElGamalKeyPair(a, g_pow_p(a))
5,352,100
def make_plots(plot_data, plot_params_dict): """ Draw and save plot from preprocessed data. :param plot_data: Data structure processed by __name__.prep_data :param plot_params_dict: dict holding some plotting paramaters, see e.g. plot_configs/single_day/pov_single_day_config.example.json["PLOT_PARAMS_DICT"] :return: """ fig, axes = plt.subplots(nrows=2, ncols=1) fig.set_size_inches(h=14, w=9) colors = list(get_plot_colors(plot_data + ['dummy']*2)) color = colors.pop(0) linestyles = get_plot_linestyles(len(plot_data) + 2) linestyle = linestyles.pop(0) orderbook_df = plot_data[0]['no_execution_df'] orderbook_df["MID_PRICE"].plot(ax=axes[0], label=plot_params_dict['baseline_label'], color=color, linestyle=linestyle) for plot_data_dict in plot_data: color = colors.pop(0) linestyle = linestyles.pop(0) pov = f'{100 * plot_data_dict["pov"]} %' orderbook_df = plot_data_dict['no_execution_df'] orderbook_with_execution_df = plot_data_dict['yes_execution_df'] # mid_price orderbook_with_execution_df["MID_PRICE"].plot(ax=axes[0], label= f'{plot_params_dict["execution_label"]}{pov}', color=color, linestyle=linestyle) # normalised difference mid_price_yes_execution, mid_price_no_execution = forward_fill_series(orderbook_with_execution_df["MID_PRICE"], orderbook_df["MID_PRICE"]) diff = 10000 * (mid_price_yes_execution - mid_price_no_execution) / mid_price_no_execution diff = diff.to_frame() diff = diff.loc[~diff.index.duplicated(keep='last')] diff = diff[diff.columns[0]] # to series for plotting diff.plot(ax=axes[1], label=f'{plot_params_dict["execution_label"]}{pov}', color=color, linestyle=linestyle) axes[0].axvspan(pd.Timestamp(plot_params_dict['shade_start_datetime']), pd.Timestamp(plot_params_dict['shade_end_datetime']), alpha=0.2, color='grey') axes[1].axvspan(pd.Timestamp(plot_params_dict['shade_start_datetime']), pd.Timestamp(plot_params_dict['shade_end_datetime']), alpha=0.2, color='grey') axes[-1].xaxis.set_major_formatter(mdates.DateFormatter("%H:%M")) axes[-1].xaxis.set_minor_formatter(mdates.DateFormatter("%H:%M")) axes[0].xaxis.set_visible(False) axes[0].legend() axes[-1].set_xlabel('Time', size=15) axes[0].set_ylabel('Mid-price ($)', size=15) axes[1].set_ylabel('Normalized Difference (bps)', size=15) fig.tight_layout() fig.subplots_adjust(top=0.7) fig.savefig(plot_params_dict["output_file_path"], format='png', dpi=300, transparent=False, bbox_inches='tight', pad_inches=0.03)
5,352,101
def current_default_thread_limiter(): """Get the default `~trio.CapacityLimiter` used by `trio.to_thread.run_sync`. The most common reason to call this would be if you want to modify its :attr:`~trio.CapacityLimiter.total_tokens` attribute. """ try: limiter = _limiter_local.get() except LookupError: limiter = CapacityLimiter(DEFAULT_LIMIT) _limiter_local.set(limiter) return limiter
5,352,102
def _mask_board(board): """ A function that copies the inputted board replaces all ships with empty coordinates to mask them. :param board: a 2D numpy array containing a string representation of the board. All ships should be visible. :return: a 2D numpy array containing a string representation of the board, with all ships hidden. """ masked = copy.deepcopy(board) # copy operation for (y, x), val in np.ndenumerate(board): if val.isdigit(): masked[y][x] = '' return masked
5,352,103
def test_proxy_handling(): """Proxy variable no impact.""" with InstalledApp(wsgi_app.simple_app, host=HOST, port=80, proxy='some.host:1234') as app: http_client = http_lib.HTTPConnection(HOST) http_client.request('GET', '/') content = http_client.getresponse().read() http_client.close() assert content == b'WSGI intercept successful!\n' assert app.success()
5,352,104
def query_yes_no(question, default="no", color=_constants.COLORS.RESET): """Ask a yes/no question via raw_input() and return their answer. "question" is a string that is presented to the user. "default" is the presumed answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user). The "answer" return value is True for "yes" or False for "no". """ valid = {"yes": True, "y": True, "ye": True, "no": False, "n": False} if default is None: prompt = " [y/n] " elif default == "yes": prompt = " [Y/n] " elif default == "no": prompt = " [y/N] " else: raise ValueError("invalid default answer: '%s'" % default) while True: stdout.write(color + question + COLORS.RESET + prompt) choice = input().lower() if default is not None and choice == '': return valid[default] elif choice in valid: return valid[choice] else: stdout.write("Please respond with 'yes' or 'no' (or 'y' or 'n').\n")
5,352,105
def remove_head_id(ref, hyp): """Assumes that the ID is the begin token of the string which is common in Kaldi but not in Sphinx.""" ref_id = ref[0] hyp_id = hyp[0] if ref_id != hyp_id: print('Reference and hypothesis IDs do not match! ' 'ref="{}" hyp="{}"\n' 'File lines in hyp file should match those in the ref file.'.format(ref_id, hyp_id)) exit(-1) ref = ref[1:] hyp = hyp[1:] return ref, hyp
5,352,106
def convert_image_np(inp): """Convert a Tensor to numpy image.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) return inp
5,352,107
def get_miner_day_list(): """ 存储提供者每天的miner数据 :return: """ miner_no = request.form.get("miner_no") date = request.form.get("date") data = MinerService.get_miner_day_list(miner_no, date) return response_json(data)
5,352,108
def get_notebook_logs(experiment_id, operator_id): """ Get logs from a Experiment notebook. Parameters ---------- experiment_id : str operator_id : str Returns ------- dict or None Operator's notebook logs. Or None when the notebook file is not found. """ notebook = get_jupyter_notebook(experiment_id, operator_id) if not notebook: return None notebook = notebook["content"] logs = {} for cell in notebook["cells"]: try: metadata = cell["metadata"]["papermill"] if metadata["exception"] and metadata["status"] == "failed": for output in cell["outputs"]: if output["output_type"] == "error": error_log = output["traceback"] traceback = remove_ansi_escapes(error_log) logs = {"exception": output["ename"], "traceback": traceback} except KeyError: pass return logs
5,352,109
def type_secret(locator, input_text, anchor="1", timeout=0, index=1, **kwargs): """Type secret information such as password. Logging in start_keyword and end_keyword is filtered, otherwise functionality is the same as TypeText. Generally all secret credentials in Robot FW scripts should be provided as external variables. Secrets must not be stored directly to test script and not even to version control system. Examples -------- .. code-block:: robotframework # PASSWD is set outside the script # Provide this to Robot FW as follows: # robot --variable PASSWD:mypass123 test.robot TypeSecret password ${PASSWD} TypeSecret r1c1 ${PASSWD} #table """ type_text(locator, input_text, anchor, timeout=timeout, index=index, **kwargs)
5,352,110
def modify_env2( function: Callable[[_UpdatedType], _SecondType], ) -> Kinded[Callable[ [Kind2[_Reader2Kind, _FirstType, _SecondType]], Kind2[_Reader2Kind, _FirstType, _UpdatedType], ]]: """ Modifies the second type argument of a ``ReaderBased2``. In other words, it modifies the function's signature from: ``a -> b`` to: ``Container[x, a] -> Container[x, b]`` .. code:: python >>> from returns.pointfree import modify_env2 >>> from returns.context import RequiresContext >>> def multiply(arg: int) -> RequiresContext[int, int]: ... return RequiresContext(lambda deps: arg * deps) >>> assert modify_env2(int)(multiply(3))('4') == 12 Note, that this function works with only ``Kind2`` containers with ``.modify_env`` method. See :class:`returns.primitives.interfaces.specific.reader.ReaderBased2` for more info. """ @kinded def factory( container: Kind2[_Reader2Kind, _FirstType, _SecondType], ) -> Kind2[_Reader2Kind, _FirstType, _UpdatedType]: return internal_modify_env2(container, function) return factory
5,352,111
def test_article_admin_translate_button_expected(db, admin_client): """ Translate button should be in detail page with the right URL and lead to the "Translate" form with the right available languages. """ ping = CategoryFactory(slug="ping") # Create meat articles with unpublished DE translation created_beef = multilingual_article( title="Beef", slug="beef", langs=["de"], fill_categories=[ping], contents={ "de": { "title": "Rindfleisch", "slug": "rindfleisch", "fill_categories": [ping], "status": STATUS_DRAFT, } }, ) # Translate button is expected since there is an available language to translate to url = get_admin_change_url(created_beef["original"]) response = admin_client.get(url) assert response.status_code == 200 dom = html_pyquery(response) existings = dom.find(".lotus-siblings-resume a") assert len(existings) == 1 links = dom.find(".lotus-translate-link") assert len(links) == 1 # Expected existing translation languages (without the original language) existing_languages = [item.get("data-lotus-langcode") for item in existings] assert sorted(existing_languages) == ["de"] response = admin_client.get(links[0].get("href")) assert response.status_code == 200 # Form is expected since there is an available language. Directly use the URL from # translate button dom = html_pyquery(response) forms = dom.find("#lotus-translate-original-form") assert len(forms) == 1 # Check expected available language is correct options = dom.find("#lotus-translate-original-form #id_language option") option_ids = [item.get("value") for item in options if item.get("value")] assert sorted(option_ids) == ["fr"] # Ensure the original id is correctly set into hidden input original_id = dom.find("#lotus-translate-original-form input[name='original']") assert len(original_id) == 1 assert int(original_id[0].get("value")) == created_beef["original"].id
5,352,112
def model_trees(z, quantiles, normed=False, dbhfile='c:\\projects\\MLM_Hyde\\Data\\hyde_runkolukusarjat.txt', plot=False, biomass_function='marklund'): """ reads runkolukusarjat from Hyde and creates lad-profiles for pine, spruce and decid. Args: z - grid (m) quantiles - cumulative frequency limits for grouping trees normed - True returns sum(lad*dz) normalized to unity Returns: lad_p, lad_s, lad_d - leaf-area density profiles for model treegroups (m2/m3) n_p, n_s, n_d - trees / ha in model treegroups """ dat = np.loadtxt(dbhfile, skiprows=1) dz = z[1]-z[0] M = len(quantiles) # year 2008 data pine = dat[:, [0, 1]] spruce = dat[:, [0, 2]] decid = dat[:, [0, 3]] # pines h, hb, mleaf, L, a = profiles_hyde(pine, 'pine', z, biomass_function=biomass_function) n = pine[:, 1] c = np.cumsum(n) / np.maximum(sum(n), eps) # relative frequency m = 0.0 lad_p = np.zeros([len(z), M]) n_p = np.zeros(M) lai_p = np.zeros(M) for k in range(M): f = np.where((c > m) & (c <= quantiles[k]))[0] lad_p[:, k] = np.sum(a[:, f], axis=1) n_p[k] = np.sum(n[f]) lai_p[k] = sum(dz*lad_p[:,k]) m = quantiles[k] if normed: lad_p[:, k] = lad_p[:, k] / np.maximum(np.sum(lad_p[:, k] * dz), eps) # spruces h, hb, mleaf, L, a = profiles_hyde(spruce, 'spruce', z, biomass_function=biomass_function) n = spruce[:, 1] c = np.cumsum(n) / np.maximum(sum(n), eps) # relative frequency m = 0.0 lad_s = np.zeros([len(z), M]) n_s = np.zeros(M) lai_s = np.zeros(M) for k in range(M): f = np.where((c > m) & (c <= quantiles[k]))[0] lad_s[:, k] = np.sum(a[:, f], axis=1) n_s[k] = np.sum(n[f]) lai_s[k] = sum(dz*lad_s[:,k]) m = quantiles[k] if normed: lad_s[:, k] = lad_s[:, k] / np.maximum(np.sum(lad_s[:, k] * dz), eps) # decid h, hb, mleaf, L, a = profiles_hyde(decid, 'birch', z, biomass_function=biomass_function) n = decid[:, 1] c = np.cumsum(n) / np.maximum(sum(n), eps) # relative frequency m = 0.0 lad_d = np.zeros([len(z), M]) n_d = np.zeros(M) lai_d = np.zeros(M) for k in range(M): f = np.where((c > m) & (c <= quantiles[k]))[0] lad_d[:, k] = np.sum(a[:, f], axis=1) n_d[k] = np.sum(n[f]) lai_d[k] = sum(dz*lad_d[:,k]) m = quantiles[k] if normed: lad_d[:, k] = lad_d[:, k] / np.maximum(np.sum(lad_d[:, k] * dz), eps) if plot: prop_cycle = plt.rcParams['axes.prop_cycle'] colors = prop_cycle.by_key()['color'] plt.figure(figsize=(2.5,3.5)) for k in range(M): plt.plot(lad_p[:, k],z,color=colors[0], label='pine, %.2f m$^2$m$^{-2}$' % lai_p[k])#,lad_g,z) plt.plot(lad_s[:, k],z,color=colors[1], label='spruce, %.2f m$^2$m$^{-2}$' % lai_s[k]) plt.plot(lad_d[:, k],z,color=colors[2], label='decid, %.2f m$^2$m$^{-2}$' % lai_d[k]) plt.title(" ")#dbhfile.split("/")[-1]) plt.ylabel('height [m]') if normed: plt.xlabel('normalized lad [-]') else: plt.xlabel('lad [m$^2$m$^{-3}$]') plt.tight_layout() return lad_p, lad_s, lad_d, n_p, n_s, n_d, lai_p, lai_s, lai_d
5,352,113
def inject_general_timeline(): """This function injects the function object 'Tweet.get_general_timeline' into the application context so that 'get_general_timeline' can be accessed in Jinja2 templates. """ return dict(get_general_timeline=Tweet.get_general_timeline)
5,352,114
def is_a(file_name): """ Tests whether a given file_name corresponds to a Cosmo Skymed file. Returns a reader instance, if so. Parameters ---------- file_name : str the file_name to check Returns ------- CSKReader|None `CSKReader` instance if Cosmo Skymed file, `None` otherwise """ if h5py is None: return None try: csk_details = CSKDetails(file_name) print('File {} is determined to be a Cosmo Skymed file.'.format(file_name)) return CSKReader(csk_details) except (IOError, KeyError, ValueError): # TODO: what all should we catch? return None
5,352,115
def get_vaccinated_model(model, area=None): """Get all states that can be vaccinated or recovered (by area). Parameters ---------- model : amici.model Amici model which should be evaluated. areas : list List of area names as strings. Returns ------- states : list List of states that can be vaccinated. """ if area is None: states = [ x for x in model.getStateNames() if not ("vac0" in x) and (("susceptible" in x) or ("infectious" in x)) or ("recovered" in x) ] else: states = [ x for x in model.getStateNames() if ( not ("vac0" in x) and (("susceptible" in x) or ("infectious" in x)) or ("recovered" in x) ) and (area in x) ] return states
5,352,116
def MicrosecondsToDatetime(microseconds): """Returns a datetime given the number of microseconds, or None.""" if microseconds: return datetime.utcfromtimestamp(float(microseconds) / 1000000) return None
5,352,117
def update() -> bool: """ Pull down the latest Docker image build and prune old image versions. """ current_image = DEFAULT_IMAGE latest_image = latest_build_image(current_image) if latest_image == current_image: print(colored("bold", "Updating Docker image %s…" % current_image)) else: print(colored("bold", "Updating Docker image from %s to %s…" % (current_image, latest_image))) print() # Pull the latest image down try: subprocess.run( ["docker", "image", "pull", latest_image], check = True) except (OSError, subprocess.CalledProcessError): return False # Update the config file to point to the new image so we use it by default # going forward. config.set("docker", "image", latest_image) # Prune any old images which are now dangling to avoid leaving lots of # hidden disk use around. We don't use `docker image prune` because we # want to just remove _our_ dangling images, not all. We very much don't # want to automatically prune unrelated images. print() print(colored("bold", "Pruning old images…")) print() try: images = dangling_images(current_image) \ + old_build_images(current_image) if images: subprocess.run( ["docker", "image", "rm", *images], check = True) except (OSError, subprocess.CalledProcessError) as error: warn() warn("Update succeeded, but an error occurred pruning old image versions:") warn(" ", error) warn() return True
5,352,118
def get_default_accept_image_formats(): """With default bentoML config, this returns: ['.jpg', '.png', '.jpeg', '.tiff', '.webp', '.bmp'] """ return [ extension.strip() for extension in config("apiserver") .get("default_image_handler_accept_file_extensions") .split(",") ]
5,352,119
def findports(): """Returns an array of the serial ports that have a command interpreter.""" if sys.platform.startswith('win'): ports = ['COM%s' % (i + 1) for i in range(255)] elif sys.platform.startswith('linux') or sys.platform.startswith('cygwin'): # this excludes your current terminal "/dev/tty" ports = glob.glob('/dev/tty[A-Za-z]*') elif sys.platform.startswith('darwin'): ports = glob.glob('/dev/tty.*') else: raise EnvironmentError('Unsupported platform') result = [] for port in ports: try: cmd= Cmd() cmd.open(port) cmd.close(True) result.append(port) except (OSError, serial.SerialException, CmdException) as error: # print(error) pass return result
5,352,120
def import_download_cache(filename_or_obj, urls=None, update_cache=False, pkgname='astropy'): """Imports the contents of a ZIP file into the cache. Each member of the ZIP file should be named by a quoted version of the URL whose contents it stores. These names are decoded with :func:`~urllib.parse.unquote`. Parameters ---------- filename_or_obj : str or file-like Where the stored ZIP file is. Must be something the :mod:`~zipfile` module can read from. urls : set of str or list of str or None The URLs to import from the ZIP file. The default is all URLs in the file. update_cache : bool, optional If True, any entry in the ZIP file will overwrite the value in the cache; if False, leave untouched any entry already in the cache. pkgname : `str`, optional The package name to use to locate the download cache. i.e. for ``pkgname='astropy'`` the default cache location is ``~/.astropy/cache``. See Also -------- export_download_cache : export the contents the cache to of such a ZIP file import_file_to_cache : import a single file directly """ with zipfile.ZipFile(filename_or_obj, 'r') as z, TemporaryDirectory() as d: for i, zf in enumerate(z.infolist()): url = urllib.parse.unquote(zf.filename) # FIXME(aarchiba): do we want some kind of validation on this URL? # urllib.parse might do something sensible...but what URLs might # they have? # is_url in this file is probably a good check, not just here # but throughout this file. if urls is not None and url not in urls: continue if not update_cache and is_url_in_cache(url, pkgname=pkgname): continue f_temp_name = os.path.join(d, str(i)) with z.open(zf) as f_zip, open(f_temp_name, "wb") as f_temp: block = f_zip.read(conf.download_block_size) while block: f_temp.write(block) block = f_zip.read(conf.download_block_size) import_file_to_cache(url, f_temp_name, remove_original=True, pkgname=pkgname)
5,352,121
def cells_handler(results, cl): """ Changes result cell attributes based on object instance and field name """ suit_cell_attributes = getattr(cl.model_admin, 'suit_cell_attributes', None) if not suit_cell_attributes: return results class_pattern = 'class="' td_pattern = '<td' th_pattern = '<th' for row, result in enumerate(results): instance = cl.result_list[row] for col, item in enumerate(result): field_name = cl.list_display[col] attrs = copy(suit_cell_attributes(instance, field_name)) if not attrs: continue # Validate if not isinstance(attrs, dict): raise TypeError('"suit_cell_attributes" method must return dict. ' 'Got: %s: %s' % ( attrs.__class__.__name__, attrs)) # Merge 'class' attribute if class_pattern in item.split('>')[0] and 'class' in attrs: css_class = attrs.pop('class') replacement = '%s%s ' % (class_pattern, css_class) result[col] = mark_safe( item.replace(class_pattern, replacement)) # Add rest of attributes if any left if attrs: cell_pattern = td_pattern if item.startswith( td_pattern) else th_pattern result[col] = mark_safe( result[col].replace(cell_pattern, td_pattern + dict_to_attrs(attrs))) return results
5,352,122
def dynamic_import(import_string): """ Dynamically import a module or object. """ # Use rfind rather than rsplit for Python 2.3 compatibility. lastdot = import_string.rfind('.') if lastdot == -1: return __import__(import_string, {}, {}, []) module_name, attr = import_string[:lastdot], import_string[lastdot + 1:] parent_module = __import__(module_name, {}, {}, [attr]) return getattr(parent_module, attr)
5,352,123
def main(): """ We are going to draw a fractal called 'Sierpinski Triangle'. """ sierpinski_triangle(ORDER, LENGTH, UPPER_LEFT_X, UPPER_LEFT_Y)
5,352,124
def _split_on_parenthesis(text_in: Union[str, list[str]]) -> List[str]: """Splits text up into a list of strings based on parenthesis locations.""" if isinstance(text_in, list): if None in text_in: return text_in text_list = text_in elif isinstance(text_in, str): text_list = [text_in] else: return text_in for i, text in enumerate(text_list): if isinstance(text, str) and "(" in text: text_inside = text[text.find("(")+1:text.rfind(")")] out_add = _split_list(text, text_inside) out_add[0] = out_add[0][:-1] # remove ( out_add[2] = out_add[2][1:] # remove ) out_add[1] = _get_unit(text_inside) out_add = [text for text in out_add if text != ""] out_add = [text for text in out_add if text != None] text_list[i] = out_add return _flatten_list(text_list)
5,352,125
def reply(): """ Reply """ t = Twitter(auth=authen()) try: id = int(g['stuff'].split()[0]) except: printNicely(red('Sorry I can\'t understand.')) return tid = c['tweet_dict'][id] user = t.statuses.show(id=tid)['user']['screen_name'] status = ' '.join(g['stuff'].split()[1:]) status = '@' + user + ' ' + str2u(status) t.statuses.update(status=status, in_reply_to_status_id=tid)
5,352,126
def shell_command_error2exit_decorator(func: Callable): """Decorator to convert given ShellCommandException to an exit message This avoids displaying nasty stack traces to end-users """ @functools.wraps(func) def func_wrapper(*args, **kwargs): try: func(*args, **kwargs) except ShellCommandException as e: e = e.__cause__ print(f"{e}:\n{e.output}") sys.exit(1) return func_wrapper
5,352,127
def test_almost_equal(): """Tests almost_equal""" assert almost_equal(10.0, 10.0005) assert not almost_equal(10.0, 10.1) assert almost_equal(10.0, 10.01, precision=0.1) # Test "a 10% discount on $10" assert almost_equal(10.0 - 10.0 * (10.0 / 100), 9.0)
5,352,128
def getExternalIP(): """ Returns external ip of system """ ip = requests.get("http://ipv4.myexternalip.com/raw").text.strip() if ip == None or ip == "": ip = requests.get("http://ipv4.icanhazip.com").text.strip() return ip
5,352,129
def intersection_indices(a, b): """ :param list a, b: two lists of variables from different factors. returns a tuple of (indices in a of the variables that are in both a and b, indices of those same variables within the list b) For example, intersection_indices([1,2,5,4,6],[3,5,1,2]) returns ([0, 1, 2], [2, 3, 1]). """ bind = {} for i, elt in enumerate(b): if elt not in bind: bind[elt] = i mapA = [] mapB = [] for i, itm in enumerate(a): if itm in bind: mapA.append(i) mapB.append(bind.get(itm)) return mapA, mapB
5,352,130
def test_extract_requested_slot_from_entity_with_intent(): """Test extraction of a slot value from entity with the different name and certain intent """ # noinspection PyAbstractClass class CustomFormAction(FormAction): def slot_mappings(self): return {"some_slot": self.from_entity(entity="some_entity", intent="some_intent")} form = CustomFormAction() tracker = Tracker('default', {'requested_slot': 'some_slot'}, {'intent': {'name': 'some_intent', 'confidence': 1.0}, 'entities': [{'entity': 'some_entity', 'value': 'some_value'}]}, [], False, None, {}, 'action_listen') slot_values = form.extract_requested_slot(CollectingDispatcher(), tracker, {}) # check that the value was extracted for correct intent assert slot_values == {'some_slot': 'some_value'} tracker = Tracker('default', {'requested_slot': 'some_slot'}, {'intent': {'name': 'some_other_intent', 'confidence': 1.0}, 'entities': [{'entity': 'some_entity', 'value': 'some_value'}]}, [], False, None, {}, 'action_listen') slot_values = form.extract_requested_slot(CollectingDispatcher(), tracker, {}) # check that the value was not extracted for incorrect intent assert slot_values == {}
5,352,131
def graph_cases(selenium, host): """ Factory method that allows to draw preconfigured graphs and manipulate them with a series of helpful methods. :type selenium: selenium.webdriver.remote.webdriver.WebDriver :type host: qmxgraph.server.Host :rtype: GraphCaseFactory :return: Factory able to create cases. """ return GraphCaseFactory(selenium=selenium, host=host)
5,352,132
def test_pipeline(info, pipeline_id, datasource, orchestration_backend, orchestration_args, processing_backend, processing_args, training_backend, training_args, serving_backend, serving_args, force): """Initiate a test run of a selected pipeline""" if datasource is None: utils.check_datasource_commit(info) utils.resolve_pipeline_creation(info=info, pipeline_type=PipelineRunTypes.test.name, pipeline_=pipeline_id, datasource=datasource, orchestration_backend=orchestration_backend, orchestration_args=orchestration_args, processing_backend=processing_backend, processing_args=processing_args, force=force, additional_args={ 'training_backend': training_backend, 'training_args': training_args, 'serving_backend': serving_backend, 'serving_args': serving_args})
5,352,133
def motion_controller_start_images(image_numbers): """Configure motion controller image_numbers: list of 1-based integers e.g. image_numbers = collection_pass(1)""" if "after image" in translate.mode: XYZ = array([translation_after_image_xyz(i) for i in image_numbers]) triggered_motion.xyz = XYZ triggered_motion.waitt = timing_system.waitt.next(wait_time(image_numbers[0])) triggered_motion.armed = True
5,352,134
def figure_8(): """ Notes ----- Colors from Bang Wong's color-blind friendly colormap. Available at: https://www.nature.com/articles/nmeth.1618 Wong's map acquired from David Nichols page. Available at: https://davidmathlogic.com/colorblind/. """ # choosing test sample and network. sample = const.SAMPLE_232p3_wet network_folder = const.FOLDER_PRED_UNET # we will return a 10 x 10 matthews matrix; each for a crop matthews_coefs = np.ones((10, 10)) worst_indexes = np.zeros((10, 10)) # a variable to obtain inlay data. inlay_data = [] # reading input data. is_registered = sample['registered_path'] is not None data_pred, data_gs = _pred_and_goldstd(sample, folder_prediction=network_folder, is_registered=is_registered, is_binary=True) data_pred = data_pred[slice(*sample['segmentation_interval'])] # comp_color starts as gray (background). comp_color = np.ones( (*data_pred[0].shape, 3) ) * (np.asarray((238, 238, 238)) / 255) for idx, (img_pred, img_gs) in enumerate(zip(data_pred, data_gs)): # crop images in 100 (256, 256) pieces. crop_pred = util.view_as_blocks(img_pred, block_shape=(256, 256)) crop_gs = util.view_as_blocks(img_gs, block_shape=(256, 256)) for i, _ in enumerate(crop_pred): for j, _ in enumerate(crop_pred[i]): # calculate the Matthews coefficient for each crop. aux_conf = _confusion_matrix(crop_gs[i, j], crop_pred[i, j]) aux_matthews = _measure_matthews(aux_conf) # if smaller than previously, save results. # restricting aux_matthews > 0.1 due to errors in all-TN regions if (0.1 < aux_matthews < matthews_coefs[i, j]): matthews_coefs[i, j] = aux_matthews worst_indexes[i, j] = idx aux_comp = _comparison_color(crop_gs[i, j], crop_pred[i, j]) comp_color[i*256:(i+1)*256, j*256:(j+1)*256] = aux_comp # grab inlay data from crops we want to highlight. for i, j in [(2, 2), (8, 7)]: inlay_data.append(comp_color[i*256:(i+1)*256, j*256:(j+1)*256]) # Figure 8(a). plt.figure(figsize=FIGURE_SIZE) plt.imshow(comp_color) for idx in np.arange(start=0, stop=2560, step=256): # according to image plt.axvline(idx, color='white') plt.axhline(idx, color='white') matthews_coefs = np.round(matthews_coefs * 100, decimals=2) for i, j in product(range(10), repeat=2): facecolor, textcolor = _label_color(matthews_coefs[j, i]) plt.text(x=i*256 + 30, y=j*256 + 50, s=str(matthews_coefs[j, i]), fontsize=8, color=textcolor, bbox=dict(facecolor=facecolor, alpha=0.9)) _check_if_folder_exists(folder='./figures') plt.savefig('figures/Fig_08a' + SAVE_FIG_FORMAT, bbox_inches='tight') plt.close() # Figures 8(b, c). indexes = {0: 'b', 1: 'c'} for idx in indexes.keys(): plt.figure(figsize=FIGURE_SIZE) plt.imshow(inlay_data[idx]) _check_if_folder_exists(folder='./figures') plt.savefig(f'figures/Fig_08{indexes[idx]}' + SAVE_FIG_FORMAT, bbox_inches='tight') plt.close() return None
5,352,135
def check_threats(message): """Return list of threats found in message""" threats = [] for threat_check in get_threat_checks(): for expression in threat_check["expressions"]: if re.search(expression, message, re.I | re.U): del threat_check["expressions"] threats += [threat_check] break return threats
5,352,136
def data_processing_max(data, column): """Compute the max of a column.""" return costly_compute_cached(data, column).max()
5,352,137
def type_of_target(y): """Determine the type of data indicated by the target. Note that this type is the most specific type that can be inferred. For example: * ``binary`` is more specific but compatible with ``multiclass``. * ``multiclass`` of integers is more specific but compatible with ``continuous``. * ``multilabel-indicator`` is more specific but compatible with ``multiclass-multioutput``. Parameters ---------- y : array-like Returns ------- target_type : string One of: * 'continuous': `y` is an array-like of floats that are not all integers, and is 1d or a column vector. * 'continuous-multioutput': `y` is a 2d array of floats that are not all integers, and both dimensions are of size > 1. * 'binary': `y` contains <= 2 discrete values and is 1d or a column vector. * 'multiclass': `y` contains more than two discrete values, is not a sequence of sequences, and is 1d or a column vector. * 'multiclass-multioutput': `y` is a 2d array that contains more than two discrete values, is not a sequence of sequences, and both dimensions are of size > 1. * 'multilabel-indicator': `y` is a label indicator matrix, an array of two dimensions with at least two columns, and at most 2 unique values. * 'unknown': `y` is array-like but none of the above, such as a 3d array, sequence of sequences, or an array of non-sequence objects. Examples -------- >>> import numpy as np >>> type_of_target([0.1, 0.6]) 'continuous' >>> type_of_target([1, -1, -1, 1]) 'binary' >>> type_of_target(['a', 'b', 'a']) 'binary' >>> type_of_target([1.0, 2.0]) 'binary' >>> type_of_target([1, 0, 2]) 'multiclass' >>> type_of_target([1.0, 0.0, 3.0]) 'multiclass' >>> type_of_target(['a', 'b', 'c']) 'multiclass' >>> type_of_target(np.array([[1, 2], [3, 1]])) 'multiclass-multioutput' >>> type_of_target([[1, 2]]) 'multilabel-indicator' >>> type_of_target(np.array([[1.5, 2.0], [3.0, 1.6]])) 'continuous-multioutput' >>> type_of_target(np.array([[0, 1], [1, 1]])) 'multilabel-indicator' """ valid = ((isinstance(y, (Sequence, spmatrix)) or hasattr(y, '__array__')) and not isinstance(y, str)) if not valid: raise ValueError('Expected array-like (array or non-string sequence), ' 'got %r' % y) sparse_pandas = (y.__class__.__name__ in ['SparseSeries', 'SparseArray']) if sparse_pandas: raise ValueError("y cannot be class 'SparseSeries' or 'SparseArray'") if is_multilabel(y): return 'multilabel-indicator' try: y = np.asarray(y) except ValueError: # Known to fail in numpy 1.3 for array of arrays return 'unknown' # The old sequence of sequences format try: if (not hasattr(y[0], '__array__') and isinstance(y[0], Sequence) and not isinstance(y[0], str)): raise ValueError('You appear to be using a legacy multi-label data' ' representation. Sequence of sequences are no' ' longer supported; use a binary array or sparse' ' matrix instead - the MultiLabelBinarizer' ' transformer can convert to this format.') except IndexError: pass # Invalid inputs if y.ndim > 2 or (y.dtype == object and len(y) and not isinstance(y.flat[0], str)): return 'unknown' # [[[1, 2]]] or [obj_1] and not ["label_1"] if y.ndim == 2 and y.shape[1] == 0: return 'unknown' # [[]] if y.ndim == 2 and y.shape[1] > 1: suffix = "-multioutput" # [[1, 2], [1, 2]] else: suffix = "" # [1, 2, 3] or [[1], [2], [3]] # check float and contains non-integer float values if y.dtype.kind == 'f' and np.any(y != y.astype(int)): # [.1, .2, 3] or [[.1, .2, 3]] or [[1., .2]] and not [1., 2., 3.] _assert_all_finite(y) return 'continuous' + suffix if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1): return 'multiclass' + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]] else: return 'binary'
5,352,138
def extract_data_from_csv_stream(client: Client, alert_id: str, attachment_id: str, delimiter: bytes = b'\r\n') -> List[dict]: """ Call the attachment download API and parse required fields. Args: client (Client): Cyberint API client. alert_id (str): ID of the alert the attachment belongs to. attachment_id (str): ID of the attachment itself. delimiter (bytes): Delimeter for the CSV file. Returns: list(dict): List of all the data found using the wanted fields. """ first_line = True field_indexes = {} # {wanted_field_name: wanted_field_index...} information_found = [] for csv_line in client.get_csv_file(alert_id, attachment_id, delimiter): csv_line_separated = csv_line.split(',') if first_line: for field in CSV_FIELDS_TO_EXTRACT: try: field_indexes[field] = csv_line_separated.index(field) except ValueError: pass first_line = False else: try: extracted_field_data = {field_name.lower(): csv_line_separated[field_index] for field_name, field_index in field_indexes.items()} if extracted_field_data: information_found.append(extracted_field_data) except IndexError: pass return information_found
5,352,139
def validate_password(password, password_repeat=None): """ Validate user password. :param password: password as string :param password_repeat: repeat password :return: False - valid password """ if password_repeat: if password != password_repeat: return "Passwords did not match." flag = False if len(password) < 8: flag = True elif not re.search("[a-z]", password): flag = True elif not re.search("[A-Z]", password): flag = True elif not re.search("[0-9]", password): flag = True elif re.search("\s", password): flag = True if flag: return ( "Password must contain at least a lower case, an upper case, a number, no spaces " "and be at least 9 characters." ) return False
5,352,140
def get_large_circuit(backend: IBMBackend) -> QuantumCircuit: """Return a slightly larger circuit that would run a bit longer. Args: backend: Backend on which the circuit will run. Returns: A larger circuit. """ n_qubits = min(backend.configuration().n_qubits, 20) circuit = QuantumCircuit(n_qubits, n_qubits) for qubit in range(n_qubits - 1): circuit.h(qubit) circuit.cx(qubit, qubit + 1) circuit.measure(list(range(n_qubits)), list(range(n_qubits))) return circuit
5,352,141
def loadUserProject(): """ Loads a project that contains only the contents of user.dev. This project will not be cached, so every call will reload it.""" userFilePath = os.path.join(os.path.expanduser(devon.userPath), userFileName) project = DevonProject("", time.time()) __mergeProject(project, "", userFilePath) return project
5,352,142
def top_k(loc_pred, loc_true, topk): """ count the hit numbers of loc_true in topK of loc_pred, used to calculate Precision, Recall and F1-score, calculate the reciprocal rank, used to calcualte MRR, calculate the sum of DCG@K of the batch, used to calculate NDCG Args: loc_pred: (batch_size * output_dim) loc_true: (batch_size * 1) topk: Returns: tuple: tuple contains: hit (int): the hit numbers \n rank (float): the sum of the reciprocal rank of input batch \n dcg (float): dcg """ assert topk > 0, "top-k ACC评估方法:k值应不小于1" loc_pred = torch.FloatTensor(loc_pred) val, index = torch.topk(loc_pred, topk, 1) index = index.numpy() hit = 0 rank = 0.0 dcg = 0.0 for i, p in enumerate(index): target = loc_true[i] if target in p: hit += 1 rank_list = list(p) rank_index = rank_list.index(target) # rank_index is start from 0, so need plus 1 rank += 1.0 / (rank_index + 1) dcg += 1.0 / np.log2(rank_index + 2) return hit, rank, dcg
5,352,143
def enviar_contacto(request): """ Enviar email con el formulario de contacto a soporte tecnico """ formulario = ContactoForm() if request.method == 'POST': formulario = ContactoForm(request.POST) if formulario.is_valid(): mail = EmailMessage(subject='HPC Contacto', from_email=formulario.cleaned_data['email'], to=EMAIL_TO) mail.body = 'El usuario %s ha comentado: %s' \ % (formulario.cleaned_data['nombre'], formulario.cleaned_data['mensaje']) mail.send() messages.success(request, "El personal de soporte técnico ha recibido su consulta, " "pronto nos pondremos en contacto.") return HttpResponseRedirect('/') ctx = {'form': formulario} return render_to_response('contacto/enviar_contacto.html', ctx, context_instance=RequestContext(request))
5,352,144
def dict_depth(d): """ 递归地获取一个dict的深度 d = {'a':1, 'b': {'c':{}}} --> depth(d) == 3 """ if isinstance(d, dict): return 1 + (max(map(dict_depth, d.values())) if d else 0) return 0
5,352,145
def test_split_exist_new(utils_patch): """ Tests split on exising new pool """ ret = {} ret["stdout"] = "" ret["stderr"] = "Unable to split datapool: pool already exists" ret["retcode"] = 1 mock_cmd = MagicMock(return_value=ret) with patch.dict(zpool.__salt__, {"cmd.run_all": mock_cmd}), patch.dict( zpool.__utils__, utils_patch ): ret = zpool.split("datapool", "backuppool") res = OrderedDict( [ ("split", False), ("error", "Unable to split datapool: pool already exists"), ] ) assert ret == res
5,352,146
def apercorr(psf,image,objects,psfobj,verbose=False): """ Calculate aperture correction. Parameters ---------- psf : PSF object The best-fitting PSF model. image : string or CCDData object The input image to fit. This can be the filename or CCDData object. objects : table The output table of best-fit PSF values for all of the sources. psfobj : table The table of PSF objects. verbose : boolean, optional Verbose output to the screen. Default is False. Returns ------- objects : table The output table with an "apcorr" column inserted and the aperture correction applied to "psfmag". apcor : float The aperture correction in mag. cgrow : numpy array The cumulative aperture correction array. Example ------- apcor = apercorr(psf,image,objects,psfobj) """ # Get model of all stars except the PSF stars ind1,ind2 = dln.match(objects['id'],psfobj['id']) left = np.delete(np.arange(len(objects)),ind1) neiobj = objects[left] neimodel = image.copy() neimodel.data *= 0 neimodel.error[:] = 1 neimodelim = psf.add(neimodel,neiobj) neimodel.data = neimodelim # Subtract everything except the PSF stars from the image resid = image.copy() if image.mask is not None: resid.data[~resid.mask] -= neimodel.data[~resid.mask] else: resid.data -= modelnei.data residim = np.maximum(resid.data-resid.sky,0) resid.data = residim resid.sky[:] = 0.0 # Do aperture photometry with lots of apertures on the PSF # stars # rk = (20/3.)**(1/11.) * rk-1 for k=2,..,12 rseeing = psf.fwhm()*0.5 apers = np.cumprod(np.hstack((3.0,np.ones(11,float)*(20/3.)**(1/11.)))) #apers = np.array([3.0,3.7965,4.8046,6.0803,7.6947,9.7377,12.3232, # 15.5952,19.7360,24.9762,31.6077,40.0000]) apercat = aperphot(resid,psfobj,apers) # Fit curve of growth # use magnitude differences between successive apertures. apars, agrow, derr = fitgrowth(apercat,apers,rseeing=psf.fwhm()*0.5) # Get magnitude difference errors nstars = len(apercat) napers = len(apers) derr = np.zeros((nstars,napers-1),float) for i in range(len(apers)-1): err1 = apercat['magerr_aper'+str(i+1)] err2 = apercat['magerr_aper'+str(i+2)] derr[:,i] = np.sqrt(err1**2+err2**2) wt = 1/derr**2 # THE CURVE TURNS OVER AT LARGE RADIUS!!!!??? # It shouldn't EVER do that. # Calculate empirical growth curve egrow,egrowerr = empgrowth(apercat,apers) # Get "adopted" growth curve by taking the weighted average # of the analytical and empirical growth curves # with the empirical weighted higher at small r and # the analytical weighted higher at large r gwt = np.mean(wt,axis=0) # mean weights over the stars adopgrow = (egrow*gwt + agrow*(1/(0.1*agrow))**2) / (gwt+(1/(0.1*agrow))**2) adopgrowerr = 1 / (gwt+(1/(0.1*agrow))**2) # Adopted cumulative growth curve # sum from the outside in, with an outer tail given by # extrapolation of the analytic model to 2*outer aperture cadopgrow = np.cumsum(adopgrow[::-1])[::-1] # add extrapolation from rlast t=o2*rlast tail = diffprofile([2*apers[-1],apers[-1]],*apars) cadopgrow += tail cadopgrow = np.hstack((cadopgrow,tail)) # add value for outer aperture cadopgrowerr = np.hstack((adopgrowerr,0.0)) # Calculate "total" magnitude for the PSF stars totmag,toterr = totphot(apercat,apers,cadopgrow,cadopgrowerr) # Calculate median offset between total and PSF magnitude # psf - total ind1,ind2 = dln.match(objects['id'],psfobj['id']) diffmag = objects['psfmag'][ind1] - totmag[ind2] apcor = np.median(diffmag) # positive value # Apply aperture correction to the data # add apcorr column and keep initial mags in instmag objects['apcorr'] = apcor objects['inst_psfmag'] = objects['psfmag'] objects['psfmag'] -= apcor # make brighter if verbose: print('Aperture correction = %.3f mag' % apcor) return objects, apcor, cadopgrow
5,352,147
def product_loading_factor_single_discount(skus: str, product_list: Dict[str, object], product: Dict[str, int], product_name: str, rules: list) -> Tuple[int, str]: """ Single product loading factor for calculating discounts with one rule Parameters ---------- skus: str String containing indiviudal product skus product_list: Dict[str, object] Product discount list used for applying discounts product: Dict[str, int] Product list used for returning the current products price product_name: str The name of the product rules: List List of discount rules names to apply Returns ------- Tuple: price: int Calculated price skus: str Updated skus list """ number_of_products = skus.count(product_name) product_price = product[product_name] product_discount_data_object = product_list[product_name][rules[0]] discount_threshold = product_discount_data_object['discount_threshold'] while number_of_products > 0: if number_of_products > 0 and number_of_products % discount_threshold == 0: product_discount_data_object['count'] += 1 number_of_products -= discount_threshold else: number_of_products -= 1 applied_discount = product_discount_data_object['count'] remainder_product_count = skus.count(product_name) - (applied_discount * discount_threshold) discount_to_apply = product_discount_data_object['discount'] apply_discount = (applied_discount * product_price * discount_threshold) - (applied_discount * discount_to_apply) price = apply_discount + (remainder_product_count * product_price) return price, skus
5,352,148
def clean_text(page): """Return the clean-ish running text parts of a page.""" return re.sub(_UNWANTED, "", _unescape_entities(page))
5,352,149
async def test_when_a_stream_iterator_fails_midway(): """ Sometimes bad things happen. What happens if we're iterating a stream and some anarchist decides to delete it from under our feet? Well, I guess we should return an error to the caller and stop the iterator. """ dispatcher = MessageDispatcher() output_queue = TeeQueue() conversation = IterStreamEvents("my-stream") first_msg = read_stream_events_completed( conversation.conversation_id, "my-stream", [NewEvent("event", data={"x": 1})] ) second_msg = read_stream_events_failure( conversation.conversation_id, ReadStreamResult.StreamDeleted ) future = await dispatcher.start_conversation(conversation) await dispatcher.dispatch(first_msg, output_queue) await dispatcher.dispatch(second_msg, output_queue) iterator = await asyncio.wait_for(future, 1) event = await anext(iterator) assert event.event.json()["x"] == 1 with pytest.raises(StreamDeleted): await anext(iterator) assert not dispatcher.has_conversation(conversation.conversation_id)
5,352,150
def error(msg: str, exc_type: Exception=Exception) -> Exception: """ Wrapper to get around Python's distinction between statements and expressions Can be used in lambdas and expressions such as: a if b else error(c) :param msg: error message :param exc_type: type of exception to raise """ raise exc_type(msg)
5,352,151
def test_aks(directory: str, aks_service: AksWebservice): """ Test AKS with sample call. :param directory: directory of data_folder with test data :param aks_service: AKS Web Service to Test """ num_dupes_to_score = 4 dupes_test = get_dupes_test(directory) text_to_score = dupes_test.iloc[0, num_dupes_to_score] json_text = text_to_json(text_to_score) scoring_url = aks_service.scoring_uri api_key = aks_service.get_keys()[0] headers = { "content-type": "application/json", "Authorization": ("Bearer " + api_key), } requests.post( scoring_url, data=json_text, headers=headers ) # Run the request twice since the first time takes a r = requests.post( scoring_url, data=json_text, headers=headers ) # little longer due to the loading of the model print(r) dupes_to_score = dupes_test.iloc[:5, num_dupes_to_score] text_data = list(map(text_to_json, dupes_to_score)) # Retrieve the text data for text in text_data: r = requests.post(scoring_url, data=text, headers=headers) print(r)
5,352,152
def calculate_recall(tp, n): """ :param tp: int Number of True Positives :param n: int Number of total instances :return: float Recall """ if n == 0: return 0 return tp / n
5,352,153
def authenticate_user_password(password : 'bytes', encryption_dict : 'dict', id_array : 'list'): """ Authenticate the user password. Parameters ---------- password : bytes The password to be authenticated as user password. encryption_dict : dict The dictionary containing all the information about the encryption procedure. id_array : list The two elements array ID, contained in the trailer dictionary. Returns ------- The encryption key if the user password is valid, None otherwise. """ R = encryption_dict["R"] U = encryption_dict["U"] U = U.value if isinstance(U, PDFLiteralString) else unhexlify(U.value) encryption_key = compute_encryption_key(password, encryption_dict, id_array) if R == 2: cipher = rc4(PASSWORD_PADDING, encryption_key) else: input_to_md5 = bytearray() input_to_md5.extend(PASSWORD_PADDING) input_to_md5.extend(id_array[0]) computed_hash = md5(input_to_md5).digest() cipher = rc4(computed_hash, encryption_key) for counter in range(1, 20): cipher = rc4(cipher, bytes(x ^ counter for x in encryption_key)) correct_password = (U[:16] == cipher[:16]) if R >= 3 else (U == cipher) return encryption_key if correct_password else None
5,352,154
def date_to_num(date): """Convert datetime to days since 1901""" num = (date.year - 1901) * 365.25 num += [ 0, 31, 59.25, 90.25, 120.25, 151.25, 181.25, 212.25, 243.25, 273.25, 304.25, 334.25 ][date.month - 1] num += date.day return int(num)
5,352,155
def load_world(filename: str, size: Tuple[int, int], resolution: int) -> np.array: """Load a preconstructred track to initialize world. Args: filename: Full path to the track file (png). size: Width and height of the map resolution: Resolution of the grid map (i.e. into how many cells) one meter is divided into. Returns: An initialized gridmap based on the preconstructed track as an n x m dimensional numpy array, where n is the width (num cells) and m the height (num cells) - (after applying resolution). """ width_in_cells, height_in_cells = np.multiply(size, resolution) world = np.array(png_to_ogm( filename, normalized=True, origin='lower')) # If the image is already in our desired shape, no need to rescale it if world.shape == (height_in_cells, width_in_cells): return world # Otherwise, scale the image to our desired size. resized_world = resize(world, (width_in_cells, height_in_cells)) return resized_world
5,352,156
def generate_image(model, img_size, n_flow, n_block, n_sample, temp=0.7, ctx=None, label=None): """Generate a single image from a Glow model.""" # Determine sizes of each layer z_sample = [] z_shapes = calc_z_shapes(3, img_size, n_flow, n_block) for z in z_shapes: z_new = torch.randn(n_sample, *z) * temp z_sample.append(z_new.to(device)) assert ctx is None or label is None # can either insert label or context if label is not None: return model.reverse(z_sample, label=label) else: # handles both cases where only context is provided or no label or context is provided return model.reverse(z_sample, ctx=ctx)
5,352,157
def quote_spaces(arg): """Generic function for putting double quotes around any string that has white space in it.""" if ' ' in arg or '\t' in arg: return '"%s"' % arg else: return str(arg)
5,352,158
def slice_map(center, radius, m): """ :func:`slice_map` for slicing Map object based on center and radius. :param center: x, y tuple of center of sliced map :param radius: - :class:`int` center of sliced map :param m: - :class:`Map` Map object that want to be sliced return :class:`Map` """ # TODO # it should slice player list and kingdom list too results = dict() for cell in m.gen_tiles(): if distance(center, (cell.coordinate.x, cell.coordinate.y)) <= radius: if cell.region_id not in results: results[cell.region_id] = [] results[cell.region_id].append(cell) new_map = Map(m.client) new_map._raw_data = deepcopy(m._raw_data) new_map._raw_data["response"]["1"]["region"] = results return new_map
5,352,159
def configure(repl): """ Configuration method. This is called during the start-up of ptpython. :param repl: `PythonRepl` instance. """ # Vi mode. repl.vi_mode = True # Enable 24bit True color. (Not all terminals support this. -- maybe check # $TERM before changing.) repl.true_color = True
5,352,160
def download_file(url) -> Path: """Better download""" name = Path(urlparse(unquote(url)).path).name with mktempdir() as tmpdir: @backoff.on_exception(backoff.expo, requests.exceptions.RequestException, max_time=30) def get(): with requests.get(url, stream=True) as r: save_path = tmpdir.joinpath(name) with open(save_path, "wb") as f: shutil.copyfileobj(r.raw, f, length=16 * 1024 * 1024) return save_path yield get()
5,352,161
def creategui(handlerfunctions): """Initializes and returns the gui.""" gui = GUI(handlerfunctions) # root.title('DBF Utility') return gui
5,352,162
def rank_src_trgs(enc_dec_gen, src_list, trg_list): """ """ batch_size = len(trg_list) x, y = enc_dec_gen.encode_inputs(src_list, trg_list, add_bos=True, add_eos=True) y_len = torch.sum(y.ne(enc_dec_gen.model.PAD), -1) with torch.no_grad(): y_target = y[:, 1:] y = y[:, :-1] enc_self_attn_mask = enc_dec_gen.model.get_attn_mask(x, x) enc_outputs = enc_dec_gen.model.encoder(x, enc_self_attn_mask) enc_output = enc_outputs[0] n = y.size(0)//x.size(0) x = x.repeat([1,n]).view(y.size(0), -1) enc_output = enc_output.repeat([1, n, 1]).view(x.size(0), x.size(1), -1) dec_self_attn_mask = enc_dec_gen.model.get_subsequent_mask(y) dec_self_attn_mask = dec_self_attn_mask | enc_dec_gen.model.get_attn_mask(y, y) dec_enc_attn_mask = enc_dec_gen.model.get_attn_mask(y, x) trg_embedding = None if enc_dec_gen.model.share_src_trg_emb == True: trg_embedding = enc_dec_gen.model.encoder.src_embedding dec_outputs = enc_dec_gen.model.decoder(y, enc_output, dec_self_attn_mask, dec_enc_attn_mask, trg_embedding=trg_embedding) logits = dec_outputs[0] logits = logits.view(-1, enc_dec_gen.trg_vocab_size) log_probs = -F.nll_loss(F.log_softmax(logits, -1), y_target.contiguous().view(-1), ignore_index=enc_dec_gen.model.PAD, reduction='none') log_probs = torch.sum(log_probs.view(batch_size, -1), -1) norm = 1 if enc_dec_gen.normalize == "gnmt": norm = torch.pow(5. + y_len, enc_dec_gen.gamma) / np.power(6., enc_dec_gen.gamma) elif enc_dec_gen.normalize == "linear": norm = y_len log_probs = log_probs / norm log_probs = log_probs.cpu().numpy() return log_probs
5,352,163
def plugin_poll(handle): """ Extracts data from the sensor and returns it in a JSON document as a Python dict. Available for poll mode only. Args: handle: handle returned by the plugin initialisation call Returns: returns a sensor reading in a JSON document, as a Python dict, if it is available None - If no reading is available Raises: Exception """ try: time_stamp = utils.local_timestamp() data = {'asset': handle['assetName']['value'], 'timestamp': time_stamp, 'readings': {"random": next(generate_data())}} except (Exception, RuntimeError) as ex: _LOGGER.exception("Exception is {}".format(str(ex))) raise ex else: return data
5,352,164
def _set_new_event_entity_for_export_method(): """Register the new for_export method on EventEntity.""" global _orig_event_entity_for_export _orig_event_entity_for_export = m_models.EventEntity.for_export m_models.EventEntity.for_export = _event_entity_for_export
5,352,165
def top_average_pathways(document, file, max_sets, get_all=False): """ Read the pathways file and get the top average pathways """ # read in the samples and get the data with out the stratification by bug samples, pathways, data = document.read_table(file) pathway_names = utilities.pathway_names(pathways) pathways, data = utilities.remove_stratified_pathways(pathways, data, remove_description=True) # remove extra identifier from sample name if included in workflow samples = [sample.replace("_Abundance","").replace("-RPKs","") for sample in samples] # get the average abundance for the pathways if get_all: top_pathways, top_data = pathways, data else: top_pathways, top_data = utilities.top_rows(pathways, data, max_sets, function="average") # get the top names with descriptions top_names_and_descriptions = [name+":"+pathway_names[name] for name in top_pathways] return samples, top_pathways, top_data, top_names_and_descriptions
5,352,166
def ltria2skew(L): """ assume L has already passed the assertion check :param L: lower triangle matrix, shape [N, 3] :return: skew sym A [N, 3, 3] """ if len(L.shape) == 2: N = L.shape[0] # construct the skew-sym matrix A = torch.zeros(N, 3, 3).cuda() # [N, 3, 3] A[:, 1, 0] = L[:, 0] A[:, 2, 0] = L[:, 1] A[:, 2, 1] = L[:, 2] A[:, 0, 1] = -L[:, 0] A[:, 0, 2] = -L[:, 1] A[:, 1, 2] = -L[:, 2] return A elif len(L.shape) == 1: A = torch.zeros(3, 3).cuda() A[1, 0] = L[0] A[2, 0] = L[1] A[2, 1] = L[2] A[0, 1] = -L[0] A[0, 2] = -L[1] A[1, 2] = -L[2] return A else: raise NotImplementedError
5,352,167
def gamma_contrast(data_sample, num_patches=324, num_channel=2, shape_data=None, gamma_range=(0.5, 1.7), invert_image=False, per_channel=False, retain_stats=False): """Performs gamma contrast transformation""" epsilon = 1e-7 data_sample_patch = [] gamma_range_tensor = tf.convert_to_tensor(gamma_range) for patch in range(num_patches): if invert_image: data_sample = - data_sample if not per_channel: # if np.random.random() < 0.5 and gamma_range[0] < 1: # gamma = np.random.uniform(gamma_range[0], 1) # else: # gamma = np.random.uniform(max(gamma_range[0], 1), gamma_range[1]) def true_fn(): gamma_fn = tf.random.uniform(shape=(), minval=gamma_range[0], maxval=1, seed=1) return gamma_fn def false_fn(): gamma_fn = tf.random.uniform(shape=(), minval=tf.math.maximum(gamma_range[0], 1), maxval=gamma_range[1], seed=1) return gamma_fn cond = tf.math.logical_and(tf.math.less(tf.random.uniform(shape=(), minval=0, maxval=0.99, seed=1), 0.5), tf.math.less(gamma_range_tensor[0], 1)) gamma = tf.cond(cond, true_fn, false_fn) min_val_ten = tf.math.reduce_min(data_sample[patch, ...]) range_tensor = tf.math.reduce_max(data_sample[patch, ...]) - min_val_ten data_sample_norm = tf.math.divide(tf.math.subtract(data_sample[patch, ...], min_val_ten), tf.math.add(range_tensor, epsilon)) data_img = tf.image.adjust_gamma(image=data_sample_norm, gamma=gamma, gain=tf.math.add(range_tensor, epsilon)) data_img = tf.math.add(data_img, min_val_ten) data_sample_patch.append(data_img) else: data_sample_per_channel = [] for c in range(num_channel): def true_fn(): gamma_fn = tf.random_uniform_initializer(minval=gamma_range[0], maxval=1, seed=1) return gamma_fn def false_fn(): gamma_fn = tf.random_uniform_initializer(minval=tf.math.maximum(gamma_range[0], 1), maxval=gamma_range[1], seed=1) return gamma_fn cond = tf.math.logical_and(tf.math.less(tf.random.uniform(shape=(), minval=0, maxval=0.99, seed=1), 0.5), tf.math.less(gamma_range_tensor[0], 1)) gamma = tf.cond(cond, true_fn, false_fn) min_val_ten = tf.math.reduce_min(data_sample[patch, :, :, :, c]) #rnge_tensor = tf.math.reduce_max(data_sample[patch, :, :, :, c]) - min_val_ten data_sample_norm = tf.math.divide(tf.math.subtract(data_sample[patch, ..., c], min_val_ten), tf.math.add(range_tensor, epsilon)) data_img = tf.image.adjust_gamma(image=data_sample_norm, gamma=gamma, gain=tf.math.add(range_tensor, epsilon)) data_img = tf.math.add(data_img, min_val_ten) data_sample_per_channel.append(data_img) data_sample_channel = tf.stack(data_sample_per_channel) data_sample_channel = tf.transpose(data_sample_channel, perm=[1, 2, 3, 0]) data_sample_patch.append(data_sample_channel) data_sample_return = tf.stack(data_sample_patch) # data_sample_return = tf.transpose(data_sample_return, perm=[1, 2, 3, 4, 0]) return data_sample_return
5,352,168
def _converge(helper, rcs, group): """ Function to be passed to :func:`_oob_disable_then` as the ``then`` parameter that triggers convergence. """ return group.trigger_convergence(rcs)
5,352,169
def HybridClientFactory(jid, password): """ Client factory for XMPP 1.0. This is similar to L{client.XMPPClientFactory} but also tries non-SASL autentication. """ a = HybridAuthenticator(jid, password) return xmlstream.XmlStreamFactory(a)
5,352,170
def home(): """Home page.""" form = LoginForm(request.form) # Handle logging in if request.method == 'POST': if form.validate_on_submit(): login_user(form.user) flash('You are logged in.', 'success') redirect_url = request.args.get('next') or url_for('user.members') return redirect(redirect_url) else: flash_errors(form) return dict(form=form)
5,352,171
def countingsort(A): """ Sort the list A. A has to be a list of integers. Every element of the list A has to be non-negative. @param A: the list that should get sorted @return the sorted list """ if len(A) == 0: return [] C = [0] * (max(A)+1) B = [""] * len(A) # Count the number of elements for el in A: C[el] += 1 # Now C[i] contains how often i is in A for index in xrange(1, len(C)): C[index] += C[index-1] for el in A[::-1]: B[C[el]-1] = el C[el] -= 1 return B
5,352,172
def calc_obstacle_map(ox, oy, resolution, vr): """ Build obstacle map according to the distance of a certain grid to obstacles. Treat the area near the obstacle within the turning radius of the vehicle as the obstacle blocking area and mark it as TRUE. """ min_x = round(min(ox)) min_y = round(min(oy)) max_x = round(max(ox)) max_y = round(max(oy)) x_width = round(max_x - min_x) y_width = round(max_y - min_y) # obstacle map generation obstacle_map = [[False for _ in range(y_width)] for _ in range(x_width)] for ix in range(x_width): x = ix + min_x for iy in range(y_width): y = iy + min_y # print(x, y) for iox, ioy in zip(ox, oy): d = math.sqrt((iox - x)**2 + (ioy - y)**2) if d * resolution <= vr: obstacle_map[ix][iy] = True break return obstacle_map, min_x, min_y, max_x, max_y, x_width, y_width
5,352,173
def dilate(poly,eps): """ The function dilates a polytope. For a given polytope a polytopic over apoproximation of the $eps$-dilated set is computed. An e-dilated Pe set of P is defined as: Pe = {x+n|x in P ^ n in Ball(e)} where Ball(e) is the epsilon neighborhood with norm |n|<e The current implementation is quite crude, hyper-boxes are placed over the original vertices and the returned polytope is a qhull of these new vertices. :param poly: original polytope :param eps: positive scalar value with which the polytope is dilated :return: polytope """ if isinstance(poly,polytope.Region): dil_reg = [] for pol in poly.list_poly: assert isinstance(pol,polytope.Polytope) dil_reg += [dilate(pol, eps)] return polytope.Region(dil_reg) vertices = extreme(poly) dim = len(vertices[0]) # this is the dimensionality of the space dil_eps = dim * [[-eps,eps]] dil_eps_v = [np.array(n) for n in itertools.product(*dil_eps)] # vectors with (+- eps,+- eps, +- eps,...) new_vertices = [] for v,d in itertools.product(vertices,dil_eps_v): new_vertices += [[np.array(v).flatten() + np.array(d).flatten()]] # make box # print("add vertices part:", np.array(v).flatten() + np.array(d).flatten()) VV = np.concatenate(new_vertices) # print("V", VV) return qhull(VV)
5,352,174
def downgrade(): """Reverse MSSQL backend compatibility improvements""" conn = op.get_bind() if conn.dialect.name != 'mssql': return alter_mssql_datetime2_column(conn, op, 'serialized_dag', 'last_updated', False) op.alter_column(table_name="xcom", column_name="timestamp", type_=_get_timestamp(conn), nullable=True) with op.batch_alter_table('task_reschedule') as task_reschedule_batch_op: task_reschedule_batch_op.alter_column( column_name='end_date', type_=_get_timestamp(conn), nullable=True ) task_reschedule_batch_op.alter_column( column_name='reschedule_date', type_=_get_timestamp(conn), nullable=True ) task_reschedule_batch_op.alter_column( column_name='start_date', type_=_get_timestamp(conn), nullable=True ) with op.batch_alter_table('task_fail') as task_fail_batch_op: task_fail_batch_op.drop_index('idx_task_fail_dag_task_date') task_fail_batch_op.alter_column( column_name="execution_date", type_=_get_timestamp(conn), nullable=False ) task_fail_batch_op.create_index( 'idx_task_fail_dag_task_date', ['dag_id', 'task_id', 'execution_date'], unique=False ) with op.batch_alter_table('task_instance') as task_instance_batch_op: task_instance_batch_op.drop_index('ti_state_lkp') task_instance_batch_op.create_index( 'ti_state_lkp', ['dag_id', 'task_id', 'execution_date'], unique=False ) op.create_unique_constraint('UQ__dag_run__dag_id_run_id', 'dag_run', ['dag_id', 'run_id']) op.create_unique_constraint('UQ__dag_run__dag_id_execution_date', 'dag_run', ['dag_id', 'execution_date']) op.drop_index('idx_not_null_dag_id_execution_date', table_name='dag_run') op.drop_index('idx_not_null_dag_id_run_id', table_name='dag_run')
5,352,175
def read_files_to_vardf(map_df, df_dict, gridclimname, dataset, metadata, file_start_date, file_end_date, file_delimiter, file_time_step, file_colnames, subset_start_date, subset_end_date, min_elev, max_elev, variable_list=None): """ # reads in the files to generate variables dataframes map_df: (dataframe) the mappingfile clipped to the subset that will be read-in df_dict: (dict) an existing dictionary where new computations will be stored gridclimname: (str) the suffix for the dataset to be named; if None provided, default to dataset name dataset: (str) the name of the dataset catalogged into map_df metadata: (str) the dictionary that contains the metadata explanations; default is None file_start_date: (date) the start date of the files that will be read-in; default is None file_end_date: (date) the end date for the files that will be read in; default is None file_delimiter: (str) a file parsing character to be used for file reading file_time_step: (str) the timedelta code for the difference between time points; default is 'D' (daily) file_colnames: (list) the list of shorthand variables; default is None subset_start_date: (date) the start date of a date range of interest subset_end_date: (date) the end date of a date range of interest min_elev: (float) minimum elevation permitted max_elev: (float) maximum elevation permitted """ # start time starttime = pd.datetime.now() # date range from ogh_meta file met_daily_dates=pd.date_range(file_start_date, file_end_date, freq=file_time_step) met_daily_subdates=pd.date_range(subset_start_date, subset_end_date, freq=file_time_step) # omit null entries or missing data file map_df = map_df.loc[pd.notnull(map_df[dataset]), :] print('Number of data files within elevation range ({0}-{1} m): {2}'.format(min_elev, max_elev, len(map_df))) # establish default list of variables if isinstance(variable_list, type(None)): variable_list = metadata[dataset]['variable_list'] # iterate through each data file for eachvar in metadata[dataset]['variable_list']: # exclude YEAR, MONTH, and DAY if eachvar not in ['YEAR', 'MONTH', 'DAY'] and eachvar in variable_list: # identify the variable column index usecols = [metadata[dataset]['variable_list'].index(eachvar)] # initiate df as a list df_list=[] # loop through each file for ind, row in map_df.iterrows(): # consider rewriting the params to just select one column by index at a time var_series = dask.delayed(pd.read_table)(filepath_or_buffer=row[dataset], delimiter=file_delimiter,header=None,usecols=usecols, names=[tuple(row[['FID', 'LAT', 'LONG_']])]) # append the series into the list of series df_list.append(var_series) # concatenate list of series (axis=1 is column-wise) into a dataframe df1 = dask.delayed(pd.concat)(df_list, axis=1) # set and subset date_range index df2 = df1.set_index(met_daily_dates, inplace=False).loc[met_daily_subdates] # assign dataframe to dictionary object df_dict['_'.join([eachvar, gridclimname])] = dask.compute(df2)[0] print(eachvar+ ' dataframe reading complete:' + str(pd.datetime.now()-starttime)) return(df_dict)
5,352,176
def read_file(pickle_file_name): """Reads composite or non-composite class-activation maps from Pickle file. :param pickle_file_name: Path to input file (created by `write_standard_file` or `write_pmm_file`). :return: gradcam_dict: Has the following keys if not a composite... gradcam_dict['denorm_predictor_matrices']: See doc for `write_standard_file`. gradcam_dict['cam_matrices']: Same. gradcam_dict['guided_cam_matrices']: Same. gradcam_dict['full_storm_id_strings']: Same. gradcam_dict['storm_times_unix_sec']: Same. gradcam_dict['model_file_name']: Same. gradcam_dict['target_class']: Same. gradcam_dict['target_layer_name']: Same. gradcam_dict['sounding_pressure_matrix_pa']: Same. ...or the following keys if composite... gradcam_dict['mean_denorm_predictor_matrices']: See doc for `write_pmm_file`. gradcam_dict['mean_cam_matrices']: Same. gradcam_dict['mean_guided_cam_matrices']: Same. gradcam_dict['model_file_name']: Same. gradcam_dict['non_pmm_file_name']: Same. gradcam_dict['pmm_max_percentile_level']: Same. gradcam_dict['mean_sounding_pressures_pa']: Same. :return: pmm_flag: Boolean flag. True if `gradcam_dict` contains composite, False otherwise. :raises: ValueError: if dictionary does not contain expected keys. """ pickle_file_handle = open(pickle_file_name, 'rb') gradcam_dict = pickle.load(pickle_file_handle) pickle_file_handle.close() pmm_flag = MEAN_PREDICTOR_MATRICES_KEY in gradcam_dict if pmm_flag: missing_keys = list( set(PMM_FILE_KEYS) - set(gradcam_dict.keys()) ) else: missing_keys = list( set(STANDARD_FILE_KEYS) - set(gradcam_dict.keys()) ) if len(missing_keys) == 0: return gradcam_dict, pmm_flag error_string = ( '\n{0:s}\nKeys listed above were expected, but not found, in file ' '"{1:s}".' ).format(str(missing_keys), pickle_file_name) raise ValueError(error_string)
5,352,177
def tacodev(val=None): """a valid taco device""" if val in ('', None): return '' val = string(val) if not tacodev_re.match(val): raise ValueError('%r is not a valid Taco device name' % val) return val
5,352,178
def VioNet_densenet(config, home_path): """ Load DENSENET model config.device config.pretrained_model config.sample_size config.sample_duration """ device = config.device ft_begin_idx = config.ft_begin_idx sample_size = config.sample_size[0] sample_duration = config.sample_duration model = densenet121(num_classes=2, sample_size=sample_size, sample_duration=sample_duration).to(device) # state_dict = torch.load(g_path +'/VioNet/'+ 'weights/DenseNet_Kinetics.pth') state_dict = torch.load(os.path.join(home_path, VIONET_WEIGHTS, 'DenseNet_Kinetics.pth')) model.load_state_dict(state_dict) params = dn.get_fine_tuning_params(model, ft_begin_idx) return model, params
5,352,179
def afficheStats(statsKm, listeJoueurs): """ Affiche le graphique des kms parcourus par chaque joueur en fonction du temps. """ i = 0 for liste in statsKm: plt.plot(liste, label=listeJoueurs[i].nom) i += 1 plt.title("Evolution de la partie") plt.xlabel("Tour") plt.ylabel("Km") plt.legend() plt.show()
5,352,180
def explore_sub() -> None: """Explore some data sets.""" stats_df = data_frame_stats(sub) print(stats_df) # .head().style.format({"notnulls%": "{:.2%}", # "unique%": "{:.2%}"}) sub_stats = sub["form"].value_counts().reset_index() sub_stats["label"] = \ np.where(sub_stats["form"].rank(ascending=False) < 8, sub_stats["index"], "Other") sub_stats = \ sub_stats.groupby("label").\ sum().sort_values(by="form", ascending=False).reset_index() print(sub_stats) # plot using Plotly # because the awesome Plotly.Express strugle with the subplots, I'll use # lower level API to create two charts. # Bar chart on the left and pie chart on the right\n", # fig = make_subplots(rows=1, cols=2, specs=[[{'type':'bar'}, # {'type':'pie'}]], subplot_titles=["Forms - Bar Chart","Forms - # Pie Chart"]) # # # Creating the Bar chart\n", # fig.add_trace( # go.Bar(y=sub_stats["form"], # x=sub_stats["label"], # text=sub_stats["form"], # values displayed in the bars # textposition='auto', # name="Forms - Bar Chart"), # row=1, col=1) # # # Creating the Pie chart # fig.add_trace( # go.Pie(values=sub_stats["form"], # labels=sub_stats["label"], # textinfo='label+percent'), # row=1, col=2) # # adding the title # fig.update_layout(title="Most common forms in 2020Q1") # display the chart in the jupyter notebook # fig.show() # let's filter adsh, unique report identifier of the `8-K`s eight_k_filter = sub[sub["form"] == "8-K"][["name", "adsh"]] print('eight_k_filter.shape:', eight_k_filter.shape) print('\neight_k_filter.head()\n', eight_k_filter.head()) print('\nnum.info()\n', num.info()) print('\nnum.head()\n', num.head()) # merge the file headers with the detailed data eight_k_nums = num.merge(eight_k_filter) print('eight_k_nums.shape:', eight_k_nums.shape) print('\neight_k_nums.head()\n', eight_k_nums.head()) print('len(eight_k_nums["adsh"].unique())', len(eight_k_nums["adsh"].unique())) # num contain many lines for each `adsh` so we only .merge on unique # values using .drop_duplicates() # we left join to see all the records from sub.txt and possibly related # record in num.txt # we apply an indicator which highlights whether the adsh appear in # `both` files or `left_only` contain_data_df = \ sub[["adsh", "form"]].merge(num["adsh"].drop_duplicates(), how="left", indicator=True) print('\ncontain_data_df.sample(3)\n', contain_data_df.sample(3)) # we pivot the data to have 2 columns "both" and "left_only" contain_data_stats = \ contain_data_df.pivot_table(index="form", columns="_merge", values="adsh", aggfunc="count") print('\ncontain_data_stats 1\n', contain_data_stats.head()) # if there's no data in left_only (100% are in both) we fill in zero # .fillna(0) # since the columns are categorical we need to turn them to string with # .rename(columns=str) in # order to .reset_index() contain_data_stats = \ contain_data_stats.fillna(0).rename(columns=str).reset_index() print('\ncontain_data_stats 2\n', contain_data_stats.head()) # finally we sort the data and rename the columns to be more user-friendly # "both" --> "numeric data" contain_data_stats = \ contain_data_stats.sort_values(by="both", ascending=False).rename( columns={"both": "numeric data", "left_only": "no data"}) print('\ncontain_data_stats 3\n', contain_data_stats.head()) # we calculate the percentage of adsh which have numeric data\n", contain_data_stats["perc_filled"] = \ contain_data_stats["numeric data"] /\ (contain_data_stats["numeric data"]+contain_data_stats["no data"]) print('\ncontain_data_stats 4\n', contain_data_stats.head()) # fig = px.bar(contain_data_stats, # x="form", y=["numeric data","no data"], text="perc_filled") # fig.update_traces(texttemplate='%{text:.2%}', textposition='auto') # fig.update_layout(yaxis_title="Count") # fig.show() # filter only 10-K and 10-Q forms tens = sub[sub["form"].isin(["10-Q", "10-K"])] print('\ntens\n', tens.head()) # count how many forms of each type are in the dataset tens_counts = tens["form"].value_counts().reset_index().\ rename(columns={"index": "form type", "form": "count"}) print('\ntens_counts\n', tens_counts) # using Plotly.Express create a bar chart # fig = px.bar(tens_counts, # x="form type", # y="count", # barmode='group', # text="count", # title="Number of Annual and Quarterly forms in 2020Q1" # ) # fig.show()
5,352,181
def train_and_eval(train_epochs, train_data, test_data, train_embeddings_file_name, test_embeddings_file_name, eval_filename, unformed_filename, positive_labels, combination_method, method, c_lst, lbd_type, experiment_name, a, c, gold_b): """Train and evaluate the model.""" index_map, weights = wvd.load(test_embeddings_file_name) #Get positive labels positive_labels = positive_labels.split(',') print("reading training data...") train_file_name = train_data df_train = pd.read_table(train_file_name, dtype={'train_nodes':str}) df_train = df_train.sample(frac=1) # remove NaN elements df_train = df_train.dropna(how='any', axis=0) #Get inputs train_x, labels, _ = get_input(df_train, weights, index_map, combination_method) train_loader = torch.utils.data.DataLoader(dataset=LinksDataset(train_x, labels), batch_size=batch_size, shuffle=True) pos_labels = [l_ for l_ in labels if l_ != 0] #Start loading evaluation data (same as test data for cancer cases) print("reading eval data...") test_file_name = test_data df_test = pd.read_table(test_file_name, dtype={'train_nodes':str}) # remove NaN elements df_test = df_test.dropna(how='any', axis=0) c_dict = {} if c_lst: c_file = open(c_lst, 'r') c_ = c_file.readline().strip(' \n\t') while c_: c_dict[c_] = 1 c_ = c_file.readline().strip(' \n\t') test_x, test_labels, test_original_x = get_input(df_test, weights, index_map, combination_method, data_purpose='test') test_loader = torch.utils.data.DataLoader(dataset=LinksDataset(test_x, test_labels), batch_size=batch_size, shuffle=False) #End loading evaluation data print("\nBuilding model...") feature_dim = train_x[0].shape[0] model, criterion, optimizer = build_model(feature_dim) # Train the model print("\nTraining model...") total_step = len(train_loader) best_info = {'best_rank':1000000000} evaluate_every = 5 for epoch in range(train_epochs): for i, (train_x, labels) in enumerate(train_loader): labels = labels.type(torch.LongTensor) #labels = labels.view(-1, 1) links = train_x.to(device) labels = labels.to(device) # Forward pass outputs = model(links) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() if (i+1) % 500 == 0: print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, train_epochs, i+1, total_step, loss.item())) if (epoch + 1) % evaluate_every == 0: #Save the current model torch.save(model, CUR_PATH) #Load the last saved best model lmodel = torch.load(CUR_PATH) lmodel.eval() # eval mode (batchnorm uses moving mean/variance instead of mini-batch mean/variance) # Test the model with torch.no_grad(): predictions = [] for test_links, _ in test_loader: test_links = test_links.to(device) outputs = lmodel(test_links) predicted, _ = torch.max(outputs.data, 1) predictions.extend([tensor.item() for tensor in predicted]) if lbd_type == 'closed_discovery': ranks, ties, output = do_case_cd_evaluations(a, c, gold_b, [p for p in predictions], [x for x in test_original_x], experiment_name) for ind, tie in enumerate(ties): if tie > 10: ranks.pop(ind) if len(ranks) > 0: best_rank = min(ranks) if best_rank < best_info['best_rank']: print("Saving because {} < {}".format(best_rank, best_info['best_rank'])) torch.save(model, PATH) best_info['case_name'] = experiment_name best_info['best_rank'] = best_rank best_info['loss_at_best'] = loss.item() best_info['epoch'] = epoch + 1 best_info['output'] = output fil = open("{}.txt".format(experiment_name), 'w') fil.write("{}\n\n{}".format(str(best_info), best_info['output'])) fil.close() elif lbd_type == 'open_discovery': ranks, ties, output = do_case_od_evaluations(a, gold_b, c, c_dict, [p for p in predictions], [x for x in test_original_x], experiment_name) for ind, tie in enumerate(ties): if tie > 10: ranks.pop(ind) if len(ranks) > 0: best_rank = min(ranks) if best_rank < best_info['best_rank']: print("Saving because {} < {}".format(best_rank, best_info['best_rank'])) torch.save(model, PATH) best_info['case_name'] = experiment_name best_info['best_rank'] = best_rank best_info['loss_at_best'] = loss.item() best_info['epoch'] = epoch + 1 best_info['output'] = output fil = open("{}.txt".format(experiment_name), 'w') fil.write("{}\n\n{}".format(str(best_info), best_info['output'])) fil.close() else: print("ERROR: Invalid lbd_type: {}".format(lbd_type))
5,352,182
def decode_layout_example(example, input_range=None): """Given an instance and raw labels, creates <inputs, label> pair. Decoding includes. 1. Converting images from uint8 [0, 255] to [0, 1.] float32. 2. Mean subtraction and standardization using hard-coded mean and std. 3. Convert boxes from yxyx [0-1] to xyxy un-normalized. 4. Add 1 to all labels to account for background/padding object at label 0. 5. Shuffling dictionary keys to be consistent with the rest of the code. Args: example: dict; Input image and raw labels. input_range: tuple; Range of input. By default we use Mean and StdDev normalization. Returns: A dictionary of {'inputs': input image, 'labels': task label}. """ image = tf.image.convert_image_dtype(example['image'], dtype=tf.float32) # Normalize. if input_range: image = image * (input_range[1] - input_range[0]) + input_range[0] else: mean_rgb = tf.constant(MEAN_RGB, shape=[1, 1, 3], dtype=tf.float32) std_rgb = tf.constant(STDDEV_RGB, shape=[1, 1, 3], dtype=tf.float32) image = (image - mean_rgb) / std_rgb boxes = example['objects']['boxes'] target = { 'boxes': boxes, 'labels': example['objects']['label'] + 1, # 0'th class is padding. 'binary_labels': example['objects']['binary_label'] + 1, 'desc_id': example['objects']['desc_id'], 'resource_id': example['objects']['resource_id'], 'name_id': example['objects']['name_id'], 'obj_mask': example['objects']['obj_mask'], } # Filters objects to exclude degenerate boxes. valid_bbx = tf.logical_and(boxes[:, 2] > boxes[:, 0], boxes[:, 3] > boxes[:, 1]) # -1 is ROOT node, remove it for training & eval. valid_node = tf.greater(example['objects']['label'], -1) keep = tf.where(tf.logical_and(valid_bbx, valid_node))[:, 0] target_kept = {k: tf.gather(v, keep) for k, v in target.items()} target_kept['orig_size'] = tf.cast(tf.shape(image)[0:2], dtype=tf.int32) target_kept['size'] = tf.identity(target_kept['orig_size']) return { 'inputs': image, 'label': target_kept, }
5,352,183
def bact_plot(samples, bacteroidetes, healthiest_sample): """ Returns a graph of the distribution of the data in a graph ========== samples : pandas.DataFrame The sample data frame. Must contain column `Bacteroidetes` and `Firmicutes` that contain the percentage of those phyla. Returns ======= plotly graph """ import plotly.figure_factory as ff hist_data = [samples["Bacteroidetes"]] group_labels = ["Bacteroidetes"] bact = ff.create_distplot(hist_data, group_labels, show_hist=False) bact["layout"].update(title="Bacteroidetes Sample Distribution ") bact["layout"].update( showlegend=False, annotations=[ dict( x=bacteroidetes, y=0, xref="x", yref="y", text="You are here!", showarrow=True, arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#0e0f36", ax=70, ay=-30, bordercolor="#06a300", borderwidth=2, borderpad=4, bgcolor="#69f564", opacity=0.8, ), dict( x=healthiest_sample["Bacteroidetes"], y=0, xref="x", yref="y", text="Healthiest Sample", showarrow=True, arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#0e0f36", ax=70, ay=30, bordercolor="#4c0acf", borderwidth=2, borderpad=4, bgcolor="#b977f2", opacity=0.8, ), ], ) return bact
5,352,184
def dynamic_upload_to(instance, filename): """ 根据链接类型,决定存储的目录 """ file_dir = (LogoImgRelatedDirEnum.APP.value if instance.link_type == LinkTypeEnum.LIGHT_APP.value else LogoImgRelatedDirEnum.ICON.value) return os.path.join(file_dir, filename)
5,352,185
def xdraw_lines(lines, **kwargs): """Draw lines and optionally set individual name, color, arrow, layer, and width properties. """ guids = [] for l in iter(lines): sp = l['start'] ep = l['end'] name = l.get('name', '') color = l.get('color') arrow = l.get('arrow') layer = l.get('layer') width = l.get('width') guid = add_line(Point3d(*sp), Point3d(*ep)) if not guid: continue obj = find_object(guid) if not obj: continue attr = obj.Attributes if color: attr.ObjectColor = FromArgb(*color) attr.ColorSource = ColorFromObject else: attr.ColorSource = ColorFromLayer if arrow == 'end': attr.ObjectDecoration = EndArrowhead if arrow == 'start': attr.ObjectDecoration = StartArrowhead if layer and find_layer_by_fullpath: index = find_layer_by_fullpath(layer, True) if index >= 0: attr.LayerIndex = index if width: attr.PlotWeight = width attr.PlotWeightSource = PlotWeightFromObject attr.Name = name obj.CommitChanges() guids.append(guid) return guids
5,352,186
def test_fragment_three_aa_peptide_c_series(): """Test c1/2 fragmentation""" fragments = PeptideFragment0r('MKK', charges=[1],ions=['c']).df # fragments = fragger.fragment_peptide(ion_series=['c']) assert isinstance(fragments, DataFrame) # assert len(fragments) == 3 row = fragments.iloc[0] assert row['name'] == 'c1' assert row['hill'] == 'C(5)H(12)N(2)O(1)S(1)' assert row['charge'] == 1 assert pytest.approx( row['mz'], 5e-6 ) == 149.07436 row = fragments.iloc[2] assert row['name'] == 'c2' assert row['hill'] == 'C(11)H(24)N(4)O(2)S(1)' assert row['charge'] == 1 assert pytest.approx( row['mz'], 5e-6 ) == 277.16932
5,352,187
def _emit_params_file_action(ctx, path, mnemonic, cmds): """Helper function that writes a potentially long command list to a file. Args: ctx (struct): The ctx object. path (string): the file path where the params file should be written. mnemonic (string): the action mnemomic. cmds (list<string>): the command list. Returns: (File): an executable file that runs the command set. """ filename = "%s.%sFile.params" % (path, mnemonic) f = ctx.new_file(ctx.configuration.bin_dir, filename) ctx.file_action(output = f, content = "\n".join(["set -e"] + cmds), executable = True) return f
5,352,188
def annotate_validation_results(results, parsed_data): """Annotate validation results with potential add-on restrictions like denied origins.""" if waffle.switch_is_active('record-install-origins'): denied_origins = sorted( DeniedInstallOrigin.find_denied_origins(parsed_data['install_origins']) ) for origin in denied_origins: insert_validation_message( results, message=gettext( 'The install origin {origin} is not permitted.'.format( origin=origin ) ), ) return results
5,352,189
def test_player_1_wins_diagonally_at_beginning_of_the_main_diagonal(game): """ Board final state is 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 2 1 2 2 0 0 0 1 2 2 1 0 0 0 """ [game.drop_checker_on_column(c) for c in [3, 3, 3, 4, 3, 4, 0, 5, 1, 6, 2]] assert game.was_won assert game.winner == "player1" assert game.is_over assert game.board("player1") == [ [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0], [2, 1, 2, 2, 0, 0, 0], [1, 2, 2, 1, 0, 0, 0] ]
5,352,190
def RunCommand(command, input=None, pollFn=None, outStream=None, errStream=None, killOnEarlyReturn=True, verbose=False, debug=False, printErrorInfo=False): """ Run a command, with optional input and polling function. Args: command: list of the command and its arguments. input: optional string of input to feed to the command, it should be short enough to fit in an i/o pipe buffer. pollFn: if present will be called occasionally to check if the command should be finished early. If pollFn() returns true then the command will finish early. outStream: if present, the stdout output of the command will be written to outStream. errStream: if present, the stderr output of the command will be written to errStream. killOnEarlyReturn: if true and pollFn returns true, then the subprocess will be killed, otherwise the subprocess will be detached. verbose: if true, the command is echoed to stderr. debug: if true, prints debugging information to stderr. printErrorInfo: if true, prints error information when the subprocess returns a non-zero exit code. Returns: the output of the subprocess. Exceptions: Raises Error if the subprocess returns an error code. Raises ValueError if called with invalid arguments. """ if verbose: sys.stderr.write("command %s\n" % command) stdin = None if input: stdin = subprocess.PIPE try: process = subprocess.Popen( args=command, stdin=stdin, bufsize=1, stdout=subprocess.PIPE, stderr=subprocess.PIPE) except OSError as e: if not isinstance(command, basestring): command = ' '.join(command) if printErrorInfo: sys.stderr.write("Command failed: '%s'\n" % command) raise Error(e) def StartThread(out): queue = Queue.Queue() def EnqueueOutput(out, queue): for line in iter(out.readline, b''): queue.put(line) out.close() thread = threading.Thread(target=EnqueueOutput, args=(out, queue)) thread.daemon = True thread.start() return queue outQueue = StartThread(process.stdout) errQueue = StartThread(process.stderr) def ReadQueue(queue, out, out2): try: while True: line = queue.get(False) out.write(line) if out2 != None: out2.write(line) except Queue.Empty: pass outBuf = StringIO.StringIO() errorBuf = StringIO.StringIO() if input: process.stdin.write(input) while True: returncode = process.poll() if returncode != None: break ReadQueue(errQueue, errorBuf, errStream) ReadQueue(outQueue, outBuf, outStream) if pollFn != None and pollFn(): returncode = 0 if killOnEarlyReturn: process.kill() break time.sleep(0.1) # Drain queue ReadQueue(errQueue, errorBuf, errStream) ReadQueue(outQueue, outBuf, outStream) out = outBuf.getvalue() error = errorBuf.getvalue() if returncode: if not isinstance(command, basestring): command = ' '.join(command) if printErrorInfo: sys.stderr.write("Command failed: '%s'\n" % command) sys.stderr.write(" stdout: '%s'\n" % out) sys.stderr.write(" stderr: '%s'\n" % error) sys.stderr.write(" returncode: %d\n" % returncode) raise Error("Command failed: %s" % command) if debug: sys.stderr.write("output: %s\n" % out) return out
5,352,191
def ignore_firstline_dedent(text: str) -> str: """Like textwrap.dedent(), but ignore first empty lines Args: text: The text the be dedented Returns: The dedented text """ out = [] started = False for line in text.splitlines(): if not started and not line.strip(): continue if not started: started = True out.append(line) return textwrap.dedent("\n".join(out))
5,352,192
def test_provide_fail(providers: list[Provider]) -> None: """It raises an exception.""" with pytest.raises(Exception): provide(providers, URL())
5,352,193
def clear_output(wait_time=0): """ Clear terminal output""" time.sleep(wait_time) if 'linux' in sys.platform or 'darwin' == sys.platform: os.system('clear') else: os.system('cls')
5,352,194
def discrete_micro(micro, es): """ Performs discrete policy for autoscaling engine. Algorithm: if microservice crosses high threshold: scale-up microservice else: scale-down microservice """ micro_config = util.read_config_file(eng.MICRO_CONFIG) if up_scale(micro, es, "Micro"): # Finally, scale up the microservice execute.scale_microservice(micro, int(micro_config.get(micro, 'up_step'))) elif down_scale(micro, es, "Micro"): execute.scale_microservice(micro, int(micro_config.get(micro, 'down_step'))) else: print("Discrete Policies rejects scaling decision for microservice: "+micro+". Keep Observing...")
5,352,195
def read_file(filename): """ Read a file and return its binary content. \n @param filename : filename as string. \n @return data as bytes """ with open(filename, mode='rb') as file: file_content = file.read() return file_content
5,352,196
def getdictkeys(value): """ Returns the ordered keys of a dict """ if type(value) == dict: keys = list(value.keys()) keys.sort(key=toint) return keys return []
5,352,197
def exp_lr_scheduler(optimizer, epoch, init_lr=5e-3, lr_decay_epoch=40): """Decay learning rate by a factor of 0.1 every lr_decay_epoch epochs.""" lr = init_lr * (0.1**(epoch // lr_decay_epoch)) if epoch % lr_decay_epoch == 0: print('LR is set to {}'.format(lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr return optimizer
5,352,198
def leff_obs(n_zbin, pos_pos_dir, she_she_dir, pos_she_dir, ell_filename, pos_nl_path, she_nl_path, noise_ell_path, leff_path, save_dir): """ Obtain a pseudo- cut-sky 'observation' by sampling from the Wishart distribution with effective l. Args: n_zbin (int): Number of redshift bins. pos_pos_dir (str): Path to directory containing input position-position power spectra. she_she_dir (str): Path to directory containing input shear-shear power spectra. pos_she_dir (str): Path to directory containing input position-shear power spectra. ell_filename (str): Filename of ells file within each input directory. pos_nl_path (str): Path to position noise power spectrum. she_nl_path (str): Path to shear noise power spectrum. noise_ell_path (str): Path to noise ells. leff_path (str): Path to leff map file. save_dir (str): Path to output directory. """ n_fields = 2 * n_zbin # Load theory cls and convert to matrices theory_cls = like_w.load_cls(n_zbin, pos_pos_dir, she_she_dir, pos_she_dir) theory_mats = like_w.cl_matrix(theory_cls, n_fields) # Load ells and do some consistency checks ell_pos_pos = np.loadtxt(os.path.join(pos_pos_dir, ell_filename)) ell_she_she = np.loadtxt(os.path.join(she_she_dir, ell_filename)) ell_pos_she = np.loadtxt(os.path.join(pos_she_dir, ell_filename)) lmax = np.amax(ell_pos_pos) lmin = np.amin(ell_pos_she) n_ell = int(lmax - lmin + 1) assert np.allclose(ell_pos_pos, ell_she_she) assert np.allclose(ell_pos_pos, ell_pos_she) assert len(ell_pos_pos) == n_ell assert theory_mats.shape[0] == n_ell # Load noise cls and ells and trim to correct range pos_nl = np.loadtxt(pos_nl_path) she_nl = np.loadtxt(she_nl_path) noise_ell = np.loadtxt(noise_ell_path) noise_keep = np.logical_and(noise_ell >= lmin, noise_ell <= lmax) pos_nl = pos_nl[noise_keep] she_nl = she_nl[noise_keep] assert np.allclose(noise_ell[noise_keep], ell_pos_pos) # Convert noise cls to matrices (all diagonal) nl_nonzero = np.array([pos_nl, she_nl]*n_zbin) n_cls = int(n_fields * (n_fields + 1) / 2) nl_zero = np.zeros((n_cls - n_fields, n_ell)) nl = np.concatenate((nl_nonzero, nl_zero)) noise_mats = like_w.cl_matrix(nl, n_fields) # Load and apply leff map leff_map = np.loadtxt(leff_path) leff_l = leff_map[:, 0] leff_map = leff_map[(leff_l >= lmin) & (leff_l <= lmax)] assert np.allclose(ell_pos_pos, leff_map[:, 0]) leffs = leff_map[:, 1] # For each l, sample from wishart with df = 2 * leff + 1 and scale = theory_cl_mat / df obs_mats = np.full_like(theory_mats, np.nan) zero = np.zeros(theory_mats.shape[1:]) print(f'Starting at {time.strftime("%c")}') for i, (l, leff, theory_mat, noise_mat) in enumerate(zip(ell_pos_pos, leffs, theory_mats, noise_mats)): print(f'l = {l:.0f} / {lmax:.0f}', end='\r') df = 2 * leff + 1 # If wishart isn't defined, set all 0 - no effect as will be excluded from likelihood anyway if df < n_fields: obs_mats[i] = zero continue scale = (theory_mat + noise_mat) * 1. / df obs = scipy.stats.wishart.rvs(df=df, scale=scale) assert is_pd(obs) obs_mats[i] = obs # Save to disk assert np.all(np.isfinite(obs_mats)) obs_cls = like_w.cl_vector(obs_mats) save_cls_nob(obs_cls, n_zbin, save_dir, lmin=lmin)
5,352,199