content
stringlengths
22
815k
id
int64
0
4.91M
def extract_rawfile_unique_values( file: str ) -> list: """Extract the unique raw file names from "R.FileName" (Spectronaut output), "Raw file" (MaxQuant output), "shortname" (AlphaPept output) or "Run" (DIA-NN output) column or from the "Spectral Count" column from the combined_peptide.tsv file without modifications for the FragPipe. Args: file (str): The name of a file. Raises: ValueError: if a column with the unique raw file names is not in the file. Returns: list: A sorted list of unique raw file names from the file. """ file_ext = os.path.splitext(file)[-1] if file_ext == '.csv': sep = ',' elif file_ext in ['.tsv', '.txt']: sep = '\t' with open(file) as filelines: i = 0 filename_col_index = None filename_data = [] for l in filelines: l = l.split(sep) # just do it for the first line if i == 0: for col in ['R.FileName', 'Raw file', 'Run', 'shortname']: if col in l: filename_col_index = l.index(col) break if not isinstance(filename_col_index, int): # to check the case with the FragPipe peptide.tsv file when we don't have the info about the experiment name if ("Assigned Modifications" in "".join(l)) and ("Protein ID" in "".join(l)) and ("Peptide" in "".join(l)): return [] # to check the case with the FragPipe combined_peptide.tsv file when the experiment name is included in the "Spectral Count" column elif ("Sequence" in "".join(l)) and ("Assigned Modifications" in "".join(l)) and ("Protein ID" in "".join(l)): return sorted(list(set([col.replace('_', '').replace(' Spectral Count', '') for col in l if 'Spectral Count' in col]))) else: raise ValueError('A column with the raw file names is not in the file.') else: filename_data.append(l[filename_col_index]) i += 1 unique_filenames = set(filename_data) sorted_unique_filenames = sorted(list(unique_filenames)) return sorted_unique_filenames
5,355,000
def _fetch_from_s3(bucket_name, path): """Fetch the contents of an S3 object Args: bucket_name (str): The S3 bucket name path (str): The path to the S3 object Returns: str: The content of the S3 object in string format """ s3 = boto3.resource('s3') bucket = s3.Bucket(bucket_name) obj = bucket.Object(path) data = obj.get()['Body'].read().decode('utf-8') return data
5,355,001
def deterministic(seed): """ Make the experiment reproducible """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) cudnn.deterministic = True
5,355,002
def vrv_getatttype(schema, module, gp, aname, includes_dir = ""): """ returns the attribut type for element name, or string if not detectable.""" # Look up if there is an override for this type in the current module, and return it # Note that we do not honor pseudo-hungarian notation attype, hungarian = vrv_get_att_config_type(module, gp, aname) if attype: return (attype, hungarian) # No override, get it from the schema # First numbers el = schema.xpath("//tei:attDef[@ident=$name]/tei:datatype/rng:data/@type", name=aname, namespaces=TEI_NS) if el: if el[0] == "nonNegativeInteger" or el[0] == "positiveInteger": return ("int", "") elif el[0] == "decimal": return ("double", "") # The data types ref = schema.xpath("//tei:classSpec[@ident=$gp]//tei:attDef[@ident=$name]/tei:datatype/rng:ref/@name", gp=gp, name=aname, namespaces=TEI_NS) if ref: return (vrv_getformattedtype("{0}".format(ref[0])), "") # Finally from val lists vl = schema.xpath("//tei:classSpec[@ident=$gp]//tei:attDef[@ident=$name]/tei:valList[@type=\"closed\"]", gp=gp, name=aname, namespaces=TEI_NS) if vl: element = vl[0].xpath("./ancestor::tei:classSpec", namespaces=TEI_NS) attName = vl[0].xpath("./parent::tei:attDef/@ident", namespaces=TEI_NS) if element: return(vrv_getformattedvallist(element[0].get("ident"),attName[0]), "") #data_list = "{0}.{1}".format(element[0].get("ident"),attName[0]) #elif attName: # elName = vl[0].xpath("./ancestor::tei:elementSpec/@ident", namespaces=TEI_NS) # lg.debug("VALLIST {0} --- {1}".format(elName[0],attName[0])) # Otherwise as string return ("std::string", "")
5,355,003
def test_create_splits_mid_year(): """ Make sure that year splits are properly generated when not using first day of year as start of time series """ swe = np.zeros((3000, 50, 50)) a = analysis.Analysis(datetime.date(1993, 5, 1), swe) years = a.create_year_splits() assert years[0] == 121
5,355,004
def _tf1_setpar_ ( func , par , value ) : """Set parameter of TF1 >>> fun = ... ## function >>> fun.setPar(1,1) ## set parameter #1 to be 1 >>> fun.setPar('m',2) ## set parameter 'm' to be 2 """ if not par in func : raise IndexError("Invalid parameter index %s" % par ) # if isinstance ( par , str ) : par = func.GetParNumber( par ) # func.SetParameter ( par , float ( value ) )
5,355,005
def inc_date(date_obj, num, date_fmt): """Increment the date by a certain number and return date object. as the specific string format. """ return (date_obj + timedelta(days=num)).strftime(date_fmt)
5,355,006
def recombine_edges(output_edges): """ Recombine a list of edges based on their rules. Recombines identical Xe isotopes. Remove isotopes. :param output_edges: :return: """ mol = Chem.MolFromSmiles(".".join(output_edges)) # Dictionary of atom's to bond together and delete if they come in pairs iso_dict = {} for atom in mol.GetAtoms(): if atom.GetAtomicNum() == 54: # Get the isotope iso = atom.GetIsotope() if iso in iso_dict: iso_dict[iso].append(get_info(atom)) else: iso_dict[iso] = [get_info(atom)] mw = Chem.RWMol(mol) # Add bonds first del_indices = [] for isotope in iso_dict: if len(iso_dict[isotope]) > 1: mw.AddBond( iso_dict[isotope][0][1], iso_dict[isotope][1][1], Chem.BondType.SINGLE ) del_indices.append(iso_dict[isotope][0][0]) del_indices.append(iso_dict[isotope][1][0]) # Now delete atoms del_count = 0 for atom_index in sorted(del_indices): mw.RemoveAtom(atom_index - del_count) del_count += 1 Chem.SanitizeMol(mw) return Chem.MolToSmiles(mw, isomericSmiles=True)
5,355,007
def parse_comments(content: str) -> List[str]: """Parses comments in LDF files :param content: LDF file content as string :type content: str :returns: a list of all comments in the LDF file :rtype: List[str] """ comment = os.path.join(os.path.dirname(__file__), 'lark', 'comment.lark') parser = Lark(grammar=open(comment), parser='lalr') tree = parser.parse(content) return CommentCollector().transform(tree)
5,355,008
def excludevars(vdict, filters): """ Remove dictionary items by filter """ vdict_remove = dict() for filtr in filters: a = filtervars_sub(vdict, filtr) vdict_remove.update(a) vdict_filtered = vdict.copy() for key in vdict_remove.keys(): del vdict_filtered[key] return vdict_filtered
5,355,009
def __updateEntityAttributes(fc, fldList, dom, logFile): """For each attribute (field) in fldList, adds attribute definition and definition source, classifies as range domain, unrepresentable-value domain or enumerated-value domain, and for range domains, adds rangemin, rangemax, and units; for unrepresentable value domains, adds unrepresentable value statement; for enumerated value domains: 1) Finds all controlled-vocabulary fields in the table sent to it 2) Builds a set of unique terms in each field, ie, the domain 3) Matches each domain value to an entry in the glossary 4) Builds a dictionary of term:(definition, source) items 5) Takes the dictionary items and put them into the metadata document as Attribute_Domain_Values Field MapUnit in table DescriptionOfMapUnits is treated as a special case. """ cantfindTerm = [] cantfindValue = [] for fld in fldList: addMsgAndPrint( ' Field: '+ fld) # if is _ID field or if field definition is available, update definition if fld.find('_ID') > -1 or fld in attribDict: dom = __updateAttrDef(fld,dom) else: cantfindTerm.append(fld) #if this is an _ID field if fld.find('_ID') > -1: dom = __updateUdom(fld,dom,unrepresentableDomainDict['_ID']) #if this is another unrepresentable-domain field if fld in unrepresentableDomainDict: dom = __updateUdom(fld,dom,unrepresentableDomainDict[fld]) #if this is a defined range-domain field elif fld in rangeDomainDict: dom = __updateRdom(fld,dom) #if this is MapUnit in DMU elif fld == 'MapUnit' and fc == 'DescriptionOfMapUnits': dom = __updateUdom(fld,dom,unrepresentableDomainDict['default']) #if this is a defined Enumerated Value Domain field elif fld in enumeratedValueDomainFieldList: valList = [] #create a search cursor on the field rows = arcpy.SearchCursor(fc,'','', fld) row = next(rows) #collect all values/terms in that field while row: if not row.getValue(fld) is None: valList.append(row.getValue(fld)) row = next(rows) #uniquify the list by converting it to a set object valList = set(valList) #create an empty dictionary object to hold the matches between the unique terms #and their definitions (grabbed from the glossary) defs = {} #for each unique term, try to create a search cursor of just one record where the term #matchs a Term field value from the glossary if fld == 'MapUnit' and fc != 'DescriptionOfMapUnits': for t in valList: query = '"MapUnit" = \'' + t + '\'' rows = arcpy.SearchCursor(DMU, query) row = next(rows) #if the searchcursor contains a row if row: #create an entry in the dictionary of term:[definition, source] key:value pairs #this is how we will enumerate through the enumerated_domain section defs[t] = [] if row.FullName != None: defs[t].append(row.FullName.encode('utf_8')) defs[t].append('this report, table DescriptionOfMapUnits') else: addMsgAndPrint('MapUnit = '+t+', FullName not defined') defs[t].append(row.Name.encode('utf_8')) defs[t].append('this report, table DescriptionOfMapUnits') else: if not t in ('',' '): cantfindValue.append([fld,t]) elif fld == 'GeoMaterialConfidence' and fc == 'DescriptionOfMapUnits': if debug: addMsgAndPrint('DMU / GeoMaterialsConfidence') defs = GeoMatConfDict elif fld == 'GeoMaterial' and fc == 'DescriptionOfMapUnits': if debug: addMsgAndPrint('DMU / GeoMaterials!') for t in valList: query = '"GeoMaterial" = \'' + t + '\'' if debug: addMsgAndPrint('query='+query) rows = arcpy.SearchCursor(gmDict, query) row = next(rows) #if the searchcursor contains a row if row: if debug: addMsgAndPrint(row.GeoMaterial+' : '+row.Definition.encode('utf_8')) #create an entry in the dictionary of term:[definition, source] key:value pairs #this is how we will enumerate through the enumerated_domain section defs[t] = [] defs[t].append(row.Definition.encode('utf_8')) defs[t].append(' GeMS documentation') else: addMsgAndPrint('GeoMaterial = '+t+': not defined in GeoMaterialDict') cantfindValue.append([fld,t]) elif fld.find('SourceID') > -1: # is a source field for t in valList: query = '"DataSources_ID" = \'' + t + '\'' rows = arcpy.SearchCursor(dataSources, query) row = next(rows) #if the searchcursor contains a row if row: #create an entry in the dictionary of term:[definition, source] key:value pairs #this is how we will enumerate through the enumerated_domain section defs[t] = [] defs[t].append(row.Source.encode('utf_8')) defs[t].append('this report, table DataSources') else: cantfindValue.append([fld,t]) else: for t in valList: query = '"Term" = '+"'"+ t + "'" if debug: addMsgAndPrint('query='+query) rows = arcpy.SearchCursor(gloss, query) row = next(rows) #if the searchcursor contains a row if row: #create an entry in the dictionary of term:[definition, source] key:value pairs #this is how we will enumerate through the enumerated_domain section defs[t] = [] defs[t].append(row.Definition.encode('utf_8')) defs[t].append(__findInlineRef(row.DefinitionSourceID).encode('utf_8')) else: if fld != 'GeoMaterial' and fc != 'GeoMaterialDict': cantfindValue.append([fld,t]) dom = __updateEdom(fld, defs, dom) else: #presumed to be an unrepresentable domain dom = __updateUdom(fld,dom,unrepresentableDomainDict['default']) if len(cantfindValue) > 0: logFile.write('Missing enumerated-domain values\n') logFile.write(' ENTITY TERM VALUE\n') for term in cantfindValue: logFile.write(' '+fc+' '+term[0]+' **'+term[1]+'**\n') if len(cantfindTerm) > 0: logFile.write('Missing terms\n') logFile.write(' ENTITY TERM\n') for term in cantfindTerm: logFile.write(' '+fc + ' '+term+'\n') return dom
5,355,010
def make_laplace_pyramid(x, levels): """ Make Laplacian Pyramid """ pyramid = [] current = x for i in range(levels): pyramid.append(laplacian(current)) current = tensor_resample( current, (max(current.shape[2] // 2, 1), max(current.shape[3] // 2, 1))) pyramid.append(current) return pyramid
5,355,011
def create_component(ctx: NVPContext): """Create an instance of the component""" return ToolsManager(ctx)
5,355,012
def _load_csv_key(symbol_key): """ 针对csv存储模式,通过symbol_key字符串找到对应的csv具体文件名称, 如从usTSLA->找到usTSLA_2014-7-26_2016_7_26这个具体csv文件路径 :param symbol_key: str对象,eg. usTSLA """ # noinspection PyProtectedMember csv_dir = ABuEnv.g_project_kl_df_data_example if ABuEnv._g_enable_example_env_ipython \ else ABuEnv.g_project_kl_df_data_csv if file_exist(csv_dir): for name in os.listdir(csv_dir): # 从csv缓存文件夹下进行模糊查询通过fnmatch匹配具体csv文件路径,eg. usTSLA->usTSLA_2014-7-26_2016_7_26 # if fnmatch(name, '{}*'.format(symbol_key)): """ 这里不能模糊匹配,否则会因为TSL匹配上TSLA导致删除原有的symbol 而且必须要加'_'做为symbol结束匹配标记 """ if name.startswith(symbol_key + '_'): # []只是为了配合外面针对不同store统一使用key[0] return [name] return None
5,355,013
def test_create_simple_gantt(tmpdir): """test_create_simple_gantt.""" c1 = Component("c1") c1.state_record_list = [ BaseComponentState.WORKING, BaseComponentState.FINISHED, BaseComponentState.FINISHED, BaseComponentState.FINISHED, BaseComponentState.FINISHED, ] init_datetime = datetime.datetime(2020, 4, 1, 8, 0, 0) timedelta = datetime.timedelta(days=1) c1.create_data_for_gantt_plotly(init_datetime, timedelta) product = Product([c1]) product.create_simple_gantt(save_fig_path=os.path.join(str(tmpdir), "test.png"))
5,355,014
def generate_metadata(year, files, datatype = 'inventory'): """ Gets metadata and writes to .json """ if datatype == 'source': source_path = [rcra_external_dir + p for p in files] source_path = [os.path.realpath(p) for p in source_path] source_meta = compile_source_metadata(source_path, _config, year) source_meta['SourceType'] = 'Zip file' source_meta['SourceURL'] = _config['url'] write_metadata('RCRAInfo_'+ str(year), source_meta, category=ext_folder, datatype='source') else: source_meta = read_source_metadata(paths, set_stewi_meta('RCRAInfo_'+ year, ext_folder), force_JSON=True)['tool_meta'] write_metadata('RCRAInfo_'+year, source_meta, datatype=datatype)
5,355,015
def get_routing_table() -> RouteCommandResult: """ Execute route command via subprocess. Blocks while waiting for output. Returns the routing table in the form of a list of routes. """ return list(subprocess_workflow.exec_and_parse_subprocesses( [RouteCommandParams()], _get_route_command_args_list, parse_route_output, ))[0]
5,355,016
def xor_arrays(arr1, arr2): """ Does a XOR on 2 arrays, very slow""" retarr = array('B') for i in range(len(arr1)): retarr.append(arr1[i] ^ arr2[i]) return retarr
5,355,017
def delete_category(): """Delete category specified by id from database""" category = Category.query.get(request.form['id']) db.session.delete(category) db.session.commit() return ''
5,355,018
def gen_dd(acc, amt): """Generate a DD (low-level)""" read() dd_num = dd_no() while dd_num in dds.keys(): dd_num = dd_no() dd = { 'ac_no': acc, 'amount': amt } return dd_num, dd
5,355,019
def coranking_matrix(high_data, low_data): """Generate a co-ranking matrix from two data frames of high and low dimensional data. :param high_data: DataFrame containing the higher dimensional data. :param low_data: DataFrame containing the lower dimensional data. :returns: the co-ranking matrix of the two data sets. """ n, m = high_data.shape high_distance = distance.squareform(distance.pdist(high_data)) low_distance = distance.squareform(distance.pdist(low_data)) high_ranking = high_distance.argsort(axis=1).argsort(axis=1) low_ranking = low_distance.argsort(axis=1).argsort(axis=1) Q, xedges, yedges = np.histogram2d(high_ranking.flatten(), low_ranking.flatten(), bins=n) Q = Q[1:, 1:] # remove rankings which correspond to themselves return Q
5,355,020
def gaussian_dist_xmu1xmu2_product_x(mu1,Sigma1,mu2,Sigma2): """Compute distribution of N(x|mu1,Sigma1)N(x|mu2,Sigma2)""" InvSigmaHat = np.linalg.inv(Sigma1) + np.linalg.inv(Sigma2) SigmaHat = np.linalg.inv(InvSigmaHat) muHat = np.dot(SigmaHat,np.linalg.solve(Sigma1, mu1) + np.linalg.solve(Sigma2,mu2)) logC = gaussian_logprob(mu1,mu2,Sigma1 + Sigma2) return (logC,muHat,SigmaHat)
5,355,021
def default_marker_size(fmt): """ Find a default matplotlib marker size such that different marker types look roughly the same size. """ temp = fmt.replace('.-', '') if '.' in temp: ms = 10 elif 'D' in temp: ms = 7 elif set(temp).intersection('<>^vd'): ms = 9 else: ms = 8 return ms
5,355,022
def vote_smart_candidate_rating_filter(rating): """ Filter down the complete dict from Vote Smart to just the fields we use locally :param rating: :return: """ rating_filtered = { 'ratingId': rating.ratingId, 'rating': rating.rating, 'timeSpan': rating.timespan, # Seems to be typo with lower case "s" 'ratingName': rating.ratingName, 'ratingText': rating.ratingText, 'sigId': rating.sigId, } return rating_filtered
5,355,023
def write_network_file(path, conf): """ Write the key=val string to a file. It's not possible to use native file output because these files must be written with euid=0. Of course, there is no way to elevate this process. Instead, shell out so that sudo can be applied. Parameters ---------- path : str The full path of the file. conf : dict The configuration key, value's. Returns ------- No return value. """ sudo_utils.call( ['sh', '-c', 'echo \'{}\' > {}'.format(build_env_file(conf), path)])
5,355,024
def get_syntax(view): """ get_syntax(view : sublime.View) -> str >>> get_syntax(view) 'newLISP' >>> get_syntax(view) 'Lisp' Retuns current file syntax/language """ syntax = view.settings().get('syntax') syntax = syntax.split('/')[-1].replace('.tmLanguage', '') return syntax
5,355,025
def test_field_nested_resource_provided(db_session): """Test providing a resource to a Relationship works.""" resource = AlbumResource(session=db_session) field = Relationship(nested=resource) assert field.resource == resource
5,355,026
def undoInfo(*args, **kwargs): """ This command controls the undo/redo parameters. Flags: - chunkName : cn (unicode) [create] Sets the name used to identify a chunk for undo/redo purposes when opening a chunk. - closeChunk : cck (bool) [create] Closes the chunk that was opened earlier by openChunk. Once close chunk is called, all undoable operations in the chunk will undo as a single undo operation. Use with CAUTION!! Improper use of this command can leave the undo queue in a bad state. - infinity : infinity (bool) [create,query] Set the queue length to infinity. - length : l (int) [create,query] Specifies the number of items in the undo queue. The infinity flag overrides this one. - openChunk : ock (bool) [create] Opens a chunk so that all undoable operations after this call will fall into the newly opened chunk, until close chunk is called. Once close chunk is called, all undoable operations in the chunk will undo as a single undo operation. Use with CAUTION!! Improper use of this command can leave the undo queue in a bad state. - printQueue : pq (bool) [query] Prints to the Script Editor the contents of the undo queue. - redoName : rn (unicode) [query] Returns what will be redone (if anything) - redoQueueEmpty : rqe (bool) [query] Return true if the redo queue is empty. Return false if there is at least one command in the queue to be redone. - state : st (bool) [create,query] Turns undo/redo on or off. - stateWithoutFlush : swf (bool) [create,query] Turns undo/redo on or off without flushing the queue. Use with CAUTION!! Note that if you perform destructive operations while stateWithoutFlush is disabled, and you then enable it again, subsequent undo operations that try to go past the destructive operations may be unstable since undo will not be able to properly reconstruct the former state of the scene. Flag can have multiple arguments, passed either as a tuple or a list. - undoName : un (unicode) [query] Returns what will be undone (if anything) - undoQueueEmpty : uqe (bool) [query] Return true if the undo queue is empty. Return false if there is at least one command in the queue to be undone. Derived from mel command `maya.cmds.undoInfo` """ pass
5,355,027
def run(cmd_str,cwd='.'): """ an OS agnostic function to execute command Parameters ---------- cmd_str : str the str to execute with os.system() cwd : str the directory to execute the command in Note ---- uses platform to detect OS and adds .exe or ./ as appropriate for Windows, if os.system returns non-zero, raises exception Example ------- ``>>>import pyemu`` ``>>>pyemu.helpers.run("pestpp pest.pst")`` """ bwd = os.getcwd() os.chdir(cwd) try: exe_name = cmd_str.split()[0] if "window" in platform.platform().lower(): if not exe_name.lower().endswith("exe"): raw = cmd_str.split() raw[0] = exe_name + ".exe" cmd_str = ' '.join(raw) else: if exe_name.lower().endswith('exe'): raw = cmd_str.split() exe_name = exe_name.replace('.exe','') raw[0] = exe_name cmd_str = '{0} {1} '.format(*raw) if os.path.exists(exe_name) and not exe_name.startswith('./'): cmd_str = "./" + cmd_str except Exception as e: os.chdir(bwd) raise Exception("run() raised :{0}".format(str(e))) print("run():{0}".format(cmd_str)) try: ret_val = os.system(cmd_str) except Exception as e: os.chdir(bwd) raise Exception("run() raised :{0}".format(str(e))) os.chdir(bwd) if "window" in platform.platform().lower(): if ret_val != 0: raise Exception("run() returned non-zero")
5,355,028
def random_otp(): """ :return: OTP for Event :return type: string """ try: all_events = Events.query.all() # Here Error if no Event all_holded_events = HoldedEvents.query.all() used_otps = set() for otp_ in all_events: used_otps.add(str(otp_.otp)) for otp_ in all_holded_events: used_otps.add(str(otp_.otp)) total_otps = set() available_otps = set() for otp_ in range(0, 999999+1): otp = str(otp_) if len(otp)!=6: diff = 6-len(otp) otp = '0'*diff + otp total_otps.add(otp) available_otps = total_otps - used_otps if len(available_otps) == 1: return available_otps.pop() else: return 'Fail' except: return 'Fail'
5,355,029
def resume_training(out: ModelDir, notes: str = None, dry_run=False, start_eval=False): """ Resume training an existing model """ train_params = out.get_last_train_params() model = out.get_model() train_data = train_params["data"] evaluators = train_params["evaluators"] params = train_params["train_params"] params.num_epochs = 24*3 if isinstance(train_data, PreprocessedData): # TODO don't hard code # of processes train_data.preprocess(6, 1000) latest = tf.train.latest_checkpoint(out.save_dir) if latest is None: raise ValueError("No checkpoint to resume from found in " + out.save_dir) _train(model, train_data, latest, None, False, params, evaluators, out, notes, dry_run, start_eval)
5,355,030
def read_config(path): """Read the complete INI file and check its version number if OK, pass values to config-database """ return _read_config(path)
5,355,031
def getProbaForAllMeasures(): """ Algorithm for calculating conditional probabilities for all categories in all measures """ logging.info( "Calculate all conditionnal probabilities" ) istats = 0 measures = getAllMeasures() measures = measures[:,1:] measures = np.array([list(m) for m in measures],dtype=object) measures = np.reshape(measures, (measures.shape[0],measures.shape[2])) if(len(measures) == 0): logging.info( "No values are available for learning" ) else: logging.info( "Delete all previous calculated stats" ) #first, remove all session.query(Stats).delete() session.commit() #loop through criteria for c in criteria: logging.info( "\nCriterion id : %s",format(c.id) ) if len(c.values) == 0: continue stats = list() #if criterion has one or more parents if(len(c.parents) > 0): sortParents = sorted(c.parents, key=lambda p: p.id) ids = [str(c.id),] + [str(sp.id) for sp in sortParents] catChild = list(set([v.category for v in c.values])) catParent = [flatten(set([str(upc.category) for upc in p.values])) for p in sortParents] catChildAndParent = [catChild,] + catParent productNumerator = list(itertools.product(*catChildAndParent)) #reshape combinationCatParents in a matrix [values number,parent number] #catNumerator = np.reshape(productNumerator, [len(productNumerator),len(c.parents) + 1]) catNumerator = np.array(productNumerator) if len(catNumerator) > 0: catDenominator = catNumerator[:,1:] #index for truncation measures matrix index = 0 #init truncation matrix with 0 truncation = () truncation = np.zeros((measures.shape[0],len(c.parents) + 1),dtype=object) #truncate measures with only current criterion and parent columns truncation[:,index] = measures[:,c.id - 1] for p in c.parents: index += 1 truncation[:,index] = measures[:,p.id - 1] #for each combination of category, calculation is done for denominator den = [np.count_nonzero([(cd == t).all() for t in truncation[:,1:]]) for cd in catDenominator] #for each combination of category, calculation is done for numerator num = [np.count_nonzero([(cn == t).all() for t in truncation]) for cn in catNumerator] #for avoiding to divide by 0 num = np.take(num,np.nonzero(den)) #get categories of parents productNumerator = [productNumerator[i] for i in list(np.nonzero(den)[0])] den = np.take(den,np.nonzero(den)) results = np.divide(num,den,dtype=float) #persist stats to db for i in range(0,len(productNumerator)): istats += 1 listProduct = list(productNumerator[i]) stats.append(Stats(id=istats,association=';'.join(ids),parent=';'.join(listProduct[:1]),children=';'.join(listProduct[1:]),value=';'.join(listProduct),proba=results[0][i])) session.add_all(stats) session.commit() logging.info( "Criteria : %s",format(ids) ) logging.info( "Categories : %s",format(productNumerator) ) logging.info( "Proba : %s",format(results[0]) ) else: logging.warning( 'No measure available for this criterion and/or parents' ) #if there is no parent for this criterion else: logging.warning( 'No relationship find for criterion id : %s',format(c.id) ) #TODO useless? #catChild = np.array(list(set([v.category for v in c.values]))) #print [np.count_nonzero([(m == cc).all() for cc in catChild]) for m in measures] if istats > 0: print 'SUCCESS: {} stats have been calculated and inserted in database'.format(istats)
5,355,032
def LinkAndroidDeviceID(request, callback, customData = None, extraHeaders = None): """ Links the Android device identifier to the user's PlayFab account https://docs.microsoft.com/rest/api/playfab/client/account-management/linkandroiddeviceid """ if not PlayFabSettings._internalSettings.ClientSessionTicket: raise PlayFabErrors.PlayFabException("Must be logged in to call this method") def wrappedCallback(playFabResult, error): if callback: callback(playFabResult, error) PlayFabHTTP.DoPost("/Client/LinkAndroidDeviceID", request, "X-Authorization", PlayFabSettings._internalSettings.ClientSessionTicket, wrappedCallback, customData, extraHeaders)
5,355,033
def getPath(file): """Get the path of a source file. Use this to extract the path of a file/directory when the file could be specified either as a FileTarget, DirectoryTarget or string. @param file: The object representing the file. @type file: L{FileTarget}, L{DirectoryTarget} or C{basestring} """ assert not isinstance(file, AsyncResult) if isinstance(file, (FileTarget, DirectoryTarget)): return file.path elif isinstance(file, basestring): return file else: return None
5,355,034
def optical_flow_to_rgb(flows): """ Args: A tensor with a batch of flow fields of shape [b*num_src, 2, h, w] """ flows = flows.cpu().numpy() _, h, w = flows[0].shape rgbs = [] for i in range(len(flows)): mag, ang = cv2.cartToPolar(flows[i, 0, ...], flows[i, 1, ...]) hsv = np.zeros(shape=(h, w, 3), dtype="float32") # true_angle / 2, hue range [0, 180] hsv[..., 0] = (ang * 180 / np.pi) / 2 hsv[..., 1] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX) hsv[..., 2] = 255 rgb = cv2.cvtColor(hsv.astype("uint8"), cv2.COLOR_HSV2BGR) rgbs.append(rgb) rgbs = np.array(rgbs).transpose([0, 3, 1, 2]) return torch.tensor(rgbs)
5,355,035
def get_motes_from_simulation(simfile, as_dictionary=True): """ This function retrieves motes data from a simulation file (.csc). :param simfile: path to the simulation file :param as_dictionary: flag to indicate that the output has to be formatted as a dictionary :return: the list of motes formatted as dictionaries with 'id', 'x', 'y' and 'motetype_identifier' keys if short is False or a dictionary with each mote id as the key and its tuple (x, y) as the value """ motes = [] with open(simfile) as f: content = f.read() iterables, fields = [], ['mote_id'] for it in ['id', 'x', 'y', 'motetype_identifier']: iterables.append(finditer(r'^\s*<{0}>(?P<{0}>.*)</{0}>\s*$'.format(it), content, MULTILINE)) for matches in zip(*iterables): mote = {} for m in matches: mote.update(m.groupdict()) motes.append(mote) if as_dictionary: motes = {int(m['id']): (float(m['x']), float(m['y'])) for m in motes} return motes
5,355,036
def menu_bar(): """each mini-game has a menu bar that allows direct access to the main menu. This allows story mode to be bypassed after starting war, but the game state will not be saved""" pygame.draw.rect(SCREEN, TEAL, (0, 460, 640, 40)) menu_font = pygame.font.Font('freesansbold.ttf', 15) menu_txt = menu_font.render("Menu", True, BLACK, TEAL) menu_rect = menu_txt.get_rect() menu_rect.center = (60, 480) SCREEN.blit(menu_txt, menu_rect) instr_txt = menu_font.render("Instructions", True, BLACK, TEAL) instr_rect = instr_txt.get_rect() instr_rect.center = (150, 480) SCREEN.blit(instr_txt, instr_rect) return menu_rect, instr_rect
5,355,037
def merge_sort(a, p, r): """ merge sort :param a: a array to sort, a[p:r+1] need to be sorted :param p: index of array, p < r, if p >= r , the length of a is 1, return :param r: index of array, p < r, if p >= r , the length of a is 1, return """ if p < r: q = int((p + r) / 2) # divider a = merge_sort(a, p, q) a = merge_sort(a, q + 1, r) # conquer merge(a, p, q, r) return a
5,355,038
def uint8_to_binary(folder, out_folder): """ Convert a folder of mask in 0 255 format to binary format :param folder: folder to examine :param out_folder: folder """ try: os.mkdir(out_folder) except: pass if is_mask(folder, 255): list_mask_path = os.listdir(folder) for mask_path in list_mask_path: mask = cv2.imread(folder + mask_path, cv2.IMREAD_UNCHANGED) ret, thresh = cv2.threshold(mask, 127, 1, cv2.THRESH_BINARY) cv2.imwrite(out_folder + mask_path, thresh) print("Conversion is done")
5,355,039
def green_foreground(greentext): """Green foreground for notice messages. Green foreground for error messages. Arguments: greentext {str} -- text, which will be colored in green. """ LOG.notice(pyfancy().green().bold(greentext))
5,355,040
def get_flow_graph(limit, period): """ :type limit int :type period int :rtype: list[dict] """ rows = ElasticsearchQuery( es_host=ELASTICSEARCH_HOST, period=period, index_prefix='logstash-other' ).query_by_string( query='kubernetes.labels.job-name:* AND ' 'kubernetes.container_name: "portability-metric" AND ("SELECT" OR "UPDATE")', fields=[ 'log', 'kubernetes.labels.job-name' ], limit=limit ) entries = [] for row in rows: for entry in get_portability_metrics_query( row['log'], row['kubernetes']['labels']['job-name']): entries.append(entry) # print(entries) # process the logs def _map(item): return '{}'.join(item) def _reduce(items): # ('MetricArticleProvider.py', 'UPDATE', 'articledata') first = items[0] script = 'cron:{}'.format(first[0]) query_type = first[1] table_name = 'db:{}'.format(first[2]) return { 'source': table_name if query_type == 'SELECT' else script, 'edge': query_type, 'target': table_name if query_type != 'SELECT' else script, } return logs_map_and_reduce(entries, _map, _reduce)
5,355,041
def upload(server_ip, share, username, password, domain, remote_path, local_path, verbose=True): """ Get file and folder on the remote file server. server_ip (str): This value is the ip smb server's ip. share (str): This value is the share file name. username (str): This value is the login username required to connect to smb service. password (str): This value is the login password required to connect to smb service. domain (str): This value is the server domain name. remote_path (str): This value is the remote file path to uploaded. local_path (str): This value is the remote path where the file will uploaded. verbose (boolean): Print information about function progress. Returns: boolean: 0 if fuction runs correctly. If an error occured return 1. """ try: smb = connect_samba_server(server_ip, share, username, password, domain, verbose=True) smb.upload(local_path, remote_path) smb.close() regex = re.compile("((?:[^/]*/)*)(.*)") for file in get_remote_dir(server_ip, share, username, password, domain, "/", verbose=True): if regex.match(remote_path).group(2) in file: print(Fore.GREEN+" ===> [upload] {"+regex.match(local_path).group(2)+"} -- "+time.strftime("%H:%M:%S", time.localtime())+Style.RESET_ALL) return True print(Fore.RED+" ===> [upload] {"+regex.match(local_path).group(2)+"} failed! -- "+time.strftime("%H:%M:%S", time.localtime())+Style.RESET_ALL) return False except Exception as e: print(Fore.RED+" ===> [upload] failed during execution! -- "+time.strftime("%H:%M:%S", time.localtime())+Style.RESET_ALL) return False
5,355,042
def list_directory_command(api_client: CBCloudAPI, device_id: str, directory_path: str, limit: Union[int, str]): """ Get list of directory entries in the remote device :param api_client: The API client :param device_id: The device id :param directory_path: Directory to list. This parameter should end with the path separator :param limit: Limit the result entries count to be the given limit :return: CommandResult represent the API command result :rtype: ``CommandResults`` """ session = api_client.select(platform.Device, device_id).lr_session() items = [item for item in session.list_directory(directory_path) if item['filename'] not in IGNORED_FILES_IN_DIR] items, partial_res_msg = get_limited_results(original_results=items, limit=limit) directories_readable = [] context_entry_items = [] headers = ['name', 'type', 'date_modified', 'size'] for item in items: context_entry_items.append(item) directories_readable.append({ 'name': item['filename'], 'type': 'Directory' if item['attributes'] and 'DIRECTORY' in item['attributes'] else 'File', 'date_modified': item['last_write_time'], 'size': item['size'], }) context_entry = dict(content=context_entry_items, device_id=device_id, directory_path=directory_path) readable_output = tableToMarkdown(f'Directory of {directory_path}{partial_res_msg}', t=directories_readable, headers=headers, headerTransform=string_to_table_header, removeNull=True) return CommandResults( outputs_prefix='CarbonBlackDefenseLR.Directory', outputs_key_field=['device_id', 'directory_path'], outputs=context_entry, readable_output=readable_output, raw_response=items, )
5,355,043
def _hparams(network, random_seed): """ Global registry of hyperparams. Each entry is a (default, random) tuple. New algorithms / networks / etc. should add entries here. """ hparams = {} def _hparam(name, default_val, random_val_fn): """Define a hyperparameter. random_val_fn takes a RandomState and returns a random hyperparameter value.""" random_state = np.random.RandomState( misc.seed_hash(random_seed, name) ) hparams[name] = (default_val, random_val_fn(random_state)) # Unconditional hparam definitions. _hparam('lr', 0.001, lambda r: 10**r.uniform(-5, -2)) # _hparam('weight_decay', 0, lambda r: 10**r.uniform(-6, -2)) _hparam('batch_size', 16, lambda r: int(r.choice([8,12,16]))) _hparam('epoch', 100, lambda r: int(r.choice([60,90,120,150]))) _hparam('transform_aug', False, lambda r: bool(r.choice([True,False]))) _hparam('lr_schedule', 1, lambda r: int(r.choice([0,1,2,3]))) if network == 'PoseResNet': _hparam('num_layers', 50, lambda r: int(r.choice([50]))) #[18,34,50,101,152] _hparam('pretrained', False, lambda r: bool(r.choice([False]))) #True, return hparams
5,355,044
def bidding_search(request): """ """ query = '' form = BiddingSearchForm(shop=request.shop, data=request.GET) if form.is_valid(): query = form.get_query() results = form.search() else: results = form.all_results() pager = Paginator(results, PAGE_SEARCH) try: page = int(request.GET.get('page','1')) except: page = 1 try: products = pager.page(page) except (EmptyPage, InvalidPage): products = pager.page(pager.num_pages) paged = (pager.num_pages > 1) t = loader.get_template('bidding/blocks/search.html') c = RequestContext(request, {'form': form, 'products' : products, 'pages': pager.page_range, 'paged': paged }) block_search = (t.render(c)) getvars = "&q=%s" % form.cleaned_data.get("q") t = loader.get_template('paginator.html') filter_params = {'q': form.cleaned_data.get("q", '')} c = RequestContext(request, {'objects': products, 'getvars': getvars, 'filter_params': filter_params, 'pages': pager.page_range, 'paged': paged}) paginator = (t.render(c)) try: page = DynamicPageContent.objects.filter(shop=request.shop, page="search").get() description = striptags(page.meta_content) except DynamicPageContent.DoesNotExist: description = "No meta description found" return HttpResponse(my_render(request, {'results': block_search, 'paginator': paginator, 'page_title': 'Search', 'page_description': description }, 'search'))
5,355,045
def clean_code(code, code_type): """ Returns the provided code string as a List of lines """ if code_type.startswith(BOOTSTRAP): if code_type.endswith(CLEAN): return code.split("\n") code = code.replace("\\", "\\\\") if code_type.startswith(PERMUTATION): if code_type.endswith(CLEAN): return code.split("\n") if code_type.startswith(FRAGMENT): if code_type.endswith(CLEAN): return bytes(code, encoding="ascii").decode('unicode_escape') code = code.replace("{", "{\\n").replace("}", "\\n}\\n").replace(";", ";\\n") code = retab(bytes(code, encoding="ascii").decode('unicode_escape')) return code.split("\n")
5,355,046
def main(): """Parse the arguments.""" tic = datetime.datetime.now() parser = argparse.ArgumentParser( description=('Examine a balance_data.py output file and ' 'look for taxids with data sizes that are too large.')) parser.add_argument("file", type=str, help=("The output of balance_data.py")) parser.add_argument("--threshold", "-t", type=int, help=("The maximum size of a data set."), default=10000000) args = parser.parse_args() print(args, file=sys.stderr) output = process_file(args.file, args.threshold) for taxid in output: print(taxid[0], file=sys.stdout) print(taxid, file=sys.stderr) toc = datetime.datetime.now() print("The process took time {}.".format(toc - tic), file=sys.stderr)
5,355,047
def level(arr, l, ax=2, t=None, rounding=False): """ As level 1D but accepts general arrays and level is taken is some specified axis. """ return np.apply_along_axis(level1D, ax, arr, l, t, rounding)
5,355,048
def updateStore(request, storeId): """ view for updating store """ if canViewThisStore(storeId, request.user.id): # get the corresponding store store = Store.objects.get(id=storeId) metadata = getFBEOnboardingDetails(store.id) if request.method == "POST": # Create a form instance and populate it with data from the request (binding): form = UpdateStoreForm(request.POST) # Check if the form is valid: if form.is_valid(): store.name = form.cleaned_data["business_name"] store.save() return redirect("viewStore", storeId) form = UpdateStoreForm(initial={"business_name": store.name}) breadcrumbs = [(store.name, "viewStore", store.id)] context = { "form": form, "store": store, "fb_metadata": metadata, "page_title": "Update Shop", "breadcrumbs": breadcrumbs, "button": "Update", } return render(request, "core/update.html", context) else: return render(request, "403.html")
5,355,049
def i(t, T, r, a, b, c): """Chicago design storm equation - intensity. Uses ia and ib functions. Args: t: time in minutes from storm eginning T: total storm duration in minutes r: time to peak ratio (peak time divided by total duration) a: IDF A parameter - can be calculated from getABC b: IDF B parameter - can be calculated from getABC c: IDF C parameter - can be calculated from getABC Returns: Returns intensity in mm/hr. """ if t < T*r: return ib(T*r - t, r, a, b, c) elif t > T*r: return ia(t - T*r, r, a, b, c) else: # Should be infinity, but this does the job return 1000
5,355,050
def get_primary_id_from_equivalent_ids(equivalent_ids, _type): """find primary id from equivalent id dict params ------ equivalent_ids: a dictionary containing all equivalent ids of a bio-entity _type: the type of the bio-entity """ if not equivalent_ids: return None id_rank = [('bts:' + _item) for _item in id_ranks.get(_type)] # loop through id_rank, if the id is found in equivalent ids, return it for _item in id_rank: if equivalent_ids.get(_item): return (_item[4:] + ':' + equivalent_ids[_item][0]) # if no id found, return a random one from equivalent ids for k, v in equivalent_ids.items(): if v: return (k[4:] + ':' + v[0])
5,355,051
def _set_coverage_build(): """Set the right environment variables for a coverage build.""" os.environ['SANITIZER'] = 'coverage' os.environ['ENGINE'] = 'libfuzzer' os.environ['ARCHITECTURE'] = 'x86_64'
5,355,052
def get_L_max_C(L_CS_x_t_i, L_CL_x_t_i): """1日当たりの冷房全熱負荷の年間最大値(MJ/d)(20c) Args: L_CS_x_t_i(ndarray): 日付dの時刻tにおける暖冷房区画iの冷房顕熱負荷 (MJ/h) L_CL_x_t_i(ndarray): 日付dの時刻tにおける暖冷房区画iの冷房潜熱負荷 (MJ/h) Returns: float: 1日当たりの冷房全熱負荷の年間最大値(MJ/d) """ # 暖冷房区画軸合算(暖冷房区画の次元をなくす) L_CS_x_t = np.sum(L_CS_x_t_i, axis=0) L_CL_x_t = np.sum(L_CL_x_t_i, axis=0) # L_CS_x_tとL_CL_x_tの要素同士を足す L_C_x_t = L_CS_x_t + L_CL_x_t # 1次元配列を2次元配列に形状変換する L_C_x_t = np.reshape(L_C_x_t, (365, 24)) # 時間軸合算 L_C_x = np.sum(L_C_x_t, axis=1) # 1日当たりの冷房全熱負荷の年間最大値(MJ/d)(20c) L_max_C = np.max(L_C_x) return L_max_C
5,355,053
def complete_session(session: namedtuple, speeches: list) -> dict: """ This will result in loss of data bc content will be reduced to speeches. HTML_classes, speaker_flow, speaker_role etc. will not be given any longer since it's assumed that speakers are either members of parliament or ministers. Another important reduction is that speeches have been stripped of annotations like applause or calls. Updated keys in speeches: date protocol_no agenda_item - topic speaker party - if mop, will be ministry if minister speech - complete speech; no hall action, no interruptions Updated keys in session: date period index content - all speeches of a single session Speeches are given as a list of complete sentences. """ reduced_data = {} period = int(session.protocol_no.split('/')[0]) index = int(session.protocol_no.split('/')[-1]) reduced_data["date"] = session.date reduced_data["period"] = period reduced_data["index"] = index reduced_data["content"] = speeches return reduced_data
5,355,054
def replace_text_in_file(file_path, replace_this, for_that, case_insensitive=False, is_regex=False, keep_copy=False, number_of_subs=0): """ replace a string or regex (if is_regex is set) from a file given in file_path, with another string. This is a replacement for sed if needed. @param str file_path: path to the file to be changed @param str replace_this: string or regex to match and replace @param str for_that: string that will replace the match @param bool case_insensitive: flag to indicate if case is important @param bool is_regex: flag to indicate if replace_this is a regular expression or a plain string @param bool keep_copy: flag to keep copy of original file or not. The original file will be timestamped @param int number_of_subs: number of times to do the substitution. A zero means replace all @rtype: tuple """ if not is_regex: replace_this = re.escape(replace_this) new_file_path = duplicate_file_with_stamp(file_path) if keep_copy else file_path import fileinput for current_line in fileinput.input(file_path, inplace=True): current_line, num_subs_made = re.subn(replace_this, for_that, current_line, flags=(re.IGNORECASE if case_insensitive else 0), count=number_of_subs) number_of_subs = 0 if not number_of_subs else (number_of_subs - num_subs_made) return file_path, new_file_path
5,355,055
def load_annotations(ann_file): """Load the annotation according to ann_file into video_infos.""" video_infos = [] anno_database = mmcv.load(ann_file) for video_name in anno_database: video_info = anno_database[video_name] video_info['video_name'] = video_name video_infos.append(video_info) return video_infos
5,355,056
def commandline(args): """ Settings for the commandline arguments. Returns the parsed arguments. """ parser = argparse.ArgumentParser(description='Checks the timestamps for files in a directory.') parser.add_argument("-p", "--path", required=True, help="Path to offline backup list file or directory") parser.add_argument("-w", "--warning", help="Threshold for warnings in days. Default: 2 Days") parser.add_argument("-c", "--critical", help="Threshold for criticals in days. Default: 5 Days") parser.add_argument("-f", "--format", help="Format of the date in the file. Default: Y-m-d") parser.add_argument("-r", "--regex", help="Regular Expression to extract date from file. Default: [0-9]{4}-[0-9]{2}-[0-9]{2}") parser.add_argument("-v", "--verbose", help="Increase output verbosity", action="store_true") parser.set_defaults(verbose=False, critical=5, warning=2) return parser.parse_args(args)
5,355,057
def seq_hist(seq_lens: List[int]) -> Dict[int, int]: """Returns a dict of sequence_length/count key/val pairs. For each entry in the list of sequence lengths, tabulates the frequency of appearance in the list and returns the data as a dict. Useful for histogram operations on sequence length. """ seq_count = {} for slen in seq_lens: if slen in seq_count: seq_count[slen] += 1 else: seq_count[slen] = 1 return seq_count
5,355,058
def turn_south(): """ Karel will turn to South side. """ while not facing_south(): turn_left()
5,355,059
def test_ostfullness_serializer(): """lfshealth.LfsOstFullness: can serialize and deserialize circularly """ # Read from a cache file ostfullness = tokio.connectors.lfshealth.LfsOstFullness(cache_file=tokiotest.SAMPLE_LFS_DF_FILE) print(ostfullness) # Serialize the object, then re-read it and verify it print("Caching to %s" % tokiotest.TEMP_FILE.name) ostfullness.save_cache(tokiotest.TEMP_FILE.name) print("Cache file has size %s" % os.path.getsize(tokiotest.TEMP_FILE.name)) # Open a second file handle to this cached file to load it ostfullness = tokio.connectors.lfshealth.LfsOstFullness(cache_file=tokiotest.TEMP_FILE.name) print(ostfullness) tokiotest.TEMP_FILE.close() verify_ost(ostfullness, input_type='ostfullness')
5,355,060
def load_staging_tables(cur, conn): """ Load data from files stored in S3 to the staging tables. """ print("Loading data from JSON files stored in S3 buckets into staging tables") for query in copy_table_queries: cur.execute(query) conn.commit() print("Complete.\n")
5,355,061
def make_ms_url( syndicate_host, syndicate_port, no_tls, urlpath="" ): """ Make a URL to the MS. Return the URL. """ scheme = "https://" default_port = 80 if no_tls: default_port = 443 scheme = "http://" if syndicate_port != default_port: return scheme + os.path.join( syndicate_host.strip("/") + ":%s" % syndicate_port, urlpath ) else: return scheme + os.path.join( syndicate_host.strip("/"), urlpath )
5,355,062
def display(ip=None, port=5555, device_id=None, debug=False): """ 获取屏幕显示信息 :param ip: 地址 :param port: 端口(默认值5555) :param device_id: 设备ID :param debug: 调试开关(默认关闭) :return: 不涉及 """ adb_core.shell('dumpsys display | grep DisplayDeviceInfo', ip=ip, port=port, device_id=device_id, debug=debug) pass
5,355,063
def clifford_canonical_F( pauli_layer: List[int], gamma: np.ndarray, delta: np.ndarray ) -> Circuit: """ Returns a Hadamard free Clifford circuit using the canonical form of elements of the Borel group introduced in https://arxiv.org/abs/2003.09412. The canonical form has the structure O P CZ CX where O is a pauli operator, P is a layer of sqrt(Z) gates, CZ is a layer of CZ gates, and CX is a layer of CX gates. The inputs describe on which qubits the gates in these layers act. :param pauli_layer: Description of which Pauli gate should act on each qubits. This is an element of {0,1,2,3}^n with 0 -> I, 1->X, 2->Y, 3->Z. :type pauli_layer: List[int] :param gamma: Describes on which qubits CX acts. In particular the circuit contains CX_{i,j} if gamma[i][j]=1. The gates are ordered such the control qubit index increases with time. :type gamma: List[List[int]] :param delta: Describes on which qubits CZ acts. In particular the circuit contains CX_{i,j} if delta[i][j]=1. The gates are ordered such the control qubit index increases with time. The circuit include S_i if delta[i][i]=1. :type delta: List[List[int]] :return: A Hadamard free Clifford circuit. :rtype: Circuit """ circ = Circuit(len(pauli_layer)) # Add layer of CX gates for j in range(len(delta)): for i in range(j): if delta[i][j]: circ.CX(i, j, opgroup="Clifford 2") # Add layer of CZ gates for j in range(len(gamma)): for i in range(j): if gamma[i][j]: circ.CZ(i, j, opgroup="Clifford 2") # Add layer of S gates for i in range(len(gamma)): if gamma[i][i]: circ.S(i, opgroup="Clifford 1") # Add Pauli gate for i, gate in enumerate(pauli_layer): if gate == 0: circ.X(i, opgroup="Clifford 1") elif gate == 1: circ.Y(i, opgroup="Clifford 1") elif gate == 2: circ.Z(i, opgroup="Clifford 1") return circ
5,355,064
def calculate_second_moment_nondegenerate( mu1: float, mu2: float, sigma1: float, sigma2: float, a: float, alpha: float ) -> float: """The second (raw) moment of a random variable :math:`\\min(Y_1, Y_2)`. Args: mu1: mean of the first Gaussian random variable :math:`Y_1` mu2: mean of the second Gaussian random variable :math:`Y_2` sigma1: standard deviation of the first Gaussian random variable :math:`Y_1` sigma2: standard deviation of the second Gaussian random variable :math:`Y_2` a: value of a(X1, X2) alpha: value of alpha(X1, X2) Note: For a Gaussian variable, the relationship between the raw second moment, mean, and the standard deviation (which is calculated using the *central* moment) is .. math:: \\nu_2 = \\nu_1^2 + \\sigma^2 """ # The first, second and third term first = (mu1 ** 2 + sigma1 ** 2) * numeric.normal_cdf(alpha) secnd = (mu2 ** 2 + sigma2 ** 2) * numeric.normal_cdf(-alpha) third = (mu1 + mu2) * a * numeric.normal_pdf(alpha) return first + secnd - third
5,355,065
def game_loop(): """ The core game loop, handling input, rendering and logic. """ while not state.get_current() == GameState.EXIT_GAME: # progress frame delta_time = state.update_clock() # get info to support UI updates and handling events current_state = state.get_current() turn_holder = chronicle.get_turn_holder() # process any deletions from last frame snecs.process_pending_deletions(default_world) # have enemy take turn if current_state == GameState.GAMEMAP and turn_holder != world.get_player(): # just in case the turn holder has died but not been replaced as expected try: world.take_turn(turn_holder) except AttributeError: chronicle.rebuild_turn_queue() # update based on input events for event in pygame.event.get(): input_processors.process_event(event, current_state) ui.process_ui_events(event) # allow everything to update in response to new state display_processors.process_display_updates(delta_time) debug.update() ui.update(delta_time) # show the new state ui.draw()
5,355,066
def q_make( x, y, z, angle): """q_make: make a quaternion given an axis and an angle (in radians) notes: - rotation is counter-clockwise when rotation axis vector is pointing at you - if angle or vector are 0, the identity quaternion is returned. double x, y, z : axis of rotation double angle : angle of rotation about axis in radians """ length=0 cosA=0 sinA=0 destQuat = [0.0,0.0,0.0,0.0] #/* normalize vector */ length = sqrt( x*x + y*y + z*z ) #/* if zero vector passed in, just return identity quaternion */ if ( length < Q_EPSILON ) : destQuat[X] = 0 destQuat[Y] = 0 destQuat[Z] = 0 destQuat[W] = 1 return x /= length y /= length z /= length cosA = cos(angle / 2.0) sinA = sin(angle / 2.0) destQuat[W] = cosA destQuat[X] = sinA * x destQuat[Y] = sinA * y destQuat[Z] = sinA * z return destQuat
5,355,067
def follow(file): """generator function that yields new lines in a file """ # seek the end of the file file.seek(0, os.SEEK_END) # start infinite loop while True: # read last line of file line = file.readline() # sleep if file hasn't been updated if not line: time.sleep(0.1) continue yield line
5,355,068
def create_mssql_pymssql(username, password, host, port, database, **kwargs): # pragma: no cover """ create an engine connected to a mssql database using pymssql. """ return create_engine( _create_mssql_pymssql(username, password, host, port, database), **kwargs )
5,355,069
def get_right_list_elements(result): """Some of the results are empty - therefore, the try-except. Others are lists with more than one element and only specific elements are relevant. Args: result (dict of lists): result of the xpath elements. Returns: dict of strs """ for key in ["title", "ort", "merkmale", "weitere_eigenschaften", "beschreibung"]: try: result[key] = result[key][0] except: pass for key in ["preis", "anzahl_raeume", "wohnflaeche", "grundstuecksflaeche"]: try: result[key] = result[key][1] except: pass return result
5,355,070
async def test_get_display(aresponses: ResponsesMockServer) -> None: """Test getting display information.""" aresponses.add( "127.0.0.2:4343", "/api/v2/device/display", "GET", aresponses.Response( status=200, headers={"Content-Type": "application/json"}, text=load_fixture("display.json"), ), ) async with aiohttp.ClientSession() as session: demetriek = LaMetricDevice(host="127.0.0.2", api_key="abc", session=session) display = await demetriek.display() assert display assert display.brightness == 100 assert display.brightness_mode is BrightnessMode.AUTO assert display.width == 37 assert display.height == 8 assert display.display_type is DisplayType.MIXED
5,355,071
def test_short_file_name_with_ALWAYS(): """Tests how Boost Jam handles the case when a Windows short file name is passed to the builtin ALWAYS rule. """ if ( not BoostBuild.windows ): return t = BoostBuild.Tester(pass_toolset=0) long_file_name1 = "1__target that should be rebuilt.txt" long_file_name2 = "2__target that should be rebuilt.txt" short_file_name2 = "2__tar~1.txt" prepare_file(t, long_file_name1) prepare_file(t, long_file_name2) t.write("testScript.jam", """ actions create-file { echo Modified file content ($(1:E="")).> "$(1:E="")" } ALWAYS "%(long_file_name1)s" ; DEPENDS all : "%(long_file_name1)s" ; create-file "%(long_file_name1)s" ; ALWAYS "%(short_file_name2)s" ; DEPENDS all : "%(long_file_name2)s" ; create-file "%(long_file_name2)s" ; """ % {'long_file_name1': long_file_name1, 'long_file_name2' : long_file_name2, 'short_file_name2' : short_file_name2}) t.run_build_system("-ftestScript.jam") t.expect_modification(long_file_name1) t.expect_modification(long_file_name2) t.expect_nothing_more() t.cleanup()
5,355,072
def gen_pixloc(frame_shape, xgap=0, ygap=0, ysize=1., gen=True): """ Generate an array of physical pixel coordinates Parameters ---------- frame : ndarray uniformly illuminated and normalized flat field frame xgap : int (optional) ygap : int (optional) ysize : float (optional) gen : bool, optional Only allows True right now Returns ------- locations : ndarray A 3D array containing the x center, y center, x width and y width of each pixel. The returned array has a shape: frame.shape + (4,) """ #dnum = settings.get_dnum(det) msgs.info("Deriving physical pixel locations on the detector") locations = np.zeros((frame_shape[0],frame_shape[1],4)) if gen: msgs.info("Pixel gap in the dispersion direction = {0:4.3f}".format(xgap)) msgs.info("Pixel size in the dispersion direction = {0:4.3f}".format(1.0)) xs = np.arange(frame_shape[0]*1.0)*xgap xt = 0.5 + np.arange(frame_shape[0]*1.0) + xs msgs.info("Pixel gap in the spatial direction = {0:4.3f}".format(ygap)) msgs.info("Pixel size in the spatial direction = {0:4.3f}".format(ysize)) ys = np.arange(frame_shape[1])*ygap*ysize yt = ysize*(0.5 + np.arange(frame_shape[1]*1.0)) + ys xloc, yloc = np.meshgrid(xt, yt) # xwid, ywid = np.meshgrid(xs,ys) msgs.info("Saving pixel locations") locations[:,:,0] = xloc.T locations[:,:,1] = yloc.T locations[:,:,2] = 1.0 locations[:,:,3] = ysize else: msgs.error("Have not yet included an algorithm to automatically generate pixel locations") return locations
5,355,073
def select(df: pd.DataFrame, time_key, from_time='00-00-00 00', to_time='99-01-01 00'): """ :param df: :param time_key: :param from_time: :param to_time: :return: :rtype: pandas.DataFrame """ select_index = (df[time_key] >= from_time) & (df[time_key] < to_time) return df.loc[select_index, :].reset_index(drop=True)
5,355,074
def load_apogee_distances(dr=None, unit='distance', cuts=True, extinction=True, keepdims=False): """ Load apogee distances (absolute magnitude from stellar model) :param dr: Apogee DR :type dr: int :param unit: which unit you want to get back - "absmag" for absolute magnitude - "fakemag" for fake magnitude - "distance" for distance in parsec :type unit: string :param cuts: Whether to cut bad data (negative parallax and percentage error more than 20%), or a float to set the threshold :type cuts: Union[boolean, float] :param extinction: Whether to take extinction into account, only affect when unit is NOT 'distance' :type extinction: bool :param keepdims: Whether to preserve indices the same as APOGEE allstar DR14, no effect when cuts=False, set to -9999 for bad indices when cuts=True keepdims=True :type keepdims: boolean :return: numpy array of ra, dec, array, err_array :rtype: ndarrays :History: | 2018-Jan-25 - Written - Henry Leung (University of Toronto) | 2021-Jan-29 - Updated - Henry Leung (University of Toronto) """ fullfilename = apogee_distances(dr=dr) with fits.open(fullfilename) as F: hdulist = F[1].data # Convert kpc to pc distance = hdulist['BPG_dist50'] * 1000 dist_err = (hdulist['BPG_dist84'] - hdulist['BPG_dist16']) * 1000 allstarfullpath = allstar(dr=dr) with fits.open(allstarfullpath) as F: k_mag = F[1].data['K'] if extinction: k_mag = extinction_correction(k_mag, F[1].data['AK_TARG']) ra = F[1].data['RA'] dec = F[1].data['DEC'] # Bad index refers to nan index bad_index = np.argwhere(np.isnan(distance)) if unit == 'distance': # removed astropy units because of -9999. is dimensionless, will have issues output = distance output_err = dist_err elif unit == 'absmag': absmag, absmag_err = mag_to_absmag(k_mag, 1 / distance * u.arcsec, (1 / distance) * (dist_err / distance)) output = absmag output_err = absmag_err elif unit == 'fakemag': # fakemag requires parallax (mas) fakemag, fakemag_err = mag_to_fakemag(k_mag, 1000 / distance * u.mas, (1000 / distance) * (dist_err / distance)) output = fakemag output_err = fakemag_err else: raise ValueError('Unknown unit') # Set the nan index to -9999. as they are bad and unknown. Not magic_number as this is an APOGEE dataset output[bad_index], output_err[bad_index] = -9999., -9999. if cuts is False: pass else: distance[bad_index], dist_err[bad_index] = -9999., -9999. good_idx = ((dist_err / distance < (0.2 if cuts is True else cuts)) & (distance != -9999.)) if not keepdims: ra = ra[good_idx] dec = dec[good_idx] output = output[good_idx] output_err = output_err[good_idx] else: output[(dist_err / distance > (0.2 if cuts is True else cuts))] = -9999. output_err[(dist_err / distance > (0.2 if cuts is True else cuts))] = -9999. return ra, dec, output, output_err
5,355,075
def userstudy(config, data_train): """ Update the model based on feedback from user study. - [config]: hyperparameters for model fine-tuning - [data_train]: data pool to sample from """ def preprocess_data(doc, queries): """ Create a new field in [doc] called [antecedent_map] which processes the user-labeled [antecedents]. Add all labeled spans to [queries]. in queries). """ ante_map = {} for entry in doc['antecedents']: span = tuple(entry[0]) if entry[1] == -1: label = None elif entry[1] == 0: label = '0' else: label = [tuple(entry[1])] ante_map[span] = label doc['antecedent_map'] = ante_map del doc['antecedents'] # update queries to know what has been queried queries[doc['doc_key']] = list(ante_map.keys()) # return # spans labeled return len(ante_map) # preprocess antecedents and get queries data_fp = config['userstudy'] / 'train_data.jsonl' data = [] queries = defaultdict(list) num_queries = 0 with open(data_fp, 'r') as f: for line in f: doc = json.loads(line) # update doc and queries n = preprocess_data(doc, queries) num_queries += n data.append(doc) # finetune model on data src_path = config['src_path'] logging.info( f'Finetuning src model on {num_queries} queries from {len(data)} docs' ) scores_dev, model = finetune_on_queries(config, data, config['userstudy'], src_path) # test model results_fp = config['userstudy'] / 'results_test.json' scores_test = eval_scores(model, config, "test") output_results(results_fp, config, 1, scores_test)
5,355,076
def clique_create(request): """ Creates a new grouping in the database (this integration must be stored in the db to be useful) Arguments: /group-create "groupname" "@user1 @user2" """ requesting_user_id = request.POST.get('user_id') args = re.findall(DOUBLE_QUOTE_ARG_REGEX, request.POST.get("text")) # Check to see if everything looks right if len(args) != 2: return make_clique_group_error("Error in arguments (Double quotes are required!). Usage:\n" "`/group-create \"groupName\" \"@user1 @user2\"") if CliqueGroup.objects.filter(name=args[0]).count() > 0: return make_clique_group_error("This group <{}> already exists!".format(args[0])) # Move on to creating the group raw_group_members = re.findall(SLACK_ID_REGEX, args[1]) group_users = [] for slack_id in raw_group_members: try: group_users.append(CliqueUser.objects.get(slack_id=slack_id)) except CliqueUser.DoesNotExist: # This is the first time that we've seen this user # we need to add them to the db new_user = CliqueUser(slack_id=slack_id) new_user.save() group_users.append(new_user) # Case where the owner is 1) new and 2) not in the group try: CliqueUser.objects.get(slack_id=requesting_user_id) except CliqueUser.DoesNotExist: # This is the first time that we've seen this user # we need to add them to the db CliqueUser(slack_id=requesting_user_id).save() new_group = CliqueGroup( creator=CliqueUser.objects.get(slack_id=requesting_user_id), name=args[0] ) new_group.save() for clique_user in group_users: new_group.members.add(clique_user) new_group.save() # Testing response string resp_string = 'Group <{0}> has been created with users:'.format(args[0]) resp_string += ' '.join(format_user(user.slack_id) for user in new_group.members.all()) return JsonResponse({"replace_original": True, "text": resp_string})
5,355,077
def cg_atoms(atoms, units, sites, scale, scaleValue, siteMap, keepSingleAtoms, package): """ Get positions for atoms in the coarse-grained structure and the final bond description. Returns a dictionary of the lattice, fractional coordinates, and bonds. Also provides the option to scale the lattice. Args ---- atoms: pymatgen.core.Structure Pymatgen Structure object. units: list List of tuple(atomIndex, Image) for all atoms found in the building unit so far in the algorithm. sites: list Specifying atoms in each site-type. One list per site-type. I.e. for ZIF-8 (Zn(mIm)2) Zn is an A site, and the C, N, H (imidazolate ring) are B sites, so you would pass: scale: str Scaling method to be used. Currently supported: "min_xx": minimum bond length between any atoms. "min_ab": minimum bond length between building units. "avg_ab": average bond length between building units. scaleValue: float Length (Å) to scale the characteristic bond length (defined by "scale") to. siteMap: list A list of atoms to map each building unit to. Should be of the same length as the number of site-types. E.g. to map Zn(mIm)2 to a coarse-grained structure, siteMap = ["Si", "O"] would map all A sites (Zn) to Si, and all B sites (mIm) to O. If not set, will default to "Dummy Species" with labels DA, DB, DC, ... Note if creating an ASE Atoms object, real atoms must be used, and so siteMap *must* be set. keepSingleAtoms: bool If True, the chemical identity of the single atom building units will be preserved. E.g. for BIF-1-Li ( [LiB(im)]4 ) where Li and B are A sites, the final coarse-grained structure would keep the Li and B atoms, but add dummy species for the imidazolate units. package: str "pymatgen" or "ase". If set, will return the Structure/Atoms object of the specified package, respectively. As noted in siteMap, ASE requires that real elements are set for the Atoms object. """ # Extract unit cell. lattice = atoms.lattice.copy() # Extract labels, positions, and images for each building unit. l, p, _ = zip(*[(l,*u.frac_img) for l,u in units.items()]) # Extract bonds in format consistent with TopoCIF specification; i.e. # node1_label, node2_label, distance, sym_op1, x1, y1, z1, sym_op2, # x2, y2, z2, link_type, multiplicity. There will be a list of tuples, # one tuple per unit, and the length of each tuple will be the number of # bonds stored. b = [u.unit_bonds for u in units.values()] # Determine scaling type now, because can avoid calling next section # twice to calculate the bond distances if it is "min_xx" scaling. if scale is not None: scale = scale.lower() if scale == "min_xx": # Get all distances (ignoring self-distances along diagonal). d = lattice.get_all_distances(p,p) np.fill_diagonal(d, 1000) # Get scale factor and scale the lattice to the new volume. sf = ( scaleValue / np.amin(d) )**3 lattice = lattice.scale(lattice.volume * sf) elif scale in ["min_ab", "avg_ab"]: # Get the bond distances from the formatted bonds. _, d = format_bonds(lattice,l,p,b,return_lengths=True) # Get scale factor and scale the lattice to new volume. if scale == "min_ab": sf = ( scaleValue / np.amin(d) )**3 elif scale == "avg_ab": sf = ( scaleValue / np.mean(d) )**3 lattice = lattice.scale(lattice.volume * sf) else: warnings.warn(f"Scale method {scale} is not supported.") # Get the final TopoCIF-formatted bonds. b = format_bonds(lattice, l, p, b) # The atomMap must provide a one-to-one mapping for every site-type # in the structure. assert len(siteMap) == len(sites), "Povide a one-to-one " + \ f"mapping of dummy-sites to atomic symbols " + \ f"({len(sites)} != {len(siteMap)})" # Relabel each atom with a new symbol. l, symbols, b = relabel(units, siteMap, keepSingleAtoms, b) # Sort structure information into a dictionary. s_info = { "lattice": lattice, "symbols": symbols, "labels": l, "frac_coords": p, "bonds": b } # If package specified return either a Pymatgen Structure object, or an ASE # atoms object. s = py_structure(s_info["lattice"],s_info["symbols"],s_info["frac_coords"]) if package is not None and package.lower() == "ase": s = AseAtomsAdaptor.get_atoms(s) return s_info, s
5,355,078
def read_tickers(video, ocr = None, debug = False, **kwargs): """ Reads news stories from sliding tickers on video. Returns lists of dictionaries which contain: text: news story text start time: time when news story shows up end time: time when news story disappears Each list corresponds to one ticker. """ if debug: print('Language: ', video.language) if ocr is None: ocr = TesseractOCR(**kwargs) tickers, height, width = get_tickers_hw(video) kwargs['height'] = height kwargs['width'] = width ocr._preprocesses['height'] = height if debug: print('tickers') print(tickers) stories = [] for ticker in tickers: stories.append(read_ticker(video, ticker, ocr, **kwargs)) return stories
5,355,079
def compute_msa_weights(msa, threshold=.8): """ msa (Bio.Align.MultipleSeqAlignment): alignment for which sequence frequency based weights are to be computed threshold (float): sequence identity threshold for reweighting NOTE that columns where both sequences have a gap will not be taken into account when computing identity """ weights = np.zeros(len(msa)) seq_identities = np.zeros((len(msa), len(msa))) for i in range(len(msa)): for j in range(i+1, len(msa)): seq_identities[i, j] = _compute_sequence_identity(msa[i], msa[j]) seq_identities = seq_identities + np.diag(np.ones(len(msa))) ms = np.sum(seq_identities>threshold, 1) weights = 1./ms return weights
5,355,080
def do_CreateRedis(client, args): """ Create redis """ val = client.CreateRedis(args.mem, duration=args.duration, name=args.name, zone=args.zone) utils.print_dict(val)
5,355,081
def search_storefront(client, phrase): """Execute storefront search on client matching phrase.""" resp = client.get(reverse("search:search"), {"q": phrase}) return [prod for prod, _ in resp.context["results"].object_list]
5,355,082
def is_repo_in_config(config, repo, rev, hook_id): """Get if a repository is defined in a pre-commit configuration. Parameters ---------- config : dict Pre-commit configuration dictionary. repo : str Repository to search. rev : str Repository tag revision. hook_id : Hook identifier. Returns ------- dict : Information about if the repository and the hook have been found. """ response = {"repo_found": False, "hook_found": False, "same_rev": False} for repo_ in config["repos"]: if repo_["repo"] == repo: response["repo_found"] = True response["hook_found"] = hook_id in [hook["id"] for hook in repo_["hooks"]] response["same_rev"] = repo_["rev"] == rev break return response
5,355,083
def mat33_to_quat(mat): """ Convert matrix to quaternion. :param mat: 3x3 matrix :return: list, quaternion [x, y, z, w] """ wxyz = transforms3d.quaternions.mat2quat(mat) return [wxyz[1], wxyz[2], wxyz[3], wxyz[0]]
5,355,084
def reshape(x, new_shape): """ Reshapes a tensor without changing its data. Args: x (Tensor): A tensor to be reshaped. new_shape (Union[int, list(int), tuple(int)]): The new shape should be compatible with the original shape. If the tuple has only one element, the result will be a 1-D tensor of that length. One shape dimension can be :math:`-1`. In this case, the value is inferred from the length of the tensor and remaining dimensions. Returns: Reshaped Tensor. Has the same data type as the original tensor `x`. Raises: TypeError: If new_shape is not integer, list or tuple, or `x` is not tensor. ValueError: If new_shape is not compatible with the original shape. Supported Platforms: ``Ascend`` ``GPU`` ``CPU`` Examples: >>> import mindspore.numpy as np >>> x = np.asarray([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]) >>> output = np.reshape(x, (3, 2)) >>> print(output) [[-0.1 0.3] [ 3.6 0.4] [ 0.5 -3.2]] >>> output = np.reshape(x, (3, -1)) >>> print(output) [[-0.1 0.3] [ 3.6 0.4] [ 0.5 -3.2]] >>> output = np.reshape(x, (6, )) >>> print(output) [-0.1 0.3 3.6 0.4 0.5 -3.2] """ _check_input_tensor(x) return x.reshape(new_shape)
5,355,085
def update_depth(depth_grid, elapsed_ts, depth_factor): """Just in time Update Depth for lake to pond Parameters ---------- depth_grid: np.array like (float) grid of current lake depths elapsed_ts: float number timesteps since start year depth_factor: float Returns ------- np.array updated depth grid """ new = np.zeros(depth_grid.shape) for row in range(depth_grid.shape[0]): for col in range(depth_grid.shape[0]): new[row,col] = \ depth_grid[row,col] + (np.sqrt(elapsed_ts) / depth_factor) return new
5,355,086
def get_submissions(config, event_name, state='new'): """ Retrieve a list of submissions and their associated files depending on their current status Parameters ---------- config : dict configuration event_name : str name of the RAMP event state : str, optional state of the requested submissions (default is 'new') Returns ------- List of tuples (int, List[str]) : (submission_id, [path to submission files on the db]) Raises ------ ValueError : when mandatory connexion parameters are missing from config UnknownStateError : when the requested state does not exist in the database """ if state not in STATES: raise UnknownStateError("Unrecognized state : '{}'".format(state)) # Create database url db_url = URL(**config) db = create_engine(db_url) # Create a configured "Session" class Session = sessionmaker(db) # Link the relational model to the database Model.metadata.create_all(db) # Connect to the dabase and perform action with db.connect() as conn: session = Session(bind=conn) submissions = select_submissions_by_state(session, event_name, state) if not submissions: return [] subids = [submission.id for submission in submissions] subfiles = [submission.files for submission in submissions] filenames = [[f.path for f in files] for files in subfiles] return list(zip(subids, filenames))
5,355,087
def split_dataframe(df, size=10*1024*1024): """Splits huge dataframes(CSVs) into smaller segments of given size in bytes""" # size of each row row_size = df.memory_usage().sum() / len(df) # maximum number of rows in each segment row_limit = int(size // row_size) # number of segments seg_num = (len(df)+row_limit-1)//row_limit # split df into segments segments = [df.iloc[i*row_limit : (i+1)*row_limit] for i in range(seg_num)] return segments
5,355,088
def convert_table_codes(input_filename: Path, output_filename: Path = None, column: str = 'countryCode', namespace: Optional[str] = None, fuzzy:int = 0) -> Path: """ Adds a 'regionCode' column to the given table containing iso-3 country codes. Parameters ---------- input_filename: Path output_filename: Path column: str, default 'countryCode namespace: {'iso2', 'iso3', 'm49'}; default None fuzzy: int; default 0 The score to use when fuzzy matching when above 0. If 0, the regular code search is used instead. Returns ------- path: Path Location of the output table. """ table = load_table(input_filename) if column not in table.columns: message = "'{}' is not a valid column. Expected one of {}".format(column, list(table.columns)) raise ValueError(message) old_values = table[column].values if fuzzy: new_values = [fuzzy_search(i,fuzzy) for i in old_values] else: new_values = [get_codes(i, namespace) for i in old_values] new_values = [(v['iso3'] if v else v) for v in new_values] table['regionCode'] = new_values if output_filename is None: output_filename = input_filename.with_suffix('.edited.tsv') elif output_filename.is_dir(): output_filename = output_filename / input_filename.name opath = save_table(table, output_filename) return opath
5,355,089
def add_message(exception, message): """ Embeds an error message into an exception that can be retrieved by try_get_error_message(). Parameters ---------- exception : Exception message : str """ exception.args += (_Message(message),)
5,355,090
def allow_view(user): """Is the current user allowed to view the user account? Yes, if current user is admin, staff or self. """ if not flask.g.current_user: return False if flask.g.am_admin: return True if flask.g.am_staff: return True if flask.g.current_user['username'] == user['username']: return True return False
5,355,091
def httptimestamp(inhttpdate): """ Return timestamp from RFC1123 (HTTP/1.1). """ dat = datetime.datetime(*eut.parsedate(inhttpdate)[:5]) return int(time.mktime(dat.timetuple()))
5,355,092
def main(): """Read a theme list file, and moves file and create a fixed theme list.""" tml = read( r"c:\tmp\xxx\AKR Theme List.tml" ) # r"X:\GIS\ThemeMgr\AKR Theme List.tml") path_maps = build_file_mapping( "data/tmpaths.txt", "data/moves_extra.csv" ) # data/PDS Moves - inpakrovmdist%5Cgisdata.csv') for old, new in path_maps: print(old, new) tml = tml.replace(old, new) save( tml, r"c:\tmp\xxx\AKR Theme List1.tml" )
5,355,093
def calculate_duration(start_date, end_date=None): """ Calculate how many years and months have passed between start and end dates """ # If end date not defined, use current date if not end_date: end_date = datetime.date.today() years = end_date.year - start_date.year months = end_date.month - start_date.month if months < 0: years = years - 1 months = months + 12 return years, months
5,355,094
def write(path, *content): """ 写出文件 :param path:位置 :param content:内容 :return: """ # 防止有些使用`/`有些用`\\` _sep_path = [] s = path.split('/') [_sep_path.extend(item.split('\\')) for item in s] _path = '' for i in _sep_path: _end = _sep_path[len(_sep_path) - 1] if i != _end: _path += str(i) + os.sep else: _path += str(i) if not os.path.exists(_path): if '.' not in i: os.makedirs(_path) _write_content = logTupleToText(True, *content) with open(os.path.join(_path), mode="a", encoding="UTF-8") as f: f.write(_write_content) f.close()
5,355,095
def GetSourceRoot(filename): """Try to determine the root of the package which contains |filename|. The current heuristic attempts to determine the root of the Chromium source tree by searching up the directory hierarchy until we find a directory containing src/.gn. """ # If filename is not absolute, then we are going to assume that it is # relative to the current directory. if not os.path.isabs(filename): filename = os.path.abspath(filename) if not os.path.exists(filename): raise NoSourceRootError('File not found: {}'.format(filename)) source_root = os.path.dirname(filename) while True: gnfile = os.path.join(source_root, 'src', '.gn') if os.path.exists(gnfile): return source_root new_package_root = os.path.dirname(source_root) if new_package_root == source_root: raise NoSourceRootError("Can't determine package root") source_root = new_package_root
5,355,096
def actives(apikey: str) -> typing.List[typing.Dict]: """ Query FMP /actives/ API :param apikey: Your API key. :return: A list of dictionaries. """ path = f"actives" query_vars = {"apikey": apikey} return __return_json_v3(path=path, query_vars=query_vars)
5,355,097
def write_json_file(data: dict, filename: str) -> None: """ Write a JSON file. Example: {'a': 1, 'b': {'c': 3, 'd': 4}} { "a": 1, "b": { "c": 3, "d": 4 } } :type data: dict :param data: data to write :type filename: str :param filename: name of file :rtype: None :return: None """ with open(filename, 'w') as f: json.dump(data, f, indent=2)
5,355,098
def find_sue_de_coq(board: Board): """we look at each intersection (3 cells) of a block and a row/col: - we need either two cells containing (together) 4 distinct candidates or three cells containing (together) 5 distinct candidates - now we need to find two bi-value cells: a. one in the row/col outside the intersection/block b. one in the block outside the intersection/row/col - the two bi-value cells' candidates must be drawn entirely from the 4/5 candidates above - the two bi-value cells must have disjunct candidates We may then invalidate the two row cell candidates from the rest of the cells in the row (except intersection cells) and invalidate the two block cell candidates from the rest of the cells in the block (except intersection cells). We may also invalidate any intersection candidate (the 4/5 candidates) that is left (i.e. in neither bi-value cells) from both the row and the block (but not from the intersection). """ blocks = board.get_all_houses(house_type=HouseType.BLOCK) for block in blocks: block: Block # get crossing columns and rows and try out each combination crossing_houses = block.get_crossing_houses() for crossing_house in crossing_houses: preview = _find_sue_de_coq_in_intersection(board=board, block=block, crossing_house=crossing_house) if preview: board.notify_preview(preview=preview) return
5,355,099