content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def setup_page(choice, pagepanel, frame):
"""
Creates a :class:`Page` inside a :class:`Notebook`.
:Args:
- choice (tuple)
A tuple of (name, module path, module alias)
- pagepanel
"""
if isinstance(choice.module, str):
try:
__import__(choice.module)
except ImportError as e:
wx.MessageBox('%s' % e, 'Info', wx.OK | wx.ICON_ERROR)
return False
else:
class_aliases, class_obj = _get_classes(sys.modules[choice.module],
class_order=choice.order)
else:
class_aliases, class_obj = _get_classes(choice.module, class_order=choice.order)
nb = wx.Notebook(pagepanel)
for class_alias, class_obj in class_aliases:
nb.AddPage(Page(nb, class_obj, choice.alias, class_alias, frame, pagepanel), class_alias)
panelsizer = wx.BoxSizer()
panelsizer.Add(nb, 1, wx.EXPAND|wx.ALL)
pagepanel.SetSizer(panelsizer)
pagepanel.Layout()
pagepanel.Fit()
return True | 5,354,200 |
def customization_data(client=None):
"""Produce any customization definitions (types, fields, message destinations, etc)
that should be installed by `resilient-circuits customize`
"""
# This import data contains:
# Function inputs:
# artifact_id
# artifact_type
# artifact_value
# incident_id
# DataTables:
# bluecoat_categorization_results
# Message Destinations:
# bluecoat_site_review
# Functions:
# bluecoat_site_review_lookup
# Workflows:
# bluecoat_site_review_search
yield ImportDefinition(u"""
eyJ0YXNrX29yZGVyIjogW10sICJ3b3JrZmxvd3MiOiBbeyJ1dWlkIjogImVlOTE2NGRlLTBmN2Ut
NGZkOC1iNjVmLWUxMTBlODRjZTFjOSIsICJkZXNjcmlwdGlvbiI6ICJUaGlzIHdvcmtmbG93IGRl
bW9uc3RyYXRlcyB0aGUgQmx1ZWNvYXQgU2l0ZSBSZXZpZXcgbG9vayB1cCBmdW5jdGlvbiBhbmQg
cHVsbHMgYmFjayByZXN1bHRzLiIsICJvYmplY3RfdHlwZSI6ICJhcnRpZmFjdCIsICJleHBvcnRf
a2V5IjogImJsdWVjb2F0X3NpdGVfcmV2aWV3X3NlYXJjaCIsICJ3b3JrZmxvd19pZCI6IDE0NCwg
Imxhc3RfbW9kaWZpZWRfYnkiOiAiZ2VyYWxkLnRyb3RtYW5AaWJtLmNvbSIsICJjb250ZW50Ijog
eyJ4bWwiOiAiPD94bWwgdmVyc2lvbj1cIjEuMFwiIGVuY29kaW5nPVwiVVRGLThcIj8+PGRlZmlu
aXRpb25zIHhtbG5zPVwiaHR0cDovL3d3dy5vbWcub3JnL3NwZWMvQlBNTi8yMDEwMDUyNC9NT0RF
TFwiIHhtbG5zOmJwbW5kaT1cImh0dHA6Ly93d3cub21nLm9yZy9zcGVjL0JQTU4vMjAxMDA1MjQv
RElcIiB4bWxuczpvbWdkYz1cImh0dHA6Ly93d3cub21nLm9yZy9zcGVjL0RELzIwMTAwNTI0L0RD
XCIgeG1sbnM6b21nZGk9XCJodHRwOi8vd3d3Lm9tZy5vcmcvc3BlYy9ERC8yMDEwMDUyNC9ESVwi
IHhtbG5zOnJlc2lsaWVudD1cImh0dHA6Ly9yZXNpbGllbnQuaWJtLmNvbS9icG1uXCIgeG1sbnM6
eHNkPVwiaHR0cDovL3d3dy53My5vcmcvMjAwMS9YTUxTY2hlbWFcIiB4bWxuczp4c2k9XCJodHRw
Oi8vd3d3LnczLm9yZy8yMDAxL1hNTFNjaGVtYS1pbnN0YW5jZVwiIHRhcmdldE5hbWVzcGFjZT1c
Imh0dHA6Ly93d3cuY2FtdW5kYS5vcmcvdGVzdFwiPjxwcm9jZXNzIGlkPVwiYmx1ZWNvYXRfc2l0
ZV9yZXZpZXdfc2VhcmNoXCIgaXNFeGVjdXRhYmxlPVwidHJ1ZVwiIG5hbWU9XCJCbHVlY29hdCBT
aXRlIFJldmlldyBTZWFyY2hcIj48ZG9jdW1lbnRhdGlvbj5UaGlzIHdvcmtmbG93IGRlbW9uc3Ry
YXRlcyB0aGUgQmx1ZWNvYXQgU2l0ZSBSZXZpZXcgbG9vayB1cCBmdW5jdGlvbiBhbmQgcHVsbHMg
YmFjayByZXN1bHRzLjwvZG9jdW1lbnRhdGlvbj48c3RhcnRFdmVudCBpZD1cIlN0YXJ0RXZlbnRf
MTU1YXN4bVwiPjxvdXRnb2luZz5TZXF1ZW5jZUZsb3dfMHVueGwydDwvb3V0Z29pbmc+PC9zdGFy
dEV2ZW50PjxzZXJ2aWNlVGFzayBpZD1cIlNlcnZpY2VUYXNrXzFpYmVmdjdcIiBuYW1lPVwiQmx1
ZWNvYXQgU2l0ZSBSZXZpZXcgTG9va3VwXCIgcmVzaWxpZW50OnR5cGU9XCJmdW5jdGlvblwiPjxl
eHRlbnNpb25FbGVtZW50cz48cmVzaWxpZW50OmZ1bmN0aW9uIHV1aWQ9XCIyYjI2OTMyYS02MGRm
LTQwNDUtYWU4ZC0wZWIzMTlkZTYwMWRcIj57XCJpbnB1dHNcIjp7fSxcInByZV9wcm9jZXNzaW5n
X3NjcmlwdFwiOlwiaW5wdXRzLmluY2lkZW50X2lkID0gaW5jaWRlbnQuaWRcXG5pbnB1dHMuYXJ0
aWZhY3RfdmFsdWUgPSBhcnRpZmFjdC52YWx1ZVxcblwifTwvcmVzaWxpZW50OmZ1bmN0aW9uPjwv
ZXh0ZW5zaW9uRWxlbWVudHM+PGluY29taW5nPlNlcXVlbmNlRmxvd18wdW54bDJ0PC9pbmNvbWlu
Zz48b3V0Z29pbmc+U2VxdWVuY2VGbG93XzFncnNjb3Q8L291dGdvaW5nPjwvc2VydmljZVRhc2s+
PHNlcXVlbmNlRmxvdyBpZD1cIlNlcXVlbmNlRmxvd18wdW54bDJ0XCIgc291cmNlUmVmPVwiU3Rh
cnRFdmVudF8xNTVhc3htXCIgdGFyZ2V0UmVmPVwiU2VydmljZVRhc2tfMWliZWZ2N1wiLz48ZW5k
RXZlbnQgaWQ9XCJFbmRFdmVudF8wN3FqOXgzXCI+PGluY29taW5nPlNlcXVlbmNlRmxvd18xZ3Jz
Y290PC9pbmNvbWluZz48L2VuZEV2ZW50PjxzZXF1ZW5jZUZsb3cgaWQ9XCJTZXF1ZW5jZUZsb3df
MWdyc2NvdFwiIHNvdXJjZVJlZj1cIlNlcnZpY2VUYXNrXzFpYmVmdjdcIiB0YXJnZXRSZWY9XCJF
bmRFdmVudF8wN3FqOXgzXCIvPjx0ZXh0QW5ub3RhdGlvbiBpZD1cIlRleHRBbm5vdGF0aW9uXzFr
eHhpeXRcIj48dGV4dD5TdGFydCB5b3VyIHdvcmtmbG93IGhlcmU8L3RleHQ+PC90ZXh0QW5ub3Rh
dGlvbj48YXNzb2NpYXRpb24gaWQ9XCJBc3NvY2lhdGlvbl8xc2V1ajQ4XCIgc291cmNlUmVmPVwi
U3RhcnRFdmVudF8xNTVhc3htXCIgdGFyZ2V0UmVmPVwiVGV4dEFubm90YXRpb25fMWt4eGl5dFwi
Lz48L3Byb2Nlc3M+PGJwbW5kaTpCUE1ORGlhZ3JhbSBpZD1cIkJQTU5EaWFncmFtXzFcIj48YnBt
bmRpOkJQTU5QbGFuZSBicG1uRWxlbWVudD1cInVuZGVmaW5lZFwiIGlkPVwiQlBNTlBsYW5lXzFc
Ij48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxlbWVudD1cIlN0YXJ0RXZlbnRfMTU1YXN4bVwiIGlk
PVwiU3RhcnRFdmVudF8xNTVhc3htX2RpXCI+PG9tZ2RjOkJvdW5kcyBoZWlnaHQ9XCIzNlwiIHdp
ZHRoPVwiMzZcIiB4PVwiMTYyXCIgeT1cIjE4OFwiLz48YnBtbmRpOkJQTU5MYWJlbD48b21nZGM6
Qm91bmRzIGhlaWdodD1cIjBcIiB3aWR0aD1cIjkwXCIgeD1cIjE1N1wiIHk9XCIyMjNcIi8+PC9i
cG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5TaGFwZSBicG1u
RWxlbWVudD1cIlRleHRBbm5vdGF0aW9uXzFreHhpeXRcIiBpZD1cIlRleHRBbm5vdGF0aW9uXzFr
eHhpeXRfZGlcIj48b21nZGM6Qm91bmRzIGhlaWdodD1cIjMwXCIgd2lkdGg9XCIxMDBcIiB4PVwi
OTlcIiB5PVwiMjU0XCIvPjwvYnBtbmRpOkJQTU5TaGFwZT48YnBtbmRpOkJQTU5FZGdlIGJwbW5F
bGVtZW50PVwiQXNzb2NpYXRpb25fMXNldWo0OFwiIGlkPVwiQXNzb2NpYXRpb25fMXNldWo0OF9k
aVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiMTY5XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9
XCIyMjBcIi8+PG9tZ2RpOndheXBvaW50IHg9XCIxNTNcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50
XCIgeT1cIjI1NFwiLz48L2JwbW5kaTpCUE1ORWRnZT48YnBtbmRpOkJQTU5TaGFwZSBicG1uRWxl
bWVudD1cIlNlcnZpY2VUYXNrXzFpYmVmdjdcIiBpZD1cIlNlcnZpY2VUYXNrXzFpYmVmdjdfZGlc
Ij48b21nZGM6Qm91bmRzIGhlaWdodD1cIjgwXCIgd2lkdGg9XCIxMDBcIiB4PVwiMzU4XCIgeT1c
IjE2NlwiLz48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1ORWRnZSBicG1uRWxlbWVudD1c
IlNlcXVlbmNlRmxvd18wdW54bDJ0XCIgaWQ9XCJTZXF1ZW5jZUZsb3dfMHVueGwydF9kaVwiPjxv
bWdkaTp3YXlwb2ludCB4PVwiMTk4XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2ludFwiIHk9XCIyMDZc
Ii8+PG9tZ2RpOndheXBvaW50IHg9XCIzNThcIiB4c2k6dHlwZT1cIm9tZ2RjOlBvaW50XCIgeT1c
IjIwNlwiLz48YnBtbmRpOkJQTU5MYWJlbD48b21nZGM6Qm91bmRzIGhlaWdodD1cIjEzXCIgd2lk
dGg9XCIwXCIgeD1cIjI3OFwiIHk9XCIxODRcIi8+PC9icG1uZGk6QlBNTkxhYmVsPjwvYnBtbmRp
OkJQTU5FZGdlPjxicG1uZGk6QlBNTlNoYXBlIGJwbW5FbGVtZW50PVwiRW5kRXZlbnRfMDdxajl4
M1wiIGlkPVwiRW5kRXZlbnRfMDdxajl4M19kaVwiPjxvbWdkYzpCb3VuZHMgaGVpZ2h0PVwiMzZc
IiB3aWR0aD1cIjM2XCIgeD1cIjYxMlwiIHk9XCIxODhcIi8+PGJwbW5kaTpCUE1OTGFiZWw+PG9t
Z2RjOkJvdW5kcyBoZWlnaHQ9XCIxM1wiIHdpZHRoPVwiMFwiIHg9XCI2MzBcIiB5PVwiMjI3XCIv
PjwvYnBtbmRpOkJQTU5MYWJlbD48L2JwbW5kaTpCUE1OU2hhcGU+PGJwbW5kaTpCUE1ORWRnZSBi
cG1uRWxlbWVudD1cIlNlcXVlbmNlRmxvd18xZ3JzY290XCIgaWQ9XCJTZXF1ZW5jZUZsb3dfMWdy
c2NvdF9kaVwiPjxvbWdkaTp3YXlwb2ludCB4PVwiNDU4XCIgeHNpOnR5cGU9XCJvbWdkYzpQb2lu
dFwiIHk9XCIyMDZcIi8+PG9tZ2RpOndheXBvaW50IHg9XCI2MTJcIiB4c2k6dHlwZT1cIm9tZ2Rj
OlBvaW50XCIgeT1cIjIwNlwiLz48YnBtbmRpOkJQTU5MYWJlbD48b21nZGM6Qm91bmRzIGhlaWdo
dD1cIjEzXCIgd2lkdGg9XCIwXCIgeD1cIjUzNVwiIHk9XCIxODRcIi8+PC9icG1uZGk6QlBNTkxh
YmVsPjwvYnBtbmRpOkJQTU5FZGdlPjwvYnBtbmRpOkJQTU5QbGFuZT48L2JwbW5kaTpCUE1ORGlh
Z3JhbT48L2RlZmluaXRpb25zPiIsICJ3b3JrZmxvd19pZCI6ICJibHVlY29hdF9zaXRlX3Jldmll
d19zZWFyY2giLCAidmVyc2lvbiI6IDIxfSwgImxhc3RfbW9kaWZpZWRfdGltZSI6IDE1NDMzNDc3
NDM2MTgsICJjcmVhdG9yX2lkIjogImdlcmFsZC50cm90bWFuQGlibS5jb20iLCAiYWN0aW9ucyI6
IFtdLCAicHJvZ3JhbW1hdGljX25hbWUiOiAiYmx1ZWNvYXRfc2l0ZV9yZXZpZXdfc2VhcmNoIiwg
Im5hbWUiOiAiQmx1ZWNvYXQgU2l0ZSBSZXZpZXcgU2VhcmNoIn1dLCAiYWN0aW9ucyI6IFtdLCAi
bGF5b3V0cyI6IFtdLCAiZXhwb3J0X2Zvcm1hdF92ZXJzaW9uIjogMiwgImlkIjogMzcsICJpbmR1
c3RyaWVzIjogbnVsbCwgInBoYXNlcyI6IFtdLCAiYWN0aW9uX29yZGVyIjogW10sICJnZW9zIjog
bnVsbCwgImxvY2FsZSI6IG51bGwsICJzZXJ2ZXJfdmVyc2lvbiI6IHsibWFqb3IiOiAzMSwgInZl
cnNpb24iOiAiMzEuMC40MjU0IiwgImJ1aWxkX251bWJlciI6IDQyNTQsICJtaW5vciI6IDB9LCAi
dGltZWZyYW1lcyI6IG51bGwsICJ3b3Jrc3BhY2VzIjogW10sICJhdXRvbWF0aWNfdGFza3MiOiBb
XSwgImZ1bmN0aW9ucyI6IFt7ImRpc3BsYXlfbmFtZSI6ICJCbHVlY29hdCBTaXRlIFJldmlldyBM
b29rdXAiLCAiZGVzY3JpcHRpb24iOiB7ImNvbnRlbnQiOiAiVGhpcyBmdW5jdGlvbiB0YWtlcyBh
biBhcnRpZmFjdCBvZiB0eXBlIFVSTCBvciBETlMgbmFtZSBhbmQgcmV0dXJucyB0aG9zZSByZXN1
bHRzIGFzIGEganNvbiBvYmplY3QuIiwgImZvcm1hdCI6ICJ0ZXh0In0sICJjcmVhdG9yIjogeyJk
aXNwbGF5X25hbWUiOiAiR2VyYWxkIFRyb3RtYW4iLCAidHlwZSI6ICJ1c2VyIiwgImlkIjogNCwg
Im5hbWUiOiAiZ2VyYWxkLnRyb3RtYW5AaWJtLmNvbSJ9LCAidmlld19pdGVtcyI6IFt7InNob3df
aWYiOiBudWxsLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3dfbGlua19oZWFkZXIi
OiBmYWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogImVhZDIxNGMyLTEz
ZmUtNDNmNi1hM2M3LTY3NmE4ODMzOGRiYiIsICJzdGVwX2xhYmVsIjogbnVsbH0sIHsic2hvd19p
ZiI6IG51bGwsICJmaWVsZF90eXBlIjogIl9fZnVuY3Rpb24iLCAic2hvd19saW5rX2hlYWRlciI6
IGZhbHNlLCAiZWxlbWVudCI6ICJmaWVsZF91dWlkIiwgImNvbnRlbnQiOiAiNWU5NGIxZDMtNDhh
MS00MThhLTljZTMtNDQzM2M2ODg5ZTE0IiwgInN0ZXBfbGFiZWwiOiBudWxsfSwgeyJzaG93X2lm
IjogbnVsbCwgImZpZWxkX3R5cGUiOiAiX19mdW5jdGlvbiIsICJzaG93X2xpbmtfaGVhZGVyIjog
ZmFsc2UsICJlbGVtZW50IjogImZpZWxkX3V1aWQiLCAiY29udGVudCI6ICIzYTJlMzQ3Yi02NzJl
LTQyNjMtODc4Ny1hM2U5ZWJhNGFjOTEiLCAic3RlcF9sYWJlbCI6IG51bGx9LCB7InNob3dfaWYi
OiBudWxsLCAiZmllbGRfdHlwZSI6ICJfX2Z1bmN0aW9uIiwgInNob3dfbGlua19oZWFkZXIiOiBm
YWxzZSwgImVsZW1lbnQiOiAiZmllbGRfdXVpZCIsICJjb250ZW50IjogIjliYTQ5ODg3LTBkY2Yt
NDBjZS1hNWVhLTljMGM0M2Y4MzFiZiIsICJzdGVwX2xhYmVsIjogbnVsbH1dLCAiZXhwb3J0X2tl
eSI6ICJibHVlY29hdF9zaXRlX3Jldmlld19sb29rdXAiLCAidXVpZCI6ICIyYjI2OTMyYS02MGRm
LTQwNDUtYWU4ZC0wZWIzMTlkZTYwMWQiLCAibGFzdF9tb2RpZmllZF9ieSI6IHsiZGlzcGxheV9u
YW1lIjogIkdlcmFsZCBUcm90bWFuIiwgInR5cGUiOiAidXNlciIsICJpZCI6IDQsICJuYW1lIjog
ImdlcmFsZC50cm90bWFuQGlibS5jb20ifSwgInZlcnNpb24iOiAyMCwgIndvcmtmbG93cyI6IFt7
ImRlc2NyaXB0aW9uIjogbnVsbCwgIm9iamVjdF90eXBlIjogImFydGlmYWN0IiwgImFjdGlvbnMi
OiBbXSwgIm5hbWUiOiAiQmx1ZWNvYXQgU2l0ZSBSZXZpZXcgU2VhcmNoIiwgIndvcmtmbG93X2lk
IjogMTQ0LCAicHJvZ3JhbW1hdGljX25hbWUiOiAiYmx1ZWNvYXRfc2l0ZV9yZXZpZXdfc2VhcmNo
IiwgInV1aWQiOiBudWxsfV0sICJsYXN0X21vZGlmaWVkX3RpbWUiOiAxNTQzMzQ5NzI1MjM0LCAi
ZGVzdGluYXRpb25faGFuZGxlIjogImJsdWVjb2F0X3NpdGVfcmV2aWV3IiwgImlkIjogMTY0LCAi
bmFtZSI6ICJibHVlY29hdF9zaXRlX3Jldmlld19sb29rdXAifV0sICJub3RpZmljYXRpb25zIjog
bnVsbCwgInJlZ3VsYXRvcnMiOiBudWxsLCAiaW5jaWRlbnRfdHlwZXMiOiBbeyJjcmVhdGVfZGF0
ZSI6IDE1NDMzNTc5MDE2NzAsICJkZXNjcmlwdGlvbiI6ICJDdXN0b21pemF0aW9uIFBhY2thZ2Vz
IChpbnRlcm5hbCkiLCAiZXhwb3J0X2tleSI6ICJDdXN0b21pemF0aW9uIFBhY2thZ2VzIChpbnRl
cm5hbCkiLCAiaWQiOiAwLCAibmFtZSI6ICJDdXN0b21pemF0aW9uIFBhY2thZ2VzIChpbnRlcm5h
bCkiLCAidXBkYXRlX2RhdGUiOiAxNTQzMzU3OTAxNjcwLCAidXVpZCI6ICJiZmVlYzJkNC0zNzcw
LTExZTgtYWQzOS00YTAwMDQwNDRhYTAiLCAiZW5hYmxlZCI6IGZhbHNlLCAic3lzdGVtIjogZmFs
c2UsICJwYXJlbnRfaWQiOiBudWxsLCAiaGlkZGVuIjogZmFsc2V9XSwgInNjcmlwdHMiOiBbXSwg
InR5cGVzIjogW3siZGlzcGxheV9uYW1lIjogIkJsdWVjb2F0IENhdGVnb3JpemF0aW9uIFJlc3Vs
dHMiLCAidXVpZCI6ICIzNDUwYWJkZS0xOGU3LTRkOTEtODBhOC0zYzVjMjRjMWY3OWIiLCAidHlw
ZV9pZCI6IDgsICJmaWVsZHMiOiB7InVybCI6IHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6
IDEwMDQsICJvcGVyYXRpb25fcGVybXMiOiB7fSwgInRleHQiOiAiVVJMIiwgImJsYW5rX29wdGlv
biI6IGZhbHNlLCAicHJlZml4IjogbnVsbCwgImNoYW5nZWFibGUiOiB0cnVlLCAiaWQiOiAyNTks
ICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiY2I4NmViMzgtOTAzNC00YWIyLTkzOWQtZGI0
YzdmZmY0Njk4IiwgImNob3NlbiI6IGZhbHNlLCAiaW5wdXRfdHlwZSI6ICJ0ZXh0IiwgInRvb2x0
aXAiOiAiIiwgIndpZHRoIjogMjI1LCAiaW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IGZh
bHNlLCAidGVtcGxhdGVzIjogW10sICJleHBvcnRfa2V5IjogImJsdWVjb2F0X2NhdGVnb3JpemF0
aW9uX3Jlc3VsdHMvdXJsIiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFsc2UsICJwbGFjZWhvbGRl
ciI6ICIiLCAibmFtZSI6ICJ1cmwiLCAiZGVwcmVjYXRlZCI6IGZhbHNlLCAiZGVmYXVsdF9jaG9z
ZW5fYnlfc2VydmVyIjogZmFsc2UsICJ2YWx1ZXMiOiBbXSwgIm9yZGVyIjogMH0sICJjYXRlZ29y
aXphdGlvbl9uYW1lIjogeyJvcGVyYXRpb25zIjogW10sICJ0eXBlX2lkIjogMTAwNCwgIm9wZXJh
dGlvbl9wZXJtcyI6IHt9LCAidGV4dCI6ICJDYXRlZ29yaXphdGlvbiBOYW1lIiwgImJsYW5rX29w
dGlvbiI6IGZhbHNlLCAicHJlZml4IjogbnVsbCwgImNoYW5nZWFibGUiOiB0cnVlLCAiaWQiOiAy
NjAsICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiMGUyYzExMmMtNDYyNS00MjU2LWE0MTgt
NjVmYTBjMDE3Y2ZjIiwgImNob3NlbiI6IGZhbHNlLCAiaW5wdXRfdHlwZSI6ICJ0ZXh0IiwgInRv
b2x0aXAiOiAiIiwgIndpZHRoIjogMjY0LCAiaW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6
IGZhbHNlLCAidGVtcGxhdGVzIjogW10sICJleHBvcnRfa2V5IjogImJsdWVjb2F0X2NhdGVnb3Jp
emF0aW9uX3Jlc3VsdHMvY2F0ZWdvcml6YXRpb25fbmFtZSIsICJoaWRlX25vdGlmaWNhdGlvbiI6
IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAiIiwgIm5hbWUiOiAiY2F0ZWdvcml6YXRpb25fbmFtZSIs
ICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwg
InZhbHVlcyI6IFtdLCAib3JkZXIiOiAxfSwgInV0Y2VzdF90aW1lc3RhbXAiOiB7Im9wZXJhdGlv
bnMiOiBbXSwgInR5cGVfaWQiOiAxMDA0LCAib3BlcmF0aW9uX3Blcm1zIjoge30sICJ0ZXh0Ijog
IlVUQy9FU1QgdGltZXN0YW1wIiwgImJsYW5rX29wdGlvbiI6IGZhbHNlLCAicHJlZml4IjogbnVs
bCwgImNoYW5nZWFibGUiOiB0cnVlLCAiaWQiOiAyNjEsICJyZWFkX29ubHkiOiBmYWxzZSwgInV1
aWQiOiAiZTBkMGQ3NDktNmRhZS00Y2Q5LWExMjMtZDliOWJjYjY3ZjJkIiwgImNob3NlbiI6IGZh
bHNlLCAiaW5wdXRfdHlwZSI6ICJ0ZXh0IiwgInRvb2x0aXAiOiAiIiwgIndpZHRoIjogMjU1LCAi
aW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVzIjogW10sICJl
eHBvcnRfa2V5IjogImJsdWVjb2F0X2NhdGVnb3JpemF0aW9uX3Jlc3VsdHMvdXRjZXN0X3RpbWVz
dGFtcCIsICJoaWRlX25vdGlmaWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAiIiwgIm5h
bWUiOiAidXRjZXN0X3RpbWVzdGFtcCIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2No
b3Nlbl9ieV9zZXJ2ZXIiOiBmYWxzZSwgInZhbHVlcyI6IFtdLCAib3JkZXIiOiAyfX0sICJwYXJl
bnRfdHlwZXMiOiBbImluY2lkZW50Il0sICJ0eXBlX25hbWUiOiAiYmx1ZWNvYXRfY2F0ZWdvcml6
YXRpb25fcmVzdWx0cyIsICJleHBvcnRfa2V5IjogImJsdWVjb2F0X2NhdGVnb3JpemF0aW9uX3Jl
c3VsdHMiLCAiZm9yX2N1c3RvbV9maWVsZHMiOiBmYWxzZSwgImFjdGlvbnMiOiBbXSwgImlkIjog
bnVsbCwgImZvcl9hY3Rpb25zIjogZmFsc2UsICJmb3Jfbm90aWZpY2F0aW9ucyI6IGZhbHNlLCAi
c2NyaXB0cyI6IFtdLCAicHJvcGVydGllcyI6IHsiZm9yX3dobyI6IFtdLCAiY2FuX2Rlc3Ryb3ki
OiBmYWxzZSwgImNhbl9jcmVhdGUiOiBmYWxzZX19XSwgIm1lc3NhZ2VfZGVzdGluYXRpb25zIjog
W3sidXVpZCI6ICJjODliY2U2ZC0wMWY4LTQ3ZTctOGQ0Yy01ZDc5M2IxZWE2YjYiLCAiZXhwb3J0
X2tleSI6ICJibHVlY29hdF9zaXRlX3JldmlldyIsICJuYW1lIjogIkJsdWVjb2F0IFNpdGUgUmV2
aWV3IiwgImRlc3RpbmF0aW9uX3R5cGUiOiAwLCAicHJvZ3JhbW1hdGljX25hbWUiOiAiYmx1ZWNv
YXRfc2l0ZV9yZXZpZXciLCAiZXhwZWN0X2FjayI6IHRydWUsICJ1c2VycyI6IFsiZ2VyYWxkLnRy
b3RtYW5AaWJtLmNvbSJdfV0sICJpbmNpZGVudF9hcnRpZmFjdF90eXBlcyI6IFtdLCAicm9sZXMi
OiBbXSwgImZpZWxkcyI6IFt7Im9wZXJhdGlvbnMiOiBbXSwgInR5cGVfaWQiOiAwLCAib3BlcmF0
aW9uX3Blcm1zIjoge30sICJ0ZXh0IjogIlNpbXVsYXRpb24iLCAiYmxhbmtfb3B0aW9uIjogZmFs
c2UsICJwcmVmaXgiOiBudWxsLCAiY2hhbmdlYWJsZSI6IHRydWUsICJpZCI6IDM3LCAicmVhZF9v
bmx5IjogdHJ1ZSwgInV1aWQiOiAiYzNmMGUzZWQtMjFlMS00ZDUzLWFmZmItZmU1Y2EzMzA4Y2Nh
IiwgImNob3NlbiI6IGZhbHNlLCAiaW5wdXRfdHlwZSI6ICJib29sZWFuIiwgInRvb2x0aXAiOiAi
V2hldGhlciB0aGUgaW5jaWRlbnQgaXMgYSBzaW11bGF0aW9uIG9yIGEgcmVndWxhciBpbmNpZGVu
dC4gIFRoaXMgZmllbGQgaXMgcmVhZC1vbmx5LiIsICJpbnRlcm5hbCI6IGZhbHNlLCAicmljaF90
ZXh0IjogZmFsc2UsICJ0ZW1wbGF0ZXMiOiBbXSwgImV4cG9ydF9rZXkiOiAiaW5jaWRlbnQvaW5j
X3RyYWluaW5nIiwgImhpZGVfbm90aWZpY2F0aW9uIjogZmFsc2UsICJuYW1lIjogImluY190cmFp
bmluZyIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBm
YWxzZSwgInZhbHVlcyI6IFtdfSwgeyJvcGVyYXRpb25zIjogW10sICJ0eXBlX2lkIjogMTEsICJv
cGVyYXRpb25fcGVybXMiOiB7fSwgInRleHQiOiAiaW5jaWRlbnRfaWQiLCAiYmxhbmtfb3B0aW9u
IjogZmFsc2UsICJwcmVmaXgiOiBudWxsLCAiY2hhbmdlYWJsZSI6IHRydWUsICJpZCI6IDExNSwg
InJlYWRfb25seSI6IGZhbHNlLCAidXVpZCI6ICJlYWQyMTRjMi0xM2ZlLTQzZjYtYTNjNy02NzZh
ODgzMzhkYmIiLCAiY2hvc2VuIjogZmFsc2UsICJpbnB1dF90eXBlIjogIm51bWJlciIsICJ0b29s
dGlwIjogIiIsICJpbnRlcm5hbCI6IGZhbHNlLCAicmljaF90ZXh0IjogZmFsc2UsICJ0ZW1wbGF0
ZXMiOiBbXSwgImV4cG9ydF9rZXkiOiAiX19mdW5jdGlvbi9pbmNpZGVudF9pZCIsICJoaWRlX25v
dGlmaWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAiIiwgIm5hbWUiOiAiaW5jaWRlbnRf
aWQiLCAiZGVwcmVjYXRlZCI6IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2VydmVyIjogZmFs
c2UsICJ2YWx1ZXMiOiBbXX0sIHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDExLCAib3Bl
cmF0aW9uX3Blcm1zIjoge30sICJ0ZXh0IjogImFydGlmYWN0X3R5cGUiLCAiYmxhbmtfb3B0aW9u
IjogZmFsc2UsICJwcmVmaXgiOiBudWxsLCAiY2hhbmdlYWJsZSI6IHRydWUsICJpZCI6IDE1MCwg
InJlYWRfb25seSI6IGZhbHNlLCAidXVpZCI6ICIzYTJlMzQ3Yi02NzJlLTQyNjMtODc4Ny1hM2U5
ZWJhNGFjOTEiLCAiY2hvc2VuIjogZmFsc2UsICJpbnB1dF90eXBlIjogInRleHQiLCAidG9vbHRp
cCI6ICIiLCAiaW50ZXJuYWwiOiBmYWxzZSwgInJpY2hfdGV4dCI6IGZhbHNlLCAidGVtcGxhdGVz
IjogW10sICJleHBvcnRfa2V5IjogIl9fZnVuY3Rpb24vYXJ0aWZhY3RfdHlwZSIsICJoaWRlX25v
dGlmaWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAiIiwgIm5hbWUiOiAiYXJ0aWZhY3Rf
dHlwZSIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIiOiBm
YWxzZSwgInZhbHVlcyI6IFtdfSwgeyJvcGVyYXRpb25zIjogW10sICJ0eXBlX2lkIjogMTEsICJv
cGVyYXRpb25fcGVybXMiOiB7fSwgInRleHQiOiAiYXJ0aWZhY3RfaWQiLCAiYmxhbmtfb3B0aW9u
IjogZmFsc2UsICJwcmVmaXgiOiBudWxsLCAiY2hhbmdlYWJsZSI6IHRydWUsICJpZCI6IDI2Miwg
InJlYWRfb25seSI6IGZhbHNlLCAidXVpZCI6ICI1ZTk0YjFkMy00OGExLTQxOGEtOWNlMy00NDMz
YzY4ODllMTQiLCAiY2hvc2VuIjogZmFsc2UsICJpbnB1dF90eXBlIjogIm51bWJlciIsICJ0b29s
dGlwIjogIiIsICJpbnRlcm5hbCI6IGZhbHNlLCAicmljaF90ZXh0IjogZmFsc2UsICJ0ZW1wbGF0
ZXMiOiBbXSwgImV4cG9ydF9rZXkiOiAiX19mdW5jdGlvbi9hcnRpZmFjdF9pZCIsICJoaWRlX25v
dGlmaWNhdGlvbiI6IGZhbHNlLCAicGxhY2Vob2xkZXIiOiAiIiwgIm5hbWUiOiAiYXJ0aWZhY3Rf
aWQiLCAiZGVwcmVjYXRlZCI6IGZhbHNlLCAiZGVmYXVsdF9jaG9zZW5fYnlfc2VydmVyIjogZmFs
c2UsICJ2YWx1ZXMiOiBbXX0sIHsib3BlcmF0aW9ucyI6IFtdLCAidHlwZV9pZCI6IDExLCAib3Bl
cmF0aW9uX3Blcm1zIjoge30sICJ0ZXh0IjogImFydGlmYWN0X3ZhbHVlIiwgImJsYW5rX29wdGlv
biI6IGZhbHNlLCAicHJlZml4IjogbnVsbCwgImNoYW5nZWFibGUiOiB0cnVlLCAiaWQiOiAxNDks
ICJyZWFkX29ubHkiOiBmYWxzZSwgInV1aWQiOiAiOWJhNDk4ODctMGRjZi00MGNlLWE1ZWEtOWMw
YzQzZjgzMWJmIiwgImNob3NlbiI6IGZhbHNlLCAiaW5wdXRfdHlwZSI6ICJ0ZXh0IiwgInRvb2x0
aXAiOiAiIiwgImludGVybmFsIjogZmFsc2UsICJyaWNoX3RleHQiOiBmYWxzZSwgInRlbXBsYXRl
cyI6IFtdLCAiZXhwb3J0X2tleSI6ICJfX2Z1bmN0aW9uL2FydGlmYWN0X3ZhbHVlIiwgImhpZGVf
bm90aWZpY2F0aW9uIjogZmFsc2UsICJwbGFjZWhvbGRlciI6ICIiLCAibmFtZSI6ICJhcnRpZmFj
dF92YWx1ZSIsICJkZXByZWNhdGVkIjogZmFsc2UsICJkZWZhdWx0X2Nob3Nlbl9ieV9zZXJ2ZXIi
OiBmYWxzZSwgInZhbHVlcyI6IFtdfV0sICJvdmVycmlkZXMiOiBbXSwgImV4cG9ydF9kYXRlIjog
MTU0MzM0OTg1MzIwMH0=
"""
) | 5,354,201 |
def init_app(app):
""" This will be called by application initializer. """
global backup_server
backup_server = BackupServer()
app.register_blueprint(blueprint) | 5,354,202 |
def test_picorv32_quartus_cyclone10_timing(picorv32_cyclone10_data):
"""Check timing tables"""
timing = picorv32_cyclone10_data["timing"]
clocks = timing["Clocks"].set_index("Clock Name")
fmax = timing["Slow 900mV 100C Model Fmax Summary"].set_index("Clock Name")
assert clocks.loc["clk", "Frequency"] == "175.0 MHz"
assert fmax.loc["clk", "Fmax"] == "131.58 MHz" | 5,354,203 |
def taillight_detect(image):
""" Takes in a road image, re-sizes for the model,
predicts the lane to be drawn from the model in G color,
recreates an RGB image of a lane and merges with the
original road image.
"""
model = load_model('full_CNN_model.h5')
#image1=image
#image1=np.array(image1)
#objects=np.squeeze(image,2)
#rows,cols=objects.shape
rows, cols,_ = image.shape
#cols, rows = image.size
#cols=160
#rows=80
# Get image ready for feeding into model
small_img = cv2.resize(image, (160, 80))
#img_y_cr_cb = cv2.cvtColor(small_img, cv2.COLOR_BGR2YCrCb)
#y, cr, cb = cv2.split(img_y_cr_cb)
# Applying equalize Hist operation on Y channel.
#y_eq = cv2.equalizeHist(y)
#clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
#y_eq = clahe.apply(y)
#img_y_cr_cb_eq = cv2.merge((y_eq, cr, cb))
#small_img = cv2.cvtColor(img_y_cr_cb_eq, cv2.COLOR_YCR_CB2BGR)
#small_img = imresize(image, (80, 160, 3))
small_img = np.array(small_img)
small_img = small_img[None,:,:,:]
# Make prediction with neural network (un-normalize value by multiplying by 255)
prediction = model.predict(small_img)[0] * 255
#new_image = imresize(prediction, (rows, cols, 3))
mask = cv2.resize(prediction, (cols, rows))
img_y_cr_cb = cv2.cvtColor(image, cv2.COLOR_BGR2YCrCb)
y, cr, cb = cv2.split(img_y_cr_cb)
# Applying equalize Hist operation on Y channel.
#y_eq = cv2.equalizeHist(y)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
y_eq = clahe.apply(y)
img_y_cr_cb_eq = cv2.merge((y_eq, cr, cb))
image_he = cv2.cvtColor(img_y_cr_cb_eq, cv2.COLOR_YCR_CB2BGR)
gray = cv2.cvtColor(image_he, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (3, 3), 0)
auto = auto_canny(blurred)
for i in range(rows):
for j in range(cols):
if auto[i,j] >0 and mask [i,j]>100:
auto[i,j]=255
else:
auto[i,j]=0
cv2.imshow('histogram equalisation', auto)
cv2.waitKey(0)
#h, w = edges.shape[:2]
filled_from_bottom = np.zeros((rows, cols))
for col in range(cols):
for row in reversed(range(rows)):
if auto[row][col] < 255: filled_from_bottom[row][col] = 255
else: break
filled_from_top = np.zeros((rows, cols))
for col in range(cols):
for row in range(rows):
if auto[row][col] < 255: filled_from_top[row][col] = 255
else: break
filled_from_left = np.zeros((rows, cols))
for row in range(rows):
for col in range(cols):
if auto[row][col] < 255: filled_from_left[row][col] = 255
else: break
filled_from_right = np.zeros((rows, cols))
for row in range(rows):
for col in reversed(range(cols)):
if auto[row][col] < 255: filled_from_right[row][col] = 255
else: break
for i in range(rows):
for j in range(cols):
if filled_from_bottom[i,j] ==0 and filled_from_top[i,j]==0 and filled_from_right[i,j] ==0 and filled_from_left[i,j]==0:
auto[i,j]=255
else:
auto[i,j]=0
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(auto, cv2.MORPH_OPEN, kernel)
closing = cv2.morphologyEx(auto, cv2.MORPH_CLOSE, kernel)
mask = np.expand_dims(mask, 2)
mask = np.repeat(mask, 3, axis=2) # give the mask the same shape as your image
colors = {"red": [0.0,1.0,1.0], "blue": [0.,0.,0.1]} # a dictionary for your colors, experiment with the values
colored_mask = np.multiply(mask, colors["red"]) # broadcast multiplication (thanks to the multiplication by 0, you'll end up with values different from 0 only on the relevant channels and the right regions)
image = image+colored_mask # element-wise sum (sinc img and mask have the same shape)
#return image.astype(float) / 255
#return new_image
return auto | 5,354,204 |
def generate_random_number(rng, length):
"""Return random number with predefined length."""
return crypto.random_generate(rng, length) | 5,354,205 |
def update_old_names():
"""Fetches the list of old tz names and returns a mapping"""
url = urlparse(ZONEINFO_URL)
log.info('Connecting to %s' % url.netloc)
ftp = ftplib.FTP(url.netloc)
ftp.login()
gzfile = BytesIO()
log.info('Fetching zoneinfo database')
ftp.retrbinary('RETR ' + url.path, gzfile.write)
gzfile.seek(0)
log.info('Extracting backwards data')
archive = tarfile.open(mode="r:gz", fileobj=gzfile)
backward = {}
for line in archive.extractfile('backward').readlines():
if line[0] == '#':
continue
if len(line.strip()) == 0:
continue
parts = line.split()
if parts[0] != b'Link':
continue
backward[parts[2].decode('ascii')] = parts[1].decode('ascii')
return backward | 5,354,206 |
def get_namespace(location: Optional[str] = None,
namespace_id: Optional[str] = None,
project: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetNamespaceResult:
"""
Gets a namespace.
"""
__args__ = dict()
__args__['location'] = location
__args__['namespaceId'] = namespace_id
__args__['project'] = project
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('google-native:servicedirectory/v1:getNamespace', __args__, opts=opts, typ=GetNamespaceResult).value
return AwaitableGetNamespaceResult(
labels=__ret__.labels,
name=__ret__.name) | 5,354,207 |
def build_headers(access_token, client_id):
"""
:param access_token: Access token granted when the user links their account
:param client_id: This is the api key for your own app
:return: Dict of headers
"""
return {'Content-Type': 'application/json',
'Authorization': f'Bearer {access_token}',
'trakt-api-version': '2',
'trakt-api-key': client_id} | 5,354,208 |
def get_args():
"""Get command-line arguments"""
parser = argparse.ArgumentParser(
description='sum numbers',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Positional arg
parser.add_argument('int', metavar='INT', type=int, nargs='+',
help='Numbers to add')
return parser.parse_args() | 5,354,209 |
def odd_subgraph_centrality(i, lam, u):
"""
Calculates the number of odd length closed walks that a node participates in :cite:`estrada2005spectral`.
Used in the calculation of spectral scaling and generalized robustness index.
:param i: node index
:param lam: largest eigenvalue
:param u: largest eigenvector
:return: a float
"""
sc = 0
for j in range(len(lam)):
sc += np.power(u[i, j], 2) * np.sinh(lam[j])
return sc | 5,354,210 |
def PolyAreasToModel(polyareas, bevel_amount, bevel_pitch, quadrangulate):
"""Convert a PolyAreas into a Model object.
Assumes polyareas are in xy plane.
Args:
polyareas: geom.PolyAreas
bevel_amount: float - if > 0, amount of bevel
bevel_pitch: float - if > 0, angle in radians of bevel
quadrangulate: bool - should n-gons be quadrangulated?
Returns:
geom.Model
"""
m = geom.Model()
if not polyareas:
return m
polyareas.points.AddZCoord(0.0)
m.points = polyareas.points
for pa in polyareas.polyareas:
PolyAreaToModel(m, pa, bevel_amount, bevel_pitch, quadrangulate)
return m | 5,354,211 |
def preprocessing(train_data, test_data):
"""
* The method at first eliminates constant features from both train and test data.
* Then, it splits training data into features and labels.
* Finally, the method performs pca on training and testing data sets to reduce the dimension and
overcome curse of dimensionality problem.
Parameters
----------
train_data: training data set in data frame format
test_data: testing data set in data frame format
"""
# constant feature elimination
train_data = train_data.drop(['X3', 'X31', 'X32', 'X127', 'X128', 'X590'], axis=1)
train_data = np.asarray(train_data)
test_data = test_data.drop(['X3', 'X31', 'X32', 'X127', 'X128', 'X590'], axis=1)
test_data = np.asarray(test_data)
# training data is split into features and labels
train_x = train_data[:, :train_data.shape[1] - 1]
train_y = train_data[:, train_data.shape[1] - 1]
train_y.shape = (np.size(train_y), 1)
# principal component analysis
pca = PCA(n_components=60)
train_x_pca = pca.fit_transform(train_x)
test_pca = pca.transform(test_data)
return train_x_pca, train_y, test_pca | 5,354,212 |
def generate_videos_from_events(response, video_model):
"""Creates the video containers/representations for this given response.
We should only really invoke this as part of a migration as of right now (2/8/2019),
but it's quite possible we'll have the need for dynamic upsertion later.
"""
seen_ids = set()
video_objects = []
Video = video_model
# Using a constructive approach here, but with an ancillary seen_ids list b/c Django models without
# primary keys are unhashable for some dumb reason (even though they have unique fields...)
for frame_id, event_data in response.exp_data.items():
if event_data.get("videoList", None) and event_data.get("videoId", None):
# We've officially captured video here!
events = event_data.get("eventTimings", [])
for event in events:
video_id = event["videoId"]
pipe_name = event["pipeId"] # what we call "ID" they call "name"
stream_time = event["streamTime"]
if (
video_id not in seen_ids
and pipe_name
and stream_time
and stream_time > 0
):
# Try looking for the regular ID first.
file_obj = S3_RESOURCE.Object(
settings.BUCKET_NAME, f"{video_id}.mp4"
)
try:
s3_response = file_obj.get()
except ClientError:
try: # If that doesn't work, use the pipe name.
file_obj = S3_RESOURCE.Object(
settings.BUCKET_NAME, f"{pipe_name}.mp4"
)
s3_response = file_obj.get()
except ClientError:
logger.warning(
f"could not find {video_id} or {pipe_name} in S3!"
)
continue
# Read first 32 bytes from streaming body (file header) to get actual filetype.
streaming_body = s3_response["Body"]
file_header_buffer: bytes = streaming_body.read(32)
file_info = fleep.get(file_header_buffer)
streaming_body.close()
video_objects.append(
Video(
pipe_name=pipe_name,
created_at=date_parser.parse(event["timestamp"]),
date_modified=s3_response["LastModified"],
# Can't get the *actual* pipe id property, it's in the webhook payload...
frame_id=frame_id,
full_name=f"{video_id}.{file_info.extension[0]}",
study=response.study,
response=response,
is_consent_footage=frame_id in VALID_CONSENT_FRAMES,
)
)
seen_ids.add(video_id)
return Video.objects.bulk_create(video_objects) | 5,354,213 |
def datetime_at_midnight(dt: DateTime, tz: TimeZone) -> DateTime:
""" Returns a DateTime for the requested DateTime at midnight in the specified time zone.
Args:
dt (DateTime): the DateTime for which the new value at midnight should be calculated
tz (TimeZone): the TimeZone to use when interpreting the DateTime
Returns:
DateTime
Raises:
DHError
"""
try:
return _JDateTimeUtils.dateAtMidnight(dt, tz.value)
except Exception as e:
raise DHError(e) from e | 5,354,214 |
def count_dcm(logger, top):
"""
This function recursively walks through a given directory
(`top`) using depth-first search (bottom up) and counts the
number of .dcm files present.
Parameters
----------
path : {str}
The directory to count.
Returns
-------
count : {int}
The number of .dcm files in `path`.
"""
try:
count = 0
# Count number of .dcm files in ../data/Mass/Test.
for _, _, files in os.walk(top):
for f in files:
if f.endswith(".dcm"):
count += 1
except Exception as e:
# logger.error(f'Unable to count_dcm!\n{e}')
print((f"Unable to count_dcm!\n{e}"))
return count | 5,354,215 |
def convert2sametype(dict_, formula):
"""Utility function for internal use.
Convert string/dict/DataFrame to dict
Parameters
----------
dict_ : dict
formula : string/dict/DataFrame
Returns
-------
type(formula)
"""
return convert2type(dict_, type(formula)) | 5,354,216 |
def setup_data() -> None:
"""Load test dicom files to the test Orthanc server instance
"""
headers = {'content-type': 'application/dicom'}
list_of_dicom_file_paths = [f'./tests/data/dicom_files/{i}' for i in os.listdir('./tests/data/dicom_files/')]
for file_path in list_of_dicom_file_paths:
with open(file_path, 'rb') as file_handler:
data = file_handler.read()
requests.post(
f'{ORTHANC_URL}/instances',
data=data,
headers=headers
) | 5,354,217 |
def from_sdf(sdf_content: str = None, file_path: str = None, ignore_hydrogens = False) -> List[Graph]:
"""
parse graph from_sdf
Read chemical files and parses them into instances of `Graph`.
As this function is not meant to be called in a loop,
inner functions only relative to chemical files parsing are declared.
Type Aliases :
Atom = str
Bond = List[str]
"""
if file_path :
if (file_path.endswith('.gz')):
fp = gzip.open(file_path, 'rt', encoding='utf-8')
sdf_content = fp.read()
else :
with open(file_path, 'r') as content_file:
sdf_content = content_file.read()
return [
Mol_to_Graph(mol[0], mol[1])
for mol
in [
parse_Mol(mol_file, ignore_hydrogens)
for mol_file
in [
part[0]
for part
in [
compound.split('M END')
for compound
in sdf_content.split("$$$$")
if (compound.strip(' \t\n\r') != '')
]
if is_Mol(part)
]
]
] | 5,354,218 |
def dispatcher_connect(
opp: OpenPeerPower, signal: str, target: Callable[..., None]
) -> Callable[[], None]:
"""Connect a callable function to a signal."""
async_unsub = run_callback_threadsafe(
opp.loop, async_dispatcher_connect, opp, signal, target
).result()
def remove_dispatcher() -> None:
"""Remove signal listener."""
run_callback_threadsafe(opp.loop, async_unsub).result()
return remove_dispatcher | 5,354,219 |
def test():
"""
Test method for module.
"""
server = Server(host='orka-node-1', port='22', user='vagrant', key=VAGRANT_KEY)
print command(server, 'uname -s')
print git_status(server, '/opt/orka')
copy_file(server, '/etc/hosts', '/tmp/remote_hosts')
print command(server, 'cat /tmp/remote_hosts') | 5,354,220 |
def get_last_error():
""" Get the last error value, then turn it into a nice string. Return the string. """
error_id = kernel32.GetLastError()
# No actual error
if error_id == 0:
return None
# Gonna need a string pointer
buf = ffi.new("LPWSTR")
chars = kernel32.FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, ffi.NULL, error_id , 0, buf, 0, ffi.NULL)
return ffi.string(ffi.cast("char **",buf)[0][0:chars]).decode('utf-8').strip("\r\n") | 5,354,221 |
def load_params_from_pkl(params_dump_file_path):
"""
Loads parameters from a pickle _dump file.
:param params_dump_file_path: self-explanatory
:return dict of param_name => param
"""
coll = {}
f = open(params_dump_file_path, 'rb')
while True:
try:
param_name, param_val = pickle.load(f)
coll[param_name] = param_val
except (EOFError, UnpicklingError):
break
f.close()
return coll | 5,354,222 |
def _extract_filename_from_filepath(strFilePath=""):
"""
Function which extracts file name from the given filepath
"""
if strFilePath:
try:
strFileName = Path(strFilePath).name
strFileName = str(strFileName).split(".")[0]
return strFileName
except Exception as ex:
selft.crash_report(traceback.format_exception(*sys.exc_info(),limit=None, chain=True))
print("Error in _extract_filename_from_filepath="+str(ex))
else:
print("Please enter the value="+str(strFilePath)) | 5,354,223 |
def plot_by_term(term, df, kind='go', q=0.1, swarm=True,
x='genotype', y='b', gene='ens_gene'):
"""
Plot ontology terms by a given column.
Params:
term - term to look for in melted_df
df - a tidy dataframe with columns x and y
kind - the ontology to use
q - q-value for statistical significance. defaults to 0.1
swarm - if True, plots a swarmplot. Else, plots a violinplot.
x - column to plot on x axis
y - column to plot on y axis
gene - column in the given df where gene WBIDs are provided
Output:
ax - an axis object containing a graph
genes - a list of genes obtained from the melted df
"""
if type(kind) is not str:
raise ValueError('`kind` variable must be a string.')
if kind.lower() not in ['tissue', 'phenotype', 'go']:
raise ValueError('`kind` must be one of `tissue`, `phenotype` or `go`')
if type(term) is not str:
raise ValueError('`term` must be a string.')
if kind.lower() == 'tissue':
onto_df = tea.fetch_dictionary()
elif kind.lower() == 'phenotype':
onto_df = pd.read_csv('../input/phenotype_ontology.csv')
else:
onto_df = pd.read_csv('../input/go_dictionary.csv')
# melt the df:
melted_df = pd.melt(onto_df, id_vars='wbid', var_name='term',
value_name='expressed')
melted_df = melted_df[melted_df.expressed == 1]
# warnings and bells:
sel = melted_df.term.str.contains(term)
if len(melted_df[sel].term.unique()) > 1:
print('Warning: Provided term matches more than one ontological term.')
genes = melted_df[sel].wbid
if len(genes) == 0:
raise ValueError('Provided term is not in ontology dictionary')
ind = (df.qval < q) & (df[gene].isin(genes))
fig, ax = plt.subplots()
if swarm:
ax = sns.swarmplot(x='genotype', y='b', data=df[ind])
else:
ax = sns.violinplot(x='genotype', y='b', data=df[ind])
return ax, genes | 5,354,224 |
def add_emote_command_handler(update, context):
"""
CommandHandler that adds emotes from a specific channel to the bots cache.
Format: /add <channelid>.
Emotes are determined with querries to the twitchemotes.com API.
"""
try:
channel_id = int(context.args[0])
cached_channels, _ = create_or_get_emote_data(context)
except ValueError:
context.bot.send_message(
chat_id=update.effective_chat.id,
text="Argument channel id must be a whole number.",
)
except IndexError:
context.bot.send_message(
chat_id=update.effective_chat.id, text="Missing argument: channel id."
)
if channel_id in cached_channels:
context.bot.send_message(
chat_id=update.effective_chat.id,
text="Channel was already added to the bot, \
but I'm gonna check if there are new emotes.",
)
channel_api_url = f"https://api.twitchemotes.com/api/v4/channels/{channel_id}"
resp = requests.get(channel_api_url)
if resp.status_code == 404:
context.bot.send_message(
chat_id=update.effective_chat.id,
text=f"Error: channel with id {channel_id} not found.",
)
return
if resp.status_code != 200:
context.bot.send_message(
chat_id=update.effective_chat.id,
text="Error: can't reach twitchemotes API.",
)
return
try:
resp_emotes = resp.json()["emotes"]
except KeyError:
context.bot.send_message(
chat_id=update.effective_chat.id,
text=f"Error: can't read response from twitchemotes API.",
)
return
context.job_queue.run_repeating(
cache_stickers,
interval=5,
context={"resp_emotes": resp_emotes, "chat_id": update.message.chat_id},
)
cached_channels.append(channel_id) | 5,354,225 |
def lab_equality(lab1, lab2):
"""
Check if two labs are identical
"""
if lab1["ncolumns"] != lab1["ncolumns"] or lab1["nlines"] != lab2["nlines"]:
return False
return all(set(lab1[cell]) == set(lab2[cell]) for cell in lab1.keys() if type(cell) != type("a")) | 5,354,226 |
def read_wwm(filename_or_fileglob, chunks={}, convert_wind_vectors=True):
"""Read Spectra from SWAN native netCDF format.
Args:
- filename_or_fileglob (str): filename or fileglob specifying multiple
files to read.
- chunks (dict): chunk sizes for dimensions in dataset. By default
dataset is loaded using single chunk for all dimensions (see
xr.open_mfdataset documentation).
- convert_wind_vectors (bool): choose it to convert wind vectors into
speed / direction data arrays.
Returns:
- dset (SpecDataset): spectra dataset object read from ww3 file.
Note:
- If file is large to fit in memory, consider specifying chunks for
'time' and/or 'station' dims.
"""
dset = xr.open_mfdataset(filename_or_fileglob, chunks=chunks)
_units = dset.AC.attrs.get("units", "")
dset = dset.rename(
{
"nfreq": attrs.FREQNAME,
"ndir": attrs.DIRNAME,
"nbstation": attrs.SITENAME,
"AC": attrs.SPECNAME,
"lon": attrs.LONNAME,
"lat": attrs.LATNAME,
"DEP": attrs.DEPNAME,
"ocean_time": attrs.TIMENAME,
}
)
# Calculating wind speeds and directions
if convert_wind_vectors and "Uwind" in dset and "Vwind" in dset:
dset[attrs.WSPDNAME], dset[attrs.WDIRNAME] = uv_to_spddir(
dset["Uwind"], dset["Vwind"], coming_from=True
)
# Setting standard names and storing original file attributes
set_spec_attributes(dset)
dset[attrs.SPECNAME].attrs.update(
{"_units": _units, "_variable_name": attrs.SPECNAME}
)
# Assigning spectral coordinates
#import ipdb; ipdb.set_trace()
dset[attrs.FREQNAME] = dset.spsig / (2 * np.pi) # convert rad to Hz
dset[attrs.DIRNAME] = dset.spdir
# converting Action to Energy density and adjust density to Hz
dset[attrs.SPECNAME] = dset[attrs.SPECNAME] * dset.spsig * (2 * np.pi)
# Converting from radians
dset[attrs.DIRNAME] *= R2D
dset[attrs.SPECNAME] /= R2D
# Returns only selected variables, transposed
to_drop = [
dvar
for dvar in dset.data_vars
if dvar
not in [
attrs.SPECNAME,
attrs.WSPDNAME,
attrs.WDIRNAME,
attrs.DEPNAME,
attrs.LONNAME,
attrs.LATNAME,
]
]
dims = [d for d in ["time", "site", "freq", "dir"] if d in dset.efth.dims]
return dset.drop(to_drop).transpose(*dims) | 5,354,227 |
def p_require_key_lst(p):
"""require_key_lst : require_key require_key_lst
| require_key"""
if len(p) == 2:
p[0] = [p[1]]
elif len(p) == 3:
p[0] = [p[1]] + p[2] | 5,354,228 |
def is_sorted(t):
"""Checks whether a list is sorted.
t: list
returns: boolean
"""
return t == sorted(t) | 5,354,229 |
def create_container_port_mappings(container):
"""
Create the port mappings for the given container.
:param container: The container to create the mappings for.
"""
ports = []
image = None
if container.is_image_based():
image = container.image
elif container.is_clone() and container.clone_of.is_image_based():
image = container.clone_of.image
if image:
protected_port = image.protected_port
public_ports = image.public_ports
if protected_port:
mapping = PortMapping(
server=container.server,
container=container,
external_port=PortMapping.get_available_server_port(container.server),
internal_port=protected_port
)
mapping.save()
ports.append({
ContainerBackend.PORT_MAPPING_KEY_ADDRESS: mapping.server.internal_ip,
ContainerBackend.PORT_MAPPING_KEY_EXTERNAL: mapping.external_port,
ContainerBackend.PORT_MAPPING_KEY_INTERNAL: mapping.internal_port
})
if public_ports:
for port in public_ports.split(','):
mapping = PortMapping(
server=container.server,
container=container,
external_port=PortMapping.get_available_server_port(container.server),
internal_port=port
)
mapping.save()
ports.append({
ContainerBackend.PORT_MAPPING_KEY_ADDRESS: '0.0.0.0',
ContainerBackend.PORT_MAPPING_KEY_EXTERNAL: mapping.external_port,
ContainerBackend.PORT_MAPPING_KEY_INTERNAL: mapping.internal_port
})
return ports | 5,354,230 |
async def test_cleanup_nopbar():
"""Do nothing if no tqdm pbar has been created"""
state = Namespace(progressbar={})
cleanup = TQDMCleanup(None, state)
await cleanup(42)
assert cleanup._prev is None | 5,354,231 |
def _get_dep_for_package(package, platform):
"""
Convert arguments in the `package` parameter to actual deps.
"""
if is_list(package) or is_tuple(package):
package, _ = package
# TODO: ghc-8.4.4
if (package == "compact" and
_get_ghc_version(platform) == "8.4.4"):
package = "ghc-compact"
if package in _get_internal_ghc_packages(platform):
project = "ghc"
else:
project = "stackage-lts"
return target_utils.ThirdPartyRuleTarget(project, package) | 5,354,232 |
def get_caster(typehint: TypeHint) -> Callable[..., Any]:
"""Returns a conversion class most appropriate for the
supplied type hint. Potential matches are checked in
order from most to least specific to account for
overlapping types (e.g. ABCs).
"""
if typehint in (Any, None):
return untyped_caster
origin = get_origin(typehint)
if origin in (Union, UnionType):
return union_caster(typehint)
typecasters: Dict[TypeHintTuple, Callable[..., Any]] = {
(bytes,): str.encode,
(str,): str,
(dict,): json_caster(typehint),
(bool,): bool_caster,
(Sequence, Set): collection_caster(typehint),
(date, time): datetime_caster(typehint),
(Pattern,): pattern_caster(typehint),
(IO, IOBase): io_caster(typehint),
(Literal,): literal_caster(typehint),
(Enum,): enum_caster(typehint),
}
for cls, caster in typecasters.items():
if typehint in cls:
return caster
if origin in cls and origin is not None:
return caster
if issubtype(typehint, cls):
return caster
return generic_caster(typehint) | 5,354,233 |
def values(series):
"""Count the values and sort.
series: pd.Series
returns: series mapping from values to frequencies
"""
return series.value_counts(dropna=False).sort_index() | 5,354,234 |
def build_conda(force_conda, render, repo, use_pythonpath, output_folder):
"""Build the conda package for the current source tree."""
build_subcommand = "mambabuild"
if force_conda or not has_mambabuild():
build_subcommand = "build"
if render:
build_subcommand = "render"
requirements_data, _ = katana_requirements.load()
# Approach: Generate a variant file with the versions we need in it and explicitly reference the versions from the
# meta.yaml file. This will make adding dependencies less clean that I would like, but see failed approaches.
# Failed approaches:
# 1. Use an append or clobber file to override parts of meta.yaml. This either does not override enough (the former
# doesn't allow making version requirement stricter), or overrides too much (replaces whole lists, so jinja
# expression would need to be rerun, but cannot be.)
# 2. Patch meta.yaml itself. This does not work easily because pyyaml outputs yaml in a format that conda doesn't
# support. Conda does some regex parsing on the yaml, so it doesn't support yaml in full generality, and requires
# white space in cases where pyyaml doesn't put it.
# 3. Call the conda build pipeline directly using Python. This does not work because conda does not provide a hook
# (that I could find) where I need it: between yaml loading and dependency resolution. I think this is partly
# because the two phases are weirdly intertwined with several cases where jinja is reexecuted based on
# information from a solve done using a previous parse.
# Basically, this is a total mess, and I spent way too much time on it. I hate everything.
variant_config = {}
for p in requirements_data.select_packages(["conda", "conda/dev"], OutputFormat.CONDA):
variant_config[p.name_for(requirements_data.packaging_systems["conda"]).replace("-", "_")] = [
p.version_for(requirements_data.packaging_systems["conda"])
]
# Several variant variables have special handling. Remove them. They are set manually as needed.
for k in ("python", "numpy", "cxx_compiler"):
del variant_config[k]
with tempfile.NamedTemporaryFile(mode="wt", prefix="variant-file-", suffix=".yaml") as variant_file:
yaml.dump(variant_config, variant_file, Dumper=yaml.SafeDumper)
variant_file.flush()
build_command_line = [
"conda",
build_subcommand,
"--channel",
"conda-forge",
"--channel",
"katanagraph",
"--variant-config-files",
variant_file.name,
repo / "conda_recipe",
]
if output_folder:
build_command_line += ["--output-folder", output_folder]
os.environ["KATANA_VERSION"] = katana_version.version.format_version_pep440(
katana_version.version.get_version()
)
os.environ["KATANA_TEST_DATASETS"] = str(find_test_datasets_root(repo))
if not use_pythonpath:
# Clear python path because if it is set, it will leak into conda build potentially causing issues.
os.environ["PYTHONPATH"] = ""
try:
subprocess.check_call(build_command_line, cwd=SCRIPTS_DIR_PATH.parent.parent)
except subprocess.CalledProcessError:
print(open(variant_file.name).read())
raise | 5,354,235 |
def use_id(type):
"""Declare that this configuration option should point to an ID with the given type."""
def validator(value):
check_not_templatable(value)
if value is None:
return core.ID(None, is_declaration=False, type=type)
if (
isinstance(value, core.ID)
and value.is_declaration is False
and value.type is type
):
return value
return core.ID(validate_id_name(value), is_declaration=False, type=type)
return validator | 5,354,236 |
def social_auth_user(backend, uid, user=None, *args, **kwargs):
"""Return UserSocialAuth account for backend/uid pair or None if it
doesn't exists.
Raise AuthAlreadyAssociated if UserSocialAuth entry belongs to another
user.
"""
social_user = UserSocialAuth.get_social_auth(backend.name, uid)
if social_user:
if user and social_user.user != user:
msg = ugettext('This %(provider)s account is already in use.')
raise AuthAlreadyAssociated(backend, msg % {
'provider': backend.name
})
elif not user:
user = social_user.user
return {'social_user': social_user, 'user': user} | 5,354,237 |
def bbox_mask(t_arr, x_arr, limits):
"""
Just a wrapper for np.where
"""
#NOTE: t_arr is included but no longer used
mask = np.where(
(x_arr >= limits[0]) & \
(x_arr <= limits[1]))[0]
return mask | 5,354,238 |
def kdeplot_2d_clevels(xs, ys, levels=11, **kwargs):
""" Plot contours at specified credible levels.
Arguments
---------
xs: array
samples of the first variable.
ys: array
samples of the second variable, drawn jointly with `xs`.
levels: float, array
if float, interpreted as number of credible levels to be equally
spaced between (0, 1); if array, interpreted as list of credible
levels.
xlow: float
lower bound for abscissa passed to Bounded_2d_kde (optional).
xigh: float
upper bound for abscissa passed to Bounded_2d_kde (optional).
ylow: float
lower bound for ordinate passed to Bounded_2d_kde (optional).
yhigh: float
upper bound for ordinate passed to Bounded_2d_kde (optional).
ax: Axes
matplotlib axes on which to plot (optional).
kwargs:
additional arguments passed to plt.contour().
"""
try:
xs = xs.values.astype(float)
ys = ys.values.astype(float)
except AttributeError:
pass
if all(~isfinite(xs)) or all(~isfinite(ys)):
return None
try:
len(levels)
f = 1 - np.array(levels)
except TypeError:
f = linspace(0, 1, levels+2)[1:-1]
if kwargs.get('auto_bound', False):
kwargs['xlow'] = min(xs)
kwargs['xhigh'] = max(xs)
kwargs['ylow'] = min(ys)
kwargs['yhigh'] = max(ys)
kde_kws = {k: kwargs.pop(k, None) for k in ['xlow', 'xhigh', 'ylow', 'yhigh']}
k = Bounded_2d_kde(np.column_stack((xs, ys)), **kde_kws)
size = max(10*(len(f)+2), 500)
c = np.random.choice(len(xs), size=size)
p = k(np.column_stack((xs[c], ys[c])))
i = argsort(p)
l = array([p[i[int(round(ff*len(i)))]] for ff in f])
Dx = np.percentile(xs, 99) - np.percentile(xs, 1)
Dy = np.percentile(ys, 99) - np.percentile(ys, 1)
x = linspace(np.percentile(xs, 1)-0.1*Dx, np.percentile(xs, 99)+0.1*Dx, 128)
y = linspace(np.percentile(ys, 1)-0.1*Dy, np.percentile(ys, 99)+0.1*Dy, 128)
XS, YS = meshgrid(x, y, indexing='ij')
ZS = k(np.column_stack((XS.flatten(), YS.flatten()))).reshape(XS.shape)
ax = kwargs.pop('ax', gca())
kwargs['colors'] = kwargs.get('colors', [kwargs.pop('color', None),])
ax.contour(XS, YS, ZS, levels=l, **kwargs) | 5,354,239 |
def test_gumbel_prob():
"""
Test probability functions: passing value through construct.
"""
net = GumbelProb()
value = Tensor([0.5, 1.0], dtype=dtype.float32)
ans = net(value)
assert isinstance(ans, Tensor) | 5,354,240 |
def test_addtional_connections(create):
"""Test additional connections to assembly connection."""
conn1 = create(ConnectorItem)
conn2 = create(ConnectorItem)
conn3 = create(ConnectorItem)
c1 = create(ComponentItem, UML.Component)
c2 = create(ComponentItem, UML.Component)
c3 = create(ComponentItem, UML.Component)
iface = create(InterfaceItem, UML.Interface)
iface.folded = Folded.ASSEMBLY
# provide and require interface by components
provide(c1.subject, iface.subject)
require(c2.subject, iface.subject)
require(c3.subject, iface.subject)
# connect components
connect(conn1, conn1.head, c1)
connect(conn2, conn2.head, c2)
connect(conn3, conn3.head, c3)
# create assembly
connect(conn1, conn1.tail, iface)
connect(conn2, conn2.tail, iface)
# test precondition
assert conn1.subject and conn2.subject
# additional connection
connect(conn3, conn3.tail, iface)
# test UML data model
assert conn3.subject is conn1.subject
assembly = conn1.subject
assert 3 == len(assembly.end) | 5,354,241 |
def normalization_reg_loss(input):
"""
input: [..., 3]
It computes the length of each vector and uses the L2 loss between the lengths and 1.
"""
lengths = (input ** 2).sum(dim=-1).sqrt()
loss_norm_reg = ((lengths - 1) ** 2).mean()
return loss_norm_reg | 5,354,242 |
def _get_window_size(offset, step_size, image_size):
"""
Calculate window width or height.
Usually same as block size, except when at the end of image and only a
fracture of block size remains
:param offset: start columns/ row
:param step_size: block width/ height
:param image_size: image width/ height
:return: window width/ height
"""
if offset + step_size > image_size:
return image_size - offset
else:
return step_size | 5,354,243 |
def osc_server(ip=ip_osc_server, port=port_server):
"""
sets up and runs the OSC server.
"""
dispatch = dispatcher.Dispatcher()
"""
dispatch.map("/surface-sentiments", surface_handler)
dispatch.map("/reset", reset_handler)
dispatch.map("/silent", silent_handler)
"""
dispatch.map("/surface-sentiments", surface_handler)
dispatch.map("/reset", reset_handler)
dispatch.map("/silent", silent_handler)
dispatch.map("/answer", answer_handler)
dispatch.map("/refresh", refresh_handler)
dispatch.map("/talking", talking_handler)
dispatch.map("/end", end_handler)
dispatch.map("/question", question_handler)
dispatch.map("/thinking", thinking_handler)
dispatch.map("/startsurface", surfacestart_handler)
dispatch.map("/closesurface", surfacestop_handler)
dispatch.map("/resetsurface", surfacereset_handler)
dispatch.map("/newstate", new_state_handler)
server = pythonosc.osc_server.ThreadingOSCUDPServer(
(ip, port), dispatch)
logger.info("Serving on {}".format(server.server_address))
server.serve_forever() | 5,354,244 |
def _ListCtrl_IsSelected(self, idx):
"""
Returns ``True`` if the item is selected.
"""
return (self.GetItemState(idx, wx.LIST_STATE_SELECTED) & wx.LIST_STATE_SELECTED) != 0 | 5,354,245 |
def sturm_liouville_function(x, y, p, p_x, q, f, alpha=0, nonlinear_exp=2):
"""Second order Sturm-Liouville Function defining y'' for Lu=f.
This form is used because it is expected for Scipy's solve_ivp method.
Keyword arguments:
x -- independent variable
y -- dependent variable
p -- p(x) parameter
p_x -- derivative of p_x wrt x
q -- q(x) parameter
f -- forcing function f(x)
alpha -- nonlinear parameter
nonlinear_exp -- exponent of nonlinear term
"""
y_x = y[1]
y_xx = -1*(p_x/p)*y[1] + (q/p)*y[0] + (q/p)*alpha*y[0]**nonlinear_exp - f/p
return [y_x, y_xx] | 5,354,246 |
def bn_update(loader, model, verbose=False, subset=None, **kwargs):
"""
BatchNorm buffers update (if any).
Performs 1 epochs to estimate buffers average using train dataset.
:param loader: train dataset loader for buffers average estimation.
:param model: model being update
:return: None
"""
if not check_bn(model):
return
model.train()
device = model.model_device
momenta = {}
model.apply(reset_bn)
model.apply(lambda module: _get_momenta(module, momenta))
n = 0
num_batches = len(loader)
with torch.no_grad():
if subset is not None:
num_batches = int(num_batches * subset)
loader = itertools.islice(loader, num_batches)
if verbose:
loader = tqdm.tqdm(loader, total=num_batches)
for input, _ in loader:
if device != 'cpu':
input = input.cuda(non_blocking=True)
input_var = torch.autograd.Variable(input)
b = input_var.data.size(0)
momentum = b / (n + b)
for module in momenta.keys():
module.momentum = momentum
model(input_var, **kwargs)
n += b
model.apply(lambda module: _set_momenta(module, momenta)) | 5,354,247 |
def StopMasterDaemons():
"""Stop the master daemons on this node.
Stop the master daemons (ganeti-masterd and ganeti-rapi) on this node.
@rtype: None
"""
# TODO: log and report back to the caller the error failures; we
# need to decide in which case we fail the RPC for this
result = utils.RunCmd([pathutils.DAEMON_UTIL, "stop-master"])
if result.failed:
logging.error("Could not stop Ganeti master, command %s had exitcode %s"
" and error %s",
result.cmd, result.exit_code, result.output) | 5,354,248 |
def write_detected_issue_summaries(document, speech_segments):
"""
Scans the speech segments for any detected issues, and if there are any then a new table is added
to the document.
:param document: Word document structure to write the table into
:param speech_segments: Call transcript structures
"""
# Scan through the segments and extract the issues
issues_detected = []
for turn in speech_segments:
for issue in turn.segmentIssuesDetected:
new_issue = {"Speaker": turn.segmentSpeaker}
new_issue["Timestamp"] = turn.segmentStartTime
new_issue["Text"] = turn.segmentText[issue["Begin"]:issue["End"]]
# May need a prefix or suffix for partial text
if issue["Begin"] > 0:
new_issue["Text"] = "..." + new_issue["Text"]
if issue["End"] < len(turn.segmentText):
new_issue["Text"] = new_issue["Text"] + "..."
issues_detected.append(new_issue)
if issues_detected:
# Start with a new single-column section
document.add_section(WD_SECTION.CONTINUOUS)
section_ptr = document.sections[-1]._sectPr
cols = section_ptr.xpath('./w:cols')[0]
cols.set(qn('w:num'), '1')
write_custom_text_header(document, "Issues Detected")
# Table header information
table = document.add_table(rows=1, cols=3)
table.style = document.styles[TABLE_STYLE_STANDARD]
hdr_cells = table.rows[0].cells
hdr_cells[0].text = "Speaker"
hdr_cells[1].text = "Turn Time"
hdr_cells[2].text = "Detected Text"
# Output each row
for issue in issues_detected:
# First column is the speaker
row_cells = table.add_row().cells
row_cells[0].text = issue["Speaker"]
row_cells[1].text = convert_timestamp(issue["Timestamp"])
row_cells[2].text = issue["Text"]
# Formatting transcript table widths
widths = (Cm(2.2), Cm(2.2), Cm(12.8))
for row in table.rows:
for idx, width in enumerate(widths):
row.cells[idx].width = width
# Finish with some spacing
document.add_paragraph() | 5,354,249 |
def item_view_mouse_click(item_view, row, column=0, button=QtCore.Qt.LeftButton, modifier=QtCore.Qt.NoModifier):
"""
Helper method version of 'item_view_index_mouse_click' using a row, column instead of a QModelIndex
item_view: The QAbstractItemView instance
row: The requested row index
column: The requested column index (defaults to 0 in case of single column)
"""
index = get_item_view_index(item_view, row, column)
item_view_index_mouse_click(item_view, index, button, modifier) | 5,354,250 |
def logged(func):
"""Pipes exceptions through root logger"""
@wraps(func)
def deco(*args, **kwargs):
try:
result = func(*args, **kwargs)
except Exception as e:
logging.exception(f"{func.__name__}:\n{e}")
print("Exception logged to {LOGFILE}")
sys.exit(1)
return result
return deco | 5,354,251 |
def hamming_set(index: str, d: int = 1, include_N: bool = True):
"""Given an index of bases in {ACGTN}, generate all indexes within hamming
distance d of the input
:param index: string representing the index sequence
:param d: maximum distance to allow
:param include_N: include N when generating possible indexes
:return: set of indexes within hamming distance d
"""
base_d = {"A": 0, "C": 1, "G": 2, "T": 3, "N": 4}
new_base = [i * np.eye(len(index), dtype=np.uint8) for i in range(4 + include_N)]
other_bases = 1 - np.eye(len(index), dtype=np.uint8)
h_set = {tuple(base_d[c] for c in index)}
for _ in range(d):
for a in list(map(np.array, h_set)):
h_set.update(t for i in new_base for t in map(tuple, a * other_bases + i))
h_set = {"".join("ACGTN"[i] for i in h) for h in h_set}
return h_set | 5,354,252 |
def _get_epochs_info(raw_fname):
"""Get epoch info."""
from mne import read_epochs
epochs = read_epochs(raw_fname)
return epochs.info | 5,354,253 |
def _load_specs(ctx):
""" Helper function to find all specs stored in _WAF_/specs/*.json """
if hasattr(ctx, 'loaded_specs_dict'):
return
ctx.loaded_specs_dict = {}
spec_file_folder = ctx.root.make_node(Context.launch_dir).make_node('/_WAF_/specs')
spec_files = spec_file_folder.ant_glob('**/*.json')
for file in spec_files:
try:
spec = ctx.parse_json_file(file)
spec_name = str(file).split('.')[0]
ctx.loaded_specs_dict[spec_name] = spec
except Exception as e:
ctx.cry_file_error(str(e), file.abspath())
# For any enabled game project, see if it has a WAFSpec subfolder as well
enabled_game_projects_list = split_comma_delimited_string(ctx.options.enabled_game_projects, True)
for project in enabled_game_projects_list:
game_project_spec = ctx.path.make_node(project).make_node('WAFSpec').make_node('{}.json'.format(project))
if os.path.exists(game_project_spec.abspath()):
try:
spec = ctx.parse_json_file(game_project_spec)
if project in ctx.loaded_specs_dict:
Logs.warn("[WARN] Game project WAF spec '{}' in game project folder '{}' collides with a spec in _WAF_/specs. "
"Overriding the _WAF_/specs version with the one in the game project"
.format(project, project))
ctx.loaded_specs_dict[project] = spec
except Exception as e:
ctx.cry_file_error(str(e), game_project_spec.abspath()) | 5,354,254 |
def test_bounding_rect_of_boxes(mock_gui):
"""Test that calculating the bounding rect of a set of Boxes works correctly."""
boxes = []
for i in range(1, 4):
box = make_dummy_box()
box.position = 100 * i, 100 * i
boxes.append(box)
rect = bounding_rect_of_rects((box.world_rect for box in boxes))
assert rect == cocos.rect.Rect(100, 100, 300, 300) | 5,354,255 |
def is_private(key):
"""
Returns whether or not an attribute is private.
A private attribute looks like: __private_attribute__.
:param key: The attribute key
:return: bool
"""
return key.startswith("__") and key.endswith("__") | 5,354,256 |
async def img(filename) -> Response:
"""Image static endpoint."""
return await send_from_directory("img", filename) | 5,354,257 |
def ref_genome_info(info, config, dirs):
"""Retrieve reference genome information from configuration variables.
"""
genome_build = info.get("genome_build", None)
(_, sam_ref) = get_genome_ref(genome_build, config["algorithm"]["aligner"],
dirs["galaxy"])
return genome_build, sam_ref | 5,354,258 |
def load_text(file_arg):
"""
General function used to load data from a text file
"""
file_handle = validate_file_for_reading(file_arg)
try:
df = pd.io.parsers.read_csv(file_handle,delim_whitespace=True,\
comment='#', skip_blank_lines=True, engine='c')
except:
raise SortSeqError(\
'Could not interpret text file %s as dataframe.'%repr(file_handle))
return df.dropna(axis=0, how='all') | 5,354,259 |
def entropy_from_mnemonic(mnemonic: Mnemonic, lang: str = "en") -> BinStr:
"""Convert mnemonic sentence to Electrum versioned entropy."""
# verify that it is a valid Electrum mnemonic sentence
_ = version_from_mnemonic(mnemonic)
indexes = _indexes_from_mnemonic(mnemonic, lang)
entropy = _entropy_from_indexes(indexes, lang)
return entropy | 5,354,260 |
def main(argv):
"""Delete/split/merge/... labels in a labelvolume."""
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser = parse.parse_remap_labels(parser)
parser = parse.parse_common(parser)
args = parser.parse_args()
remap_labels(
args.inputfile,
args.delete_labels,
args.delete_files,
args.except_files,
args.merge_labels,
args.merge_files,
args.split_labels,
args.split_files,
args.aux_labelvolume,
args.min_labelsize,
args.min_segmentsize,
args.keep_only_largest,
args.conncomp,
args.nifti_output,
args.nifti_transpose,
args.outputfile,
args.save_steps,
args.protective,
) | 5,354,261 |
def delete_data_analysis(analysis_id: UUID, token: HTTPAuthorizationCredentials = Depends(auth)):
"""
Delete a data analysis record.
You may only delete records in your private space,
or that are associated with a collab of which you are an administrator.
"""
return delete_computation(omcmp.DataAnalysis, analysis_id, token) | 5,354,262 |
def get_current_blk_file(current_file_number) -> str:
"""
Returns the current blk file name with file format.
"""
return get_current_file_name(blk_file_format(current_file_number)) | 5,354,263 |
def run(vhd_list, output_file):
"""Runs this backend."""
for vhd in vhd_list.order:
output_file.write('%s %s %04d %s\n' % (
'top' if vhd in vhd_list.top else 'dep',
vhd.lib,
vhd.version,
vhd.fname)) | 5,354,264 |
def exec_cmd_status(ceph_installer, commands):
"""
Execute command
Args:
ceph_installer: installer object to exec cmd
commands: list of commands to be executed
Returns:
Boolean
"""
for cmd in commands:
out, err = ceph_installer.exec_command(sudo=True, cmd=cmd)
out, err = out.read().decode().strip(), err.read().decode().strip()
logger.info("Command Response : {} {}".format(out, err))
return True | 5,354,265 |
def BuildIsAvailable(bucket_name, remote_path):
"""Checks whether a build is currently archived at some place."""
logging.info('Checking existance: gs://%s/%s' % (bucket_name, remote_path))
try:
exists = cloud_storage.Exists(bucket_name, remote_path)
logging.info('Exists? %s' % exists)
return exists
except cloud_storage.CloudStorageError:
return False | 5,354,266 |
def _channel_name(row, prefix="", suffix=""):
"""Formats a usable name for the repeater."""
length = 16 - len(prefix)
name = prefix + " ".join((row["CALL"], row["CITY"]))[:length]
if suffix:
length = 16 - len(suffix)
name = ("{:%d.%d}" % (length, length)).format(name) + suffix
return name | 5,354,267 |
def analyze1127_and_output(ps: List[List[RunningParticle]], gantry_number: int, total_particle_number: int,
momentum_dispersion_list: List[float]) -> None:
"""
分析运行结果,并写到 output.txt 中
类似 1 2.9106590546670255 3.9272244111035284 1.9234584254384846 0.45806934921638964
Parameters
----------
ps 运行后的所有粒子
gantry_number 机架数目 / 组数
total_particle_number 总粒子数
Returns 无
-------
"""
if gantry_number != len(ps):
raise ValueError(f"数据错误,gantry_number{gantry_number}!=len(ps){len(ps)}")
if int(total_particle_number) != int(len(ps[0]) * gantry_number):
raise ValueError(
f"数据错误,total_particle_number({total_particle_number})!=len(ps[0])*gantry_number({len(ps[0]) * gantry_number})")
particle_number_per_plane_per_dp: int = total_particle_number // len(momentum_dispersion_list) // 2 // gantry_number
result: List[List[float]] = []
# 对于每个机架 / 组
for gid in range(gantry_number):
# 第一列存访机架编号
result_per_group: List[float] = [gid + 1]
# 这组机架 track 得到的 List[RunningParticle]
particle_group = ps[gid]
# 转到 pp
pp_group = PhaseSpaceParticle.create_from_running_particles(
IP_ISOC, IP_ISOC.get_natural_coordinate_system(), particle_group)
# 映射到 x p 平面
ppx_track = PhaseSpaceParticle.phase_space_particles_project_to_xxp_plane(pp_group)
ppy_track = PhaseSpaceParticle.phase_space_particles_project_to_yyp_plane(pp_group)
# 对于 x 平面,List[RunningParticle]中前一半
statistic = Statistic()
outer_statistic = Statistic()
# 对于 x 平面
for i in range(0, particle_number_per_plane_per_dp * len(momentum_dispersion_list),
particle_number_per_plane_per_dp):
for j in range(0, particle_number_per_plane_per_dp):
pt = ppx_track[i + j]
statistic.add(pt[0])
outer_statistic.add((statistic.max() - statistic.min()) / MM / 2.0)
statistic.clear()
# y 平面
for i in range(particle_number_per_plane_per_dp * len(momentum_dispersion_list),
particle_number_per_plane_per_dp * len(momentum_dispersion_list) * 2,
particle_number_per_plane_per_dp):
for j in range(0, particle_number_per_plane_per_dp):
pt = ppy_track[i + j]
statistic.add(pt[0])
outer_statistic.add((statistic.max() - statistic.min()) / MM / 2.0)
statistic.clear()
result_per_group.append(outer_statistic.var())
result_per_group.append(outer_statistic.max())
outer_statistic.clear()
result.append(result_per_group)
np.savetxt('output.txt', np.array(result)) | 5,354,268 |
def wordsinunit(unit):
"""Counts the words in the unit's source and target, taking plurals into
account. The target words are only counted if the unit is translated."""
(sourcewords, targetwords) = (0, 0)
if isinstance(unit.source, multistring):
sourcestrings = unit.source.strings
else:
sourcestrings = [unit.source or ""]
for s in sourcestrings:
sourcewords += wordcount(s)
if not unit.istranslated():
return sourcewords, targetwords
if isinstance(unit.target, multistring):
targetstrings = unit.target.strings
else:
targetstrings = [unit.target or ""]
for s in targetstrings:
targetwords += wordcount(s)
return sourcewords, targetwords | 5,354,269 |
def check_instance(arg, types, allow_none=False, message='Argument "%(string)s" is not of type %(expected)s, but of type %(actual)s', level=1):
"""
>>> check_instance(1, int)
1
>>> check_instance(3.5, float)
3.5
>>> check_instance('hello', str)
'hello'
>>> check_instance([1, 2, 3], list)
[1, 2, 3]
>>> check_instance(1, (int, float))
1
>>> check_instance(3.5, (int, float))
3.5
>>> check_instance('hello', (str, list))
'hello'
>>> check_instance([1, 2, 3], (str, list))
[1, 2, 3]
>>> check_instance(1, float)
Traceback (most recent call last):
...
AssertionError: Argument "1" is not of type <class 'float'>, but of type <class 'int'>
>>> check_instance(3.5, int)
Traceback (most recent call last):
...
AssertionError: Argument "3.5" is not of type <class 'int'>, but of type <class 'float'>
>>> check_instance('hello', list)
Traceback (most recent call last):
...
AssertionError: Argument "hello" is not of type <class 'list'>, but of type <class 'str'>
>>> check_instance([1, 2, 3], str)
Traceback (most recent call last):
...
AssertionError: Argument "[1, 2, 3]" is not of type <class 'str'>, but of type <class 'list'>
>>> check_instance(1, (list, str))
Traceback (most recent call last):
...
AssertionError: Argument "1" is not of type (<class 'list'>, <class 'str'>), but of type <class 'int'>
>>> check_instance(3.5, (list, str))
Traceback (most recent call last):
...
AssertionError: Argument "3.5" is not of type (<class 'list'>, <class 'str'>), but of type <class 'float'>
>>> check_instance('hello', (int, float))
Traceback (most recent call last):
...
AssertionError: Argument "hello" is not of type (<class 'int'>, <class 'float'>), but of type <class 'str'>
>>> check_instance([1, 2, 3], (int, float))
Traceback (most recent call last):
...
AssertionError: Argument "[1, 2, 3]" is not of type (<class 'int'>, <class 'float'>), but of type <class 'list'>
>>> check_instance(None, int)
Traceback (most recent call last):
...
AssertionError: Argument "None" is not of type <class 'int'>, but of type <class 'NoneType'>
>>> check_instance(None, float)
Traceback (most recent call last):
...
AssertionError: Argument "None" is not of type <class 'float'>, but of type <class 'NoneType'>
>>> check_instance(None, str)
Traceback (most recent call last):
...
AssertionError: Argument "None" is not of type <class 'str'>, but of type <class 'NoneType'>
>>> check_instance(None, list)
Traceback (most recent call last):
...
AssertionError: Argument "None" is not of type <class 'list'>, but of type <class 'NoneType'>
>>> check_instance(None, (int, float))
Traceback (most recent call last):
...
AssertionError: Argument "None" is not of type (<class 'int'>, <class 'float'>), but of type <class 'NoneType'>
>>> check_instance(None, (str, list))
Traceback (most recent call last):
...
AssertionError: Argument "None" is not of type (<class 'str'>, <class 'list'>), but of type <class 'NoneType'>
>>> check_instance(1, int, allow_none=True)
1
>>> check_instance(3.5, float, allow_none=True)
3.5
>>> check_instance('hello', str, allow_none=True)
'hello'
>>> check_instance([1, 2, 3], list, allow_none=True)
[1, 2, 3]
>>> check_instance(1, (int, float), allow_none=True)
1
>>> check_instance(3.5, (int, float), allow_none=True)
3.5
>>> check_instance('hello', (str, list), allow_none=True)
'hello'
>>> check_instance([1, 2, 3], (str, list), allow_none=True)
[1, 2, 3]
>>> check_instance(1, float, allow_none=True)
Traceback (most recent call last):
...
AssertionError: Argument "1" is not of type <class 'float'>, but of type <class 'int'>
>>> check_instance(3.5, int, allow_none=True)
Traceback (most recent call last):
...
AssertionError: Argument "3.5" is not of type <class 'int'>, but of type <class 'float'>
>>> check_instance('hello', list, allow_none=True)
Traceback (most recent call last):
...
AssertionError: Argument "hello" is not of type <class 'list'>, but of type <class 'str'>
>>> check_instance([1, 2, 3], str, allow_none=True)
Traceback (most recent call last):
...
AssertionError: Argument "[1, 2, 3]" is not of type <class 'str'>, but of type <class 'list'>
>>> check_instance(1, (list, str), allow_none=True)
Traceback (most recent call last):
...
AssertionError: Argument "1" is not of type (<class 'list'>, <class 'str'>), but of type <class 'int'>
>>> check_instance(3.5, (list, str), allow_none=True)
Traceback (most recent call last):
...
AssertionError: Argument "3.5" is not of type (<class 'list'>, <class 'str'>), but of type <class 'float'>
>>> check_instance('hello', (int, float), allow_none=True)
Traceback (most recent call last):
...
AssertionError: Argument "hello" is not of type (<class 'int'>, <class 'float'>), but of type <class 'str'>
>>> check_instance([1, 2, 3], (int, float), allow_none=True)
Traceback (most recent call last):
...
AssertionError: Argument "[1, 2, 3]" is not of type (<class 'int'>, <class 'float'>), but of type <class 'list'>
>>> check_instance(None, int, allow_none=True)
>>> check_instance(None, float, allow_none=True)
>>> check_instance(None, str, allow_none=True)
>>> check_instance(None, list, allow_none=True)
>>> check_instance(None, (int, float), allow_none=True)
>>> check_instance(None, (int, float), allow_none=True)
>>> check_instance(None, (str, list), allow_none=True)
>>> check_instance(None, (str, list), allow_none=True)
"""
check(is_instance(arg, types, allow_none), lambda: message % {'string': str(arg), 'actual': type(arg), 'expected': types}, level)
return arg | 5,354,270 |
def spec_lnlike(params, labels, grid_param_list, lbda_obs, spec_obs, err_obs,
dist, model_grid=None, model_reader=None, em_lines={},
em_grid={}, dlbda_obs=None, instru_corr=None,
instru_fwhm=None, instru_idx=None, filter_reader=None,
AV_bef_bb=False, units_obs='si', units_mod='si', interp_order=1):
""" Define the likelihood log-function.
Parameters
----------
params : tuple
Set of models parameters for which the model grid has to be
interpolated.
labels: Tuple of strings
Tuple of labels in the same order as initial_state, that is:
- first all parameters related to loaded models (e.g. 'Teff', 'logg')
- then the planet photometric radius 'R', in Jupiter radius
- (optionally) the flux of emission lines (labels should match those in
the em_lines dictionary), in units of the model spectrum (times mu)
- (optionally) the optical extinction 'Av', in mag
- (optionally) the ratio of total to selective optical extinction 'Rv'
- (optionally) 'Tbb1', 'Rbb1', 'Tbb2', 'Rbb2', etc. for each extra bb
contribution.
grid_param_list : list of 1d numpy arrays/lists OR None
- If list, should contain list/numpy 1d arrays with available grid of
model parameters.
- Set to None for a pure n-blackbody fit, n=1,2,...
- Note1: model grids should not contain grids on radius and Av, but
these should still be passed in initial_state (Av optional).
- Note2: for a combined grid model + black body, just provide
the grid parameter list here, and provide values for 'Tbbn' and 'Rbbn'
in initial_state, labels and bounds.
lbda_obs : numpy 1d ndarray or list
Wavelength of observed spectrum. If several instruments, should be
ordered per instrument, not necessarily as monotonically increasing
wavelength. Hereafter, n_ch = len(lbda_obs).
spec_obs : numpy 1d ndarray or list
Observed spectrum for each value of lbda_obs.
err_obs : numpy 1d/2d ndarray or list
Uncertainties on the observed spectrum. If 2d array, should be [2,n_ch]
where the first (resp. second) column corresponds to lower (upper)
uncertainty, and n_ch is the length of lbda_obs and spec_obs.
dist : float
Distance in parsec, used for flux scaling of the models.
model_grid : numpy N-d array, optional
If provided, should contain the grid of model spectra for each
free parameter of the given grid. I.e. for a grid of n_T values of Teff
and n_g values of Logg, the numpy array should be n_T x n_g x n_ch x 2,
where n_ch is the number of wavelengths for the observed spectrum,
and the last 2 dims are for wavelength and fluxes respectively.
If provided, takes precedence over model_name/model_reader.
model_reader : python routine, opt
External routine that reads a model file and returns a 2D numpy array,
where the first column corresponds to wavelengths, and the second
contains model values. See example routine in model_interpolation()
description.
em_lines: dictionary, opt
Dictionary of emission lines to be added on top of the model spectrum.
Each dict entry should be the name of the line, assigned to a tuple of
4 values:
1) the wavelength (in mu);
2) a string indicating whether line intensity is expressed in flux
('F'), luminosity ('L') or log(L/LSun) ("LogL");
3) the FWHM of the gaussian (or None if to be set automatically);
4) whether the FWHM is expressed in 'nm', 'mu' or 'km/s'.
The third and fourth can also be set to None. In that case, the FWHM of
the gaussian will automatically be set to the equivalent width of the
line, calculated from the flux to be injected and the continuum
level (measured in the grid model to which the line is injected).
Examples: em_lines = {'BrG':(2.1667,'F',None, None)};
em_lines = {'BrG':(2.1667,'LogL', 100, 'km/s')}
em_grid: dictionary pointing to lists, opt
Dictionary where each entry corresponds to an emission line and points
to a list of values to inject for emission line fluxes. For computation
efficiency, interpolation will be performed between the points of this
grid during the MCMC sampling. Dict entries should match labels and
em_lines.
dlbda_obs: numpy 1d ndarray or list, optional
Spectral channel width for the observed spectrum. It should be provided
IF one wants to weigh each point based on the spectral
resolution of the respective instruments (as in Olofsson et al. 2016).
instru_corr : numpy 2d ndarray or list, optional
Spectral correlation throughout post-processed images in which the
spectrum is measured. It is specific to the combination of instrument,
algorithm and radial separation of the companion from the central star.
Can be computed using distances.spectral_correlation(). In case of
a spectrum obtained with different instruments, build it with
distances.combine_corrs(). If not provided, it will consider the
uncertainties in each spectral channels are independent. See Greco &
Brandt (2017) for details.
instru_fwhm : float or list, optional
The instrumental spectral fwhm provided in nm. This is used to convolve
the model spectrum. If several instruments are used, provide a list of
instru_fwhm values, one for each instrument whose spectral resolution
is coarser than the model - including broad band
filter FWHM if relevant.
instru_idx: numpy 1d array, optional
1d array containing an index representing each instrument used
to obtain the spectrum, label them from 0 to n_instru. Zero for points
that don't correspond to any instru_fwhm provided above, and i in
[1,n_instru] for points associated to instru_fwhm[i-1]. This parameter
must be provided if the spectrum consists of points obtained with
different instruments.
filter_reader: python routine, optional
External routine that reads a filter file and returns a 2D numpy array,
where the first column corresponds to wavelengths, and the second
contains transmission values. Important: if not provided, but strings
are detected in instru_fwhm, the default format assumed for the files:
- first row containing header
- starting from 2nd row: 1st column: WL in mu, 2nd column: transmission
Note: files should all have the same format and wavelength units.
AV_bef_bb: bool, optional
If both extinction and an extra bb component are free parameters,
whether to apply extinction before adding the BB component (e.g.
extinction mostly from circumplanetary dust) or after the BB component
(e.g. mostly insterstellar extinction).
units_obs : str, opt {'si','cgs','jy'}
Units of observed spectrum. 'si' for W/m^2/mu; 'cgs' for ergs/s/cm^2/mu
or 'jy' for janskys.
units_mod: str, opt {'si','cgs','jy'}
Units of the model. 'si' for W/m^2/mu; 'cgs' for ergs/s/cm^2/mu or 'jy'
for janskys. If different to units_obs, the spectrum units will be
converted.
interp_order: int, opt, {-1,0,1}
Interpolation mode for model interpolation.
-1: log interpolation (i.e. linear interpolatlion on log(Flux))
0: nearest neighbour model.
1: Order 1 spline interpolation.
Returns
-------
out: float
The log of the likelihood.
"""
if grid_param_list is not None:
if model_grid is None and model_reader is None:
msg = "model_name and model_reader must be provided"
raise TypeError(msg)
lbda_mod, spec_mod = make_model_from_params(params, labels, grid_param_list,
dist, lbda_obs, model_grid,
model_reader, em_lines, em_grid,
dlbda_obs, instru_fwhm,
instru_idx, filter_reader,
AV_bef_bb, units_obs, units_mod,
interp_order)
# evaluate the goodness of fit indicator
chi = goodness_of_fit(lbda_obs, spec_obs, err_obs, lbda_mod, spec_mod,
dlbda_obs=dlbda_obs, instru_corr=instru_corr,
instru_fwhm=instru_fwhm, instru_idx=instru_idx,
filter_reader=filter_reader, plot=False, outfile=None)
# log likelihood
lnlikelihood = -0.5 * chi
return lnlikelihood | 5,354,271 |
def generic_list(request):
"""Returns a list of all of the document IDs in the matched DocStore."""
return umbrella_from_request(request).get_doc_ids() | 5,354,272 |
def japan_results(request):
"""
view function returns template that displays New York-specific photos
"""
images = Image.filter_images_by_location(location_id=12)
return render(request, "all_pictures/japan.html", {"images":images}) | 5,354,273 |
def add_yaml_literal_block(yaml_object):
"""
Get a yaml literal block representer function to convert normal strings into yaml literals during yaml dumping
Convert string to yaml literal block
yaml docs: see "Block mappings" in https://pyyaml.org/wiki/PyYAMLDocumentation
"""
def literal_str_representer(dumper, data):
return dumper.represent_scalar("tag:yaml.org,2002:str", data, style="|")
return yaml_object.add_representer(literal_block, literal_str_representer) | 5,354,274 |
def _spans_to_array(
doc: Doc,
sources: List[str],
label2idx: Dict[str, int],
labels_without_prefix: Set[str],
prefixes: Optional[Set[str]] = None,
warn_missing_labels: bool = False
) -> np.ndarray:
"""Convert the annotations of a spacy document into a 2D array.
Each row corresponds to a token, and each column to a labelling
source. In other words, the value at (i,j) represents the prediction
of source j for token i. This prediction is expressed as the
index of the label in the labels.
NB:
- Sources should be a list of labelling sources. If empty, all sources
are employed.
- If `prefixes` are provided (e.g., [I, B, L]), it is assumed that the
labels in `label2idx` contain the prefixes (e.g., I-PERSON,
B-PERSON).
- If `prefixes` are not provided, it is assumed that the labels in
`label2idx` do not contain prefixes (e.g, PERSON).
- We also assume the O is label is at position 0.
"""
if sources is None:
sources = list(doc.spans.keys())
if warn_missing_labels:
missing_labels = set()
# Creating the numpy array itself
data = np.zeros((len(doc), len(sources)), dtype=np.int16)
for source_index, source in enumerate(sources):
for span in doc.spans.get(source, []):
if span.label_ not in labels_without_prefix:
if warn_missing_labels:
missing_labels.add(span.label_)
continue
if prefixes is None:
# Do not use prefix labels (e.g., use PER instead of
# B-PER, I-PER, etc.)
data[span.start:span.end, source_index] = label2idx[
span.label_
]
else:
# If the span is a single token, we can use U
if "U" in prefixes and len(span) == 1:
data[span.start, source_index] = label2idx[
"U-%s" % span.label_
]
continue
# Otherwise, we use B, I and L
if "B" in prefixes:
data[span.start, source_index] = label2idx[
"B-%s" % span.label_
]
if "I" in prefixes:
start_i = (span.start+1) if "B" in prefixes else span.start
end_i = (span.end-1) if "L" in prefixes else span.end
data[start_i:end_i, source_index] = label2idx[
"I-%s" % span.label_
]
if "L" in prefixes:
data[span.end-1, source_index] = label2idx[
"L-%s" % span.label_
]
if warn_missing_labels:
print(
"WARNING: \
Span labels were found in the dataset that were not provided \
in `labels_without_prefices`: {}".format(missing_labels)
)
return data | 5,354,275 |
def d_out_dist_cooler(P_mass, rho_dist_cool, w_drift):
"""
Calculates the tube's diameter of out distilliat from distilliat cooler to distilliat volume.
Parameters
----------
P_mass : float
The mass flow rate of distilliat, [kg/s]
rho_dist_cool : float
The density of liquid at cooling temperature, [kg/m**3]
w_drift :float
The speed of steam at the tube, [m/s]
Returns
-------
d_out_dist_cooler : float
The tube's diameter of out distilliat from distilliat cooler to distilliat volume, [m]
References
----------
&&&
"""
return P_mass/(0,785*rho_dist_cool*w_drift) | 5,354,276 |
def is_port_in_use(port):
"""
test if a port is being used or is free to use.
:param port:
:return:
"""
import socket
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
return s.connect_ex(('localhost', port)) == 0 | 5,354,277 |
def redirect_output_to_logger(logger):
"""Context manager which redirects stdout and stderr to a logger"""
orig_stdout = sys.stdout
orig_stderr = sys.stderr
sys.stdout = StreamToLog(logger, logging.INFO)
sys.stderr = StreamToLog(logger, logging.WARNING)
try:
yield
finally:
sys.stdout = orig_stdout
sys.stderr = orig_stderr | 5,354,278 |
def create_variables_eagerly(getter, initial_value, **kwargs):
"""Attempts to force variable creation to be eager."""
eager_initial_value = None
if isinstance(initial_value, tf.Tensor):
if _is_eager_tensor(initial_value):
eager_initial_value = initial_value
else:
# Try to compute the static value (e.g. if the user used `tf.ones`).
eager_initial_value = tf.get_static_value(initial_value)
if eager_initial_value is not None:
# If we have an eager initial value we can create variables in eager mode.
with tf.init_scope():
return getter(initial_value=eager_initial_value, **kwargs)
else:
# Fall back to creating in whatever context we're in with user input.
return getter(initial_value=initial_value, **kwargs) | 5,354,279 |
def _Run(vm):
"""See base method.
Args:
vm: The vm to run the benchmark on.
Returns:
A list of sample.Sample objects.
"""
# Make changes e.g. compiler flags to spec config file.
if 'gcc' in FLAGS.runspec_config:
_OverwriteGccO3(vm)
# swap only if necessary; free local node memory and avoid remote memory;
# reset caches; set stack size to unlimited
# Also consider setting enable_transparent_hugepages flag to true
cmd = ('echo 1 | sudo tee /proc/sys/vm/swappiness && '
'echo 1 | sudo tee /proc/sys/vm/zone_reclaim_mode && '
'sync ; echo 3 | sudo tee /proc/sys/vm/drop_caches && '
'ulimit -s unlimited && ')
cmd += 'runcpu '
if FLAGS.spec17_build_only:
cmd += '--action build '
if FLAGS.spec17_rebuild:
cmd += '--rebuild '
version_specific_parameters = []
# rate runs require 2 GB minimum system main memory per copy,
# not including os overhead. Refer to:
# https://www.spec.org/cpu2017/Docs/system-requirements.html#memory
copies = min(vm.NumCpusForBenchmark(),
vm.total_free_memory_kb // (2 * KB_TO_GB_MULTIPLIER))
version_specific_parameters.append(' --copies=%s ' %
(FLAGS.spec17_copies or copies))
version_specific_parameters.append(
' --threads=%s ' % (FLAGS.spec17_threads or vm.NumCpusForBenchmark()))
if FLAGS.spec17_fdo:
version_specific_parameters.append('--feedback ')
vm.RemoteCommand('cd /scratch/cpu2017; mkdir fdo_profiles')
start_time = time.time()
stdout, _ = speccpu.Run(vm, cmd, ' '.join(FLAGS.spec17_subset),
version_specific_parameters)
if FLAGS.spec17_build_only:
if 'Error' in stdout and 'Please review this file' in stdout:
raise errors.Benchmarks.RunError('Error during SPEC compilation.')
return [
sample.Sample(
'compilation_time',
time.time() - start_time, 's', {
'spec17_subset': FLAGS.spec17_subset,
'gcc_version': build_tools.GetVersion(vm, 'gcc')
})
]
partial_results = True
# Do not allow partial results if any benchmark subset is a full suite.
for benchmark_subset in FLAGS.benchmark_subset:
if benchmark_subset in ['intspeed', 'fpspeed', 'intrate', 'fprate']:
partial_results = False
log_files = set()
for test in FLAGS.spec17_subset:
if test in LOG_FILENAME:
log_files.add(LOG_FILENAME[test])
else:
if test in INTSPEED_SUITE:
log_files.add(LOG_FILENAME['intspeed'])
elif test in INTRATE_SUITE:
log_files.add(LOG_FILENAME['intrate'])
elif test in FPSPEED_SUITE:
log_files.add(LOG_FILENAME['fpspeed'])
elif test in FPRATE_SUITE:
log_files.add(LOG_FILENAME['fprate'])
for log_file in log_files:
vm.RemoteCommand(
f'cp {vm.GetScratchDir()}/cpu2017/result/{log_file} ~/{log_file}.log')
vm.PullFile(vm_util.GetTempDir(), f'~/{log_file}.log')
samples = speccpu.ParseOutput(vm, log_files, partial_results, None)
for item in samples:
item.metadata['vm_name'] = vm.name
item.metadata['spec17_gcc_flags'] = FLAGS.spec17_gcc_flags
return samples | 5,354,280 |
def mixin_method(ufunc, rhs=None, transpose=True):
"""Decorator to register a mixin class method
Using this decorator ensures that derived classes that are declared
with the `mixin_class` decorator will also have the behaviors that this
class has.
ufunc : numpy.ufunc
A universal function (or NEP18 callable) that is hooked in awkward1,
i.e. it can be the first argument of a behavior
rhs : Set[type] or None
List of right-hand side argument types (leave None if unary function)
The left-hand side is expected to always be ``self`` of the parent class
If the function is not unary or binary, call for help :)
transpose : bool
Autmatically create a transpose signature (only makes sense for binary ufuncs)
"""
def register(method):
if not isinstance(rhs, (set, type(None))):
raise ValueError("Expected a set of right-hand-side argument types")
if transpose and rhs is not None:
def transposed(left, right):
return method(right, left)
method._awkward_mixin = (ufunc, rhs, transposed)
else:
method._awkward_mixin = (ufunc, rhs, None)
return method
return register | 5,354,281 |
def set_def_quick_print(setting):
"""
Set the global default (henceforth) behavior whether to quick print
when stamping or stopping.
Args:
setting: Passed through bool().
Returns:
bool: Implemented setting value.
"""
setting = bool(setting)
SET['QP'] = setting
return setting | 5,354,282 |
def test_main_restore_cancel(builtin_input, builtin_print,
parse_config, restore):
"""should cancel restore procedure when user cancels confirmation"""
with nose.assert_raises(Exception):
swb.main()
restore.assert_not_called() | 5,354,283 |
def _filter_mandatory_attributes(zeep_axl_factory_object):
"""Inspect the AXL schema and return a generator of an API endpoint's mandatory attributes.
Intended use if for local validation prior to submitting an 'add' AXL request to reduce the cost of
remote error responses from the AXL server.
Note:
EXPERIMENTAL ONLY.
Inconsistencies noted for determinations on 'minOccurs' and 'nillable'. Suggested NOT to be used.
:param zeep_axl_factory_object: zeep AXL object generated from a 'get_type' factory call
:return: generator of mandatory axl elements
"""
for element in serialize_object(zeep_axl_factory_object).elements:
# filter on minimum occurrence and no default value
if element[1].min_occurs >= 1 \
and not element[1].is_optional \
and not element[1].nillable \
and not element[1].default:
yield element[1] | 5,354,284 |
def company_instance():
"""
Mock Company instance
"""
with patch(PATCH_METHOD) as req:
req.return_value = COMPANY_TABLE_DATA
instance = get_company_instance()
instance.set_company_id("uuid")
instance.set_company_name("co")
instance.set_company_external_id("external id")
instance.save()
yield instance | 5,354,285 |
def periodize_cylinders(xi, xf, d):
"""A generator for each of the copies of the cylinder that we have to check
for collisions."""
# of course the cylinder itself must be used, so we return that first in
# case anybody only cares to do one, then they do the most important one
yield xi, xf
# now for each edge adjacent to the face that the tip of the line defining
# the center of the cylinder is hitting, we can check if the cylinder
# spills over onto the next face in that direction by just checking if the
# points of closest approach from the cylinder to the edge are within r of
# each other
xip, xfp = get_true_xif_periodic(xi, xf)
periodizers = periodizers_given_face[get_face_given_point(xip)]
for periodizer in periodizers:
yield periodizer+xip, periodizer+xfp | 5,354,286 |
async def test_ignore_terminate_fail(conf, game):
"""Test exit if script stops"""
cmd = ["bash", "-c", 'trap "" SIGTERM && sleep 20']
async with simsched.simsched(game, conf, cmd):
# Wait for term to be captured
await asyncio.sleep(1) | 5,354,287 |
def time_handler(start_time, start_fmt, elaps_fmt, today):
"""return StartTime, ElapsedTime tuple using
start/sub time string"""
start_time = datetime.strptime(start_time, '%Y-%m-%dT%H:%M:%S')
start_time = StartTime(start_time.year, start_time.month,
start_time.day, start_time.hour,
start_time.minute, start_time.second)
start_time.fmt = start_fmt
delta = today - start_time
delta = ElapsedTime(delta.days, delta.seconds, 0)
delta.fmt = elaps_fmt
return start_time, delta | 5,354,288 |
def lgb_multi_weighted_logloss_exgal(y_preds, train_data):
"""
@author olivier https://www.kaggle.com/ogrellier
https://www.kaggle.com/ogrellier/plasticc-in-a-kernel-meta-and-data/code
multi logloss for PLAsTiCC challenge
"""
# class_weights taken from Giba's topic : https://www.kaggle.com/titericz
# https://www.kaggle.com/c/PLAsTiCC-2018/discussion/67194
# with Kyle Boone's post https://www.kaggle.com/kyleboone
y_true = train_data.get_label()
if len(np.unique(y_true)) > 14:
classes_exgal.append(99)
class_weight_exgal[99] = 2
y_p = y_preds.reshape(y_true.shape[0], len(classes_exgal), order='F')
# normalize
y_p /= y_p.sum(1)[:,None]
# Trasform y_true in dummies
y_ohe = pd.get_dummies(y_true)
# Normalize rows and limit y_preds to 1e-15, 1-1e-15
y_p = np.clip(a=y_p, a_min=1e-15, a_max=1 - 1e-15)
# Transform to log
y_p_log = np.log(y_p)
# Get the log for ones, .values is used to drop the index of DataFrames
# Exclude class 99 for now, since there is no class99 in the training set
# we gave a special process for that class
y_log_ones = np.sum(y_ohe.values * y_p_log, axis=0)
# Get the number of positives for each class
nb_pos = y_ohe.sum(axis=0).values.astype(float)
# Weight average and divide by the number of positives
class_arr = np.array([class_weight_exgal[k] for k in sorted(class_weight_exgal.keys())])
y_w = y_log_ones * class_arr / nb_pos
loss = - np.sum(y_w) / np.sum(class_arr)
return 'wloss', loss, False | 5,354,289 |
def makedirs(path, mode=0o777, exist_ok=False):
"""Recursive directory creation function.
:type path: bytes | unicode
:type mode: int
:type exist_ok: int
:rtype: None
"""
pass | 5,354,290 |
def api_owner_required(f):
"""
Authorization decorator for api requests that require the record's owner
Ensure a user is admin or the actual user who created the record,
if not send a 400 error.
:return: Function
"""
@wraps(f)
def decorated_function(*args, **kwargs):
if current_user.is_admin():
return f(*args, **kwargs)
else:
user_id = kwargs['user_id']
if current_user.id != user_id:
abort(400)
return f(*args, **kwargs)
return decorated_function | 5,354,291 |
def save_prediction_image(stacked_img, im_name, epoch, save_folder_name="result_images", save_im=True):
"""save images to save_path
Args:
stacked_img (numpy): stacked cropped images
save_folder_name (str): saving folder name
"""
div_arr = division_array(388, 2, 2, 512, 512)
img_cont = image_concatenate(stacked_img.cpu().data.numpy(), 2, 2, 512, 512)
img_cont = polarize((img_cont)/div_arr)*255
img_cont_np = img_cont.astype('uint8')
img_cont = Image.fromarray(img_cont_np)
# organize images in every epoch
desired_path = save_folder_name + '/epoch_' + str(epoch) + '/'
# Create the path if it does not exist
if not os.path.exists(desired_path):
os.makedirs(desired_path)
# Save Image!
export_name = str(im_name) + '.png'
img_cont.save(desired_path + export_name)
return img_cont_np | 5,354,292 |
def flatten_probas_ori(probas, labels, ignore=None):
"""
Flattens predictions in the batch
"""
if probas.dim() == 3:
# assumes output of a sigmoid layer
B, H, W = probas.size()
probas = probas.view(B, 1, H, W)
B, C, H, W = probas.size()
probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C
labels = labels.view(-1)
if ignore is None:
return probas, labels
valid = (labels != ignore)
vprobas = probas[valid.nonzero().squeeze()]
vlabels = labels[valid]
return vprobas, vlabels | 5,354,293 |
def get_new_file_number(pat, destdir, startnum=1, endnum=10000):
"""Substitute the integers from startnum to endnum into pat and
return the first one that doesn't exist. The file name that is
searched for is os.path.join(destdir, pat % i)."""
for i in range(startnum, endnum):
temp = pat % i
if not os.path.exists(os.path.join(destdir, temp)):
return i | 5,354,294 |
def VisionTransformer_small(pretrained=False,input_shape=(3,224,224),patch_size=16,num_classes=1000, depth=8,drop_rate=0.2,**kwargs):
""" My custom 'small' ViT model. Depth=8, heads=8= mlp_ratio=3."""
vit= VisionTransformer( patch_size=patch_size,num_classes=num_classes, depth=depth,
num_heads=12, mlp_ratio=3., qkv_bias=False, qk_scale=768 ** -0.5, representation_size=None,
drop_rate=drop_rate, attn_drop_rate=drop_rate, drop_path_rate=drop_rate, hybrid_backbone=None)
model=ImageClassificationModel(input_shape=input_shape,output=vit)
if pretrained:
# NOTE my scale was wrong for original weights, leaving this here until I have better ones for this model
vit.qk_scale=768 ** -0.5
return model | 5,354,295 |
def downgrade_database(
alembic_config_filename: str,
destination_revision: str,
alembic_base_dir: str = None,
starting_revision: str = None,
version_table: str = DEFAULT_ALEMBIC_VERSION_TABLE,
as_sql: bool = False) -> None:
"""
Use Alembic to downgrade our database. USE WITH EXTREME CAUTION.
"revision" is the destination revision.
See http://alembic.readthedocs.org/en/latest/api/runtime.html
but also, in particular, ``site-packages/alembic/command.py``
Arguments:
alembic_config_filename:
config filename
alembic_base_dir:
directory to start in, so relative paths in the config file work
starting_revision:
revision to start at (typically ``None`` to ask the database)
destination_revision:
revision to aim for
version_table: table name for Alembic versions
as_sql:
run in "offline" mode: print the migration SQL, rather than
modifying the database. See
http://alembic.zzzcomputing.com/en/latest/offline.html
"""
if alembic_base_dir is None:
alembic_base_dir = os.path.dirname(alembic_config_filename)
os.chdir(alembic_base_dir) # so the directory in the config file works
config = Config(alembic_config_filename)
script = ScriptDirectory.from_config(config)
# noinspection PyUnusedLocal,PyProtectedMember
def downgrade(rev, context):
return script._downgrade_revs(destination_revision, rev)
log.info("Downgrading database to revision {!r} using Alembic",
destination_revision)
with EnvironmentContext(config,
script,
fn=downgrade,
as_sql=as_sql,
starting_rev=starting_revision,
destination_rev=destination_revision,
tag=None,
version_table=version_table):
script.run_env()
log.info("Database downgrade completed") | 5,354,296 |
def sparsify_axis_labels_old(ax, n=2):
"""
Sparsify tick labels on the given matplotlib axis, keeping only those whose index is divisible by n. Works
with factor plots
"""
for idx, label in enumerate(ax.xaxis.get_ticklabels()):
if idx % n != 0:
label.set_visible(False) | 5,354,297 |
def cast_env(env):
"""Encode all the environment values as the appropriate type for each Python version
This assumes that all the data is or can be represented as UTF8"""
env_type = six.ensure_binary if sys.version_info[0] < 3 else six.ensure_str
return {env_type(key): env_type(value) for key, value in six.iteritems(env)} | 5,354,298 |
def query_filter_choices(arg=None, fq=[]):
"""
Makes solr query and returns facets for tickets.
:param arg: solr query, string
"""
params = {
'short_timeout': True,
'fq': [
'project_id_s:%s' % c.project._id,
'mount_point_s:%s' % c.app.config.options.mount_point,
'type_s:Ticket',
] + fq,
'rows': 0,
}
params.update(FACET_PARAMS)
result = search(arg, **params)
return get_facets(result) | 5,354,299 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.