Datasets:
File size: 10,239 Bytes
52fe1d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script for reading 'You Actually Look Twice At it (YALTAi)' dataset."""
import contextlib
from typing import Dict
import requests
import datasets
from PIL import Image
from pathlib import Path
import xml.etree.ElementTree as ET
from xml.etree.ElementTree import Element
from typing import Any, List
from pathlib import PosixPath
_CITATION = """\
@dataset{clerice_thibault_2022_6827706,
author = {Clérice, Thibault},
title = {YALTAi: Tabular Dataset},
month = jul,
year = 2022,
publisher = {Zenodo},
version = {1.0.0},
doi = {10.5281/zenodo.6827706},
url = {https://doi.org/10.5281/zenodo.6827706}
}
"""
_DESCRIPTION = """Yalt AI Tabular Dataset"""
_HOMEPAGE = "https://doi.org/10.5281/zenodo.6984525"
_LICENSE = "Creative Commons Attribution Non Commercial Share Alike 2.0 Generic"
ZENODO_API_URL = "https://zenodo.org/api/records/6984525"
_CATEGORIES = [
"zebra",
"tree",
"nude",
"crucifixion",
"scroll",
"head",
"swan",
"shield",
"lily",
"mouse",
"knight",
"dragon",
"horn",
"dog",
"palm",
"tiara",
"helmet",
"sheep",
"deer",
"person",
"sword",
"rooster",
"bear",
"halo",
"lion",
"monkey",
"prayer",
"crown of thorns",
"elephant",
"zucchetto",
"unicorn",
"holy shroud",
"cat",
"apple",
"banana",
"chalice",
"bird",
"eagle",
"pegasus",
"crown",
"camauro",
"saturno",
"arrow",
"dove",
"centaur",
"horse",
"hands",
"skull",
"orange",
"monk",
"trumpet",
"key of heaven",
"fish",
"cow",
"angel",
"devil",
"book",
"stole",
"butterfly",
"serpent",
"judith",
"mitre",
"banner",
"donkey",
"shepherd",
"boat",
"god the father",
"crozier",
"jug",
"lance",
]
_POSES = [
"stand",
"sit",
"partial",
"Unspecified",
"squats",
"lie",
"bend",
"fall",
"walk",
"push",
"pray",
"undefined",
"kneel",
"unrecognize",
"unknown",
"other",
"ride",
]
logger = datasets.utils.logging.get_logger(__name__)
def parse_annotation(annotations_object: Element) -> Dict[str, Any]:
with contextlib.suppress(ValueError):
name = annotations_object.find("name").text
pose = annotations_object.find("pose").text
diffult = int(annotations_object.find("difficult").text)
bndbox = annotations_object.find("bndbox")
xmin = float(bndbox.find("xmin").text)
ymin = float(bndbox.find("ymin").text)
xmax = float(bndbox.find("xmax").text)
ymax = float(bndbox.find("ymax").text)
return {
"name": name,
"pose": pose,
"diffult": diffult,
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
def create_annotations_dict(xmls: List[PosixPath]) -> Dict[str, Any]:
annotations = {}
for xml in xmls:
tree = ET.parse(xml)
root = tree.getroot()
filename = root.find("filename").text
source = root.find("source/database").text
size = root.find("size")
width = int(size.find("width").text)
height = int(size.find("height").text)
depth = int(size.find("depth").text)
segmented = root.find("segmented")
segmented = int(segmented.text) if segmented else None
annotation_objects = root.findall("object")
annotation_objects = [
parse_annotation(annotation) for annotation in annotation_objects
]
annotation_objects = [
annotation for annotation in annotation_objects if annotation is not None
]
annotations[filename] = {
"source": source,
"width": width,
"height": height,
"dept": depth,
"segmented": segmented,
"objects": annotation_objects,
}
return annotations
def get_coco_annotation_from_obj(
image_id, label, xmin, ymin, xmax, ymax
): # adapted from https://github.com/yukkyo/voc2coco/blob/abd05bbfa0740a04bb483862eccea2032bc80e24/voc2coco.py#L60
category_id = label
assert xmax > xmin and ymax > ymin, logger.warn(
f"Box size error !: (xmin, ymin, xmax, ymax): {xmin, ymin, xmax, ymax}"
)
o_width = xmax - xmin
o_height = ymax - ymin
ann = {
"image_id": image_id,
"area": o_width * o_height,
"iscrowd": 0,
"bbox": [xmin, ymin, o_width, o_height],
"category_id": category_id,
# "ignore": 0,
"segmentation": [],
}
return ann
common_features = features = datasets.Features(
{
# "image_id": datasets.Value("int64"),
"image": datasets.Image(),
"source": datasets.Value("string"),
"width": datasets.Value("int16"),
"height": datasets.Value("int16"),
"dept": datasets.Value("int8"),
"segmented": datasets.Value("int8"),
}
)
class DeartDatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for YaltAiTabularDataset."""
def __init__(self, name, **kwargs):
"""BuilderConfig for YaltAiTabularDataset."""
super(DeartDatasetConfig, self).__init__(
version=datasets.Version("1.0.0"), name=name, description=None, **kwargs
)
class DeartDataset(datasets.GeneratorBasedBuilder):
"""Object Detection for historic manuscripts"""
BUILDER_CONFIGS = [
DeartDatasetConfig("raw"),
DeartDatasetConfig("coco"),
]
def _info(self):
if self.config.name == "coco":
features = common_features
features["image_id"] = datasets.Value("string")
object_dict = {
"category_id": datasets.ClassLabel(names=_CATEGORIES),
"image_id": datasets.Value("string"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"segmentation": [[datasets.Value("float32")]],
"iscrowd": datasets.Value("bool"),
}
features["objects"] = [object_dict]
if self.config.name == "raw":
features = common_features
object_dict = {
"name": datasets.ClassLabel(names=_CATEGORIES),
"pose": datasets.ClassLabel(names=_POSES),
"diffult": datasets.Value("int32"),
"xmin": datasets.Value("float64"),
"ymin": datasets.Value("float64"),
"xmax": datasets.Value("float64"),
"ymax": datasets.Value("float64"),
}
features["objects"] = [object_dict]
return datasets.DatasetInfo(
features=features,
supervised_keys=None,
description=_DESCRIPTION,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
zenodo_record = requests.get(ZENODO_API_URL).json()
urls = sorted(
[
file["links"]["self"]
for file in zenodo_record["files"]
if file["type"] == "zip"
]
)
annotation_data = urls.pop(0)
annotation_data = dl_manager.download_and_extract(annotation_data)
image_data = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotations_data": Path(annotation_data),
"image_data": image_data,
},
),
]
def _generate_examples(self, annotations_data, image_data):
xmls = list(annotations_data.rglob("*.xml"))
annotations_data = create_annotations_dict(xmls)
count = 0
for directory in image_data:
for file in Path(directory).glob("*.jpg"):
with Image.open(file) as image:
try:
if self.config.name == "raw":
example = annotations_data[file.name]
example["image"] = image
count += 1
yield count, example
if self.config.name == "coco":
updated_annotations = []
example = annotations_data[file.name]
annotations = example["objects"]
for annotation in annotations:
label = annotation["name"]
xmin, ymin = annotation["xmin"], annotation["ymin"]
xmax, ymax = annotation["xmax"], annotation["ymax"]
updated_annotations.append(
get_coco_annotation_from_obj(
count, label, xmin, ymin, xmax, ymax
),
)
example["image"] = image
example["objects"] = updated_annotations
example["image_id"] = str(count)
count += 1
yield count, example
except Exception:
logger.warn(file.name)
continue
|